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Fabry disease (FD) is a rare X-linked inherited lysosomal storage disorder caused by deficient a-galactosidase A activity

that leads to an accumulation of globotriasylceramide (Gb3) in affected tissues, including the heart. Cardiovascular

involvement usually manifests as left ventricular hypertrophy, myocardial fibrosis, heart failure, and arrhythmias, which

limit quality of life and represent the most common causes of death. Following the introduction of enzyme replacement

therapy, early diagnosis and treatment have become essential to slow disease progression and prevent major cardiac

complications. Recent advances in the understanding of FD pathophysiology suggest that in addition to Gb3 accumu-

lation, other mechanisms contribute to the development of Fabry cardiomyopathy. Progress in imaging techniques have

improved diagnosis and staging of FD-related cardiac disease, suggesting a central role for myocardial inflammation and

setting the stage for further research. In addition, with the recent approval of oral chaperone therapy and new treatment

developments, the FD-specific treatment landscape is rapidly evolving. (J Am Coll Cardiol 2021;77:922–36) © 2021 by

the American College of Cardiology Foundation.
C ardiac involvement represents the main
cause of impaired quality of life and death
in patients with Fabry disease (FD) (1,2)

and an under-recognized cause of heart failure with
preserved ejection fraction and ventricular arrhyth-
mias in men age older than 30 years and women age
older than 40 years (3). Cardiac damage starts early
in life, progresses sub-clinically before significant
symptoms occur, and usually manifests as left
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ventricular hypertrophy (LVH) mimicking hypertro-
phic cardiomyopathy (HCM) (4,5). A recent re-
analysis of 5,491 patients with a clinical diagnosis of
LVH and/or HCM screened for FD reported a preva-
lence of GLA pathogenic genetic variants of 0.93%
in males and 0.90% in females (5).

Following the introduction of enzyme replacement
therapy (ERT), early recognition of FD and differen-
tial diagnosis from other causes of LVH have become
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HIGHLIGHTS

� The cardiomyopathy associated with FD
manifests mainly as LVH.

� In addition to glycosphingolipid accu-
mulation, secondary mechanisms of car-
diac damage in FD include inflammation
and immune activation.

� Cardiac imaging, particularly CMR imag-
ing, is essential for diagnosis and staging
of FD.

� Early treatment can improve clinical
outcomes in patients with FD and
cardiomyopathy.

AB BR E V I A T I O N S

AND ACRONYM S

ADAs = anti-drug antibodies

a-Gal A = a-galactosidase A

CMR = cardiac magnetic

resonance

ERT = enzyme replacement

therapy

FD = Fabry disease

Gb3 = globotriaosylceramide

HCM = hypertrophic

cardiomyopathy

LGE = late gadolinium

enhancement

LVH = left ventricular

hypertrophy

lyso-Gb3 =

globotriaosylsphingosine
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crucial to limit disease progression (1,6). Recent ad-
vances in understanding FD pathophysiology and
cardiac imaging have improved diagnostic and ther-
apeutic approaches to FD cardiac manifestations. In
addition, the FD-specific treatment landscape is
evolving, with the recent approval of an oral chap-
erone and development of new treatments, including
modified enzymes, substrate reduction therapy, and
genetic treatments (7).

This paper aims to provide a comprehensive review
of current knowledge and ongoing research into the
pathophysiology, diagnosis, and treatment of cardiac
involvement in FD.

GENERAL FEATURES OF FD

FD is a pan-ethnic, X-linked lysosomal storage dis-
order caused by pathogenic variants in the GLA gene
that result in reduced a-galactosidase A (a-Gal A)
enzyme activity (1). This leads to an accumulation of
lysosomal globotriaosylceramide (Gb3) and related
globotriaosylsphingosine (lyso-Gb3) in affected tis-
sues, including the heart, kidneys, vasculature, and
peripheral nervous system (2). The reported inci-
dence, between 1 in 40,000 and 1 in 117,000, may be
underestimated because screening in newborns sug-
gests a prevalence of up to 1 in 8,800 newborns (8).

More than 1,000 GLA variants have been identified
(1,9) and are categorized as pathogenic, benign
without clinical relevance, or of unclear significance
(10). Nonsense, missense variants, and premature
stop codons that lead to absent or low a-Gal A enzyme
activity are usually associated with classic early-onset
FD, characterized in males by childhood onset of
symptoms, multiorgan involvement, and rapid dis-
ease progression, with clinical manifestations often
affecting the heart, kidney, and central nervous
system (1–3). Extracardiac clinical manifesta-
tions of FD are summarized according to
decade of presentation in Figure 1. Missense
genetic variants that are associated with re-
sidual a-Gal A activity cause late-onset FD,
which predominantly affects the heart (car-
diac variant). Genetic variants associated
with the cardiac variant include p.N215S
(prevalent in North America and Europe),
p.F113L (prevalent in Portugal), and
IVS4þ919G>A (prevalent in Taiwan) (10–12).

In female patients, X-chromosome random
inactivation (lyonization) results in mosai-
cism, with some cells expressing the normal
allele and others the mutated allele (13). This
causes heterogeneous manifestations, from
an asymptomatic or mild phenotype mani-
festing later in life and affecting >1 organ, to

a severe phenotype resembling classic FD.

In males with classic FD, confirmation of severely
reduced or absent a-Gal A activity is often sufficient
for a diagnosis. Male patients with late-onset FD have
higher residual a-Gal A activity compared with classic
FD, although far below normal values. In heterozy-
gous females, a-Gal A activity may be normal or
slightly deficient, and diagnosis requires genotype
confirmation. Consequently, all FD diagnoses should
be confirmed by genetic testing. Both enzymatic and
genetic testing are easily performed on dried blood-
spot cards with some European and U.S.-based labo-
ratories providing the service free of charge often in
the context of research projects supported by drug-
producing companies. Following diagnostic confir-
mation, cascade family genetic screening according to
X-linked inheritance is highly recommended (1).

PATHOPHYSIOLOGY OF CARDIAC

INVOLVEMENT IN FD

Accumulation of Gb3 affects all cardiac cell types and
tissues, including myocytes, endothelial and smooth
muscle cells of intramyocardial vessels, endocar-
dium, valvular fibroblasts, and conduction tissue (14).
Myocardial accumulation leads to progressive LVH
and diastolic dysfunction. Involvement of intramural
vessels induces structural and functional changes,
causing myocardial ischemia (15). Fibrosis and
involvement of conduction tissue underlie the
development of ventricular arrhythmias and con-
duction disturbances (Figure 2A).

However, Gb3 accumulation does not explain the
whole spectrum of FD pathophysiology (16). Together
with mechanical effects, Gb3 accumulation triggers
secondary processes, which lead to biochemical and



FIGURE 1 Fabry Disease Red Flags for Differential Diagnosis
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functional impairment in myocytes (Figure 2B).
In vitro studies show that intra-lysosomal Gb3 im-
pairs endocytosis and autophagy, induces apoptosis,
and interferes with mitochondrial energy production
(17). Energy depletion and trophic factors, like
sphingosine, may activate cellular hypertrophy
pathways common to other HCMs. Studies on car-
diomyocytes isolated from endomyocardial biopsies
demonstrated that intracellular glycosphingolipids
elicited sarcomeric myofilament dysfunction and
myofibrillolysis (18). Birket et al. (19) demonstrated
enhanced sodium and calcium channel function that
resulted in higher and shorter spontaneous action
potentials in FD cardiomyocytes derived from
induced pluripotent stem cells. These findings sug-
gested that stored glycosphingolipids might alter ion
channel expression and/or cell membrane trafficking,
altering the electrical properties of cardiomyocytes.
Namdar et al. (20) proposed increased conduction
velocity in atrial and ventricular myocardium as
possible causes of electrocardiographic abnormalities
in FD, including a short PR interval without evidence
of an accessory pathway.

The model of FD as a simple storage cardiomyop-
athy has been challenged further by cardiac magnetic
resonance (CMR) imaging studies with T1 and T2
mapping assessing myocardial lipid content and
inflammation at different disease stages and sug-
gesting a central role for inflammation in early FD
progression (21,22) (Central Illustration). Clinical and
experimental evidence also support the role of
inflammation in FD and other lysosomal storage dis-
orders (16,23–26). Deficiency of a-Gal A limits degra-
dation, thus favoring accumulation of lipidic
antigens, whereas Gb3 and lyso-Gb3 may act as anti-
gens themselves that activate invariant natural killer
T-cells and lead to chronic inflammation and auto-
immunity (23–25) (Figure 2B). Glycosphingolipid-
mediated effects are abolished by anti-toll�like
receptor-4 antibodies, suggesting a pivotal role of this
inflammatory pathway (23,24), promoting tumor
growth factor-b�mediated extracellular matrix



FIGURE 2 Pathophysiology of FD

Myocytes

Left ventricular
hypertrophy

Cell
death

Myocardial
ischemia

Myocardial
fibrosis

Diastolic dysfunction

Systolic dysfunction Arrhythmias
Conduction disturbances

Golgi
dysfunction

Endoplasmic reticulum
dysfunction

Mitochondrial
dysfunction

Apoptosis

Impaired
energy

production

Sarcomere
dysfunction

Impairment of
autophagy

Antigen
presenting cell

cd1d

TLR4

iNKT

Ion channel
dysfunction

Degraded proteins
Oxydated proteins

Gb3 — lyso-Gb3

Inflammation

Genetic
defect

A

Lysosome

Gb3
Gb3

Gb3 Gb3

Intramyocardial
vessels

Conduction tissue

Gb3 and
lyso-Gb3 accumulation

B

(A) Classic pathophysiology of Fabry disease (FD) as a myocardial storage disease and (B) recently reported secondary pathways operating in

FD. Gb3 ¼ globotriaosylceramide; iNKT ¼ invariant natural killer T; lyso-Gb3 ¼ globotriaosylsphingosine; TLR4 ¼ toll-like receptor-4.
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CENTRAL ILLUSTRATION Proposed Evolution of Cardiac Involvement in Fabry Disease
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Proposed stages of Fabry disease (FD) cardiac involvement evolution along with clinical progression, imaging, biomarkers, main means to diagnosis, and in relation to

expected treatment efficacy. ECG ¼ electrocardiography; ERT ¼ enzyme replacement therapy; GLS ¼ global longitudinal strain; LGE ¼ late gadolinium enhancement;

lyso-Gb3 ¼ globotriaosylsphingosine; MBF ¼ myocardial blood flow; NT-proBNP ¼ NT-pro�brain natriuretic peptide.
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remodeling and fibrosis (25). Defective autophagy
also promotes inflammation through inflammasome
activators and release of reactive oxidative species
(23). Yogasundaram et al. (26) recently reported
elevated inflammatory and cardiac remodeling bio-
markers that were correlated with disease progres-
sion in patients with FD, while chronic inflammatory
activation was observed in endomyocardial biopsies
from patients with FD (27). Knott et al. (15) recently
linked myocardial inflammation with microvascular
dysfunction and perfusion abnormalities in early
cardiac involvement.
DIAGNOSIS AND STAGING OF

CARDIAC INVOLVEMENT

New insights into disease pathophysiology and
accrual of long-term ERT data have informed man-
agement of FD-related cardiac disease. Although
early diagnosis remains essential to maximize benefit
from disease-specific therapies (1–3), it is clear that
accurate staging of cardiac involvement with imaging
and biomarkers has important clinical implications.

In FD registries, LVH is reported in 53% of men
and $33% of women after the third decade of life,



FIGURE 3 Red Flags in FD
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with 60% of patients presenting with symptoms that
include heart failure with preserved ejection fraction,
chest pain, and arrhythmias (1–3). Therefore, FD
should be suspected in adult patients with such
symptoms of unclear origin. According to a stepwise
approach previously proposed for the diagnostic
workup of cardiomyopathies (28), recognition of
extracardiac red flags should raise the index of sus-
picion of classic FD (Figures 1, 3, and 4). In patients
with cardiac variant FD, differential diagnosis from
other HCMs is more challenging in the absence of
systemic manifestations, considering that all patterns
of LVH have been reported in FD (Figure 5). Cardiol-
ogy red flags, with variable sensitivity and specificity
(29), may rule out FD in the diagnosis of patients with
idiopathic LVH or HCM (Figures 1, 3, and 4). Subtle
electrocardiographic changes, including a short PQ
interval and repolarization abnormalities, precede
LVH and may be observed from childhood (20,30).
Progressive cardiomyopathy is associated with high
voltages, left ventricular strain pattern, and T-wave
inversion in the precordial leads. ST-T segment
depression and T-wave inversion in the inferolateral
leads may develop, reflecting posterolateral fibrosis
(Figures 5 and 6). Echocardiography is important for
initial diagnosis and monitoring of FD-related car-
diomyopathy; typical findings include concentric
LVH, disproportionate hypertrophy of papillary
muscles, loss of base-to-apex circumferential strain
gradient, and right ventricular hypertrophy with
normal systolic function, but none of them are
pathognomonic (4). In carriers of pathogenic variants,



FIGURE 4 Proposed Flowchart for Diagnosis of FD in Patients With Idiopathic LVH
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FIGURE 5 A Representative Case of p.N215S Cardiac Variant With Apical LVH

A 54-year-old woman referred for chest pain with no systemic red flags suggesting FD. (A) Electrocardiography showed giant negative T-waves. (B) Two-dimensional

echocardiography showed apical hypertrophic cardiomyopathy (HCM) with reduced systolic and (C) diastolic velocities at tissue Doppler. (D and E) Cardiac magnetic

resonance confirmed apical HCM with (F) low myocardial T1 values (857 � 20 ms; normal reference value 984 � 18 ms) suggesting FD. Genetic analysis detected N215S

mutation causing the FD cardiac variant.
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global longitudinal strain and speckle tracking allow
early detection of cardiac involvement independently
of LVH (4).

CMR has become central to the early differential
diagnosis and staging of cardiac FD (Figure 4). Typical
features include late gadolinium enhancement (LGE),
initially in the basal inferolateral wall, and low native
T1, likely reflecting glycosphingolipid myocardial
storage and occurring before the development of
significant LVH. FD is predominantly an intracellular
storage disease at variance with cardiac amyloidosis;
extracellular volume is typically normal except for
LGE-positive areas (15,30–32).

Application of multiparametric CMR has provided
valuable insights into myocardial biology of FD at
different stages and on patients’ responses to spe-
cific therapies. In a prospective observational study
that included 182 patients with FD, Nordin et al.
(21) proposed a 3-phase model of cardiac FD pro-
gression: 1) accumulation, starting in childhood and
characterized by progressive lowering of T1 with no
LVH or LGE; 2) inflammation and/or hypertrophy,
with low T1, initial LVH (mostly in males), and T2
mapping evidence of inflammation in the basal
inferolateral segment associated with LGE (some-
times preceding LVH, particularly in females and
Taiwanese patients with the IVS4 variant); and 3)
fibrosis and/or impairment, with increasing T1
values (pseudo-normalization) and LGE with wall
thinning in the basal inferolateral segment (21). In-
crease of myocardial hypertrophy versus the storage
component, increased interstitial and replacement
fibrosis, and myocardial inflammation are all
possible mechanisms of progressive T1 pseudo-
normalization in advanced phases. Other groups
reported low native T1 was detectable in up to 59%
LVH-negative patients and was associated with
clinical worsening at 12-month follow-up, whereas
reduction of myocardial blood flow seemed to pre-
cede T1 lowering in an initial stage (30,31).



FIGURE 6 A Representative Case of a 59-Year-Old Woman With Classic FD (c.124-125delAT) Showing Progression of Myocardial Damage and Inflammation

(Top) Baseline. (Bottom) changes at 2-year follow-up. (A and E) Electrocardiographic progression (deeper, more extensive T-wave inversion). (B and F) New basal

inferolateral late gadolinium enhancement (LGE) with progression of fibrosis (red arrow). (C and G) Low T1 (875 � 22 ms; normal reference value 984 � 18 ms). (D and

H) T2 mapping with new increase in T2 signal (edema) in area of LGE (black arrow). Abbreviations as in Figures 2 and 3.

Pieroni et al. J A C C V O L . 7 7 , N O . 7 , 2 0 2 1

Fabry Cardiomyopathy F E B R U A R Y 2 3 , 2 0 2 1 : 9 2 2 – 3 6

930
Concerning T2 mapping, Augusto et al. (32) showed
that when LGE was present, there were significant
associations between increased T2 values in the LGE
segments, an increase of troponin and N-terminal
pro–B-type natriuretic peptide, electrocardiographic
changes, and global longitudinal strain impairment.
In these patients, both LGE-related and global T2
elevation were higher than those in other myocardial
disorders (e.g., sarcomeric HCM). Persistent T2 and
troponin elevation over 1 year suggested chronic
myocardial edema and injury, with associated clinical
deterioration (32). If validated by histology or other
methods, these findings could demonstrate a pivotal
role for inflammation in FD pathogenesis, with po-
tential therapeutic implications.

In association with clinical assessment and imag-
ing, biomarkers like troponin and N-terminal pro–B-
type natriuretic peptide are important for cardiac
disease staging (Central Illustration). Preliminary
findings also suggest a correlation between inflam-
mation and cardiac remodeling biomarkers and dis-
ease progression (26). Lyso-Gb3 levels increase since
childhood, and their assessment may help in evalu-
ating the pathogenicity of GLA variants of uncertain
significance (33), whereas the role of lyso-Gb3 in
disease monitoring is still debated. Endomyocardial
biopsy with electron microscopy may be considered
for diagnosis of FD in patients with variants of un-
known significance and low lyso-Gb3 levels (Figure 4).

CLINICAL MANAGEMENT OF CARDIAC FD

The main goal of FD treatment is to prevent disease
progression and irreversible organ damage. Optimal
management of patients with FD requires a multi-
disciplinary approach involving physicians from
different specialties, specialized nurses, and psycho-
logical support (3). The pharmacological treatment of
FD includes disease-specific therapies, as well as
therapies to manage cardiovascular symptoms and
prevent major cardiovascular events.

FD-SPECIFIC THERAPIES. Approved FD-specific treat-
ments include ERTs and the pharmacological chap-
erone migalastat while new therapeutic approaches
are in development (7) (Table 1 and Figure 7).
ERT. ERT is administered intravenously bi-weekly
and is indicated in symptomatic patients with an
established FD diagnosis. ERT has profoundly
changed the natural history of FD and improved pa-
tients’ quality of life through effective treatment of



FIGURE 7 Currently Approved and Investigational Drugs for FD

Schematic representation of mode-of-action for approved and investigational therapies for FD. a-Gal A ¼ a-galactosidase A; ERT ¼ enzyme replacement therapy; other

abbreviations as in Figure 2.
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neuropathic pain, gastrointestinal manifestations, as
well as heat and exercise intolerance (1–3,6).
Long-term follow-up studies and registry data show
that ERT delays cardiac disease progression and re-
duces the cardiovascular event rate (1–3,6). Evidence
suggests that LVH may be prevented by early treat-
ment (Figure 8), and regression of mild LVH has been
reported in patients with both classic and cardiac
phenotypes, although evidence for late-onset cardiac
FD variants is limited. In advanced cardiac FD,
response to ERT is poor (Central Illustration) (1–3,6),
with no data suggesting any effect on myocardial
fibrosis and LVH progression.

Several factors influence cardiac response to ERT,
including phenotype, sex, timing and dosage of ERT,
and antidrug antibody (ADA) development against
exogenous a-Gal A (1–3,34).
Chaperone therapy . Chaperone molecules are
orally administered iminosugars that bind to the
catalytic domain of a-Gal A and promote its proper
folding and transportation to the lysosome. The same
molecules at higher doses may act as inhibitors of a-
Gal A. The chaperone molecule migalastat is
approved for administration every other day in adult
patients with amenable GLA variants, defined by the
presence of residual a-Gal A activity of at least 3% of
normal, and an increase in activity by at least 20% in
the presence of 20 mM migalastat in patients’ cultured
lymphocytes.

Clinical trials and open-label extension studies
showed that treatment with migalastat was associ-
ated with a significant decrease in the left ventricular
mass index (35). However, recent real-world data
showed a significant discrepancy between predicted
in vitro amenability and the effective in vivo increase
in a-Gal A activity and clinical response in some ge-
netic variants (36). This may be related to intrinsic
limitations of the in vitro amenability test and



FIGURE 8 Long-Term Effect of Early ERT

A 42-year-old man with classic FD (c.946delG) after 19 years of ERT. (A) Angiokeratomas in bathing-trunk region. (B) Normal electrocardiogram with sinus bradycardia.

(C) Echocardiography showing mild reduction of longitudinal strain in postero-inferior basal segment. (D and E) CMR with no evidence of LVH nor LGE (D) but with low

myocardial T1 values (820 ms; normal reference value 959 � 20 ms) (E). Abbreviations as in Figures 2, 3, 5, and 7.
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possible dosage-dependent inhibitory effects of
migalastat. These data suggest that biochemical and
clinical response to chaperone therapy must be care-
fully monitored to confirm clinical efficacy.

MANAGEMENT OF CARDIAC COMPLICATIONS AND

MONITORING. In addition to FD-specific therapies,
conventional therapies are necessary to manage car-
diovascular manifestations of FD. Updated expert
recommendations have been provided in a recent
consensus document (3). Clinical monitoring is
essential to assess disease progression and requires a
multidisciplinary approach. Disease progression may
be variable between organs, particularly in patients
receiving ERT, due to specific secondary pathways of
damage and variable response to therapy of different
tissues. Accordingly, a multiparametric clinical
scoring system has been recently validated (37). The
role of lyso-Gb3 in monitoring disease evolution and
treatment efficacy is still debated, although new
biomarkers, including microRNAs and lyso-Gb3 iso-
forms, are under investigation. The use of new CMR
techniques in FD monitoring is promising. A recent



TABLE 1 Currently Approved and Under Development Therapies for Fabry Disease

Drug Name
Mechanism of

Action
Route of

Administration Dose Notes

Approved

Agalsidase alfa ERT Intravenous 0.2 mg/kg/every other week Agalsidase alfa is the human protein a-galactosidase A produced in a human cell line
by genetic engineering technology.*

Agalsidase beta is a recombinant form of human a-galactosidase A and is produced by
recombinant DNA technology using a mammalian Chinese hamster ovary cell
culture. The amino acid sequence of the recombinant form, as well as the
nucleotide sequence that encoded it, are identical to the natural form of
a-galactosidase A.†

In patients with late-onset Fabry disease, ERT should be considered in the presence of
laboratory, histological, or imaging evidence of injury to the heart, kidney, or
central nervous system, even in the absence of typical Fabry symptoms.‡

In the absence of demonstrable Fabry disease�related tissue pathology or clinical
symptoms, ERT may not be appropriate, particularly in heterozygous female
patients; however, these patients should be monitored regularly by a
multidisciplinary care team.

ERT is not recommended in those patients with well-characterized benign
a-galactosidase variants.‡

Agalsidase beta ERT Intravenous 1.0 mg/kg/every other week

Migalastat Pharmacological
chaperone

Oral 123 mg/every other day Indicated only for adult patients with migalastat-amenable a-galactosidase variants
(i.e., a GLA variant translating into a-Gal A proteins that may be stabilized by
migalastat, thereby restoring their trafficking to lysosomes and their
intralysosomal activity).

No food 2 h before and after intake.§
Not recommended in those patients with well-characterized benign a-galactosidase

benign variants.‡

Under development
(phase III trials)k*

Pegunigalsidase-
alfa

ERT Intravenous 1 mg/kg/every other week Produced in tobacco cells and chemically modified with polyethylene glycol
Three ongoing phase III clinical trials.

Moss-aGal ERT Intravenous Being tested as 0.2 mg/kg to
measure pharmacokinetics
and safety

Produced in moss.
Phase I trial completed. Plans for phase II and III studies in progress.

Venglustat SRT Oral 15 mg/once daily Ongoing long-term, phase II trial.
Plans for phase III trials in progress.

Lucerastat SRT Oral 1.0 g/ twice daily (dose adjusted
for renal function)

Ongoing phase III trial for patients with Fabry disease with neuropathic pain.

*Shire Pharmaceuticals Limited. Agalsidase alfa. Summary of product characteristics. †Sanofi Genzyme. Agalsidase beta. Summary of product characteristics. ‡Ortiz A, Germain DP, Desnick RJ, et al. Fabry
disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab 2018;123:416�27. §Amicus Therapeutics UK Limited. Migalastat hydrochloride. Summary of product
characteristics. kInformation therapies under development taken from ClinicalTrials.gov.

ERT ¼ enzyme replacement therapy; SRT ¼ substrate reduction therapy.
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study showed that in ERT-naïve patients, 1 year of
ERT attenuated T1 lowering, with small reductions in
maximum wall thickness and stabilization of the left
ventricular mass index. However, in patients with
advanced disease and established ERT, CMR showed
a 1-year increase of T2 in the LGE area and worsening
global longitudinal strain (22).
NEW THERAPIES IN DEVELOPMENT. Therapeutic
strategies currently in development include second-
generation ERTs, substrate reduction therapies, and
gene and mRNA therapies (8) (Table 1 and Figure 7).
Plant-derived ERTs have been developed to reduce
ADA development and improve enzyme bio-
distribution. Pegunigalsidase-a is a novel pegylated
form of a-Gal A produced in a ProCellEx system
(Protalix Biotherapeutics, Carmiel, Israel) with a
longer circulatory half-life and increased heart and
kidney uptake compared with current ERTs (38).

Substrate reduction therapy is based on oral adminis-
tration of iminosugars that inhibit glycosphingolipid
synthesis directly, thereby lowering the cellular load of
Gb3. These drugs, previously validated in Gaucher dis-
ease, may be administered, regardless of FD genotype.
Two substrate reduction therapies, venglustat and
lucerastat, are currently in phase II and III clinical trials,
respectively (39,40).

In a recent phase II trial that adopted an ex vivo
approach, hematopoietic stem cells from a patient
with FD, transfected with lentiviruses (AVR-RD-01,
Avrobio) and re-administered, provided persistent
elevation in a-Gal A activity (7). Preclinical in vivo
approaches using liver-targeted, adenoviral-mediated
gene transfer in an a-Gal A knockout mouse model
demonstrated a dramatic increase of a-Gal A activity
and marked lyso-Gb3 reduction (41). However, it re-
mains unclear whether enzyme release by transfected
cells will result in adequate uptake by affected tissues.
In heterozygous females, cross correction does not
seem sufficient to prevent Gb3 accumulation and dis-
ease development. It is also unclear whether males
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with classic FD and null a-Gal A activity could develop
ADAs against the expressed enzyme, although
continuous exposure and endogenous synthesis and
glycosylation could result in tolerance in most treated
patients. Novel cardiotropic vectors that specifically
target myocardial tissue with increased delivery and
reduced immunogenicity (compared with conven-
tional adenoviral vectors) are currently undergoing
testing in nonhuman primates. Finally, gene delivery
systems continue to be developed. Encapsulation of
human a-Gal mRNA within lipid nanoparticles
increased a-Gal levels in the liver, heart, and kidney in
mice and nonhuman primates (42).

CURRENT CHALLENGES AND AVENUES FOR

FUTURE RESEARCH

Although ERT has significantly changed the natural
history of FD, cardiac involvement remains a key
prognostic determinant. Cardiac manifestations
benefit from early ERT, but clinical effects are limited
in more advanced cases. Several mechanisms that
potentially reduce ERT efficacy in myocardial tissue
have been proposed. Histological studies demon-
strated that clearance of Gb3 deposits, although sig-
nificant in endothelial cells, appear limited in
cardiomyocytes (43). Clearance of endothelial cells is
facilitated by their higher turnover compared with
terminally differentiated cells such as myocytes and
renal podocytes. In addition, myocardial concentra-
tions of the exogenous enzyme can be significantly
lower than those that reach endothelial cells. The
relevance of ERT dosage has also been debated, with
evidence suggesting that higher doses provide more
effective clearance of podocytes in serial kidney bi-
opsies in children with FD (44). Development of ADAs
may also reduce enzyme uptake in target tissues.
Lenders et al. (36) showed that neutralizing ADAs
impaired ERT efficacy, particularly in males with
classic FD, suggested a need for routine ADA titer
assessment and dose adjustments to achieve super-
saturation and to overcome neutralizing activity.
Other strategies to minimize the detrimental impact
of ADAs are being investigated, including immuno-
suppressive therapy and tolerance induction (7,36).

Exogenous enzyme instability at tissue level has
also been hypothesized, highlighting potential bene-
fits of ERT and chaperone co-administration. A phase
II study demonstrated a 1.2- to 5.1-fold increase of
enzyme activity in target tissues following ERT/
migalastat co-administration compared with ERT
alone (45). With the advent of new treatments,
different therapeutic combinations may provide op-
portunities to target different stages of the lysosomal
lipid storage pathway, although the increased cost of
treatment per patient using 2 disease-specific thera-
pies would represent a potential limitation of clinical
applicability.

Considering the limited accessibility to myocardial
tissue from living patients, the use of cardiomyocytes
derived from isolated pluripotent stem cells offers an
opportunity to assess early changes in FD car-
diomyocytes at a genome- and proteome-wide level.
Additional studies should also clarify whether path-
ogenic pathways may become storage independent,
thus representing alternative therapeutic strategies.
Recent studies showed that pentosan polysulfate, a
mixture of semi-synthetic sulfated polyanions,
demonstrated anti-inflammatory activity in patients
with type 2 mucopolysaccharidosis and reduced pro-
inflammatory cytokine secretion in cultured periph-
eral blood mononuclear cells from patients with FD or
Gaucher disease (46).

A deeper understanding of mechanisms of cardiac
damage in FD may also provide insights for other
cardiomyopathies and other noncardiac conditions.
Understanding the central role of defective lysosomal
and/or endosomal transport recently revealed links
between Gaucher and Parkinson’s disease (18). In
addition, the lysosomal protein NPC1, in which de-
fects result in Niemann Pick disease, is also involved
in the Ebola virus infection replication cycle.

CONCLUSIONS

Recent advances in our understanding of the
complexity of cardiac FD have significantly improved
diagnostic and therapeutic approaches, particularly
with respect to identifying storage-triggered mecha-
nisms of damage and detecting early cardiac
involvement. A deeper understanding of secondary
pathogenic pathways, particularly myocardial inflam-
mation, may influence future therapeutic strategies.

Although new disease-specific therapies appear
promising, diagnostic delay and timely initiation of
current treatments remain critical concerns for many
patients with FD, particularly those with late-onset
cardiac variant disease, in whom the effects of
disease-specific treatment can be more limited.
Therefore, collaboration between FD specialists and
cardiologists remains essential to identify patients
before the onset of cardiac involvement, to enable
them to gain maximum benefit from current and
future therapeutic approaches.
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