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We prove a claim by Brian Straughan who conjectured
that Payne–Song’s and modified Guyer–Krumhansl’s
equations can be justified in (and derived from) the
general model-building framework for the mechanics
of complex bodies, so they emerge from the modelling
of microstructural effects. The proof is based on taking
into account micro-to-macro spatial scaling and a
decomposition of the heat flux into a standard Fourier-
type component and one measuring microstructural
event with associated and balanced actions.

1. Introduction
In an elegant analysis of stationary and oscillatory
convection in a Brinkman–Darcy–Kelvin–Voigt fluid,
Straughan [1] (see also [2–5]) considered a system of
evolution laws including—beyond a regularized balance
of momentum—Payne–Song’s equation [6] in Eulerian
representation, that is an energy balance given by

Ṫ = κ�T − divq, (1.1)

where the superposed dot indicates from now on
total derivative with respect to time; T is the absolute
temperature, κ the conductivity, taken to be constant,
and q the heat flux, which satisfies, per se, a version of
Guyer–Krumhansl’s equation [7,8], given by

�
Dq
Dt

= −q − κ∇T + ς̂1�q + ς̂2∇divq, (1.2)

with � a time delay and D/Dt a generic objective
derivative, which he considers in the analysis to be
the Lie derivative with respect to the macroscopic fluid
velocity.
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Such equations are in a set of proposals formulated to avoid that, according to Fourier’s
diffusive law, local perturbations of temperature are instantaneously felt everywhere, which is
against causality (see the treatise [9]).

In commenting on equations, in particular Payne–Song’s one, Straughan wrote as follows: ‘I
believe it may be justified from work of Mariano [10, Section 2]’. Here, we prove such a statement.

Indeed, Mariano [10] showed that experimentally recorded finite speed heat propagation
can be attributed to effects of temperature-dependent microstructure. The analysis adapts
thermodynamic principles to the presence of active material microstructure. The resulting
scheme, formulated neglecting macroscopic strain [10], foresees finite-speed heat propagation.
Explicit closed-form solutions for pertinent waves with three admissible velocities for the
temperature propagation have been derived by Mariano & Spadini [11].

Furthermore, Capriz et al. [12] also showed (in one-dimensional setting) that both Maxwell–
Cattaneo’s and Guyer–Krumhansl’s equations are a special offspring of the balance of
microstructural interactions, under the presence of appropriate internal constraints linking
microstructural descriptors to the heat flux (see also [11,13]). Notice that Guyer–Krumhansl’s
equation, otherwise largely analysed (see e.g. [14–19] and references therein), involves only the
common total time derivative of the heat flux, while the version (1.2) including an objective time
derivative has been proposed by Morro [20,21].

Here, in addition to Straughan’s claim, we prove that even equation (1.2) emerges from the
general model-building framework for the mechanics of complex bodies. The main conceptual
ingredients of the analysis developed here go as follows:

— In non-isothermal setting, we consider incompressible viscous complex fluids with
microstructure described by a manifold-valued field [22],1 with values ν referring to a
spatial scale λ (here ν is not a scalar).

— Per se ν is an observable entity, meaning that it is sensitive to changes of observer along
which it varies according to its geometric nature.

— Microstructural actions develop power in the time-variation of ν. They have bulk and
contact nature. Their balance emerges from an invariance requirement for the external
power alone of all standard and microstructural actions over a generic body part with

1Historical note. The traditional format of continuum mechanics refers to the foundational program developed by C. A.
Truesdell’s school, starting from W. Noll’s work. That format was (in a sense) ‘sculptured’ in two articles of the Handbuk
der Physik [23,24] and motivated further foundational work (see the treatises [25–28]). According to it, a body is considered
as an abstract set B of the so-called material elements—not otherwise specified—and is presumed to be endowed with
(finite-dimensional) manifold structure. Embeddings into (say) R

k determine its geometric representation: a fit region B ⊂ R
k.

In this picture, every material element is ideally represented only by a point. Crowding and shearing of neighbouring
elements determine interactions described by Cauchy’s stress. They are balanced by bulk external actions. The second law
of thermodynamics restricts possible constitutive choices. Already before the raising of Truesdell’s program, notes by Voigt
[29,30] apparently suggested to the brothers E. and F. Cosserat to consider every material element as a ‘small’ rigid-body,
able to rotate independently from its neighbours [31]. Circumstantial reasons left that work aside until in 1958 Ericksen and
Truesdell [32] raised attention over it as a setting for building up direct models for shells, rods and their like (notice that
even in reference [24, Secs 200, 203, 205], Truesdell and Toupin detach from the path now traditional to discuss Cosserat’s
viewpoint). Generalizing Cosserat’s view, each point of B acquires additional degrees of freedom with respect to the ones
of a mass point in the physical space. The generic material element can be thus portrayed as a system rather than a point.
Since 1960, Ericksen adopted this perspective to describe the mechanics of liquid crystals [33–35]. A subsequent rich crop
of proposals emerged: different types of additional degrees of freedom were adopted for various physical circumstances.
A foundational problem concerning the wide taxonomy of specific models was thus to find whether they can be unified.
A proposal in this sense by Germain dates back to 1973 [36]: he considered descriptors of the material morphology in a
linear space and the principle of virtual work as a guiding rule. So, he assumed a priori the weak form of balance equations,
presuming the representation of microstructural interactions. In a 1989 book [22], Capriz summarized and pushed forward
aspects of his previous work on this matter; he proposed a unifying framework in which descriptors of material morphology
are taken in a generic finite-dimensional differentiable manifold. In fact, he coupled strain with the general view for the
representation of microstructures adopted in condensed matter physics [37]. He postulated balance equations in local form,
including the balance of microstructural interactions and its link with the one of couples. In question was whether the
representation of microstructural actions and their balance could be derived from a more fundamental principle. In 1995,
Green and Naghdi suggested to start from the balance of energy, requiring its invariance under changes of observer [38]. The
procedure excludes emergence of dissipative stress components. Invariance of the external power alone under SO(3)-based
changes of observer has been suggested by Mariano [39,40]; such a view is adopted, commented on and refined in the present
paper. An approach based on measures over manifolds of maps has been proposed by Segev [41]. Eventually, it is possible
to show that requiring invariance of the second law under general diffeomorphism-based changes of observers allows one to
derive the representation of contact interactions and the balance laws, in addition to constitutive restriction (proof is in [42]).
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non-vanishing volume, under rigid-body-type changes of observer in the physical
space and their effects on the space containing ν. The approach follows a procedure
developed and progressively refined by Capriz & Mazzini [43] (where the direct action
of SO(3) over ν is admitted), [39,40]. It extends to the present multi-field setting Noll’s
invariance request [44] for the external power of bodies with no direct description of
the microstructural morphology—we call them Cauchy’s bodies. (Here, the expression
of internal—or inner—power of actions is not postulated, as it is done when one starts
from the principle of virtual power, that is directly postulating the weak form of balance
equations and assuming a priori in this way the representation of deformation-conjugated
and microstructural interactions in terms of stresses and a microstructural self-action. At
variance, we do not postulate a form of the internal power, deriving it under appropriate
conditions.)

— Balances of standard and microstructural actions are supplemented by the first law and
the second law of thermodynamics.

— We consider q in equation (1.1) as a portion of total heat flux q̂, which admits the additive
decomposition

q̂= −κ∇T + q.

As mentioned above, we consider every material element at continuum level as a system
characterized by a spatial scale λ, rather than an indistinct mass point. The temperature T
emerges from averaged evaluations on the ensemble constituting every material element
(be it canonical or grand-canonical, the latter feature when transport of microstructure
occurs). The vector q represents the fluctuation to κ∇T determined by microstructural
events below λ, a scale that we leave unspecified at the present level of generality.

— It is crucial to consider the vector q as a term of order λ – and we write q∼ O(λ). In this
sense, with f (q, ∇q) a differentiable function of its arguments, we have

∂f
∂q

· q∼ O(λ2) and
∂f
∂∇q

· ∇q∼ O(λ2), (1.3)

where the interposed dot indicates duality pairing; it corresponds to the standard scalar
product when the metric in space is flat and trivial, meaning that it coincides with the
second-rank unit tensor with covariant components.

— Then we impose the internal constraint ν = q with additional specific constitutive choices
for the interactions considered. We will involve the action of SO(k) in describing changes
of observer in the physical space and will consider volume-preserving flows. Under such
actions, q behaves as a vector. Under the action of O(k), the full orthogonal group, not
involved here, q would display its nature of a pseudo-vector.

To within O(λ2) terms, Payne–Song’s equation coincides with the local balance of energy that is
appropriate for this setting when there are no heat sources, and viscous components of standard
stresses are absent or their power can be negligible with respect to temperature and heat flux
contributions.

The balance of microstructural actions reduces to the modified Guyer–Krumhansl equation
(1.2) when

(i) the microstructural self-action includes a dissipative component,
(ii) the free energy depends on q, its gradient, and T in a specific way,

(iii) the microstructural bulk actions have only non-inertial component β̂, which in an
orthonormal frame is such that∫

b̂
β̂ · qdy = −

∫
b̂

(
C̄∇v · (q ⊗ q) + κ∇T · q) dy, (1.4)

for any choice of q and any connected subset b̂ of the current configuration (C̄ is a constant
adjusting physical dimensions). Equation (1.4) is nothing more than the ‘weak version’ of
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β̂. However, assuming it, not directly postulating its strong form, allows us to clarify
the physics justifying the present choice (exactly as it happens when we identify the
inertial component of standard bulk forces by postulating that their power equals the
negative of kinetic energy time rate). Precisely, with equation (1.4) we presume that non-
uniformity of macroscopic flow and temperature field determines a bulk action over the
microstructure, in particular over the heat flux perturbation induced by it (imagine a
microstructure that is chemically active).

When we neglect O(λ) terms, the theory reduces to the classical Fourier-type conduction in
simple fluids.

In summary, we focus on the thermodynamics of fluids with microstructure, the effect of
which determines fluctuations q with respect to κ∇T. We furnish a general Eulerian description of
them, starting from the introduction of manifold-valued phase fields, the time rates of which
complement the velocity field. Along this path, we prove Straughan’s claim under specific
assumptions. We start from a general setting because Straughan’s claim refers explicitly to it.

Notations. Consider two finite-dimensional, real, linear spaces V and W . Let A be an operator
mapping linearly V onto W ; in short we write A ∈ Hom(V ,W). For B ∈ Hom(W ,V), we indicate
by AB the unique linear operator in Hom(V ,V) with components Ai

LBL
j , where summation over

repeated indices is adopted, as we do also below; also, in general, such a product does not
commute. We indicate by V∗ and W∗ the dual counterparts of V and W , namely the spaces of
linear maps over V and W , respectively. For A ∈ Hom(V ,W) and v ∈ V , we indicate by Av the
element in W with components wi := Ai

Lv
L; also, if A ∈ Hom(V∗,W∗) and a ∈ V∗, Aa will indicate

an element ā ∈W∗ with components āi := AL
i aL. For P ∈ Hom(W∗,V∗) and A ∈ Hom(V ,W), an

interposed dot, namely P · A, indicates the duality pairing between P and A. The same meaning
is attributed to the product a · v, with a ∈ V∗ and v ∈ V ; more precisely, since a is a linear form
over V , a · v is defined to be the real value a(v) attained by a over v. We write A∗ for the formal
adjoint of A ∈ Hom(V ,W) and we have A∗ ∈ Hom(W∗,V∗). A� is the transpose of A and is an
element of Hom(W ,V). For A ∈ Hom(V ,V∗), formal adjoint and transpose can be identified; the
same property holds when A ∈ Hom(V∗,V). The symbol ⊗ indicates as usual the tensor product;
for A ∈ Hom(V ,W), a natural basis for Hom(V ,W) is given by the tensor products êi ⊗ eL, where
êi is the ith vector of a basis in W while eL is the Lth element of a basis in V∗, defined to be such
that for every element eK of a basis in V , eL(eK) = δL

K, where δL
K is the 1-contravariant, 1-covariant

Kronecker’s symbol. For A ∈ Hom(V ,W), v ∈ V , and ā ∈W∗, we have ā · Av = A∗ā · v.

2. Geometry of motion: basic fields

(a) Deformations and gross motions
Consider two isomorphic copies of the three-dimensional real space, namely R

k and R̃
k, the

isomorphism being simply the identification. Typically, we take k = 3.
Take in R

k an open connected region B. Presume that its boundary has non-zero Hk−1

Hausdorff measure (so it is surface-like in the k-dimensional space) and is oriented by the outward
unit normal everywhere to within a finite number of corner and edges. Non-singular metrics g
and g̃ are assigned to B and the space R̃

k, respectively. They are independent of time. B, a fit region
in R

k, is a (macroscopic) reference configuration, the result of an embedding in R
k of a material

manifold B.
Deformations are commonly taken as differentiable, orientation preserving, one-to-one maps

x 	−→ y := ỹ(x) ∈ R̃
k. So, ỹ(·, t) is a map from R

k to R̃
k with domain B. The set Bc := ỹ(B) is the

current macroscopic configuration. Time-parametrized families of deformations define gross
motions

(x, t) 	−→ y := ỹ(x, t) ∈ R̃
k, (2.1)
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with the time t ranging in the real line R. The map ỹ is assumed to be twice differentiable with
respect to time.

Given (x, t), the time derivative ∂ ỹ(x, t)/∂t, indicated in short by ẏ, defines a vector in the
tangent space TyBc at y ∈Bc: it is a so-called Lagrangian representation of the velocity. At every
t, the map x 	−→ ẏ defines a vector field over Bc that can be considered as a section of the tangent
bundle TBc = �y∈BTyBc (so, defined to be the disjoint union of all tangent spaces of Bc), a section
described by a field (y, t) 	−→ v := ṽ(y, t), that is what we call the Eulerian representation of the
velocity, so that ẏ = v at every y and t.

F indicates the derivative Dxy = Dxy(x, t) = (∂yi/∂xA)ẽi ⊗ eA, where ẽi is the ith element of a
basis in R̃

k∗, eA is the Ath element of a dual basis in R
k, and the subscript x distinguishes the

derivative with respect to x from the analogous operator D computed with respect to y and used
below. As it is common, we call F a deformation gradient.

Consider the gradient ∇x of ỹ(·, t) : B(⊂ R
k) −→ R̃k, taking into account that R

k and R̃
k are

distinguished only by an isomorphism, that is, specifically, the identification (once again the
subscript x distinguishes the gradient computed with respect to x from the analogous operator
referring to y, as used below). In defining ∇x, we assume that there exists a frame of reference
in which ∇xy = ∇xỹ(x, t) = (∂yi/∂x)Aẽi ⊗ eA. Then, with respect to that frame, we compute
Christoffel’s symbols expressing ∇x in ‘curved’ frames with respect to the one involving only
(∂yi/∂x)A (e.g. [45]). In that specific frame of reference ∇xy and Dxy are related by (∂yi/∂x)AgAB =
(Dy)i

B; so, they can be identified when gAB coincides with δAB, that is Kronecker’s symbol with
covariant components.

The requirement that each motion be orientation preserving implies the standard nonlinear
constraint

det F> 0, ∀x, t. (2.2)

We have Ḟ = DvF. Euler’s lemma dictates the relation ˙det F = (det F)divv, so that volume-
preserving motions are characterized, as it is well known, by the internal constraint divv = 0
because the variation of volume, relative to the initial one is measured by the difference det F − 1.

(b) Manifold-valued phase fields describing the microstructural morphology
As already mentioned, in the multi-scale and multi-field view adopted here, a material element is
considered as a system characterized by a certain spatial scale λ. Its peculiar features are described
by a variable ν, the value of a time-dependent field (x, t) 	−→ ν := ν̂(x, t), with x ∈B or (y, t) 	−→ ν :=
ν̃c(y, t), y ∈Bc := ỹ(B, t), with ν̃c(·, t) = ν̂(·, t) ◦ [ỹ(·, t)]−1. The former is a Lagrangian representation
of ν, the latter is an Eulerian description.

For example, consider the generic material element at x as a tiny rigid body able to freely
rotate with respect to its neighbours. In this case, with B ⊂ R

k, the descriptor ν is an element of
SO(k) or we can select it in the sphere Sk−1. Vectors in R

k can be chosen when ν represents local
polarization or magnetization and ranges into a sphere, but also the choice ν ∈ R

k comes into play
to describe linear molecular chains as an end-to-tail stretchable vector.

Several other examples can be added. We can unify them by simply declaring ν to be an
element of a finite-dimensional differentiable geodesic-complete Riemannian manifold without
boundary—write M for it—endowed with metric gM. This choice is a starting point for
determining a unified framework for the mechanics of complex materials (see [22,39–41,46] and
references therein).

By considering ν = ν̃c(ỹ(x, t), t), we obviously have

N := Dxν = Dν̃c(y, t)F. (2.3)

The time-rate of ν in Lagrangian representation is ν̇ := ˙̂ν(x, t) = ∂ν̂(x, t)/∂t, while we write ξ for the
same rate expressed in Eulerian representation, namely

ξ := ξ̃ (y, t) = dν̃c(y, t)
dt

= ∂ν̃c(y, t)
∂t

∣∣
y fixed + (Dν)v. (2.4)
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So, we compute

Ḋν = ˙
NF−1 = Dξ − DνDv, (2.5)

where DνDv is the second-rank tensor with components (Dνα)i(Dvi)j, where the index α indicates
coordinates over M.

(c) Observers
An observer is the choice of reference frames in all spaces that are involved in the description of
body morphology and its motion.

We consider rigid-body-type changes of observer in the physical space R̃
k and their

consequences on M justified below. We leave invariant the reference space R
k and the time scale.

In R̃
k, an observer O records a place y that is y′ for another observer O′ connected with O by a

rigid-body motion so that y′ = w(t) + Q(t)(y − y0), where t 	−→ w(t) ∈ R̃
k and t 	−→ Q(t) ∈ SO(k) are

smooth maps, and y0 is an arbitrary fixed point.
Let ẏ be a velocity evaluated by O in R̃

k and ẏ′ the corresponding value recorded by O′. The
pull-back of ẏ′ in the frame of reference defining O′, namely ẏ� := Q�ẏ′, is given by

ẏ� = c + q × (y − y0) + ẏ, (2.6)

where c := Q�ẇ and q× := Q�Q̇. Also, due to the identity ẏ = v, we have

v� = c + q × (y − y0) + v. (2.7)

Changing observer in the physical space R̃
k possibly implies a change in how the observer

perceives (and represents) an observable microstructure, which belongs, in fact, to the physical
space. Adopting the representation of microstructure in terms of a field taking values over M is
only a convenient modelling choice. Also, when we discuss in mathematical terms of observers
and their changes, more in general of observability, we are essentially formalizing what occurs
in a ‘laboratory’-type observation of nature and try to reduce at minimum subjective instances,
requiring invariance of some entities under changes of observer. Consequently, when we rotate
and translate frames of references in the physical space, or alter them in other ways, we need to
describe how the observation of microstructure by an observer coinciding with the changed frame
is altered: two different observers record two observations that, in principle, can be different. We
thus need to represent over M such a difference because M—we repeat—is the ambient in which
we describe peculiar microstructural features. For a formal description of this physical ground,
we need to presume a (possibly empty) family of differentiable homeomorphisms

{φ : SO(k) −→ Diff (M,M)}, (2.8)

so that the counterpart of ẏ� for ξ is
ξ� = ξ + A(ν)q, (2.9)

with A(ν) ∈ Hom(R̃k, TνM).
When the set {φ} is not empty, with νφ(Q) the value of ν after the action of φ(Q) ∈ Diff(M,M)

(the explicit expression of νφ(Q) depends on the tensor nature of ν and φ(Q)), the linear operator
A(ν) is given by

A(ν) = dνφ(Q)

dφ
dφ(Q)

dq
|q=0, (2.10)

where we take into account that Q = exp(q×). For example, when M coincides with R̃
k, we find

A= −ν× because in this special case ν becomes ν′ := Qν so that ν̇′ := Q̇ν + Qν̇ and the pull-back
through Q� is ν̇� := Q�ν̇′ = ν̇ + Q�Q̇ν = ν̇ + q × ν. It does not necessarily mean that A reduces
always to −ν× in some limit. For example, when ν is a second-rank tensor, so that we have
ν′ = QνQ�, we can proceed as above computing the time derivative of ν′ and pulling it back
through Q�, so that we find A(ν)q = [W, ν], where W is the skew-symmetric second-rank tensor
Q�Q̇ and [·, ·] indicates the Lie bracket.
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Notice that ν� is insensitive to rigid translations in space of the whole body. In fact, ν at a point
describes what is inside the material element placed there: it brings information about the inner
structure, which translates with the point and changes independently of the translation itself.

Remark 2.1. The introduction of {φ} allows us to include in this treatment the case in which
{φ} is empty, a circumstance in which ν would be insensitive to changes of observer; in this case
it would behave as an internal variable taking parametric role at equilibrium. Thus, in this case it
just describes the removal from equilibrium; differently from what we discuss here, its evolution
is ruled by a phenomenological law involving thermodynamic affinities that contribute to the
entropy production but not to the mechanical power, so they do not satisfy balances of true
interactions, according to the traditional internal variable scheme [47,48]. So, the set {φ} allows
us to distinguish between observable microstructures—meaning {φ} is not empty, as we consider
here—and non-observable ones—{φ} is empty. The exception seems to be the case in which M
coincides with an open interval of the real line, since A would vanish because the observation
of a scalar (or a pseudo-scalar) does not change under the action of SO(k) in the physical space.
However, if we would accept (or consider) more general changes of observers in the physical
space, those induced by non-isometric elements of Diff(R̃k, R̃k), we could develop the previous
analysis changing the set (2.8) into {φ : Diff(R̃k, R̃k) −→ Diff(M,M)}; in this case, a scalar (or a
pseudo-scalar) could be sensitive to changes of observer depending on whether this last set is non-
empty and, when it is not empty, what kind of φ we include in it, depending on the phenomenon
under analysis.

3. Eulerian representation of balance of interactions in complex media:
consequences of an invariance requirement

Interactions on a body part b̂ of Bc are defined by the power that they develop. We define the
external power over b̂ to be the functional

Pext
b̂

(v, ξ ) :=
∫

b̂
(b̂‡ · v + β̂‡ · ξ ) dy +

∫
∂b̂

(t̂∂ · v + τ̂∂ · ξ ) dHk−1(y). (3.1)

We impose invariance of the external power under changes of observers defined above,
according to a path discussed Mariano [39,40], namely we require

Pext
b̂

(v, ξ ) =Pext
b̂

(v�, ξ�) (3.2)

for any choice of c and q, which depend only on time, and b̂. Equation (3.2) implies Pext
b̂

(c + q ×
(y − y0),Aq) = 0, that is

c ·
(∫

b̂
b̂‡ dy +

∫
∂b̂

t̂∂ dH̄2(y)
)

+ q ·
(∫

b̂
((y − y0) × b̂‡ + A∗β̂‡) dy +

∫
∂b̂

((y − y0) × t̂∂ + A∗τ̂∂ ) dH̄2(y)
)

= 0. (3.3)

The arbitrariness of c and q implies the common integral balance of forces and a non-standard
integral balance of couples, namely∫

b̂
b̂‡ dy +

∫
∂b̂

t̂∂ dH̄2(y) = 0 (3.4)

and ∫
b̂

((y − y0) × b̂‡ + A∗β̂‡) dy +
∫
∂b̂

((y − y0) × t̂∂ + A∗τ̂∂ ) dH̄2(y) = 0. (3.5)

Remark 3.1. Equation (3.4) is a consequence of Pext-invariance under rigid translations in R
k.

We do not have its counterpart involving β̂‡ and τ̂∂ because ν is insensitive to rigid translations
of observer in R̃

k. In fact, ν̃c(y, t) describes mechanisms inside a material element at x in the
instant t, relative to the element itself. Even if ν would indicate a micro-displacement, it would

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 N

ov
em

be
r 

20
23

 b
y 

PA
O

L
O

 M
A

R
IA

N
O

 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230439

..........................................................

be relative to the material element, so it would not be affected by translations of reference
frames in the physical space. Indeed, when M is a linear space, we could postulate an integral
balance of microstructural actions but it would essentially be superfluous as we see below; also,
avoiding it would imply an always desirable reduction of axioms. In addition, since the maps
(y, t) 	−→ β̂‡(y, t) and (y, t) 	−→ τ̂∂ (y, t) take values in the cotangent bundle T∗M of M, which is
the disjoint union of cotangent spaces (each T∗

νM the dual of TνM), in general a nonlinear space,
introducing the integrals over Bc of β̂‡ and τ̂∂ would require the embedding of M in a linear space
to allow the integrals themselves to be well defined. Since M is taken to be finite-dimensional, the
embedding is always available; also it can be isometric, according to Nash’s theorems; however,
it is not unique, while we aim at determining intrinsic balance equations.

Remark 3.2. The occurrence of b̂‡ and τ̂∂ in the integral balance (3.5) does not necessarily mean
that such interactions are couples: only their projections induced by A∗(ν) ∈ Hom(T∗

νM, R̃k∗) into
R̃

k∗, namely A∗b̂‡ and A∗τ̂∂ , play the role of couples.

The integral balances (3.4) and (3.5) imply non-trivial consequences; some of them are
standard, others are not properly so.

— If |b̂‡| is bounded over Bc and t̂∂ depends continuously on y, we commonly show at first
on flat boundaries that the action–reaction principle holds. Then, on this basis we extend
the result on not necessarily flat boundaries. This is due to Hamel–Noll’s and Cauchy’s
theorems (e.g. [49, p. 3]). So, t̂∂ depends on ∂̂b only through the normal n at all points
where it is well defined and is such that t̂∂ = t̂ := t̃(y, t, n) = −t̃(y, t, −n). Also, as a function
of n, t̃ is homogeneous and additive, meaning there exists a second-rank tensor field
(y, t) 	−→ σ (y, t), with σ standard Cauchy’s stress, such that t̃(y, t, n) = σ (y, t)n(y), where

n is considered as a co-vector, so that, in components, we have σ j
i nj = t̂i.

— Since B is bounded, so is Bc. Then, we can choose the arbitrary point y0 in such a way that
the boundedness of |b̂‡| implies that of |(y − y0) × b̂‡|. Here we also assume that |A∗β̂‡| is
bounded over Bc and A∗τ̂∂ depends continuously on y. Previous assumptions on b‡ and
the boundedness of | ∫

b̂
t̂∂ dHk−1| derived from the balance (3.4) imply

∣∣∣∣
∫
∂b̂

A∗τ̂∂ dHk−1
∣∣∣∣ ≤ Kvol(b̂), (3.6)

for any b̂ ⊆B, with K a positive constant. Then, due to the continuity of A∗τ̂∂ , by means
of Cauchy’s theorem we realize that A∗τ̂∂ depends on ∂ b̂ only through its normal n in
all points where it is well defined; moreover, since A∗ does not depend on n, we get
τ̂∂ := τ̂ = τ̃ (y, t, n) and

A∗(τ̃ (y, t, n) + τ̃ (y, t, −n)) = 0. (3.7)

Equation (3.7) means that only a projection on the physical space R̃
k∗ of the

microstructural contact actions satisfies the action–reaction relation. Moreover, Cauchy’s
theorem implies also that, as a function of n, τ̃ is homogeneous and additive, meaning
there exists a second-rank tensor field (y, t) 	−→ Ŝ(y, t), so-called microstress, such that

τ̃ (y, t, n) = Ŝ(y, t)n(y). (3.8)

We prove the relation (3.8) without embedding M into a linear space. Another proof
has been proposed by Capriz & Virga [50], where a microstructural contact interaction
is defined as the integral over (say) ∂ b̂ of τ̂∂ ; this choice requires the embedding of M into
a linear space, so that, along this path, Ŝ depends on the embedding. At variance, here
the integral in formula (3.6) is well defined and does not require the embedding of M in
some linear space because A∗τ̂∂ ∈ R̃

k∗.
— If σ (·, t) is in C1(Bc) ∩ C(B̄c) for every t (we suppress the target space in the functional

class for the sake of conciseness because the setting is self-evident) and the bulk actions
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(y, t) 	−→ b̂‡, (y, t) 	−→ β̂‡ are continuous over Bc, the standard point-wise balance of forces

b̂‡ + divσ = 0, (3.9)

holds.
— If also Ŝ is in C1(Bc) ∩ C(B̄c) for every t, by exploiting equation (3.9) and Gauss’ theorem,

the balance (3.5) reduces to∫
b̂

(A∗(β̂‡ + divŜ) + (DA∗)tŜ − eσ
)

dy = 0, (3.10)

where e is third-rank Ricci’s index, and the superscript t means right minor transposition
for third-rank tensors. Since at every y and t we have (β̂‡ + divŜ) ∈ T∗

νM, equation (3.10),
the continuity of integral arguments, and the arbitrariness of b̂ allow us to read equation
(3.10) by saying that there exists a field (y, t) 	−→ ẑ(y, t) ∈ T∗

νM such that

skewσ = 1
2

e(A∗ẑ + (DA∗)tŜ) (3.11)

and
β̂‡ − ẑ + divŜ = 0. (3.12)

Equation (3.12) is the local balance of microstructural actions.
— Further on, we find

Pext
b̂

(v, ξ ) =
∫

b̂
(σ · Dv + ẑ · ξ + Ŝ · Dξ ) dy =: P int

b̂
(v, ξ ). (3.13)

The functional P int
b̂

(v, ξ ) is what we call an internal power performed along the velocities
v and ξ .

Remark 3.3. Consider two neighbouring material elements. In the viewpoint adopted here
each of them is not an indistinct Leibniz’s monad as it is in the traditional format of continuum
mechanics; rather, it is a more ‘articulated’ system. The standard stress is associated with bonds
solicited in crowding and shearing the two considered material elements with their ‘inner
systems’ presumed to be frozen. Imagine now to fix in space the two material elements, allowing
their microstructure to vary. They possibly exchange interactions of first-neighbour type that are
represented by Ŝ and balanced by inner actions ẑ among the elements of each system, together
with possible bulk actions β̂‡ that directly affect their microstructure. This is the essential meaning
of equation (3.12).

Remark 3.4. At variance of other works, we do not postulate the balance of microstructural
actions in local (e.g. [22,32,35,46,51,52]), integral (e.g. [32, pp. 317–318], [53–55]), or weak form
(e.g. [36,56,57]), nor do we obtain it from a variational principle (e.g. [58–60]); rather, we derive it
from invariance of the external power alone, a way of justifying also its validity even in dissipative
setting. Resorting to a variational principle would allow us to consider, beyond the conservative
setting, only dissipative effects related with the presence of a dissipation pseudo-potential, which
is not always granted a priori.

Remark 3.5. If we would adopt the identity (3.13) as a first principle, imposing its validity
for any rate field included (principle of virtual power), as done in reference [36] (see also [56,57]
and references therein), we were postulating the expression of internal power P int

b , so we were
postulating both ẑ and Ŝ instead of deriving them as we do here. In fact, postulating the validity
of identity (3.13) for any choice of rate fields would essentially be to prescribe a priori the weak
form of balance equations imagining in this way all the ingredients that constitute them.

Remark 3.6. In the analysis developed so far, the external power is written in Eulerian form but
it implies a reference configuration that is fixed once and for all (although such a configuration
does not evidently appear). This is because we are not considering here defects moving relatively
to the body. In fact, when we aim at including them, the procedure followed so far can be adopted
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with the proviso of substituting Pext
b with the so-called relative power (introduced in [61] and

refined in [40]), which is the external power performed relatively to a time-varying reference
configuration supplemented by the so-called power of disarrangements, associated with the motion
of bulk, surface, or line defects; requiring its invariance with respect to changes of observer as
above, supplemented by isometric changes of observer in the reference space, allows one to obtain
the above results but also to derive in addition the balances of configurational actions (which, at
variance, have been otherwise postulated [62]) from a unique source, with a reduction of axioms.

— We assume that b̂‡ admits additive decomposition into inertial (b̂in) and non-inertial (b̂)
terms, namely b̂‡ = b̂in + b̂, and an analogous decomposition holds also for β̂‡, so we
have β̂‡ = β̂ in + β̂. We assume that the inertial components are such that their power
on any b̂ equals the negative time rate of the overall kinetic energy of b̂ itself minus
the flow through ∂ b̂. Write ρ̂ for the mass density in the current configuration and
presume that the balance of mass is satisfied. Set ξrel := ξ − Aq and ξ�rel = gMξrel, which
is the microstructural momentum relative to the time rate induced on the microstructure
through φ by rotations in the physical space (gM—we recall—is the metric over M). We
impose that

d
dt

∫
Bc

(
1
2
ρ̂|v|2 + k(ν, ξ�rel)

)
dy +

∫
Bc

∂χ (ν, ξrel)
∂ν

· Aq dy

−
∫
∂Bc

(
1
2
ρ̂|v|2 + k(ν, ξ�rel)

)
(v · n) dHk−1(y)

= −
∫
Bc

(b̂in · v + β̂ in · ξrel) dy, (3.14)

for any choice of the velocity fields (v, ξ ), where n is the outward unit normal to ∂Bc. In the
previous equation, k(ν, ξ�rel) is the microstructural kinetic energy; its introduction makes
sense when microstructures have a relative motion with respect to the matter around
them. Specifically, k is assumed to be a twice differentiable function, such that k(ν, 0) = 0
and ∂2

ξ
�

relξ
�

rel
k · (ξ�rel ⊗ ξ

�

rel) ≥ 0, with the identity holding if and only if ξ�rel = 0. Also, χ (ν, ξrel)

is a function that is convex with respect to ξrel and is such that its Legendre transform is
k. Recall that, for f (y, t) a differentiable function, Reynolds’ transport theorem prescribes
that

d
dt

∫
Bc

f dy = d
dt

∫
B

f det F dx =
∫
B

(ḟ det F + f ˙det F) dx

=
∫
Bc

ḟ dy +
∫
B

f divv det F dx =
∫
Bc

ḟ dy +
∫
B

f divv dy

=
∫
Bc

ḟ dy +
∫
B

f (v · n) dHk−1(y), (3.15)

(Euler’s identity ˙det F = divv det F plays a role in the proof). When we use the transport
theorem in equation (3.14), the arbitrariness of v and ξrel implies

b̂in = −ρ̂v̇�, (3.16)

(notice that we assumed validity of the mass balance). What remains is
∫
Bc

(
k̇(ν, ξ�rel) + ∂χ (ν, ξrel)

∂ν
· Aq

)
dy = −

∫
Bc

β̂ in · ξrel dy. (3.17)

As anticipated in introducing equation (3.14), due to the properties of k, we can claim the
existence of a function χ := χ̃(ν, ξrel) such that

k(ν, ξ�rel) = ∂χ (ν, ξrel)
∂ξrel

· ξrel − χ (ν, ξrel), (3.18)
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so that k is the Legendre transform of χ with respect to ξrel. By substituting into equation
(3.17), the arbitrariness of ξrel implies

β̂ in = ∂χ

∂ν
− d

dt
∂χ

∂ξrel
. (3.19)

For detailed analyses on the microstructural inertia, see [63] (and also [22,39,40]).

When the spatial metric g̃ is the identity, v̇� can be identified with v̇, so is for ξ�rel and ξrel when
gM is also flat and trivial.

4. First law and second law of thermodynamics in Eulerian representation

(a) The balance of energy
For a generic part b̂ of Bc, we write the first law of thermodynamics in Eulerian representation as

d
dt

∫
b̂

e dy −
∫
∂b̂

e(v · n) dHk−1(y) − Pext
b̂

(v, ξ ) −
∫

b̂
r̂ dy +

∫
∂b̂

â∂ dHk−1(y) = 0, (4.1)

and presume that it holds for any choice of b̂ and the velocity fields involved. In the integral
balance (4.1), e is the density of internal energy, a state function, r̂ the density of heat source, and
â∂ a (scalar) heat flux through the boundary b̂.

Assume that we are under conditions granting the boundedness of Pext
b̂

(v, ξ ). If, in addition,
ė and r̂ are bounded, and â∂ is continuous with respect to y, Cauchy’s theorem implies that â∂
depends on ∂ b̂ only through the normal n to ∂ b̂ in all points where n is well defined, so that we
have â∂ = a(y, t, n). We also find

a(y, t, n) = −a(y, t, −n), (4.2)

and the existence of a vector q̂ depending on y and t (not on n) such that

a(y, t, n) = q̂(y, t) · n. (4.3)

Then, thanks to the identity Pext
b̂

(v, ξ ) =P int
b̂

(v, ξ ), the first law of thermodynamics becomes

d
dt

∫
b̂

e dy −
∫
∂b̂

e(v · n) dHk−1(y) − P int
b̂

(v, ξ ) −
∫

b̂
r̂ dy +

∫
∂b̂

q̂ · n dHk−1(y) = 0. (4.4)

When ė, r̂, and the density of internal power are continuous with respect to y, and q̂(·, t) is C1(Bc) ∩
C(B̄c), use of Gauss’ and Reynolds’ theorems and the arbitrariness of b̂ imply the local energy
balance

ė − σ · Dv − ẑ · ξ − Ŝ · Dξ − r̂ + divq̂= 0. (4.5)

(b) The entropy inequality
With η the entropy density, ŝ the entropy source, and ĥ∂ a (scalar) flux depending on ∂ b̂ besides y
and t, we write the second law of thermodynamics in Eulerian representation as

d
dt

∫
b̂
η dy −

∫
∂b̂
η(v · n) dHk−1(y) ≥

∫
b̂

ŝ dy −
∫
∂b̂

ĥ∂ dHk−1(y), (4.6)

presuming that it holds for any choice of b̂ and the rate fields involved.
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If η̇ and ŝ are bounded, we can apply even in this case Cauchy’s theorem: the key aspect in its
proof is, in fact, an estimate on the boundary integral, so that we do not necessarily need a balance,
rather only an inequality. So, if ĥ∂ is continuous with respect to y, we find that it depends on ∂ b̂
only through its normal n at all points where n is well defined. Then, we have ĥ∂ (y, t) = h̃(y, t, n)
with

h̃(y, t, n) = −h̃(y, t, −n), (4.7)

and there is a vector field with values ĥ depending only on y and t such that

h̃(y, t, n) = ĥ(y, t) · n. (4.8)

If η̇ and ŝ are continuous with respect to y, while ĥ is C1, the arbitrariness of b̂ implies

η̇≥ ŝ − divĥ. (4.9)

With T—we recall—the absolute temperature, we accept the relations

ŝ = r̂
T

and ĥ= q̂
T

+� , (4.10)

where � is a residual entropy flux due to microstructural effects. Precisely, we presume that

� = �̃ (ν, ν̇, Dν, . . . , T), (4.11)

where the dots indicate from now on that the state variables considered can be present with
all their derivatives, according to Truesdell’s principle of equipresence. The explicit choice of �
depends on specific circumstances; here we just look at a general theory, a metamodel from a
philosophical viewpoint.

Equation (4.10)2 appeared first in a work by Müller [64].
Taking into account relations (4.10), we can merge in the usual way the local balance (4.5) with

the inequality (4.9), so that, with ψ the Helmoltz free energy density defined by ψ = e − θη, we
get

ψ̇ + Ṫη − σ · Dv − ẑ · ξ − Ŝ · Dξ + 1
T
q̂ · DT − Tdiv� ≤ 0, (4.12)

which is what we commonly call the Clausius–Duhem inequality. We consider it as a source of
restrictions to constitutive structures, in accord with the standard interpretation proposed in 1959
by Coleman & Noll [65].

Remark 4.1. When ν is a scalar (or a pseudo-scalar), an appropriate procedure to derive the
pertinent balance of microstructural interactions, instead of postulating it (in this specific case,
a first postulate of such a scalar balance seems to have been suggested by Nunziato & Cowin
[51]), is based on a requirement of invariance in structure for the second law, written in terms of
Clausius–Duhem’s inequality, under general diffeomorphism-based changes of observer, those
described in Remark (2.1); this covariance principle for the second law of thermodynamics
[42] requires, in short, that if an observer records a process as a dissipative one, any other
observer related with it by diffeomorphisms must record the same dissipative character. To
obtain a scalar balance of microstructural interactions, without postulating it, we could also adopt
covariance of the first principle of thermodynamics (balance of energy), asking its covariance with
respect to general diffeomorphism-based changes of observers, and adapting to the present case
Marsden–Hughes’ theorem [25]; however, we would not be able to obtain dissipative (macro and
micro) stress components. For them we need to refer to the covariance principle for the second
law [42].

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 N

ov
em

be
r 

20
23

 b
y 

PA
O

L
O

 M
A

R
IA

N
O

 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230439

..........................................................

5. Consequences of the Clausius–Duhem inequality and a first internal
constraint

Having in mind incompressible conducting viscous complex fluids, we impose first the standard
volume-preserving constraint:

divv = 0. (5.1)

The choice implies considering a reactive component σ r of the stress σ . More precisely, we adopt
the standard decomposition

σ = σ r + σ e + σ d, (5.2)

where σ e is the energetic component, meaning it is determined by the free energy, while σ d is a
dissipative stress component.

We presume, as usual, that the pertinent reactive stress is powerless, namely σ r · Dv = 0, for
every choice of Dv. The arbitrariness of Dv implies

σ r = −π I∗, (5.3)

with I∗ the unit (1, 1) tensor with components δj
i (for a different and more detailed derivation of

σ r, see [66]).
We presume that ψ , σ e and Ŝ depend all on the list of state variables

(ν, Dν, T) := (ν̃c(y, t), Dν̃c(y, t), T(y, t)), (5.4)

while the stress component σ d depends on (ν, Dν, T, Dv, . . .), where dots indicate possible further
state variables and (potentially) all admissible gradients of the whole list, and is intrinsically
dissipative, meaning it is such that

σ d · Dv ≥ 0, (5.5)

where the identity holds only when Dv= 0. This condition is compatible with a structure of the
type

σ d = ã(· · · )(Dv)∗, (5.6)

where ã(· · · ) is a (possibly constant) positive definite (scalar) state function.
We also assume that the microstructural self-action ẑ admits energetic (ẑe) and dissipative (ẑd)

components. They are such that

— ẑe depends on the list (ν, Dν, T) of state variables as ψ , σ e, and Ŝ, while
— ẑd depends on (ν, Dν, T, ξ , . . .) and is intrinsically dissipative, meaning

ẑd · ξ ≥ 0, (5.7)

for every choice of ξ , with the identity that holds only when ξ vanishes. Such a
requirement is compatible with the structure

ẑd = �(· · · )ξ�, (5.8)

where � is a (possibly constant) positive definite scalar state function.

The coefficients in expressions (5.6) and (5.8) could be second-rank tensor-valued maps.
However, we choose the scalar option for the coefficients to avoid possible problems as those
discussed by Antman [67].
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Previous assumptions reduce the Clausius–Duhem inequality to(
∂ψ

∂ν
− ẑe

)
· ξ +

(
∂ψ

∂Dν
− Ŝ

)
· Dξ −

(
(Dν)∗

∂ψ

∂Dν
+ σ e

)
· Dv +

(
∂ψ

∂T
+ η

)
· Ṫ

− ẑd · ξ − σ d · Dv + 1
T
q̂ · DT − Tdiv� ≤ 0. (5.9)

Since ξ is not constrained, we can choose independently ξ and its gradient. The independence of
the rate fields involved in the previous inequality implies the identities

η= −∂ψ
∂T

, ẑe = ∂ψ

∂ν
, Ŝ = ∂ψ

∂Dν
, σ e = −(Dν)∗

∂ψ

∂Dν
= −(Dν)∗Ŝ, (5.10)

and the reduced dissipation inequality

ẑd · ξ + σ d · Dv + 1
T
q̂ · DT ≥ Tdiv� . (5.11)

It is compatible with the functional structures (5.6), (5.8) and the decomposition

q̂= −κ∇T + q , (5.12)

with q the heat flux component due to microstructural events, and κ the standard thermal conductivity.

(a) Scaling
As declared in the introduction, ν refers to a spatial scale λ; precisely, ν brings at continuum scale
information on microstructure at the considered spatial scale. So, previous results imply

σ e = −(∇ν)∗Ŝ ∼ O(λ2) and ẑ · ξ + Ŝ · Dξ ∼ O(λ2). (5.13)

We have also
A∗ẑ + (DA∗)tŜ ∼ O(λ2), (5.14)

and skewσ = skewσ e + skewσ d because σ r is symmetric. Consequently, by considering the
scaling (5.13)1 and (5.14), from the local balance of couples (3.11) we get

skewσ d = O(λ2). (5.15)

6. Emergence of Straughan’s claim
From now on we will refer to orthonormal frames; thus, we will identify covariant components
with contravariant ones. For this reason we will write ∇ instead of D.

(a) From the local balance of microstructural interactions to the modified Guyer–
Krumhansl equation

For the proof we deal upon, we may have two options:

(a) We can identify ν with the non-standard heat flux component q.
(b) We can consider ν as a differentiable function of q.

Nothing changes in the proof this paper is devoted to: the difference between these two choices
rests only on the presence of additional formal complications. In order to reduce the setting to the
skeletal basic format, we then opt for the first choice and assume the identification

ν = q. (6.1)

From a physical viewpoint, it means that we record microstructural events only in terms of the
heat perturbation with respect to the macroscopic flow κ∇T that they determine. From a formal
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viewpoint, we are identifying M with R
k, so that, as already recalled in §2c, in this special case

we have

A(ν) = −ν × =−q×, (6.2)

which renders explicit the above declarations of scaling about the skew component of the stress
tensor (see relation (5.15)).

We also presume the following:

H1. Ŝ is symmetric.
H2. The free energy density ψ is of the form

ψ := ψ̃(q, sym∇q, θ ) = 1
2
ς0|q|2 + ς̂1|sym∇q|2 + ω̄

2
(tr(sym∇q))2 + f(T), (6.3)

where sym(·) extracts the symmetric part of its argument and the factors ς0, ω, ω̄ are
positive constants, while f(·) is a differentiable function.

H3. There is no microstructural inertia:

β̂ in = 0. (6.4)

H4. The non-inertial microstructural bulk action satisfies the identity (1.4), namely
∫

b̂
β̂ · qdy = −

∫
b̂

(
C̄∇v · (q ⊗ q) + κ∇T · q) dy

= −
∫

b̂

(
C̄sym∇v · (q ⊗ q) + κ∇T · q) dy, (6.5)

presumed to hold for any choice of q and b̂, with C̄ a constant to adjust physical
dimensions. In other words, the previous identity states that the drag induced on the
microstructure by a spatial variability of velocity and temperature fields determines a
bulk action on the microstructure itself.

H6. In the expressions of ẑd, the factor �(· · · ) is a positive constant �.

H1 implies Ŝ · ∇ξ = Ŝ · sym∇ξ , so that by using once again the Clausius–Duhem inequality,
from assumptions H2 and H5 we get

Ŝ = ∂ψ

∂sym∇q
= 2ς̂1sym∇q + ω̄(divq)I (6.6)

and

ẑe = ∂ψ

∂q
= ςq, (6.7)

so that

ẑ = ςq + �q̇ = ςq + �

(
∂q
∂t

+ (∇q)v
)

. (6.8)

H4 allows the identification of β̂ to within a term depending on (skw∇v)q. Then, together with
H3, H4 is compatible with

β̂‡ = β̂ = −C̄(sym∇v)q − κ∇T + �̂(skw∇v)q, (6.9)

where a constant multiplies the skew-symmetric part of the velocity gradient; in fact,

β̂ · q= −C̄(sym∇v) · (q ⊗ q) − κ∇T + �̂(skw∇v) · (q ⊗ q) = −C̄(sym∇v) · (q ⊗ q) − κ∇T, (6.10)

because q ⊗ q is symmetric

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 N

ov
em

be
r 

20
23

 b
y 

PA
O

L
O

 M
A

R
IA

N
O

 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230439

..........................................................

By introducing in equation (3.12) relations (6.6), (6.8) and (6.9), we get

�q̇ + C̄(sym∇v)q − �̂(skw∇v)q= −ςq − κ∇T + ς̂1�q + (ς̂1 + ω̄)∇divq, (6.11)

which we rewrite as

�

(
∂q
∂t

+ (∇q)v + C̄

�
(sym∇v)q − �̂

�
(skw∇v)q

)
= −ςq − κ∇T + ς̂1�q + (ς̂1 + ω̄)∇divq. (6.12)

By setting

γ := C̄

�
,

�̂

�
= 1, ς = 1, ς̂2 = ς̂1 + ω̄, (6.13)

equation (6.12) reduces to

�

(
∂q
∂t

+ (∇q)v + γ (sym∇v)q − (skw∇v)q
)

= −q − κ∇T + ς̂1�q + ς̂2∇divq. (6.14)

The balance (6.14) is nothing more than the modified Guyer–Krumhansl equation (1.2), namely

�
Dq
Dt

= −q − κ∇T + ς̂1�q + ς̂2∇divq, (6.15)

with Dq/Dt the objective derivative

Dq
Dt

= ∂q
∂t

+ (∇q)v + γ (sym∇v)q − (skw∇v)q, (6.16)

as introduced by Morro [20,21]. When
γ = −1, (6.17)

Dq/Dt simply reduces to the (total) Lie derivative Lvq of q along the vector field v, namely

Lvq= ∂q
∂t

+ (∇q)v − (∇v)q, (6.18)

so that the balance (6.14) reduces to

�Lvq= −q − κ∇T + ς̂1�q + ς̂2∇divq, (6.19)

which is the version of Guyer–Krumhansl’s equation Straughan eventually refers to in his
analysis.

(b) From the local balance of energy to the Payne–Song equation
From the Clausius–Duhem inequality, assumption H2 above implies once again the identity

σ e = −(∇q)�
∂ψ

∂sym∇q
= −(∇q)�Ŝ ∼ O(λ2). (6.20)

H2 is also compatible with a structure for the internal energy e of the type

e := ẽ(q, sym∇q, T). (6.21)

Thus, by setting

cv := ∂e
∂T

, (6.22)

computed by fixing the other state variables, and considering the decomposition (5.2), the energy
balance (4.5) becomes

cvṪ = κ�T − divq + r̂ + σ d · ∇v + σ e · ∇v + ẑ · ξ + Ŝ · ∇ξ − ∂e
∂q

· q̇ − ∂e
∂sym∇q

· ˙sym∇q. (6.23)

Thus, by taking into account the scaling (5.13), which applies also to the derivatives of e with
respect to q and its gradient, the energy balance (6.23) can be rewritten as

cvṪ = κ�T − divq + r̂ + σ d · ∇v + O(λ2). (6.24)

When
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— cv = 1, r̂ = 0, and
— σ d · ∇v is negligible,

to within O(λ2) terms, the energy balance (6.24) reduces to the Payne–Song equation

Ṫ = κ�T − divq, (6.25)

as considered by Straughan.

(c) The balance of standard forces to within O(λ2) terms
The scaling (5.15) implies that σ d is symmetric to within O(λ2) terms. So, in the same
approximation,

σ d · ∇v = σ d · sym∇v ≥ 0, (6.26)

an inequality that is compatible with the structure

σ d = ã(· · · )sym∇v. (6.27)

Specifically, if we choose here ã(· · · ) = ã(T). Then, neglecting the skew-symmetric part of the
dissipative stress component, the stress σ turns out to be

σ = −π I − (∇q)�Ŝ + ã(T)sym∇v, (6.28)

so that, by taking into account the internal constraint divv = 0, indicating by ã′(T) the derivative of
ã with respect to T, and setting ρ̂ = 1 for the sake of simplicity, the balance of forces (3.9) reduces
to the following equation:

∂v

∂t
+ (∇v)v = −∇π + ã(T)�v + ã′(T)∇v∇T − div((∇q)�Ŝ) + b̂. (6.29)

Then, to within O(λ2) terms, equation (6.29) reduces to

∂v

∂t
+ (∇v)v = −∇π + ã(T)�v + ã′(T)∇v∇T + b̂. (6.30)

If the viscosity ã(· · · ) is constant, say ã, equation (6.30) obviously becomes

∂v

∂t
+ (∇v)v= −∇π + ã�v + b̂, (6.31)

which is the Navier–Stokes system with external bulk force b̂.

7. Additional remarks
When we describe at macroscopic scale the effects of microstructural events by using manifold-
valued observer-sensitive descriptors (say phase fields), we are introducing—even if only
implicitly—a spatial scale to which we pay attention, the one defining what we consider a
microstructural level in each specific case. Referring explicitly to such a scale may allow us to
make appropriate approximations as the one showing in which sense Payne–Song’s equation
emerges from the local energy balance of a complex body when the variable ν depends on the
microstructure-induced heat flux fluctuation q with respect to κ∇T, heat sources are absent, and
power of the dissipative stress component is negligible.

Under the same constraint between ν and q (see also [12]), with additional constitutive
assumptions the balance of microstructural actions reduces to Guyer–Krumhansl’s equation even
in the form modified by the introduction of an objective time derivative. The present proof inserts
Payne–Song’s and Guyer–Krumhansl’s equations in a setting that allows us to generalize them
further, pushing the scheme beyond boundaries of its descriptive ability.

In this way, we ‘acquire universality’, meaning that the scheme adopted by Straughan [1] for
non-Fourier heat propagation turns out to be justified by the consideration of microstructural
effects independently of the type of microstructure.
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