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Abstract: This article is dedicated to Giuseppe Mingione for his 50" birthday, a leading expert in the
regularity theory and in particular in the subject of this manuscript. In this paper we give conditions for
the local boundedness of weak solutions to a class of nonlinear elliptic partial differential equations in
divergence form of the type considered below in (1.1), under p, g—growth assumptions. The novelties
with respect to the mathematical literature on this topic are the general growth conditions and the
explicit dependence of the differential equation on u, other than on its gradient Du and on the x variable.
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1. Introduction

We consider the general second order elliptic equation in divergence form
n a .
Z F (x,u(x),Du(x)) =b(x,u(x),Du(x)), xeQ, (1.1)
x.
i=1

where Q is an open set of R”, n > 2, the vector field (ai (x, u, f))i:1 . and the right hand side b (x, u, &)

are Carathéodory applications defined in Q X R X R". We study the elliptic equations (1.1) under some
general growth conditions on the gradient variable & = Du, named p, g—conditions, which we are
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going to state in the next Section 3.2. Under these assumptions we will obtain the local boundedness
of the weak solutions, as stated in Theorem 3.2.

A strong motivation to study the local boundedness of solutions to (1.1) relies on the recent
research in [53], where the local Lipschitz continuity of the weak solutions of the Eq (1.1) has been
obtained under general growth conditions, precisely some p, g—growth assumptions, with the explicit
dependence of the differential equation on u, other than on its gradient Du and on the x variable.
In [53] the Sobolev class of functions where to start in order to get more regularity of the weak
solutions was pointed out, precisely u € Wllog () N Ly (). That is, in particular the local
boundedness u € L;, (€2) of weak solutions is a starting assumption for more interior regularity; i.e.,
for obtaining u € Wllo’f (Q) and more. When we refer to the classical cases this is a well known aspect
which appears in the mathematical literature on a-priori regularity: in fact, for instance, under the
so-called natural growth conditions, i.e., when g = p, then the a-priori boundedness of u often is a
natural assumption to obtain the boundedness of its gradient Du too; see for instance the classical
reference book by Ladyzhenskaya-Ural’tseva [45, Chapter 4, Section 3] and the C!'*—regularity result
by Tolksdorf [60].

The aim of this paper is to derive the local boundedness of solutions to (1.1); i.e., to deduce the
local boundedness of u only from the growth assumptions on the vector field (ai (x, u, §))i_1 i and the
right hand side b (x, u, &) in (1.1). The precise conditions and the related results are stated in Section 3.

We start with a relevant aspect to remark in our context, which is different from what happens in
minimization problems and it is peculiar for equations: although under p, g—growth conditions (with
p < q) the Eq (1.1) is elliptic and coercive in Wllof (€2), it is not possible a-priori to look for weak
solutions only in the Sobolev class Wﬁ)’f (Q), but it is necessary to emphasize that the notion of weak
solution is consistent if a-priori we assume u € Wllog (€2). This is detailed in Section 2.

Going into more detail, in this article we study the local boundedness of weak solutions to the
p—elliptic equation (1.1) with g—growth, 1 < p < g < p+1,asin (3.2), (3.3) and (3.7)—(3.10). Starting
from the integrability condition u € Wlth (Q2) on the weak solution, under the bound on the ratio %

z<1+

p n—1

we obtain u € L (€2). The proof is based on the powerful De Giorgi technique [29], by showing
first a Caccioppoli-type inequality and then applying an iteration procedure. The result is obtained via
a Sobolev embedding theorem on spheres, a procedure introduced by Bella and Schiffner in [3], that
allows a dimensional gain in the gap between p and ¢g. This idea has been later used by the same authors
in [4], by Schéffner [58] and, particularly close to the topic of our paper, by Hirsch and Schiffner [43]
and De Rosa and Grimaldi [30], where the local boundedness of scalar minimizers of a class of convex
energy integrals with p, g—growth was obtained with the bound 1% <l+-L.

Some references about the local boundedness of solutions to elliptic equations and systems, with
general and p,g—growth conditions, start by Kolodii [44] in 1970 in the specific case of some
anisotropic elliptic equations. The local boundedness of solution to classes of anisotropic elliptic
equations or systems have been investigated by the authors [18-24] and by Di Benedetto, Gianazza
and Vespri [31]. Other results on the boundedness of solutions of PDEs or of minimizers of integral
functionals can be found in Boccardo, Marcellini and Sbordone [7], Fusco and Sbordone [37, 38],
Stroffolini [59], Cianchi [14], Pucci and Servadei [57], Cupini, Leonetti and Mascolo [17], Carozza,
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Gao, Giova and Leonetti [12], Granucci and Randolfi [42], Biagi, Cupini and Mascolo [5].

Interior L*—gradient bound, i.e., the local Lipschitz continuity, of weak solutions to nonlinear
elliptic equations and systems under non standard growth conditions have been obtained since 1989
in [46-50]. See also the following recent references for other Lipschitz regularity results: Colombo
and Mingione [16], Baroni, Colombo and Mingione [1], Eleuteri, Marcellini and Mascolo [34,35], Di
Marco and Marcellini [32], Beck and Mingione [2], Bousquet and Brasco [9], De Filippis and
Mingione [26, 27], Caselli, Eleuteri and Passarelli di Napoli [13], Gentile [39], the authors and
Passarelli di Napoli [25], Eleuteri, Marcellini, Mascolo and Perrotta [36]; see also [53]. For other
related results see also Byun and Oh [10] and Mingione and Palatucci [55]. The local boundedness of
the solution u can be used to achieve further regularity properties, as the Holder continuity of u or of
its gradient Du; we limit here to cite Bildhauer and Fuchs [6], Diizgun, Marcellini and Vespri [33], Di
Benedetto, Gianazza and Vespri [31], Byun and Oh [11] as examples of this approach. For recent
boundary regularity results in the context considered in this manuscript we mention Cianchi and
Maz’ya [15], Bogelein, Duzaar, Marcellini and Scheven [8], De Filippis and Piccinini [28]. A well
known reference about the regularity theory is the article [54] by Giuseppe Mingione. We also refer
to [51-53] and to De Filippis and Mingione [27], Mingione and Radulescu [56], who have outlined
the recent trends and advances in the regularity theory for variational problems with non-standard
growths and non-uniform ellipticity.

2. On the definition of weak solution

In order to investigate the consistency of the notion of weak solution, we anticipate the ellipticity
and growth conditions of Section 3, in particular the growth in (3.3), (3.4),

{ @' e &) < A + 1l + by (D)), Vi=1,...n, o

16 (x, u, O < AIEN + [ul” + by (x)}

As well known the integral form of the equation, for a smooth test function ¢ with compact support in
Q, is

fZai(x,u,Du)goxidx+fb(x,u,Du)godx:().
QT Q

Let us discuss the summability conditions for the pairings above to be well defined. Since each a' in the
gradient variable & grows at most as |£]7”', more generally we can consider test functions ¢ € WS"’ (Q).
In fact, starting with the first addendum and applying the Young inequality with conjugate exponents
~%; and g, we obtain the L' local summability

IA

A{IDul™™ + uP" + by (x)}

@’ (x, u, Du) | ¢,

ALHIDul™" + P + by (x)}%' + e e L

loc

IA

Q)

4
ifue Wllo’g (Q) and if qf—lfyl < ¢*, where ¢* is the Sobolev conjugate exponent of ¢, and b; € L/ | (Q).
On vy, equivalently we require (if g < n) y; < c]*ﬂ = %%1 = %, which essentially corresponds
to our assumption (3.8) below (the difference being the strict sign “<” for compactness reasons). We
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/.
also observe that the summability condition b; € Ll‘gcl (Q) is satisfied if b; € Lf(;c (Q), with s; > qf—l, as
in (3.10).

s

Similar computations apply to |b (x, u, £) ¢|, again if ¢ < n and with conjugate exponents qf_l and
q,
b (x,u, D)l < A{[Dul” + [ul”* + ba (x)} gl
. . i :
< AL {IDul + U + by ()T + X el € 1, (Q)

L * *
and we obtain b, € L/~ (€) (compare with (3.10), where b, € L? (Q) with s, > %, since qi’—_] < 1% <
% = %) and the conditions for r and vy, expressed by rqf—il < gand 72% < ¢"; i.e., for the first one,

nq
* 1 nT — 1
rsqq =q qnq :q+€_1’
q pr n

which correspond to the more strict assumption (3.9), with » < p+£ —1, with the sign “<” and where ¢
is replaced by p. Finally for v, we obtain y, < g* — 1, which again corresponds to our assumption (3.8)
with the strict sign.

Therefore our assumptions for Theorem 3.2 are more strict than that ones considered in this section
and they are consistent with a correct definition of weak solution to the elliptic equation (1.1).

3. Statement of the main result

Leta : QXRXR" > R,i=1,..,n,and b : Q X R x R" — R be Carathéodory functions, Q be an
open set in R”, n > 2. Consider the nonlinear partial differential equation

Z ia"(x, u, Du) = b(x, u, Du). (3.1)
P 8)61'

For the sake of simplicity we use the following notation: a(x,u,&) = (a'(x,u,&))i=1.._n, for all i =
1,...,n.
We assume the following properties:

e p—ellipticity condition at infinity:
there exist an exponent p > 1 and a positive constant A such that

(a(x,u,&),&) = A, (3.2)
for a.e. x € Q, for every u € R and for all £ € R” such that |£] > 1.

e g—growth condition:
there exist exponents g > p, y; > 0, s; > 1, a positive constant A and a positive function
b € L} (Q) such that, for a.e. x € Q, for every u € R and for all ¢ € R”,

laCx,u, Ol < AT + [l + by} (3.3)
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e growth conditions for the right hand side b (x, u, &):
there exist further exponents » > 0, y, > 0, s, > 1 and a positive function b, € Lf;C(Q) such that

bCx, u, O < AIE + [ul” + ba(x)} (3.4)
for a.e. x € Q, for every u € R and for all £ € R".

Without loss of generality we can assume A > 1 and by, b, > 1 a.e. in ). We recall the definition
of weak solution to (3.1).

Definition 3.1. A function u € Wllo’f(Q) is a weak solution to (3.1) if

f {Z a'(x,u, Du)g,. + b(x, u, Du)ga} dx=0 3.5
Q

i=1

for all ¢ € WH(Q), supp ¢ € Q.

3.1. Assumptions on the exponents

Our aim is to study the local boundedness of weak solutions to (3.1). Since this regularity property

is trivially satisfied for functions in Wllo’g(Q) with ¢ > n, from now on we only consider the case g < n;
more precisely

l<p<n, p<q<n, (3.6)

since if ¢ > n then weak solutions are Holder continuous as an application of the Sobolev-Morrey
embedding theorem, see Remark 3.3.
Other assumptions on the exponents are

g<l+p
914 3.7
p n—1
-1 -1
o<y <Ma=b o, ne=D+p (3.8)
n—p n—p
P
OSr<p+;—1, 3.9
s> —— st (3.10)
qg-1 P

3.2. The statement of the boundedness result

Under the conditions described above the following local boundedness result holds.

Theorem 3.2 (Boundedness result). Let u € Wllo’cq(Q), 1 < g < n, be a weak solution to the elliptic
equation (3.1). If (3.2)—(3.4) and (3.6)—(3.10) hold true, then u is locally bounded. Precisely, for every
open set Q' € Q there exist constants Ry, c > 0 depending on the data n, p,q,1,7Y1, Y2, S1, 52 and on the
norm ||ullwiaqy such that [[ul| =B,z < ¢ for every R < R, with Br,(xo) € €.
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Remark 3.3. We already observed that if g > n then the weak solutions to (3.1) are locally Holder
continuous. Let us now discuss why in (3.6) we do not consider the case p = ¢ = n. If p = g (< n), the
same computations in the proof of Theorem 3.2 work with the set of assumptions (3.8)—(3.10). They
can be written, coherently with the previous ones, as

-1
O<y<p P22 O0<y<p—1 3.11)
p
0<r<p-L, (3.12)
p
5 PP 5> (3.13)

> , .

(pr=pp-1 p=p
Here p* denotes the Sobolev exponent appearing in the Sobolev embedding theorem for functions in
Wir(Q) with Q bounded open set in R”; i.e.,

. {% ifp<n

= 3.14
p any real number > n, if p =n. G149

Following the computations in [40, Theorem 2.1] and [41, Chapter 6] it can be proved that the weak
solutions to (3.1) are quasi-minima of the functional

F(u) := f (lDuV’ + "+ b7+ b ) dx, (3.15)
Q
with 7 := max{ylﬁ, yzpf—i]}. It is known that if

t<p' and b +by ' € L' withd >0 (3.16)

then the gradient of quasi-minima of the functional (3.15) satisfies a higher integrability property; i.e.,
they belong to W!»*¢ for some € > 0.
Under our assumptions, (3.16) is satisfied; indeed, taking into account that we are considering

p =q,by (3.10)

n p

1> p—-1 p-1
and, by (3.13)

Sy > *p > P .

p-p p-1
Analogously, by (3.11),
n—L— < px, Yo—— <@ -1 *p =p.
p-1 pr=1 p=1

In particular, if p = g = n the quasi-minima of (3.15) are in W,"*“(Q) for some € > 0, therefore the

weak solutions to (3.1) are Holder continuous. We refer to [41] Chapter 6 for more details.
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4. Notation and remarks

If p>1anddeN,d > 2, we define

dp.
(pa) :={ a-p

any real number > d,

ifp<d
if p=d.

The Sobolev exponent appearing in the Sobolev embedding theorem for functions in W(Q), p > 1,

with Q bounded open set in R”, is (p,)* and will be denoted, as usual, p*.

Letr € R, t > 0. We define ¢, as follows:

We have, if n > 3,

and, if n = 2, ¢, = 1 for every t.
We notice that, if n > 3,
t ifr>nl

((t*)n—l)* = { n—1

n-2 - n—

and, if n = 2, for every ¢, ((¢.),—1)" stands for any real number greater than 1.

Remark 4.1. Let us consider the exponents p, g satisfying (3.6) and (3.7) in Section 3. We notice that

1 :{17%+1+ﬁ if(]>]+nf;l

' v

(). ifg<i+L.
Due to assumption (3.7), if n = 2, then ( p ) -1

p—q+1

Moreover, if we denote ¢t := (p_’; +1) then, if n > 3,

4 : P
(tn_l)* - p- +1 %fq > 1 + n—1
b ifg< 142,

13

(3]

if instead n = 2 than (#,-;)" is any real number greater than 1.
Let p, g satisfy (3.6) and (3.7). It is easy to prove that
p x

—<q.
p—qg+1 1
In the following it will be useful to introduce the following notation:
3 1 1
p b
(P—q+1 )*
or, more explicitly,

el ifg<1+ -2
y = p ‘ . ] npl
1—;+m 1fq>1+m.
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Remark 4.2. Assume 1 < p < ¢g. Then easy computations give

ys0og< L y-0eq=LL 4.5)
n—1 n-—1

To get the sharp bound for g, we use a result proved in [43], see also [3,4,30,58]. Here we denote
S »(xp) the boundary of the ball B.(xy) in R".

Lemma 4.3. Let n € N, n > 2. Consider B,(xy) ball in R" and u € L'(B,(xy)) and s > 1. For any
0 <p <0 <+, define

I(p,0,u) := inf{f [ullDnl*dx : n e Cé(BU(xo)), 0<n<l,p=1lin Bp(xo)}.
Bn'(x())

Then for every 6 €]0, 1],

- 5 \s
I(p,0,v) < (o —p)s_”% (f (f |v|d7'{”_1) dr) .
P S r(x0)

The following result is the Sobolev inequality on spheres.

Lemmad4.4. Letn e N, n > 3, andy € [1,n — 1[. Then there exists c depending on n and vy such that
for every u € WhP(S 1 (xo), dH" ™)

1 1
. p—1* %
( f || V1) dﬂ"—l) < c( f (IDul” + ul”) dw"—l) .
S1(x0) S1(x0)

Lemma 4.5. Let n = 2. Then there exists ¢ such that for every u € W“'(S (xo), dH") and every r > 1,

(f |u|’d7{l)r < c(f (|Du| + |u|)d7{]).
S1(x0) S 1(x0)

Proof. By the one-dimensional Sobolev inequality

el 2o (s, (o)) < Cllellwracs, xo))-

Then, for every r > 1,

1
_1 4
(f |ul” dH" ) < cllullzscs, oy < cllullwrics, x))-
S 1(x0)
O

We conclude this section, by stating a classical result; see, e.g., [41]. that will be useful to prove
Theorem 3.2.

Lemma 4.6. Let @ > 0 and (J),) a sequence of real positive numbers, such that
Tnet S AT,

with A > Oanc]l/l > 1.
IfJo <A™v A7, then J,, < A-a Jy and limy_e Jj, = 0.
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5. Caccioppoli’s inequality

Under the assumptions in Section 3 we have the following Caccioppoli-type inequality.
Given a measurable function u : Q — R, with Q open set in R”, and fixed xo € R", k € Rand 7 > 0,
we denote the super-level set of u as follows:

Ar(x0) = {x € Br(xo) @ u(x) > k};

usually dropping the dependence on x,. We denote |Ay .| its Lebesgue measure.

Proposition 5.1 (Caccioppoli’s inequality). Let u € WI]O’g(Q) be a weak solution to (3.1). If (3.6)—(3.10)
hold true, then there exists a constant ¢ > 0, such that for any Bg,(xp) € Q, 0<p <R <Ry

f ID(u — k)17 dx < C(n, p. ¢, Ro)(R — p) [ )y
Bﬂ

)4

P
X (e = k)il Ak g7

WLP(Bg)
DT Al DT Al T
+ C”(l/l - )+| Wl,p(BR)| k,Rl P + C”(u - )+| Wl,p(BR)l k,R' r
+1 -2 -z
+ C”(u - k)-*—”z,/;l,p(BR)lAk,Rl P + C”(u - k)+| :/);l,p(BR)lAk,R P

-+ o
+ ck”||(u = k) llwrrsp)lAcrl 7 + ¢ (kq—l + kyz) |Ag gl
-k -t
+ cll = K)illwirplAcrl 2 7 + clAggl @D (5.1)
with v as in (4.4) and c is a constant depending on n, p, q,r, Ry, the L*'-norm of by and the L**-norm of
b2 in BRO-

Proof. Without loss of generality we assume that the functions by, b, in (3.3) are a.e. greater than or
equal to 1 in Q. We split the proof into steps.

Step 1. Consider Bg,(x0)) € Q,0< 2 <p<R<Ry< 1.
We set
Alp,R) := {n € CT(Br(x0)) : 1= 1in By(x), 0 <7< 1}. (5.2)

For every n € A(p, R) and fixed k > 1 we define the test function ¢, as follows

r(x) := (u(x) — k) [n(x0)]*  for a.e. x € Bg,(xo),

with »
= — 53
e (5.3)
that is greater than 1 because g > 1.
Notice that ¢y € W(;’q(BRO(xO)), supp ¢x € Bgr(xp).

Step 2. Let us consider the super-level sets:

Arg = {x € Br(xp) : u(x) > k}.

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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In this step we prove that

f |Du|” dx < c{f |Dn|$(u - k)# dx
A Akr

kp

+ f (=0T + =07 + =k + (- 0)) dx
AkRr

t cf (k”(u SR 4 b — k) + K ke 1 b;’j) a’x} (5.4)

AkR
for some constant ¢ independent of u and 7.

Using ¢y as a test function in (3.5) we get
I := f (a(x,u, Du), Du) " dx
Akr
=-u f (a(x,u, Du), Dpy*~" (u — k) dx (5.5)
AkR

—f b(x,u, Du)(u —k)yn' dx =: I, + Is.

Arr

Now, we separately consider and estimate /;, i = 1,2, 3.

ESTIMATE OF I3
Using (3.4) we obtain

L < Af 7 {|Dul"(u — k) + |u]*(u — k) + by(u — k)} dx.
Akr

We estimate the right-hand side using the Young inequality, with exponents ‘—r’ and p%r, and (3.2).
There exists ¢, depending on A, A, n, p, r, such that

A
ADul"(u = k) < Z1Dul” + e(u - k)rr
1 P
< Z(a(x, u, Du), Du) + c(u — k)r a.e. in {|Du| > 1}. (5.6)
and, recalling that b, > 1,
AlDu| (u — k) < A(u—k) < Aby(u — k) a.e. in {|Du| < 1}.
Therefore,
1
L < - f {a(x,u, Du), Duyn" dx
4 Jaxn(ipul=1y

+ cf 7 {(u = K77 + P> (u = k) + by — b)) dx. (5.7)
AR

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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Collecting (5.5)—(5.7) we get

3
- f (a(x,u, Du), Duyn/ dx < I, — f (a(x, u, Du), Duyn dx
4 Jaxn(iDul=1) Agn{IDul<1)
+c f 7 {(u = )P + P> (u = k) + by(u — b)) dx.
AR

Using (3.2) and (3.3) we get

31

— |DulPnt dx < I, + 2Af (lu”* + b)) dx

4 Jawntipu=1y AgrNIDul<1)

+ cf ! {(u = k)P + [P (u = k) + by(u — b)) dx. (5.8)
AR

EstivaTE oF I,. For a.e. x € Ay g N {n # 0} we have

@, u, Duy, Dl = ™" < A {IDul’™" + " + by} 1Dl = k™. (5.9)

Fora.e. x € {|Du| > 1} N Axr N {n # 0}, by ¢ < p + 1 and the Young inequality with exponents ﬁ
and p+;+1’ and noting that u — 1 = ,u%, we get

DUl Dyl ~ ey

A
< ZIDul"f + c(4, A7 | D 7o (u — k)7t

(5.10)
On the other hand we have
pAIDu|” | Drl(u = Kyt~ < uA|IDnl(u — k)™ (5.11)
a.e. in {|Du| < 1} N Agr N {n # 0}.
Therefore,
A _p _r o
L < - f |DulPnt dx + c(A, A)ur=a+ f |Dn| =1 (u — k)r=+1 dx
4 JarniDuiz1) AcrN{IDul>1}
+ f \Dnl(u — k)" dx + Cf Dyl {[ul” + by} (u — k) dx.
Ak,R Ak,R

By (5.8) and the inequality above, we get

A
4 f |Dul’n dx < (A, A, p, q)f \Dn|7 T (u — k)7t dx
2 Jaggniipuiz1)

AR
+ f Dl =" (ul + by) (u — k) dx
Akr

+cf 7 (= K77 + uP>(u = k) + |l + bau — k) + by) dx.

Akr

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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Taking into account that b; > 1

therefore

and we obtain

We have

f |Dul’n" dx = f |Dul’n* dx + f |Du|’n" dx
Akr A rN{|Dulz1} A rN{|Dul<1}

Sf |Dul’n* dx+f b dx,
A rN{|Dul>1} AkRr

f (|IDul? = b)) dx < f |Du|’nt" dx
AkRr A rN{|Dul>1}

f |Du|” dx < cf |D77|#(u - k)p_i’;. dx
A

App kR

+ f \Dnl*™" (ul” + by) (u — k) dx
Akr

+ cf 7 (=077 + |l (u = &) + |l + by(u — k) + by) dx. (5.12)

Arr

f D™l (e = k) dx < (1) f Dl (u = Y+ dx

Akr Ak’ R

+C(71)f | Dyl k" (u — k) dx.
Akr

By Holder inequality with exponents q%l and —£—, we get

Analogously,

and

p—q+1’°

f Dl (u — kY dx = f Dl = k™ (u — k)" dx

Ak,R A kR

_Pr P pu=1) e
<c |D7]|1Fq+1 (l/l — k)p—tHl dx +c n g1 (l/l — k) I dx.

AkRr AkRr

f | Dyl k" (u — k) dx < cf \Dn| 7 (u — k)7 dx

Ak,R Ak,R
pu=1) pyi
+cf n T ket dx
AkR

f |D77|77M_1b1(u —k)dx < cf |Dq|ﬁ(u - k)# dx

Ak,R Ak,R

pu=b Lo
+cf n et b "dx,
Akr

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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obtaining
f \Dul? dx < c{f \D| 7 (u — k)7 dx
Akp Akr
+f ((u—k)if" s +b;‘)dx
k.R
+ cf (= K77 + [uP>(u = k) + Jul” + bo(u — k) + by) dx.} .
AkRr
Therefore,

I

|Dul? dx < c{f |D;7|p—'ﬁ(u - k),,%;ﬂ dx

kp Akr
+ f (=0T + =07 + =k + - b)) dx
Akr

i cf (k”(u—k)+k” Fbo(u— k) + by + ki +b;7‘) a’x.}.
Akr

Since by > 1 and g < p + 1, then

by + b7 <27,
and we get (5.4).
Step 3. In this step we prove that

P _ |y bmatl

f ID(u — k)| dx < C(n, p,q,Ry)(R — p)_[p{ﬁ1 (p—ZH)}x
BP

)4

— _r
XN =Rl Al

+ Cf ((u R+ =K+ = k)" 4 (- k)Yz) .
Akr

+Cf (kn(u—k) T by(u— k) + kot + k2 +qu1) .
Akr

We obtain this estimate starting by (5.4).
Consider 7 € (p, R) and define the function
§1(0) 3y > w(y) := (u — k)+(xo + 7)

where
$10):=={yeR" : yl =1}
This function w is in Wl’(ﬁ)*(S 1, dH"™1), with

(5.13)

(5.14)
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14

Let us consider the case

By (4.1) in Remark 4.1, we get

! = ! + ! . (5.15)

(L) —L_ " p-1
p—q+1),  p7atl

By (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we get

p=q+1

(f |w|p—’é+1d7{"—1) p
S

) ) (5).
< cn, p,q) ( f (D). + le(vw')*)dﬂ”‘l) . (5.16)
S

When

g<1+ p ,
n—1

we distinguish among two cases: n > 3 and n = 2. If n > 3, by using Holder’s inequality, we get

p=g+l n=2

( f |w|p—5+1dw-1) ' Sc(n,p,q)( f |w|'"fid(H"-1)"_,
S1 S

by (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we obtain the inequality (5.16).

If n = 2, then (p_’; +1)* = 1, then we obtain the inequality (5.16) by applying Lemma 4.5 with
p

p—q+1°

Let A(p, R) be as in (5.2). We apply Lemma 4.3, with

4

Bgr(xg) 3y > v(y) == (u— k)" (),

that is a function in L!(Bg(xp)). Using (5.16) and recalling that % < p < R < Ry, reasoning as in [30],
we get

)4
inf f \Dy| 7 (u — k)7 dix
AR J Br(xo)

P

_[p—lz;-i-l_l p—pﬁ ]
< C(n, p,q,Ro)(R - p) (7). X
P

R »
x( f f (|D(u—k)+(xo+)’)|(m)*
p IS0
os7)

» =il .
= ). (xo + y)|(m)*) dH"\(y) dT) (i), (5.17)

By coarea formula, inequality (5.17) implies

P

inf f \Dn| 7 (u — k)7 dx
Br(x0)

B

< C(n, p,q, Ro)(R - p) (751, )¢

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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X ||(u = k). & (

and, taking into account (3.7), Remark 4.1 and (4.5)

)* (Br(x0)\Bp(x0))

1 1 1
(L) <p&e s—ovs0odaiy ,
p—q+1), (-25). P p n-1
p=q+1 /4

by Holder’s inequality we get

P a
inf f Dyl (4 = )T dx
AP-R) J Br(xp)

bz

I p=q+1
< C(n, p,q,Ro)(R — p) [MH (p—ZH)]X

P
XN K0T, Al

By (5.4) we get

| —2__ P=gq+1
f |Dul” dx < C(n, p,q, Ro)(R — p) [MH (p—ZH)]x

Akp

p
Xl = R0, Al

+ cf ((u R+ = k) = k)" 4 (- k)”’) dx
ArR

+Cf (kﬁ(u—k)+bz(u—k)+k§z§ + k2 +bfT|) dx.
Apr

f ID(u — k)P dx = f ID(u — k),|P dx = f |Du|” dx
B, A A

fe k.p k,p

Since

we get (5.13).

Step 4. In this step we estimate the integrals at the right hand side of (5.13).
Consider

Ji = f (=0T + =077 + (= k" + (- k)™ dx
Akr

ESTIMATE OF J;.
By assumptions (3.8) and (3.9),

max{ el ,v2+ 1, } < p.
q-1 p—r
Therefore, by using Holder inequality with exponent 21— (q D we get

pri
24 " (g1 .
(u— k)" dx < (u—k) dx |Agg| 7@y
AkRr AR

(5.18)
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Holder inequality with exponent p* =~ 1mphes

17*? 1—#
f (u—k)ﬂrdx<(f (u— k)" dx) |Arl 77

. .o . . . p*
Moreover, by using Holder inequality with exponent o1 e get

+1

ya+l
« p* Yo +1
f -k dx < (f (u—k)? dx) |Ak,R|]_?T
AkR AkRr

by using Holder inequality with exponent % we get

o3
(u—k)"dx < ( (u— k)”* dx) |Ak,R|l_%

Akr Ak.R

Therefore, by using the Sobolev embedding theorem

YL 1
« DT

-2 1=
Ji <ll(u - k)+||W1p(B )lAk,Rl 7+ ||(u k)+||W1,,(B )lAk,Rl P

Y2+l -2
{1 = K4l lARRD 7+ 1 = k)7

1-72
wl -P(Bg )lAk,Rl b

Let us consider now the following integral in (5.13):
= f (k”(u R+ bo(u— k) + K 4k 1 b‘) dx.
Agr
Trivially,

_ 1L
f ”(u—kwx<k72||<u—k)+||g,, plAkrl

Arr

1-¢
< k”|(u — k)+||W"p(Ak,R)|Ak,R| r

2 < p*. Therefore, by Holder

By assumption b, € L2, 5, > 2 = . :
y p 2 B 2 P p*_p p«_p p* 1° _1

inequality
f by(u — k) dx < |Iballpsoay ol = K)ll 2
Akr L

1-L- L
< N1ball s Boll( = K llr 4yl Arrl 27

which implies
f ba(u — k) dx < |Iballs2 s ll(u = k)l Arel ™27
AkR

Now, by € L* with 5, > 235 by using Holder inequality with exponent 2= “(‘1 D

P
Ll s s1@h 1-—£—
bili dx < bll d.x |Ak,R| s1(g-1)

AkRr AkRr

Mathematics in Engineering Volume 5, Issue 3, 1-28.
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We obtain

1-L a4l
Ty < KNI = k)llwro s lAcel 77 + (kw + k) |Acal

1-—2
bl aoll @ = K)llwralAcal ™= 7 +|Ib1||Ls1(B JAkgl 1D,

Step S. By Steps 3, 4 we get

f ID(u - k),|” dx < C(n, p, g, Ro)(R — p)_[”‘q“_ ()]x
B,

L _p
X = k)l Al

WP (Br)
o i = =~
+ el = k)l VARl 7D+ (= k>+|;vl,,(3 el 77
y2+1 -2 -2
+ el = k) ARl ™7+ el = R4, o Al

1--L m
+ k(| = k)l s Aal +c(kq—1 +kn)|AkR|
1-—2
+ bzl = Kl el ™= + bl g Ael T

and the inequality (5.1) follows.

6. Proof of the boundedness result

Letu e Wlt’f(Q), 1 < g < n, be weak solution to (3.1). Consider Q" € Q an open set.

I case g > p. Let Bg,(xp) C Q.
For every k > 0

f (u— k)" dx + f |ID(u — k). |” dx
Bg,(x0) B, (x0)

< f (lul - k)iX{xeBRO(xo):\ubk}(x) dx + f |D”|pX{xeBR0(xo):|u|>k}(x) dx
Bg,, (x0)

Bg, (x0)

< [ DUy ()
Bgy, (x0)

rlq
< (f (lu)? + |Du|?) dx) |{x € Bg,(x0) : |ul >k} |!=pla
Bgy (x0)

1-
< lully | Br, (x0)|' 7.

W4(Bg (x0))

In particular, chosen R such that
Prq

|Bry(x0)| < llully 1o,

we get
||(u — k)”W]*”(BRO(xo)) <1 Vk=>=0.

(6.1)

(6.2)
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II case ¢ = p. By a well known result by Giaquinta and Giusti [40], the gradient of the weak solution
satisfies a higher integrability property: its gradient is in LP**(Bg,(xo)), for some & > 0 sufficiently
small. Moreover, u € L” (Bg,(x)); because p = g, we can repeat the above argument with ¢ replaced
by p + € so obtaining (6.1). Ry > 0 depends on the norm ||u||W1,p+a(BRO(xO)). Again, by the Giaquinta and
Giusti result, the norm |[u|| 1.+ By, (xo)) CaN be estimated in terms of the ||u|y1.,q) for Bg,(xp) € Q" € Q.

Finally, we can summarize: in both cases, either if ¢ > p or if ¢ = p, we can choose R, such that
(6.2) holds with Ry > 0 depending on the norm [|ul|y1.4q. We also assume Ry < 1 such that |Bg,| < 1,
O<RX< Ry.

Define the decreasing sequences

R R

B R
pri=5+ oy =50+

1
? .

Fixed a positive constant d > 2, to be chosen later, define the increasing sequence of positive real
numbers (k;,)

1
ky, = d(l —%), h € N.
Define the decreasing sequence (J},),

T = G = k) I

WLP(By, (x0)"
Notice that
R li R(l + 1 X
=R, m — YA
po p—>+00 2 2h 2
d )
kO .= 59 hl_l)lzlookh - d.
Moreover, by (6.2),
d . »
Jy,<Jo= ||(u - §)+||Wl.p(BR(xO)) <L

Let us introduce the following notation:

" P
pp p p=q+l %
T 1= max v+ -1+ —7-,p"¢, (6.3)
P=q+1 /4
. pp’ . o . P .
0.—m1n{—v,p - P — P —v2—-1L,p" —p,
p—q+1 qg-1 p—r
1 , p )
11-—]-1,p" (1 - —— (6.4)
p( Sz) ”( wa-1))
and
1 * * * * 1
o= min{ IS AR S A— (1 - —)} 6.5)
p-gq+l p-q+1 p si(g-1 p 52
where v is defined in (4.4).
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Proposition 6.1 (Estimate of Jj,). Let u € Wllo’g(Q) be a weak solution to (3.1). Assume (3.2)—(3.4)
with the exponents satisfying the inequalities listed in Section 3.1. Then for every h € N

Q)
Jh+1 < C7Jh, (66)
where c is a constant depending on n, p, q,r, Ry, the L*'-norm of b, and the L*>-norm of b, in Bg,.
We precede the proof with the following remark.

Remark 6.2. We remark that, by assumptions (3.6)—(3.10), then 7,6 > 0 and o > 1. As far as these
inequalities are concerned, we remark that

p > p;
v>0 (see (4.5));
1 )2

+
p—qg+1 p—qg+1
that is satisfied, because p < ¢

v>lepv>p-gq

p> ©r<p—£@r<p+£—l;
p—-r D" n

-1 -1

o> Py @yl<p*q @y1<n(q );

qg-1 p n—p

Y2 <p'—-1;

p——p—>1@L<l—£@sl> n
p  si(g-1) si(g—1) p* g-1

that is the first assumption in (3.10); this assumption also implies

14

S1 > >0
qg—1
that is equivalent to
p p
l-——>—>0.
silg—1)  p*

By the second assumption in (3.10),

* * 1
s2>z@s2> *p @p—(l——)>1.
p p—-p 4 52

Proof of Proposition 6.1. By (5.1), used with k = k.1, o = pps1, R = pn, we have

2
_( P _ p=g+1 ]
—q+1
f ID(u = ki) I” dx < C(n, poq, Ro) (on = put) (i) )
Bp/1+1
P

- _r
XN = Kl At 7
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P71
+ cll(u = k)l Wlp(B

+ C”(u kh+1)+||w1 p(B

+1
+cll(u - kh+1)+||¥;1.p(3

- *pn
|Akh+1,R| P*(q-D

1
p=r
P

|Akh+1 Rl

- 1--%
|Akh+] Rl p + C”(u - kh+1)+||wl p(B |Akh+|,R| P

PY1

+ ek e = K llwrogs,, A&l 77 +c (k;;l + kZil) A, &l
p
+cll(u = ki) llwrees,,, Ak, rl'” i clAg,,,&l' 7T (6.7)
Let us write the estimate above as
P—q+ p
f |D(u — kpi 1)+ " dx <c (on — pps1) (=) H,
Bph+l
+c(H,+Hy+ Hy+ Hs+ Hg + Hy + Hg + Hy) . (68)
To estimate the sum at the right-hand side it is useful to remark that, for all 4,
d
and
knyin —kn,<u—k, in Akhﬂ,ph‘
Since .
u— kh P 1
|Aki1.00] Sf (—) dx < lu—-kL",  — ——————,
BN R 0 By ey — )P
by the Sobolev inequality we get
Pt
J P
A < —
il < € PY
that, together with (6.9), gives
- 2]1 p*
|Akh+1»Ph| < c(n, p)-]hp (E) . (6.10)
Moreover,
(R RN S fA (1 — k) dx + fA DG — ko)l dx
Kp+1-h kpy1-on
< f (u—ky)" dx + f |D(u — kp)|P dx
Al Al pp
< J. (6.11)

Inequalities (6.10) and (6.11) imply that

I(ue —

k1) +llwie

Mathematics in Engineering
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By, (x0)) ARl 7

]7(_'7*)

h
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therefore, by (6.9),

1 AN
(et — kh+l)+||W1vP(Bph(xo))|Akh+1,R| " < c(n, p) (g) . (6.12)
This estimate, together with (6.10), implies:
- 2h\P - »
H, < c(n, p,q,y1) (E) |Ak,. &l < c(n, p,q, 71)(3) g, (6.13)
and, analogously,
2\
H; < c(n,p,r) (g) J', (6.14)
oh Pyl
H4 < C(n’p’ )/2) (E) Jhp 5 (615)
B\PTY2
Hs < c(n, p,y2) (g) I, (6.16)

o\~ i oh p(1-4 ) 2(1-L
E) Aty il 5 < cn, p, s) (—) J, ( ‘2), (6.17)

H8 SC(H,P)( d

" p
zh)l’ (1_S1(q71)) rr__p

Hy < c(n,p,q,s1) (E I’ S (6.18)

Moreover, taking into account that

1
k1 = d(l - 2h+2) <d,

AN 2h(p™=1)  p*
2 ) P &
Hg < c(n, p)d” (d) J,) =cn, p)dp*_yz_] J, (6.19)
2hp* 2hp* 2
14
H; < c(d B + dp*—vz)Jh . (6.20)
Let us now estimate H;.
Inequalities (6.10) and (6.11) imply
p—Z+l —L_y
Hl = ||(u - kh+1)+||W1’p(Bp, (XO))lAk]Hl,phlpﬂﬁl
o et

P
h

1
<c(n,p,)J] " G k)"

that gives

h\ p=g+1” 1 + 17*1‘,
H, <c(n,p,q) = Jy e
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Taking into account that for every h

1 R, R 1R,
4 2h+l S Pr = Pret = 22 = 4 oh’

we conclude that

P
P p=g+1

(on _,0h+1)_[pq+l (p-’;n)] H,

pff;ilw(p_zﬂ—n "_p‘”l ]

2" o)) o,

< c(n, p,q,Ro) — Jr e
dp—q+lv

Collecting (6.13)—(6.21), by (6.8) we get

P
" _pr
pp P _ p=q+l1
p—q+l1 v+ p—q+l1 1+ p
(zh) =q+1 ), 1

K
_r
Jp—t1+1 + p—q+1 v

f |D(u — kyi1): P dx < ¢
B

Ph+1 dp—f1+lv
. {(2h)p*—21 (2h)P -5 ( h)P —y2-1 (2h)P -
C — —
d d
2h(p*—1) 2hp p7
+dp*—72—1 - qr - dp*—yz} h

AV G A T m\P"\=5wm)
+c(2—) (-%) S5l "5)+c(%) (-7 1))Jhp e

Let us now add to both sides of (6.22) the integral fB |(u — kpi1)4]P dx.
Ph+1
By Holder inequality

L

f ((u - kh+1)+)p dx < (f ((u - kh+1)+)p* dx) |Akh+lvph+l 1_’%-
B B

Ph+1 Ph+1

Since

B

Ph+1 B

Ph+1

the Sobolev embedding theorem gives

-4
[ @ty < ikl sl F
B,

Ph+1

Taking into account (6.10), we obtain

h\P —P
L L :
|Akh+1»ph+1 | p S |Akh+| ,,Dhl 4 S C(n’ p) (g) Jhp )

f (= kn1)+)" dx < f (= ky))" dx < f ((u = ky)4)"" dx,
By,

(6.21)

(6.22)

(6.23)
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therefore, the inequality (6.23) implies

) 2h p*-p %
=k dx <cup) (<) 7 (6.24)
Bpthl
Inequalities (6.22) and (6.24) give
PRl (il ) et
T A !
AR = BD VAV i = VAN G Ca SO VAV AT
(7 I ) R 7 )
Q=D ohet gt (O\PP)
+dp*—7z—1 * dp*_% * dar— * (E) Ii
o\ 1= ) E(i-L)  (2h r (-5 r__p
+c g Jh +c E Jh . . (6.25)

where c is a constant depending on n, p, g, 1, Ry, the L*'-norm of b, and the L*>-norm of b, in Bg,.
By taking in account the notation in (6.3)—(6.5), we get, by (6.25), the inequality (6.6).

We are now ready to prove our regularity result.
Proof of Theorem 3.2. By Proposition 6.1, for every h € N,

nh
Jhe1 S c 71 b
where c is a constant depending on n, p, g, Ry, the L*'-norm of b, and the L*2-norm of b, in Bg, and for
every d > 2. Thus, the following inequality holds:

Jh1 < Aflh-lllm,

with

_c

= 7

where 6, T and o are defined in (6.4), (6.3), (6.5). We recall that 6,7 > 0, o0 — 1 > 0, see Remark 6.2.
To apply Lemma 4.6, we need

A 1=2" a=0-1,

d 1 b —__T %]
I = )l = Jo S AT = 2 e g, (6.26)

WP (Br(x0))

Since

d
(e 2)+”W"”(BR(xo)) < Notlly

if we choose d > 2 satisfying

A7 = 2 4+ ¢TI 2@ ||u (6.27)

P
WP (Bg(xo))
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p

WLo(B ) and we conclude that
2

we get 0 = hlim Jp = l(u—d).|
—+00

u(x) <d a.e. in Bg(xo).

To prove that u is locally bounded from below, we proceed as follows. The function —u is a weak
solution to

n

Z i51.(36, u, Du) = E(x, u, Du).
i=1 0x;
where
a(x,u,§) = a(x,—u,—¢) and E(x, u, &) := b(x, —u, =&).

Notice that, by (3.2)—(3.4) the following properties hold:

e p—ellipticity condition at infinity:
fora.e. x € Q and forevery u € R,

(a(x,u, ), =& = Agl” V&R > 1,
e g—growth condition:
fora.e. x € Qandevery u € Rand ¢ € R”

e, 1, &) < A"+l + by ()],

e growth condition for the right hand side b (x, u, &):

[bCx, 1, €)1 < AIE + 1l + by(x)} .

To prove the analogue of Proposition 5.1 we now consider the test function
wr(x) = (k — u(x))+[n(x)]* where n is a cut-off function. Let us consider the sub-level sets:

By g :={x € Bg(xp) : u(x) <k}, k € R.

Then we obtain, in place of (5.5),

f (@(x,u, Du), —-Duy ' dx = —u f (@(x, u, Du), Dy~ (k — u) dx

Bir Bir

+ f f(x,u, Du)(k — uyp* dx.
Bir

The proof goes on with no significant changes with respect the previous case, arriving to the conclusion
that there exists &’ such that we obtain that Bg C{u=>d}, and

ulx) >d a.e. in Bg(xo).

Collecting the estimates from below and from above for u, we conclude. m]
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