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Abstract
Some recent results on the theory of fractional Orlicz–Sobolev spaces are surveyed.
They concern Sobolev type embeddings for these spaces with an optimal Orlicz target,
related Hardy type inequalities, and criteria for compact embeddings. The limits of
these spaces when the smoothness parameter s ∈ (0, 1) tends to either of the endpoints
of its range are also discussed. This note is based on recent papers of ours, where
additional material and proofs can be found.
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1 Introduction

One of the available notions of Sobolev spaces of fractional order calls into play the
Gagliardo–Slobodeckij seminorm. Given an open set � ⊂ R

n , with n ∈ N, and
numbers s ∈ (0, 1) and p ∈ [1,∞), this seminorm will be denoted by | · |s,p,�, and
is defined as

|u|s,p,� =
(∫

�

∫
�

( |u(x) − u(y)|
|x − y|s

)p dx dy

|x − y|n
) 1

p

(1.1)

for a measurable function u : � → R. The fractional Sobolev space Ws,p(�) is
defined as the Banach space of those functions u for which the norm

‖u‖Ws,p(�) = ‖u‖L p(�) + |u|s,p,� (1.2)

is finite. Standard properties of the spacesWs,p(�) are classical. The last two decades
have witnessed an increasing number of investigations on these spaces because of
their use in the analysis of nonlocal elliptic and parabolic equations, whose study has
received an enormous impulse in the same period – see e.g. [7–22,24–27,31,34,35,38–
40,43–54,56,57,59,60,64].

The aim of this note is to survey a few recent results, contained in [1–4], on some
aspects of fractional Orlicz–Sobolev spaces. They constitute an extension of the spaces
Ws,p(�), in that the role of the power function t p is performed by a more general
finite-valued Young function A(t), namely a convex function from [0,∞) into [0,∞),
vanishing at 0. The fractional Orlicz–Sobolev space, of order s ∈ (0, 1), associated
with aYoung function A, will be denoted byWs,A(�), and is built upon theLuxemburg
type seminorm | · |s,A,� given by

|u|s,A,� = inf

{
λ > 0 :

∫
�

∫
�

A

( |u(x) − u(y)|
λ|x − y|s

)
dx dy

|x − y|n ≤ 1

}
(1.3)

for a measurable function u : � → R. The norm of a function u in Ws,A(�) is
accordingly defined as

‖u‖Ws,A(�) = ‖u‖L A(�) + |u|s,A,�, (1.4)

where ‖u‖L A(�) stands for theLuxemburg norm in theOrlicz space LA(�). Definitions
(1.3) and (1.4) have been introduced in [37], where some basic properties of the space
Ws,A(�) are analyzed under the�2 and∇2 conditions on A. Plainly, these definitions
recover (1.1) and (1.2) when A(t) = t p for some p ∈ [1,∞).

Sobolev embeddings for the space Ws,p(�) have been long known. In particular,
if s ∈ (0, 1) and 1 ≤ p < n

s , then there exists a constant C such that

‖u‖
L

np
n−sp (Rn)

≤ C |u|s,p,Rn (1.5)
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for every measurable function u : Rn → R decaying to 0 near infinity. A companion
result holds if Rn is replaced by any bounded open set � with a sufficiently regular
boundary ∂�, for any function u ∈ Ws,p(�), provided that the seminorm |u|s,p,Rn is
replaced by the norm ‖u‖Ws,p(�).

Sharp extensions of these Sobolev type inequalities and ensuing embeddings to the
spacesWs,A(�) are presented in Sect. 3. For instance, the optimal Orlicz target space
LB(Rn) in the inequality

‖u‖LB (Rn) ≤ C |u|s,A,Rn ,

for some constant C and every measurable function u : R
n → R decaying to 0

near infinity, is exhibited. Compact embeddings are also characterized. Here, we shall
limit ourselves to consider target spaces of Orlicz type. However, inequalities and
embeddings involving even stronger rearrangement-invariant norms are available. For
these results we refer to [1,4], where proofs of the material collected in this paper can
also be found. Let us add that in those papers optimal embeddings for higher-order
fractional spaces Ws,A(�) associated with any s ∈ (0, n)\N are established as well.

A second issue that will be addressed concerns the limits as s → 1− and s → 0+
of the space Ws,A(Rn). It is well known that setting s = 1 in the definition of the
space Ws,p(Rn) does not recover the first-order Sobolev space W 1,p(Rn). Moreover,
the Lebesgue space L p(Rn) cannot be obtained on choosing s = 0 in the definition of
Ws,A(Rn). Still, the seminorm ‖∇u‖L p(Rn) and the norm ‖u‖L p(Rn) of a function are
reproduced as limits as s → 1− and s → 0+, respectively, of the seminorm |u|s,p,Rn ,
provided that the latter is suitably normalized by a multiplicative factor depending on
s, p and n.

Specifically, a version in the whole ofRn of a result by Bourgain-Brezis-Mironescu
[9,10] tells us that, if p ∈ [1,∞), then

lim
s→1−(1 − s)

∫
Rn

∫
Rn

( |u(x) − u(y)|
|x − y|s

)p dx dy

|x − y|n = K (p, n)

∫
Rn

|∇u(x)|p dx

(1.6)

for every function u ∈ W 1,p(Rn), where

K (p, n) = 1

p

∫
Sn−1

|θ · e|p dHn−1. (1.7)

Here, Sn−1 denotes the (n − 1)-dimensional unit sphere in R
n , Hn−1 denotes the

(n − 1)-dimensional Hausdorff measure, e is any point on S
n−1, and the dot “ · ”

stands for scalar product in R
n . Conversely, if p ∈ (1,∞), u ∈ L p(Rn) and the

limit (or even the liminf) on the left-hand side of (1.6) is finite, then u ∈ W 1,p(Rn).
The case when p = 1 is excluded from the latter result, but has a counterpart with
W 1,1(Rn) replaced by BV (Rn), the space of functions of bounded variation in R

n .
A slight variant of these facts is proved in [62]. In the precise form appearing above,
they follow as special cases of results of [3]. A version of Eq. (1.6) with R

n replaced
by a bounded regular domain can be found in [32].
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The limit as s → 0+ is the subject of a theorem by Maz’ya–Shaposhnikova [50],
which ensures that

lim
s→0+ s

∫
Rn

∫
Rn

( |u(x) − u(y)|
|x − y|s

)p dx dy

|x − y|n = 2 nωn

p

∫
Rn

|u(x)|p dx (1.8)

for each p ∈ [1,∞), and for every function u decaying to 0 near infinity and making
the double integral finite for some s ∈ (0, 1). Here, ωn denotes the Lebesgue measure
of the unit ball inRn . Equation (1.8) has to be interpreted in the sense that u ∈ L p(Rn)

if and only if the limit on the left-hand side if finite, and that, in the latter case, the
equality holds.

Section 4 is devoted to counterparts, established in [3] and [2], of these results in
the Orlicz framework. Namely, it deals with the limits

lim
s→1−(1 − s)

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n , (1.9)

and

lim
s→0+ s

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n . (1.10)

Interestingly, the conclusions about these limits share some features with those in (1.6)
and (1.8), but also present somediversities. In particular, as shownby counterexamples,
certain results can only hold under the additional �2-condition on A, or are affected
by some restrictions in the general case.

2 Function spaces

A function A : [0,∞) → [0,∞] is called a Young function if it has the form

A(t) =
∫ t

0
a(τ )dτ for t ≥ 0,

for some non-decreasing, left-continuous function a : [0,∞) → [0,∞] which is
neither identically equal to 0 nor to∞. Clearly, any convex (non trivial) function from
[0,∞) into [0,∞], which is left-continuous and vanishes at 0, is a Young function.

A Young function A is said to dominate another Young function B globally if there
exists a positive constant C such that

B(t) ≤ A(Ct) for t ≥ 0 . (2.1)

The function A is said to dominate B near infinity if there exists t0 > 0 such that (2.1)
holds for t ≥ t0.
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The function B is said to grow essentially more slowly near infinity than A if

lim
t→∞

B(λt)

A(t)
= 0 (2.2)

for every λ > 0. Note that condition (2.2) is equivalent to

lim
t→∞

A−1(t)

B−1(t)
= 0. (2.3)

A Young function A is said to satisfy the �2-condition – briefly A ∈ �2 – globally if
there exists a positive constant C such that

A(2t) ≤ CA(t) (2.4)

for t ≥ 0. If A is finite-valued and there exists t0 > 0 such that inequality (2.4) holds
for t ≥ t0, then we say that A satisfies the �2-condition near infinity.

Let � be a measurable subset of Rn , with n ≥ 1, having Lebesgue measure |�|.
Set

M(�) = {u : � → R : u is measurable},

and

M+(�) = {u ∈ M(�) : u ≥ 0} .

The notation Md(�) is employed for the subset of M(�) of those functions u that
decay near infinity, according to the following definition:

Md(�) = {u ∈ M(�) : |{|u| > t}| < ∞ for every t > 0} .

Plainly, Md(�) = M(�) if |�| < ∞. The Orlicz space L A(�), associated with a
Young function A, is the Banach space of those functions u ∈ M(�) for which the
Luxemburg norm

‖u‖L A(�) = inf

{
λ > 0 :

∫
�

A

( |u(x)|
λ

)
dx ≤ 1

}

is finite. In particular, L A(�) = L p(�) if A(t) = t p for some p ∈ [1,∞), and
LA(�) = L∞(�) if A(t) = 0 for t ∈ [0, 1] and A(t) = ∞ for t ∈ (1,∞). If A
dominates B globally, then

‖u‖LB (�) ≤ C‖u‖L A(�) (2.5)

for every u ∈ LA(�), where C is the same constant as in (2.1). If |�| < ∞, and A
dominates B near infinity, then inequality (2.5) continues to hold for some constant
C = C(A, B, t0, |�|).
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The alternative notation A(L)(�) will also be employed, in the place of LA(�), to
denote the Orlicz space associated with a Young function equivalent to A.
The space E A(�) is defined as

E A(�) =
{
u ∈ M(�) :

∫
�

A

( |u(x)|
λ

)
dx < ∞ for every λ > 0

}
.

If A is finite-valued, then the space E A(�) agrees with the closure in L A(�) of the
space of bounded functions with bounded support in �. Trivially,

E A(�) ⊂ L A(�) .

This inclusion holds as equality if and only if either |�| < ∞ and A ∈ �2 near
infinity, or |�| = ∞ and A ∈ �2 globally.

Assume now that � is an open subset of Rn . We denote by V 1,A(�) the homoge-
neous Orlicz–Sobolev space given by

V 1,A(�) =
{
u ∈ W 1,1

loc (�) : |∇u| ∈ L A(�)
}

.

Here, ∇u denotes the gradient of u. The notationW 1,A(�) is adopted for the classical
Orlicz–Sobolev space defined by

W 1,A(�) =
{
u ∈ L A(�) : |∇u| ∈ L A(�)

}
.

The space W 1,A(�) is a Banach space equipped with the norm

‖u‖W 1,A(�) = ‖u‖L A(�) + ‖∇u‖L A(�) .

By W 1E A(�) we denote the space obtained on replacing LA(�) with E A(�) in the
definition of W 1,A(�).

The space of functions of bounded variation on � is denoted by BV (�). It con-
sists of all functions in L1(�) whose distributional gradient is a vector-valued Radon
measure Du with finite total variation ‖Du‖(�) on �. The space BV (�) is a Banach
space, endowed with the norm defined as

‖u‖BV (�) = ‖u‖L1(�) + ‖Du‖(�)

for u ∈ BV (�).
Given a function u ∈ BV (�), we denote by ∇u the absolutely continuous part of Du
with respect to the Lebesgue measure, and by Dsu its singular part. One has that

‖Du‖(�) =
∫

�

|∇u| dx + ‖Dsu‖(�),

where ‖Dsu‖(�) stands for the total variation of the measure Dsu over �.
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More generally, assume that A is a Young function with a linear growth near infinity,
in the sense that

lim
t→∞

A(t)

t
< ∞. (2.6)

Then a functional JA,� associated with A can be defined on BV (�) as

JA,�(u) =
∫

�

A (|∇u|) dx + a∞‖Dsu‖(�) (2.7)

for u ∈ BV (�), where

a∞ = lim
t→∞

A(t)

t
. (2.8)

The functional JA,� agrees on BV (�) with the relaxed functional of

∫
�

A(|∇u|) dx

on L1(�) with respect to convergence in L1
loc(�), which is defined as

inf

{
lim inf
m→∞

∫
�

A(|∇um |) dx : {um} ⊂ C1(�), um → u in L1
loc(�)

}
.

One has that the functional JA,� is lower semicontinuous in BV (�) with respect to
convergence in L1

loc(�). Moreover, for every function u ∈ BV (�), there exists a
sequence {um} ⊂ C1(�) such that

um → u in L1
loc(�) and JA,�(u) = lim

m→∞

∫
�

A(|∇um |) dx .

The homogeneous fractional Orlicz–Sobolev space V s,A(�) is defined as

V s,A(�) = {
u ∈ M(�) : |u|s,A,� < ∞} ,

where | · |s,A,� is the seminorm given by (1.3).
The subspace of those functions in V s,A(�) that decay near infinity is denoted by
V s,A
d (�). Namely

V s,A
d (�) = V s,A(�) ∩ Md(�).

If |�| < ∞ and s ∈ (0, 1), we also define the space

V s,A
⊥ (�) =

{
u ∈ V s,A(�) : u� = 0

}
,
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where

u� = 1

|�|
∫

�

u dx ,

the mean value of u over �.
The fractional-order Orlicz–Sobolev space Ws,A(�) is defined as

Ws,A(�) =
{
u ∈ L A(�) : u ∈ V s,A(�)

}
,

and is a Banach space equipped with the norm given by (1.4). Clearly, Ws,A(�) →
V s,A
d (�), and, as a consequence of Proposition 1, Sect. 3, Ws,A(�) = V s,A

d (�) if �

is bounded.
We conclude by mentioning a fractional-order Pólya–Szegő principle, which

implies the decrease of the fractional Orlicz–Sobolev seminorm under symmetric
rearrangement of functions u. Recall that the symmetric rearrangement u� of a func-
tion u ∈ Md(R

n) is defined as the radially decreasing function about 0 which is
equidistributed with u.

Theorem 2.1 (Fractional Pólya–Szegő principle) Let s ∈ (0, 1) and let A be a Young
function. Assume that u ∈ Md(R

n). Then

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n ≥
∫
Rn

∫
Rn

A

(
|u�(x) − u�(y)|

|x − y|s
)

dx dy

|x − y|n .

(2.9)

In the case when A is a power, inequality (2.9) can be traced back to [5,6]. The result
for Young functions A satisfying the �2-condition and functions u ∈ Ws,A(Rn) is
proved in [33]. The general version stated in Theorem 2.1 can be found in [1]. An
earlier related contribution, dealing with functions of one-variable, is [42].

3 Sobolev type inequalities

Our first theorem provides us with the optimal – i.e. smallest possible – Orlicz target
space in the Sobolev embedding for the space V s,A

d (Rn). Such an optimal space is
built upon the Young function A n

s
associated with A, n and s as follows.

Let s ∈ (0, 1) and let A be a Young function such that

∫ ∞ (
t

A(t)

) s
n−s

dt = ∞ (3.1)

and

∫
0

(
t

A(t)

) s
n−s

dt < ∞. (3.2)
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Then, A n
s
is given by

A n
s
(t) = A(H−1(t)) for t ≥ 0, (3.3)

where the function H : [0,∞) → [0,∞) obeys

H(t) =
(∫ t

0

(
τ

A(τ )

) s
n−s

dτ

) n−s
n

for t ≥ 0.

Theorem 3.1 (Optimal Orlicz target space) Let s ∈ (0, 1). Assume that A is a Young
function satisfying conditions (3.1) and (3.2), and let A n

s
be the Young function defined

as in (3.3). Then

V s,A
d (Rn) → L

A n
s (Rn), (3.4)

and there exists a constant C = C(n, s) such that

‖u‖
L
A n
s (Rn)

≤ C |u|s,A,Rn (3.5)

for every function u ∈ V s,A
d (Rn). Moreover, L

A n
s (Rn) is the optimal target space in

inequality (3.5) among all Orlicz spaces.

Remark 1 Assumption (3.2) on the Young function A cannot be dispensed with in
Theorem 3.1. Actually, one can show that it is necessary for an embedding of the
space V s,A

d (Rn) to hold into any rearrangement-invariant space. Assumption (3.1)
amounts to requiring that A has a subcritical growth with respect to the smoothness
parameter s. It generalizes the condition p < n

s required for the classical inequality
(1.5).

Remark 2 The fractional Orlicz–Sobolev inequality (3.5) precisely matches the
integer-order inequality established in [29] (see also [28] for an alternative form).
Indeed, setting s = 1 in formula (3.3) for the function A n

s
recovers the Young func-

tion which defines the optimal Orlicz target space in the Orlicz–Sobolev inequality
for W 1,A(Rn).

We now present an application of Theorem 3.1 to a family of Young functions
whose behaviour near zero and near infinity is of power-logarithmic type. Although
quite simple, these model Young functions enable us to recover results available in the
literature and to exhibit genuinely new inequalities.

Example 1 Consider a Young function A such that

A(t) is equivalent to

{
t p0(log 1

t )
α0 near zero

t p(log t)α near infinity,
(3.6)
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where either p0 > 1 and α0 ∈ R, or p0 = 1 and α0 ≤ 0, and either p > 1 and α ∈ R,
or p = 1 and α ≥ 0. Here, equivalence is meant in the sense of Young functions.
Let s ∈ (0, 1). The function A satisfies assumption (3.1) if

either 1 ≤ p <
n

s
and α is as above, or p = n

s
and α ≤ n

s
− 1, (3.7)

and satisfies assumption (3.2) if

either 1 ≤ p0 <
n

s
and α0 is as above, or p0 = n

s
and α0 >

n

s
− 1. (3.8)

Then, by Theorem 3.1, embedding (3.4) and inequality (3.5) hold, where

A n
s
(t) is equivalent to

⎧⎨
⎩
t

n p0
n−s p0 (log 1

t )
nα0

n−s p0 if 1 ≤ p0 < n
s

e−t
− n
s(α0+1)−n

if p0 = n
s andα0 > n

s − 1
near zero,

and

A n
s
(t) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
t

np
n−sp (log t)

nα
n−sp if 1 ≤ p < n

s

et
n

n−(α+1)s ifp = n
s andα < n

s − 1

ee
t

n
n−s

ifp = n
s andα = n

s − 1

near infinity.

(3.9)

Furthermore, the target space in the resultant embedding and inequality is optimal
among all Orlicz spaces.
In particular, if

p = p0 < n
s and α = α0 = 0, (3.10)

this result reproduces inequality (1.5). In the limiting case when

p = p0 = n
s , α = 0 and α0 > n

s − 1,

we obtain a fractional embedding of Pohozhaev-Trudinger-Yudovich type [55,61,63]
– see also the recent paper [54] with this regard.

The next result amounts to a Hardy type inequality for fractional Orlicz–Sobolev
spaces V s,A

d (Rn). This inequality extends a theorem of Maz’ya–Shaposhnikova [50,
Inequality (3)]. The relevant Hardy inequality is a central step in the Proof of The-
orem 3.1 and of its augmented version with optimal rearrangement-invariant target
norm established in [1, Theorem 6.2]. Its statement involves a new Young function Â,
associated with A, s and n according to the formula
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Â(t) =
∫ t

0
â(τ ) dτ for t ≥ 0, (3.11)

where â : [0,∞) → (0,∞) is the function whose inverse obeys

â −1(r) =
⎛
⎝∫ ∞

a−1(r)

(∫ t

0

(
1

a(
)

) s
n−s

d


)− n
s dt

a(t)
n

n−s

⎞
⎠

s
s−n

for r ≥ 0.

Theorem 3.2 (Fractional Orlicz–Hardy inequality) Let s ∈ (0, 1). Assume that A is a
Young function satisfying conditions (3.1) and (3.2) and let Â be the Young function
given by (3.11). Then there exists a constant C = C(n, s) such that lims→1− C(n, s) <

∞ and
∥∥∥∥u(x)

|x |s
∥∥∥∥
L Â(Rn)

≤ C |u|s,A,Rn (3.12)

for every function u ∈ V s,A
d (Rn). Moreover,

∫
Rn

Â

( |u(x)|
|x |s

)
dx ≤ (1 − s)

∫
Rn

∫
Rn

A

(
C

|u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n (3.13)

for every function u ∈ Md(R
n).

Let us mention that a Hardy-type inequality for one-dimensional fractional Orlicz–
Sobolev spaces has recently been established in [58].

Example 2 Let A be a Young function as in (3.6), and let s ∈ (0, 1). Assume that the
parameters p, p0, α and α0 satisfy assumptions (3.7) and (3.8). Theorem 3.2 implies
that inequalities (3.12) and (3.13) hold, where

Â(t) is equivalent to

{
t p0 (log 1

t )
α0 if 1 ≤ p0 < n

s
t
n
s (log 1

t )
α0− n

s if p0 = n
s and α0 > n

s − 1
near zero,

and

Â(t) is equivalent to

⎧⎪⎨
⎪⎩
t p(log t)α if 1 ≤ p < n

s
t
n
s (log t)α− n

s if p = n
s and α < n

s − 1

t
n
s (log t)−1(log(log t))− n

s if p = n
s and α = n

s − 1

near infinity.

In particular, the choices p0 = p < n
s and α0 = α = 0 yield Â(t) = t p, and

inequalities (3.12) and (3.13) recover (apart from the specific form of the constant
involved) [50, Inequality (3)].
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A version of Theorem 3.1 holds even if Rn is replaced by an open set � ⊂ R
n ,

provided that the latter enjoys suitable regularity properties. For instance, it suffices
to assume that � is a bounded Lipschitz domain. This is the subject of the next result,
which, like the other results of this section dealing with subsets� ofRn , is established
in [4].

Theorem 3.3 (Optimal Orlicz target space on domains) Let� be a bounded Lipschitz
domain in R

n. Assume that s ∈ (0, 1) and that A is a Young function satisfying
conditions (3.1) and (3.2). Then

Ws,A(�) → L
A n

s (�), (3.14)

and L
A n

s (�) is the optimal Orlicz target space in (3.14). Moreover, there exists a
constant C = C(n, s,�) such that

‖u‖
L
A n
s (�)

≤ C |u|s,A,�

for every function u ∈ V s,A
⊥ (�).

Example 3 Let � be a bounded Lipschitz domain in R
n and let s ∈ (0, 1). Consider

a Young function A as in (3.6) under assumptions (3.7) and (3.8) on the parameters
p, p0, α, α0. Owing to Theorem 3.3, embedding (3.14) holds with A n

s
obeying (3.9).

Let us notice that, since |�| < ∞, only the behaviour near infinity of the function A n
s

plays a role now. Therefore, embedding (3.14) takes the form

Ws,A(�) →

⎧⎪⎨
⎪⎩
L

np
n−sp (log L)

nα
n−sp (�) if 1 ≤ p < n

s

exp L
n

n−(α+1)s (�) if p = n
s and α < n

s − 1

exp exp L
n

n−s (�) if p = n
s and α = n

s − 1,

(3.15)

the target spaces being optimal among all Orlicz spaces. Embedding (3.15) recovers
or extends to the fractional case various results available in the literature. The case
corresponding to (3.10) is classical. Integer-order Sobolev embeddings parallel to
(3.15) are special instances of the general results of [30], which, in their turn, include
various borderline cases established in [36,41,55,61,63]. In fact, the paper [36], and
some sequel contributions by the same authors, also deal with fractional embeddings,
but for spaces defined in terms of potentials instead of difference quotients.

Theorem 3.3 rests on Theorem 3.1 and on an extension result for fractional Orlicz–
Sobolev spaces on Lipschitz domains. The dependence of the norm of the linear
extension operator on the parameter s ∈ (0, 1) can be properly described on making
use of an equivalent norm |||·|||Ws,A(�) on Ws,A(�), defined as follows. Call A• the
Young function given by A•(t) = min{s, 1 − s}A(t) for t ≥ 0. Then, we set

|||u|||Ws,A(�) = ‖u‖L A(�) + |u|s,A•,�

for u ∈ Ws,A(�).
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Theorem 3.4 (Extension operator for fractional Orlicz–Sobolev spaces) Let � be a
bounded Lipschitz domain inRn. Assume that s ∈ (0, 1) and let A be a Young function.
Then there exist a linear extension operator E : Ws,A(�) → Ws,A(Rn) and a constant
C = C(�) such that

E(u) = u in �

and

|||E(u)|||Ws,A(Rn) ≤ C |||u|||Ws,A(�)

for every function u ∈ Ws,A(�).
Moreover, there exists a constant C ′ = C ′(s,�) such that

|E(u)|s,A,Rn ≤ C ′|u|s,A,�

for every function u ∈ V s,A
⊥ (�).

The Poincaré type inequality stated in the next proposition, of independent interest,
has a role in the Proof of Theorem 3.4.

Proposition 1 (Fractional Orlicz–Poincaré inequality) Let � be a bounded open set
in R

n. Assume that s ∈ (0, 1) and that A is a Young function. If u ∈ V s,A(�), then
u ∈ L A(�). Moreover, there exists a constant C = C(s,�) such that

‖u − u�‖L A(�) ≤ C |u|s,A,�

for every function u ∈ V s,A(�). Furthermore,

∫
�

A
(∣∣u(x) − u�

∣∣) dx ≤
∫

�

∫
�

A

(
C

|u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n

for every function u ∈ V s,A(�).

The last result of this section is a criterion for the compactness of a fractionalOrlicz–
Sobolev embedding into anOrlicz space. A necessary and sufficient condition amounts
to requiring that theYoung function that defines the latter space grows essentiallymore
slowly near infinity (in the sense of (2.2)) than the Young function that defines the
optimal Orlicz target for a merely continuous embedding given by Theorem 3.1. This
is the content of the following theorem.

Theorem 3.5 (Compact embeddings) Let s ∈ (0, 1) and let A be a Young function
fulfilling conditions (3.1) and (3.2). Let A n

s
be the Young function defined by (3.3).

Assume that B is a Young function. The following properties are equivalent.
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(i) B grows essentially more slowly near infinity than A n
s
, namely

lim
t→∞

B(λt)

A n
s
(t)

= 0

for every λ > 0.
(ii) The embedding

V s,A
d (Rn) → LB

loc(R
n) (3.16)

is compact.
(iii) The embedding

Ws,A(�) → LB(�)

is compact for every bounded Lipschitz domain � in Rn.

The assertion that embedding (3.16) is compactmeans that every bounded sequence
in V s,A

d (Rn) has a subsequence whose restriction to E converges in LB(E) for every
bounded measurable set E in R

n . Let us notice that the equivalence of properties (i)
and (ii) is not explicitly mentioned in [4]. Its proof follows, modulo minor variants,
along the same lines as that of the equivalence of (i) and (iii).

Example 4 Assume that � is a bounded Lipschitz domain in R
n . Let s ∈ (0, 1) and

let A be a Young function as in (3.6), (3.7) and (3.8). From Theorem 3.5 and property
(2.3) one infers that the embedding

Ws,A(�) → LB(�)

is compact if and only if B is a Young function fulfilling

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

limt→∞ t
n−sp
np (log t)−

α
p

B−1(t)
= 0 if 1 ≤ p < n

s

limt→∞ (log t)
n−(α+1)s

n

B−1(t)
if p = n

s and α < n
s − 1

limt→∞ (log log t)
n−s
n

B−1(t)
if p = n

s and α = n
s − 1.

If A and B are as above, an analogous result holds for the embedding V s,A
d (Rn) →

LB
loc(R

n).
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4 Limits as s → 0+ and s → 1−

Here we are concerned with the question of existence and values of the limits (1.9)
and (1.10).

Let us begin by addressing the problem of the limit as s → 0+. A result from
[2] tells us that, if the Young function A satisfies the �2-condition, and the function
u ∈ V s,A

d (Rn) for some s ∈ (0, 1), then the limit in (1.10) does exist, and equals the
integral of a Young function of |u| over Rn . Interestingly, such a Young function is
not just a constant multiple of A in general. It is instead the Young function A given
by the formula

A(t) =
∫ t

0

A(τ )

τ
dτ for t ≥ 0 .

Observe that theYoung functions A and A are equivalent, since A(t/2) ≤ A(t) ≤ A(t)
for t ≥ 0, owing to the monotonicity of A(t) and A(t)/t . In particular, if A(t) = t p

for some p ≥ 1, then

A(t) = 1
p t

p for t ≥ 0. (4.1)

Theorem 4.1 Let A be a Young function satisfying the �2-condition. Assume that
u ∈ ⋃

s∈(0,1) V
s,A
d (Rn). Then

lim
s→0+ s

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n = 2 nωn

∫
Rn

A(|u(x)|) dx . (4.2)

Plainly, owing to Eq. (4.1), Theorem 4.1 reproduces the Maz’ya–Shaposhnikova
result (1.8) when A(t) = t p for some p ≥ 1.

Let us mention that, under the additional∇2-condition on A, an earlier partial result
in this connection had been established in [23], where bounds for the lim infs→0+ and
lim sups→0+ of the expression under the limit in (4.2) are given.

We emphasize that the �2-condition imposed on A in Theorem 4.1 is not just
a technicality. The next result shows that its conclusion can indeed fail if the �2-
condition is removed.

Theorem 4.2 There exist Young functions A, which do not satisfy the �2-condition,
and corresponding functions u : Rn → R such that u ∈ V s,A

d (Rn) for every s ∈ (0, 1)
and

∫
Rn

A(|u(x)|) dx ≤
∫
Rn

A(|u(x)|) dx < ∞ ,

but

lim
s→0+ s

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n = ∞ .
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We refer to the paper [2] for Proofs of Theorems 4.1 and 4.2. Let us just mention
here that the Young functions A and the functions u announced in the statement of
Theorem 4.2, that demonstrate the possible failure of Eq. (4.2), can be chosen with
the following properties:

A(t) = e− 1
tγ for large t ,

and

u(x) = x1

λ|x | log 1
γ (κ + |x |)

for large |x |,

where x = (x1, . . . xn), for suitably related constants γ ≥ 1 and λ ∈ (1, 2).
We finally focus on the limit as s → 1−. As recalled in Sect. 1, in the case of

standard Sobolev spaces associated with the exponent p, the result takes a different
form depending on whether p = 1 or p ∈ (1,∞). More precisely, whereas Eq. (1.6)
holds under the assumption that u ∈ W 1,p(Rn) for every p ∈ [1,∞), the fact that
u ∈ L p(Rn) and the limit in (1.6) is finite ensure that u ∈ W 1,p(Rn) if p ∈ (1,∞), but
just that u ∈ BV (Rn) if p = 1. Also, under the latter assumption, Eq. (1.6) continues
to hold with

∫
Rn |∇u|dx replaced by ‖Du‖(Rn) on the right-hand side.

A parallel phenomenon occurs in the ambient of Orlicz–Sobolev spaces. Similarly
to the limit (1.10), the Young function to be applied to the modulus of the gradient
to describe the limit (1.9) is not a mere multiple of A. The relevant function will be
denoted by A◦ : [0,∞) → [0,∞), and is defined as

A◦(t) =
∫ t

0

∫
Sn−1

A(r |θ · e|) dHn−1(θ)
dr

r
for t ≥ 0 , (4.3)

where e is anyfixedvector inSn−1.One can show that A◦ is aYoung function equivalent
to A. Specifically, there exist constants c1 = c1(n) and c2 = c2(n) such that

A(c1t) ≤ A◦(t) ≤ c2A(t) for t ≥ 0.

Observe that, if A(t) = t p, then

A◦(t) = K (n, p)t p for t ≥ 0,

where K (n, p) is the constant defined by (1.7).

Theorem 4.3 Let A be a finite-valued Young function. Assume that u ∈ W 1,A(Rn).
Then there exists λ0 > 0 such that

lim
s→1−(1 − s)

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
λ|x − y|s

)
dx dy

|x − y|n =
∫
Rn

A◦
( |∇u|

λ

)
dx

(4.4)

for every λ ≥ λ0. If u ∈ W 1E A(Rn), then Eq. (4.4) holds for every λ > 0.
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Remark 3 Let us emphasize that, unlike Theorem 4.1, the�2-condition is not required
in Theorem 4.3, at the expense of replacing u by u/λ for sufficiently large λ > 0.
This is consistent with the fact that, if A does not satisfy this condition, member-
ship of ∇u in the Orlicz space LA(Rn) only ensures that

∫
Rn A

( |∇u|
λ

)
dx , and hence∫

Rn A◦
( |∇u|

λ

)
dx , is finite for sufficiently large λ. However, under the�2-condition on

A, one has that W 1,A(Rn) = W 1,A(Rn), and hence Eq. (4.4) holds for every λ > 0,
including λ = 1.

In the framework of Orlicz spaces associated with a Young function A, an analogue
of the distinction between p = 1 and p ∈ (1,∞) for powers is properly formulated
in terms of the limit at infinity and/or at 0 of the (non-decreasing) function A(t)/t . In
particular, a converse to Theorem 4.3 holds under the superlinear growth condition on
A near infinity

lim
t→∞

A(t)

t
= ∞, (4.5)

and the sublinear decay condition at 0

lim
t→0+

A(t)

t
= 0. (4.6)

Plainly, if A(t) = t p, either of conditions (4.5) and (4.6) is equivalent to requiring
that p > 1.

Theorem 4.4 Let A be a finite-valued Young function. Assume that A fulfills conditions
(4.5) and (4.6). If u ∈ LA(Rn) is such that

lim inf
s→1− (1 − s)

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
λ|x − y|s

)
dx dy

|x − y|n < ∞ (4.7)

for some λ > 0, then u ∈ W 1,A(Rn).

In the case when A has a linear growth near infinity or near 0, Theorems 4.3 and 4.4,
respectively, have counterparts in the framework of functions of bounded variation.
Assume that A is a Young function for which equation (4.5) fails, and hence condition
(2.6) holds. Since the function A◦ given by (4.3) is equivalent to A, Eq. (2.6) also holds
if A is replaced by A◦. Let a∞◦ be the number defined as in (2.8), with A replaced by
A◦, namely

a∞◦ = lim
t→∞

A◦(t)
t

.

The following result tells us that, under (2.6), if u ∈ BV (Rn) then the limit in (4.4)
equals the functional JA◦,Rn (u) defined as in (2.7), namely the relaxed functional of∫
Rn A◦(|∇u|) dx with respect to convergence in L1

loc(R
n).
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Theorem 4.5 Let A be a Young function fulfilling condition (2.6). Assume that u ∈
BV (Rn). Then,

lim
s→1−(1 − s)

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
|x − y|s

)
dx dy

|x − y|n =
∫
Rn

A◦ (|∇u|) dx + a∞◦ ‖Dsu‖(Rn).

Suppose now that condition (4.6) does not hold, namely

lim
t→0+

A(t)

t
> 0. (4.8)

From Eq. (4.7) one can conclude that u ∈ BV (Rn).

Theorem 4.6 Let A be a Young function fulfilling condition (4.8). Assume that u ∈
L1(Rn) is such that

lim inf
s→1− (1 − s)

∫
Rn

∫
Rn

A

( |u(x) − u(y)|
λ|x − y|s

)
dx dy

|x − y|n < ∞

for some λ > 0. Then u ∈ BV (Rn).
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