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Abstract: This article is dedicated to Giuseppe Mingione for his 50th birthday, a leading expert in the
regularity theory and in particular in the subject of this manuscript. In this paper we give conditions for
the local boundedness of weak solutions to a class of nonlinear elliptic partial differential equations in
divergence form of the type considered below in (1.1), under p, q−growth assumptions. The novelties
with respect to the mathematical literature on this topic are the general growth conditions and the
explicit dependence of the differential equation on u, other than on its gradient Du and on the x variable.
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1. Introduction

We consider the general second order elliptic equation in divergence form

n∑
i=1

∂

∂xi
ai (x, u (x) ,Du (x)) = b (x, u (x) ,Du (x)) , x ∈ Ω , (1.1)

where Ω is an open set of Rn, n ≥ 2, the vector field
(
ai (x, u, ξ)

)
i=1,...,n

and the right hand side b (x, u, ξ)
are Carathéodory applications defined in Ω ×R ×Rn. We study the elliptic equations (1.1) under some
general growth conditions on the gradient variable ξ = Du, named p, q−conditions, which we are
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going to state in the next Section 3.2. Under these assumptions we will obtain the local boundedness
of the weak solutions, as stated in Theorem 3.2.

A strong motivation to study the local boundedness of solutions to (1.1) relies on the recent
research in [53], where the local Lipschitz continuity of the weak solutions of the Eq (1.1) has been
obtained under general growth conditions, precisely some p, q−growth assumptions, with the explicit
dependence of the differential equation on u, other than on its gradient Du and on the x variable.
In [53] the Sobolev class of functions where to start in order to get more regularity of the weak
solutions was pointed out, precisely u ∈ W1,q

loc (Ω) ∩ L∞loc (Ω). That is, in particular the local
boundedness u ∈ L∞loc (Ω) of weak solutions is a starting assumption for more interior regularity; i.e.,
for obtaining u ∈ W1,∞

loc (Ω) and more. When we refer to the classical cases this is a well known aspect
which appears in the mathematical literature on a-priori regularity: in fact, for instance, under the
so-called natural growth conditions, i.e., when q = p, then the a-priori boundedness of u often is a
natural assumption to obtain the boundedness of its gradient Du too; see for instance the classical
reference book by Ladyzhenskaya-Ural’tseva [45, Chapter 4, Section 3] and the C1,α−regularity result
by Tolksdorf [60].

The aim of this paper is to derive the local boundedness of solutions to (1.1); i.e., to deduce the
local boundedness of u only from the growth assumptions on the vector field

(
ai (x, u, ξ)

)
i=1,...,n

and the
right hand side b (x, u, ξ) in (1.1). The precise conditions and the related results are stated in Section 3.

We start with a relevant aspect to remark in our context, which is different from what happens in
minimization problems and it is peculiar for equations: although under p, q−growth conditions (with
p < q) the Eq (1.1) is elliptic and coercive in W1,p

loc (Ω), it is not possible a-priori to look for weak
solutions only in the Sobolev class W1,p

loc (Ω), but it is necessary to emphasize that the notion of weak
solution is consistent if a-priori we assume u ∈ W1,q

loc (Ω). This is detailed in Section 2.
Going into more detail, in this article we study the local boundedness of weak solutions to the

p−elliptic equation (1.1) with q−growth, 1 < p ≤ q < p+1, as in (3.2), (3.3) and (3.7)–(3.10). Starting
from the integrability condition u ∈ W1,q

loc (Ω) on the weak solution, under the bound on the ratio q
p

q
p
< 1 +

1
n − 1

we obtain u ∈ L∞loc (Ω). The proof is based on the powerful De Giorgi technique [29], by showing
first a Caccioppoli-type inequality and then applying an iteration procedure. The result is obtained via
a Sobolev embedding theorem on spheres, a procedure introduced by Bella and Schäffner in [3], that
allows a dimensional gain in the gap between p and q. This idea has been later used by the same authors
in [4], by Schäffner [58] and, particularly close to the topic of our paper, by Hirsch and Schäffner [43]
and De Rosa and Grimaldi [30], where the local boundedness of scalar minimizers of a class of convex
energy integrals with p, q−growth was obtained with the bound q

p < 1 +
q

n−1 .
Some references about the local boundedness of solutions to elliptic equations and systems, with

general and p, q−growth conditions, start by Kolodı̄ı̆ [44] in 1970 in the specific case of some
anisotropic elliptic equations. The local boundedness of solution to classes of anisotropic elliptic
equations or systems have been investigated by the authors [18–24] and by Di Benedetto, Gianazza
and Vespri [31]. Other results on the boundedness of solutions of PDEs or of minimizers of integral
functionals can be found in Boccardo, Marcellini and Sbordone [7], Fusco and Sbordone [37, 38],
Stroffolini [59], Cianchi [14], Pucci and Servadei [57], Cupini, Leonetti and Mascolo [17], Carozza,
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Gao, Giova and Leonetti [12], Granucci and Randolfi [42], Biagi, Cupini and Mascolo [5].
Interior L∞−gradient bound, i.e., the local Lipschitz continuity, of weak solutions to nonlinear

elliptic equations and systems under non standard growth conditions have been obtained since 1989
in [46–50]. See also the following recent references for other Lipschitz regularity results: Colombo
and Mingione [16], Baroni, Colombo and Mingione [1], Eleuteri, Marcellini and Mascolo [34, 35], Di
Marco and Marcellini [32], Beck and Mingione [2], Bousquet and Brasco [9], De Filippis and
Mingione [26, 27], Caselli, Eleuteri and Passarelli di Napoli [13], Gentile [39], the authors and
Passarelli di Napoli [25], Eleuteri, Marcellini, Mascolo and Perrotta [36]; see also [53]. For other
related results see also Byun and Oh [10] and Mingione and Palatucci [55]. The local boundedness of
the solution u can be used to achieve further regularity properties, as the Hölder continuity of u or of
its gradient Du; we limit here to cite Bildhauer and Fuchs [6], Düzgun, Marcellini and Vespri [33], Di
Benedetto, Gianazza and Vespri [31], Byun and Oh [11] as examples of this approach. For recent
boundary regularity results in the context considered in this manuscript we mention Cianchi and
Maz’ya [15], Bögelein, Duzaar, Marcellini and Scheven [8], De Filippis and Piccinini [28]. A well
known reference about the regularity theory is the article [54] by Giuseppe Mingione. We also refer
to [51–53] and to De Filippis and Mingione [27], Mingione and Rădulescu [56], who have outlined
the recent trends and advances in the regularity theory for variational problems with non-standard
growths and non-uniform ellipticity.

2. On the definition of weak solution

In order to investigate the consistency of the notion of weak solution, we anticipate the ellipticity
and growth conditions of Section 3, in particular the growth in (3.3), (3.4),

∣∣∣ai (x, u, ξ)
∣∣∣ ≤ Λ

{
|ξ|q−1 + |u|γ1 + b1 (x)

}
, ∀ i = 1, . . . , n,

|b (x, u, ξ)| ≤ Λ {|ξ|r + |u|γ2 + b2 (x)} .
(2.1)

As well known the integral form of the equation, for a smooth test function ϕ with compact support in
Ω, is ∫

Ω

n∑
i=1

ai (x, u,Du)ϕxidx +

∫
Ω

b (x, u,Du)ϕ dx = 0 .

Let us discuss the summability conditions for the pairings above to be well defined. Since each ai in the
gradient variable ξ grows at most as |ξ|q−1, more generally we can consider test functions ϕ ∈ W1,q

0 (Ω).
In fact, starting with the first addendum and applying the Young inequality with conjugate exponents

q
q−1 and q, we obtain the L1 local summability∣∣∣ai (x, u,Du)ϕxi

∣∣∣ ≤ Λ
{
|Du|q−1 + |u|γ1 + b1 (x)

} ∣∣∣ϕxi

∣∣∣
≤ Λ

q−1
q

{
|Du|q−1 + |u|γ1 + b1 (x)

} q
q−1

+ Λ
q

∣∣∣ϕxi

∣∣∣q ∈ L1
loc (Ω)

if u ∈ W1,q
loc (Ω) and if q

q−1γ1 ≤ q∗, where q∗ is the Sobolev conjugate exponent of q, and b1 ∈ L
q

q−1

loc (Ω).
On γ1 equivalently we require (if q < n) γ1 ≤ q∗ q−1

q =
nq

n−q
q−1

q =
n(q−1)

n−q , which essentially corresponds
to our assumption (3.8) below (the difference being the strict sign “<” for compactness reasons). We

Mathematics in Engineering Volume 5, Issue 3, 1–28.



4

also observe that the summability condition b1 ∈ L
q

q−1

loc (Ω) is satisfied if b1 ∈ Ls1
loc (Ω), with s1 >

n
q−1 , as

in (3.10).
Similar computations apply to |b (x, u, ξ)ϕ|, again if q < n and with conjugate exponents q∗

q∗−1 and
q∗,

|b (x, u,Du)ϕ| ≤ Λ {|Du|r + |u|γ2 + b2 (x)} |ϕ|

≤ Λ
q∗−1

q∗ {|Du|r + |u|γ2 + b2 (x)}
q∗

q∗−1 + Λ
q∗ |ϕ|

q∗
∈ L1

loc (Ω)

and we obtain b2 ∈ L
q∗

q∗−1

loc (Ω) (compare with (3.10), where b2 ∈ Ls2
loc (Ω) with s2 >

n
p , since q∗

q∗−1 ≤
p∗

p∗−1 ≤
p∗

p∗−p = n
p ) and the conditions for r and γ2 expressed by r q∗

q∗−1 ≤ q and γ2
q∗

q∗−1 ≤ q∗; i.e., for the first one,

r ≤ q
q∗ − 1

q∗
= q

nq
n−q − 1

nq
n−q

= q +
q
n
− 1 ,

which correspond to the more strict assumption (3.9), with r < p+
p
n −1, with the sign “<” and where q

is replaced by p. Finally for γ2 we obtain γ2 ≤ q∗−1, which again corresponds to our assumption (3.8)
with the strict sign.

Therefore our assumptions for Theorem 3.2 are more strict than that ones considered in this section
and they are consistent with a correct definition of weak solution to the elliptic equation (1.1).

3. Statement of the main result

Let ai : Ω × R × Rn → R, i = 1, ..., n, and b : Ω × R × Rn → R be Carathéodory functions, Ω be an
open set in Rn, n ≥ 2. Consider the nonlinear partial differential equation

n∑
i=1

∂

∂xi
ai(x, u,Du) = b(x, u,Du). (3.1)

For the sake of simplicity we use the following notation: a(x, u, ξ) = (ai(x, u, ξ))i=1,...,n, for all i =

1, . . . , n.
We assume the following properties:

• p−ellipticity condition at infinity:
there exist an exponent p > 1 and a positive constant λ such that

〈a(x, u, ξ), ξ〉 ≥ λ |ξ|p , (3.2)

for a.e. x ∈ Ω, for every u ∈ R and for all ξ ∈ Rn such that |ξ| ≥ 1.

• q−growth condition:
there exist exponents q ≥ p, γ1 ≥ 0, s1 > 1, a positive constant Λ and a positive function
b1 ∈ Ls1

loc(Ω) such that, for a.e. x ∈ Ω, for every u ∈ R and for all ξ ∈ Rn,

|a(x, u, ξ)| ≤ Λ
{
|ξ|q−1 + |u|γ1 + b1(x)

}
; (3.3)
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• growth conditions for the right hand side b (x, u, ξ):
there exist further exponents r ≥ 0, γ2 ≥ 0, s2 > 1 and a positive function b2 ∈ Ls2

loc(Ω) such that

|b(x, u, ξ)| ≤ Λ {|ξ|r + |u|γ2 + b2(x)} , (3.4)

for a.e. x ∈ Ω, for every u ∈ R and for all ξ ∈ Rn.

Without loss of generality we can assume Λ ≥ 1 and b1, b2 ≥ 1 a.e. in Ω. We recall the definition
of weak solution to (3.1).

Definition 3.1. A function u ∈ W1,q
loc (Ω) is a weak solution to (3.1) if∫

Ω

 n∑
i=1

ai(x, u,Du)ϕxi + b(x, u,Du)ϕ

 dx = 0 (3.5)

for all ϕ ∈ W1,q(Ω), suppϕ b Ω.

3.1. Assumptions on the exponents

Our aim is to study the local boundedness of weak solutions to (3.1). Since this regularity property
is trivially satisfied for functions in W1,q

loc (Ω) with q > n, from now on we only consider the case q ≤ n;
more precisely

1 < p < n, p ≤ q ≤ n, (3.6)

since if q > n then weak solutions are Hölder continuous as an application of the Sobolev-Morrey
embedding theorem, see Remark 3.3.

Other assumptions on the exponents are
q < 1 + p
q
p
< 1 +

1
n − 1

(3.7)

0 ≤ γ1 <
n (q − 1)

n − p
, 0 ≤ γ2 <

n (p − 1) + p
n − p

, (3.8)

0 ≤ r < p +
p
n
− 1, (3.9)

s1 >
n

q − 1
, s2 >

n
p
. (3.10)

3.2. The statement of the boundedness result

Under the conditions described above the following local boundedness result holds.

Theorem 3.2 (Boundedness result). Let u ∈ W1,q
loc (Ω), 1 < q ≤ n, be a weak solution to the elliptic

equation (3.1). If (3.2)–(3.4) and (3.6)–(3.10) hold true, then u is locally bounded. Precisely, for every
open set Ω′ b Ω there exist constants R0, c > 0 depending on the data n, p, q, r, γ1, γ2, s1, s2 and on the
norm ‖u‖W1,q(Ω′) such that ‖u‖L∞(BR/2(x0)) ≤ c for every R ≤ R0, with BR0(x0) ⊆ Ω′.
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Remark 3.3. We already observed that if q > n then the weak solutions to (3.1) are locally Hölder
continuous. Let us now discuss why in (3.6) we do not consider the case p = q = n. If p = q (≤ n), the
same computations in the proof of Theorem 3.2 work with the set of assumptions (3.8)–(3.10). They
can be written, coherently with the previous ones, as

0 ≤ γ1 < p∗
p − 1

p
, 0 ≤ γ2 < p∗ − 1 (3.11)

0 ≤ r < p −
p
p∗
, (3.12)

s1 >
p∗p

(p∗ − p)(p − 1)
, s2 >

p∗

p∗ − p
. (3.13)

Here p∗ denotes the Sobolev exponent appearing in the Sobolev embedding theorem for functions in
W1,p(Ω) with Ω bounded open set in Rn; i.e.,

p∗ :=
{ np

n−p if p < n
any real number > n, if p = n.

(3.14)

Following the computations in [40, Theorem 2.1] and [41, Chapter 6] it can be proved that the weak
solutions to (3.1) are quasi-minima of the functional

F (u) :=
∫

Ω

(
|Du|p + |u|τ + b

p
p−1

1 + b
p∗

p∗−1

2

)
dx, (3.15)

with τ := max{γ1
p

p−1 , γ2
p∗

p∗−1 }. It is known that if

τ < p∗ and b
p

p−1

1 + b
p∗

p∗−1

2 ∈ L1+δ with δ > 0 (3.16)

then the gradient of quasi-minima of the functional (3.15) satisfies a higher integrability property; i.e.,
they belong to W1,p+ε , for some ε > 0.

Under our assumptions, (3.16) is satisfied; indeed, taking into account that we are considering
p = q, by (3.10)

s1 >
n

p − 1
≥

p
p − 1

and, by (3.13)

s2 >
p∗

p∗ − p
≥

p∗

p∗ − 1
.

Analogously, by (3.11),

γ1
p

p − 1
< p∗, γ2

p∗

p∗ − 1
< (p∗ − 1)

p∗

p∗ − 1
= p∗.

In particular, if p = q = n the quasi-minima of (3.15) are in W1,n+ε
loc (Ω) for some ε > 0, therefore the

weak solutions to (3.1) are Hölder continuous. We refer to [41] Chapter 6 for more details.
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4. Notation and remarks

If p ≥ 1 and d ∈ N, d ≥ 2, we define

(pd)∗ :=
{ dp

d−p if p < d
any real number > d, if p = d.

The Sobolev exponent appearing in the Sobolev embedding theorem for functions in W1,p(Ω), p ≥ 1,
with Ω bounded open set in Rn, is (pn)∗ and will be denoted, as usual, p∗.

Let t ∈ R, t > 0. We define t∗ as follows:

1
t∗

:= min
{

1
t

+
1

n − 1
, 1

}
.

We have, if n ≥ 3,

t∗ =

{ t(n−1)
t+n−1 if t > n−1

n−2
1 if 1 ≤ t ≤ n−1

n−2 ,

and, if n = 2, t∗ = 1 for every t.
We notice that, if n ≥ 3,

((t∗)n−1)∗ =

{
t if t > n−1

n−2
n−1
n−2 if 1 ≤ t ≤ n−1

n−2

and, if n = 2, for every t, ((t∗)n−1)∗ stands for any real number greater than 1.

Remark 4.1. Let us consider the exponents p, q satisfying (3.6) and (3.7) in Section 3. We notice that

1(
p

p−q+1

)
∗

=

 1
p

p−q+1
+ 1

n−1 if q > 1 +
p

n−1

1 if q ≤ 1 +
p

n−1 .
(4.1)

Due to assumption (3.7), if n = 2, then
(

p
p−q+1

)
∗

= 1.

Moreover, if we denote t :=
(

p
p−q+1

)
∗

then, if n ≥ 3,

(tn−1)∗ =

{ p
p−q+1 if q > 1 +

p
n−1

n−1
n−2 if q ≤ 1 +

p
n−1 ,

(4.2)

if instead n = 2 than (tn−1)∗ is any real number greater than 1.

Let p, q satisfy (3.6) and (3.7). It is easy to prove that
p

p − q + 1
< q∗. (4.3)

In the following it will be useful to introduce the following notation:

ν :=
1(
p

p−q+1

)
∗

−
1
p
,

or, more explicitly,

ν =

 p−1
p if q ≤ 1 +

p
n−1

1 − q
p + 1

n−1 if q > 1 +
p

n−1 .
(4.4)
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Remark 4.2. Assume 1 < p ≤ q. Then easy computations give

ν > 0⇔ q <
pn

n − 1
, ν = 0⇔ q =

pn
n − 1

. (4.5)

To get the sharp bound for q, we use a result proved in [43], see also [3, 4, 30, 58]. Here we denote
S σ(x0) the boundary of the ball Bσ(x0) in Rn.

Lemma 4.3. Let n ∈ N, n ≥ 2. Consider Bσ(x0) ball in Rn and u ∈ L1(Bσ(x0)) and s > 1. For any
0 < ρ < σ < +∞, define

I(ρ, σ, u) := inf
{∫

Bσ(x0)
|u||Dη|s dx : η ∈ C1

0(Bσ(x0)), 0 ≤ η ≤ 1, η = 1 in Bρ(x0)
}
.

Then for every δ ∈]0, 1],

I(ρ, σ, v) ≤ (σ − ρ)s−1+ 1
δ

∫ σ

ρ

(∫
S r(x0)

|v| dHn−1
)δ

dr
 1
δ

.

The following result is the Sobolev inequality on spheres.

Lemma 4.4. Let n ∈ N, n ≥ 3, and γ ∈ [1, n − 1[. Then there exists c depending on n and γ such that
for every u ∈ W1,p(S 1(x0), dHn−1)(∫

S 1(x0)
|u|(γn−1)∗ dHn−1

) 1
(γn−1)∗

≤ c
(∫

S 1(x0)
(|Du|γ + |u|γ) dHn−1

) 1
γ

.

Lemma 4.5. Let n = 2. Then there exists c such that for every u ∈ W1,1(S 1(x0), dH1) and every r > 1,(∫
S 1(x0)

|u|r dH1
) 1

r

≤ c
(∫

S 1(x0)
(|Du| + |u|) dH1

)
.

Proof. By the one-dimensional Sobolev inequality

‖u‖L∞(S 1(x0)) ≤ c‖u‖W1,1(S 1(x0)).

Then, for every r > 1, (∫
S 1(x0)

|u|r dHn−1
) 1

r

≤ c‖u‖L∞(S 1(x0)) ≤ c‖u‖W1,1(S 1(x0)).

�

We conclude this section, by stating a classical result; see, e.g., [41]. that will be useful to prove
Theorem 3.2.

Lemma 4.6. Let α > 0 and (Jh) a sequence of real positive numbers, such that

Jh+1 ≤ A λhJ1+α
h ,

with A > 0 and λ > 1.
If J0 ≤ A−

1
αλ−

1
α2 , then Jh ≤ λ

− h
α J0 and limh→∞ Jh = 0.
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5. Caccioppoli’s inequality

Under the assumptions in Section 3 we have the following Caccioppoli-type inequality.
Given a measurable function u : Ω→ R, with Ω open set in Rn, and fixed x0 ∈ R

n, k ∈ R and τ > 0,
we denote the super-level set of u as follows:

Ak,τ(x0) := {x ∈ Bτ(x0) : u(x) > k};

usually dropping the dependence on x0. We denote |Ak,τ| its Lebesgue measure.

Proposition 5.1 (Caccioppoli’s inequality). Let u ∈ W1,q
loc (Ω) be a weak solution to (3.1). If (3.6)–(3.10)

hold true, then there exists a constant c > 0, such that for any BR0(x0) b Ω, 0 < ρ < R ≤ R0

∫
Bρ
|D(u − k)+|

p dx ≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − k)+‖
p

p−q+1

W1,p(BR)|Ak,R|
p

p−q+1 ν

+ c‖(u − k)+‖

pγ1
q−1

W1,p(BR)|Ak,R|
1− pγ1

p∗(q−1) + c‖(u − k)+‖
p

p−r

W1,p(BR)|Ak,R|
1− 1

p∗ p−r
p

+ c‖(u − k)+‖
γ2+1
W1,p(BR)|Ak,R|

1− γ2+1
p∗ + c‖(u − k)+‖

γ2

W1,p(BR)|Ak,R|
1− γ2

p∗

+ ckγ2‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

p∗ + c
(
k

pγ1
q−1 + kγ2

)
|Ak,R|

+ c‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

s2
− 1

p∗ + c|Ak,R|
1− p

s1(q−1) (5.1)

with ν as in (4.4) and c is a constant depending on n, p, q, r,R0, the Ls1-norm of b1 and the Ls2-norm of
b2 in BR0 .

Proof. Without loss of generality we assume that the functions b1, b2 in (3.3) are a.e. greater than or
equal to 1 in Ω. We split the proof into steps.

Step 1. Consider BR0(x0) b Ω, 0 < R0
2 ≤ ρ < R ≤ R0 ≤ 1.

We set
A(ρ,R) := {η ∈ C∞0 (BR(x0)) : η = 1 in Bρ(x0), 0 ≤ η ≤ 1}. (5.2)

For every η ∈ A(ρ,R) and fixed k > 1 we define the test function ϕk as follows

ϕk(x) := (u(x) − k)+[η(x)]µ for a.e. x ∈ BR0(x0),

with
µ :=

p
p − q + 1

(5.3)

that is greater than 1 because q > 1.
Notice that ϕk ∈ W1,q

0 (BR0(x0)), supp ϕk b BR(x0).

Step 2. Let us consider the super-level sets:

Ak,R := {x ∈ BR(x0) : u(x) > k}.
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In this step we prove that∫
Ak,ρ

|Du|p dx ≤ c
{∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

(
(u − k)

pγ1
q−1 + (u − k)

p
p−r + (u − k)γ2+1 + (u − k)γ2

)
dx

+ c
∫

Ak,R

(
kγ2(u − k) + b2(u − k) + k

pγ1
q−1 + kγ2 + b

p
q−1

1

)
dx

}
(5.4)

for some constant c independent of u and η.

Using ϕk as a test function in (3.5) we get

I1 :=
∫

Ak,R

〈a(x, u,Du),Du〉 ηµ dx

= − µ

∫
Ak,R

〈a(x, u,Du),Dη〉ηµ−1(u − k) dx

−

∫
Ak,R

b(x, u,Du)(u − k) ηµ dx =: I2 + I3.

(5.5)

Now, we separately consider and estimate Ii, i = 1, 2, 3.

Estimate of I3

Using (3.4) we obtain

I3 ≤ Λ

∫
Ak,R

ηµ {|Du|r(u − k) + |u|γ2(u − k) + b2(u − k)} dx.

We estimate the right-hand side using the Young inequality, with exponents p
r and p

p−r , and (3.2).
There exists c, depending on λ, Λ, n, p, r, such that

Λ|Du|r(u − k) ≤
λ

4
|Du|p + c(u − k)

p
p−r

≤
1
4
〈a(x, u,Du),Du〉 + c(u − k)

p
p−r a.e. in {|Du| ≥ 1}. (5.6)

and, recalling that b2 ≥ 1,

Λ|Du|r(u − k) ≤ Λ(u − k) ≤ Λb2(u − k) a.e. in {|Du| < 1}.

Therefore,

I3 ≤
1
4

∫
Ak,R∩{|Du|≥1}

〈a(x, u,Du),Du〉ηµ dx

+ c
∫

Ak,R

ηµ
{
(u − k)

p
p−r + |u|γ2(u − k) + b2(u − k)

}
dx. (5.7)
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Collecting (5.5)–(5.7) we get

3
4

∫
Ak,R∩{|Du|≥1}

〈a(x, u,Du),Du〉ηµ dx ≤ I2 −

∫
Ak,R∩{|Du|≤1}

〈a(x, u,Du),Du〉ηµ dx

+ c
∫

Ak,R

ηµ
{
(u − k)

p
p−r + |u|γ2(u − k) + b2(u − k)

}
dx.

Using (3.2) and (3.3) we get

3λ
4

∫
Ak,R∩{|Du|≥1}

|Du|pηµ dx ≤ I2 + 2Λ

∫
Ak,R∩{|Du|≤1}

(|u|γ2 + b1)ηµ dx

+ c
∫

Ak,R

ηµ
{
(u − k)

p
p−r + |u|γ2(u − k) + b2(u − k)

}
dx. (5.8)

Estimate of I2. For a.e. x ∈ Ak,R ∩ {η , 0} we have

µ|〈a(x, u,Du),Dη〉|(u − k)ηµ−1 ≤ µΛ
{
|Du|q−1 + |u|γ1 + b1

}
|Dη|(u − k)ηµ−1. (5.9)

For a.e. x ∈ {|Du| ≥ 1} ∩ Ak,R ∩ {η , 0}, by q < p + 1 and the Young inequality with exponents p
q−1

and p
p−q+1 , and noting that µ − 1 = µq−1

p , we get

µΛ|Du|q−1|Dη|(u − k)ηµ−1

≤
λ

4
|Du|pηµ + c(λ,Λ)µ

p
p−q+1 |Dη|

p
p−q+1 (u − k)

p
p−q+1 . (5.10)

On the other hand we have

µΛ|Du|q−1|Dη|(u − k)ηµ−1 ≤ µΛ|Dη|(u − k)ηµ−1 (5.11)

a.e. in {|Du| < 1} ∩ Ak,R ∩ {η , 0}.
Therefore,

I2 ≤
λ

4

∫
Ak,R∩{|Du|≥1}

|Du|pηµ dx + c(λ,Λ)µ
p

p−q+1

∫
Ak,R∩{|Du|≥1}

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

|Dη|(u − k)ηµ−1 dx + c
∫

Ak,R

|Dη|ηµ−1 {|u|γ1 + b1} (u − k) dx.

By (5.8) and the inequality above, we get

λ

2

∫
Ak,R∩{|Du|≥1}

|Du|pηµ dx ≤ c(λ,Λ, p, q)
∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

|Dη|ηµ−1 (|u|γ1 + b1) (u − k) dx

+ c
∫

Ak,R

ηµ
(
(u − k)

p
p−r + |u|γ2(u − k) + |u|γ2 + b2(u − k) + b1

)
dx.
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Taking into account that b1 ≥ 1∫
Ak,R

|Du|pηµ dx =

∫
Ak,R∩{|Du|≥1}

|Du|pηµ dx +

∫
Ak,R∩{|Du|<1}

|Du|pηµ dx

≤

∫
Ak,R∩{|Du|≥1}

|Du|pηµ dx +

∫
Ak,R

b1η
µ dx,

therefore ∫
Ak,R

(|Du|p − b1)ηµ dx ≤
∫

Ak,R∩{|Du|≥1}
|Du|pηµ dx

and we obtain ∫
Ak,ρ

|Du|p dx ≤ c
∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

|Dη|ηµ−1 (|u|γ1 + b1) (u − k) dx

+ c
∫

Ak,R

ηµ
(
(u − k)

p
p−r + |u|γ2(u − k) + |u|γ2 + b2(u − k) + b1

)
dx. (5.12)

We have ∫
Ak,R

|Dη|ηµ−1|u|γ1(u − k) dx ≤ c(γ1)
∫

Ak,R

|Dη|ηµ−1(u − k)γ1+1 dx

+c(γ1)
∫

Ak,R

|Dη|ηµ−1kγ1(u − k) dx.

By Hölder inequality with exponents p
q−1 and p

p−q+1 , we get∫
Ak,R

|Dη|ηµ−1(u − k)γ1+1 dx =

∫
Ak,R

|Dη|(u − k)ηµ−1(u − k)γ1 dx

≤ c
∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx + c
∫

Ak,R

η
p(µ−1)

q−1 (u − k)
pγ1
q−1 dx.

Analogously, ∫
Ak,R

|Dη|ηµ−1kγ1(u − k) dx ≤ c
∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+c
∫

Ak,R

η
p(µ−1)

q−1 k
pγ1
q−1 dx

and ∫
Ak,R

|Dη|ηµ−1b1(u − k) dx ≤ c
∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+c
∫

Ak,R

η
p(µ−1)

q−1 b
p

q−1

1 dx,
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obtaining ∫
Ak,ρ

|Du|p dx ≤ c
{∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

(
(u − k)

pγ1
q−1 + k

pγ1
q−1 + b

p
q−1

1

)
dx

+ c
∫

Ak,R

(
(u − k)

p
p−r + |u|γ2(u − k) + |u|γ2 + b2(u − k) + b1

)
dx.

}
.

Therefore, ∫
Ak,ρ

|Du|p dx ≤ c
{∫

Ak,R

|Dη|
p

p−q+1 (u − k)
p

p−q+1 dx

+

∫
Ak,R

(
(u − k)

pγ1
q−1 + (u − k)

p
p−r + (u − k)γ2+1 + (u − k)γ2

)
dx

+ c
∫

Ak,R

(
kγ2(u − k) + kγ2 + b2(u − k) + b1 + k

pγ1
q−1 + b

p
q−1

1

)
dx.

}
.

Since b1 ≥ 1 and q < p + 1, then

b1 + b
p

q−1

1 ≤ 2b
p

q−1

1 ,

and we get (5.4).

Step 3. In this step we prove that

∫
Bρ
|D(u − k)+|

p dx ≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − k)+‖
p

p−q+1

W1,p(BR(x0))|Ak,R|
p

p−q+1 ν

+ c
∫

Ak,R

(
(u − k)

pγ1
q−1 + (u − k)

p
p−r + (u − k)γ2+1 + (u − k)γ2

)
dx

+ c
∫

Ak,R

(
kγ2(u − k) + b2(u − k) + k

pγ1
q−1 + kγ2 + b

p
q−1

1

)
dx. (5.13)

We obtain this estimate starting by (5.4).
Consider τ ∈ (ρ,R) and define the function

S 1(0) 3 y 7→ w(y) := (u − k)+(x0 + τy)

where
S 1(0) := {y ∈ Rn : |y| = 1}.

This function w is in W1,
( p

p−q+1

)
∗(S 1, dHn−1), with

1(
p

p−q+1

)
∗

= min

 1
p

p−q+1

+
1

n − 1
, 1

 . (5.14)
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Let us consider the case
q > 1 +

p
n − 1

.

By (4.1) in Remark 4.1, we get
1(
p

p−q+1

)
∗

=
1
p

p−q+1

+
1

n − 1
. (5.15)

By (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we get(∫
S 1

|w|
p

p−q+1 dHn−1
) p−q+1

p

≤ c(n, p, q)
(∫

S 1

(|Dw|
( p

p−q+1

)
∗ + |w|

( p
p−q+1

)
∗) dHn−1

)1/
( p

p−q+1

)
∗

. (5.16)

When
q ≤ 1 +

p
n − 1

,

we distinguish among two cases: n ≥ 3 and n = 2. If n ≥ 3, by using Hölder’s inequality, we get(∫
S 1

|w|
p

p−q+1 dHn−1
) p−q+1

p

≤ c(n, p, q)
(∫

S 1

|w|
n−1
n−2 dHn−1

) n−2
n−1

,

by (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we obtain the inequality (5.16).
If n = 2, then

(
p

p−q+1

)
∗

= 1, then we obtain the inequality (5.16) by applying Lemma 4.5 with
r =

p
p−q+1 .

LetA(ρ,R) be as in (5.2). We apply Lemma 4.3, with

BR(x0) 3 y 7→ v(y) := (u − k)
p

p−q+1
+ (y),

that is a function in L1(BR(x0)). Using (5.16) and recalling that R0
2 ≤ ρ < R ≤ R0, reasoning as in [30],

we get

inf
A(ρ,R)

∫
BR(x0)

|Dη|
p

p−q+1 (u − k)
p

p−q+1
+ dx

≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

×

(∫ R

ρ

∫
S τ(0)

(
|D(u − k)+(x0 + y)|

( p
p−q+1

)
∗

+|(u − k)+(x0 + y)|
( p

p−q+1

)
∗

)
dHn−1(y) dτ

) p
p−q+1 /

( p
p−q+1

)
∗

. (5.17)

By coarea formula, inequality (5.17) implies

inf
A(ρ,R)

∫
BR(x0)

|Dη|
p

p−q+1 (u − k)
p

p−q+1
+ dx

≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×
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× ‖(u − k)+‖
p

p−q+1

W
1,
(

p
p−q+1

)
∗ (BR(x0)\Bρ(x0))

and, taking into account (3.7), Remark 4.1 and (4.5)(
p

p − q + 1

)
∗

< p⇔
1(
p

p−q+1

)
∗

>
1
p
⇔ ν > 0⇔

q
p
< 1 +

1
n − 1

,

by Hölder’s inequality we get

inf
A(ρ,R)

∫
BR(x0)

|Dη|
p

p−q+1 (u − k)
p

p−q+1
+ dx

≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − k)+‖
p

p−q+1

W1,p(BR(x0))|Ak,R|
p

p−q+1 ν (5.18)

By (5.4) we get

∫
Ak,ρ

|Du|p dx ≤ C(n, p, q,R0)(R − ρ)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − k)+‖
p

p−q+1

W1,p(BR(x0))|Ak,R|
p

p−q+1 ν

+ c
∫

Ak,R

(
(u − k)

pγ1
q−1 + (u − k)

p
p−r + (u − k)γ2+1 + (u − k)γ2

)
dx

+ c
∫

Ak,R

(
kγ2(u − k) + b2(u − k) + k

pγ1
q−1 + kγ2 + b

p
q−1

1

)
dx.

Since ∫
Bρ
|D(u − k)+|

p dx =

∫
Ak,ρ

|D(u − k)+|
p dx =

∫
Ak,ρ

|Du|p dx

we get (5.13).

Step 4. In this step we estimate the integrals at the right hand side of (5.13).
Consider

J1 :=
∫

Ak,R

(
(u − k)

pγ1
q−1 + (u − k)

p
p−r + (u − k)γ2+1 + (u − k)γ2

)
dx.

Estimate of J1.
By assumptions (3.8) and (3.9),

max{
pγ1

q − 1
, γ2 + 1,

p
p − r

} < p∗.

Therefore, by using Hölder inequality with exponent p∗(q−1)
pγ1

we get

∫
Ak,R

(u − k)
pγ1
q−1 dx ≤

(∫
Ak,R

(u − k)p∗ dx
) pγ1

p∗(q−1)

|Ak,R|
1− pγ1

p∗(q−1) ;
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Hölder inequality with exponent p∗ p−r
p implies∫

Ak,R

(u − k)
p

p−r dx ≤
(∫

Ak,R

(u − k)p∗ dx
) 1

p∗ p−r
p
|Ak,R|

1− 1
p∗ p−r

p .

Moreover, by using Hölder inequality with exponent p∗

γ2+1 we get

∫
Ak,R

(u − k)γ2+1 dx ≤
(∫

Ak,R

(u − k)p∗ dx
) γ2+1

p∗

|Ak,R|
1− γ2+1

p∗ ;

by using Hölder inequality with exponent p∗

γ2
we get∫

Ak,R

(u − k)γ2 dx ≤
(∫

Ak,R

(u − k)p∗ dx
) γ2

p∗

|Ak,R|
1− γ2

p∗ .

Therefore, by using the Sobolev embedding theorem

J1 ≤‖(u − k)+‖

pγ1
q−1

W1,p(BR)|Ak,R|
1− pγ1

p∗(q−1) + ‖(u − k)+‖
p

p−r

W1,p(BR)|Ak,R|
1− 1

p∗ p−r
p

+ ‖(u − k)+‖
γ2+1
W1,p(BR)|Ak,R|

1− γ2+1
p∗ + ‖(u − k)+‖

γ2

W1,p(BR)|Ak,R|
1− γ2

p∗ .

Let us consider now the following integral in (5.13):

J2 :=
∫

Ak,R

(
kγ2(u − k) + b2(u − k) + k

pγ1
q−1 + kγ2 + b

p
q−1

1

)
dx.

Trivially, ∫
Ak,R

kγ2(u − k) dx ≤ kγ2‖(u − k)+‖
1
p∗

Lp∗ (Ak,R)
|Ak,R|

1− 1
p∗

≤ kγ2‖(u − k)+‖W1,p(Ak,R)|Ak,R|
1− 1

p∗ .

By assumption b2 ∈ Ls2 , s2 >
n
p =

p∗

p∗−p . Since p∗

p∗−p > p∗

p∗−1 , then s2
s2−1 < p∗. Therefore, by Hölder

inequality ∫
Ak,R

b2(u − k) dx ≤ ‖b2‖Ls2 (Ak,R)‖(u − k)+‖
L

s2
s2−1

≤ ‖b2‖Ls2 (BR)‖(u − k)+‖Lp∗ (Ak,R)|Ak,R|
1− 1

s2
− 1

p∗ ,

which implies ∫
Ak,R

b2(u − k) dx ≤ ‖b2‖Ls2 (BR)‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

s2
− 1

p∗ .

Now, b1 ∈ Ls1 with s1 >
p

q−1 ; by using Hölder inequality with exponent s1(q−1)
p we get∫

Ak,R

b
p

q−1

1 dx ≤
(∫

Ak,R

bs1
1 dx

) p
s1(q−1)

|Ak,R|
1− p

s1(q−1) .

Mathematics in Engineering Volume 5, Issue 3, 1–28.



17

We obtain

J2 ≤ kγ2‖(u − k)+‖W1,p((BR))|Ak,R|
1− 1

p∗ +
(
k

pγ1
q−1 + kγ2

)
|Ak,R|

+ ‖b2‖Ls2 (BR)‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

s2
− 1

p∗ + ‖b1‖
p

q−1

Ls1 (BR)|Ak,R|
1− p

s1(q−1) .

Step 5. By Steps 3, 4 we get

∫
Br

|D(u − k)+|
p dx ≤ C(n, p, q,R0)(R − ρ)

−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − k)+‖
p

p−q+1

W1,p(BR)|Ak,R|
p

p−q+1 ν

+ c‖(u − k)+‖

pγ1
q−1

W1,p(BR)|Ak,R|
1− pγ1

p∗(q−1) + c‖(u − k)+‖
p

p−r

W1,p(BR)|Ak,R|
1− 1

p∗ p−r
p

+ c‖(u − k)+‖
γ2+1
W1,p(BR)|Ak,R|

1− γ2+1
p∗ + c‖(u − k)+‖

γ2

W1,p(BR)|Ak,R|
1− γ2

p∗

+ ckγ2‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

p∗ + c
(
k

pγ1
q−1 + kγ2

)
|Ak,R|

+ c‖b2‖Ls2 (BR)‖(u − k)+‖W1,p(BR)|Ak,R|
1− 1

s2
− 1

p∗ + c‖b1‖
p

q−1

Ls1 (BR)|Ak,R|
1− p

s1(q−1)

and the inequality (5.1) follows.
�

6. Proof of the boundedness result

Let u ∈ W1,q
loc (Ω), 1 < q ≤ n, be weak solution to (3.1). Consider Ω′ b Ω an open set.

I case q > p. Let BR0(x0) ⊆ Ω′.
For every k ≥ 0∫

BR0 (x0)
(u − k)p

+ dx +

∫
BR0 (x0)

|D(u − k)+|
p dx

≤

∫
BR0 (x0)

(|u| − k)p
+χ{x∈BR0 (x0) : |u|>k}(x) dx +

∫
BR0 (x0)

|Du|pχ{x∈BR0 (x0) : |u|>k}(x) dx

≤

∫
BR0 (x0)

(|u|p + |Du|p)χ{x∈BR0 (x0) : |u|>k}(x) dx

≤

∫
BR0 (x0)

(|u|q + |Du|q) dx
p/q

|
{
x ∈ BR0(x0) : |u| > k

}
|1−p/q

≤ ‖u‖p
W1,q(BR0 (x0))|BR0(x0)|1−p/q. (6.1)

In particular, chosen R0 such that

|BR0(x0)| ≤ ‖u‖
−

pq
q−p

W1,q(Ω′)

we get
‖(u − k)‖W1,p(BR0 (x0)) < 1 ∀k ≥ 0. (6.2)
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II case q = p. By a well known result by Giaquinta and Giusti [40], the gradient of the weak solution
satisfies a higher integrability property: its gradient is in Lp+ε(BR0(x0)), for some ε > 0 sufficiently
small. Moreover, u ∈ Lp∗(BR0(x0)); because p = q, we can repeat the above argument with q replaced
by p + ε so obtaining (6.1). R0 > 0 depends on the norm ‖u‖W1,p+ε(BR0 (x0)). Again, by the Giaquinta and
Giusti result, the norm ‖u‖W1,p+ε(BR0 (x0)) can be estimated in terms of the ‖u‖W1,p(Ω′) for BR0(x0) ⊆ Ω′ b Ω.

Finally, we can summarize: in both cases, either if q > p or if q = p, we can choose R0 such that
(6.2) holds with R0 > 0 depending on the norm ‖u‖W1,q(Ω′). We also assume R0 < 1 such that |BR0 | < 1,
0 < R ≤ R0.

Define the decreasing sequences

ρh :=
R
2

+
R

2h+1 =
R
2

(1 +
1
2h ).

Fixed a positive constant d ≥ 2, to be chosen later, define the increasing sequence of positive real
numbers (kh)

kh := d
(
1 −

1
2h+1

)
, h ∈ N.

Define the decreasing sequence (Jh),

Jh := ‖(u − kh)+‖
p
W1,p(Bρh (x0)).

Notice that
ρ0 = R, lim

ρ→+∞

R
2

(1 +
1
2h ) =

R
2
,

k0 :=
d
2
, lim

h→+∞
kh = d.

Moreover, by (6.2),

Jh ≤ J0 = ‖(u −
d
2

)+‖
p
W1,p(BR(x0)) < 1.

Let us introduce the following notation:

τ := max

 pp∗

p − q + 1
ν +

 p
p − q + 1

− 1 +

p
p−q+1(

p
p−q+1

)
∗

 , p∗
 , (6.3)

θ := min
{ pp∗

p − q + 1
ν, p∗ −

pγ1

q − 1
, p∗ −

p
p − r

, p∗ − γ2 − 1, p∗ − p,

p∗
(
1 −

1
s2

)
− 1, p∗

(
1 −

p
s1(q − 1)

) }
(6.4)

and

σ := min
{

1
p − q + 1

+
p∗

p − q + 1
ν,

p∗

p
−

p∗

s1(q − 1)
,

p∗

p

(
1 −

1
s2

)}
, (6.5)

where ν is defined in (4.4).
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Proposition 6.1 (Estimate of Jh+1). Let u ∈ W1,q
loc (Ω) be a weak solution to (3.1). Assume (3.2)–(3.4)

with the exponents satisfying the inequalities listed in Section 3.1. Then for every h ∈ N

Jh+1 ≤ c
(2τ)h

dθ
Jσh , (6.6)

where c is a constant depending on n, p, q, r,R0, the Ls1-norm of b1 and the Ls2-norm of b2 in BR0 .

We precede the proof with the following remark.

Remark 6.2. We remark that, by assumptions (3.6)–(3.10), then τ, θ > 0 and σ > 1. As far as these
inequalities are concerned, we remark that

p∗ > p;

ν > 0 (see (4.5));
1

p − q + 1
+

p∗

p − q + 1
ν > 1⇔ p∗ν > p − q

that is satisfied, because p ≤ q

p∗ >
p

p − r
⇔ r < p −

p
p∗
⇔ r < p +

p
n
− 1;

p∗ >
pγ1

q − 1
⇔ γ1 < p∗

q − 1
p
⇔ γ1 <

n(q − 1)
n − p

;

γ2 < p∗ − 1;
p∗

p
−

p∗

s1(q − 1)
> 1⇔

p
s1(q − 1)

< 1 −
p
p∗
⇔ s1 >

n
q − 1

that is the first assumption in (3.10); this assumption also implies

s1 >
p

q − 1
> 0

that is equivalent to
1 −

p
s1(q − 1)

>
p
p∗
> 0.

By the second assumption in (3.10),

s2 >
n
p
⇔ s2 >

p∗

p∗ − p
⇔

p∗

p

(
1 −

1
s2

)
> 1.

Proof of Proposition 6.1. By (5.1), used with k = kh+1, ρ = ρh+1, R = ρh, we have

∫
Bρh+1

|D(u − kh+1)+|
p dx ≤ C(n, p, q,R0) (ρh − ρh+1)

−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


×

× ‖(u − kh+1)+‖
p

p−q+1

W1,p(Bρh )|Akh+1,ρh |
p

p−q+1 ν
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+ c‖(u − kh+1)+‖

pγ1
q−1

W1,p(Bρh+1 )|Akh+1,R|
1− pγ1

p∗(q−1)

+ c‖(u − kh+1)+‖
p

p−r

W1,p(Bρh+1 )|Akh+1,R|
1− 1

p∗ p−r
p

+ c‖(u − kh+1)+‖
γ2+1
W1,p(Bρh+1 )|Akh+1,R|

1− γ2+1
p∗ + c‖(u − kh+1)+‖

γ2

W1,p(Bρh+1 )|Akh+1,R|
1− γ2

p∗

+ ckγ2
h+1‖(u − kh+1)+‖W1,p(Bρh+1 )|Akh+1,R|

1− 1
p∗ + c

(
k

pγ1
q−1

h+1 + kγ2
h+1

)
|Akh+1,R|

+ c‖(u − kh+1)+‖W1,p(Bρh+1 )|Akh+1,R|
1− 1

s2
− 1

p∗ + c|Akh+1,R|
1− p

s1(q−1) . (6.7)

Let us write the estimate above as∫
Bρh+1

|D(u − kh+1)+|
p dx ≤c (ρh − ρh+1)

−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


H1

+ c (H2 + H3 + H4 + H5 + H6 + H7 + H8 + H9) . (6.8)

To estimate the sum at the right-hand side it is useful to remark that, for all h,

kh+1 − kh =
d

2h+2 (6.9)

and
kh+1 − kh < u − kh in Akh+1,ρh .

Since

|Akh+1,ρh | ≤

∫
Akh+1 ,ρh

(
u − kh

kh+1 − kh

)p∗

dx ≤ ‖(u − k)+‖
p∗

Lp∗ (Bρh )

1
(kh+1 − kh)p∗ ,

by the Sobolev inequality we get

|Akh+1,ρh | ≤ c(n, p)
J

p∗
p

h

(kh+1 − kh)p∗ ,

that, together with (6.9), gives

|Akh+1,ρh | ≤ c(n, p)J
p∗
p

h

(
2h

d

)p∗

. (6.10)

Moreover,

‖(u − kh+1)+‖
p
W1,p(Bρh (x0)) =

∫
Akh+1 ,ρh

(u − kh+1)p dx +

∫
Akh+1 ,ρh

|D(u − kh+1)|p dx

≤

∫
Akh ,ρh

(u − kh)p dx +

∫
Akh ,ρh

|D(u − kh)|p dx

≤ Jh. (6.11)

Inequalities (6.10) and (6.11) imply that

‖(u − kh+1)+‖W1,p(Bρh (x0))|Akh+1,R|
− 1

p∗ ≤ c(n, p)J
1
p

h

J
p∗
p

(
− 1

p∗
)

h

(kh+1 − kh)p∗
(
− 1

p∗
)
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therefore, by (6.9),

‖(u − kh+1)+‖W1,p(Bρh (x0))|Akh+1,R|
− 1

p∗ ≤ c(n, p)
(
2h

d

)−1

. (6.12)

This estimate, together with (6.10), implies:

H2 ≤ c(n, p, q, γ1)
(
2h

d

)− pγ1
q−1

|Akh+1,R| ≤ c(n, p, q, γ1)
(
2h

d

)p∗− pγ1
q−1

J
p∗
p

h , (6.13)

and, analogously,

H3 ≤ c(n, p, r)
(
2h

d

)p∗− p
p−r

J
p∗
p

h , (6.14)

H4 ≤ c(n, p, γ2)
(
2h

d

)p∗−γ2−1

J
p∗
p

h , (6.15)

H5 ≤ c(n, p, γ2)
(
2h

d

)p∗−γ2

J
p∗
p

h , (6.16)

H8 ≤ c(n, p)
(
2h

d

)−1

|Akh+1,R|
1− 1

s2 ≤ c(n, p, s2)
(
2h

d

)p∗
(
1− 1

s2

)
−1

J
p∗
p

(
1− 1

s2

)
h , (6.17)

H9 ≤ c(n, p, q, s1)
(
2h

d

)p∗
(
1− p

s1(q−1)

)
J

p∗
p −

p∗
s1(q−1)

h . (6.18)

Moreover, taking into account that

kh+1 = d
(
1 −

1
2h+2

)
≤ d,

H6 ≤ c(n, p)dγ2

(
2h

d

)p∗−1

J
p∗
p

h = c(n, p)
2h(p∗−1)

dp∗−γ2−1 J
p∗
p

h (6.19)

H7 ≤ c
(

2hp∗

dp∗− pγ1
q−1

+
2hp∗

dp∗−γ2

)
J

p∗
p

h . (6.20)

Let us now estimate H1.
Inequalities (6.10) and (6.11) imply

H1 := ‖(u − kh+1)+‖
p

p−q+1

W1,p(Bρh (x0))|Akh+1,ρh |
p

p−q+1 ν

≤ c(n, p, q)J
1

p−q+1

h

 J
p∗
p

h

(kh+1 − kh)p∗


p

p−q+1 ν

that gives

H1 ≤ c(n, p, q)
(
2h

d

) pp∗
p−q+1 ν

J
1

p−q+1 +
p∗

p−q+1 ν

h .
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Taking into account that for every h

1
4

R0

2h+1 ≤ ρh − ρh+1 =
R

2h+2 ≤
1
4

R0

2h ,

we conclude that

(ρh − ρh+1)
−

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


H1

≤ c(n, p, q,R0)
(2h)

pp∗
p−q+1 ν+

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


d

pp∗
p−q+1 ν

J
1

p−q+1 +
p∗

p−q+1 ν

h . (6.21)

Collecting (6.13)–(6.21), by (6.8) we get

∫
Bρh+1

|D(u − kh+1)+|
p dx ≤ c

(2h)
pp∗

p−q+1 ν+

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


d

pp∗
p−q+1 ν

J
1

p−q+1 +
p∗

p−q+1 ν

h

+ c


(
2h

d

)p∗− pγ1
q−1

+

(
2h

d

)p∗− p
p−r

+

(
2h

d

)p∗−γ2−1

+

(
2h

d

)p∗−γ2

+
2h(p∗−1)

dp∗−γ2−1 +
2hp∗

dp∗− pγ1
q−1

+
2hp∗

dp∗−γ2

}
J

p∗
p

h

+ c
(
2h

d

)p∗
(
1− 1

s2

)
−1

J
p∗
p

(
1− 1

s2

)
h + c

(
2h

d

)p∗
(
1− p

s1(q−1)

)
J

p∗
p −

p∗
s1(q−1)

h . (6.22)

Let us now add to both sides of (6.22) the integral
∫

Bρh+1
|(u − kh+1)+|

p dx.
By Hölder inequality∫

Bρh+1

((u − kh+1)+)p dx ≤
∫

Bρh+1

((u − kh+1)+)p∗ dx
 p

p∗

|Akh+1,ρh+1 |
1− p

p∗ .

Since ∫
Bρh+1

((u − kh+1)+)p∗ dx ≤
∫

Bρh+1

((u − kh)+)p∗ dx ≤
∫

Bρh

((u − kh)+)p∗ dx,

the Sobolev embedding theorem gives∫
Bρh+1

((u − kh+1)+)p dx ≤ c‖(u − kh)+‖
p
W1,p(Bρh )|Akh+1,ρh+1 |

1− p
p∗ . (6.23)

Taking into account (6.10), we obtain

|Akh+1,ρh+1 |
1− p

p∗ ≤ |Akh+1,ρh |
1− p

p∗ ≤ c(n, p)
(
2h

d

)p∗−p

J
p∗
p −1

h ;
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therefore, the inequality (6.23) implies∫
Bρh+1

((u − kh+1)+)p dx ≤ c(n, p)
(
2h

d

)p∗−p

J
p∗
p

h . (6.24)

Inequalities (6.22) and (6.24) give

Jh+1 ≤ c
(2h)

pp∗
p−q+1 ν+

 p
p−q+1−1+

p
p−q+1(

p
p−q+1

)
∗


d

pp∗
p−q+1 ν

J
1

p−q+1 +
p∗

p−q+1 ν

h

+ c


(
2h

d

)p∗− pγ1
q−1

+

(
2h

d

)p∗− p
p−r

+

(
2h

d

)p∗−γ2−1

+

(
2h

d

)p∗−γ2

+
2h(p∗−1)

dp∗−γ2−1 +
2hp∗

dp∗− pγ1
q−1

+
2hp∗

dp∗−γ2
+

(
2h

d

)p∗−p
 J

p∗
p

h

+ c
(
2h

d

)p∗
(
1− 1

s2

)
−1

J
p∗
p

(
1− 1

s2

)
h + c

(
2h

d

)p∗
(
1− p

s1(q−1)

)
J

p∗
p −

p∗
s1(q−1)

h . (6.25)

where c is a constant depending on n, p, q, r,R0, the Ls1-norm of b1 and the Ls2-norm of b2 in BR0 .
By taking in account the notation in (6.3)–(6.5), we get, by (6.25), the inequality (6.6).

�

We are now ready to prove our regularity result.

Proof of Theorem 3.2. By Proposition 6.1, for every h ∈ N,

Jh+1 ≤ c
(2h)τ

dθ
Jσh ,

where c is a constant depending on n, p, q,R0, the Ls1-norm of b1 and the Ls2-norm of b2 in BR0 and for
every d ≥ 2. Thus, the following inequality holds:

Jh+1 ≤ AλhJ1+α
h ,

with
A =

c
dθ
, λ = 2τ, α = σ − 1,

where θ, τ and σ are defined in (6.4), (6.3), (6.5). We recall that θ, τ > 0, σ − 1 > 0, see Remark 6.2.
To apply Lemma 4.6, we need

‖
(
u −

d
2

)+‖
p
W1,p(BR(x0)) = J0 ≤ A−

1
αλ−

1
α2 = c−

1
σ−1 2−

τ

(σ−1)2 d
θ

σ−1 . (6.26)

Since
‖
(
u −

d
2

)+‖
p
W1,p(BR(x0)) ≤ ‖u‖

p
W1,p(BR(x0)),

if we choose d ≥ 2 satisfying

d
θ

σ−1 = 2 + c
1

σ−1 2
τ

(σ−1)2 ‖u‖p
W1,p(BR(x0)), (6.27)
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we get 0 = lim
h→+∞

Jh = ‖
(
u − d)+‖

p
W1,p(B R

2
) and we conclude that

u(x) ≤ d a.e. in BR
2
(x0).

To prove that u is locally bounded from below, we proceed as follows. The function −u is a weak
solution to

n∑
i=1

∂

∂xi
ai(x, u,Du) = b(x, u,Du).

where
a(x, u, ξ) := a(x,−u,−ξ) and b(x, u, ξ) := b(x,−u,−ξ).

Notice that, by (3.2)–(3.4) the following properties hold:

• p−ellipticity condition at infinity:
for a.e. x ∈ Ω and for every u ∈ R,

〈a(x, u, ξ),−ξ〉 ≥ λ|ξ|p ∀ξ ∈ Rn, |ξ| > 1,

• q−growth condition:
for a.e. x ∈ Ω and every u ∈ R and ξ ∈ Rn

|a(x, u, ξ)| ≤ Λ
{
|ξ|q−1 + |u|γ1 + b1(x)

}
,

• growth condition for the right hand side b (x, u, ξ):

|b(x, u, ξ)| ≤ Λ {|ξ|r + |u|γ2 + b2(x)} .

To prove the analogue of Proposition 5.1 we now consider the test function
ϕk(x) := (k − u(x))+[η(x)]µ where η is a cut-off function. Let us consider the sub-level sets:

Bk,R := {x ∈ BR(x0) : u(x) < k}, k ∈ R.

Then we obtain, in place of (5.5),∫
Bk,R

〈a(x, u,Du),−Du〉 ηµ dx = −µ

∫
Bk,R

〈a(x, u,Du),Dη〉ηµ−1(k − u) dx

+

∫
Bk,R

f (x, u,Du)(k − u)ηµ dx.

The proof goes on with no significant changes with respect the previous case, arriving to the conclusion
that there exists d′ such that we obtain that BR

2
⊆ {u ≥ d′}, and

u(x) ≥ d′ a.e. in BR
2
(x0).

Collecting the estimates from below and from above for u, we conclude. �
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