
Citation: Gelli, M.; Bigazzi, L.; Boni,

E.; Basso, M. Suboptimal Trajectory

Planning Technique in Real UAV

Scenarios with Partial Knowledge of

the Environment. Drones 2024, 8, 211.

https://doi.org/10.3390/

drones8060211

Academic Editor: Abdessattar

Abdelkefi

Received: 30 March 2024

Revised: 12 May 2024

Accepted: 18 May 2024

Published: 21 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Suboptimal Trajectory Planning Technique in Real UAV
Scenarios with Partial Knowledge of the Environment
Matilde Gelli † , Luca Bigazzi † , Enrico Boni * and Michele Basso

Department of Information Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy;
matilde.gelli@unifi.it (M.G.); luca.bigazzi@unifi.it (L.B.); michele.basso@unifi.it (M.B.)
* Correspondence: enrico.boni@unifi.it
† These authors contributed equally to this work.

Abstract: In recent years, the issue of trajectory planning for autonomous unmanned aerial vehi-
cles (UAVs) has received significant attention due to the rising demand for these vehicles across
various applications. Despite advancements, real-time trajectory planning remains computationally
demanding, particularly with the inclusion of 3D localization using computer vision or advanced
sensors. Consequently, much of the existing research focuses on semi-autonomous systems, which
rely on ground assistance through the use of external sensors (motion capture systems) and remote
computing power. This study addresses the challenge by proposing a fully autonomous trajectory
planning solution. By introducing a real-time path planning algorithm based on the minimization of
the snap, the optimal trajectory is dynamically recalculated as needed. Evaluation of the algorithm’s
performance is conducted in an unknown real-world scenario, utilizing both simulations and experi-
mental data. The algorithm was implemented in MATLAB and subsequently translated to C++ for
onboard execution on the drone.

Keywords: trajectory planning; real time; onboard calculation

1. Introduction
Trajectory planning for multicopters has been studied extensively in recent years due

to the increasing demand of drones in many fields, from entertainment and daily life to
sophisticated professional applications [1]. Therefore, it is a very important task to plan
a feasible trajectory along which a drone can fly safely while executing a mission. The
problem of trajectory planning can be stated as an optimization problem whose solution
is a minimum-cost and collision-free path. Common criteria used in the optimization for
this purpose are, for example, the minimization of the whole path length [2], the total
flight time [3], the flight altitude [4], and the snap (fourth derivative of position). This
last approach was first suggested in [5,6] and has become rapidly popular because, by
leveraging the differential flatness of a quadrotor [7], a relatively simple and effective
planning algorithm that can minimize the maximum force required throughout the whole
path is provided.

Path planners can be classified into two main categories in relation to the way the
computations are carried out. In particular, they can be divided into offline and online
algorithms [8]. The offline algorithms plan the trajectory before the takeoff; hence, they
need information about the environment (such as obstacles and fly-zones) in advance [9,10].
Even though they always guarantee a feasible trajectory, these algorithms find a limited
range of application, since they cannot be applied in partially unknown and/or dynamic
environments where moving vehicles or other obstacles can cause a change to the planned
trajectory. On the other hand, online (real-time) algorithms manage to deal with such
types of environments. In fact, by exploiting the incoming information from sensors, they
can adapt the trajectory to changes in the surroundings. Clearly, the computational cost

Drones 2024, 8, 211. https://doi.org/10.3390/drones8060211 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8060211
https://doi.org/10.3390/drones8060211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-8359-0426
https://orcid.org/0000-0001-6733-7167
https://orcid.org/0000-0002-9899-8782
https://orcid.org/0000-0002-1526-7715
https://doi.org/10.3390/drones8060211
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8060211?type=check_update&version=1

Drones 2024, 8, 211 2 of 12

becomes very important for online algorithms, since all the calculations must truly be
completed in real time. For this reason, even though approaches such as the probabilistic
ones and those based on machine learning have been spreading more and more because of
their promising performances in complex environments, the deterministic counterpart is
still the best compromise. In fact, the others are more computational demanding, which
makes them impractical for real-time applications [11]. This aspect is even more important
when considering where these calculations must take place. As a matter of fact, the majority
of the current literature addresses the problem of trajectory planning for semi-autonomous
systems, i.e., all computations are not carried out on the onboard electronics but heavily
exploit external workstations and motion capture systems (mocap) [12–15]. The latter
approach has two main drawbacks: (i) it is not reproducible in an open environment, since
the acquisition relies on a system of cameras and sensors properly set to track the motion;
and (ii) it does not take into account the real computing power available onboard a vehicle,
which is limited. As a result, real-time planners that work fine for mocap systems are
still too demanding for autonomous vehicles in which every computation is accomplished
using the onboard electronics.

In this paper, we aim to provide a real-time planning algorithm that exploits just the
electronics available onboard the drone to compute a feasible trajectory that fulfills all
the constraints. Note that, even though the resulting trajectory is obtained by solving an
optimization problem, it is a nearly optimal path. Having only partial knowledge of the
environment means that the generated trajectory cannot be truly optimal.

The proposed algorithm has a complexity compatible with real-time execution on
embedded boards, and it was first written in the MATLAB environment and then exported
to C++ using the MATLAB Coder toolbox [16]. Flight tests in an unknown environment
were conducted to validate the algorithm. In these tests, the UAV first needed to detect
the targets, which were updated regularly, and then compute a feasible and safe trajectory.
Furthermore, whenever new targets were seen or their positions corrected, a new trajectory
had to be evaluated.

The paper is organized as follows. In Section 2, some details of the hardware platform
are given, along with the mathematical formulation of trajectory generation and constraint
definitions. Section 3 contains the results obtained from the experiments carried out in a
real scenario. These experiments show that the drone can successfully replan the trajectory
several times during the mission. A comparison between the computed trajectory and
the truly optimal one (obtained with a priori knowledge of all the waypoints) is provided.
Finally, in Section 4, a brief recap of the main results and a summary of future developments
are presented.

2. Materials and Methods
2.1. Hardware Platform

All the experiments carried out in this work were performed on the DART plat-
form [17–20] produced by Florence Robotics; see Figure 1. The system consists of a quad-
copter with a multilevel architecture able to process computationally expensive algorithms
on board without the use of mocap techniques. In particular, the architecture is organized
into two levels: (i) a low-level one that consists of the standard electronics available on
a multicopter (flight controller and electronic speed controller); and (ii) a high-level one
that is characterized by the NVIDIA Jetson Xavier NX board on which the embedded
Linux Operating System (OS) runs. The latter is then interfaced via a custom Application
Programming Interface (API) with the low-level electronics.

Thanks to the DART platform APIs, it is possible to receive real-time telemetry from
all sensors on board the drone at a frequency of 200 Hz. Furthermore, it is possible to send
autonomous commands from the high-level system to the flight controller (still with a
frequency of 200 Hz), replacing those normally issued by the pilot during manual flight.

Drones 2024, 8, 211 3 of 12

Figure 1. DART multicopter produced by Florence Robotics [20].

Since all signals passing through the DART platform are managed by specific inter-
mediate hardware, which always ensures the correct fail-safe mode handling, the use of
this drone significantly simplifies the experimentation of new algorithms and software for
autonomous navigation. In fact, in the event of a failure in the software under test, the
intermediate hardware can detect it and return the control to the pilot or, if configured, it
automatically manages the switch between available flight modes on the flight controller,
which may include auto-landing and return to home.

All of this allowed the abstraction of the software implementation of the trajectory
planning. In fact, thanks to this approach, it was possible to test the trajectory planning
algorithm in a more realistic way compared to the usual mocap techniques, which can only
work in controlled environments. Obviously, since the present work is focused on testing a
trajectory optimization algorithm on board an autonomous vehicle in a real scenario, the
DART platform was equipped with an advanced optical sensor to accurately detect the
targets. In particular, the Intel RealSense T265 camera was used for this purpose. This
camera can provide a faithful 3D estimate of position and online speed. In Figure 2b, it is
possible to see it mounted on the DART platform.

(a) (b)
Figure 2. On the left (a) is the Intel RealSense T265 camera that was used in the experiments, while
on the right (b) is the final system with all the sensors on.

Drones 2024, 8, 211 4 of 12

2.2. Scenario
To validate the effectiveness of the trajectory planner, which will be discussed in

detail in Section 2.3, it is crucial to conduct a flight demonstration serving as a practical
assessment for the planner. Specifically, the drone is assigned the task of reaching specific
points within the space. Aruco environmental markers [21–23], in conjunction with the
associated OpenCV libraries, are used for this purpose.

The markers are strategically positioned in the environment, with their locations
intentionally undisclosed to the drone. Leveraging optical flow data from the stereoscopic
camera, the drone must adeptly identify the markers and accurately estimate the 3D
position of each.

At the mission’s initiation, the drone possesses only the identification (ID) codes of
the markers, devoid of any knowledge about their physical locations in the environment.
Therefore, to fulfill the mission objectives, the drone must first locate the markers and then
autonomously generate a trajectory so that it traverses over each marker in the precise
order dictated by the provided sequence of IDs. This emphasizes the drone’s reliance
on its onboard capabilities, particularly in terms of the optical flow processed from the
stereoscopic camera, which is needed for detecting and navigating to each marker without
any external information about the marker positions. An example of a frame obtained
from the on-board optical flow during a test mission is shown in Figure 3. Note that, in
this position, just two waypoints are visible and then are passed together with the drone’s
current position as inputs to the planning module. In fact, the trajectory will be calculated
starting from the drone position.

(a) (b)
Figure 3. On the left (a) is a frame processed on board the drone during the execution of an
autonomous mission necessary for testing the planning algorithm. On the right (b), however, it
is possible to observe an image that shows the trajectory traveled by the drone during one of the
experiments performed.

For the sake of completeness, we report in Figure 4 the block diagram of the embedded
software designed for the execution of the test missions. Within block (a), the module
responsible for estimating the position of Aruco markers is depicted. This module takes the
optical flow data from the stereoscopic camera as its input. Once new markers are detected,
the mission supervisor module (block (b)), housing the optimal trajectory generation
algorithm, is activated, and the desired trajectory is provided as a sequence of points.

Subsequently, the computed trajectory is relayed point by point to the module respon-
sible for implementing the control strategy, block (c). This module also takes as input the
estimated acceleration, speed, and position data from the Intel T265 stereoscopic camera,
which are essential for accurate trajectory tracking.

Drones 2024, 8, 211 5 of 12

Aruco estimation
process Aruco via
OpenCv libraries

Mission Supervisor

Control Strategy

Optical flow Onboard sensors

(a) (b) (c)

Intel t-265 camera

Map Generator

(b1)

Optimal trajectory
generation
algorithm

(b2)

Figure 4. The block diagram representation of the framework developed for testing the trajectory
generation algorithm. In yellow, from left to right, we have the marker position estimation module
(a), followed by the mission supervisor module (b), and finally the module (c) that implements the
control strategy. The mission supervisor module is composed by a Map Generator (b1) and the
Trajectory planning module (b2). The purple blocks represent the onboard sensors.

2.3. Trajectory Generation
Let us state the problem for trajectory planning as follows. Assume we have a set of

waypoints that each defines the desired position in the world frame, where the drone must
be at specific time instants. Having this set, we want to establish the optimal trajectory with
respect to some functional cost, so that all the constraints (such as smoothness and safety
passages) are satisfied. Of course, it is important to guarantee the feasibility of the computed
trajectory. In other words, during the flight, we must ensure that both velocities and
accelerations required for carrying out the mission never exceed the maximum allowable
values. If this happens, then we must relax some constraints (like time allocation with
which the drone must move from a waypoint to the subsequent one) and recompute the
trajectory to have a less aggressive behavior.

In the following, the bold font notation will be used for both vectors and matrices
of matrices.

The position of the quadcopter’s center of mass between one waypoint and the subse-
quent one can be described by three independent N-order polynomials (one for each x(t),
y(t), and z(t)), as follows:

P(t) = p0 + p1t + . . . + pNtN =
N

Â
n=0

pntn. (1)

Therefore, computing an optimal trajectory means finding the optimal coefficients of
these polynomials along the whole path. Consider that here, unlike [6,24], the yaw angle
y(t) is not optimized along with the trajectory. In fact, thanks to the differential flatness
property of a multicopter, it can be demonstrated that, in principle, the vehicle is capable
of following a desired trajectory regardless of the heading angle. Therefore, we prefer to

Drones 2024, 8, 211 6 of 12

compute it afterwards, once the optimal trajectory is available, so that the drone is always
forced to head forward.

Assuming a one-dimensional single-segment trajectory, the objective function is simply

J(T) =
Z T

0
c0P(t)2 + c1P0(t)2 + c2P00(t)2 + · · ·+ cN P(N)(t)2dt, (2)

with T being the flight time, while the weights cr are penalties chosen by the user. However,
Equation (2) can be rewritten in matrix fashion, which is more convenient for implementa-
tion, as

J(T) = pTQ(T)p, (3)

where p is the vector of the N coefficients, and where matrix Q(T) 2 R(N+1)⇥(N+1) (see [24])
is defined as

Q =
N

Â
r=0

crQr for r = 0, 1, . . . , N, i = 0, 1, . . . , N, l = 0, 1, . . . , N (4)

with

Qr(i, l) =

(
’r�1

m=0(i � m)(l � m) Ti+l�2r+1

i+l�2r+1 if i � r ^ l � r
0 if i < r _ l < r.

(5)

As stated previously, penalties cr can be arbitrarily chosen; nevertheless, in [25], it is
proved that the minimization with respect to the snap (P(4)(t)) leads to minor stress on the
rotors. Therefore, in the continuation, we will assume c4 = 1, while all the other weights
will be set to zero.

Given Equations (2)–(5), we can easily extend the problem from the case of a one-
dimensional single-segment to a three-dimensional multi-segment path. In this case, the
joint functional cost becomes

Jjoint(T) =

2

64
p1
...

pM

3

75

T2

64
Q1(T1) 0 0

0
. . . 0

0 0 QM(TM)

3

75

2

64
p1
...

pM

3

75. (6)

In Equation (6), every Ti is the flight time for moving from the i-th waypoint to the
(i + 1)-th waypoint, and p is the vector of the (unknown) coefficients of each polynomial
composing the trajectory, whose structure is as follows:

p =
⇥
[px1, py1, pz1]T , . . . , [pxi, pyi, pzi]T , . . . , [pxM , pyM , pzM]T

⇤T . (7)

Again, the three states x(t), y(t), and z(t) are actually independent, and thus three
independent cost functions can be written and solved separately [6]. However, we prefer to
use a joint cost function since requirements on passages through oriented windows couple
together more state variables [24]. Therefore, the current formulation can be more easily
extended in the future for allowing acrobatic maneuvers.

Given the cost function of Equation (6), the Quadratic Problem (QP) can be finally
formulated as follows:

min
p

Jjoint(T) = pTQp

s.t. Atot p Btot

, (8)

where Atot and Btot are matrices defining the constraint set over the trajectory.
Equation (8) is particularly useful for the implementation, since standard functions

available on MATLAB (such as quadprog) can be used for solving the optimization problem.
Furthermore, since MATLAB 2021, the C++ Coder toolbox allows for the export of C++
code, simplifying notably the work [16].

Drones 2024, 8, 211 7 of 12

Finally, we can address the problem of constraint formulation. They can be sorted into
three categories:
• Position constraints;
• Derivative constraints;
• Corridor constraints.

2.4. Position Constraints
These are imposed at the endpoints of each segment to assure the passage in every

desired waypoint at given time instants. Specifically, given T, position constraints can be
easily written as a matrix in the following way:

Ap = B. (9)

Here, A is a block-diagonal matrix in which every component A(i, i) has been computed
by evaluating Pi(t) at t = 0 and t = Ti, and B is a vector containing the coordinates of each
waypoint.

2.5. Derivative Constraints
Derivative constraints are necessary for defining the dynamics of the drone, for exam-

ple, if the mission is started/finished from rest or not, but also for guaranteeing a smooth
enough trajectory. We define derivative constraints up to the second-order derivative, since
it is a good compromise between accuracy and computation time for our purposes. In fact,
higher-order derivative constraints improve the smoothness, but the computation time
for solving the optimization problem increases, and hence it is not suitable for real-time
applications.

If velocities and accelerations are known at every endpoint, these constraints can then
be written similarly to Equation (9), with appropriate substitution in A and B.

In our application, we assume that just the derivatives of the first and last detected
waypoints were known, while the others were left free. However, some continuity con-
straints over those halfway points have to be imposed to guarantee a smooth trajectory.
This problem can be overcome by requiring that the derivatives at the end of the i-th
segment match the derivatives at the beginning of the (i + 1)-th segment, i.e.,:

ATi ,i pi � A0,i+1 pi+1 = 0, (10)

which can be stored as a matrix as follows:

2

6664

AT1,1 �A0,2 0 . . . 0 0
0 AT2,2 �A0,3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ATM ,M�1 �A0,M

3

7775

| {z }
AHW

2

666664

p1
p2
...

pM�1
pM

3

777775
=

2

666664

0
0
...
0
0

3

777775

|{z}
BHW

. (11)

2.6. Corridor Constraints
Corridor constraints were first introduced in [6] because, sometimes, especially in

indoor environments, the available space for a drone’s maneuvers is very tight. In these
situations, additional constraints are needed for avoiding possible collisions with the
surroundings. Let ui be the unit vector along the direction of the i-th segment and
r = [x(t), y(t), z(t)]T be the position of the drone center of mass expressed in the world
frame. The perpendicular distance vector di(t) from segment i is therefore

di(t) = (r(t)� ri)� ((r(t)� ri) · ui)ui. (12)

Drones 2024, 8, 211 8 of 12

A corridor constraint on segment i can be translated as requiring that di(t) does not exceed
a maximum value di, i.e.,:

kdi(t)k• di with t 2 [0, Ti]. (13)

Then, Equation (13) must be rearranged in a matrix structure to be inserted in the QP,
Equation (8). By introducing nc additional intermediate points and projecting vector di(t)
on the three-world axis xW , yW , and zW , Equation (13) becomes

����xW · di

✓
k

1 + nc
Ti

◆���� di for k = 1, . . . , nc. (14)

Equivalent expressions can be derived for yW and zW as well. Finally, Equation (14) can be
split into two linear constraints by removing the absolute value. This last step yields an
equation that can be finally added as a constraint in the original problem.

2.7. Time Allocation
The reader should have noticed that, in the formulation of the optimization problem

described by Equation (8), both the cost function and the constraints depend explicitly on
vector T . Hence, T must be fixed prior to the optimization.

A common approach is to use the steepest descent method, which allows for smart
allocation of the times for every segment [5,24]. Concerning our algorithm, we proceeded
differently, since the steepest descent method remarkably increases the computation time.
The algorithm that we derived simply checks that, for every segment, both velocity and
acceleration are kept within the desired ranges for each component. In the eventuality
that the requirements are not satisfied, a new augmented time is imposed over just those
segments violating the constraints. Then, a new optimal trajectory using Equation (8) is
computed. Therefore, our method does not aim to find an optimal time allocation; rather, it
finds the first feasible configuration. It is also clear that the speed with which the algorithm
converges to a feasible solution depends on how much each violating segment time is
increased. However, this approach guarantees that it always converges to a solution, since
all maneuvers are possible for a long enough travel time. Concerning the experimental
results and our bounds—vmax = 0.35 m/s and amax = 2.5 m/s2—an increase of +0.5 s is
enough for converging to a solution within 10 iterations.

2.8. Experimental Setup
Our experiments have been conducted in an indoor environment where we defined

two different possible scenarios: (i) a known environment with a priori knowledge of the
mission, and (ii) an unknown environment where the location of each marker must be
uncovered on the go. The former scenario is less interesting from a practical point of view,
since it does not reflect the common conditions in which a UAV must work. On the contrary,
the latter requires efficient algorithms so that a trajectory can be computed in real time
using the current available information. Therefore, the last scenario is important for testing
the goodness of our proposed algorithm, while those tests in a known environment are
relevant just for comparing the discrepancies between the predicted trajectories in the two
scenarios. In the following, we refer to the known environment as the “one-step” approach,
since all the computations are done altogether, while with “iterative”, we refer to the second
scenario, in which the trajectory is iteratively computed as new data become available.

Before moving to the next section, we would like to give further details about the
experimental setup and implementation for the iterative approach. At every iteration,
module (a) in Figure 4 outputs a vector containing the coordinates of those markers
detected in the current frame. The dimension of this vector is dynamic since the number
of markers seen may differ from frame to frame. The vector is then fed to the Mission
Supervisor, module (b), in which a refinement of the markers’ locations and trajectory
planning are carried out. Specifically, whenever a new coordinate vector is provided by

Drones 2024, 8, 211 9 of 12

(a), the Map Generator (b1) checks whether those coordinates refer to new markers or not.
If a new marker is seen, then it is saved and added to the map (memory); otherwise, the
Map Generator decides whether to update the marker’s estimated position or not given
the following Equation (15):

dl =
��p̂c,l � p̂o,l

�� < hl , (15)

where dl represents the difference between the current p̂c,l and the old p̂o,l estimated
position vectors of marker l, respectively. Therefore, the position of marker l in the map is
updated if and only if dl hl , with hl defined by the user. This logic has been implemented
to avoid excessive calls to the trajectory planning algorithm (b2). In fact, every time new
estimated positions are available, the trajectory must be recomputed, but this requires a lot
of computational effort.

Finally, we would like to make the readers aware that our markers have to be imagined
at the center of gates, and the drone must cross these passages as perpendicular as possible
for safety reasons. Hence, in addition to corridor constraints, for every detected marker,
two additional points are generated along the perpendicular line of the gate plane, one
before and the other after the passage; see Figure 5. Therefore, the actual waypoints with
which the new trajectory is computed are the last point of the current trajectory and the
pair of additional points for each detected marker.

Figure 5. Ideally, the markers represent the center of gate passages through which the drone must fly.
For each marker, two additional points are generated along the line perpendicular to the gate plane.

3. Results & Discussion
In this section, we report the outcomes of the tests that we performed to validate

our algorithm. In particular, as mentioned previously, we give more emphasis on those
experiments done over an unknown environment; at first, the drone is not aware of the
position of the markers, and therefore it needs to detect them during the flight. After
comprehending the designated positions and establishing the map, the drone ideally
possesses the ability to execute the mission seamlessly, obviating the necessity for trajectory
recalculations. In Figure 6a, we report an example of such an estimation process. The reader
can note two clusters of waypoints (red and green crosses) representing the consecutive
estimated positions of points WP1 and WP2, respectively. For each new estimate, the
Map Generator (b1) evaluates Equation (15) and updates the map if needed until the last
iteration. Then, the ultimate corrected estimates are kept and sent to the planning module
(b2), and a trajectory is computed so that it interpolates all those points. For the sake of
clarity, in Figure 6b, we show the computed trajectory using our iterative algorithm (blue
line), where the path planning module was recalled whenever new markers were available

Drones 2024, 8, 211 10 of 12

and/or when Equation (15) was violated. This trajectory differs enough from the one-step
path (red line) where markers are fed altogether to the planning module.

The one-step path is the real optimal trajectory, since it is evaluated by optimizing the
whole mission. However, in a real scenario, such a trajectory could not be computed, since
it requires perfect knowledge about markers at zero time. Instead, the iterative approach
takes care of just the current information provided. Hence, the drone iteratively updates
the trajectory with its available information and its current state, resulting in an optimal
trajectory with respect to the actual scenario; however, it is suboptimal compared to the
red line.

(a) (b)
Figure 6. In (a), we zoom in on an example of a cluster of estimated waypoints. Among all of them,
just the last are kept and sent to the path planning module. In (b), a comparison between the trajectory
generated using our iterative algorithm (blue line) and the traditional way of proceeding (red line)
is shown.

To further validate our algorithm, we conducted additional flight tests. For example, in
some missions, we required the drone to fly twice around the desired sequence of markers.
Again, in the first lap, the drone is not aware of the surrounding environment, hence it must
detect the markers and create the trajectory. Then, during the second lap, having already
produced a map of the environment, the drone does not need to recompute a trajectory
(unless deep changes in the positions of the markers are observed); therefore, it repeats the
same path as before. An example of such a flight test is shown in Figure 7, where the top
view of the desired and real trajectories are reported. The desired trajectory (dashed line) is
computed on board by the path planning module during the first lap. However, for this
specific test, it is recomputed again in the second lap, since the new waypoint positions
differ from the old ones by an amount more than h. Instead, the continuous line represents
the real trajectory performed by the drone, which is slightly different from the set point
due to the control error.

Figure 7. Top view of the x–z plane of the desired (dashed line) and actual (continuous) trajectories.
Furthermore, the red x’s identify the waypoints preceding a marker, while the green x’s identify the
subsequent waypoints.

Drones 2024, 8, 211 11 of 12

4. Conclusions
In this paper, we implemented a real-time trajectory planning algorithm for an au-

tonomous drone with the peculiarity that all the computations are carried out by exploiting
the on-board sensors and computing resources. In particular, the suggested algorithm can
find a trajectory that is optimal and feasible (with respect to the physical limits of the drone),
but it can also replan a path whenever new incoming information becomes available.

To validate the efficiency of our algorithm, tests were conducted in an unknown
environment with the positions of the targets not known a priori. Given this context, the
drone had to detect the markers on the go and compute a desired trajectory solely based
on the available data. Then, whenever new waypoints were discovered or updated, a
replanning step was needed.

Those tests proved the readiness of the algorithm, since the drone was always able to
recompute an optimal path in real time without stopping. Clearly, the computed trajectory
appears to be optimal with respect to the current available information, but it is suboptimal
compared to the one that would have been computed assuming a priori knowledge of
the targets.

In the present work, we tackled just the trajectory planning task, but in the future, we
aim to join this algorithm with some obstacle avoidance techniques that are essential when
addressing trajectory planning problems in a dynamic environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones8060211/s1.

Author Contributions: Conceptualization, M.G., L.B. and E.B.; Methodology, M.G.; Software, L.B.;
Formal analysis, M.G.; Investigation, M.G., L.B. and E.B.; Writing—original draft, M.G.; Writing—
review and editing, M.G., L.B., E.B. and M.B.; Visualization, M.B.; Supervision, E.B. and M.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the Supplementary
Material of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raivi, A.M.; Huda, S.M.A.; Alam, M.M.; Moh, S. Drone Routing for Drone-Based Delivery Systems: A Review of Trajectory

Planning, Charging, and Security. Sensors 2023, 23, 1463. [CrossRef] [PubMed]
2. Flores-Caballero, G.; Rodríguez-Molina, A.; Aldape-Pérez, M.; Villarreal-Cervantes, M.G. Optimized Path-Planning in Continuous

Spaces for Unmanned Aerial Vehicles Using Meta-Heuristics. IEEE Access 2020, 8, 176774–176788. [CrossRef]
3. Morbidi, F.; Cano, R.; Lara Alabazares, D. Minimum-energy path generation for a quadrotor UAV. In Proceedings of the 2016 IEEE

International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1492–1498. [CrossRef]
4. Zhang, X.; Duan, H. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning.

Appl. Soft Comput. 2015, 26, 270–284. [CrossRef]
5. Bry, A.; Richter, C.; Bachrach, A.; Roy, N. Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments.

Int. J. Robot. Res. 2015, 34, 969–1002. [CrossRef]
6. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE

International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [CrossRef]
7. Nieuwstadt, M.J.V.; Murray, R.M. Real-time trajectory generation for differentially flat systems. Int. J. Robust Nonlinear Control

1998, 53, 9405–9411. [CrossRef]
8. Gugan, G.; Haque, A. Path Planning for Autonomous Drones: Challenges and Future Directions. Drones 2023, 7, 169. [CrossRef]
9. Ubbink, J.B.; Engelbrecht, J.A.A. Sequence-Constrained Trajectory Planning and Execution for a Quadrotor UAV with Suspended

Payload. IFAC-PapersOnLine 2020, 53, 9405–9411. [CrossRef]
10. Chen, P.; Jiang, Y.; Dang, Y.; Yu, T.; Liang, R. Real-Time Efficient Trajectory Planning for Quadrotor Based on Hard Constraints. J.

Intell. Robot. Syst. 2022, 105, 52. [CrossRef]
11. Singh, R.; Ren, J.; Lin, X. A Review of Deep Reinforcement Learning Algorithms for Mobile Robot Path Planning. Vehicles 2023,

5, 1423–1451. [CrossRef]
12. Foehn, P.; Romero, A.; Scaramuzza, D. Time-optimal planning for quadrotor waypoint flight. Sci. Robot. 2021, 6, eabh1221.

[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/drones8060211/s1
https://www.mdpi.com/article/10.3390/drones8060211/s1
http://doi.org/10.3390/s23031463
http://www.ncbi.nlm.nih.gov/pubmed/36772502
http://dx.doi.org/10.1109/ACCESS.2020.3026666
http://dx.doi.org/10.1109/ICRA.2016.7487285
http://dx.doi.org/10.1016/j.asoc.2014.09.046
http://dx.doi.org/10.1177/0278364914558129
http://dx.doi.org/10.1109/ICRA.2011.5980409
http://dx.doi.org/10.1002/(SICI)1099-1239(199809)8:11%3C995::AID-RNC373%3E3.0.CO;2-W
http://dx.doi.org/10.3390/drones7030169
http://dx.doi.org/10.1016/j.ifacol.2020.12.2410
http://dx.doi.org/10.1007/s10846-022-01662-9
http://dx.doi.org/10.3390/vehicles5040078
http://dx.doi.org/10.1126/scirobotics.abh1221
http://www.ncbi.nlm.nih.gov/pubmed/34290102

Drones 2024, 8, 211 12 of 12

13. Romero, A.; Sun, S.; Foehn, P.; Scaramuzza, D. Model Predictive Contouring Control for Time-Optimal Quadrotor Flight. IEEE
Trans. Robot. 2022, 38, 3340–3356. [CrossRef]

14. Zimmermann, M.; Vu, M.N.; Beck, F.; Nguyen, A.; Kugi, A. Two-Step Online Trajectory Planning of a Quadcopter in Indoor
Environments with Obstacles. arXiv 2023, arXiv:2211.06377.

15. Sabetghadam, B.; Alcántara, A.; Capitan, J.; Cunha, R.; Ollero, A.; Pascoal, A. Optimal Trajectory Planning for Autonomous
Drone Cinematography. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic,
4–6 September 2019; pp. 1–7. [CrossRef]

16. MATLAB Coder. Available online: https://www.mathworks.com/help/coder/ (accessed on 10 May 2024).
17. Basso, M.; Bigazzi, L.; Innocenti, G. DART Project: A High Precision UAV Prototype Exploiting On-board Visual Sensing. In

Proceedings of the ICAS 2019: Fifteenth International Conference on Autonomic and Autonomous Systems, Athens, Greece, 2–6
June 2019; pp. 27–31.

18. Bigazzi, L.; Gherardini, S.; Innocenti, G.; Basso, M. Development of non expensive technologies for precise maneuvering of
completely autonomous unmanned aerial vehicles. Sensors 2021, 21, 391. [CrossRef] [PubMed]

19. Bigazzi, L.; Basso, M.; Boni, E.; Innocenti, G.; Pieraccini, M. A Multilevel Architecture for Autonomous UAVs. Drones 2021, 5, 55.
[CrossRef]

20. Florence Robotics. Available online: https://www.florence-robotics.com/ (accessed on 10 May 2024).
21. Kalaitzakis, M.; Cain, B.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Fiducial Markers for Pose Estimation. Overview,

Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. J. Intell. Robot. Syst. 2021, 101, 71.
[CrossRef]

22. Sani, M.F.; Karimian, G. Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker and inertial
sensors. In Proceedings of the 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia,
9–11 November 2017.

23. Khazetdinov, A.; Zakiev, A.; Tsoy, T.; Svinin, M.; Magid, E. Embedded ArUco: A novel approach for high precision UAV landing.
In Proceedings of the 2021 International Siberian Conference on Control and Communications (SIBCON), Kazan, Russia, 13–15
May 2021.

24. Liu, T.L.; Subbarao, K. Optimal Aggressive Constrained Trajectory Synthesis and Control for Multi-Copters. Aerospace 2022, 9,
281. [CrossRef]

25. Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In
Robotics Research, Proceedings of the 16th International Symposium ISRR, Singapore, 16–19 December 2013; Springer: Cham, Switzerland,
2016; pp. 649–666.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TRO.2022.3173711
http://dx.doi.org/10.1109/ECMR.2019.8870950
https://www.mathworks.com/help/coder/
http://dx.doi.org/10.3390/s21020391
http://www.ncbi.nlm.nih.gov/pubmed/33429920
http://dx.doi.org/10.3390/drones5030055
https://www.florence-robotics.com/
http://dx.doi.org/10.1007/s10846-020-01307-9
http://dx.doi.org/10.3390/aerospace9060281

	Introduction
	Materials and Methods
	Hardware Platform
	Scenario
	Trajectory Generation
	Position Constraints
	Derivative Constraints
	Corridor Constraints
	Time Allocation
	Experimental Setup

	Results & Discussion
	Conclusions
	References

