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The simplest inflationary model V ¼ 1
2
m2ϕ2 represents the benchmark for future constraints. For a

quadratic potential, the quantity ðns − 1Þ þ r=4þ 11ðns − 1Þ2=24 vanishes (up to corrections which are
cubic in slow roll) and can be used to parametrize small deviations from the minimal scenario. Future
constraints on this quantity will be able to distinguish a quadratic potential from a pseudo-Nambu-
Goldstone boson with f ≲ 30Mpl and set limits on the deviation from unity of the speed of sound
jcs − 1j ≲ 3 × 10−2 (corresponding to an energy scale Λ≳ 2 × 1016 GeV) and on the contribution of a
second field to perturbations (≲6 × 10−2). The limiting factor for these bounds will be the uncertainty on
the spectral index. The error on the number of e-folds will be ΔN ≃ 0.4, corresponding to an error on the
reheating temperature ΔTrh=T rh ≃ 1.2. We comment on the relevance of non-Gaussianity after BICEP2
results.
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Motivations.—The recent detection of B modes in the
polarization of the cosmic microwave background (CMB)
by BICEP2 [1] indicates a high level of primordial tensor
modes. This requires [2] a large excursion of the inflaton
during inflation Δϕ≳Mpl, which challenges the naive
expectation that higher-dimension operators suppressed by
powers ofMpl spoil the slow-roll conditions. While, before
BICEP2, the crucial question for inflation was “large or
small r?” we are now facing a new dichotomy: “ϕ2 or
not ϕ2?” The two possibilities are qualitatively different.
A large field model that is not quadratic, say V ∝ ϕ2=3,
suggests an interesting UV mechanism, such as mono-
dromy inflation [3], for instance. If data will, on the other
hand, favor a quadratic potential, the simplest explanation
will be that inflation occurs at a generic minimum of a
potential whose typical scale of variation f is much larger
than the Planck scale. Indeed, an approximate shift sym-
metry gives rise to potentials that are periodic in ϕ=f, such
as, for instance, V ¼ Λ4½1 − cosðϕ=fÞ� [4,5]. For f ≫ Mpl,
inflation occurs near a minimum of the potential, where one
can approximate V ∝ ϕ2. In string theory, it seems difficult
to obtain a parametric separation between f and Mpl,
although there is no issue at the level of field theory [6,7].
Therefore, if quadratic inflation will remain compatible
with the data, it will be important to study small deviations
from it, to understand to which extent the quadratic
approximation holds and to limit other possible deviations
from the simplest scenario of inflation.
Inflationary predictions must face our ignorance about

the reheating process and the subsequent evolution of the
Universe. All this is encoded in the number of e-folds N

between when the relevant modes exit the horizon and the
end of inflation. The dependence on N is rather strong (see
Fig. 1), and it will become larger than the experimental
sensitivity on ns and r. To study small deviations from
V ¼ 1

2
m2ϕ2, we have to concentrate on a combination of
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FIG. 1. Future constraints on f assuming a simple cosine
potential. The dashed curve corresponds to Eq. (1), and the
black segments cover the interval of reheating temperatures
Trh ∈ ½10 MeV; 1015 GeV�. A wider range of N is allowed if
one considers nonstandard cosmological evolutions after infla-
tion. Shaded 1σ contour corresponds to a futuristic measurement
with σns−1 ¼ σr ¼ 10−3, compatible with a quadratic potential.
All quantities are evaluated at k ¼ 0.002 Mpc−1.
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observables that does not depend on N. [The power
spectrum normalization fixes m≃ 1.5 × 1013 GeV,
V ≃ ð2 × 1016 GeVÞ4, and Δϕ≃ 15Mpl, assuming
N ¼ 60.] At linear order in 1=N, given that for a quadratic
potential ns − 1 ¼ −2=N and r ¼ 8=N, a prediction that is
independent of N is obviously ðns − 1Þ þ r=4 ¼ 0. Since
corrections at second order in slow roll will not be
completely negligible in the future, it is worthwhile to
go to order 1=N2. With the use of the explicit formulas at
second order in slow roll [8], it is straightforward to verify
that for a quadratic potential

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ 0; ð1Þ

up to corrections of order N−3, which we can safely ignore.
Up to second order in slow roll, we have

ns − 1 ¼ 2η − 6ϵ − 2Cð12ϵ2 þ ξÞ þ 2

3
ðη2 − 5ϵ2 þ ξÞ

þ ð16C − 2Þηϵ;

r ¼ 16ϵ

�
1 −

4ϵ

3
þ 2η

3
þ 2Cð2ϵ − ηÞ

�
;

where C≡ −2þ ln 2þ γ, with γ ¼ 0.57721… the Euler-
Mascheroni constant, and the slow-roll parameters are
defined as

ϵ≡M2
pl

2

�
V 0

V

�
2

; η≡M2
pl
V″

V
; ξ≡M4

pl
V‴V 0

V2
:

[Up to 1=N3 corrections we can equivalently write
ðns − 1Þ þ r=4þ ð11=384Þ × r2 ¼ 0. This form can be
useful in future given that the error on ðr=4Þ2 is expected
to be smaller than the one on ðns − 1Þ2.] Assuming that the
data will favor a ϕ2 potential, we can use the equation
above to study how sensitive we will be to small departures
from the simplest scenario. If we take the measurement of
the tilt from Planck [9] ns − 1 ¼ −0.0397� 0.0073 and the
recent value of r measured by BICEP2 [1] r ¼ 0.20þ0.07

−0.05 ,
the lhs of Eq. (1) is equal to 0.01� 0.02. This number
has to be taken with great caution because it does not
include foreground subtraction in BICEP2 result. If one
uses Planck data only, the lhs of Eq. (1) is compatible with
zero at ∼2σ. Optimistically, we can assume we will be able
to measure rwith a precision of 1% [10]. Regarding ns − 1,
future experiments such as EUCLID [11] or PRISM [12]
should be able to go down to a 10−3 error. Therefore, the
uncertainty on the quantity above will be ∼10−3, dominated
by the error on the spectral index. Notice that different
experiments are sensitive to different scales k. Given that
Eq. (1) is independent ofN, it is valid on any scale provided
that both ns and r are evaluated at the same k. Therefore, it
is important to keep in mind that the experimental results
have to be properly combined at the same scale. (This is the

case also for BICEP2 and Planck, but with the current
errors this difference is negligible.)
Let us now study what these futuristic limits will imply

for deviations from the simplest model of the Universe.
Pseudo-Nambu-Goldstone boson potential.—A PNGB

has a potential of the form V ¼ Λ4Fðϕ=fÞ, where Λ is the
scale of breaking of the approximate shift symmetry, F is a
periodic function, and f is the decay constant. (In the
extradimensional model of Ref. [6], the explicit form of F
depends on the number of particles, their charges, masses,
and boundary conditions.) The simplest example is given by

VðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
; ð2Þ

where f has to be bigger thanMpl in order for the slow-roll
conditions to be satisfied and for very large f ≫ Mpl the
model becomes indistinguishable from a ϕ2 potential.
For this potential, Eq. (1) will not be exactly zero. It is easy
to calculate the leading correction in slow roll and for
Mpl=f ≪ 1

ns − 1 ¼ −
2

N
þO

�
Mpl

f

�
4

; r ¼ 8

N
− 4

�
Mpl

f

�
2

: ð3Þ

This gives a correction to Eq. (1)

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ −

�
Mpl

f

�
2

: ð4Þ

If the error on the lhs is of order 10−3, this translates into the
limit f ≳ 30Mpl. This would convincingly suggest there is a
parametric separation between the two scales, which the
UV theory would have to address. To illustrate this point, in
Fig. 1 we present a plausible forecast for the future obser-
vations in the (ns, r) plane together with the predictions of
natural inflation for different values of f.
For a generic F expanding around the minimum we get

VðϕÞ ¼ Λ4

�
1

2

ϕ2

f2
þ Fð3Þ

6

ϕ3

f3
þ Fð4Þ

24

ϕ4

f4
þ � � �

�
: ð5Þ

For the following analysis, we assume FðnÞ to be of order 1.
For the moment, let us assume the function F is symmetric
around the minimum. Notice that with positive Fð4Þ we can
get ns and r above the m2ϕ2 curve, unlike in the case of a
simple cosine potential (see Fig. 1). At leading order in
slow roll

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ Fð4Þ

�
Mpl

f

�
2

; ð6Þ

and one can constrain the combination on the rhs

f=
ffiffiffiffiffiffiffiffiffiffiffi
jFð4Þj

q
≳ 30Mpl. Therefore, for Fð4Þ of order 1, this

does not change the lower bound on f significantly.
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If we now allow for nonzero Fð3Þ and the cubic term
dominates, Eq. (1) reads

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ � 2

3

ffiffiffiffiffi
2ϵ

p
Fð3ÞMpl

f
; ð7Þ

where the sign depends on whether inflation occurs for
positive or negative values of ϕ. The constraint on the rhs
imposes f=Fð3Þ ≳ 86Mpl. (Here and in the following
estimates, to be conservative, we use the minimal value
of ϵ that corresponds to the maximal number of e folds.)
Notice that in this case the lower bound on f is even
stronger.
General deviations from ϕ2.—One can use the same

technique to constrain other deviations from the simplest
scenario: they will all contribute to the rhs of Eq. (1). Let us
first focus on small deviations from m2ϕ2 coming from
the shape of the potential (see for example, Refs. [13,14]).
It is straightforward to obtain the corrections to Eq. (1) for
a generic VðϕÞ up to second order in slow-roll parameters

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ −2ðϵ − ηÞ: ð8Þ

Notice that on the rhs of Eq. (8) we keep only the first
nonvanishing correction.
Another kind of corrections comes from derivative inter-

actions. Indeed, from the effective field theory point of
view quantum corrections will generate higher-dimensional
operators suppressed by some scaleΛ. Particularly important
are the operators compatible with an approximate shift sym-
metry for ϕ. For example, a term of the form ð∂ϕÞ4=Λ4 in
the Lagrangian corresponds to a correction to the speed of
propagation of the perturbations

c2s − 1 ¼ 16
_HM2

pl

Λ4
: ð9Þ

Therefore, constraints on the speed of sound transfer into
constraints on Λ. In models with cs < 1, it is important to
stress that r ¼ 16ϵcs, whereas ns − 1 is independent of cs (it
only depends on it through s≡ _cs=Hcs). In the absence of
cancellations, the current value for ns − 1 and the detection
of a high level of primordial tensor modes imply that cs
cannot be much smaller than 1.
For the case of a quadratic potential, one can quantify the

bounds on cs more precisely in a way that is insensitive to
N. The correction to Eq. (1) reads

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ −sþ r

4

�
1 −

1

cs

�
: ð10Þ

If the total error on the lhs is of the order 10−3, jcs − 1j
is constrained to be ≲3 × 10−2. In particular, we can
put a lower bound on the energy scale Λ to be

Λ≳ 2 × 1016 GeV, which is as high as the inflation-
ary scale.
Another way to constrain cs is to use the standard

consistency relation for the tilt of tensor modes nT

rþ 8nT ¼
�
1 −

1

cs

�
r: ð11Þ

This relation has the major advantage of being valid for any
potential, but it is difficult to imagine we will be able to
verify it with significant precision. Given that from CMB
experiments it will be hard to measure nT with a precision
better than ΔnT ∼ 0.1, the constraint on cs is weaker than
the one obtained above. However, in the very far future we
might be able to constrain r and nT much better by the
detection of primordial gravitational waves with interfer-
ometers [15]. Optimistically, the error on nT could be as
low as 5 × 10−3, and the relation of Eq. (11) could constrain
cs even better than Eq. (10).
Another possible departure from the simplest model is

the presence of a subdominant component in the spectrum
due to a second field. In these models (curvaton, modulated
reheating, etc.) inflation is driven by the inflaton, but a
second scalar field σ is contributing to the curvature
perturbation with a fraction

q≡ Pσ
ζ

Pϕ
ζ þ Pσ

ζ

; ð12Þ

where Px
ζ is the contribution of the field x to the power

spectrum of the curvature perturbation ζ. The correction to
Eq. (1) up to first order in slow roll is

ðns − 1Þ þ r
4
þ 11

24
ðns − 1Þ2 ¼ q

�
−
r
8
þ 2

3

V″
σ

H2

�
: ð13Þ

Assuming that the error on the lhs of Eq. (13) is 10−3, this
relation constraints q≲ 0.06.
One may consider the case in which different corrections

to the rhs of Eq. (1) cancel so that we accidentally get
the same predictions as the ϕ2 model. In this case, one can
hope to break the degeneracy by looking at the running
of the power spectrum. For a quadratic potential α ¼
−ðns − 1Þ2=2 ¼ −r2=32≃ 8 × 10−4.
Constraints on N.—So far, we have focused on a

combination of observables that is N independent. On
the other hand, for a quadratic potential one will also get a
good constraint on the number of e-folds. With the numbers
quoted above, the best constraint will most likely come
from r, which will give ΔN ≃ 0.4. This translates into an
error on the reheating temperature

ΔTrh

Trh
≃ 1.2; ð14Þ
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assuming we know the evolution after reheating. Notice
that while it is easy to reduce N (longer reheating, periods
of matter domination or phase transitions in the late
universe, large number of relativistic degrees of freedom
g�), the upper bound on N corresponding to instantaneous
reheating and conventional cosmological evolution is very
robust. In some sense, it corresponds to the very simplest
Universe.
What if not ϕ2?—All the discussion so far concentrated

on ϕ2 inflation. If nature has chosen another monomial
potential V ∝ ϕp, we can still build an observable which
does not depend on N. It is easy to get

ðns − 1Þ þ 2þ p
8p

rþ 3p2 þ 18p − 4

6ðpþ 2Þ2 ðns − 1Þ2 ¼ 0: ð15Þ

As before, we will have errors of order 10−3 on this
expression. Notice that in Eq. (15) as we go to lower values
of p the coefficient of r increases: the tensor contribution
becomes more and more important to discriminate the
model. It is straightforward to generalize Eqs. (10) and (13)
to analyze the constraints on the speed of sound or the
presence of a curvaton component. One can also invert
Eq. (15) to find the allowed range of p. This reads

p ¼ −
2r

8ðns − 1Þ þ r
−

64ðns − 1Þ3
ð8ðns − 1Þ þ rÞ2 þ ðns − 1Þ − 7

24
r.

ð16Þ

For “normal” powers we will be quite convinced we have
found the correct model of inflation. With the current errors
the bounds on p are too loose to be interesting, but this
may change in the future. For example, for a linear potential
the error will be Δp≃ 0.06, and this will allow discrimi-
nation of this model from ϕ2=3.
Non-Gaussianity.—So far our discussion has concen-

trated on the power spectra: what about higher-order
correlation functions? As discussed above, in single-field
models (independently of the potential) r is suppressed by
cs so that the speed of sound cannot be much smaller than
1. Therefore, the cubic operator related by symmetry to cs
[16] cannot give sizeable non-Gaussianities since feqNL ∼
1=c2s (the Planck constraint [9] is cs ≥ 0.02). However, the
second independent operator _π3 can still be large. It is
straightforward to check that this situation is radiatively
stable [17]: loops induce order-one corrections to the speed
of sound. Moreover, the three-point function can be large
for cs ¼ 1 if it is generated by operators with more than one
derivative per field [18]. Another possibility is that the four-
point function is large, while the bispectrum is suppressed:
this can happen in a technically natural way as studied in
Ref. [19]. Non-Gaussianities are also relevant if scalar and
tensor perturbations are both produced through particle
creation involving dissipative effects [20,21].

It is interesting that, if we focus on a ϕ2 potential, the
limits on cs discussed above can be far better than what is
measurable through the three-point function.
Also, in multifield models r is always suppressed com-

pared to the single-field case (by a factor of q assuming no
mixing). It is, thus, unlikely that perturbations are dominated
by a second field. However, when the perturbations due to
the second field become very non-Gaussian, they induce
a large observable non-Gaussianity fNL ≃ 105q3=2, even
when they are subdominant in the power spectrum [22].
Notice that the shape of non-Gaussianity can vary from
local to equilateral if we consider general quasi-single-field
models [23,24]. In conclusion, non-Gaussianities remain a
powerful probe of inflation.
Conclusions.—Any experimental result on the (ns, r)

plane can be explained with a proper choice of the slow-roll
parameters ϵ and η. On the other hand, a particular curve on
this plane stands out since it corresponds to the prediction
of V ∝ ϕ2, varying the number of e-folds N. Assuming
data will remain compatible with this simple scenario, we
studied the constraints we will be able to set on various
deviations from the benchmark model.
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