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ABSTRACT

We have studied the decay of turbulence in the solar wind. Fluctuations carried by the expanding wind are naturally damped because
of flux conservation, slowing down the development of a turbulent cascade. The latter also damps fluctuations but results in plasma
heating. We analyzed time series of the velocity and magnetic field (u and B, respectively) obtained by the WIND spacecraft at 1 au.
Fluctuations were recast in terms of the Elsasser variables, z± = u ± B/

√
4πρ, with ρ being the average density, and their second- and

third-order structure functions were used to evaluate the Politano-Pouquet relation, modified to account for the effect of expansion.
We find that expansion plays a major role in the Alfvénic stream, those for which z+ � z−. In such a stream, expansion damping and
turbulence damping act, respectively, on large and small scales for z+, and also balance each other. Instead, z− is only subject to a weak
turbulent damping because expansion is a negligible loss at large scales and a weak source at inertial range scales. These properties
are in qualitative agreement with the observed evolution of energy spectra that is described by a double power law separated by a
break that sweeps toward lower frequencies for increasing heliocentric distances. However, the data at 1 au indicate that injection by
sweeping is not enough to sustain the turbulent cascade. We derived approximate decay laws of energy with distance that suggest
possible solutions for the inconsistency: in our analysis, we either overestimated the cascade of z± or missed an additional injection
mechanism; for example, velocity shear among streams.
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1. Introduction

The solar wind, a supersonic and spherically expanding out-
flow, carries velocity and magnetic fluctuations that inter-
act nonlinearly on their way out to the heliosphere. The
wind speed is approximately constant for a distance from the
Sun of R & 0.3 au and fluctuations lose energy, since the
magnetic flux through a spherical surface and the angular
momentum must be conserved at all distances (Völk & Aplers
1973; Velli et al. 1989; Grappin & Velli 1996; Dong et al. 2014).
The proton temperature does not follow an adiabatic expan-
sion and decreases approximately as 1/R (Totten et al. 1995;
Hellinger et al. 2013; Maksimovic et al. 2020), with heating
probably resulting from turbulent dissipation of the above fluc-
tuations (Vasquez et al. 2007; Stawarz et al. 2009; Marino et al.
2008; Montagud-Camps et al. 2018, 2020). How turbulence is
effective in dissipating fluctuations energy depends on their
amplitude, and thus the achieved turbulent heating must result
from a balance between expansion and turbulence damping.

Ideally, by following the evolution of a parcel of plasma with
distance, one can disentangle the two sources of damping and
understand how turbulence develops and evolves in an expand-
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ing medium. In practice, this is not possible yet, and how energy
varies with distance can only be studied statistically; that is, ana-
lyzing data from different spacecraft (s/c) at several distances
taken in different epochs. Unfortunately, the solar wind has lon-
gitudinal, latitudinal, and radial structures that change according
to the solar cycle, making the statistical sample a nonhomoge-
nous collection of streams. In addition, fluctuations’ amplitudes
are roughly correlated with the stream speed and proton temper-
ature (Grappin et al. 1990). As a result, the evolution of fluctua-
tions’ energy with distance is very hard to constrain.

An exception is given by Alfvénic streams, whose source
was identified as funnels (Tu et al. 2005) inside large-scale coro-
nal holes that persist for several rotations of the Sun1. The term
Alfvénic stands for fluctuations whose properties recall Alfvén
waves: velocity (u) and magnetic field (B) are strongly correlated
(or anticorrelated) and density fluctuations are small. To describe
how they evolve with distance, we introduced the Elsasser vari-
ables, z± = u∓ sign〈BR〉B/

√
4πρ, in which BR is the radial com-

ponent of the magnetic field and z± corresponds to outward and
inward propagating fluctuations, respectively. With these vari-

1 Alfvénicity is also correlated with the stream speed but it is a dis-
tinct properties of streams originating from coronal holes (Marsch et al.
1981; Roberts et al. 1987; D’Amicis et al. 2019, 2021, 2022).
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ables, Alfvénicity is equivalent to z+ � z−. We further defined
the Elsasser energy, E± = 1/4〈z±|2〉, with 〈. . .〉 indicating a spa-
tial or temporal average, and we used a hat for the power spectral
density, Ê±(k) = 1/4 ẑ2

±, with ẑ± being the Fourier transform of
z±.

On average, E+ decreases with distance faster than E−. This
behavior is the opposite of what occurs in homogenous turbu-
lence in which the energy of the subdominant species is damped
more rapidly (dynamic alignment, Dobrowolny et al. 1980).
Inside, 1 au E+ ∝ 1/R1.7, which is faster than what was expected
from expansion (∝ 1/R) because of turbulent dissipation. The
energy in z− follows a milder decrease, sometimes compatible
with a constant energy or at worst decreasing as E− ∝ 1/R0.6

(Bavassano et al. 2002; Chen et al. 2020). The above scalings
result from the development and evolution of turbulence with
distance, which is not self-similar (e.g. Bavassano et al. 1982a,b;
Denskat & Neubauer 1982; Horbury et al. 1996; Roberts 2010).
Indeed, spectra are power laws whose indexes differ for mag-
netic and velocity fluctuations, changing with distance, latitude,
and the type of solar wind stream (e.g. Bavassano et al. 2000,
2002; Horbury & Balogh 2001; Podesta et al. 2007; Salem et al.
2009; Chen et al. 2013, 2020; Wicks et al. 2013; Shi et al. 2021;
Huang et al. 2023). Understanding the spectral evolution is
hence required to explain the decay of energy with distance and
the plasma heating.

Most of what we know on the spectral evolution of
Ê± inside 1 au comes from the analysis of three particular
Alfvénic streams, often termed Bavassano and Bruno streams
(B&B hereafter) owing to the authors who mostly analyzed
them (their first analysis was given in Bavassano et al. 1982a;
Denskat & Neubauer 1982). Such streams were detected by the
Helios s/c at three heliocentric distances with a recurrence of
about one solar rotation, since they were originating from the
same large-scale coronal hole. In the following, for the sake of
simplicity we shall use their properties as a reference for the evo-
lution of turbulence and we shall return in Sect. 8 to the conse-
quences of variations in spectral indexes and radial trends.

A schematic overview of the evolution of Ê± is given in
Fig. 1. The Ê+ spectrum has a double power-law shape, with
scaling roughly as f −1 and f −5/3 at small and large frequen-
cies, respectively. The energy per unit mass per frequency band
decays as 1/R at large scales and as 1/R2 at small scales
(Bavassano et al. 1982b). The decay is not self-similar because
the frequency break that divides the two ranges sweeps toward
lower frequencies as fc ∼ 1/R3/2 (Bruno & Carbone 2013;
Wu et al. 2021, 2020, 2022a), although in the distant heliosphere
a slower scaling is observed, fc ∼ 1/R1.1 (Horbury et al. 1996).
The nature of z− is less clear, and early observations show that
at all heliocentric distances its spectrum has a power-law scaling
with a Kolmogorov-like index, f −5/3. In addition, its energy does
not decay, or decays very slowly, with distance, suggesting the
existence of a background spectrum for z− (Tu & Marsch 1990).
Now, it can be shown (see the next section) that the spectral evo-
lution of Ê+ can be explained if the spectral break results from
the balance between the expansion timescale and a Kolmogorov-
like cascade timescale, as was first proposed by Tu et al. (1984)2.
Recovering the observed scaling of the frequency break requires
2 These authors actually provided a model for the spectral evolu-
tion of the magnetic fluctuations in the solar wind, obtaining a strik-
ingly good agreement with observations. However, as was illustrated in
Velli et al. (1990), the formation of a double power law resulted from
the advection of the 1/ f part of the spectrum toward larger frequencies
in Fourier space. Thus, despite the idea remaining valid, their model
cannot explain the radial evolution of spectra.

Fig. 1. Schematic view of the spectral evolution with distance of Ê± in
the fast Alfvénic stream. (i) Ê− does not evolve with distance and has
a Kolmogorov scaling at all wave numbers. (ii) Ê+ has a 1/k scaling
at large scales where energy decays as 1/R. (iii) At small scales, Ê+

has a Kolmogorov slope and the energy decays as 1/R2. (iv) The break
dividing the two branches shifts toward larger scales as R−3/2. Starting
with the first two properties, which are drawn in black, and using phe-
nomenological arguments, one can obtain the other properties, which
are drawn in grey.

the following assumptions: at large scales, Ê+ ∝ f −1, and it
varies with distance as 1/R, while Ê− ∝ f −5/3 at all scales and its
energy does not vary with distance within 1 au. These constraints
are indicated as black lines and arrows in Fig. 1, while the grey
color is used for properties that can be derived from them.

In this work, we use data from the WIND s/c at 1 au
to compare expansion and turbulence losses, to verify if and
how the balance between expansion and cascade occurs, and
finally which of the above assumptions to recover the scal-
ing of the frequency break are satisfied. The analysis of data
exploits the Politano-Pouquet relation (von Karman & Howarth
1938; Politano & Pouquet 1998), which is able to quantify scale-
dependent properties of turbulence: decay, cascade, and dis-
sipation (cf. Hellinger et al. 2021). In addition, the effects of
the expansion can be included via the expanding box model
(EBM, Grappin et al. 1993). We use a form adapted to incom-
pressible magnetohydrodynamics (MHD) that was derived in
Hellinger et al. (2013). To summarize, we would like to answer
the following questions: whether there is a separation of scales
between turbulence and expansion; why Ê+ has a flat spectrum
at large scales whose power spectral density decays as 1/R; and
why the energy and power law scaling of Ê− do not vary with
distance. While it is quite obvious that we cannot say anything
about the origin of the 1/ f spectrum at large scales using data at
1 au, our analysis will allow us to better understand the spectral
properties of E± and to predict their decay with distance.

The structure of the paper is the following. Section 2 explains
how the spectral evolution in Alfvénic streams can be understood
by simple phenomenological arguments and a few observational
constraints. In Sect. 3, we briefly comment on the Politano-
Pouquet relation in the framework of the EBM; that is, a scale-
to-scale energy budget equation in which the plasma expansion
is accounted for. In Sect. 4, we describe the analyzed intervals
of data and how we determine the terms entering the energy
budget equation for each field, z±. Sections 5 and 6 contain the
results of our analysis of the Politano-Pouquet relation applied to
a non-Alfvénic and an Alfvénic stream, respectively. In the next
two sections, we focus on the Alfvénic stream. In Sect. 7, we
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use results at 1 au to infer how the Elsasser energies decay with
the distance. In Sect. 8, we compare the turbulent losses with
the injection from sweeping of the frequency break and find an
inconsistency in the energy budget of turbulent fluctuations. In
the final section, we summarize the main results of our work,
discuss their impact and limitation, and outline possible reasons
for the above inconsistency.

2. Spectral evolution: Phenomenology

In the following, we assume that the Taylor hypothesis holds
for the frequencies of interest, so that frequencies transform
into wave numbers as f = kVSW, where VSW is the solar wind
speed that is assumed to be much larger than the Alfvén speed,
VSW � VA. We now show how we can understand the spectral
evolution of the solar wind turbulence starting from the follow-
ing two observational constraints. (i) At large scales, the spec-
trum of z+ is flat and its energy varies as 1/R with distance; that
is,

Ê+ = Ê0
+

(
f
f0

)−1

×

(
R
R0

)−1

for f < fc, (1)

where Ê0
+ is the spectral energy density per unit mass evaluated

at a given scale, f0, and a given distance, R0. (ii) The spectrum
of z− has a unique power law with a Kolmogorov spectral index
and it does not vary with distance; that is,

Ê− = Ê0
−

(
f
f0

)−5/3

for all f and R, (2)

and again Ê0
− is the spectral energy density per unit mass evalu-

ated at a given scale, f0, at any distance.
Following Tu et al. (1984), we suppose that the frequency

break is the scale at which the cascade timescale of z+ equals the
timescale at which the plasma expands, t+casc = texp. We assume
that the cascade timescale is the nonlinear timescale, and from
Eq. (2) we have

t+casc = t+NL = 1/kz− = [z0
−VSW/ f0]( f / f0)−2/3, (3)

where we have used the Taylor hypothesis, f = kVSW. The
expansion timescale is defined as

texp = |∇ · VSW|
−1 = R/2VSW, (4)

where we have enforced a spherically expanding wind at a con-
stant speed, VSW = const, oriented in the radial direction. Since
the nonlinear timescale is independent of R and decreases with
scale, while the expansion timescale increases with R and is
independent of f , at any given distance there exists a scale, fc,
for which the two timescales are equal. For f < fc the dynam-
ics is dominated by expansion, while for f > fc the nonlinear
dynamics dominates. By imposing the equality of timescales one
obtains the critical wave number,

fc
f0

=

[
2VSW/R0

z0
− f0/VSW

]3/2

×

(
R
R0

)−3/2

, (5)

which corresponds to the observed scaling of the frequency
break. In the square brackets we have the ratio of the nonlinear
timescale over the expansion timescale evaluated at a reference
scale, f0, and distance, R0. At a given distance, the break occurs
at smaller scales for slower wind or for larger sunward fluctua-
tions, independently of the value of Ê+.

We finally derive how Ê+ decays with distance in the branch
of the spectrum that is dominated by the cascade; that is, for
f > fc. At those wave numbers, Ê− has a Kolmogorov slope;
thus, the unique solution that also ensures a constant cascade
rate for Ê+ is again a Kolmogorov scaling,

Ê+ = Êc
+(R)

(
f
fc

)−5/3

for f > fc, (6)

where Êc
+ is the spectral energy density evaluated at the scale

of the break that varies with distance according to Eq. (5). To
evaluate how Êc

+ changes with distance, we considered the fol-
lowing situation, which is illustrated schematically in Fig. 1. At
large scales, Ê+ is decreasing as 1/R, but at the same time the
frequency break is climbing along the 1/ f spectrum at a rate
proportional to R−3/2; thus, the energy at the break at a new dis-
tance, R, must increase as

Êc
+(R) = Êc

+(R0)(R/R0)1/2. (7)

Substituting Eqs. (7) and (5) into Eq. (6) we finally obtain

Ê+(R) = Êc
+(R0)

(
f
fc

)−5/3

×

(
R
R0

)−2

for f > fc, (8)

which gives the observed scaling with distance (Bavassano et al.
1982a). We stress that the faster 1/R2 decay follows from the
decay of energy in the 1/ f part of the spectrum and from the
sweeping of the frequency break. In fact, in the inertial range the
energy is transferred toward smaller scales without dissipation.
In this framework, the injection of energy in the turbulent cas-
cade is due to the shift of the frequency break. We can thus eval-
uate the loss of energy associated with the variation in “width”
of the low-frequency branch as the product of the spectral energy
density at the break times the variation in the break scale:

Qinj = Êc
+∂t fc = Êc

+VSW∂R fc =
3
2

VSW

R
fcÊc

+. (9)

In the second equality we assumed that the plasma is mov-
ing at a constant solar wind speed and for the third equality
we used the scaling of the break with distance, Eq. (5), which
brings the coefficient 3/2 in front of the expression: the faster
the break sweeps, the stronger the energy injection is. When
the Alfvén speed is much smaller than the solar wind speed,
this expression is equivalent to the one obtained from the spec-
tral model of Tu et al. (1984) and compared to the perpendic-
ular heating rate of protons in Wu et al. (2020, 2021, 2022b).
In this work, we instead estimate the proton heating rate as the
one required to maintain a nonadiabatic temperature decrease,
Tp ∝ R−γ, obtained from the evolution of temperature of a
plasma parcel that is advected at a constant radial solar wind
speed (Verma et al. 1995; Vasquez et al. 2007),

QVV =
3
2

(
4
3
− γ

)
kBTU
mpR

=
1
2

kBTU
mpR

· (10)

Since we are using measurements at 1 au only, we use γ = 1±0.2
as a power-law index for the temperature decrease (Totten et al.
1995; Hellinger et al. 2013; Maksimovic et al. 2020).

3. Expanding box model and the Politano-Pouquet
law

Following Hellinger et al. (2013), we outline a derivation of the
Politano-Pouquet law including expansion terms (more details
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can be found in that paper, but see Gogoberidze et al. 2013 for a
different approach and final equation). We started from the EBM
originally derived for fully compressible MHD (Grappin & Velli
1996). We recall that EBM describes the evolution of a par-
cel of plasma moving radially from the sun at a constant speed
higher than the Alfvén velocity. Expansion provides two main
effects: it stretches the volume in the coordinates perpendicular
to the radial direction, introducing anisotropies in the field gra-
dients; and it introduces linear damping terms proportional to
the expansion rate so that linear invariants are preserved (energy
is not conserved because of the work done by the expansion on
the plasma volume). Thus, EBM takes into account the volume
expansion, while ensuring the conservation of mass, momentum,
magnetic flux, and adiabatic evolution in the absence of external
heating and/or heat fluxes. We first obtained the incompressible
MHD equations in the EBM by imposing incompressibility in
the induction and momentum equations (no continuity and pres-
sure equations were needed). Then, we rewrote the equations of
incompressible MHD in term of the Elsasser fields by dividing
the induction equation with the average density and summing
and subtracting it from the momentum equation. Assuming equal
resistivity and viscosity, η = ν = µ/ρ, one obtains

∂t z±+ z∓ ·∇z±−ν∇2 z±+∇Ptot = −
1
2

VSW

R
[
z+ + z− − 2z∓,R

]
, (11)

where on the right-hand side we have grouped the new terms
related to expansion and the index R indicates the radial compo-
nent of fluctuations of the Elsasser variables. This form explicitly
shows that expansion introduces non-diagonal terms that couple
z± via the inhomogeneity of the flow, ∇ ·VSW = VSW/2R; that is,
a reflection term in a particularly simple form.

Apart from the new linear terms on the right-hand side, the
equations are formally identical to those of the incompressible
MHD. Following the same procedure as the homogenous case
(e.g. Politano et al. 1998; Carbone et al. 2009), one obtains the
usual Politano-Pouquet law plus some terms proportional to the
second-order structure functions and the expansion rate. Specif-
ically, we evaluated Eq. (11) at a position, x, and x + `, with
` being a vector increment, took the difference between them,
and multiplied them by the increments δz± = z±(x + `) − z±(x).
After averaging over space, 〈. . .〉, and exploiting the assumptions
of homogeneity and incompressibility, the Politano-Pouquet law
reads:

1
4
∂t

〈
|δz±|2

〉
= − ε± +

1
2
ν∇2

`

〈
|δz±|2

〉
(12)

−
1
4
∇` ·

〈
|δz±|2 δz∓

〉
−

1
4

VSW

R

[〈
|δz±|2 + δz+ · δz− − 2δz+,R · δz−,R

〉]
.

On the right-hand side, ε± = 〈ν∂iz±j ∂ jz±i 〉 = −2dtE± is twice the
dissipation rates of the two Elsasser energies (E± = 〈z2

±〉/4), ν
is the viscosity, also equal to the resistivity, and gradients have
been computed with respect to the increment, `. In the last term,
R is the radial distance, VSW is the (constant and radial) solar
wind speed, and the index R indicates the radial component of
z±. All quantities, except ε±, are functions of the increment, `,
and Eq. (12) is a scale-to-scale energy budget equation. We recall
that on the left-hand side, the time derivative represents the vari-
ation with radial distance. In fact, it is taken in the frame of the
expanding box that is moving at a constant speed in the radial
direction, from which ∂t = VSW∂R.

We next proceeded by assuming isotropy, since spectral
anisotropy cannot be computed from single s/c data and would
require further assumptions on the geometry of turbulence.
Isotropy allows us to consider increments as scales and to give
a simple interpretation of each term (a similar meaning can be
obtained by integrating on a sphere and by using Gauss’ theo-
rem, as in Wang et al. 2022). We thus define

S±(`) =
1
4
〈δz2
±〉, (13)

which is the energy density of z± fluctuations at scales ≤`,

D± = ε± − 2∇2
`S±, (14)

which is the dissipation of energy at scales <`,

K± = −
1
4
∇` ·

〈
|δz±|2 δz∓

〉
= −

1
4
∇` · Y±

≈ −
3
4

Y± · ˆ̀
`

= −
3
4
〈δz2
±δz∓,R〉
`R

, (15)

which is the energy flux coming from scales larger than `, and
finally

F
exp
± = −

VSW

R
[S± + SR] , (16)

which is the forcing (often a damping, as we shall see) due to
expansion acting on scales ≤`. Using the above definitions, the
scale-to-scale energy budget equation has a compact form,

∂tS± = −D± +K± + F
exp
± , (17)

with the following meaning. The variation with distance of the
energy density of fluctuations at scales smaller than ` is due
to the competition between the supply of energy coming from
scales larger than ` (K) and the damping of energy at scales
smaller than `, which is realized by turbulent dissipation (−D)
and expansion (F exp).

A few comments are in order. First, in Eq. (15) we have
implicitly defined the third-order mixed structure functions (i.e.,
a vector field), often termed the Yaglom field, as Y± = 〈δz2

±δz∓〉.
Obtaining the cascade rate requires computing the divergence of
Y± in the increment space, which is clearly not feasible with sin-
gle s/c data (Pecora et al. 2023a). Our estimate of the cascade
rate, K , is based on the assumption of isotropy that allows us to
write the second-last equality in Eq. (15) (see e.g., Stawarz et al.
2009 for anisotropic versions that are based on heuristic geo-
metric models of turbulence). There Y · ˆ̀ indicates the projec-
tion of the Yaglom field in the direction of increments, and in
the next equality we used the index R to specify that both Y
and ` are necessarily along the solar wind radial flow. When
K takes a constant positive value within a range of scales, we
can identify this range as an inertial range: in fact, for any given
scale, `, belonging to this range the energy flux coming from
scales >` is the same; in other words, the cascade of energy
is constant in this range. If, instead, K has a negative constant
value within a range of scales, we can interpret it as a range
in which an inverse cascade is occurring. However, since K is
a signed quantity, it requires a large statistic to converge (see
for example Podesta et al. 2009), and positive and negative con-
stant values are almost equally probable on a scale of about
an hour (Coburn et al. 2014). Second, in writing the expansion
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term, Eq. (16), we implicitly defined the second-order structure
function for the (component-anisotropic) residual energy,

SR =
1
4
〈δz+ · δz− − 2δz+,Rδz−,R〉 =

1
4
〈δu2 − δb2

− 2(δv2
R − δb

2
R)〉

= Su − Sb −
1
2
〈δv2

R − δb
2
R〉. (18)

At variance with the cascade rate, only the use of EBM is
required to obtain F exp

± from single s/c data, and since it involves
only second-order structure functions its calculation rapidly con-
verges. F exp

± has two contributions: a diagonal term proportional
to the field, S±, which is responsible for the so-called WKB
losses and leads to an energy decay ∝1/R; and a non-diagonal
term (i.e., involving the product of δz+ and δz−) that we label
Non-WKB, since it may cause deviation from the 1/R decay by
coupling the two energies, S±, via the background inhomogene-
ity and since it is non-vanishing when |δu| , |δb|.

It is instructive to examine the energy budget, Eq. (17), writ-
ten for the total energy to highlight the contributions of each term
on different scales. Since the total dissipation is ε = (ε+ + ε−)/2,
the energy budget equation is formally the same (just neglect the
subscripts ±) if we use the following definitions: S = (S+ +
S−)/2,D = (D+ +D−)/2, K = (K+ +K−)/2, and

F exp = (F exp
+ + F

exp
− )/2 = −

VSW

R
[S + SR] (19)

= −
1
2

VSW

R
[〈δu2⊥〉 + 〈δb2

R〉].

The latter expression shows that expansion is always a damping
term for the total energy, although only proportional to part of it.
At large scales (LS), the cascade is negligible while D = ε, the
structure function is twice the total energy, and one can finally
write

∂tS|LS ≈ 2∂tE = −ε + F exp; (20)

that is, the damping of energy is given by the sum of the turbulent
damping and expansion damping. While the left-hand side of
Eq. (20) cannot be computed with single s/c data (we recall that
∂t ≡ VSW∂R), we can directly evaluate F exp on the right-hand
side and indirectly evaluate the turbulent dissipation by consid-
ering the total energy budget, Eq. (17), in the inertial range (IR).
There, F exp is negligible since it is proportional to S and SR,
which are decreasing functions of scale. In a quasi-stationary
state the energy is conserved in the inertial range; the left-hand
side vanishes, so that one has

∂tS|IR ≈ −ε +K ≈ 0, (21)

which allows one to compute the turbulent dissipation, ε. The
flux coming from scales larger than ` is balanced by the total
dissipation at scales smaller than `. Thus, although we cannot
directly measure the damping of energy with distance, we esti-
mated it by obtaining the turbulent damping and the damping
due to expansion at inertial and large scales, respectively.

One can obtain a similar equation for the cross helicity, Sc =
(S+−S−)/2, with analogous definitions of the other terms,Kc =
(K+ − K−)/2, εc = (ε+ − ε−)/2, and

F
exp

c = (F exp
+ − F

exp
− )/2 = −

VSW

R
Sc. (22)

If the cross helicity also decreases with scale, a separation of
scales should hold, similar to that for the total energy. In Sect. 7,
we evaluate at 1 au the energy budget Eqs. (20), (21) for E±. We
also find constraints that allow power-law scaling for the decay
of energies with distance, and thus the extrapolation of E± in the
inner heliosphere.

Fig. 2. Overview of the selected intervals of fast and slow streams. Light
green and green areas correspond to the fast Alfvénic and slow non-
Alfvénic streams, respectively. From top to bottom: Solar wind speed,
VSW (black), and magnetic field intensity, |B| (red); proton temperature,
T (black), and proton density, n (red); correlation between magnetic and
velocity fluctuations, CvB, at a 1 h scale.

4. Data interval and analysis

We have used data collected on the WIND s/c by 3DP/PESA-
LOW and MFI instruments, the latter resampled at a 3 s resolu-
tion on proton data, during the year 1995 from DOY 126 at 0 h to
DOY 131 at 12 h, a period previously studied in D’Amicis et al.
(2019) to distinguish properties of fast and slow Alfvénic
streams, compared to traditional slow streams. An overview of
the data is given in Fig. 2, with green-shaded areas highlighting
the two intervals that are analyzed in the following. From top to
bottom, with black lines, we plot the solar wind speed, VSW, the
proton temperature, T , and the correlation between the veloc-
ity and magnetic fluctuations, CvB = ∆u · ∆B/|∆u||∆B|, where
∆u = u − 〈u〉1 h is the velocity fluctuation obtained by subtract-
ing a running average on a 1 h scale (and similarly for the mag-
netic field, B). The shaded light green area corresponds to a fast
and hot stream, with a strong correlation between fluctuations;
in other words, a strongly Alfvénic stream. The shaded dark
green area corresponds to a slow and cold stream with poor cor-
relation; in other words, a non-Alfvénic stream (these intervals
roughly correspond to 3F and 3TS, respectively, in Table 1 of
D’Amicis et al. 2019). With red lines in the top and middle pan-
els, we also plot the magnetic field intensity (|B|) and the proton
density (n), respectively. The two intervals were selected because
both |B| and VSW are roughly constant. However, in the slow
stream, n increases linearly. Our analysis is based on incom-
pressible MHD, and thus this trend impacts the average n0 used
to define magnetic fluctuation in Alfvén units. In the fast stream,
one can see that fluctuations on a scale of about half a day are
approximately correlated in VSW and T , as well as in n and |B|;
also, VSW is approximately anticorrelated with n (and so T with
|B|). This suggests that the fast stream interval has a substructure
of jets that are faster, hotter, fainter, and less magnetized, possi-
bly representing patches of switchback trains. For completeness,
the main average properties of the two streams are summarized
in Table 1.

Within each interval, we computed time increments, τ, of
the velocity and magnetic fields, δu = u(t + τ) − u(t) and
δb = b(t + τ) − b(t), where b = B/√µ0mpn0, with n0 being
the average density (mp and µ0 are the proton mass and the vac-
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Table 1. Main characteristics of the non-Alfvénic (NALF) and Alfvénic (ALF) streams.

Stream Dates VSW n Tp |B| VA θBV zrms
+ zrms

− 〈CvB〉 σr
Year, (DOY) (km/s) (cm−3) (105 K) (nT) (km/s) (deg) (km/s) (km/s) – –

NALF 1995 (104.5–106.0) 349 9.96 0.35 2.90 3 31 21 26 0.07 –0.68
ALF 1995 (98.0–101.4) 650 3.27 2.28 5.07 61 148 80 33 0.86 –0.36

Notes. The first five columns after the periods delimiting the streams are the averages over the stream duration of the solar wind speed (VSW),
proton number density (n), proton temperature (Tp), magnetic field magnitude (B), and Alfvén speed (VA). θBV is the angle between the mean
magnetic field and the mean solar wind speed. zrms

± are the root mean square amplitudes of the Elsasser variables. 〈CvB〉 is the correlation between
velocity and magnetic fluctuations. Finally, σr = −2z− · z+/(z2

+ + z2
−) is the normalized residual energy. For these last four quantities, fluctuations

and Elsasser fields were computed by removing a 1 h running average.

Fig. 3. Second-order structure functions for the two Elsasser fields, S+

and S−, in black and red lines, respectively, for the non-Alfvénic inter-
val. The component-anisotropic residual energy, SR in Eq. (18), is plot-
ted in blue. A thin line is used for negative values and a thick line for
positive ones. The dotted line is a reference for the Kolmogorov scaling,
S ∝ `2/3.

uum permittivity). Finally, we obtained time increments of the
Elsasser fields from those of velocity and magnetic fluctuations
as δz± = δu ∓ sign〈BR〉δb, where 〈BR〉 is the average radial
magnetic field components. In this way, z± indicate outward and
inward propagating fluctuations independently of the direction
of the mean magnetic field. We finally constructed second- and
third-order structure functions,S±,Su,Sb,SR, by averaging over
t. We could now obtain the cascade rates, K±, in Eq. (15) and
the expansion terms, F exp

± , in Eq. (16) by using the s/c position
(R = 1 au for the WIND s/c) and the Taylor hypothesis to convert
time increments into space increments in the (only accessible)
radial direction, ` = 〈VSW〉τ, with 〈VSW〉 the average solar wind
speed.

We now show the results of applying the Politano-Pouquet
law to the non-Alfvénic stream and we consider the Alfvénic
stream in the next section. Often log-log plots will be used to
show second- and third-order structure functions that may have
a positive or negative sign. As a rule, we plot the absolute values
of any quantity, using thick lines when it is positive and thin lines
when it is negative.

5. Slow non-Alfvénic stream

The second-order structure function, S±, computed in the non-
Alfvénic stream is shown in Fig. 3 with black and red lines,
respectively. As was expected for a low-cross-helicity stream,
the two structure functions coincide at all scales, with the excep-
tion of the very large ones (τ & 3 h). On small scales, τ . 0.1 h, a

Fig. 4. Cascade rate and expansion losses, K and F exp, respectively,
in green and blue lines, for the Elsasser field z+ and z− (top and bot-
tom respectively) in the non-Alfvénic stream. Thick (thin) lines indicate
positive (negative) values.

Kolmogorov-type scaling is clearly visible, withS ∝ `2/3 (dotted
line), while at intermediate scales, 0.1 h . τ . 3 h, the structure
function is flatter. In the same plot, the component-anisotropic
residual energy, SR, is also shown with a blue line: it is negative
at all scales but its value is a factor of three smaller than S± and
somehow smaller at small scales. This implies that the expan-
sion term, F exp

± , is dominated by S± and is a damping term (see
Eq. (16)).

We now show in Fig. 4 the cascade rate, K±, and the expan-
sion rate,F exp

± , with green and blue lines, respectively, for z+ (top
panel) and for z− (bottom panel). Considering first the cascade
rate in green lines: while K+ in the top panel is more irregular
and changes sign every decade in scales,K− in the bottom panel
has a flat part in the range of 0.05 h . τ . 3 h, indicating the
presence of a constant cascade rate in an extended inertial range.
This qualitative difference also impacts the value of the cascade,
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Fig. 5. Cascade and expansion losses for the total energy (left) and the
cross helicity (right) for the non-Alfvénic stream.

with K− ≈ 5K+, and is in contrast with the similarities of S±.
However, since this interval has relatively strong fluctuations in
density, along with an increase in its average value, it is sur-
prising that the isotropic incompressible approximation of the
Politano-Pouqet law works quite well, at least for one species.
Considering now the expansion terms, F exp

± (blue lines), which
are basically identical because of the similarities in S±: expan-
sion is negative (thin line); that is, it is a damping term whose
importance decreases with scale. For z−, it is comparable to the
cascade rate at large scales, τ & 3 h, with an average value of
≈600 W/kg for scales larger than a few hours, and it becomes
negligible for τ . 1 h (for z+, it becomes negligible at smaller
scales, τ . 0.1 h). We can somehow identify the beginning of
the inertial range with the scale at which the cascade becomes
constant: τ ≈ 2 h. When the damping due to expansion is compa-
rable to the turbulent damping evaluated at inertial range scales,
energy starts to be efficiently transferred to smaller scales; in
other words, we are entering the injection range at a scale of
τ ≈ 6 h. Thus, comparing expansion and turbulent damping and
examining the form of K(τ), the injection range for the non-
Alfvénic stream can be identified with the scales τ ∈ [2, 6] h,
while expansion perhaps becomes important at larger scales.

Until now, we have analyzed the energy budget equation of
the Elsasser energies, S±. An alternative but equivalent view-
point is offered by an inspection of the total energy and of the
cross helicity, whose cascade and expansion are plotted in Fig. 5.
The total energy in the left panel does not show much difference
compared to S− in Fig. 4, but we can see that on small scales the
total losses change sign and are smaller. This is a consequence of
K± having the opposite sign and similar values on small scales.
The cross helicity in the right panel has an interesting aspect:
the expansion term is negligible at inertial range scales, while it
is a source and comparable to the cascade at large scales. How-
ever, interpreting non-Alfvénic turbulence with incompressible
MHD may be misleading and a fully compressible analysis is
required (see Montagud-Camps et al. 2022 for an application to
MHD simulations).

6. Fast Alfvénic stream

In Fig. 6, we show the second-order structure functions for the
Alfvénic stream: as was expected, S+ � S− at all scales (com-
pare the black and red lines) but their spectral properties differ.
At large scales, τ & 3 h, S+ is flat and reflects the presence of
the 1/ f range in the power spectrum. At intermediate scales,
no clear power-law scaling is seen, and finally at small scales,
τ . 0.1 h, a Kolmogorov-like scaling shows up. On the contrary,
S− has a unique power-law scaling for 0.01 h . τ . 10 h with
a relatively flat spectrum that approximately follows S− ∝ `0.4.

Fig. 6. Same as Fig. 3 but for the Alfvénic interval.

Fig. 7. Same as Fig. 4 but for the fast Alfvénic stream.

At very small scales, S− flattens, possibly because of the noise
in the velocity measurements. In the same figure, we plot with a
blue line the (component-anisotropic) residual energy,SR, which
is again negative. Its value is much smaller thanS+, meaning that
the latter determines the shape of the expansion term, F exp

+ . On
the contrary, the absolute value of SR is comparable to and even
slightly larger than S−, and its expansion term will substantially
differ from the non-Alfvénic case, as we see below.

The cascade and expansion terms for z± are plotted in the
top and bottom panels of Fig. 7, respectively, with the same for-
mat of Fig. 4 (green and blue lines for K and F exp, respectively,
and thin and thick lines for negative and positive values, respec-
tively). As in the previous case, F exp

+ < 0, expansion is a damp-
ing term for the dominant Elsasser field and its shape follows
the one of S+. In the 1/ f part of the spectrum, the only damping
is due to expansion, and because S+ � |SR| it implies a WKB
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scaling. The energy per unit mass per frequency band is expected
to decay as 1/R. The cascade,K+, is negligible (and negative) at
large scales belonging to the 1/ f range, τ & 3 h, then its value
slowly increases and finally reaches a constant (positive) value
for a decade at scales of 0.01 h . τ . 0.1 h that we identify as the
inertial range. The inertial range is established at smaller scales
with respect to the non-Alfvénic case.

The separation of scales between K+ and F exp
+ supports the

original idea of Tu et al. (1984) that the large-scale break in
the frequency spectrum marks the separation between scales
whose dynamics is governed by the turbulent cascade or by
expansion. In addition, the rough equality between the damping
due to expansion at large scales and turbulence at small scales
(K+ ≈ F

exp
+ ≈ 1.2 × 104 W/kg) suggests that in a stationary

state the position of the frequency break adapts – shifts to lower
frequencies – in order to maintain a balance between the expan-
sion time and the cascade time. As in the non-Alfvénic stream,
we can identify the injection range with τ ∈ [0.1, 3] h, where
the small scale is the top of the inertial range and the large scale
is identified with the scale at which the damping due to expan-
sion is comparable with the turbulent damping measured at iner-
tial range scales. The injection range is larger than in the non-
Alfvénic stream because the cascade develops at a smaller scale,
while injection starts at about the same large scales. The large
scale is placed where F exp

+ starts to decrease and coincides with
the scale at which also S+ starts to decrease; a plausible location
of the frequency break at the end of the 1/ f range.

Considering now the cascade and expansion for z− in the
bottom panel of Fig. 7: at large scales, τ & 3 h, the expan-
sion terms oscillates and its absolute value is negligible. In fact,
as was anticipated when analyzing second-order structure func-
tions, F exp

− ≈ 0 because S− and SR compensate each other. Also,
the cascade rate is small and of the same order, so that at large
scales z− is not damped. At first sight, this is consistent with the
existence of the background spectrum of Ê−, as was suggested
by Tu & Marsch (1990). At intermediate scales, the expansion
term is constant and positive, meaning that F exp

− is a source
of energy for the subdominant species. In the same range, the
cascade rate increases, then it changes sign while keeping the
same absolute value, and stays constant for a decade. Neglect-
ing the change of sign, the inertial range of z− begins at larger
scales, τ ≈ 1 h. Although acting on about a decade in scale,
and thus possibly changing the nature of nonlinear interactions
with respect to the homogenous case, the expansion is ten times
smaller than the absolute value of the cascade. Thus, we expect
E− to not keep the same energy with distance but to be weakly
damped by the cascade.

Comparing the top and bottom panels of Fig. 7, it is evi-
dent how the third-order structure functions, K±, have opposite
signs in the whole range of scales at which the cascade is some-
how regular for both species (τ . 3 h). Additionally, each of
them changes sign at a scale of about 0.2 h. The physical ori-
gin for the opposite sign of K± can be understood by recalling
that even in Alfvénic streams a magnetic energy excess devel-
ops. Since K± ∝ 〈|δz2

±|δz∓,R〉, the sign of the proxy for the cas-
cade is given by that of δz∓,R, weighted by the energy of fluc-
tuations, |δz2

±|. If large fluctuations are correlated with a strong
magnetic excess, δb � δu, then K± have opposite signs (see
also Coburn et al. 2015; Vasquez et al. 2018, for details). The
switch of sign at a given scale is probably due to a change in the
symmetry of fluctuations around zero at that scale (e.g., from
positive to negative skewness), but its physical origin has not
been investigated yet. We speculate that expansion may play a
role, since it introduces correlations thanks to the residual energy

Fig. 8. Same as Fig. 5 but for the Alfvénic stream.

term, SR ∝ 〈δz+ · δz−〉, and acts on the same scale at which
the switch of sign is observed. Both phenomena are reported
in many works (Sorriso-Valvo et al. 2007; Stawarz et al. 2010,
2011; Coburn et al. 2014, 2015; Vasquez et al. 2018) and an
attempt at classifying shapes of third-order structure function
and how their occurrence varies with the type of stream in the
Helios data is reported in Wu et al. (2022a). Concerning the
energy budget of fluctuations, irrespective of the sign we con-
sider |K±| to be a good measure of the direct cascade of energy.

The profiles ofS andSc are shown for completeness in Fig. 8
and are very similar to those of S+ in Fig. 7. This is not sur-
prising because S+ � S−, |K+| � |K−|, and |F exp

+ | � |F
exp
− |.

We remark that expansion damps cross-helicity not only at the
largest scales as one may expect, but also on a wide range of
intermediate scales.

7. Approximate decay of energy in Alfvénic stream

We summarize in Table 2, the values of the damping due to
expansion, F exp

± , and due to the turbulent cascade, K±. The val-
ues were obtained by fitting the logarithm of the correspond-
ing quantities to a straight line over a decade of scales and the
uncertainties are the standard deviations in these intervals. Dif-
ferent fitting ranges have been used for the value K in each
stream; namely, τ ∈ [10−1, 1] h and τ ∈ [10−2, 10−1] h for the
non-Alfvénic and Alfvénic streams, respectively, corresponding
to one decade below the bottom of the injection range. The fit-
ting ranges of F exp were obtained taking one decade above the
injection range in the Alfvénic stream, while for the shorter non-
Alfvénic stream we took the average for scales, τ ≥ 2 h.

We now seek solutions for the decay with distance of the
Elsasser energies that satisfy the power-law scaling, E± ∝ R−p± .
After having identified the relevant terms in the energy bud-
get equation on large scales, Eq. (20) for S±, we used simple
assumptions to extrapolate them at smaller distances. Although
the cascades, K±, have opposite signs, in the following we con-
sider their absolute value to be a measure of a direct cascade of
energy.

In the previous section, we found that S+ is damped by
expansion at large scales, while at small scales turbulent damp-
ing takes over with a value close to the large-scale expansion
losses, |F exp

+ | ≈ K+ in Table 2. Thus, E+ is damped by both
expansion and turbulence, and the energy budget equations at
large scales, Eq. (20), can be written as

VSW∂RE+ ≈ −
1
2

(
|K+| + |F

exp
+ |

)
= −

[
1 +

|K+|

|F
exp
+ |

]
VSW

R
E+, (23)

where we have used E+ = S+|LS/2 and F exp
+ /2 = −(VSW/R)E+.

The assumption of K+/F
exp
+ = const at all distances yields a
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Table 2. Elsasser energy losses in the non-Alfvénic (NALF) and
Alfvénic (ALF) stream.

Stream F
exp
+ K+ F

exp
− K−

(W/kg) (W/kg) (W/kg) (W/kg)

NALF −400±70 110±70 −590±100 530±70

ALF −12 000±500 12 000±1400 −90±60 −2200±700

Notes. Damping due to expansion, F exp
± , and turbulence, K±, measured

at 1 au. Values for the cascade were obtained as the average of the loga-
rithm of each quantity over the inertial range, located at τIR ∈ [0.1, 1] h
and τIR ∈ [0.01, 01] h for the NALF and ALF streams, respectively. The
expansion is the average for τ > 2 h and τ > 3 h for NALF and ALF
streams, respectively. The error is the standard deviation of the logarith-
mic quantity.

power law decrease for E+ with

p+ =

[
1 +

|K+|

|F
exp
+ |

]
≈ 2, (24)

where in the last approximation we used |K+|/|F
exp
+ | ≈ 1, eval-

uated at 1 au in Table 2. E+ decays faster than WKB because of
the turbulent dissipation, as fast as R−2.

We consider now the subdominant field, for which we found
that S− has negligible damping at large scales (F exp

− ≈ 0 in
Table 2), while at intermediate and small scales expansion is a
source of energy but much smaller than the cascade. Ultimately,
S− should be damped by the cascade with ε− ≈ K−. We first
write its energy budget equation as

VSW∂RE− ≈ −
1
2
|K−| ≈ −

|K−|

|K+|
(p+ − 1)

VSW

R
E+, (25)

where we have used E− = S−|LS/2 and |K+| = (p+−1)|F exp
+ | from

Eq. (24). A power-law solution, E ∝ R−p− , is found by assuming
that the ratio of the energy cascades does not vary with distance,
K−/K+ = const. Inserting E+ ∝ R−p+ , we obtain p− = p+. E−
should scale as E+. However, this solution is inconsistent with
our data at 1 au, which instead yield p− < p+. To see this, one
should first consider again Eq. (25) and multiply the right-hand
side by E−/E− to obtain

VSW∂RE− ≈ −
[
|K−|E+

|K+|E−

]
(p+ − 1)

VSW

R
E−. (26)

Since E± have the same scaling, the term in square brackets is
constant and yields for a power-law index of E−,

p− ≡
[
|K−|E+

|K+|E−

]
(p+ − 1) ≈ 1.1, (27)

where in the last approximation, we used E+/E− ≈ 6 and
|K+|/|K−| ≈ 5.5, evaluated at 1 au in Tables 1 and 2, respectively,
along with p+ ≈ 2.

Different scaling laws for E± can be obtained by imposing a
constant ratio of the cascade rates of the two species (the term in
square brackets), which implies the same scaling for the ratio of
cascades and energies, K−/K+ ∝ E−/E+ ∝ Rκ, with

κ ≡ p+ − p− = p+ −

[
|K−|E+

|K+|E−

]
(p+ − 1) ≈ 0.9, (28)

and again we used data at 1 au in the last approximation.

To summarize, we obtained power-law solutions of E± by
assuming invariance with distance of the ratio of the cascade
over expansion losses of E+ and of the ratio between the cascade
rates of the two species. This implies that E− decays more slowly
than E+ and the difference between their power-law indexes is
equal the power-law index, κ, characterizing the increase with
distance of the ratio of their energy cascades. Using the val-
ues from our analysis at 1 au (see Tables 1 and 2) we obtain
E+ ∝ R−2, E− ∝ R−1.1, and K−/K+ ∝ R0.9.

8. Cascade of total energy versus heating and
injection

We now analyze more quantitatively the differences between
non-Alfvénic and Alfvénic streams, by showing in Table 3 for
the total energy the values of the damping due to expansion,
F exp, and due to the turbulent cascade, K , along with the
injection range (first column) that we identified in the previ-
ous section. Values and errors for K and F exp were obtained,
as before, by averages and standard deviations in the inertial
range (τIR) and in a range approximately above the injection
range (τinj), respectively. For both streams, we find that expan-
sion damping is slightly larger than the cascade. The value of
K is about 15 times larger in the Alfvénic stream that also has
amplitudes about three times larger, suggesting that Alfvénic-
ity leads to less efficient nonlinear interactions. We shall come
back to such an evaluation at the end of the section, when we
shall compare K to phenomenological estimates. Anyhow, for
both streams the energy cascade is compatible with the heat-
ing required to maintain a nonadiabatic decrease in the proton
temperature, K ≈ QVV. The latter was obtained by inserting
into Eq. (10) the measured temperature at 1 au and assuming a
power-law index of γ = 1 ± 0.2 for the temperature decrease.

We now focus on Alfvénic stream and compare the turbu-
lent damping with the energy injected into turbulence by the
sweeping of the frequency break toward larger scales, Qinj. The
method of estimating it is illustrated in the Appendix A and
requires identifying the frequency break, fc, in the power spec-
tral density, Ê+, and evaluating fcE+( fc), which enters Eq. (9).
The estimated value is indicated in Table 3 and reveals that the
injection from sweeping is three times smaller then the energy
cascade, K , in the Alfvénic stream. A factor of three could be
considered acceptable as an order of magnitude estimate of the
balance between injection and dissipation. However, this factor
should not be neglected for two reasons. First, it increases to six
when comparing cascade and injection just for z+. Second, as
we shall see below, the estimated value of energy injection is an
upper limit, since it is obtained with the fastest possible scaling,
fc ∝ R−3/2.

This fast scaling requires the following assumptions to hold:
(i) turbulence must be strong for Ê+ so that the cascade time
is the eddy-turnover time; (ii) Ê− should have an approximate
Kolmogorov scaling (K41); and (iii) the energy of the subdom-
inant species should not decay with distance (see Sect. 2 and
Fig. 1). We have seen in Sect. 7 that instead E− must decrease
with distance, while from Fig. 6 we get S F− ∝ `1/2, suggesting
an Iroshnikov-Kraichnan scaling, z− ∝ k−1/4 (Iroshnikov 1964;
Kraichnan 1971). We can evaluate the cascade time by compar-
ingK+ with K41 and IK phenomenologies built on second-order
structure functions,

QK41 = α
S+

√
S−

τVSW
(29)
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Table 3. Total energy losses and phenomenological estimates in the non-Alfvénic (NALF) and Alfvénic (ALF) streams.

Stream τIR τinj F exp K QVV Qinj QIR
K41 QIR

IK zIR
+ zIR

−

(h) (h) (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (W/kg) (km/s) (km/s)

NALF [0.1, 1] [1, 6] −550±110 320±10 340±200 – 630 375 20 21
ALF [0.01, 0.1] [0.1, 3] −6100±300 4900±600 4100±2500 1600±500 19 800 4300 66 17

Notes. Expansion damping (F exp) and cascade (K) for the total energy in the non-Alfvénic (NALF) and Alfvénic (ALF) streams. As in Table 2,
values for the cascade are the averages in the inertial range, τIR, while for the expansion the averages were taken approximately above the injection
range, τinj; namely, τ > 2 h and τ > 3 h for the NALF and ALF streams, respectively. The error is the standard deviation of the logarithmic quantity.
QVV is the Verma & Vasquez estimate of the energy required to sustain the nonadiabatic proton temperature decrease in the solar wind, Tp ∝ 1/Rγ,
i.e., Eq. (10) with γ = 1 ± 0.2. Qinj is Wu et al.’s estimate of the energy injected into turbulence because of the shift with distance of the frequency
break (for the Alfvénic stream only, see Appendix A and Fig. A.1 for details). The Kolmogorov and Iroshnokov-Kraichnan phenomenologies for
the cascade rates of the total energy, QIR

K41,IK, were computed by evaluating Eqs. (29) and (30) with amplitudes, zIR
± , at the top of the inertial range

and α = 0.1.

Fig. 9. Comparison between the measure cascade, K+, in the Alfvénic
stream and two phenomenologies obtained using second-order struc-
ture functions: the Kolmogorov one plotted with a thin grey line and
the Iroshnikov-Kraichnan one plotted with a thick grey line, Eqs. (29)
and (30), respectively.

QIK = α
S+S−

τVSWVa
. (30)

In front of the phenomenologies, α ≈ 0.1 is a reduc-
tion factor due to factorization of the third-order structure
function into second-order structure functions (Vasquez et al.
2007; Bandyopadhyay et al. 2018; Montagud-Camps et al. 2018;
Verdini et al. 2019). In Fig. 9, we plotK+ with green lines, QK41
with a thin grey line, and QIK with a thick grey line. Clearly,
the IK phenomenology better reproduces both qualitatively and
quantitatively the profile of K+, having a plateau in the inertial
range, while the Kolmogorov phenomenology increases at iner-
tial range scales. For completeness, in the last three columns of
Table 3, we evaluate the K41 and IK phenomenology for the
total energy at the beginning of the inertial range. Again, the IK
phenomenology is close to the measured cascade, which is also
in the non-Alfvénic stream, while K41 largely overestimates the
cascade in both cases. This suggests that Alfvénicty does not
reduce the efficiency of nonlinear interactions, contrary to expec-
tations.

Ultimately, none of the above assumptions hold, and we
can instead use an IK timescale for the cascade rate, 1/tcasc

+ =
kz−z+/VA, a decay with distance, E− ∝ R−p− , and also an IK
scaling, z− ∝ k−1/4, for its spectrum. For simplicity, we have kept
VA = const, Ê+ ∝ 1/R at large scales and with a 1/k scaling.
Imposing an equal expansion and cascade rate, 1/texp = 1/tcasc

+ ,

one again obtains the break position and its scaling:

fc
f0

=

[
2VSW/R0

f0z0
−z0

+/VSWVA

]4/3

×

(
R
R0

)−2/3(1−p−)

, (31)

which clearly shows that the break moves at larger scales with
distance but at a slower rate. No shift should be observed if p− =
1, while fc ∝ R−1/3 or fc ∝ R−2/3 if p− = 0.5 or 0, corresponding,
respectively, to a slow decrease or no decrease (the latter being
equivalent to the case of Sect. 2, but with an IK cascade). A
slower shift of fc corresponds to less injection, and so the value
of Qinj is an upper limit for the injection of energy.

We conclude that there is a potential inconsistency in the
energy budget of turbulence for the Alfvénic stream: the injec-
tion of energy into turbulence by the sweeping of the frequency
break is unable to sustain the cascade.

9. Discussion and conclusions

We have used velocity and magnetic time series from the WIND
s/c at 1 au to understand at which scales the damping of fluctua-
tions is dominated by expansion or by turbulence, with only the
latter resulting in plasma heating. Both forms of damping were
evaluated in the framework of the Politano-Pouquet relation
(Politano & Pouquet 1998), a scale-to-scale energy budget equa-
tion for turbulent fluctuations in incompressible MHD. Turbu-
lent damping was computed via third-order structure functions,
assuming homogeneity, isotropy, and stationarity in the iner-
tial range. Expansion damping was computed via second-order
structure functions by implementing the EBM (Grappin & Velli
1996) in the Politano-Pouquet law for incompressible MHD (see
Sect. 3 and Hellinger et al. 2013 for details). We analyzed first a
non-Alfvénic stream, characterized by a low level of correlation
between u and B, or, equivalently by similar amplitudes of the
Elsasser variables, z+ ≈ z−. Then, we focused on an Alfvénic
stream, with strong correlations between magnetic and velocity
fluctuations, or equivalently z+ � z−.

In the non-Alfvénic stream, the cascade and expansion of
each Elsasser field have properties that are roughly similar to
each other and to those of the total energy. Expansion is a damp-
ing term for E± and is negligible at scales below 2 h, where the
cascade dominates. The transition is quite sharp, indicating a
small injection range. In the Alfvénic stream, only E+ and the
total energy have similar properties: expansion dominates over
the cascade at large scales, while the cascade dominates over
expansion at small scales. A large injection range, 0.1 h . τ .
3 h, separates these two intervals of scales, and expansion losses
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balance the turbulent losses. For E−, instead, expansion is a neg-
ligible loss at large scales, while it becomes a (weak) source at
small and intermediate scales where the cascade develops. Over-
all, in both streams the cascade of energy has the same mag-
nitude of expansion losses and its value is compatible with the
heating required to sustain the nonadiabatic decrease with dis-
tance of the proton temperature, confirming earlier results that
support turbulence as the source of heating (Vasquez et al. 2007;
Stawarz et al. 2009; Marino et al. 2008; Montagud-Camps et al.
2018, 2020).

As has been reported in many works (Sorriso-Valvo et al.
2007; Stawarz et al. 2010, 2011; Coburn et al. 2014; Wu et al.
2022a), the third-order structure functions of E± have opposite
signs over the whole range of scales at which the cascade is
somehow regular for both species (τ . 3 h). As in Coburn et al.
(2015), Vasquez et al. (2018), we argue that the opposite signs
are caused by a magnetic excess that is stronger for larger fluctu-
ations, and that thus contributes more to the third-order structure
functions. In addition, for the Alfvénic stream, the third-order
structure function of a given species also changes sign on a scale
of about 15 minutes. How this scale changes with distance from
the Sun is an interesting question that we plan to address using
data from PSP and SolO. For the moment, we can only specu-
late that expansion may play a role in determining the sign at
large scales, since it introduces correlations between z± via the
residual energy term.

The balance between the expansion and the cascade in
the Alfvénic stream supports the original idea first proposed
by Tu et al. (1984) on the origin of the frequency break ( fc)
observed in the magnetic spectrum (Bavassano et al. 1982a). In
this scenario, the injection of energy into turbulence is pro-
portional to the sweeping of the frequency break to larger
scales (Wu et al. 2020). Using the fast scaling fc ∝ R−3/2

(Bruno & Carbone 2013; Wu et al. 2020, 2022a), we computed
injection and compared it to the cascade of the total energy. We
found that injection is a factor of three smaller than the mea-
sured cascade or the required proton heating. This value is in
line with the statistical study by Wu et al. (2020, 2021, 2022b),
who concluded that injection from sweeping is compatible with
the required heating and also with a phenomenological von-
Karman estimate of the cascade. However, none of the assump-
tions required to obtain the fast scaling, fc ∝ R−3/2, is satisfied in
our analysis at 1 au. The cascade in z± is weak and well described
by Iroshnikov-Kraichnan phenomenology and the energy of z−
is subject to turbulent damping, decaying with distance. Using
these properties, the frequency break moves at slower rate, which
implies less energy injection. We thus conclude that there is
a potential inconsistency in the energy budget of turbulence
obtained from the present data: the energy that is cascading is
larger than that injected from large scales.

As a further check, we extrapolated our results at 1 au for
the Alfvénic stream back in the inner heliosphere (R > 0.3 au),
obtaining power-law scaling with distance of the Elsasser ener-
gies, E± ∝ R−p± . In doing so, the third-order structure function
was supposed to give a measure of the direct cascade, indepen-
dently of its sign. Power laws with p+ > p− could be obtained
only if expansion damping and cascade damping of z+ are pro-
portional to each other at all distances and the cascade rate
of z− is proportional to that of z+ at all distances. Using val-
ues from our analysis at 1 au (Table 1, 3), we got p+ = 2,
p− = 1.1, and κ = p+ − p− = 0.9, the latter also being the
power law exponent for the increase in the ratio between the
energy cascade of z− over that of z+. Compared to our solutions,
the scaling obtained from measurements at different heliocen-

tric distances (Bavassano et al. 2002; Chen et al. 2020) returns a
smaller damping of energies, p+ = 1.7, p− = 0.6, and κ ≈ 1.1,
close to but larger than our estimate, κ ≈ 0.9. However, assuming
that our analysis overestimates by a factor of ≈1.4 the cascades
of E±, we would recover both the observed indexes, p±, and alle-
viate the inconsistency in the energy budget of turbulence,

To conclude, several aspects related to the assumptions of
homogeneity, isotropy, and incompressibility that have been
used to obtain the scale-to-scale energy budget equations (i.e.
the Politano-Pouquet law) may be responsible for an overesti-
mate of the cascade. Indeed, numerical simulations show that
the isotropic prescription yields a larger cascade of energy in
the presence of a strong mean field, especially for plasma sam-
pling at a small inclination to the mean field (Verdini et al.
2015; Hellinger et al. 2024). Also, having access to only the
radial sampling directions may return an over- or underestima-
tion of the cascade rate, even in cases of isotropic turbulence
(Pecora et al. 2023b). Going beyond the incompressible MHD
approximation (Banerjee & Galtier 2013; Andrés & Sahraoui
2017; Hellinger et al. 2021) seems to be required. In fact, PSP
data indicates that relative density fluctuations increase as we
move closer to the Sun (Adhikari et al. 2020), and the ratio of
the compressible to incompressible cascade seems to increase
as well (Andrés et al. 2021). This is expected for non-Alfvénic
streams, which have larger relative density fluctuations. How-
ever, in Alfvénic turbulence the standard incompressible cou-
pling is weakened, expansion dominates the large scales, and
compressible effects may also play an important role in such
streams, as numerical simulations without expansion seem to
indicate (Montagud-Camps et al. 2022). Finally, velocity shears
(Roberts et al. 1991; Goldstein et al. 1995; Roberts & Ghosh
1999) are an additional injection mechanism that is missing in
our approach and that breaks the assumption of homogeneity and
isotropy. The importance of shear in the inner heliosphere is pos-
sibly related to microjets and switchbacks and could be revealed
by analyzing data at different heliocentric distances, especially
inside 0.3 au. Interestingly, Wan et al. (2009, 2010) proposed a
shearing box approximation that incorporates the effects of a
uniform shear in the Politano-Pouquet law. Such an approxima-
tion does not break homogeneity; it is formally similar to the
EBM but requires an assumption about the anisotropy of turbu-
lence and the intensity of the shear. It was applied to data at 1 au
(Stawarz et al. 2011), yielding a reduction of the cascade for hot
and fast streams (mostly Alfvénic), and thus possibly reconciling
the discrepancy between injection and cascade.

To consolidate the present study, we plan to conduct a statis-
tical analysis at 1 au in which we shall collect Alfvénic streams
with different speeds, like those presented in D’Amicis et al.
(2019). We also plan to analyze data at different heliocentric
distances, by considering either streams that originate from the
same source (e.g. as in Perrone et al. 2019), or radial alignments
in which the same parcel of plasma is detected at multiple dis-
tances (e.g. D’Amicis et al. 2010; Telloni 2023). This will give
us a better understanding of how the scale that separates the
expansion-dominated range and the turbulence-dominated range
evolves with distance, along with its relation to the frequency
break, and a clearer assessment of the ratio of compressible to
incompressible cascades.
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Appendix A: Evaluation of the frequency break and
injection rate

The injection rate is determined from the power spectral den-
sity of the dominant Elsasser field Ê+( f ) which is plotted
in Fig. A.1 for the Alfvénic stream. The spectrum is com-
puted after removing the averages in the time series of each
component of the velocity and magnetic field, and applying
a Blackman window before computing the fast fourier trans-
form. All the fitting procedure described below are linear fit to
logÊ+(log f ).

We do not attempt a direct fit of the broken power law, since
we found that the result depends strongly on the chosen intervals
for fitting the low-frequency part of the spectrum, sometimes the
procedure does not converge or the energy at the break lies above
the measured spectrum. Instead, we exploit the robustness of the
fit in the inertial range since the measured slope does not depend
much on the fitting range and use it as a starting point. So first
we obtain the slope in the inertial range by fitting the spectrum
in the range [ f1, f2] = [5 10−3, 5 10−2] Hz. The measured slope
is a bit flatter than the Kolmogorov value, pIR = −1.6, and the
fit is plotted as a yellow line in figure. Then we fit a second
power-law in the low frequency range, f < f0, with the con-
straint that the power density at the break Ê+( fc) must lie on the
extension of the inertial range fit (the white line in figure). We
vary the upper bound of the fit, f0 = f1/4, f1/8, f1/16, f1/32],
to obtain different estimates of Ê+( fc) that are indicated with
green symbols in the figure, from light to dark as f0 moves to
lower frequencies. For completeness, the low-frequency fit are
also plotted with green line (same color coding) with slopes
p0 = −1.2, −1.1, −0.9, −1 from light to dark green. Note that
as far as Ê+ ∝ 1/ f the position of the break does not change the
estimate fcE+( fc), while its variation is due to the different large-

Fig. A.1. Power spectral density Ê+ for the dominant Elsasser vari-
able in the Alfvénic stream and estimates of the power density at
the break position (symbols). The yellow line is the fit in the inertial
range f ∈ [ f1, f2] and the white line is an extension to higher and
lower frequencies. We find the frequency break and its energy by fit-
ting to a line logÊ+(log f ) in the range f < f0, with the constraint
that the spectral density at the break, Ê+( fc), must lie on the exten-
sion of the inertial range fit. To estimate the uncertainties we vary
the fitting range of the second fit. We plot in green the resulting low-
frequency fit (line) and the position of the break, Ê+( fc) (symbol), using
darker color scale as the boundary of the fit moves to lower frequencies,
f0 = f1/4, f1/8, f1/16, f1/32.

scale spectral indexes that are obtained with the above different
fitting ranges. From these estimates, to obtain Qin j we average
the 4 different values of fcE+( fc) and quantify the uncertainty as
the maximum difference from the average, which amounts to a
large relative error of about 40%.
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