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Machine Learning based Noise Characterization and
Correction on Neutral Atoms NISQ Devices

Ettore Canonici, Stefano Martina, Riccardo Mengoni, Daniele Ottaviani,
and Filippo Caruso*

Neutral atoms devices represent a promising technology using optical
tweezers to geometrically arrange atoms and modulated laser pulses to
control their quantum states. They are exploited as noisy intermediate-scale
quantum (NISQ) processors. Indeed, like all real quantum devices, they are
affected by noise introducing errors in the computation. Therefore, it is
important to understand and characterize the noise sources and possibly to
correct them. Here, two machine-learning based approaches are proposed
respectively to estimate the noise parameters and to mitigate their effects
using only measurements of the final quantum state. Our analysis is then
tested on a real neutral atom platform, comparing our predictions with a
priori estimated parameters. It turns out that increasing the number of atoms
is less effective than using more measurements on a smaller scale. The
agreement is not always good but this may be due to the limited amount of
real data that are obtained from a still under development device. Finally,
reinforcement learning is employed to design a pulse that mitigates the noise
effects. Our machine learning-based approach is espected to be very useful
for the noise benchmarking of NISQ processors and, more in general, of real
quantum technologies.
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1. Introduction

In the last few years, we are witnessing
a revolution in the field of quantum com-
puting. The so called Noisy Intermediate
Scale Quantum (NISQ) devices[1] represent
the state of the art in this field. The inter-
mediate scale of such devices refers to the
fact that, at the best of our technologies,
we are still capable of dealing with at most
few hundreds of qubits. Several error cor-
rection codes have been developed to deal
with such noise,[2–4] but they require the
adoption of auxiliary qubits further decreas-
ing the resources available for the computa-
tion. Pasqal[5] has developed a NISQ device
called Fresnel based on a neutral atom quan-
tum processor capable of using up to 100
qubits,[6] and they provide a Python library
called Pulser[7] that can be used to prepare a
setting either to run it on the real machines
or to simulate it on a built-in simulator.
Machine Learning (ML) is a field in the

context of Artificial Intelligence (AI) that
deals with the study and realization of

models that learn to make predictions after being trained with
data.[8,9] Artificial Neural Networks (ANNs) are ML methods or-
ganized in layers of artificial neurons that performs calculations
with weighted summations of the inputs followed by non-linear
activation functions. ML methods has already been developed
in the context of quantum noise characterization,[10–13] and they
have already been adopted in the context of error estimation.
In [14], the authors train a recurrent neural network to detect if
certain errors happened in a quantum circuit, and they use the
model to enhance a surface error correction code. Surface error
correction codes allows an high error tolerance, however to be
implemented they need an high number of physical qubits.[15]

By contrast, in our proposed approach for noise mitigation, no
additional qubits are needed for error detection. In fact, our pur-
pose is to learn how to modify the pulses in such a way as to
minimize the effect of noise without implementing error correc-
tion codes. Moreover, we estimate the noise in devices with the
analog interface and not with the digital one. In fact, with neutral
atoms devices it is possible to take advantage of analog and dig-
ital modes. With the former, laser pulses can be used to directly
manipulate the Hamiltonian of the system:
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With the digital mode, on the other hand, it is possible to evolve
the state of the system through quantum gates thus creating
quantum circuits. In [16], the authors consider the noise to have
the form of a Pauli channel, and they make the assumption that
the error rate is modeled with a Gibbs Random Field (GRF).
Those assumptions allows the authors to effectively learn the pa-
rameters of the GRF to characterize the noise of a real IBMNISQ
device. As discussed below, in our work we use a different noise
formalization, in fact we resort on how the noise is implemented
in the Pasqal simulator that we use to generate the data to train
the deep learning model.
Reinforcement Learning (RL) is a ML methodology that re-

quires the presence of a simulator of an environment where an
agent operates.[17] The agent is usually implemented as a neu-
ral network that is trained to implement the policy that governs
the actions of the agent. Initially, for each episode (the elemen-
tary phase of each Reinforcement Learning (RL) algorithm that
is repeated over time and that is constituted of a series of ac-
tions of the agent and reactions of the environment), the agent
and the environment are initialized in some initial state. Then,
the agent perceive some information about the environment and,
based on that, the policy follows a probability distribution of the
possible next actions that the agent can perform to change the
state of the environment or the state of the agent within the en-
vironment. The episode continue with the choosing of the best
action according to the policy, and new steps will follow for a pre-
defined number of steps or until some episode-ending condition.
RL have been already used in the context of state preparation and
circuit optimization.[18–20] In the context of noise correction, RL
have been adopted to correct the noise that degrades a state over
time[21] or to optimize existing quantum correction codes.[22] In
our work, we instead focus on the task to correct the effects of
the noise of a defined quantum dynamics without modifying the
base pulse.

2. Noise Benchmarking Protocol

The computation on neutral atom Quantum Processing Units
(QPUs) is structured in cycles of three phases: i) the preparation
of the atoms register, ii) the quantum processing that modifies
the state of the atoms and iii) the register readout that is the
measurement process. In particular, on neutral atoms devices,
the preparation of the register is obtained using arrays of optical
tweezers.[23] This provides the user great freedom in the choice of
geometry of the quantum register. Specifically, the register is ini-
tialized with atoms in random positions and afterward, the sin-
gle atoms are moved in the desired positions with the help of
highly focused laser beams. The quantum computation is per-
formed analogically using laser pulses that interact with the reg-
ister atoms. The irradiation of the atoms can induce the excite-
ment from the ground state to the Rydberg state. The laser pulses
are characterized by the values and shapes of the Rabi frequency
Ω(t) and detuning 𝛿(t), and also by the duration of the pulse 𝜏

such that t ∈ [0, 𝜏].
Finally, the register readout is performed by taking a fluores-

cence image of the atomic register.
In such process the atoms in the ground state appear bright,

while the others appear dark. At the end, an atom that is in the
ground state is measured zero, while the Rydberg state is consid-

Table 1. Summary of the main noise parameters with their respective val-
ues. We considered the parameters that are expected to have a predomi-
nant effect.

Description Parameter Value

Laser Intensity fluctuation 𝜎R 3%

Laser waist w 68𝜇m

Temperature T 30𝜇K

False positive measurement 𝜀 3%

False negative measurement 𝜀′ 8%

ered one. In Pasqal NISQ devices, it is possible to prepare regis-
ters of maximum 100 atoms with a minimum distance of 4𝜇m
between them arranged in bidimensional structures in an area
of maximum radius 50𝜇m.
NISQ devices, as the name suggests, are affected by several

noise effects that limit their applicability and the operations that
can be reliably executed on them.
All the technology involved in the realization of a quantum

computer is not ideal. It unavoidably introduces noise which, in
turn, can be responsible for errors in computation. First of all,
lasers are not exactly monochromatic, so the frequency of a pulse
may not be exactly the desired one. In addition, atoms at the edges
of the quantum register may feel a slightly lower frequency than
those in the center. Furthermore, atoms in the quantum register
are cooled to very low temperatures, but still not zero. This can be
the cause of accidental excitations. The overall effect of the afore-
mentioned problems is to introduce errors into the preparation
of the quantum system and its manipulation. At the end, the ob-
tained final state is different from the theoretically expected. In
general, there are different parameters that can be used to in-
dicate different sources of noise in the device.[24] In the present
work, we will focus on five parameters that are considered pre-
dominant for their effects: the laser intensity fluctuation 𝜎R indi-
cates the standard deviation of the fluctuation of the desired Rabi
frequency of the laser pulse; the laser waist w is the diameter of
the Gaussian laser beam; the false positive measurements 𝜀 rep-
resents the probability of wrongly measure as excited an atom
that was in the ground state; false negative measurements 𝜀′ is
the probability of measuring an excited atom in ground state.
Table 1 shows those sources of noise and their estimated values
provided informally by Pasqal.
The objective of our work is the implementation of ML mod-

els to: i) provide a quantitative estimate of the noise parameters
and ii) mitigate the effects of the noise. We decide to formulate a
supervised regression task to quantitatively estimate the noise[16]

and to use a Reinforcement Learning (RL) framework[17] to mit-
igate the noise effect. Regarding the noise characterization, our
aim is to show that it is possible to estimate the noise parame-
ters in the form of mean values and error intervals. As depicted
in Figure 1, the workflow begins with the simulation of various
executions, with different noise parameters, of a quantum dy-
namic where a global pulse irradiates all the n atoms of a reg-
ister. Afterward, the atoms occupation probabilities, that we call
 = 1,… ,2n , are collected and used to train ANN models to
predict the noise parameters that were used to perturb the dy-
namics: temperature, laser waist, false positive measurement rate
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Figure 1. Scheme of the noise estimation pipeline. A global pulse is defined by the shapes of Rabi frequencyΩ and detuning 𝛿 (a). A register is prepared
with the positions of a set of n atoms (six in the specific case) that are irradiated by the laser pulse (b). When the pulse ends, the excitation states of the
atoms are measured, and the process is repeated to gather statistics on the occupation probabilities  = 1,… ,2n (c). The probabilities are used as
input to an Artificial Neural Network (ANN) that predicts the noise parameters (d). The ANN is trained collecting a simulated dataset of probabilities
labeled with the corresponding values of noise. The depicted setting is for the more general multiple parameters estimation. The differences for the
single parameter estimation are that the neural network have only one output for 𝜎R and that the adopted pulses and atoms registers are different.

𝜀, false negative measurement rate 𝜀′, and intensity fluctuation
𝜎R. At the end, the trained models are used on prediction with
the real data to obtain an estimation of the noise parameters. For
the the simulations used in the generation of the data, and for
the training of the models, we use our servers with Nvidia TI-
TANRTX and GeForce RTX 3090 GPUs. Moreover, we could also
make use of the CINECA Marconi100 supercomputer.
The rest of the paper is structured as in the following. First,

in Section 3.1 we consider the simpler problem of characterizing
only a single noise parameter, then in Section 3.2 we show the
results of the characterization of all the aforementioned param-
eters. Finally, in Section 4 we illustrate the RL error correction
protocol that we adopt.

3. Results and Discussion

3.1. Single Parameter Noise Characterization

In this section, we consider the estimation of a single noise pa-
rameter. After preliminary analysis, we decide to focus on the
noise effects that comes from the laser intensity fluctuations 𝜎R.
In order to perform such characterization, we consider registers
with a number of qubits from 2 to 5. We denote by si the sys-
tem composed of i qubits. In addition, we consider six differ-
ent topologies with four qubits, and we use for those an extra

alphanumeric index from a to f . Specifically, the set of the possi-
ble registers is: s2, s3, s4a, s4b,… , s4f , s5.
Globally, we collected themeasurements of nine different runs

on the real Pasqal NISQ device (six different topologies with four
atoms and single topologies with 2,3, and 5 atoms). Each run is
characterized by a pulse of duration 𝜏 = 660 nswith constant Rabi
frequency Ω(t) = 2 𝜋 rad∕𝜇s and null detuning 𝛿(t) = 0, for t ∈
[0, 𝜏], but with different number and positions of the atoms.
In order to train the ML models to predict the values of 𝜎R,

we proceed by simulating the datasets. Each of the nine datasets
(one for each quantum register) is obtained by noisy simulations.
However, in order to combine the analyses of the simulations of
the nine quantum registers with each other, we need tomake sure
that the noise (i.e., the value of 𝜎R) used to run the simulations is
the same for each register. For this reason, before simulating, we
sample a set of 10 000 values of 𝜎R from a uniform distribution
 (0, 0.15). These values will be used to run 10 000 simulations
for each quantum register. Therefore, in the end the dataset will
consist, for each quantum register, of 10 000 pairs of occupation
probability and value of 𝜎R used for the simulation.
We use occupation probabilities as input to themodels that are

trained to predict ground truth 𝜎R.
The occupation probabilities, associated with the correspond-

ing values of 𝜎R, are used to evaluate two different scalings tak-
ing advantage of the nine systems: (i) in the quantum register
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Figure 2. Scaling of single measurement for systems with an increasing number of atoms (the two left plots denoted by (a)) , and scaling in the
number of measurements for systems with four atoms (the two right plots denoted by (b)). We report the average of either the absolute (top plots)
and relative (bottom plots) errors with the correspondent standard deviations for 20 linear regression (in black and green) and 20 ANN (in blue
and red) models in the predictions of 𝜎R on the synthetic validation set. The models in (a) uses as input the measurements of s2, s3, s4a and s5.
The models in (b) uses as input one or more concatenated measurements of runs of the settings with four atoms (the fourth pair of points in
(a) is equal to the first pair in (b)). Indicating with ⋅⊕ ⋅ the concatenation of the measurements of the settings, we report in (b) in black and blue
s4a, s4a ⊕ s4c, s4a ⊕ s4c ⊕ s4d, s4a ⊕ s4c ⊕ s4d ⊕ s4e, s4a ⊕ s4c ⊕ s4d ⊕ s4e ⊕ s4f and in green and red s4a ⊕ s4b.

size comparing increasingly larger systems of 2,3,4 and 5 qubits
and (ii) in the number ofmeasurements ofmultiple systemswith
four qubits. In the second scaling, the occupation probabilities of
all the systems, simulated with the same values of 𝜎R, contributes
to gather information on the noise effects during the training of
the ML models. In detail, we decide to use as input to the ML
models the concatenation of the probabilities of the systems and,
for two systems sA and sB, we indicate the latter with the notation
sA ⊕ sB = 1,A,… ,2n,A,1,B,… ,2n,B. In both scaling, the pro-
cedure is always the same: 20 models are trained on each dataset
through a 20 fold cross-validation. From the 20 predicted param-
eter values, the average value and the standard deviation can be
calculated to include the variability of the models’ predictions.
Both analyses are performed with linear regression as baseline
model and with ANNs. Regarding ANNs, they are trained for 150
epochs with the Adam optimizer. For a more in-depth discussion
of the technical details related to model design and the choice of
hyperparameters, refer to Section 6.1.
In the following, the ML models are trained and validated on

the simulated data, and subsequently they are also tested on the
realmeasurements. Using the simulated validation data, it is pos-

sible to monitor how the model is capable of generalization to
unseen measurements. In this regard, we report in Figure 2 the
Mean Absolute Error (MAE) and Mean Relative Error (MRE) (re-
spectively the two top and the two bottom plots) for the scaling
(i) on the two left plots Figure 2a and (ii) on the two right plots
Figure 2b. The errors are calculated comparing the predicted val-
ues of 𝜎R with the ground truth that, we recall, is the value of 𝜎R
used to perform the simulation. Overall, we average the errors for
all the samples of the validation set. Again, having 20 estimates
(one for each model), we calculate mean value and standard de-
viation of the MAE and MRE to provide more robust results with
associated uncertainty. In detail, we calculate the MAE as the av-
erage of the absolute values of the differences between the predic-
tions of the models and the noise parameter values used during
the simulation. Analogously, we calculate theMRE as the average
of the absolute values of the differences divided by the values of
𝜎R. In order to avoid the divergence of the relative errors for ex-
tremely small values of 𝜎R, we consider in the test only values of
𝜎R ≥ 0.01 ignoring a negligible part of the data. So far we have
tested the protocol on simulated synthetic data. As previously
mentioned, our goal is to estimate noise parameters by analyzing
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Figure 3. Predictions, on real data, of the value of 𝜎R for themodels trained for the scaling in the number of atoms (a) and in the number ofmeasurements
(b) reported in Figure 2. We report the average values and standard deviations for the 20 linear regression (in black and green) and for the 20 ANN (in
blue and red) models in the predictions of 𝜎R using a set of real measurements of the settings described in Table 3 run on the Pasqal NISQ devices.
The models in (a) uses as input the measurements of s2, s3, s4a, and s5. The models in (b) uses as input one or more concatenated measurements of
runs of the settings with four atoms (the fourth pair of points in (a) is equal to the first pair in (b)). We report in (b) in black and blue the incremental
concatenation of s4a, s4c, s4d, s4e, and s4f . In green and red we report the concatenation of s4a and s4b. The order of the real measurements for the latter
concatenation is irrelevant, thus we report two green and two red points (almost overlapping and not clearly discernible) to consider the two possible
concatenations. The horizontal red line indicates the value of 3%, estimated by Pasqal, for 𝜎R.

samples that come from a real QPU. Therefore, we now analyze
real samples provided by Pasqal. We show in Figure 3 (Figure 3a
for the scaling (i) and Figure 3b for the scaling (ii)) the mean val-
ues and standard deviations along the 20 models of the predicted
values of 𝜎R. In both Figures 2 and 3, the results of the training
of linear regression models are depicted in black and the results
of ANN in blue. Additionally, in Figures 2b and 3b we highlight
in green for the linear regression and in red for the ANN a spe-
cific case: the concatenation of themeasurements on two peculiar
settings with four atoms, s4a and s4b, that have not only the same
amount of atoms but also exactly the same topology. Therefore,
the latter can be seen as a special case of the scaling (ii) where
multiple measures of the same system are performed. Moreover,
for the real measurements we consider both orderings s4a ⊕ s4b
and s4b ⊕ s4a whose prediction results are reported with two cou-
ples of green and red points in Figure 3b (not clearly visible in
the plot because they are almost overlapping).
As expected, the prediction error is decreasing with the num-

ber of atoms in the system because we get more information on
the dynamic and thus on the noise influencing it. In Figure 2,
we can also observe that ANN are in general more powerful re-
spect to linear regression models (at the cost of more resource-
intensive computations). In fact, the errors for the ANN models
are always lower respect to the errors of linear regressionmodels,
and the difference between the ANN and linear regression errors
is more pronounced increasing the number of atoms and mea-
surements. This can be explained with a better capacity of ANNs
to model complex dynamics.
Overall, comparing Figure 2a with five atoms and Figure 2b

with number of measurements equal to two, seems to be more
convenient to consider more measurements respect to increase
the number of atoms of the setting. Also, comparing the green
and red points with the black and blue ones for the same number

of measurements in Figure 2b, we observe that it can be slightly
better to consider multiple measurements of the same setting
with the same topology respect to collect measurements of a dif-
ferent setting with the same number of atoms.
We observe in Figure 3 that the values of 𝜎R predicted for the

measurements of settings with two and five atoms are close to
the estimated value of 3%, however the prediction for the setting
of three atoms is lower, and the predictions for all the settings
with four atoms, and concatenation of them, are around 7%. An
explanation for this mismatch can be that the real data used for
the experiments was collected when the device was still under
development. Therefore, it is possible that the declared value of
𝜎R was not exactly corresponding to the noise effect in the proto-
typemachine and even fluctuating between different runs. More-
over, the predictions consider only 𝜎R as a variable source for the
noise, thus variations of the other noise parameters in the real
machine influence the predictions of 𝜎R. Nevertheless, it is re-
markable that the trained models have low standard deviations
for the predictions that, even if this does not exclude an high bias
error, still suggest a low variance error for the models. We can
also observe that the order of the measurement for the settings
s4a and s4b do not influence the predicted values – in fact the two
green circles and the two red circles in Figure 3 are almost over-
lapping.
To summarize, noise estimation based on supervised learn-

ing is possible. The protocol we presented seems to suggest
merging data from multiple similar registers instead of larger
registers directly. This may be useful because of the difficulty in
simulating larger systems. In addition, the estimates obtained
are derived by averaging estimates from 20 models. More-
over, the associated standard deviation is small relative to the
predicted value, so all the 20 models converge to very similar
values.
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Table 2. Predicted values on real data expressed as average and standard
deviation of 20 models trained on cross-validation. The last column report
for convenience the same estimated values of Table 1.

Parameter Predicted value Estimated value

𝜎R 0.079 ± 0.005 0.03

w 122𝜇m ± 6 68𝜇m

T 56𝜇K ± 4 30𝜇K

𝜀 0.082 ± 0.010 0.03

𝜀′ 0.078 ± 0.005 0.08

Overall, we observe agreement between the predictions and
the declared value for 𝜎R only on few cases. Therefore, it is rea-
sonable to further investigate the reasons for this mismatch on
future works when we can have access to more data from real
NISQ devices. In fact, the real data used in this work came from
a prototype and new analysis suggests lower values for the im-
perfections on next devices. The latter could possibly lead to an
increment in the agreement between the predictions of the ML
models and the expected noise values in future works.
Nevertheless, it is remarkable that, on simulated data, we can

decrease the relative error from more than 45% for the estima-
tions in the worst case (single measurement of a system with
two atoms) to almost 15% using six measurements of a system
with four atoms. Moreover, we have shown the interesting evi-
dence that, in order to decrease the error, it is more beneficial
to increase the number of measurements respect to increase the
number of atoms.

3.2. Multiple Parameters Noise Characterization

In this section, we train a deep learning model in a multiout-
put regression setting to estimate the values of all the noise
parameters in Table 1. We simulated a dataset of 54 000 la-
beled samples for the six-qubit system whose topology can be
observed in Figure 1b. The used pulse sequence, that defines
the dynamics, is shown in Figure 1a. Analogously to the scal-
ing experiments in the previous section, the measurement for
each simulation is obtained sampling 500 runs. The values
used in the simulations for each parameter are: 𝜎R =  (0, 0.15),
w(𝜇m) =  (0, 200), T(𝜇K) =  (0, 100), 𝜀 =  (0, 0.15) and 𝜀′ =
 (0, 0.15).
After finding the best set of hyper-parameters, 20 models are

trained using the cross-validation procedure to exploit the en-
tire dataset and to obtain the standard deviations of the predic-
tions. Each one of the 20 models is trained with early stopping
for a maximum of 150 epochs. Further technical details related
to ANNs design and hyperparameter optimization can be found
in Section 6.2.
In Table 2, we show the resulting estimation of the main noise

factors. Each reported value is the average of the 20 models,
trained on different splits, with the corresponding standard de-
viation. We observe that the predicted values do not match those
estimated by Pasqal, although all 20 models always converge to
very similar values of the predictions. In this regard, the same
considerations expressed in Section 3.1 are also valid for multi-
parameter estimation: i.e., that the parameter predictions can

incorporate other neglected effects (noise sources, influence of
other neighboring atoms, etc.). Another possible factor could be
that the measurements came from a prototype NISQ, just as in
the case of those used in Section 3.1. Therefore, we can expect
more agreement in the future as a result of technical improve-
ments. Nevertheless, this inconsistency represents an opportu-
nity to further investigate the sources of this mismatch when we
will have access to more data from the real NISQ devices. Finally,
it is worth noting that, even if for the experiments in this sec-
tion the setting and the pulse are different to the ones used in
Section 3.1, the predicted value for 𝜎R is comparable to the ones
obtained for the estimation of the same parameter in the settings
with four atoms previously illustrated.

3.3. Error Correction

Many techniques have been developed in the theory of classi-
cal error-correcting codes.[25,26] The key idea on which they are
based is mainly redundancy. Nonetheless, the addition of re-
dundancy is not immediate in NISQ devices because of the no
cloning theorem.[27] However, some sort of redundancy can be
achieved in quantum devices by expanding the system to more
qubits.[28] In fact, all the most used quantum error correction
techniques require the use of more qubits than the ones strictly
necessary for the computation[29] but, at present time, it is not
feasible with NISQ devices. Therefore, we propose to verify that
it is possible to mitigate the effects of quantum noise without
extra qubits through the use of RL techniques. RL is a ML area
where an agent learns which actions to perform in order to max-
imize a reward.[17] Schematically, we can say that this is a closed-
loop problem because the actions of the learning system influ-
ence subsequent inputs. In addition, the learner does not know
a priori which action to perform and has to find out for him-
self, through trials and errors, which actions lead to larger re-
wards. Actions can influence not only the immediate reward but
also future rewards. RL, unlike Supervised Learning, does not
require labelled input-output pairs, but focuses on finding a bal-
ance between exploration of the actions space in an environment
and exploitation of the acquired knowledge. The agent must ex-
ploit what it already knows in order to obtain reward, but it must
also explore in order to make better action selections in the fu-
ture. The trade-off is that neither exploration nor exploitation
can be exclusively pursued without failing in the task. The agent
must try a variety of actions and progressively favor those that
seem to be the best. Any problem of learning goal-oriented be-
havior can be reduced to three signals that are exchanged be-
tween an agent and its environment: a signal to represent the
choices made by the agent (the actions), a signal to represent
the basis on which the choices are made (the states) and a sig-
nal to define the agent’s goal (the rewards). In detail, for each ac-
tion of the agent at timestep n, its effects on the environment are
quantified by a reward rn. Then the objective of the training is to
maximize the discounted cumulative rewardRn0

=
∑∞

n=n0
𝛾n−n0 rn,

where the discount 𝛾 ∈ (0, 1) is an hyperparameter that controls
the importance of rewards far in the future respect to the ones im-
mediately after n0. This objective is implemented with the idea
that, if we would have a function Q∗ : State × Action → ℝ that
given a state and an action performed over that state returns the

Adv. Quantum Technol. 2024, 7, 2300192 2300192 (6 of 10) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. Standard pulse P (a) to be corrected with a correction pulse P′ (b) to be added after P to counteract the effects of the noise. The Rabi frequency
Ω is depicted in green and the detuning 𝛿 in purple. P is a pulse of duration 𝜏 = 500ns, Gaussian Rabi profile with area equal to 𝜋∕2 rad and detuning
in the form of a ramp from 𝛿(0) = −20 rad/𝜇s and 𝛿(𝜏) = 20 rad/𝜇s. P′ is a pulse with the same duration and characteristics of P but with variable Rabi
area a rad, initial detuning 𝛿i rad/𝜇s and final detuning 𝛿f rad/𝜇s.

cumulative discounted reward, then the policy can be imple-
mented with 𝜋∗(s) = argmaxa Q

∗(s, a). In general, Q∗ is un-
known and is approximated by a neural network. For a defined
policy 𝜋, the Q function obeys the Bellman equation Q𝜋(s, a) =
r + 𝛾Q𝜋(s′, 𝜋(s′)) where r and s′ are respectively the reward and
the next state obtained after the action a on the state s. The neural
network that defines Q , and then the agent, is trained minimiz-
ing over a batch of transitions theHuber loss(𝜉) of the temporal
difference error 𝜉 = Q(s, a) − (r + 𝛾maxa Q(s

′, a)).
We choose to correct the standard impulse P depicted in

Figure 4a applied to a single qubit. P has a Gaussian profile
in the Rabi frequency Ω(t) of duration 𝜏 = 500 ns and area 𝜋∕2
rad. P also has a ramp profile in detuning 𝛿(t) of duration 𝜏 =
500 ns with 𝛿(0) = −20 rad/𝜇s and 𝛿(𝜏) = 20 rad/𝜇s. The cho-
sen approach to correct the noise is to apply the correction pulse
Figure 4b to be placed after the pulse to be corrected and hav-
ing the same characteristics and length of 𝜏 = 500 ns. In detail,
we choose a Gaussian profile in the Rabi frequency with variable
area a rad and a ramp profile in detuning 𝛿(t) with variable initial
𝛿(0) = 𝛿i and final 𝛿(𝜏) = 𝛿f . In such a way, the final atoms occu-
pation probabilities with the application of the corrected pulse


noisy
P+P′ and after the ideal pulse 

ideal
P are closer than 

noisy
P and


ideal
P . By the notation 

i
j we denote the measurement  obtained

after running a simulation with the pulse j with or without noise
(respectively, i = noisy or i = ideal). The training allows to find the
three optimal parameters a, 𝛿i, and 𝛿f for the correction impulse
P′.
In our RL framework, the state is represented by the occupa-

tion probabilities that are estimated from the average of ten in-
dependent noisy simulations whose probabilities are extracted
from the amplitudes of 25 quantum states uniformly sampled
along the simulated dynamic. At the beginning of each episode
we choose a = 𝜋∕20 and 𝛿i = 𝛿f = 0, and they can have values
in the ranges a ∈ [0,𝜋∕2] and 𝛿i, 𝛿f ∈ [−20, 20]. The agent, im-
plemented with an ANN that have an input layer of 50 units

(two basis for each one of the 25 intermediate states), two
ReLU hidden layer of 128 neurons and an output layer of six
neurons, selects one among four possible actions: an = an−1 +
Δa, an = an−1 − Δa, 𝛿ni = 𝛿n−1i + Δ𝛿i, 𝛿ni = 𝛿n−1i − Δ𝛿i, 𝛿nf = 𝛿n−1f +
Δ𝛿f , 𝛿nf = 𝛿n−1f − Δ𝛿f . We choose fixed values forΔa = 𝜋∕200 and
Δ𝛿i = Δ𝛿f = 0.2. Each episode is constituted of a series of steps
at increasing values of n. For each step, the chosen action is ap-
plied and a correction impulse P′

n, characterized by a
n, 𝛿n0 , and 𝛿

n
f ,

is generated and used in a new simulation obtaining a new prob-
ability vector  noisy

P+P′
n
for the final quantum state of the corrected

noisy simulation. Afterwards, the reward rn is obtained before
proceeding with the next step. The episode ends when the action
causes a, 𝛿0, or 𝛿f to go out of boundaries or after 100 steps. The
reward is defined as:

rn =
⎧⎪⎨⎪⎩
1 if ||| noisy

P+P′
n
− 

ideal
P

|||1 <
||||

noisy
P+P′

n−1
− 

ideal
P

||||1
0 otherwise,

(2)

where | ⋅ |1 is the 𝓁1 norm. Specifically, the reward is one if the
last action at step n makes the corrected noisy simulation closer
to the ideal one respect to the previous step n − 1 and zero other-
wise. During the training, we monitor the KullbackLeibler (KL)
divergence between 

noisy
P+P′

n
and 

ideal
P :

DKL(
noisy
P+P′

n
, ideal

P ) =
2∑
i=1

(


noisy
P+P′

n

)
i
log

⎛⎜⎜⎜⎝

(


noisy
P+P′

n

)
i(


ideal
P

)
i

⎞⎟⎟⎟⎠
(3)

that is averaged for all the steps nwithin each episode. The evolu-
tion of the averaged KL divergence for the 1 000 training episodes
is reported in Figure 5, where we can observe that it effectively
decreases below the reference value ofDKL(

noisy
P , ideal

P ) = 0.0011
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Figure 5. Evolution of the KL divergence between the corrected noisy sim-
ulation and the ideal one averaged for each episode. The red line is the
reference value of 0.0011 for the KL divergence between the uncorrected
noisy simulation and the ideal one averaged over 100 simulations.

reported with the red line and calculated with the average for 100
noisy simulations without the correction pulse.

4. Conclusion

We presented two applications of ML to the context of quantum
noise characterization and correction. To characterize the noise,
we collected a dataset of multiple simulated noisy measurement
of different settings in Pasqal quantum machines to train ML
models, and we test them on real data. For the noise correction,
we trained a RLmodel to find a correction pulse to counteract the
effects of the noise affecting a simulated test setting. Regarding
the noise characterization, we compared ANNwith linear regres-
sion models in predicting the value of the laser intensity fluc-
tuation 𝜎R scaling the number of qubit in the register and the
number of measurements of the system. We found that ANNs
perform better than linear regression and that the model accura-
cies increases both with the number of qubits and with the num-
ber of measurements. Moreover, we have insights that, in order
to better characterize the noise parameters, it is more effective
to increase the number of measurements respect to the num-
ber of qubits. When we tried to predict the noise parameters on
real NISQ devices, we found that, for every set of measurement,
40 different models (ANN and linear regression trained indepen-
dently in a 20 fold cross validation setting) agree on the predic-
tions, and therefore, the variance error is low. Finally, we trained
20 ANNmodels in a multiregression setting to predict five differ-
ent noise parameter values, and, also in this case, the models are
in agreement between them when tested on real data. Unfortu-
nately, when we compare the predictions of the noise parameter
using measurements of real NISQ devices with the declared val-
ues of such parameters, we do not find strong agreement for ev-
ery measurement. The data was acquired on a NISQ device that
was still under development and with high values for the imper-
fections. Later analysis suggests that the new devices are more
robust to errors and noise sources. Therefore, we would like to in-
vestigate in futureworks theMLmodels predictive capabilities on
real data from future Pasqal devices when they will be available.
Besides, when it will be possible to gather numerous amount of
data on real machines, we would like to train the models with a
training set containing also real data.

Regarding the noise correction, the proposed approach suc-
cessfully learns to correct a simulated noisy pulse and to make
the measured probabilities closer to the ideal ones.
We believe that the results presented in this work can be used

to better quantify the effects of the noise affecting the Pasqal,
and in general neutral atoms, NISQ devices and to counteract
those effects. The presented tecniques are dependent on the
atoms topology and the pulse shape. Thus, theMLmodels can be
trained to characterize and correct the noise of single quantum
gates that compose more complex Hamiltonians. It is important
to note that the accuracy of the predicted noise parameters de-
pends on the accuracy of the simulation and in particular on the
accuracy of the simulator noise model.
In previous works,[11,13,30,31] and in preliminary experiments

using Pasqal simulator, there is an evidence of the improvement
of the noise characterization when more temporal statistics are
collected. We adopted this strategy in this paper for the noise
correction, where the occupation probabilities are obtained from
the amplitudes of the intermediate quantum states sampled at
regular steps within the simulated dynamic. However, in real
NISQ devices, intermediate measurements of the dynamic are
less straightforward because of the impossibility of observing a
system without changing it. We can obtain the same effect in-
dependently measuring incremental subdynamics from t = 0 to
subsequent time steps of the full dynamic. To implement this ap-
proach on Pasqalmachines, we can design a full pulse that is sub-
sequently split in sub-pulses at times [t0, t1], [t1, t2],… , [tm−1, tm].
The measurements at time tk for k = 1,… , m can then be ob-
tained by initialising the register always to the same initial set-
ting, and performing the computation considering the effects of
all the sub-pulses spanning the times [t0, tk] from the first to the
one before tk. The ML models can then process all the measure-
ments obtained at times t1,… , tk and, in that way, we expect to
obtain better results for the characterization of the noise. More-
over, we can also use ANNs more suitable for data organized in
temporal sequences, i.e., Recurrent Neural Networks (RNNs).
Finally, in the context of Quantum Machine Learning

(QML),[32,33] our work is framed as a classicalML approach to pro-
cess quantum data. Future research lines may include the design
of QMLmodels for the noise characterization and correction im-
plemented directly within the quantumdynamic of neutral atoms
devices or of other NISQ devices. For instance, pattern matching
QML techniques[34] can be adapted for the identification of noise
patterns[13] that are specific to the neutral atoms dynamics.

5. Experimental Section
Single Parameter Characterization: In this section, is described with

more details the topologies of the analyzed quantum systems and the
ANN models used in Section 3.1.

The registers, summarized in Table 3, have an incremental number of
atoms from 2 to 5 and some of them are chosen in a way such that the
positions of the atoms of every register are included in the subsequent
ones as far as possible.

To be precise, with the notation sk ⊂ sk′ and k < k′, is indicated
that the quantum register of sk′ is the same as that of sk with
the addition of an atom and that, therefore, the coordinates of the
atoms in common were the same. In detail, the setting with five
atoms (s5) had atoms in the same positions of the ones of the
settings of dimensionality four (s4a) and three (s3) plus extra atoms in
other positions. Moreover, s4a contains all the two atoms of the setting

Adv. Quantum Technol. 2024, 7, 2300192 2300192 (8 of 10) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Table 3. Quantum systems used for single parameter estimation 𝜎R. By
the notation si we denote the system formed by i atoms. In the case of
four atoms, having used six different systems for the spatial arrangement
of atoms, we use an additional subscript s4j, with j = {a, b, c, d, e, f }. Also,
when a quantum register of a system sk is entirely contained in the quan-
tum register of a larger system s′

k
, with k′ > k, we use the notation sk ⊂ sk′ .

Name s2 s3 s4a s5 s4b s4c s4d s4e s4f

Atoms 2 3 4 5 4 4 4 4 4

Properties ⊂ s4a ⊂ s5 ⊂ s5 = s4a

s2, but s3 included only one of the two atoms of s2 and s4a only two of the
three atoms of s3. The latter properties were denoted with s2 ⊂ s4a ⊂ s5
and s3 ⊂ s5. In addition, further measurements of settings with four atoms
were also collected. In detail, a second setting s4b with the atoms in the
same position of s4a and other four settings with different positions for the
atoms: s4c, s4d, s4e, and s4f were run. Those specific settings were chosen
to evaluate the two different scaling: i) in the number of atoms, ii) in the
number of measurements of different settings with the same number of
atoms. Specifically, we consider for (i) s2, s3, s4a, and s5 and for (ii) s4a, s4b,
s4c, s4d, s4e, and s4f .

The trained ANNs were composed by a single hidden layer of 100 neu-
rons with ReLU activation function and the output layer with a single neu-
ron with sigmoid activation function. The targets were normalized be-
tween 0 and 1 before the training and the inverse transformation was
applied to calculate the prediction error. The models were developed in
PyTorch[35] and trained with mini batch gradient descent to minimize the
L1 loss using the Adam optimizer[36] with learning rate 0.001 and batch
size 512. All models were trained with early stopping for a maximum of
150 epochs.

To perform the scaling (i), we trained four different models using as
inputs the 22, 23, 24, and 25 measurements of respectively the settings s2,
s3, s4a, and s5. To perform the scaling (ii), we considered the measurement
coming from the following systems:

• s4a (2
4 = 16 measurements)

• s4a ⊕ s4b (2
4 + 16 = 25 measurements)

• s4a ⊕ s4b ⊕ s4c (2
4 + 32 = 48 measurements)

• s4a ⊕ s4b ⊕ s4c ⊕ s4d (2
4 + 48 = 64 measurements)

• s4a ⊕ s4b ⊕ s4c ⊕ s4d ⊕ s4e (2
4 + 64 = 80 measurements)

• s4a ⊕ s4b ⊕ s4c ⊕ s4d ⊕ s4e ⊕ s4f (2
4 + 80 = 96 measurements)

In all the cases, the datasets were split in 20 equal parts to perform a 20
fold cross-validation and it reported the resulting average mean absolute
error and its standard deviation for the 20 models.

As a remark, the Pulser simulator allowed to specify the number of sam-
ples per run to speedup the computation. In that case, for each run, the fi-
nal quantum state was preliminary calculated and then the specified num-
ber of measurements was obtained from such state. Even if this expedient
was useful to spare resources, it was found in preliminary experiments that
this speedup was counter-productive in the context of noise estimation. In
fact, for all the samples of one run, the Hamiltonian defining the evolution
was always the same and also the noise that influences it. For this reason,
in this work the number of samples per run were kept equal to one forcing
the resampling of the noise at each single measurement.

Moreover, in this context, was better to consider more measurements
respect to increase the number of atoms of the setting. In detail, consider-
ing both subfigures, the number of data points for themeasurement of the
setting with five atoms in Figure 2a, i.e. 25 = 32, is equal to the ones for
two concatenated measurements of settings with four atoms in Figure 2b,
i.e., 24 + 24 = 32, but the error in the latter case is lower than the former.

5.0.0.1.Multiple Parameters Characterization: Before training themod-
els, the noise parameters were normalized between 0 and 1 to avoid un-
even prediction error during the loss calculation. The models were im-
plemented in Pytorch[35] and were trained with minibatch gradient de-

scent to minimize the L1 loss using Adam.[36] Regarding the architecture
of the models, the ANN was a Multi Layer Perceptron (MLP) with the
ReLU activation function for all the hidden layers and the sigmoid acti-
vation function for the last layer. The best combination of number of neu-
ron layers, number of neurons in each layer, batch size, and learning rate
was chosen with an hyper-parameter optimization procedure. The latter
was implemented using the python library Ray Tune[37] with the ASHA
scheduler[38] and the HyperOpt search algorithm.[39] The ASHA sched-
uler allowed multiple models to be trained in parallel iteratively interrupt-
ing the training of the least promising one and thus reducing the duration
of the hyper-parameter optimization. In this case, at each epoch, it halved
the models by discarding those with the highest calculated loss on the
validation set. HyperOpt search algorithm, on the other hand, choosed
the most probable best combinations of hyper-parameters based on the
previously trained and/or stopped models. By this procedure, the model
with the most promising set of hyper-parameters was chosen from 1000
models trained with the Adam optimizer. The hyper-parameters were sam-
pled in the following ranges: number of hidden layers from 1 to 100, num-
ber of neurons in each layer from 5 to 200, batch size in {2, 4, 8, 16, 32}
and learning rate from loguniform(10−4, 10−1). At the end, the best hyper-
parameters combination was: one hidden layer of 117 neurons, batch size
16, initial learning rate ≈ 0.069, dropout probability ≈ 0.044 and L2 regu-
larization ≈ 0.0002.

After finding the best set of hyper-parameters, 20 models were trained
using the cross-validation procedure to exploit the entire dataset and to
obtain the standard deviations of the predictions. In detail, for the cross-
validation the dataset was divided into 20 equal parts, 18 were used for
training, one for validation and one for testing. The advantage of using
the cross-validation procedure was that a different block was used for the
test of eachmodel, and also, in this way all the samples of the dataset were
exploited for the training. Each one of the 20 models was trained with early
stopping for a maximum of 150 epochs.
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