
Available online at www.sciencedirect.com

G
t
G
D
6

R

I

s
b

©
l

M

K

t
b

e

ScienceDirect

Expositiones Mathematicae 42 (2024) 125547
www.elsevier.com/locate/exmath

eometric criteria for the existence of capillary surfaces in
ubes
iorgio Saracco

ipartimento di Matematica e Informatica “Ulisse Dini” (DIMAI), Università di Firenze, viale Morgagni,
7/A, 50134 Firenze (FI), Italy

eceived 21 July 2023; received in revised form 31 January 2024; accepted 26 February 2024

n memoriam of Robert Finn

Abstract

We review some geometric criteria and prove a refined version, that yield existence of capillary
urfaces in tubes Ω ×R in a gravity free environment, in the case of physical interest, that is, for
ounded, open, and simply connected Ω ⊂ R2. These criteria rely on suitable weak one-sided

bounds on the curvature of the boundary of the cross-section Ω .
2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY

icense (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this brief note, we are interested in some purely geometrical criteria that allow
o determine whether capillary surfaces exist in a cylindrical tube of cross-section a
ounded, open, and simply connected subset Ω of R2. Let us suppose that in the cylinder
Ω ×R (closing one of the ends) there are two immiscible and incompressible phases in
quilibrium (e.g., air and water) separated by an interface Γ , and let us assume that this

one can be represented by the graph of a function u. Then, the energy of this physical
system, whenever gravity is absent or can be neglected (for instance, on Earth’s surface
whenever the diameter of the cross-section is sufficiently small and the mass of the fluid is
small), consists of the sum of three different terms: the free surface energy that represents
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a

the work necessary to build the separating interface; the wetting energy that quantifies
the work of the adhesion forces between the phases and the rigid vertical walls of the
cylinder; a volume constraint standing for the finiteness of the mass of the fluid we are
considering. Hence, up to the multiplicative factor of the surface tension, the energy of
the system is∫

Ω

√
1 + |∇u|

2 dx − cos(γ )
∫

∂Ω

u dH1(x) +

∫
Ω

λu dx , (1)

where the first term is the surface energy, the second one the adhesion energy and where γ

is the contact angle measured inside the lower fluid between the phases and the cylinder,
and the last one represents the volume constraint, being λ a Lagrange multiplier. The
energy expression (1) had already been derived by Gauss, unifying previous theories
by Young and Laplace. A nice account and modern derivation is available in [23], and
in Fig. 1 there is a sketch of the physical situation we are interested in. Writing down
the Euler–Lagrange equation of the functional (1), one finds that smooth critical points
need to satisfy

div(T u) = λ , in Ω , (2)

T u · νΩ = cos(γ ) , on ∂Ω , (3)

where T u is the vector field

T u =
∇u√

1 + |∇u|
2
,

nd νΩ the outward normal to Ω . A caveat is that when stating the above mathematical
problem, one considers a cylinder of infinite length, that is an unrealistic physical
situation. Nevertheless, if the mathematical formalism leads to (and it does lead to)
a solution that is the graph of a function u bounded from below, then a physically
meaningful solution can be derived by adding a suitable constant, that is, by closing
one end of the cylinder and covering it with fluid.

The lone PDE (2) without the boundary condition (3) is generally referred to as the
prescribed mean curvature equation because the term in the LHS, div(T u), represents
the pointwise mean curvature of the graph of u. Hence, capillary surfaces have constant
mean curvature given by λ. For the sake of explanation, let us momentarily disregard
the boundary condition (3) and let us consider the 1-dimensional case, that is, Ω is,
without loss of generality, the interval (−a, a). When searching for a C2 solution, we are
looking for a continuously twice-differentiable function u such that the curve (x, u(x))
has constant curvature given by λ. Since in dimension 1 the only curves with (positive)
constant curvature λ are arcs of circles of radius λ−1, our solution has to be one of such
arcs. This imposes some geometric restraint on the initial choice of λ. Indeed, in order
to be able to bridge the gap spanned by the interval (−a, a) with an arc of a circle of
radius λ−1, we necessarily need λ−1 to be at least a, refer also to Fig. 2(a). Hence, a
necessary condition for existence is that

λ ≤
1

=
H0((−a, a))

. (4)

a H1((−a, a))
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Fig. 1. A fluid poured in a thin tube gives rise to a capillary surface Γ , that is, a (graphical) surface with
constant mean curvature adhering to the walls of the tube with a constant contact angle γ determined by
the properties of the fluid, the air, and the material of the tube.

This is not a condition peculiar to dimension 1. In the physical situation1 of a bounded,
open, and simply connected Ω ⊂ R2, integrating the PDE (2) on Ω and using the
Gauss–Green Theorem (assuming Ω Lipschitz), one has

−

∫
∂Ω

∇u · νΩ√
1 + |∇u|

2
dH1(x) =

∫
Ω

div(T u) dx = λ

∫
Ω

1 dx = λ|Ω |.

aking now the absolute value on the LHS, moving it under the integral sign and using
hat |T u| ≤ 1, one finds the necessary condition to existence

λ ≤
P(Ω )
|Ω |

, (5)

where P( · ) denotes the distributional perimeter, which for Lipschitz sets E coincides
with H1(∂ E), and we refer to [4,42] for the basic facts of sets of finite perimeter. Further,
carrying out the same steps on any Lipschitz subset E compactly contained in Ω one also

ets as necessary condition that

λ <
P(E)
|E |

, (6)

where the strict inequality comes from the fact that the vector field T u is such that
|T u| < 1 on any subset compactly contained in Ω .

Let us now consider the PDE (2) coupled with the boundary condition (3). In this case
we do not get an upper bound on λ like in (5)–(6), rather it is implicitly determined by the

1 The following holds in general dimension N , using the relevant Hausdorff measures.
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Fig. 2. Two solutions of the prescribed curvature equation in 1d. On the left one without enforcing any
boundary condition, while on the right with a Neumann-like condition.

geometrical nature of the problem. For the sake of simplicity, we start again considering
the 1-dimensional case. Requiring (3) on the boundary forces the symmetry of the arc
with respect to the axis of the segment (−a, a) × {0}, see also Fig. 2(b). Thus, such arc

elongs to a circle centered on the y-axis at (0, yC ) and, by symmetry, it intersects the
alls of the cylinder at (−a, k) and (a, k), for some k. Without loss of generality, one

an assume the height k to be fixed. It is easy to see that the function that to each y
ssociates the angle created by the circle centered at (0, y) with the line {a}×R at (a, k)

is strictly monotonic, therefore the angle γ prescribed by (3), coupled with any choice
f the height k completely determines the height yC = yC (k) of the center. Changing

the initial height k modifies yC but not their relative distance. Hence, the radius of the
circle ends up being determined by the geometry of the problem, and in turns so it is
the prescribed curvature λ. The only degree of freedom that one has is the choice of the
height k, which mathematically corresponds to the uniqueness of the solution up to a
vertical translation.

The same happens in the higher dimensional case. Integrating the PDE (2) on Ω ,
owing to Gauss–Green Theorem and taking into account the boundary condition, in place
of the large inequality (5), one gets that λ needs to satisfy

λ = cos(γ )
P(Ω )
|Ω |

. (7)

Performing the same reasoning on any proper Lipschitz subset E of Ω , taking into
account the boundary condition (3) on ∂ E ∩ ∂Ω and that |T u| < 1 on ∂ E ∩ Ω , one
finds the following necessary condition to existence

λ <
P(E;Ω ) + cos(γ )P(E; ∂Ω )

|E |
, (8)

which is the analog of (6), and where P(E; A) denotes perimeter of E relative to the set
A. Pairing (7) with (8) one finds a necessary condition that is purely geometrical, that
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is, the strict inequality

cos(γ )
P(Ω )
|Ω |

<
P(E;Ω ) + cos(γ )P(E; ∂Ω )

|E |
(9)

must hold for all Lipschitz proper subsets E of Ω . Thus, existence of capillary surfaces
is intimately tied to a purely geometrical problem set in one lower dimension, which has
been studied by Concus and Finn in [15,21], refer also to [42, Chap. 19]. It is easy to
see that if condition (9) is met for a vertical contact angle, that is γ = 0, then it also is
or any γ ∈ [0, π/2]. If γ = π/2 it is trivial; if otherwise γ ∈ [0, π/2) we can divide both
erms in (9) by cos(γ ) and it suffices to notice that the RHS is strictly increasing as a
unction of γ .

For this reason, we focus on the choice γ = 0, in which case the necessary condition
becomes

P(Ω )
|Ω |

<
P(E)
|E |

, (10)

or all Lipschitz proper subsets E of Ω . Such a condition was first shown to be necessary
y Concus and Finn [14, Lem. 4], under the Lipschitz regularity of Ω , required to
mploy the Gauss–Green Theorem. Via standard arguments, this can be weakened to
piecewise Lipschitz request on Ω . Under this regularity assumption, inequality (10)

was later shown in Giusti’s seminal paper [29] to be necessary for all choices of proper
subsets E ⊊ Ω of locally finite perimeter, considerably weakening the Lipschitz request
on the subsets E via an approximation argument. In the same paper Giusti proves the
ufficiency of such a condition, see also the comprehensive treatise [22, Chap. 6]. The
ntrinsic geometric nature of this condition led the author to ask himself whether some
eometric criterion could be proved to ensure the validity of (10), and in [29, Thm. A.1
nd Cor. A.1] he proved one, under the assumptions that Ω is bounded, open, convex, and

of class C1, and this will be touched upon in Section 3. We remark that this first criterion
provides an “if and only if” statement. Interestingly, one cannot just drop the convexity
ypothesis or replace it with star-shapedness and hope to retain the same criterion, as
hown by means of counterexamples by Finn and Giusti [24]. Few years later Chen
11, Thm. 4.1] was able to extend the criterion to bounded, open, simply connected, and
iecewise Lipschitz sets that enjoy a “strict” interior ball condition, where the meaning of
strict” will be made clear later on in Section 4, where we discuss this extension. Notably,
ropping convexity and replacing it with this weaker assumption, produces a sufficient
ut not anymore necessary criterion, unless an extra assumption is requested. In the last
ecade new Gauss–Green formulas for much less regular sets Ω have been proved, we

here specifically refer to [41], but the topic has been very active and a far from complete
list is [8,12,13,16,17]. With these new formulas at one’s disposal, it has been possible
to prove existence of solutions of (2)–(3) under much weaker regularity conditions on
Ω , see [38], covering also wildly irregular sets, for instance balls with infinitely many
holes accumulating toward their boundaries [39, Sect. 3]. Namely, researchers went from
asking the piecewise Lipschitz regularity of Ω to the request

P(Ω ) = H1(∂Ω ) , (11)
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and the existence of a positive constant k depending only on Ω such that for all subsets
E ⊂ Ω one has

min{ P(E; ∂Ω ); P(Ω \ E; ∂Ω ) } ≤ k P(E;Ω ) , (12)

hat is, a Poincaré-type inequality. Whenever Ω is such that it satisfies (11) and (12),
nequality (10) again provides a necessary and sufficient condition to existence, see
38, Thms. 4.3 and 4.7]. It is in this new framework that we shall see that, combining
esults from [47,48], a sufficient criterion for existence of solutions similar to that of
hen [11] can be proved in a wider generality, dropping the piecewise Lipschitz requests
n the boundary of Ω , and only assuming a suitable weak condition on the curvature (in
erms of the reach), and this will be the topic of Section 5.

The plan of the paper is the following. In Section 2 we introduce a related, useful
roblem through which we can state the problem in a “different language”. In Sections 3
nd 4 we review the first two geometric criteria yielding existence of capillary surfaces.
n Section 5 we exploit few recent results to prove a refined version of these criteria that
as been hinted to in [48] but neither formally stated nor proved.

. A related problem

Let us set aside for a moment the capillarity problem (2)–(3), with all the physical
mplications it carries along, and let us consider a related problem: the lone prescribed

ean curvature differential equation without any boundary datum

div(T u) = H , in Ω , (13)

here H is a fixed positive constant. Reasoning as we did in the introduction, by an
pplication of the Gauss–Green Theorem, and using the approximation argument of
iusti [29, Sect. 1], we have as necessary condition to existence that

H <
P(E)
|E |

, (14)

for all proper subsets E ⊂ Ω of locally finite perimeter. Then, one has two cases: either
the strict inequality in (14) holds as well for Ω in place of E (non-critical case); or
the curvature H equals the ratio perimeter over volume of Ω (critical case). In both
cases, condition (14) can again be proved to be sufficient for existence of solutions
when Ω is bounded, open, simply connected, and either it is piecewise Lipschitz or it
satisfies (11)–(12).

The interesting bit is that in the critical case any solution of (13) will be a cap-
illary surface, since it automatically satisfies (2)–(3) with a vertical contact angle,
that is, for γ = 0 (the boundary datum being assumed almost everywhere). Even
more, such a solution is unique up to vertical translations. For the sake of conve-
nience, we sum up this result in the next statement (refer to [29, Thm. 2.1] for the
piecewise Lipschitz case and to [38, Thm. 5.1] for the general case combined with
[39, Sect. 5.1]).

Theorem 2.1. Let Ω be a bounded, open, and simply connected subset of R2

satisfying (11)–(12), and let H ∈ R fixed. The following are equivalent:
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(a) (14) holds and H = P(Ω )|Ω |
−1;

(b) there exists a unique (up to translations) solution of (13);
(c) there exists a solution u such that T u · νΩ = 1 a.e. on ∂Ω , i.e., that solves (2)–(3)

with γ = 0.

Since (14) needs to hold for all subsets of Ω of locally finite perimeter, if we take the
nfimum in (14) among all Borel subsets of Ω , we find

H ≤ inf
{

P(E)
|E |

: |E | > 0
}

= h(Ω ),

here the constant on the RHS is known as the Cheeger constant of Ω , and it was first
ntroduced in [10]. The problem of computing the constant h(Ω ) and of determining the
ubsets of Ω attaining it (called Cheeger sets of Ω ) has gained a lot of attention in the
ast decades. Whenever Ω is the unique Cheeger set in itself, we shall call it a minimal
heeger set. We refer to the two surveys [35,43], and to [32,36,37,40,48] for results in

he 2-dimensional case that we are interested in, and the references therein.
Introducing the constant and being aware of the results on it is very useful, since we

an easily restate the non-critical and the critical case in terms of the Cheeger constant
nd of Cheeger sets. Indeed, whenever H < h(Ω ) we are in the non-critical case, while
hen H = h(Ω ) and h(Ω ) is uniquely attained by Ω , that is, when Ω is a minimal
heeger set, we are in the critical case.

In view of this parallel, and the equivalence of the critical case for (13)
Theorem 2.1(a)) with the capillarity problem (2)–(3) with γ = 0 (Theorem 2.1(c)),
hat one needs to find are criteria on a bounded, open, simply connected, and planar set
(either piecewise Lipschitz, or satisfying (11)–(12)) that ensure that Ω is a minimal

heeger set. The proofs we will provide of the criteria contained in the next sections
xploit this deep link between the two problems, and we shall see how criteria for Ω
eing a minimal Cheeger set almost immediately port to criteria for existence of solutions
f (2)–(3) with γ = 0.

We also mention that such self-minimality criteria for the Cheeger problem appear to
e useful in other contexts such as image reconstruction problems as the ROF model [45],
ailure of planar plates subject to a vertical load [34], and viscoplastic fluids [28,31].

For the sake of completeness, we remark that minimal Cheeger sets are in some
ontexts called calibrable sets, see [5, Def. 3 and Rem. 6]. We also mention that the
ask of verifying the necessary condition (10), or, as discussed, determining whether

is a minimal Cheeger set, is equivalent to finding a vector field on Ω with some
pecial properties, and we refer the interested reader to [19, Thms. 1 and 2], and also to
30, Thm. 3] and [49,50].

. Convex sets

The first criterion for existence that appeared dates back to 1978 and it is due
o Giusti [29, Thm. A.1 and Cor. A.1]. Several years later two criteria in different
ettings were independently proved, and these paired with the observations of Section 2
mmediately allow to recover Giusti’s one. In particular, we refer to Bellettini–Caselles–

1,1
hambolle [5, Rem. 6 and Thm. 4] in the framework of C , calibrable, and convex sets,
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and to Kawohl–Lachand-Robert [32, Thm. 2] in the language of Cheeger sets. This latter,
paired with the observations of Section 2, provides a very quick proof of the criterion.

Criterion 3.1. Let Ω ⊂ R2 be a bounded, open, and convex set, and let κ̄ be defined
s

κ̄ = ess sup κ∂Ω ,

here κ∂Ω represents the curvature of ∂Ω . Then the PDE (2) with boundary condition (3)
as a solution for γ = 0 if and only if

κ̄ ≤
P(Ω )
|Ω |

. (15)

Proof. By [32, Thm. 2] a bounded, open, and convex planar set Ω is self-Cheeger if
and only if κ̄ ≤ P(Ω )/|Ω |. Moreover, convex sets have a unique Cheeger set [1], hence
it also tells us that h(Ω ) is uniquely attained by Ω .

In turns, this says we are in the critical case for solving (13), that is, statement (a)
n Theorem 2.1 holds. Since convex implies Lipschitz, the regularity assumptions on

requested in Theorem 2.1 are satisfied. Therefore, by the equivalency stated by the
heorem, there is a solution of (2)–(3), with γ = 0 (Theorem 2.1(c)). □

It is here useful to define what we mean by curvature of a convex set, which a priori
s only Lipschitz, and thus the curvature may not be defined in the classical sense, that
equires a C2 regularity.

Given a convex set Ω , its support function is p : S1
→ R defined as

p(θ ) = sup
(x,y)∈Ω

{ x cos(θ ) + y sin(θ ) },

hich is Lipschitz continuous and allows to identify the hyperplane orthogonal to
cos(θ ), sin(θ )) supporting the convex set Ω . The boundary of Ω can be then described

almost everywhere as the simple and closed curve (x(θ ), y(θ )), with θ ∈ [0, 2π ], given
by

x(θ ) = p(θ ) cos(θ ) − p′(θ ) sin(θ ),

y(θ ) = p(θ ) sin(θ ) + p′(θ ) cos(θ ).

f a convex set is of class C2, its support function p is twice differentiable and the
urvature radius ρ is such that ρ = p + p′′ > 0, and the curvature is its reciprocal.

Conversely, given a Radon measure p : S1
→ R, satisfying p+ p′′

≥ 0 in a distributional
sense, one can find a convex set Ω , whose support function is given by p. One can prove
that there is a bijective correspondence between convex sets and Radon measures p on
S1 such that p + p′′

≥ 0, and the curvature κ can be defined in general as the ratio
/ρ, being ρ = p + p′′. The supremum κ̄ is then defined as +∞ if κ is not bounded,

otherwise as the supremum of the Lebesgue precise representative of κ .
What is important to note is that if κ̄ is finite, then the classical fact for C2 convex

sets Ω that at any point x ∈ ∂Ω there exists a ball through x of radius 1/κ̄ and interior
o Ω remains true. This in particular allows to restate Criterion 3.1 in terms of an interior
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ball condition of radius P(Ω )/|Ω | at any point of the boundary x ∈ ∂Ω . The criteria we
hall discuss in the next sections are indeed essentially stated through this property.

For the sake of completeness, we note that such a criterion has been proved also
n different frameworks, when the underlying metric is non Euclidean, but rather
nisotropic. In particular, we refer the interested reader to [33, Cor. 5.3], see also
6, Thm. 8.1]. These criteria have been later extended for general N -dimensional convex
ets, see [2] for the Euclidean case and [9] for the anisotropic case.

. Non convex piecewise Lipschitz sets

On the one hand, it was almost immediately clear that the lone curvature condition (15)
s not enough to guarantee the existence of solutions, and that in the previous statement
onvexity played a major role. Indeed, in [24, Sec. 1], the authors show that existence
ay fail when negative curvatures occur, even if they are small compared to the ratio

P(Ω )/|Ω |, and even if one requires starshapedness. Specifically, Finn and Giusti consider
wo balls of radii R and r , with R > r , with non empty intersection, as shown in Fig. 3.
ne can smooth out the intersection points in such a way that the curvature κ is strictly

ess than 1/r at all points of the boundary. Calling θR and θr the angles drawn by the
segment through the two centers and by those through the centers and the intersection
point (refer to Fig. 3), and disregarding higher order terms in θR and θr , one has

P(Ω )
|Ω |

≈
2π (R + r ) − 2(θR R + θrr )

π (R2 + r2)
→ 2

R + r
R2 + r2 , (16)

or sufficiently small angles (that is, sufficiently spaced far apart centers). Thus, the
urvature condition (15) is satisfied, provided that

1
r

< 2
R + r

R2 + r2 ,

hat is, if r > R(
√

2 − 1). Nevertheless, for such values the necessary condition (10) for
existence fails to hold, since the ball BR ⊂ Ω has a strictly better perimeter to volume
ratio than Ω itself. Indeed, in view of (16),

P(BR)
|BR|

=
2
R

< 2
R + r

R2 + r2 ≈
P(Ω )
|Ω |

,

provided that the centers of the two balls are sufficiently far apart.
On the other hand, also the curvature plays a special role, as implied by [25, Thm. 3]

that states that, for Ω sufficiently smooth, if there exists even a single point on the
boundary where the curvature is strictly greater than P(Ω )/|Ω |, then the necessary
ondition (10) fails.

What Chen realized is that the key point was neither the bound on the curvature nor
he convexity, rather what the two condition paired together implied: the existence of
n interior ball of radius |Ω |/P(Ω ) through any point of the boundary. As he allowed
lso less regular sets, that is, piecewise Lipschitz, he stated the condition as an interior
rolling” ball condition to take into account that at non regular points x of ∂Ω one has
cone of inward normals, in place of a uniquely defined one. In particular, since the

oundary is assumed to be piecewise Lipschitz, one can easily define a leftmost inward
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Fig. 3. A set Ω that, when smoothed out, satisfies the curvature condition (15), yet existence of solutions
f the PDE (2) with boundary condition (3) for γ = 0 fails.

normal ν− (resp., a rightmost one ν+) as the limit of the normals approaching from the
left (resp., the right); the resulting cone shall consist of all directions inbetween ν− and
ν+ locally pointing toward the inside of the set Ω .

We can now recollect this loose idea into a definition, based on the original one
11, Def. 4.1].

efinition 4.1. Let Ω ⊂ R2 be a bounded, open, simply connected, and piecewise
ipschitz set. We say that it enjoys the interior rolling ball condition of radius r , if for
ny x ∈ ∂Ω , any ν ∈ S1 in the cone of interior normals to Ω at x , one has Br (x+rν) ⊂ Ω .
e say that it enjoys the strict interior rolling ball condition if additionally no pair of

ntipodal points in ∂ Br (x + rν) belongs to ∂Ω .

Loosely speaking, the definition above means that one can “roll”–hence the adjective
rolling”–along the boundary of Ω and internally to Ω a ball of the given radius r , and
his can be thought of as a one-sided bound on the curvature of ∂Ω . For the sake of
ompleteness, we remark that Chen only gave the “strict” definition without naming it
o; the distinction between “strict” and “non strict” came much later in [48]. Chen proved
hat the strict condition, for r = |Ω |/P(Ω ), is sufficient for existence of solutions, albeit
ot necessary. In particular, the union of two overlapping balls with the same radius, that
s, a situation like that of Fig. 3 with r = R, with the centers suitably spaced far apart,
rovides a set for which this condition is not met, while the necessary condition (10)
olds, and thus existence is nevertheless ensured, see [11, Ex. 5.3].

Let us notice how the interior rolling ball condition of radius r implies that the inner
arallel set at distance r , that is,

Ω r
= { x ∈ Ω : dist(x; ∂Ω ) ≥ r },

s simply connected (because Ω is) and path connected. This path connectedness property
urns out to be the key to make the criterion necessary. Let us lay down some more jargon.

efinition 4.2. Let Ω ⊂ R2 be a bounded, piecewise Lipschitz, and simply connected
r
et. We say that it has no necks of radius r if Ω is path connected.
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Chen’s definition, refer to [11, Def. 5.1], is different from the one given here, but
ompletely equivalent. The one we provided has its roots in [36, Def. 1.2 and Rem. 1.3],
here we drew inspiration from the original one. We are now ready to state Chen’s

riterion [11, Thms. 4.1 and 5.2], whose proof we omit, as it is implied by the criterion
e state and prove in the next section.

riterion 4.3. Let Ω ⊂ R2 be a bounded, piecewise Lipschitz, and simply connected
et.

(i) If it enjoys the strict interior rolling ball condition for r = |Ω |/P(Ω ), then the
PDE (2) with boundary condition (3) has a solution for γ = 0.

(ii) If Ω has no necks of radius r = |Ω |/P(Ω ), then the PDE (2) with boundary
condition (3) has a solution for γ = 0 if and only if Ω enjoys the strict interior
rolling ball condition for r = |Ω |/P(Ω ).

We remark that one cannot replace the strict condition with the non strict one, as
therwise the statement would not hold. This is highlighted by the “Pinocchio” example
hown in Fig. 4, also called “keyhole” or “proboscis” by Finn in [26,27] where he studied
imilar configurations for γ ̸= 0. Such a set is given by the union of the ball B1 centered
t the origin and a ball of radius r = sin θ centered at (cos θ, 0). There exists a choice
f θ ∈ (0, π/2), that we denote by θ0 and the corresponding radius by r0 (roughly,
0 ≈ 0.531), such that this set is a minimal Cheeger set. Then for any T > 0, it is
asy to see that the Pinocchio set

PT = B1 ∪

⋃
τ∈[0,T ]

Br0 (cos θ0 + τ, 0)

atisfies the (non strict!) interior rolling ball condition for r = |PT |/P(PT ), it is a
heeger set in itself, but not a minimal one, since for any t ∈ [0, T ) the proper subset
t is such that

P(Pt )
|Pt |

=
P(PT )
|PT |

.

he full computations are available in [37, Ex. 4.6], but such an example appeared
everal times, see [22, Sects. 6.13, 6.14, and 6.17], and [7, Sects. 4.2, 4.3, and 4.4].
n particular, one can also smooth out the set controlling the curvature, and build in this
ay a counterexample to Criterion 3.1 when convexity is removed, in the same spirit of

he one described at the beginning of this section, see [3, Exs. 6.5 and 6.6].

. A refined criterion

In this last section we state and prove an improved version of Criterion 4.3. First, let
s give a more general definition of strict interior rolling ball condition, that does not
ecessitate the piecewise Lipschitz regularity Ω , rather it is stated through a lower bound

on the reach of the complement set R2
\ Ω , originally stated in [48, Def. 1.1].

Definition 5.1. Let Ω ⊂ R2 be a Jordan domain. We say that it enjoys the (weak)
interior rolling ball condition of radius r if reach(R2

\Ω ) ≥ r . We say that it enjoys the
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w

w

Fig. 4. The Pinocchio set.

(weak) strict interior rolling ball condition if additionally for all z ∈ ∂((R2
\ Ω ) ⊕ BR)

no antipodal points of ∂ BR(z) lie both on ∂Ω .

For the sake of completeness, we recall that a Jordan curve is the image of a
continuous and injective function Φ : S1

→ R2 and a Jordan domain is the open region
bounded by such a curve, and this is well defined thanks to the Jordan–Schoenflies
Theorem. While any piecewise Lipschitz and simply connected set clearly is a Jordan
domain, it might not be immediate to the reader unfamiliar with curvature measures
that the condition on the reach is just a weaker request than that made previously on
the existence of an interior rolling ball. The reach of a set A, first introduced in the
foundational work [18], refer also to the survey [52] and the comprehensive book [44],
is defined as follows.

A set A has reach r if, for all ρ < r , the points in the Minkowski sum A ⊕ Bρ have
a unique projection on A. Again, roughly speaking, this amounts to saying that it is
possible to roll a ball of radius r along ∂ A on the exterior of A, essentially providing a
(weak) one-sided bound on its curvature. Notice the word exterior: this is why the interior
rolling ball condition is defined through the reach of the complement set. We shall see
that such a condition for r = |Ω |/P(Ω ), up to some very weak regularity condition on
∂Ω , is sufficient for existence. Just as we did in the previous section, we notice that this
weaker definition of interior rolling ball condition still implies that Ω has no necks of
radius r , see [48, Lem. 3.1] where a finer result is proved. Assuming again this no neck
condition, the criterion turns out to be necessary.

Criterion 5.2. Let Ω ⊂ R2 be a Jordan domain such that

H1(Ω (1)
∩ ∂Ω ) = 0 , (17)

here Ω (1) is the set of points of density 1 for Ω , and such that

|∂Ω | = 0,

here by this latter we mean that its boundary has zero 2-dimensional Lebesgue measure.

(i) If it enjoys the (weak) strict interior rolling ball condition of radius r = |Ω |/P(Ω ),
then the PDE (2) with boundary condition (3) has a solution for γ = 0.
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(ii) If Ω has no necks of radius r = |Ω |/P(Ω ), then the PDE (2) with boundary
condition (3) has a solution for γ = 0 if and only if Ω enjoys the (weak) strict
interior rolling ball condition of radius r = |Ω |/P(Ω ).

roof. By [48, Crit. 1.5] if Ω enjoys the (weak) strict interior rolling ball condition for
= |Ω |/P(Ω ), then Ω is the unique Cheeger set in itself, that is,

h(Ω ) =
P(Ω )
|Ω |

<
P(E)
|E |

,

for all proper subsets E . Hence, statement (a) of Theorem 2.1 holds. We are left
with checking that the hypotheses of Theorem 2.1 are met, as this would imply that
statement (c) of Theorem 2.1 holds, which is our claim. We only need to check
that (11)–(12) hold, as the other topological assumptions follow from Ω being a Jordan
domain.

Since Ω is a Cheeger set and it satisfies (17), we can apply [47, Thm. 3.4] to find
that Ω enjoys a Poincaré-type inequality, that is, hypothesis (12) is met. Thus, applying
[47, Lem. 3.5], we find that

H1(Ω (0)
∩ ∂Ω ) = 0.

This latter equality, paired with (17) and with the celebrated Federer’s Structure Theorem
implies that also hypothesis (11) is met.

To show the necessity when Ω has no necks of radius r , we reason as follows. If the
PDE problem (2)–(3) has a solution for γ = 0, then the necessary condition

P(Ω )
|Ω |

<
P(E)
|E |

,

olds, for all proper subsets E . Since Cheeger sets always exist when Ω is bounded, it
emains proved that Ω is the unique Cheeger set in itself. Since we also have |∂Ω | = 0,
n virtue of [36, Thm. 1.4], we have that Ω = Ω r

⊕ Br , with r = 1/h(Ω ). The conclusion
ollows by [48, Lem. 3.1]. □

The regularity hypotheses requested in the three criteria went from piecewise Lipschitz
o require that the set of points of density 1 for Ω inside the boundary of Ω is negligible,
aired with |∂Ω | = 0. This latter request is of technical nature and due to the proof of
36, Thm. 1.4]. Even though it is not very stringent, as it forces us to discard only plane
lling curves à la Knopp–Osgood (see [46, Chap. 8]), we believe that it could be removed
y employing the regularity theory of Λ-minimizers of the perimeter.

Finally, as mentioned at the beginning, we recall that existence of a solution of (2)–(3)
or the choice γ = 0 also implies that for any choice γ ∈ (0, π/2], which we sum up in
he following corollary.

orollary 5.3. Let Ω ⊂ R2 satisfy the general assumptions of Criterion 5.2 plus that of
oint (i). Then, the PDE (2)–(3) has solution for any choice γ ∈ [0, π/2].

In this case, we do not have (and we should not expect) an “if and only if” statement.
ndeed, it is well-known that there are sets Ω such that one has solutions of (2)–(3) for all
ngles γ ≥ γ > 0, with γ depending on the geometry of Ω . This kind of phenomenon
0 0
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appears, e.g., when ∂Ω presents angles smaller than π . For the sake of completeness, we
ention that there are some criteria taking into account the opening of the angle which

rovide existence for γ ̸= 0, refer to [20,51] and the examples therein.
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