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ABSTRACT
Quantifying the carbon-stocking contribution of forest plantations is a crucial but challenging 
and expensive process, usually performed through field analysis. For this reason, plantations’ 
carbon storage is often calculated and reported using generic and inaccurate functions relying 
exclusively on tree species and plantation age. This study introduces a new field-independent 
(FI) method for forest plantations’ carbon quantification and mapping through automatic 
analysis of Sentinel-2 data. The study area is a Guatemalan forest plantation of 20 hectares, 
for which we constructed a reference dataset measuring in the field the diameter and the 
height of all trees within 20 randomly selected plots (10-meter radius). The CO2 equivalent 
absorbed by the plantation was first estimated using ground data and a design-based (DB) 
approach. Then, to obtain CO2 equivalent estimates but also maps, we used both ground and 
Sentinel-2 data to compare a standard model-assisted (MA) approach relying on Random 
Forests with the FI approach. Our results demonstrate that the FI method provides carbon 
stock statistics comparable to those obtained using DB and MA methods and more accurate 
maps. Accordingly, the RMSE obtained using the FI method was 34% while that obtained by 
the MA method – exploiting random forest algorithm – was greater (RMSE = 39%). The 95% 
confidence interval estimates of the CO2 stored in the plantation were 100 ± 18 MgC ha−1 and 
102 ± 8 MgC ha−1, for DB and MA respectively. Using the FI method, the CO2 ranged between 
89 and 117 Mg C ha−1, all values within the DB confidence interval. In addition, the FI map was 
surprisingly consistent with the MA-derived map, making our approach a valid alternative for 
monitoring plantation status and carbon storage when ground data are not available.
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Introduction

Mitigating the effects of climate change is a critical 
societal objective now and in the forthcoming decades. 
Approximately 10% of the world’s annual total carbon 
emissions are due to deforestation and forest degrada-
tion in tropical countries (Csillik et al., 2019). In the 
interim, carbon dioxide can be removed from the 
atmosphere and can help limit global warming 
through sustainable forest management and replant-
ing operations (IPCC, 2018). Thus, national and inter-
national initiatives such as REDD+ (Reducing 
Emissions from Deforestation and Forest 
Degradation) are dedicated to addressing those issues. 
Specifically, to counteract global warming, each coun-
try’s carbon emissions from deforestation and forest 
degradation must be estimated and monitored over 
time (Csillik et al., 2019). At such expansive geo-
graphic scales, an accurate, economical, and high- 

resolution method of tracking changes in above-
ground carbon inventories is required.

Preventing serious climate change requires remov-
ing carbon dioxide from the atmosphere as well as 
making significant cutbacks to emissions. Forests are 
a vital element of the global carbon cycle and are 
proven to be the major terrestrial sink for carbon 
(Yang et al., 2022). As a result, the G20 summit 
(Rome) proposal from November 2021 to plant 
1 billion trees by 2030 to address the climate issue 
has been approved, as tree restoration and emissions 
reduction have been included among the most suc-
cessful measures for mitigating climate change. 
Accordingly, the restoration of tropical agricultural 
landscapes, due to the quantity of area available and 
the growth rate of the trees, has some of the highest 
potential to counteract climate change (Bastin et al.,  
2019). However, quantifying the contribution of 

CONTACT Saverio Francini saverio.francini@unifi.it Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, 
Via San Bonaventura, 13, Firenze 50145, Italy
This article has been corrected with minor changes. These changes do not impact the academic content of the article.

EUROPEAN JOURNAL OF REMOTE SENSING        
2024, VOL. 57, NO. 1, 2334717 
https://doi.org/10.1080/22797254.2024.2334717

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting 
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2024.2334717&domain=pdf&date_stamp=2024-04-25


carbon stocking leads to new forest plantations is an 
arduous process that is typically characterized as being 
expensive and time-consuming.

Due to the high degree of knowledge and reliable 
scientific procedures required for carbon stock assess-
ment, many reforestation programs find it challenging 
to scale up since it is difficult to provide reliable 
evidence of good outcomes. This is a major issue in 
light of the recent and substantial financing commit-
ments made to forest restoration efforts (Cavanagh 
et al., 2021; Fairhead et al., 2012; Tucker et al., 2023). 
Seriously, many plantations, afforestation, or REDD+ 
projects experienced failure due to a wrong estimation 
of the carbon sequestration capacity (Lederer, 2011; Li 
et al., 2022). Since it is well known that the certifica-
tion process for carbon credits is tough and complex, 
reliable estimating methods founded on sound scien-
tific principles must be the starting point.

Traditionally, forest carbon stocks have been esti-
mated using field plot networks by correlating tree 
structural characteristics (diameter, height, and wood 
density) to aboveground carbon density (ACD) using 
allometric equations (Csillik et al., 2019). The above-
ground biomass (AGB) of trees – and thus the amount 
of carbon stored – is indeed known to be very corre-
lated with different morphological features (Harris 
et al., 2021; Schepaschenko et al., 2021; Vangi et al.,  
2023; Xu et al., 2021). For example, the tree diameter – 
by convention measured at breast height or 1.3 m 
(diameter at breast height, DBH) – is highly correlated 
with the total AGB (Brown, 1997; Brown et al., 1989; 
Chave et al., 2005; Stass, 2011). Likewise, belowground 
biomass (BGB) is often calculated as a function of 
AGB. AGB species-specific equations typically 
increase estimation accuracy (Fayolle et al., 2013; 
Rutishauser et al., 2013). On the other hand, relation-
ships between DBH and tree height have been found 
to vary across environmental conditions, reducing the 
importance of species type in determining the accu-
racy of the equation (Fayolle et al., 2013; Feldpausch 
et al., 2012). In addition, Chave et al (Chave et al.,  
2005). showed that a single equation including tree 
diameter, wood-specific density, and total tree height 
already provides a precise estimate of AGB and that 
including site, successional status, the continent or 
forest type only slightly improves the precision of the 
estimate (Pati et al., 2022). Along with the previously 
mentioned studies, current scientific research demon-
strates how the AGB and carbon stock of individual 
trees can be estimated by measuring their heights and 
diameters.

Unfortunately, forest information systems that 
solely rely on ground data present several drawbacks 
(Katila et al., 2015; Latifi et al., 2015; Tomppo et al.,  
2010). First, gathering ground data and conducting 
fieldwork is both expensive and time-consuming. 
Second, the lengthy re-measurement intervals hinder 

their ability to capture recent changes. Third, while the 
acquired data may be combined to create statistics, 
they are unable to create continuous and geographi-
cally detailed information on their own, which may be 
more beneficial from a management standpoint. 
Fourth, combining data and performing statistically 
valid comparisons is difficult since data are collected 
through various methodologies and criteria. Fifth, the 
expensive data collected on the ground is rarely avail-
able or open access. To overcome those issues and to 
increase the precision and frequency of forest moni-
toring, several studies have suggested methodologies 
involving the combination of field and remote sensing 
data.

Recent developments in machine learning (ML) 
(D'Amico et al., 2021) and the expanding availability 
of satellite images have created new and cost-effective 
ways to monitor reforestation activities (Bozzini et al.,  
2023; Cavalli et al., 2022, 2023; Francini et al., 2023). 
However, relying entirely on remote sensing data 
without calibration through ground field data, espe-
cially at the scale of smallholder farmers, could lead to 
insufficient evaluation and large inaccuracies. Indeed, 
to calibrate ML models for the interpretation of 
remote sensing data and to gather consistent, and 
reliable statistics, field information is crucial 
(Griscom et al., 2017). For example, the carbon con-
tent within trees varies significantly between forest 
types and other vegetation cover types (Asner et al.,  
2013b) making it necessary to have ground data for an 
accurate interpretation of satellite imagery. 
Additionally, field information is crucial for success-
fully managing smallholder carbon projects, such as 
obtaining seedling counts on parcels, tracking forest 
management practices, and managing farmer visits 
(Griscom et al., 2017).

However, coupling remote sensing with field data 
also presents some limitations, mainly because ground 
measurements and forest inventories have been his-
torically conducted to provide estimates of variables of 
interest and not data useful to be combined with 
remote sensing and constructing models. In this 
sense, areas measured on the ground (plots) are 
usually too small to be combined with remote sensing 
medium-resolution imagery, such as those acquired by 
Sentinel-2 and Landsat satellite missions. This limita-
tion is amplified by ground positioning errors, as 
decreasing the precision of the coordinates attributed 
to the plots further complicates coupling ground and 
remote sensing data. In summary, several methods for 
monitoring the carbon storage of tree plantations exist 
and both main groups of methodologies to do so – 
those relying exclusively on field data and those cou-
pling field and remote sensing data – present several 
limitations.

This research aims to present a method for provid-
ing maps and statistics of tree plantations’ carbon 

2 S. FRANCINI ET AL.



storage using exclusively remote sensing data, thus 
without requiring field analysis (hereinafter referred 
to as the Field-independent approach, FI). 
Accordingly, a model that allows quantifying and 
defining patterns of carbon distribution across the 
forest plantation requiring just general information 
on the plantation without any field survey was con-
structed. To this end, we tested different approaches in 
which plantation knowledge was increasingly detailed 
(from just species and plantation age to the average 
diameter and height of trees within the plantation) 
(section 3.3.1). For comparison purposes, we also inte-
grated Sentinel-2 open-access imagery and ground 
data through a model-assisted (MA) approach, and 
we conducted a statistical analysis of the differences 
between the carbon stock maps’ accuracy and statistics 
obtained using (section 3.2) and without using (sec-
tion 3.3) ground data. Finally, as a benchmark, the 
plantations’ carbon storage was estimated using exclu-
sively ground data and a design-based (DB) approach 
(section 3.1).

Materials

Study area

The study area consists of a tree plantation of 
20.31 ha located in the community of 

Montecarmelo in the commune of La Libertad in 
the Petén department, Guatemala (16° 50’59.57 
“N; 90° 2’39.24” W) (Figure 1). The study area 
includes 1111 trees per hectare, for a total of 
about 22,500 trees. Each tree is given nine square 
meters of space. Half of the trees in the study area 
are cedar (Cedrela odorata L.) and the remaining 
half is mahogany (Swietenia macrophylla King.), 
both species of great cultural and economic 
importance (UNEP-WCMC, 2009). Trees were 
planted in the open field at 6 months of age, 
resulting in a 21-month-old plantation at the 
time of the field measurements (June 2022). The 
two species are planted alternately with each other 
across the study area.

Ground data

For training and validating different models and 
estimating the amount of carbon stored in the 
study area, we constructed a reference sample by 
randomly selecting 20 plots (10-m radius or 314 
square meters) within the study area (Figure 1). 
For each plot, the species, the height, and the DBH 
of each tree were measured allowing the CO2 equiva-
lent estimation. In total, 730 trees were measured on 
the ground. Half were cedar and half were maho-
gany. The surveys were carried out in June 2022 

Figure 1. The study area (blue) and sample plots (red). Bottom-left, the density distribution of the CO2 equivalent in the 20 plots 
measured on the ground.
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during the leaf-on season, when each tree was 21  
months old.

CO2 calculation
According to Chave et al. (2005), the AGB for cedar 
and mahogany was calculated as: 

Where AGB is the above-ground biomass, WD is the 
species-specific wood density, D is the tree DBH, and 
H is the tree height. For each tree in the plots, tree 
DBH and tree height were measured during the 
ground survey (section 2.2). The wood densities for 
the two species are 0.4 for cedar and 0.5 for mahogany 
(Zanne et al., 2010). Then, the function of Mokany 
et al (Mokay et al., 2006), allowed us to calculate the 
belowground biomass for each tree: 

where BGB is the below-ground biomass. The con-
stant 0.489 is the root shot ratio commonly used for 
tree species.

BGB is a critical component of stored carbon in 
forests. However, as with AGB, it is challenging to 
measure BGB directly, given the laboriousness of the 
direct measurement procedure (extracting, drying, 
and weighing whole tree root structures). The alter-
native of developing forest-type or country-specific 
allometric equations for root biomass is also resource- 
intensive. While it is acceptable for BGB to be calcu-
lated indirectly. For this purpose, already available 
equations that reliably predict root biomass based on 
above-ground are used. Then, the total biomass (Bt) 
was the sum of above and below-ground biomass: 

The total carbon content was calculated by applying 
the default carbon fraction factor of 0.5 provided by 
the IPCC (Penman et al., 2006): 

Where Ct is the total carbon content. Finally, the equiva-
lent CO2 content was calculated using a conversion fac-
tor derived from the CO2 molecular weight: 

Sentinel-2 data

Sentinel-2 mission has a wide swath (290 km) with 
a spatial resolution of 10 to 60-m, depending on spec-
tral bandpass, and a revisit frequency of 2–5 days 
depending on the latitude (Baetens et al., 2019). The 
Sentinel-2 Multispectral Instrument (MSI) includes 
three visible (blue, green, red) and NIR bands at the 
10-m resolution and Red edge (redE1, redE2, redE3, 

redE4), and SWIR (swir1, swir2) bands at the 20-m 
resolution, which were used in this study (Francini 
et al., 2022).

An up-to-date Sentinel-2 image archive can be 
found in the Google Earth Engine (Gorelick et al.,  
2017), from which we selected all Sentinel-2 images 
acquired over the study area and during the dry sea-
son. More specifically, all images with a cloud cover-
age of less than 70% and acquired between 
15 December 2021 and 15 March 2022 were selected. 
Then, a cloud-free composite was produced by the 
state-of-the-art medoid methodology (Kennedy et al.,  
2018). The medoid processing aims to populate the 
final image composite with the pixels with surface 
reflectance values as similar as possible to the median 
calculated considering the whole image collection. In 
brief, medoid compares each band’s pixel surface 
reflectance values to the median bands’ spectral values 
of that pixel in all selected images. Then, the bands’ 
spectral values from the pixel closest to that median 
value (using Euclidean spectral distance) were chosen. 
As a result of this step, we obtained a cloud-free 
medoid composite for our area of interest, from 
which we calculated seven spectral indices: 
(i) Normalized Difference Vegetation Index (NDVI), 
(ii) Normalized Burned Ratio (NBR), (iii) Enhanced 
Vegetation Index (EVI), and (iv) Tasselled Cap 
Brightness, Wetness, Greenness, and Angle (TCB, 
TCW, TCG, TCA). The NDVI index (Eq. 6) has 
been among the most popular indices used to quickly 
delineate vegetation and vegetative stress. Hence, it 
shows dense vegetation with high positive values, soil 
with low positive values, and water with negative 
values (Alcaras et al., 2022; Huang et al., 2021). 

Where NIR is the light reflected in the near-infrared 
spectrum, and RED is the light reflected in the red 
range of the spectrum.

Similar in the equation to NDVI, the NBR (Eq. 7) is 
an index designated to highlight burnt areas and fire 
severity (Key & Benson, 2006). NBR has been used to 
examine post-fire vegetation recovery (Bright et al.,  
2019), wildfire severity (Tran et al., 2018) and harvest-
ing (Kennedy et al., 2010), and drought events 
(Francini et al., 2021; M. C. Hansen et al., 2013; 
Kennedy et al., 2010). The equation of NBR combines 
the use of NIR and the ShortWaved InfraRed 
wavelengths. 

The EVI (Eq. 8) has been considered a modified NDVI 
(Matsushita et al., 2007) given its improved sensitivity 
to high biomass regions and improved vegetation 
monitoring capability. Indeed, it does not saturate as 
rapidly as NDVI in dense vegetation and it has been 
shown to be highly correlated with photosynthesis 
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activity, plant transpiration, and vegetation biomass 
(X. Jiang et al., 2008; Sims et al., 2006). EVI was 
calculated as: 

where BLUE, RED, and NIR represent the reflectance 
at the respective wavelengths, L is a soil adjustment 
factor, and C1 and C2 are coefficients used to correct 
aerosol scattering in the red band by the use of the blue 
band, and G is the gain factor, usually set at 2.5 
(Shammi & Meng, 2021; Vijith & Dodge-Wan, 2019).

Lastly, the TC (Crist & Cicone, 1984) with its com-
ponents, i.e. brightness (TCB), greenness (TCG), and 
wetness (TCW), represent an inherent property of 
terrestrial reflectance. TCB is a weighted sum of all 
the bands and accounts for the most variability in the 
image. It is typically associated with bare or partially 
covered soil, natural and man-made features, and var-
iations in topography. TCG is a measure of the con-
trast between the NIR band and the visible bands due 
to the scattering of infrared radiation resulting from 
the cellular structure of green vegetation and the 
absorption of visible radiation by plant pigments. 
The third component, TCW, is associated with soil 
moisture, water, and other moist features (Shi & Xu,  
2019; Zoka et al., 2018).

The Tasseled Cap Angle (TCA), defined as the 
angle formed by TCG and TCB in the vegetation 
plane (Eq. 9), condenses in a single value the informa-
tion of the relation TCG/TCB and represents the pro-
portion of vegetation to non-vegetation essentially. 

The three components of TC have been used to 
develop soil indices (Qiu et al., 2017), to monitor 
deforestation (Schultz et al., 2016), and for vegetation 
classification (Macintyre et al., 2020). Studies have 
shown that dense cover classes of coniferous forests 
exhibit higher TCG and lower TCB values than open 
stands or clearcuts (Cohen et al., 1995, 1998). 
Accordingly, dense forest stands show higher TCA 
values than more open stands or bare soil. TCA was 
also used to monitor desertification (Liu et al., 2018), 
and characterize forest structure (Cohen et al., 2002; 
A. J. Hansen et al., 2001), successional state (Helmer 
et al., 2000), changes (Gómez et al., 2011), and condi-
tion (Healey et al., 2006; Wulder et al., 2006).

Carbon-monitoring methods

First, the CO2 equivalent absorbed by the plantation 
was estimated using exclusively ground data and 
a DB approach (section 3.1). Second, we used both 
ground data and Sentinel-2 data within a MA 
approach (section 3.2). Third, the CO2 equivalent 
absorbed by the plantation was estimated using a FI 

approach, thus using just Sentinel-2 data and ignor-
ing data collected on the ground (section 3.3).

Design based

The mean CO2 equivalent absorbed by the plantation 
was inferred using the Horwitz and Thompson (HT) 
design-based estimators (Horwitz & Thompson,  
1952). The HT estimators allow an unbiased estima-
tion of the sampling variance. The HT estimator for 
the mean is calculated as follows:

_ 
where μ̂HT is the sample mean, with a standard error 
(SE) in the following form: 

where σ2 and n are the sample variance and size, 
respectively.

The HT estimator for the total is:

_ 
Where N is the population size or the number of pixels 
in the study area. The SE estimator of the total is: 

Model-assisted

The MA framework (McRoberts et al., 2016) repre-
sents the benchmark for RS-based estimates of forest 
variables (Chirici, Giannetti, Mazza, et al., 2020; 
D’Amico, Francini, et al., 2021; Francini et al., 2020,  
2021; Vangi et al., 2022, 2023) such as CO2 equivalent 
absorbed. In the MA estimation, a model exploiting 
RS data is used as auxiliary information to enhance the 
inference, while the estimation variance is based on 
the probability sample (Särndal et al., 1992). The 
model exploited in this study was random forests 
(RF), a well-established machine learning algorithm 
based on an ensemble of decision trees, known for 
being able to deal with overfitting and predictors auto-
correlation (Breiman, 2001). RF is also known to be 
a good choice when there is a little amount of training 
data available (Dai et al., 2021; Emick et al., 2023; 
Francini et al., 2023). In this study, we exploited the 
randomForest R package (Liaw & Wiener, 2002) and 
we set two as the number of features considered by 
each tree when splitting a node and 500 as the number 
of trees in the forest. Such hyperparameter calibration 
follows the procedure shown by Vaglio Laurin et al. 
(2021)and Hawryło et al. (2020) and implies the 
implementation of the leave-one-out cross-validation 
procedure (LOOCV).
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LOO was also exploited to evaluate the perfor-
mance of the RF model. One at a time, each of the 
20 reference units available was predicted using the 
remaining reference set units (McRoberts et al., 2015). 
The number of plots in the reference dataset and thus 
the number of iterations in the LOO procedure was 20. 
The final model performance was assessed in terms of 
percentage root means squared error (RMSE%) and r2.

RMSE% was calculated as follows: 

where yi is the predicted carbon stock in the ith plot, ŷ 
is the observed carbon stock in the ith plot, n is the 
number of plots and �y is the mean observed carbon 
stock.

Finally, we assessed the importance of the predictor 
variables in terms of the percentage increase in Mean 
Square Error (MSE%) as produced by the RF model. 
MSE% is a fundamental outcome of RF, and by 
expressing how much accuracy the model gains by 
exploiting each variable, it shows how important 
each variable is for the classification task. The larger 
the MSE% gain, the more important the variable is for 
the successful classification (Liaw & Wiener, 2002).

The MA estimator for the mean corresponds to the 
HT estimator, corrected by a term that takes into 
account the systematic error of the model, based on 
the mean residuals of the sample plots: 

The SE for the MA estimator is expressed by: 

As a result of this step, we obtained both the estimate 
of the stored CO2 by the plantation and the respective 
map over the study area.

Field independent

Here, we describe a new field-independent method 
(FI) for the estimation of the CO2 equivalent absorbed 
by tree plantations. FI does not require field measure-
ments and indeed did not exploit the 20 plots in the 
reference dataset. In addition to Sentinel-2 data, FI 
requires three input parameters: minimum, mean, 
and maximum CO2 equivalent per hectare in the for-
est plantation. This information can be obtained 
through different approaches without requiring 
ground data and can provide a different level of pre-
cision depending on the availability of tree plantation 
information (section 3.3.1).

First, we conducted a literature review of the 
Sentinel-2 predictors (bands and indices, section 2.3) 
to discriminate them into positive or negatively corre-
lated with CO2. Second, for each band, we subtracted 
the mean values of the band from each band’s values 
(centering) and we divided each new value by the sum 
between the band range differences and the average 
C obtained with the allometric equations (scaling). 
Third, we rescaled the new values to the C minimum 
and maximum obtained from the allometric equations 
(rescaling). For predictors positively correlated 
(NDVI, EVI, and NBR), the 5th and 95th percentile 
of the predictors were mapped with the minimum and 
maximum value of CO2 equivalent absorbed. For pre-
dictors negatively correlated (the raw Sentinel-2 bands 
and the TC indices) we did the opposite: the 95th and 
5th percentile of the predictors were mapped with the 
minimum and maximum. We choose to use the 5th 
and 95th percentile instead of minimum and maxi-
mum values in the predictors to avoid mapping the 
values derived by the user input with probable outliers 
or rare reflectance occurrences that would bias the 
predictions. Indeed, the minimum value in 
a reflectance band or a vegetation index often corre-
sponds to non-vegetated pixels or vegetation under 
particular conditions (such as after a disturbance). In 
contrast, the maximum value may represent an iso-
lated condition in the image or a saturation spot. We 
remove outliers based on the Interquartile Range 
(IQR), i.e. the difference between the 3rd and the 1st 

quartiles (Q3 and Q1, respectively). In particular, 
values greater than Q3 plus 1.5 times the IQR or 
smaller then Q3 less 1.5 times the IQR were consid-
ered outliers. Fourth and last, the CO2 map is obtained 
by averaging the values of all rescaled predictors.

While to validate the RF model we used a LOO 
procedure, here the ground data was not used to con-
struct the model, and thus all the 20 plots in the 
reference dataset can be used to assess the perfor-
mance of the FI model in terms of RMSE% and r2.

Users simulation
As the FI method also requires general plantation 
information, in this study, we hypothesized four 
users with different levels of knowledge about the 
plantation and thus with different abilities to provide 
detailed information about the same, from which to 
calculate FI input parameters, i.e. minimum, mean, 
and maximum CO2 equivalent per hectare. To simu-
late these different levels of operator knowledge about 
plantations, we tested various strategies by progres-
sively increasing the information available (Table 1). 
In case a, only age, species, and planting density are 
known, as well as site characteristics. Because of its 
basic nature, this background information is generally 
available or easily and quickly accessible. In case b, 
also the average diameter of the plantation is known, 
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while in case c, the average height is also available. 
Finally, in case d, information on the range of the 
possible CO2 equivalent values in the plantation is 
available. This last case can be considered the bench-
mark for other FI cases, as the exact information 
needed by the FI model is known. Considering the 
homogeneity in tree growth that generally occurs in 
arboriculture plantings, even this information may be 
available from experienced users who are diffusely 
familiar with the plantation and its measure ranges. 
The different data considered available for the four 
different users are reported in Table 1.

For cases a and b, we calculated AGB using an 
optimization from Chave et al (2014, 2017). of the 
AGB equation: 

where the AGB is the above-ground biomass, E is 
a measure of environmental stress (Chave et al.,  
2014), WD is the species-specific wood density, and 
D the DBH. For case a, the latter can be estimated with 
the formula developed by the Instituto Nacional de 
Bosques (INAB) of Guatemala: 

where T is the tree age in year, N is the tree density (N 
ha−1) and S is the site index, derived from the dominant 
height of the analyzed plantations of the INAB database 
in the permanent parcels. In this study, despite the good 
condition of the plantation, an average value of S was 
always used to take a conservative approach, 14.7 per 

Switenia macrophylla and 12.4 per Cedrela odorata 
respectively. Parameters α, β; γandδ, for Switenia macro-
phylla and Cedrela odorata, are presented in Table 2.

In case b, equation 17 was used with the DBH already 
available from the knowledge of the user. In case c, on 
the other hand, having tree diameter, tree height, and 
tree species, the generalized allometric model, equation 1 
(par 2.3) from Chave et al. (2014) can be used. The values 
used to implement the different strategies are shown in 
Table 3.

Results

The results for each method described above are 
reported in Table 4, where the estimates of the total 
CO2 equivalent absorbed by the plantation are pro-
vided, along with the RMSE% and r2.

The CO2 equivalent absorbed by the plantation is 
comparable among estimation methods as well as 
the RMSE%. FIa and FIb lead to the minimum 
and maximum CO2 values, respectively, while, nota-
bly, the FIc method obtained the same mean value 
as the MA method but with a lower RMSE% and 
a much higher r2. FId can be considered the bench-
mark for the FI estimation method, as it represents 
the case in which FI parameters or minimum, mean, 
and maximum CO2 equivalent are known. 
Accordingly, FId reached the lowest RMSE% and 
CO2 equivalent statistics within the confidence inter-
val resulting from the well-established DB and MA 
methods.

Table 1. Parameters used in the different strategies by progressively increasing the level of plantation 
knowledge. The FI model requires the information available for user d. The information available for 
users a, b, and c are used to obtain the information available for user d as detailed below.

User Plantation available information

a Tree Species Planting Density Age Site index
b Tree Species Planting Density Average DBH
c Tree Species Planting Density Average DBH Average Height
d Min, mean, and max CO2 equivalent

Table 2. Parameters for estimating the diameter of switenia macrophylla and cedrela 
odorata (INB, 2019a, 2019b).

Tree species α β γ δ

Switenia macrophylla 1.724193 2.74867 0.0838 0.000075
Cedrela odorata 2.186717 2.865757 0.079924 0.000238

Table 3. Data used for the different strategies by progressively increasing the level of plantation knowledge and thus of 
information available to calculate the parameters required by the FI approach: min, mean, and max CO2 equivalent in the 
plantation. User d is not reported as it is the benchmark in which min, mean, and max CO2 equivalent in the plantation are 
known.

User Age Tree Species Density (N h−1) Site index DBH (cm) H (m)

a 21 months S. macrophylla 
C. odorata

1111 14.7 
12.4

b S. macrophylla 
C. odorata

1111 4.34 
4.10

c S. macrophylla 
C. odorata

1111 4.34 
4.10

3.81 
3.69
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The r2 is 0.31 for each FI method, as the final CO2 
maps’ pattern is the same while the range of values 
changes (Figure 2). Indeed, the maps differ only in the 
magnitude of absorbed CO2 values, maintaining identi-
cal patterns, due to using the same vegetation indices for 
all FI methods.

While the FI method we introduced is simple and 
does not require reference data, the r2 and the RMSE% 

we obtained indicate at least comparable performance to 
the MA method (Table 4). Although a simple method, 
our results suggest that FI methods can be a valid alter-
native to the MA one in the case of tree plantations and 
when ground data is not available.

Finally, in Figure 3 we report the importance of 
the different medoid predictors assessed through the 
RF model. The Sentine-2 nir band had the greatest 

Table 4. Comparison of the results achieved using the DB, MA, and FI carbon 
mapping and estimation methods. For the DB estimation methods RMSE% 
and r2 are not available as it provides just estimates and not maps. For the FIs 
methods, confidence intervals are not available as they are based just on 
remote sensing data, and reference data is not used.

Estimation method CO2 equivalent (MgC) RMSE% r2

DB 100.5 ± 18.2* – –
MA 102.0 ± 8.2* 38.7 0.1
FIa 89.3 39.6 0.3
FIb 117.4 41.9
FIc 102.3 37.3
FId 108.5 34.1

*95% confidence interval estimates.

Figure 2. Top, map of CO2 equivalent obtained with FI method with different CO2 equivalent ranges (MgC ha−1) depending on the 
FI case. Bottom, map of CO2 equivalent obtained with the MA method. Empty pixels correspond to outliers and were masked out.
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impact in increasing the performance of the model 
while the Tasselled Cap Wettness index (TCW) was 
useless and even decreased the accuracy of the 
model.

Discussions

The implementation of CO2 equivalent estimation 
approaches of different complexity, together with an 
error coefficient, allows the development of the market 
for carbon credits, which measures the mitigation of 
one MgC of CO2 or equivalent greenhouse gases 
(UNFCCC, 2023). Carbon credits are a strategy for 
reducing greenhouse gas emissions and halting cli-
mate change (Zhang & Wen, 2014) and have been 
a central topic and the target of several studies for 
more than a decade (Avitabile et al., 2016; Fuss et al.,  
2014; Wu, 2024; Kollmuss et al., 2008; Schneider & 
Geall, 2011). Herein we examined a novel Field 
Independent (FI) spatial technique for mapping and 
quantifying CO2 equivalent emissions in tree planta-
tions by combining remote sensing data with the 
knowledge and expertise of plantation owners. 
Aggregating pixel predictions, as in the context of 
small area estimation (Chirici, Giannetti, Mazza, 
et al., 2020; Vangi et al., 2022), FI results were compar-
able to well-established estimators like the Model 
Assisted (MA) and the Design Based (DB). However, 
since FI does not rely on reference data, the resulting 
numbers are not statistically rigorous estimates and 
should be taken with caution. On the other hand, these 
findings highlight the possibility of integrating field, 
plantation owners, and farmers’ experiences into deci-
sion support systems. Accordingly, we tested FI con-
sidering four different users with an increased 
knowledge of the plantation, and we found that the 
accuracy of the FI map and the precision of the FI CO2 

statistics increased together with the amount of infor-
mation available on the plantation. More specifically, 
depending on the user, the RMSE% ranged from 34% 
to 42% and the CO2 percentage error with respect to 
the well-established MA estimator ranged from 15% to 
almost 0. While the results we obtained are based on 
a 20-hectare study area and 20 ground plots, such 
a dataset is a reliable example of the amount of data 
available in the context of forest plantations. 
Increasing the amount of training data available, the 
MA method is expected to consistently improve his 
performance (D’Amico, Francini, et al., 2021) and 
perhaps provide more reliable results than the herein- 
introduced FI method. On the other hand, collecting 
ground data is often challenging and expensive and 
a method relying exclusively on remote sensing data 
would provide crucial advances and benefits from an 
operational point of view. Indeed, Remote sensing 
plays a key role in guaranteeing the legitimacy and 
transparency of project emissions reductions, fre-
quently evaluated and certified by established stan-
dards, such as the evaluated Carbon Standard (VCS) 
or the Gold Standard (Mascaro et al., 2011),

Using Sentinel-2 data in this study brings several 
distinct advantages. Firstly, Sentinel-2 offers a wide 
range of spectral bands, providing an extensive set of 
predictors. With its multi-spectral capabilities, includ-
ing visible, NIR, and SWIR bands, it enables the cal-
culation of different vegetation indices to capture 
essential information about the health and productiv-
ity of the plantations. Furthermore, the high spatial 
resolution of sentinel-2 allows for detailed mapping 
and analysis of trees. The ability to discern smaller 
spatial features becomes crucial when dealing with 
arboricultural plantations, due to their typical limit 
area, and the diversification of different age groups, 
as it enables the identification and characterization of 

Figure 3. Medoid predictors’ importance assessment in terms of mean square error percentage increase.
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specific areas within the plantation that contribute 
significantly to CO2 equivalent stock. Finally, the satel-
lite operates on a 3–5-day revisit cycle, capturing fre-
quent and up-to-date images of the Earth. This 
temporal resolution facilitates the monitoring of tem-
poral changes in CO2 equivalent stock, providing valu-
able insights into the dynamic nature of the 
plantations. S2 allows for detecting seasonal variations 
and growth patterns and assessing the effectiveness of 
carbon sequestration efforts over time, as well as the 
possible clear-cut of the plantations or part of them. 
Also, the high frequency of S2 is of crucial importance 
in regions characterized by high cloud cover such as 
the target of this research (Guatemala). Accordingly, 
to create a medoid composite covering the whole 
plantation with valid observations – i.e. not covered 
by cloud or any other source of noise (Francini et al.,  
2023) – we needed all S2 images acquired between 
15 December 2021 and 15 March 2022, with a cloud 
coverage of less than 70% (White et al., 2014). 
Constructing composites over very cloudy regions 
exploiting data acquired by satellite missions with 
lower temporal resolution (e.g. Landsat) can be 
prohibitive.

When comparing the FI method against DB and 
MA, several factors should be considered. DB statisti-
cally rigorous estimators rely on a predetermined sam-
pling design and require extensive field data 
collection, which can be time-consuming and expen-
sive. On the other hand, MA methods utilize statistical 
models to extrapolate carbon emissions based on 
a limited set of field measurements. These models 
aim to capture the relationships between field and 
remote sensing data and derived predictors. The FI 
spatial approach proposed in this study leverages the 
knowledge and expertise of the plantation owners 
(users), eliminating the need for extensive field data 
collection, and reducing the associated costs and 
efforts. We want to stress that this approach can be 
suitable for simplified forest ecosystems, characterized 
by homogeneous structure (e.g. density, age) and eco-
nomically important species, for which, allometric 
relationships were established in most parts of the 
world. The CO2 maps presented in Figure 2 show 
a comparable pattern for MA and FI methods. 
However, differences occur in the ranges of CO2 
values derived from the different approaches due to 
the saturation effect, typical of multispectral data 
(Chirici, Giannetti, Mazza, et al., 2020; D’Amico 
et al., 2022; Vangi et al., 2021).

Examining the FIs in detail, in FIa, we hypothe-
sized a user knowing exclusively the species, the 
density, the age, and the site index of the tree planta-
tion. In particular, this general information was used 
to estimate the plantation diameter (eq.18), which 
was then used in the CO2 estimation equations 
(equation 17). This strategy produced results aligned 

with FIb, in which the diameter of plantations was 
known. FIa, despite an underestimate of CO2, has 
a smaller RMSE% value than Fib and a comparable 
RMSE% to the well-established MA method 
(Table 4). Through expanding the plantation’s avail-
able information, such as height (FIc), the accuracy 
increased (RMSE% of 37.3), producing results con-
sistent with those obtained by the MA method 
(Table 4), and confirming the effectiveness of equa-
tion 1 (par 2.2.1) from Chave et al. (2014) for carbon 
estimation in tropical trees. To ensure the applicabil-
ity of this equation, the height of the stand has to be 
available. While tree heights are relatively homoge-
neous in plantations, the survey of this parameter is 
known to be time-consuming. Remote sensing data 
such as LiDAR data or UAV photogrammetry sur-
veys could be integrated into this method to identify 
plantation height in future analyses. Lastly, in Fid, the 
user knows the range and average of the possible CO2 
equivalent values in the plantation. This appears to be 
a rare situation, given the availability of very in-depth 
information on the plantation. This approach, 
although limited to users very knowledgeable about 
the growth and characteristics of the plantation 
under investigation, can be considered the bench-
mark for other FI cases. Indeed, FId presented the 
best results, both in terms of RMSE% (34.1) and in 
the range of estimated values (Table 4).

Although FI provided promising results and outper-
formed random forests, the accuracy of both FI and MA 
maps was quite low in terms of r2, as it was in several 
other studies (Hettema et al., 2022; F. Jiang et al., 2022). 
A well-known limitation of optical sensors is indeed 
that they do not accurately capture the three- 
dimensional structure of the forest, which leads to low 
accuracies in volume and and CO2 remote sensing 
estimates. Here, accurate and representative in situ 
datasets are crucial for the training of remote sensing- 
based models (Chave et al., 2019). Importantly, while 
the r2 values we got are quite small, the RMSE% values 
show larger performances than similar studies 
(Shendryk, 2022; Vangi et al., 2023). Also, the r2 values 
we calculated are based on just 20 samples and should 
therefore be considered with caution, as they are subject 
to large uncertainty (Bowley, 1928; Dingman & Perry,  
1956). As a result, we stress that while FI outputs were 
promising, the results we obtained are preliminary, and 
further research is needed to confirm our conclusions. 
In particular, in this study, RF was outperformed by FI 
but it was also trained using just 20 sample plots. 
Although previous research indicated that the RF 
model performs fine also with a very small number of 
samples (Martínez-Muñoz & Suárez, 2010), and 
although other studies exist exploiting a similar number 
of samples for training RF to that we used (Dai et al.,  
2021; Emick et al., 2023), an increased amount of train-
ing data would probably increase the performance of 
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the model, allowing to get more accurate maps than FI. 
On the other hand, other studies pointed out that the 
number of samples available in the training dataset can 
have a poor impact on the performance of the model, 
depending on the application (Francini et al., 2023).

Conclusions

This research introduces a new field-independent 
method (FI) for tree plantations’ carbon mapping, quan-
tification, and monitoring, based on Sentinel-2 data. The 
FI method constructed maps with larger accuracy than 
those produced by exploiting the MA method, thus rely-
ing on ground data and Random Forests (RF). 
Specifically, FI r2 was greater than 0.30 to MA and the 
RMSE% was 4.6% smaller to MA. depending on the 
input data used for the FI model. The FI statistic of the 
carbon stored in the plantation was within the confi-
dence interval of both the MA estimate and the DB 
estimate (relying exclusively on ground data).

While the results we obtained are promising, the 
conclusions we drew are based on a very small refer-
ence dataset (20 ground plots) and study area (20 ha) 
and should be confirmed and expanded in future 
research. On the other hand, the results we obtained 
should be at least seriously considered in future stu-
dies when modeling tree plantation variables using 
remote sensing data. FI indeed is an innovative but 
tremendously simple method, which does not require 
ground data, and that can be adapted to be applied in 
many different conditions and environments.
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