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ON MINIMAL LEGENDRIAN SUBMANIFOLDS OF

SASAKI-EINSTEIN MANIFOLDS

SIMONE CALAMAI AND DAVID PETRECCA

Abstract. For a given minimal Legendrian submanifold L of a Sasaki-Einstein
manifold we construct two families of eigenfunctions of the Laplacian of L and
we give a lower bound for the dimension of the corresponding eigenspace.
Moreover, in the case the lower bound is attained, we prove that L is totally
geodesic and a rigidity result about the ambient manifold. This is a general-
ization of a result for the standard Sasakian sphere done by Lê and Wang.

Introduction

Let (M, η, g) be a Sasakian manifold of dimension 2n+1. A minimal Legendrian
submanifold is an n-dimensional submanifold i : L → M on which the contact form
vanishes, i∗η = 0 and is minimal in the sense of Riemannian geometry with respect
to the metric induced from g.

In the case where the minimal LegendrianL is embedded in the standard Sasakian
round (2n+1)-sphere, Lê and Wang [9] constructed a family of functions on L which
are eigenfunctions of the Laplacian on L of the induced metric. They give also a
lower bound of the dimension of the relative eigenspace and if it is attained then
the submanifold is totally geodesic. Conversely they prove that a minimal subman-
ifold of the standard sphere admitting that certain family of functions as Laplacian
eigenfunctions is necessarily Legendrian.

Although their techniques make a heavy use of the particular situation, namely
the theory of minimal immersion in spheres and the presence of an ambient Eu-
clidean space, we prove that some of their ideas can be generalized to any Sasaki-
Einstein manifold.

Let L be a minimal Legendrian submanifold of a Sasaki-Einstein M . The aim
of this paper is to prove that two certain families of functions on L, one of which
constructed in terms of the contact moment map of the action of the Sasaki au-
tomorphism group, are eigenfunctions of the Laplacian of L and we give a lower
bound for the dimension of the eigenspace.

Theorem 1. Let Ln be a minimal Legendrian submanifold of an η-Sasaki-Einstein
manifold (M2n+1, η, ξ, g,Φ) with algebra of infinitesimal Sasaki automorphisms g.
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Then, for each X ∈ g, the function

η(X)−
1

vol(L)

ˆ

L

η(X)dv,

where dv is the volume form of L of the induced metric, is an eigenfunction of the
Laplacian ∆L with eigenvalue 2n + 2. Moreover the dimension of the (2n + 2)-
eigenspace is at least dim g− 1

2n(n+ 1)− 1.

Moreover we prove, like in the sphere case although with totally different tech-
niques, that if the lower bound is attained then the submanifold is totally geodesic
together with a rigidity result about the ambient M , in the case of a regular Sasaki-
Einstein manifold over a base Kähler manifold.

Theorem 2. If M is a regular Sasaki-Einstein manifold and the multiplicity of
the eigenvalue 2n+ 2 of ∆L is exactly dim g− 1

2n(n+ 1)− 1 then M is a Sasaki-
Einstein circle bundle over the complex projective space endowed with the Fubini-
Study metric. In particular if M is simply connected then M = S2n+1.

Among the techniques we use we mention the theory of deformations of minimal
Legendrian submanifolds, for which we refer to [11, 10] and, in the case of reg-
ular manifolds, the correspondence between Legendrian submanifolds of Sasakian
manifolds and Lagrangian submanifolds of Kähler manifolds, see [12].

This result makes use of the geometry of Legendrian submanifolds of the Kähler-
Einstein base, which exists by the regularity assumption. It would be interesting
to drop this assumption and prove the result for quasi-regular or irregular Sasaki-
Einstein manifolds.

Then in Theorem 3.7 we provide a generalization of the family of eigenfunctions
by making use of the immersion of the Sasaki-Einstein manifold M into its Ricci-
flat Kähler cone C(M). This family is parameterized by the Lie algebra of the
infinitesimal Kähler automorphisms of C(M), which is in general bigger than the
Sasaki automorphism group of M . The family is defined by means of the Nomizu
operator on C(M). This time our arguments are similar to the ones of Lê and
Wang for the sphere and they rely on the Ricci-flatness of C(M) and properties of
the Nomizu operator.

It would be interesting to provide sufficient conditions for the Legendrianity of
a minimal submanifold by means of any of these families of functions.

Problem 1. Let M2n+1 be a Sasaki-Einstein manifold with big enough automor-
phism group G, let Ln be a minimal submanifold such that for each X ∈ g, the
family of functions (2) or (8) are eigenfunctions of ∆L with eigenvalue 2n + 2.
Can we conclude that L is Legendrian?

Also, it would be interesting to relate the second family with the moment map
of the symplectic action on C(M) of its Kähler automorphism group.

The paper is organized as follows. In section 1 we recall some notions from
Sasakian geometry, minimal Legendrian deformations and the contact moment
map. In section 2 we introduce the first family of eigenfunctions and prove the
main theorems. Finally in section 3 we construct the functions via the Nomizu
operator.

Acknowledgements. The authors would like to thank Xiuxiong Chen for constant
support and Fabio Podestà for suggesting the problem and his help and advice. We
finally thank Anna Gori for useful discussions.
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1. Preliminaries

We recall some notions from Sasakian geometry, minimal Legendrian submani-
folds and their deformations.

1.1. Sasakian manifolds. In this paper we focus on the case where the contact
manifold is a Sasakian manifold, i.e. there is a contact form η, its Reeb field ξ, a
Riemannian metric g and a (1, 1)-tensor field Φ such that

η(ξ) = 1, ιξdη = 0

Φ2 = − id+ξ ⊗ η

g(Φ·,Φ·) = g + η ⊗ η

dη = g(Φ·, ·)

NΦ + ξ ⊗ dη = 0

where NΦ is the torsion of Φ.
An equivalent formulation is to say that a Riemannian manifold (M, g) is Sasakian

if and only if its symplectization C(M) = M × R+ with metric g = r2g + dr2 is a
Kähler manifold, where r is the coordinate on R+ = (0,+∞).

A Sasakian structure defines a transverse Kähler structure on M , that it is
defines a Kähler structure (dη,Φ|D) on the contact subbundle D = ker η. This
Kähler metric is known as the transverse metric.

The Reeb field ξ is unitary and Killing and defines a foliation called charac-
teristic foliation. We call M regular Sasakian if the circle action defined by the
characteristic foliation is free. It is known, see e.g. [5, 4] that every compact reg-
ular Sasakian manifold is a Riemannian submersion π : M → B over a compact
Kähler manifold. In the quasi-regular case, i.e. when the circle action is locally
free, we have an orbifold Riemannian submersion.

A Sasaki-Einstein metric is a Sasakian metric which is Einstein, i.e. its Ricci
tensor is a multiple of the metric. By curvature properties of Sasakian metrics, see
i.e. [5], it follows that this constant is 2n, where 2n+ 1 is the dimension of M . An
η-Sasaki-Einstein metric is a Sasakian metric g such that its Ricci tensor satisfies
Ric = Ag + (2n− A)η ⊗ η for some constant A. The following proposition is well
known.

Proposition 1.1 ([15]). Let (M, g) be a Sasakian manifold. Then g is Sasaki-
Einstein if and only if the transverse metric is Kähler-Einstein with constant 2n+2,
if and only if the Kähler cone C(M) is Ricci-flat.

1.2. Legendrian immersions and their deformations. We will consider some
special submanifolds of Sasakian manifolds, known as Legendrian (or horizontal),
see [12].

A Legendrian submanifold of a (2n + 1)-dimensional contact manifold (M, η)
is an n-dimensional submanifold i : L → M such that for all p ∈ L we have
i∗(TpL) ⊆ ker ηi(p).

We will consider Legendrian submanifolds which are also minimal in the sense
of Riemannian geometry, i.e. their mean curvature field vanishes.
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If we have a Legendrian submanifold L in a Sasakian manifold we can identify the
space of sections of the normal bundle NL with C∞(L)⊕Ω1(L) via the isomorphism

χ : Γ(NL) −→ C∞(L)⊕ Ω1(L)

V 7−→

(
η(V ),−

1

2
i∗(ιV dη)

)

see [11].
In the case of a compact regular Sasakian manifold M with contact structure

η that fibers over a compact Kähler manifold (B,ω) we can take the projection
π(L) ⊆ B of a Legendrian L. Following Reckziegel [12] we have that π(L) is a
Lagrangian submanifold of B, i.e. (π ◦ i)∗ω = 0 and is finitely covered by L.

Conversely, given a Lagrangian submanifold j : N → B, a point q ∈ N , for any
choice of p in the fiber of q there exists a neighborhood U of q and a Legendrian
immersion i : U → M such that π ◦ i = j|U .

Moreover, Riemannian properties of L hold as well for π(L) and conversely.
Namely we have the following.

Proposition 1.2 ([12]). The Legendrian L is minimal, or totally geodesic, if and
only if the Lagrangian π(L) is.

A smooth family of minimal Legendrian immersions it : L → M is a family of
maps F : [0, 1] × L → M such that for each t the map it = F (t, ·) : L → M is a
minimal Legendrian immersion. Every smooth family points out a vector field Wt

on L given at p by

Wt|p = F∗

(
∂

∂t

∣∣∣∣
(t,p)

)
.

It is known, e.g. [10, 11], that a family of immersions is Legendrian if and only if
the normal component Vt of Wt satisfies

(1) Vt = χ−1

(
η(Vt),

1

2
dη(Vt)

)
,

i.e. dη(Vt) = −i∗(ιVt
dη). Normal fields satisfying (1) are called infinitesimal Leg-

endrian deformations.
We are interested in minimal Legendrian deformations of a Legendrian i : L →

M , that are smooth families it : L → M of minimal Legendrian immersions such
that i0 = i.

A trivial family of deformations of a minimal Legendrian submanifolds is given by
one-parameter families of ambient transformations. We will denote by Aut(M) the
group of such transformations, i.e. diffeomorphisms M → M which are isometric
contactomorphisms.

If we let ϕt ∈ Aut(M) be one of such families. Then it = ϕt|i(L) : i(L) → M is
a minimal Legendrian deformation, see [10].

In particular, the normal component of every field in the Lie algebra aut(M) of
Aut(M) defines an infinitesimal Legendrian deformation. This is also minimal as
we are taking the normal component of a Killing vector field, see [13, Sec. 3].

When we restrict ourselves to η-Sasaki-Einstein manifolds with constant A, we
have a characterization of the space of infinitesimal minimal Legendrian deforma-
tions.
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Proposition 1.3 ([10]). Let i : L → M be a minimal Legendrian submanifolds in
an η-Sasaki-Einstein manifold with constant A. Then the vector space of infinites-
imal minimal Legendrian deformations is identified with

Def(L) = R⊕ {f ∈ C∞(L) : ∆Lf = (A+ 2)f}

where ∆L denotes the Laplacian of L with the induced metric.

This result is obtained by combining the copy of the space of infinitesimal Leg-
endrian deformations of L given by

{(
f,

1

2
df

)
: f ∈ C∞(L)

}

and the space of minimal deformation given by the kernel of the Jacobi operator
J , for which we refer to [13].

1.3. Contact moment maps. We finally recall the notion of contact moment
map, we follow [5, Sec. 8.4.2]. In our setting the group G = Aut(M) is a compact
group acting onM . We can extend this action to the symplectic cone (C(M), d(r2η))
by requiring that it leaves the {r = const} levels unchanged, i.e. the action is given
by g(p, r) = (gp, r). Being G a contactomorphism group it is easy to see that the
action on C(M) is by symplectomorphisms and, being the symplectic form on the
cone exact, this action is Hamiltonian. So there exists a map ϕ : C(M) → g∗, such
that

d(ϕ(X)) = −ιXd(r2η) = d(r2η(X)).

Hence, up to a constant, one can take the map ϕ(p, r)(X) = r2ηp(X). Seeing M
as the {r = 1} level set, we consider the restriction µ : M → g∗ of ϕ which we call
the contact moment map for the G-action on M .

2. Eigenfunctions using the contact moment map

In this section we construct one possible generalization of the functions given by
Lê-Wang [9]. We briefly recall their setting. They consider the standard Sasakian
sphere S2n+1 immersed in its Kähler cone C

n+1\{0} with respectively the round
metric g and the Euclidean metric 〈·, ·〉. It is known that the both the Sasaki
transformation group of the sphere and the Kähler automorphism group of the
cone is G = U(n+ 1). Let M ∈ u(n+ 1). Then the moment map for the G-action
on the cone is given, up to a constant, by

ϕ(p, r)(M) = r2ηp(Mp) = r2g(ξp,Mp) = 〈ξp,Mp〉

We see an infinitesimal Sasaki automorphism M ∈ u(n+ 1) as a linear vector field
whose value at x ∈ S2n+1 is Mx. Then, using that ξ at x is Jx, where J is the
standard complex structure, the contact moment map µ : S2n+1 → u(n + 1)∗ is
given by

µ(x)(M) = 〈Mx, Jx〉

which is exactly the function of Lê-Wang.
Back to the general setting of the Sasaki group G = Aut(M) with Lie algebra g

acting on the η-Sasaki-Einstein M , we have the contact moment map that is given
by µ(p)(X) = ηp(Xp).

We then consider for each X ∈ g the map p 7→ η(X) restricted to a minimal
Legendrian submanifold and up to a constant.

We prove the generalization of one of the implications of [9, Thm. 1.1].
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Theorem 2.1. Let (M, g, η, ξ) be a (2n+ 1)-dimensional η-Sasaki-Einstein man-
ifold with Ric = Ag + (2n − A)η ⊗ η and let Ln ⊂ M be a minimal Legendrian
submanifold. Then for all X ∈ aut(M) the function on L given by

(2) fX = η(X)−
1

vol(L)

ˆ

L

η(X)dv,

where dv is the volume form on L of the induced metric, is en eigenfunction of the
Laplacian ∆L on L with eigenvalue A+2. Moreover this eigenspace has dimension
≥ dim aut(M)− 1

2n(n+ 1)− 1.

Proof. We recalled above that the map χ : Γ(NL) → C∞(L) ⊕ Ω1(L) given by
χ(V ) = (η(V ),− 1

2 ιV dη) is an isomorphism if L is Legendrian and that the space of
infinitesimal deformations of a minimal Legendrian L is

Def(L) = R⊕ {f ∈ C∞(L) : ∆Lf = (A+ 2)f}.

Let X ∈ g = aut(M) and let X |L = X1 +X2 ∈ Γ(TL)⊕Γ(NL) be its decompo-
sition.

From [10] it follows that X2 defines a Legendrian deformation of L and it is
known, e.g. [13], that the normal part of a Killing field defines an infinitesimal
minimal deformation. Hence χ(X2) ∈ χ(kerJ ), where J denotes the Jacobi oper-
ator, and so, following Ohnita [10] we have

∆Lf − (A+ 2)f = const = C.

and the pair (C, f − f) ∈ R ⊕ {f ∈ C∞(L) : ∆Lf = (A + 2)f}, where f =
1

vol(L)

´

L
η(X)dv. So the first claim follows.

Every X ∈ g = aut(M) defines a trivial deformation of L, hence there is a linear
map α : g → Def(L) given by α(X) = χ(X2).

Its kernel is kerα = {X ∈ g : X |L ∈ Γ(TL)} ⊆ iso(L). So we have

1 + dimEA+2 ≥ dimα(g)(3)

= dim g− dimkerα

≥ dim g− dim so(n+ 1)

= dim g−
n(n+ 1)

2
.

So we have the second claim in the statement. �

Let us specialize to Sasaki-Einstein manifolds and assume that M is regular, so
it is a principal circle bundle π : M → B over a Kähler-Einstein base manifold B
and consider the case when the equality holds in the previous theorem. We prove
the following, generalizing [9, Thm. 1.2] together with a rigidity result.

Theorem 2.2. If M is regular and the eigenvalue 2n + 2 of ∆L has multiplicity
exactly dim aut(M) − 1

2n(n + 1) − 1 then L is totally geodesic in M and M is a
principal circle bundle over the complex projective space.

Proof. The projection L̃ = π(L) ⊆ B is a Lagrangian submanifold of a Kähler-

Einstein manifold and it is known that L̃ is covered by L [12].
To have equality one needs to have equality in (3) so we conclude that the

isometry group of L̃ is the largest possible, i.e. its Lie algebra is so(n+1). Let this
isometry group be denoted by K. The group K, being a subgroup of the Sasaki
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transformation group of M , sends leaves into leaves and thus acts on B. We claim
that the action has cohomogeneity one.

Indeed it is known, see [7], that if dimK = dim so(n+ 1) then Ln is either a n-
sphere or RPn, written as SO(n+1)/H , where H = SO(n) or H = Z2 ·SO(n) is the

stabilizer of a q ∈ L̃. In any case the isotropy representation of H acts transitively

on the unit sphere TqL̃. Being L̃ Lagrangian, the action is transitive also on the
unit sphere in the normal space at q and this action has cohomogeneity one, hence
also the action of SO(n+ 1) on B does.

Let p ∈ L̃. Being L̃ homogeneous under K, it is also known from [2] that the
orbit Ω = KC · p is open dense in B and Stein, hence in particular affine, and that
B\Ω has complex codimension 1.

Let x ∈ B be a principal point. Being Ω open dense, the KC-orbit through x
is open as well and intersects Ω, then they coincide. So B is a two-orbit Kähler
manifold, i.e. is acted on by a complex algebraic group admitting exactly two orbits
Ω and A.

They were classified, as complex manifolds, by Ahiezer [1, Table 2] in the case
of Ω affine and A of codimension 1. The occurrences of a group K with Lie algebra
so(n+ 1) can be one of the following:

(1) L̃ = SO(n+ 1)/ SO(n) = Sn and B = Qn,

(2) L̃ = SO(n+1)
center /S(O(1)×O(n)) = RP

n and B = CP
n,

(3) L̃ = Spin(7)/G2 = S7 and B = Q7,

(4) L̃ = SO(7)/G2 = RP
7 and B = CP

7;

where the projective spaces and the complex hyperquadrics are endowed with the
unique Kähler-Einstein metric of constant 2n+ 2. This proves that the possible B
are only complex hyperquadrics or complex projective spaces and M is a Sasaki-
Einstein principal circle bundles over B.

Being the pairs in this list symmetric subspaces of B, we have that L̃ is totally
geodesic in B. By Proposition 1.2 of Reckziegel, this is equivalent to say that L is
totally geodesic in M .

We want now to exclude the case B = Qn. So far we have the following diagram
of immersions and submersions.

(Sn, g) (M, gSE) (S2n+3, gc) (Cn+2, 4
c
〈·, ·〉)

(Sn, g) (Qn, gQ) (CPn+1, gFSc )

ı̃

π=

i j

p

For the metric point of view, we have the Fubini-Study metric gFSc on CP
n+1

with constant holomorphic curvature c. This rescaling of the Fubini-Study metric
on CP

n+1 is defined by the metric given by 4
c
times the round metric on S2n+3,

which we denote by gc [8, vol. II, p. 273]. The choice of c in gFSc is such that
gQ = j∗gFSc is Kähler Einstein of Einstein constant 2n+2 and this happens exactly
for c = 4n+4

n
from [14].
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By [6] the only totally geodesic spheres in the quadric are immersions i : x 7→ [x]
for x ∈ Sn ⊂ Rn+1. The restriction of the quadric metric on it is n

2n+2 times the
round metric. Being Sn simply connected for n > 1, we have that the Legendrian
L is isometric to its projection in Qn.

Let ∆ be the Laplacian on Sn associated to the metric n
2n+2ground. An eigen-

function of ∆ with eigenvalue 2n + 2 is an eigenfunction of the round Laplacian
with eigenvalue n.

It is known from [3] that the round sphere admits the eigenvalue n with multi-
plicity n(n+ 1).

To compute the lower bound, we observe that, since every Sasaki automorphisms
induces by projection a Kähler automorphism of the base, that dim aut(M) ≤
dim aut(B) + 1 = 1

2 (n+ 2)(n+ 1) + 1 since the automorphism group of the hyper-
quadric is SO(n+ 2).

In order not to attain the lower bound we need to have

dim aut(M) <
3

2
n(n+ 1) + 1

and this is always true since for n > 1 we have 1
2 (n+2)(n+1)+1 < 3

2n(n+1)+1.

In the case n = 1 the quadric Q1 = CP
1 is a complex projective space, so we are

left with the only case B = CP
n. �

3. Eigenfunctions using the Nomizu operator

In this section we define another family of eigenfunctions on a Legendrian L
of M by making use of the geometry of the Kähler cone and its group of Kähler
automorphisms.

Let (M, g) be a Sasakian manifold of dimension 2n+ 1 and let (C(M), g) be its
Kähler cone. We let eA for A ∈ {1, . . . , 2n + 1} be a local orthonormal frame at
some point of M and let θA be its dual.

Then the set { 1
r
e1, . . . ,

1
r
e2n+1, ∂r} is an orthonormal frame for the cone metric

g = r2g + dr2 and its dual is {rθ1, . . . , rθ2n+1, dr}.
Let ∇ be the Levi-Civita connection of the cone metric. From the well known

relations [15] we have

∇∂r =
1

r
eA ⊗ θA

∇eB =
1

r
eB ⊗ dr + θBC ⊗ eC − r∂r ⊗ θB .

Lemma 3.1. Let Ln → M be an immersion and let e1, . . . , en be an orthonormal
frame of L. Let ∇ be the Levi Civita connection on M . Then, for any smooth
function f : M → R, we have

(4) ∆Lf |L = −

n∑

i=1

∇df(ei, ei)|L −H · f |L.

where ∆L is the Hodge Laplacian and H is the mean curvature field of the immer-
sion.

In particular, when the immersion is minimal, we have
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(5) ∆Lf |L = −

n∑

i=1

∇df(ei, ei)|L.

Proof. Label as ∇L the induced connection on L; by definition we have
n∑

i=1

∇df(ei, ei)|L =
∑

i

eieif |L −

n∑

i=1

∇eieif |L

=

n∑

i=1

eieif |L −

n∑

i=1

∇L
ei
eif |L −

n∑

i=1

(∇eieif |L −∇L
ei
eif |L)

= −∆Lf |L −H · f |L,

which is precisely the claimed (4). Since the assumption on minimality corresponds
to the vanishing of H , we also get the claimed (5). This completes the proof of the
lemma. �

Lemma 3.2. Let Ln → M be a minimal immersion in a Sasaki manifold. Let f
be a function on the Kähler cone C(M) which does not depend on r and let ∆L

be the Hodge Laplacian on L; finally, let e1, · · · , en be an orthonormal frame of L.
Then we have

∆Lf |L = −

n∑

i=1

∇df(ei, ei)|L.

Proof. In view of Lemma 3.1, it suffices to show that for any i, j ∈ {1, · · · , n}, then

∇df(ei, ej)|L = ∇df(ei, ej)|L,(6)

where as usual ∇ is the Levi Civita of the Sasaki metric g, while ∇ is the Levi
Civita connection of the metric g = r2g + dr2. By the very definition we have

∇df(ei, ej)|L = eiejf |L −∇eiej · f |L

= eiejf |L −
(
∇eiej · f |L − δijr∂rf |L

)

= ∇df(ei, ej)|L,

where at the second equality we applied [15, (1.1)]. This completes the proof of the
lemma. �

Let us now construct a family of operators. For an infinitesimal Kähler auto-
morphism K on the cone, i.e. Killing and holomorphic, we define the operator on
sections of TC(M) given by

(7) MK = ∇K +
1

2n+ 2
div(JK)J.

Lemma 3.3. Let C(M) be the Kähler cone over a Sasaki-Einstein manifold and
let K as above. Then

(i) div(JK) = const;
(ii) MK is skew-symmetric and MKJ = JMK ;
(iii) tr(JMK) = 0;
(iv) ∇MK = Rm(·,K) where Rm is the Riemann (3, 1)-tensor of g.

Proof. Let AK be the associated Nomizu operator, i.e. AK = ∇K. Then since K
is Killing, its covariant derivative is known to be ∇∇K = Rm(·,K).
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(i) Fix p ∈ C(M) and let vi be a geodesic frame at p and let Y be any vector
field on C(M). Then

Y · div(JK)|p = g(∇Y ∇viJK, vi)

= −g(∇Y ∇viK, Jvi)

= −g((∇Y AK)vi, Jvi)

= Rm(Y,K, Jvi, vi)

= 2Ric(Y,K)

= 0

since C(M) is Ricci-flat (see [15]), where we have used the well known fact
that Ric(X,Y ) = 1

2 tr(Rm(X,Y ) ◦ J).

(ii) Since K is holomorphic it is ∇J·K = J∇·K so MKJ = JMK . Since K is
Killing, ∇K is skew-symmetric and also J , so (ii) follows.

(iii) Let vi be an orthonormal frame of C(M). Then

tr(JMK) = g(JMKvi, vi)

= g

(
∇viJK −

1

2n+ 2
(div(JK))vi, vi

)

= div(JK)− div(JK)

= 0.

(iv) By (i) and the fact that J is parallel, (iv) follows. �

We will use the following lemma.

Lemma 3.4. Let X be any field on M . Then Rm(r∂r , Jr∂r)K and Rm(r∂r, JX)K
vanish.

Proof. We notice that ∇r∂r
K is holomorphic. Indeed, using that r∂r is holomor-

phic, it is

∇r∂r
K = [r∂r ,K] +∇Kr∂r

= [r∂r ,K] +K

using that ∇r∂r = id. Hence ∇r∂r
K is holomorphic being the sum of two holomor-

phic fields. Then we compute

Rm(r∂r , Jr∂r)K = ∇r∂r
∇Jr∂r

K −∇Jr∂r
∇r∂r

K −∇[r∂r,Jr∂r ]K

= J∇r∂r
∇r∂r

K − J∇r∂r
∇r∂r

K −∇J[r∂r,r∂r ]K

= 0.

Similarly Rm(r∂r , JX)K = 0. �

Now consider the family of functions on fK : C(M) → R defined as

(8) fK = g(MK∂r, J∂r).

We exploit the fact that tr(JMK) = 0 for the following lemma, that also uses that
L is Legendrian.
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Lemma 3.5. Let ei be a frame of the Legendrian L. Then

n∑

i=1

g(MKei, Jei) = −r2fK .

Proof. Since L is Legendrian, we can extend {ei} to an orthonormal frame { 1
r
ei, J

1
r
ei, ∂r,

1
r
ξ =

J∂r} of C(M). Then

0 = tr(JMK) =
1

r2

n∑

i=1

[
g(JMKei, ei) + g(MKJei, Jei)

]

+ g(JMKJ∂r, J∂r) + g(JMK∂r, ∂r)

and from Lemma 3.3.(ii) we infer

2r2f +

n∑

i=1

2g(MKei, Jei) = 0. �

Lemma 3.6. For any Killing and holomorphic vector field K ∈ Γ(TC(M)), the
function fK is constant along the direction ∂r.

Proof. Since ∇∂r
∂r = 0, we have

∂rfK = g((∇∂r
MK)∂r, J∂r)

=
1

r3
Rm(r∂r ,K, r∂r, Jr∂r)

= −
1

r3
Rm(r∂r, Jr∂r ,K, r∂r)

= 0

by Lemma 3.4. �

We prove the following.

Theorem 3.7. For any Legendrian minimal immersion Ln → M in a Sasaki-
Einstein manifold, and for any both holomorphic and Killing vector field on the
Kähler cone K ∈ Γ(TC(M)), then the functions fK defined by (8) are eigenfunc-
tions of ∆L with eigenvalue 2n+ 2.

Proof. We fix a vector field K as in the statement and we set f = fK . In order to
compute ∆Lf , we notice that Lemma 3.6 allows us to apply Lemma 3.2. Thus, let
{e1, · · · , en} be a local frame of L.

We begin with observing that, for any such vector field ei, then there holds

eif =
2

r
g(MK∂r, Jei).(9)

In fact,

eif = g((∇eiMK)∂r, J∂r) + g(MK∇ei∂r, J∂r) + g(MK∂r, J∇ei∂r)

= g(Rm(ei,K)∂r, J∂r) + 2g(MK∂r, J∇ei∂r)

=
2

r
g(MK∂r, Jei),
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where at the second equality we applied Lemma 3.3.(ii) and (iv), at the third
equality we applied Lemma 3.4 and [15, (1.1)]. Similarly as for (9), we also get

∇eieif =
2

r
g(MK∂r, J∇eiei).(10)

Now we compute

eieif = ei

(
2

r
g(MK∂r, Jei)

)

=
2

r

(
g((∇eiMK)∂r, Jei) + g(MK∇ei∂r, Jei) + g(MK∂r, J∇eiei)

)

=
2

r

(
g(Rm(ei,K)∂r, Jei) +

1

r
g(MKei, Jei)

+ g(MK∂r, J∇eiei)− g(MK∂r, Jr∂r)

)

=
2

r2
g(MKei, Jei) +

2

r
g(MK∂r, J∇eiei)− 2g(MK∂r, J∂r),

where at the third equality we applied Lemma 3.3.iv and [15, (1.1)], at the third
equality we applied Lemma 3.4 and [15, (1.1)].

Finally we compute

∆Lf |L = −
n∑

i=1

∇df(ei, ei)|L

= −

n∑

i=1

(eieif −∇eieif)|L

= −

n∑

i=1

(eieif −∇eieif + r∂rf)|L

= −

n∑

i=1

(
2

r2
g(MKei, Jei) +

2

r
g(MK∂r, J∇eiei)

− 2g(MK∂r, J∂r)−
2

r
g(MK∂r, J∇eiei)

)∣∣∣∣
L

= (2n+ 2)f |L,

where at the third equality we applied [15, (1.1)], at the fourth equality we applied
Lemma 3.6 and (10), at the fifth equality we applied Lemma 3.5. This completes
the proof of the theorem. �

Remark 3.8. Let us see how to recover the functions of Lê-Wang in this setting.
Let M ∈ su(n+ 1) and consider it as a real (2n+ 2)× (2n+ 2) matrix. It is skew-
symmetric and such that tr(JM) = 0. Consider the vector field on Cn+1 given at
x by Kx = Mx, which is Killing and holomorphic. We claim that the function fK
is exactly the function 〈Mx, Jx〉. Indeed, if ∇ is the flat connection on Cn+1, it is
∇yK = My for y ∈ Cn+1. Moreover div(JK) = tr(JU) = 0. So fK = 〈Mx, Jx〉
after identifying x with ∂r|(x,1).

Let us now see the connection between our two different generalizations. It is
known that there is an inclusion aut(M) ⊆ aut(C(M)) of the algebra of infinitesimal
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Sasaki automorphisms of M into the algebra of infinitesimal Kähler automorphisms
of the cone C(M). It consists in seeing a field V ∈ aut(M) trivially extended to
the cone and it turns out to be holomorphic and Killing with respect to the cone
metric.

We proved in Theorem 2.1 that for X ∈ aut(M) the functions on L given by
η(X) − 1

vol(L)

´

L
η(X)dv are eigenfunctions of ∆L with eigenvalue 2n + 2, in the

Sasaki-Einstein assumption. By seeing X as an infinitesimal Kähler automorphism
of C(M) we compute

MX∂r =
1

r

[
∇r∂r

X +
1

2n+ 2
div(JX)ξ

]

and J∂r = 1
r
ξ. Taking their inner product we have

(11)

fX = g(MX∂r, J∂r) =
1

r2
g(X, ξ) +

1

2n+ 2
div(JX) = η(X) +

1

2n+ 2
div(JX).

Using Theorem 2.1 together with Theorem 3.7 we have, after applying the Lapla-
cian to (11), that

(12) fX = η(X)−
1

vol(L)

ˆ

L

η(X)dv.

Hence our second generalization extends the first.
In the Lê-Wang setting, we reobtain the fact that

´

L
η(X)dv = 0, which is a

fortiori true being η(X) an eigenfunction of ∆L.
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Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971.
[4] D. E. Blair, Contact manifolds in riemannian geometry, Lecture Notes in Mathematics, no.

509, Springer-Verlag, 1976.
[5] C. Boyer and K. Galicki, Sasakian geometry, Oxford Science Publications, 2007.
[6] B. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces. I, Duke Math.

J. 44 (1977), no. 4, 745–755.
[7] S. Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, U.S.

Government Printing Office, 1995.
[8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publisher,

1963.
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