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Summary

Novel magnetic phases arising from quantum phase transitions are at
the frontier in ultracold quantum gases experiments. In this thesis, I
focus on two different phases: the dipolar supersolid found in quantum
gases with dipolar interactions, and the easy-plane ferromagnetic phase
realized in a spin-1 spinor condensate.

Dipolar supersolids are a counterintuitive phase of matter, mix-
ing properties of crystals and superfluids, which have been discovered
only recently in experiments employing strongly dipolar atoms like
dysprosium or erbium. This novel quantum phase still needs to be
explored in its complexity. In this thesis, I explore its defining proper-
ties, like the onset of the crystallization process leading to supersolids
from superfluids, and the superfluid response of the system. The latter
is described by the so-called superfluid fraction, which is reduced in
supersolids with respect to standard superfluids, due to presence of a
periodic modulation of the wavefunction that breaks the continuous
translational symmetry of the system. To address the crystallization
phase transition, I use an approach based on the Landau theory of
phase transitions, developing a model describing the dipolar supersolid
confined in harmonic traps. Although the theory of quantum phase
transition is typically applied at the thermodynamic limit, we find
that discontinuous phase transitions, reminiscent of first-order phase
transitions in infinite systems, occur also in our finite-sized system
composed by 3 − 4 clusters with thousands of atoms each. Increasing
the transverse harmonic confinement we find that the character of the
transition changes smoothly from discontinuous to continuous, and we
interpret this behavior as a dimensional crossover in the supersolid
lattice structure dimensionality.

The continuous quantum phase transition is employed to adiabati-
cally prepare supersolids near their absolute ground state, a key step



ii Summary

for probing their superfluid response. Here, I focus on the experimental
assessment of the superfluid fraction, a fundamental quantity for dipo-
lar supersolids. The measurement of the superfluid fraction is based
on the study of a peculiar collective excitation of the supersolid, the
Josephson dynamics. Indeed, the very nature of supersolids, which
are composed by a series of superfluid clusters interconnected by low
density regions, realizes a Josephson junctions array where the barriers
are not imposed externally, but comes only from the interaction within
the system. The Josephson oscillation can be selectively excited using a
phase imprinting technique, and observed in the experiment as coherent
oscillations of both population imbalance and phase difference between
neighboring clusters. Theoretically, I discuss how the prediction of
Leggett’s theory of the superfluid fraction, originally developed for
rotating supersolid in annular geometry, can be mapped in the case
of linear systems in presence of an imprinted phase twist. This way, I
establish a connection between the superfluid fraction and the Joseph-
son coupling energy of a single junction, which can be measured in
the experiment. Our results agree with Leggett’s predictions, demon-
strating a new general method to measure the superfluid fraction of
supersolid-like systems, which may be applicable also in other materials.

In the context of spinor condensates, I contributed to a preliminary
investigation of novel topological excitations resulting from a quench
across a phase transition connecting the polar phase to the easy-plane
ferromagnetic phase in a spin-1 system. From numerical simulations
there are strong evidences that during the out-of-equilibrium dynamics
triggered by the quench, the chaotic evolution of the spinor phase would
produce a peculiar topological excitation, the so-called instanton, which
is characterized by a cusp divergence of the transverse magnetization in
a precise spatio-temporal point of the system dynamics. These space-
time vortices, may be described as the consequence of the evolution of
the spinor phase in an effective periodic potential which I contributed
to characterize experimentally.
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Introduction
Chapter 1

Phase transitions are ubiquitous in nature and they play a fundamental
role in the behavior of matter, as we experience it. These transfor-
mations, whether from solid to liquid, liquid to gas, or various other
forms, are encountered in a myriad of natural phenomena. From the
freezing and melting of water in the Earth’s hydrological cycle to the
transition of metals from solid to liquid in the heart of a star, phase
transitions are central to understand the physical and chemical prop-
erties of our universe. They influence everything from the formation
of crystals in minerals to the behavior of biological macromolecules in
living organisms. In our daily lives, we experience typically classical
phase transitions, which are driven primarily by thermal fluctuations
and occur at well-defined temperatures. They can be described using
classical thermodynamics and statistical mechanics [74]. This thesis pri-
marily delves into a different type of phase transitions, dealing with the
quantum behavior of matter, that takes place at very low temperatures,
where the usual thermal effects aren’t a significant factor. Quantum
phase transitions [160, 97] are dominated by the quantum mechanical
behavior of particles and, instead of temperature, they are driven by
variations in other parameters entering the system Hamiltonian, thus
modifying the ground state energy of the system. When the energy of
the system changes, the ground state configuration changes, giving rise
to a variety of different new quantum phases.

In the context of quantum phase transitions, ultracold quantum
gases [47] are of great importance as they offer an ideal experimental
platform for investigating these transitions at extremely low temper-
atures. These ultracold gases, typically achieved through techniques
like laser cooling and evaporative cooling, allow the manipulation of
the quantum behavior of particles to an unprecedented degree. By
tuning parameters such as particle density and interaction strength, it
is possible to explore and control the emergence of various quantum
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phases connected to the physics of superfluids and superconductors. In
this perspective, extensive research has been done in the last twenty
years on the quantum phases arising in ultracold gases in optical lattices
[60, 127], which can be captured by the Bose-Hubbard model [79]. Here,
the paradigmatic example is the quantum phase transition between the
superfluid phase and insulating phases driven by interactions [59] or
disorder [154]. The physics governing electrons in solids can instead be
studied using fermions in the framework of the Fermi-Hubbard model
[52, 11], which predicts many novel superconductive phases, such as pair-
density wave phases [1], that may be connected to high-temperature
superconductivity.

The topic of this thesis is the study of novel quantum phases as-
sociated to the symmetry breaking of continuous symmetries [58] in
quantum gases experiments. Mainly, I investigated a new state of mat-
ter arising from the crystallization of a superfluid of magnetic atoms,
the so-called dipolar supersolid [153], a counterintuitive state of matter
that combines the properties of solids and superfluids. In the three years
of my Ph.D. time, I worked in the group of Prof. Giovanni Modugno in
Firenze and Pisa, on a dysprosium experiment which allow to observe
the supersolid, studying the phase transition leading to this fascinating
state of matter [15, 10, 3] and its superfluid response [16]. During
my Ph.D. time, I also had the opportunity to join the group of Prof.
Markus K. Oberthaler at the Kirchhoff Institut für Physik in Heidelberg,
for a three month internship, where I worked ferromagnetic phases in
spinor condensates [84]. Scratching the surface of this fascinating topic,
I contributed to a preliminary study of topological excitations which
can be observed during the out-of-equilibrium dynamics towards this
magnetic quantum phase.

Until recently, the quantum many-body physics accessible in ultra-
cold gases systems has been limited by the fact that atoms typically
interact via short-range forces, changing their momentum or internal
state during the collision. Indeed, a new item in the quantum gases
toolbox was added a few years ago with the demonstration of strongly
dipolar gases [114] based on magnetic atoms, where long-range dipole-
dipole interactions compete with short-range physics. Other possible
platforms to observe the effects of long-range interactions are based
on polar molecules [188, 99], which develop a finite electric dipole in
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the ground state, and atoms confined in optical resonators [98], where
infinite-range interactions are mediated by the cavity photons. Long-
range interactions are predicted to lead to a variety of fundamentally
new phenomena [43] such as exotic insulating phases in optical lattices
[29, 12] or quantum state of matter stabilized by quantum fluctua-
tions [137], like quantum droplets [167, 82, 28] and dipolar supersolids
[181, 22, 42].

The mixed properties of supersolids come from the spontaneous
breaking of two U(1) symmetries: the continuous translational sym-
metry [32] and the global phase symmetry [142]. Indeed, supersolids
exhibit both a crystal-like order manifested as a periodic modulation
of the wavefunction, and the phase order typical of superfluids, where
particles share coherently the same macroscopic wavefunction. Orig-
inally proposed more than 50 years ago [61, 9, 38, 103], in the last
decades supersolids have been the topic of strenuous search in a variety
of quantum systems, ranging from solid helium [34] to superconducting
Josephson junctions [6]. Historically, the first approach to supersolidity
was to prove the presence of off-diagonal long-range order, associated
to a superfluid behavior, in solids. In solid 4He, the supersolid was
proposed to emerge [9, 38] from the zero-point motion of defects in the
crystalline structure that, at very low temperatures, should be able
to condense (as actual bosonic particles). Changing the perspective,
the opposite approach is to search for crystallization transitions in
superfluid systems. Following this idea, supersolidity has been finally
discovered in various cold atoms systems: atoms in optical cavities [106],
spin-orbit coupled Bose-Einstein condensates [110, 151], and dipolar
gases [181, 22, 42]. Differently from the case of solid helium, these are
known as cluster supersolids, more similar to the idea of Gross [61],
where not a single atom, but many particles sit in each lattice site of
the supersolid, giving to the system a strong superfluid response.

Dipolar supersolids result from the crystallization of a Bose-Einstein
condensate of strongly magnetic atoms, typically lanthanides, that fea-
ture long-range anisotropic dipole-dipole interactions. Similarly to 4He,
dipolar gases have an excitation spectrum which can host a maxon-roton
structure [162], where a minimum at finite k gives rise to excitations of
the superfluid wavefunction showing a spatial modulation. The energy
of these excitations, called rotons, can be tuned in experiments [41], and
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eventually decreased until the point where a quantum phase transition
occurs, and the density modulated phase becomes the new ground state
of the system. This spontaneous breaking of the translational symmetry
arise from the attractive part of dipole-dipole interactions, competing
with the repulsive contact interactions and the kinetic energy to balance
the total mean-field energy around zero. In this scenario, quantum
fluctuations play an important role in stabilizing the supersolid phase,
as their zero-point energy gives an additional repulsive contribution
(the so-called Lee-Huang-Yang correction) [112] which prevents the
system collapse [95, 27]. The resulting supersolid can be described as
an ensemble of atomic clusters arranged in a lattice, connected by weak
density links. The latter ensure a finite coupling between the clusters,
leading to the global phase coherence of the supersolid. The peculiarity
of dipolar supersolids is that the strength of the weak links can be
tuned in experiments, going from systems with only a small density
modulation to ones with very depleted links. When the clusters be-
come totally disconnected we cross a second quantum phase transition,
realizing a droplets crystal, an incoherent system where each cluster
is per se a superfluid with fixed phase. The typical lattice spacing of
dipolar supersolids (which is also connected to the roton wavelength)
is fixed in practice by the harmonic oscillator length in the direction of
the dipoles, associated to the harmonic confinement typically employed
in experiments.

The character of the crystallization quantum phase transition lead-
ing to trapped dipolar supersolids was, until recently, a rather open
question. Although this type of phase transition share some similarities
with classical ones connected with other density modulated materials,
such as the Rosensweig phase in ferrofluids [159] or the smectic phase
in liquid crystals [32], an experimental study of trapped supersolids was
lacking. In Chapter 2 I address this problem, discussing the character
of the transition and its dependence on the supersolid lattice dimen-
sionality [15, 10]. Remarkably, the behavior of the transition is related
to the supersolid finite compressibility, which allow the deformation of
the lattice structure in presence of an external confinement. Indeed,
the dipolar supersolid is quite soft with respect to the other systems
explored so far [106, 110]. As a function of the external confinement, the
lattice dimensionality changes smoothly from 1D towards 2D, and the
character of the transition follow this dimensional crossover, changing
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from continuous to discontinuous.

To describe the extraordinary properties of supersolids, Leggett
introduced in the 1970s the concept of superfluid fraction fs as a funda-
mental quantity which measures the superfluid response of the system.
In his seminal paper [103], he linked the periodic modulation of the
superfluid density in supersolids to a reduction of their superfluidity
(fs < 1), manifested by an increased moment of inertia experienced
under rotation. A reduced superfluid fraction does not qualify a system
as a supersolid [36, 184], but quantify its deviation from standard super-
fluids. So far, the experimental observations of supersolidity have been
focused on other phenomena, such as the presence of Goldstone modes
associated to the spontaneous breaking of two symmetries [192, 182, 63]
or the non-classical rotational inertia [183], which demonstrated the
superfluidity of dipolar supersolids. Nevertheless, a direct measurement
of the superfluid fraction would be of fundamental importance, since fs

may be a key quantity also for other quantum phases showing a periodic
modulated density. In Chapter 3, I discuss a new experimental method,
based on the Josephson effect [80], to measure the superfluid fraction
of a dipolar supersolid. Starting from Leggett’s idea of superfluid frac-
tion, we demonstrate that it is possible to extract fs of a single lattice
cell of a trapped supersolid, from the Josephson oscillations between
adjacent clusters. Remarkably, this type of coherent dynamics peculiar
to superconductors or superfluids separated by a barrier, is naturally
present in a supersolid. Indeed, the couplings across the weak links of
a supersolid are given only by the interactions, without any external
potential, and they are naturally connected to the superfluid fraction.

In this perspective, the single cell of a dipolar supersolid also re-
alizes a bosonic Josephson junction of a new type, where the position
of the barrier is free to move. A theoretical description of such com-
plex object is still lacking, and an experimental characterization of
the fluctuations of the system would be an interesting direction to
explore for both practical and fundamental reasons. Indeed, from the
study of fluctuations in a finite temperature system, we may be able
to establish a novel method for the system thermometry, based on
the already existing models for standard double-well bosonic junctions
[57]. Moreover, in the language of the Josephson effect we can also
try to study the effects of quantum fluctuations beyond the mean-field
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corrections, like squeezing and entanglement creation [140].

The recent advancements in experimental techniques pushes the
imagination also in new directions. In particular, the possibility to
produce tailored optical potentials gives the opportunity to explore
interesting geometries with dipolar atoms. For supersolids, probably
the most fascinating geometry would be the annulus, which was in the
focus of the original theories by Leggett [103]. Its natural connection
with rotations, would make the annulus the perfect platform to study
superfluid phenomena, like partially quantized supercurrents [185], in
the supersolid. Moreover, the supersolid confined in a ring, sufficiently
thin, realizes an ideal 1D system with boundary conditions, where
it would be possible to study the excitations spectrum, for example,
without perturbations and inhomogeneities induced by the finite size. I
discuss the experimental steps towards the realization of such a system
in Chapter 4, together with other techniques employed in our experi-
ment.

While the physics of dipolar supersolids does not involve the spin
degree of freedom of the particles composing the system, the rich inter-
nal structure of lanthanides can be used to realize synthetic dimensions
[33, 199] or explore entanglement [163]. In general, spin physics can
be studied in the context of quantum gases with spinor Bose-Einstein
condensates, where bosonic particles are in a mixture of different spin
states, and interact by standard and spin-changing collisions [84]. De-
taching from the large spin case of lanthanides, the additional degree
of freedom arising from spin interactions, has been explored typically
with alkali atoms realizing spin-1 [177] and spin-2 [35] systems, or even
with weakly dipolar atoms, like chromium [135], which lead to a spin-3
system. Besides the numerous magnetic quantum phases arising in
such systems, spin-changing collisions also give rise to spin dynamics,
when the system is brought out-of-equilibrium [176]. From the study of
the time evolution of such systems towards a new equilibrium state, we
can get intuition about general phenomena associated with universal
scaling, even connected to cosmological models or nuclear collisions
[148]. Moreover, during the dynamics many topological excitations,
like exotic solitons [101, 55], emerge from spin interactions.

Focusing on spin-1 systems, a rather rich phase diagram can be



7

explored as a function of the standard and spin-changing collisions
strength. In 87Rb, where collisions are repulsive and the spin coupling
is ferromagnetic, we can study the quantum phase transition arising
from the breaking of the full rotational symmetry of the spin orientation,
given by spin-changing collisions [150]. The result of this transition
is the so called easy-plane ferromagnetic phase, which is characterized
from a finite magnetization in the x-y plane of the spin space, pointing
in equally probable directions. In experiments, this quantum phase
is typically reached by quenching the system interactions and follow
the resulting out-of-equilibrium dynamics until the system settles in
the new ground state. In Chapter 5, I focus on this particular topic,
discussing preliminary results connected to the possible observation of
exotic topological excitations emerging from the spin dynamics after
such quench [172].





The superfluid-supersolid
quantum phase transition

Chapter 2
In this chapter, I will focus on the quantum phase transition between
a superfluid made of relatively strong magnetic atoms and the so-
called dipolar supersolid. Besides the phenomenological description of
the supersolid phase, which usually stems from the discussion of the
competing mechanisms between short- and along-range interactions in
dipolar quantum gases, here I will present a more general approach
using the language of quantum phase transitions. Remarkably, the
physics of dipolar supersolids is well captured by the Landau theory of
phase transitions [97], even in the case of experimental systems with
finite size and temperature. Many properties of both the ground state
and excitations of the supersolid can be understood by looking at the
character of the phase transition itself. Probably, the most intriguing
question about the crystallization process leading to the supersolidity
in quantum gases experiments is whether this quantum phase transition
happens continuously or with a jump in the order parameter, since
these two different characters would strongly affect the properties of
the system, especially in experiments, where the transition from the
superfluid to the supersolid is crossed in a finite time. On one hand, a
continuous phase transition would be of interest for the possibility of
smoothly tuning the order parameter in the supersolid phase, control-
ling the relative importance of the superfluid behavior over the crystal
one. Moreover, almost excitations-free supersolids can be produced
by adiabatically crossing a continuous phase transition in experiments,
enabling the possibility to observe delicate phenomena, such as the
quantum entanglement expected to rise from the interactions [119] or
the formation of topological defects due to Kibble-Zurek mechanism
[200, 46, 13]. On the other hand, discontinuous transitions are linked to
more exotic crystal structures [131], usually in two dimensions, realizing
an interesting platform to observe partially quantized vortices and their
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competition with the density modulation of the supersolid [56, 7]. The
fast dynamics typically associated with discontinuous transitions also
allow for engineering the supersolid formation process in experiments,
for example exploiting bang-bang protocols [2].

Despite the rich literature regarding the superfluid-supersolid quan-
tum phase transition, both theoretical models [144, 121, 168, 197, 198,
155, 18] and experimental observations [181, 22, 42], have not been
conclusive in establishing the character of the transition, especially for
confined systems. Here I address this problem, discussing the results of
a recent experiment by our group [15, 10], where we found that the con-
tinuous or discontinuous character of the phase transition can be tuned
in experiments, controlling the dimensionality of the crystal structure 1 .

A fundamental link between the supersolid lattice dimensionality
and the behavior of the transition emerges clearly for infinite systems.
The simplest theoretical models predicting the supersolidity employ
bosons with soft-core interactions [44, 67, 111], and give important
insights on the character of the transition. In analogy to classical 2

crystallization transition, these models predict either first-order transi-
tions in two dimensions [144, 121], or second-order transitions in one
dimension [168]. When dipolar interactions are taken into account, the
landscape is far richer. The transition is predicted to be of first-order in
two dimensions for both triangular and honeycomb lattices [197, 198]
and, only for a critical value of the atomic density, we can have a
second-order phase transition. This single point extends into a density
interval when one-dimensional systems are considered [155, 18]. As
I will discuss later in this chapter, the effect of the atomic density is
understood as a competition between the kinetic energy and the zero-
point energy of the quantum fluctuations [197], which have a crucial
role in the stability of the supersolid [112].

1Note that, typically, the dimensionality of the supersolid structure is lower than
the actual system dimensionality. For a three-dimensional system, the translational
symmetry is spontaneously broken either along one or two directions.

2Here I use classical, referring to phase transition where the temperature is changed
instead of a parameter of the system Hamiltonian.
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This broad scenario gains another layer of complexity when ac-
tual experimental systems are considered. The precise control of the
trapping confinement, typical of quantum gases experiments, gives the
opportunity to change continuously from 1D to 2D the dimensionality
of the supersolid lattice [143], which is ultimately not easy to define
in the intermediate regimes. Besides the direct effect of the trapping
potential which gives the system a finite size, the shape of the atomic
cloud is modified by the interactions [178], favoring configurations elon-
gated along the dipoles for stronger dipolar interactions. Moreover, the
harmonic confinement also leads to an inhomogeneous density in experi-
mental systems, producing the coexistence of the supersolid in the bulk
of the cloud, where the density is high enough to allow for the phase
transition to happen [181], with superfluid tails in lower density regions.
Despite all these challenges, this quantum phase transition has been
explored in experiments realizing quasi-one-dimensional supersolids,
where the lattice structure consists of a single row of density clusters
arranged along the weak axis of the harmonic trap. In the following
chapter, I will refer to this kind of supersolid structure as single-row
supersolid, to avoid misunderstandings with the actual dimensionality
of the system. Experimentally, supersolids with a two-dimensional
lattice structure have been so far realized only by crossing a classical
phase transition, namely by reducing the temperature of the gas and
passing from a thermal cloud directly to a supersolid. The so-called
evaporation of the supersolid [174], would not be the object of this
chapter.

Coming back to the quantum phase transition, numerical simu-
lations for trapped 2D supersolids predict a discontinuous character
[70, 19]. On the other hand, single-row supersolids have been the object
of intensive experimental studies reporting only partial insights about
the character of the transition. By looking at the behavior of exper-
imental observables when the transition is crossed, it can be argued
that in some cases it has to be either discontinuous [181, 22, 182], or
continuous [139], while in some other observations, the character of
the transition remained not assessed [69]. In the work by our group
[15, 10], we solve this complex puzzle, demonstrating that is possible to
observe both types of quantum phase transitions, leading to supersolids
with different dynamical properties. By controlling the external har-
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monic confinement, the character of the transition changes smoothly
from continuous to discontinuous as the dimensionality of the super-
solid lattice changes from strictly 1D towards the 2D configuration.
This behavior is reminiscent of the second- and first-order phase transi-
tion taking place in 1D and 2D respectively in the thermodynamic limit.

The most important novelty, with respect to other crystallized
phases, is that the supersolid is not infinitely rigid, but its structure
can be deformed across this dimensional crossover, to adjust the crys-
talline structure to the external confinement. Indeed, the discontinuous
transition typical of 2D materials exists in the supersolid even in the
single-row regime, where the two-dimensional behavior is maintained
by the superfluid density background. The different effective dimension-
ality of the single-row supersolids featuring continuous or discontinuous
phase transitions is even clearer if we look at their dynamics [3]. Indeed,
when the translational symmetry is broken along a certain direction, we
can assume that the lack of adiabaticity would trigger an oscillation in
the harmonic trap. In the case of discontinuous transitions, we observe
excitations along two directions, perpendicular to the dipoles, meaning
that the system responds as a material with a 2D structure. On the
other hand, for continuous transitions, we observe dynamics only along
the direction of the clusters, as expected for a one-dimensional system.

2.1 The crystallization of a superfluid
Let’s start considering Fig. 2.1, depicting both the superfluid and su-
persolid density distributions, obtained by numerical simulations, for
our experimental conditions. We can think of each atom as a magnetic
dipole aligned in the ẑ direction by a magnetic field B, and confined
in the three spatial directions by an anisotropic harmonic potential,
elongated in the x̂ direction. For clarity, I will refer to this direction
as longitudinal. Once the superfluid-supersolid transition is crossed,
a density modulation grows within the system: the clusters develop
thanks to the attractive part of dipole-dipole interaction, and extend in
the magnetic field direction, maintaining from one another a fixed dis-
tance λ along the longitudinal direction, forming a crystalline structure.
The lattice spacing λ of the supersolid is connected to the harmonic
length in the B field direction, approximated by ℓz =

√
ℏ/2πmνz. This
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Figure 2.1: Density distributions of a trapped superfluid (left) and a supersolid in
a single-row arrangement (right) for typical experimental parameters. The atomic
magnetic dipoles align along the z direction due to the presence of the magnetic
field B. The significant length scales are the vertical harmonic confinement length
ℓz and the lattice spacing of the supersolid λ.

spacing is in close proximity to the wavelength of the roton excitation
mode of the superfluid [162, 41].

The system is formally described in terms of the extended Gross-
Pitaevskii Equation (eGPE) [137], which includes in the standard
Hamiltonian the Lee-Huang-Yang correction [112], namely the zero-
point energy of quantum fluctuations arising from both contact interac-
tions (collisions) 3 and dipole-dipole interactions. Considering a fully
condensate system with superfluid density ρ(r) = |ψ(r)|2, the energy
functional is

E = Ekin + Etrap + Econt + Edd + ELHY , (2.1)

with
Ekin =

∫ ℏ2

2m |∇ψ(r)|2dr ,

Etrap =
∫
Vtrap(r)ρ(r)dr ,

Econt =
∫ g

2ρ
2(r)dr ,

Edd = Cdd

2

x
ρ(r)Vdd(r − r′)ρ(r′)drdr′ ,

ELHY = glhy

∫
ρ5/2(r)dr .

(2.2)

3The short-range van der Waals interactions among atoms are treated using a zero-
range pseudopotential and described as contact interactions.
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The first terms take into account the local mean-field contributions: the
kinetic energy, the harmonic confinement Vtrap(r) = m

2
∑

j=x,y,z ω
2
j r

2
j ,

the contact interactions, with strength g = 4πℏ2as/m, where as is
the scattering length describing the collision among dysprosium atoms.
Unlike such collisions, the dipolar term is non-local given the long-range
nature of the dipole-dipole potential Vdd(r) = (1 − 3 cos2 θ)/(4πr3)
describing the interaction of two dipoles at a distance r, with an angle
θ between the vector r and the dipole axis4 [158]. Indeed, Edd depends
on the integral of the atomic density, and it’s proportional to the
dipolar strength Cdd ≡ µ0µ

2, with µ the modulus of the magnetic
dipole moment µ. The beyond-mean-field correction ELHY in the local-
density approximation [112] has the same dependence on the atomic
density for both contact and dipolar interactions, with a coefficient
gLHY = 256

√
π

15
ℏ2a

5/2
s

m

(
1 + 3

2ϵ
2
dd

)
[190], representing the sum of the two

contributions. The control parameter of the phase transition is

ϵdd = µ0µ
2N/(3g) = add/as (2.3)

describing the strength of dipolar interactions relative to the contact
ones. This quantity is changed during the experimental sequence to pass
from the superfluid phase to the supersolid by controlling as exploiting
a Feshbach resonance [39]. The right-hand side of Eq. 2.3 also defines
the so-called dipolar length add, which plays the role of an effective
scattering length for dipolar interactions5.

The transition from a superfluid to a supersolid state occurs as we
decrease the repulsive scattering length as, thus increasing ϵdd. Within
the supersolid phase, the dipolar energy diminishes as a result of a
more pronounced head-to-tail alignment of dipoles within each cluster.
However, this phase is characterized by an increase in both contact
energy (stemming from the increasing peak density) and kinetic energy
(given by the density modulation). When the dipolar energetic gain
outweighs the costs associated with contact and kinetic terms, the
transition takes place. Without beyond-mean-field contributions, the
supersolid state exhibits instability as the dipolar energy decreases with
increasing density. Indeed, when the repulsive part of the interactions

4Here we define cos θ = µµµ · r/(µr).
5Note that the long-ranged nature of dipole-dipole interactions makes impossible to
expand the potential in a finite number of partial waves [96], therefore we cannot
define a pseudopotential with a simple form [75] as in the case of standard collisions.
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is too low, the attractive part of dipolar interaction leads to the collapse
of the system [95]. This is averted by the repulsive Lee-Huang-Yang
(LHY) energy term, which prevents the density from increasing indefi-
nitely. Remarkably, this stabilization mechanism is based on the sole
contribution of quantum fluctuations, which is tiny if compared to the
other terms in Eq. 2.1, but still plays a huge role when the sum of the
mean-field energies is close to zero. As we decrease the scattering length
further, the system undergoes a subsequent phase transition towards
a droplet crystal state [181]. In this phase, the superfluid background
vanishes with the coherence between clusters [181, 22, 42], and the
system is no longer superfluid6. In this chapter, I won’t discuss this
incoherent phase and I will focus only on the supersolid.

2.1.1 Formation of infinite dipolar supersolids
To gain a deeper understanding of the physics underlying the supersolid
phase transition, I will start by considering the infinite scenario, where
confinement in the x − y plane is removed, focusing on a dipolar
quantum gas at zero temperature (T = 0). Typically, the fundamental
characteristics of a phase transition are described by Landau theory
[97]. This theory links the the system’s ground state features on how
the free energy behaves as a function of the order parameter. In the
context of crystallization phase transitions, the order parameter is often
denoted as the contrast C of the density modulation. This parameter is
zero in phases resembling liquids and takes a non-zero value in phases
resembling crystals. To extract the behavior of the free energy, we have
to know its dependence on the contrast, and then expand in powers of
C as

E ≃ E0 + a C + b C2 + c C3 + d C4 + . . . , (2.4)

where E0 is the energy for a homogeneous state with C = 0. Note
that even in the presence of a trap, where the density is given by a
Thomas-Fermi profile, we can still define a contrast, by looking at the
amplitude of the modulation in the inhomogeneous atomic density.
However, I will refer to the C = 0 state sill as homogeneous, since a
finite contrast can only arise from interactions and does not depend

6As I will discuss in Chapter 3, the energy cost of phase fluctuations between neigh-
bouring cluster vanishes for vanishing density overlaps, destroying the overall phase-
coherence of the system. The same does not happen inside the bulk of each cluster,
which remains fully superfluid even in the droplets crystal phase.
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on the cloud shape, mainly affected by the trapping potential. From
the values of the coefficients a, b, c, d we can determine the character
of the phase transition by looking at the structure of the free energy
E (C). For infinite systems, the a coefficient is zero and the linear term
is neglected. However, this is not the case for trapped systems, as I will
discuss in the next section, where the confining potential introduces an
energy cost to accumulate density away from the trap center.

To find E (C) we use the following ansatz for the supersolids density
ρ (r). Near the transition point (C ≪ 1) the spatial dependence of
ρ (r) can be approximated by a sinusoidal modulation on top of the
average density ρ0 [144, 197, 18]:

ρ(r) = ρ0
[
1 + C

∑
i

cos(ki · r)
]
, (2.5)

where ki are the lattice vectors defining the supersolid structure. To get
an intuitive explanation of why 1D and 2D systems feature continuous
and discontinuous transition respectively, we can have a look at the
symmetry of the different ground states. In particular, I want to discuss
the symmetry associated with the change of sign of the contrast C.

One-dimensional supersolids

When the transformation C → −C is applied to one-dimensional
supersolids, we are basically shifting by one lattice constant the density
modulation along the direction of the single k vector describing the
supersolid structure. This overall displacement doesn’t cost any energy,
therefore the 1D supersolid is symmetric under this transformation,
and the free energy in Eq. 2.4 must be an even function of C, meaning
that the odd coefficients in the expansion must vanish. The character
of the transition is then mainly affected by even coefficients. Taking
the ansatz ρ(x) = ρ0

[
1 + C cos(kx)

]
to calculate the energy in Eq. 2.1,

and then expanding in powers of C, we find

d1D = ℏ2π

32mkρ0 −
15πglhy

512k ρ
5/2
0 ,

f1D = ℏ2π

64mkρ0 −
25πglhy

8192k ρ
5/2
0 ,

(2.6)

being respectively the fourth- and sixth-order coefficients. Depending
on the square of the density, the interactions contribute only to the
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quadratic term, which changes sign from positive to negative when the
scattering length as is decreased to cross the transition. The fourth- and
sixth-order coefficients are instead given by the interplay between the
kinetic and the LHY energy terms, which at the typical experimental
densities gives a positive contribution. When the scattering length is
lowered to cross the phase transition, the negative contribution from
the quadratic term starts to dig a minimum in the free energy at
C ̸= 0. Therefore, the system smoothly develops a finite contrast and
the transition is of the second order, as depicted in Fig. 2.2a. In this
case, we neglect the effect of the sixth-order term, since the continuous
character of the transition is captured just by the quadratic and quartic
terms.

Two-dimensional supersolids

Supersolids with a two-dimensional structure [144] show instead a
triangular lattice with wave-vectors of equal length satisfying k1 + k2 +
k3 = 0. Just looking at the insets of Fig. 2.2b, it is clear that in this
scenario the C → −C symmetry is broken: indeed when the sign of the
contrast is negative we end up with a honeycomb lattice (where density
minima form now a triangular structure) which is not equivalent to
starting one. The energy of these two configurations must then be
different, meaning that the free energy is an odd function of C. The
full calculation of the Landau energy with a sinusoidal ansatz of the
form Eq. (2.5) was reported in [197]. In particular, the most important
term in the expansion 2.4 is the cubic one. This is again affected by
the interplay between kinetic and LHY energies, and at relatively low
densities gives a negative contribution. The result is that the free
energy develops a barrier at finite C, with a minimum at large positive
contrasts which starts to form lowering the scattering lengths as. When
this minimum touches zero, we have two degenerate ground states, but
the systems need to overcome the barrier energy in order to jump to
the modulated state. This scenario is typical of second-order phase
transitions, resulting in a finite jump of the contrast at the transition
point.

High densities: quantum fluctuations effects

In general, at high densities (very far from the experimental possibili-
ties), the contribution of the LHY energy which scales as ρ5/2, dominates
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Figure 2.2: Landau theory of the superfluid-supersolid quantum phase transition in
the thermodynamic limit. Scenarios for second-order phase transitions in 1D (a) and
first-order phase transitions in 2D (b). Solid lines are the typical behavior of the free
energy as a function of the order parameter C for varying scattering lengths. Dashed
lines are examples of the free energy in the LHY-dominated regime. Insets show the
lattice structure.

on the kinetic term, which is linear in ρ. This obviously has an impact
on the previous analysis for both 1D and 2D cases. Curiously, in the
2D case, the sign of the cubic term is reversed and the ground state is
now at negative contrast, where the honeycomb structure is favored. In
[197], they also show the possibility of tuning exactly the density of the
system to have a continuous phase transition in 2D. This comes again
from the relative importance of the different terms in the expansion, but
it’s not relevant for the experiments, where finite density fluctuations
due to technical noise produce always discontinuous transitions in 2D.
To complete the picture, it is also shown in Fig. 2.2a a possible discon-
tinuous phase transition in 1D. Indeed, when the density is high enough
the fourth order term in the expansion change sign, becoming negative.
To find a minimum in the free energy, we then need to reach the sixth
order of the expansion which gives a positive contribution. Lowering the
scattering length, we then have a double minimum shape of the free en-
ergy, with a barrier given by the quartic term. The latter is dominated
by LHY energy, so the resulting discontinuous transition can be placed
in the class of fluctuation-induced first-order phase transitions governed
by quantum fluctuations, as the ones in superconductors and liquid
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crystals [65]. The presence of a discontinuous transition in quasi-1D sys-
tems at high densities was also revealed by numerical simulations in [18].

2.1.2 Landau model for a trapped system
The effects of the trap on the character of the transition can be appre-
ciated by analyzing the case of one-dimensional systems. Adjusting our
density assumption to

ρ(x) = ρ0g(x) [1 + C cos(kx)] , (2.7)

the simple 1D model previously discussed can be indeed expanded to
account for the trap’s influence. Here, g(x) represents a normalized
Gaussian envelope with width σ, which breaks the symmetry in the
contrast’s sign, causing slight differences between the density distribu-
tions with C and −C respectively. Indeed, the main maximum and the
central minimum shift within the trap introduce odd terms into the
Landau energy. 7 Specifically, since the trap energy scales linearly with
the density, it introduces a linear term in the energy, meaning that a
state with a positive contrast (C > 0) is energetically favored in terms
of trap energy, with respect to a fully superfluid state (C = 0). This is
due to the fact that by increasing the density at the trap center and
establishing lateral minima where the trap potential is most pronounced,
the system actually reduces its energy. Recognizing the presence of
a trap-induced linear term in the Landau energy provides a plausible
explanation for some of the effects we observe in numerical simulations,
such as the mixing of continuous and discontinuous behaviors across the
phase transition. Particularly, in configurations where the transition is
discontinuous, the linear term tends to drive a continuous transition
towards states with minimal contrast, subsequently jumping towards
the second minimum at a higher contrast.

To capture the change of dimensionality of the lattice structure,
as a function of the transverse confinement, the model assumes a 2D
geometry with triangular structure, giving the opportunity to evaluate
the effect of the trapping potential on the shape of the free energy. A

7The relative importance of odd terms with respect to even ones, grows for decreasing
kσ, remaining below 10% in the regime relevant for the experiment. At large kσ odd
terms vanish.
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Figure 2.3: Landau free energy calculated with the ansatz 2.8 adjusted to two
different trapping configuration featuring continuous or discontinuous transitions.
(a) Contrast as a function of the scattering length, for two elongated traps with
different transverse confinement. These results are extracted from eGPE numerical
simulations of N = 30×103 162Dy atoms, employing harmonic traps with frequencies
(15, 100, 94) Hz for VC and (20, 67, 102) Hz for VD . (c,d) show the Landau free
energy from 2.1, for different scattering lengths. Colored lines highlight the single- or
double-minima shape of the free energy once the transition is crossed. The contrast
is measured by C̃ , analogous to C , but measured after a time of flight expansion
(substituted in the theory by a Fourier transform). (d,e) are the ground state
density profiles along x̂ and ŷ . Black dots are the results of numerical simulations.
Colored lines show the trapped model. All the parameters are set to realistic values,
minimizing the differences from the simulated densities: (d) Rx = 8.1λx , σy = 0.64λy ,
Rz = 4.9λz , wx = 2.1λx , λ = 1.6λx ; (e) Rx = 5.6λx , σy = 0.46λy , Rz = 5.1λz ,
wx = 1.9λx .
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better resemblance with the experimental configuration can be obtained,
instead of using simple Gaussian envelopes in the transverse directions,
by modifying the ansatz 2.5 into

ρ(r) = A

[
1 + Ce−x2/2w2

x
∑

i

cos(ki · r0)
(

1 − x2

R2
x

)
e−y2/2σ2

y

(
1 − z2

R2
z

)]
,

(2.8)
adding a Thomas-Fermi envelope of radius Rx (Rz) in the x (z) direction.
The k vectors describing the triangular lattice are

k1 = 2π/λ(0, 1, 0),
k2 = −2π/λ(

√
3/2, 1/2, 0),

k3 = 2π/λ(
√

3/2, −1/2, 0),
(2.9)

with
√

3λ being the lattice period, r0 = (x −
√

3λ/2, y, 0), and A a
normalization constant. Another difference from the ansatz 2.5, is that
here the sinusoidal modulation has a Gaussian weight with width wx,
such that the superfluid tails of the system are taken into account. The
free energy is calculated by integrating the energy functional in Eq. 2.1
with this ansatz, keeping C a free parameter. The other parameters are
set by direct comparison of the model 2.8 with numerical simulation of
the ground state density. The latter are carried out with direct inputs
from the experiment. The results are shown in Fig. 2.3 for two differ-
ent experimental configurations featuring continuous or discontinuous
transitions. This behavior is connected to a single- or double-minima
structure of the free energy, Fig. 2.3b,d, when the scattering length
is decreased. Note that both the associated supersolid density distri-
butions don’t show an evident structure in the transverse direction,
demonstrating that the two types of phase transitions can occur for
single-row supersolids, for different transverse trapping configurations.

2.1.3 Dimensional crossover
In the previous section, we’ve seen that even if the concepts of first-
and second-order phase transitions must be abandoned in the context
of finite-sized systems, the underlying physics governing the crystal-
lization in the thermodynamic limit survives in this regime. Although
the transverse confinement is strong enough to suppress almost com-
pletely the 2D structure of the supersolid lattice, a discontinuous phase
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transition persists in single-row systems [181, 22, 182]. The reason
why this happens is not straightforward if we think about standard
crystals and crystallization processes. Let’s consider the formation of
an ideal crystal with infinite rigidity and, starting from a 2D system
featuring a first-order phase transition, imagine reducing its size in one
direction. Once we reach a width comparable to the lattice constant
of the crystal, the system can no longer sustain a two-dimensional
structure, and the crystallization transition becomes second-order. The
fact that in supersolids a regime of discontinuous transitions exists in
single-row systems, must be then linked to a finite rigidity. Indeed,
the supersolid structure is deformable. Macroscopic distortions of the
supersolid lattice without loss of coherence can be observed in experi-
ments [182], arising from excitations described as collective modes of
the solid part of the system. The idea is that the supersolid ground
state can adapt its lattice structure to match external confinements in
order to minimize its energy. When the transverse width of the system
approaches the lattice constant, the competition between continuous
and discontinuous transitions leads to a dimensional crossover, with
the supersolid structure changing continuously from 2D to 1D, over a
broad region of experimental parameters.

Although the model discussed above give precious insights into
the origin of this dimensional crossover, it cannot be used to draw
quantitative prediction about the character of the transition for differ-
ent experimental parameters. Indeed, the Landau model for trapped
systems, developed to understand the effects of the trap with respect to
the infinite case, assumes the supersolid structure to be fixed, namely
keeping the wave-vectors fixed in the Eq. 2.8. As a matter of fact, the
deformation of the lattice across the crossover can be studied with the
help of numerical simulations of the ground state density. In particular,
we explore the dimensional crossover by monitoring the character of
the transition for changing atom number and transverse confinement.
To compare similar systems, the vertical confinement, which eventually
determines the length scale of the supersolid structure, and the longitu-
dinal one are kept fixed. For similarities with the harmonic confinement
used in experiments, (νx, νz) are set to (20, 80)Hz respectively. The
number of atoms spans a broad region: at the lower bound N < 5×103,
the average density is low enough in the trap that the supersolid phase
consists of a single cluster with long superfluid lateral tails; in the
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opposite boundary N > 10 × 104, well above the possibilities of current
experiments employing 162Dy8, we enter the regime of high densities
discussed in the previous section. I will focus on the region between
these two boundaries, where the crossover takes place.

Analysis of the supersolid ground state

Numerically, we minimize the energy functional E[ψ] in Eq. 2.1 using
a conjugate algorithm [145, 126, 158], leading to the ground state of
the system. After being mapped in the Fourier space, the contribute
of dipolar interaction Edd in Eqs. 2.2 is calculated using fast Fourier
transform algorithms. The numerical code has been provided by Prof.
Michele Modugno and coworkers, and I used it to simulate most of
the data in this chapter. Varying the system parameters, we extract
from each simulation the contrast C̃ of the density modulation, as the
height of the Fourier peak at kSS = 2π/λ associated to the supersolid
spacing. As we will see in the next section, this choice is motivated by
the presence of a related experimental observable. To obtain C̃ from
the ground state density distributions, we start integrating the column
density distribution along ŷ, in order to obtain a one-dimensional profile

ρ (x) =
∫

dy ρ (x, y) =
∫

dy
∫

dz
√

|ψ (x, y, z) |2 , (2.10)

as shown in Fig. 2.3c,e; then the Fourier transform |F [
√
ρ (x)]|2 is calcu-

lated. The order parameter C̃ is simply given by the relative height of
the first lateral peak with respect to the central one. In the 1D infinite
case discussed in Sec. 2.1.2, C̃ = C2/16 in the limit of small contrasts
C ≪ 1. This relation can be proved by Fourier transforming the ansatz
2.7, and looking at the coefficient multiplying the Dirac delta δ(k−kSS).

As I will discuss later in this section, another important parameter
to understand the nature of the crossover is the transverse width of the
system σy. In general, this width changes with the interactions, rapidly
decreasing when we cross the phase transition from the superfluid to

8Note that the atom number in the supersolid phase drops from the typical number,
around 5 × 104, in the superfluid phase due to the effect of inelastic collisions
enhanced by the increased density in the clusters. In our experiment, we usually
realize supersolids with N = 3× 104.
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the supersolid. This happens because when the supersolid lattice forms,
the density in the atomic cloud gets concentrated in the clusters, thus
increasing the width along ẑ. In the longitudinal direction, instead,
the system size depends strongly on the number of clusters in the
supersolid lattice, which is clearly dependent on the atom number.
An analogous argument is applied for other interesting parameters
that describe the supersolid structure at the transition, such as the
peak density and the shape of the clusters. To define a quantitative
parameter for the transverse size, we choose to analyze the atomic
density at the transition point, where C̃ is still very small9, and the
transverse profile ρ (y) (defined similarly to Eq. 2.10) is well described
by a Gaussian envelope, therefore we define σy as its Gaussian width.
The peak density, which gives important information about the role
of LHY energy term, is simply extracted from the linear density in
Eq. 2.10. Instead, to study the deformation of the clusters, we need to
analyze the two-dimensional density ρ (x, y, 0) (which is different from
the integrated one, defined in the right-hand side of Eq. 2.10. First, the
position of one of the central clusters is found, looking for the maximum
density. Then, we define the deformation parameter

βss = ⟨x2 − y2⟩/⟨x2 + y2⟩ (2.11)

in a smaller spatial window including only the chosen cluster, canceling
the contribution of the background density with a threshold filter.
Circular clusters have βss = 0, while clusters elongated along x̂ (ŷ) have
positive (negative) deformations.

Visualizing the dimensional crossover

For each set of parameters, we vary the scattering length as, finding
the ground state of the system minimizing the energy in Eq. 2.1, and
observing the behavior of the transition. The results are reported in
Fig. 2.4, which can be considered as a map of the different types of
superfluid-supersolid quantum phase transitions. In particular, this
study is focused on the blue and magenta regions in Fig. 2.4a, where
we find single-row supersolids showing discontinuous and continuous
transitions respectively. Being a map, the interesting feature is obviously
the border between these two regions. In Fig. 2.4b, the evolution of

9This analysis is performed for the transition at the boundary between the continuous
and discontinuous regime, therefore they exhibit a very small jump in C̃ .
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Figure 2.4: Character of the superfluid-supersolid quantum phase transition, extracted
from numerical simulations of our system. (a) Map of the different phase transitions
as a function of the atom number N and the transverse trap frequency νy . The black
boundary between the continuous and the discontinuous regions is traced by finely
sampling N for each investigated νy . The black dots at the boundary represents
the critical N separating the two regimes. A second crossover from continuous
to discontinuous at large νy and N is marked by the gray dots. The gray shaded
region represents the LHY-dominated regime, where, as an effect of the density
inhomogeneity, the supersolid forms initially in a continuous manner in the low density
regions (typically the tails of the distribution) and only afterwords the contrast jump
at high values in the high density regions (center of the distribution). The white
region at very low νy marks true two-dimensional regime, where the supersolid shows
more than one row of density maxima. In the upper panels are shown three different
samples of the column density in the supersolid phase. From right to left: one-row
continuous (magenta circle), one-row discontinuous (blue circle), and two-rows (white
diamond). (b) Behavior of the order parameter as a function of the scattering length
as across the dimensional crossover. Each color corresponds to a different N, with
νy = 90Hz. The center of the crossover is plotted in black. The inset shows the
typical momentum distribution of the supersolid, and the definition of the contrast C̃ .
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the contrast in the system ground state as a function of as is shown
for a set of different atom numbers at fixed transverse confinement
νy = 90Hz. Starting from low N , where the transition is strongly
discontinuous, the decreasing jump in the contrast at the transition
point for increasing N is mapped in shades of color, going toward the
continuous side of the crossover. The black points represent the first
transition which is almost continuous, i.e the jump in the contrast is not
visible (it’s smaller than 0.001) with the resolution in as steps employed
for numerical simulations. This boundary depends in a curious way on
the atom number and transverse confinement. Indeed, the region of
discontinuous transitions at low atom numbers is more pronounced for
weaker confinements, up to the point where νy is so small to actually
enter the regime of supersolids with more than one row of clusters.
For larger confinements, the discontinuous region is more and more
suppressed, until basically the phase transition is always continuous
and we reach the 1D regime. As shown in the insets of Fig. 2.4a, the
inhomogeneity of the density given by the trap leads to a coexistence of
a supersolid phase, which is formed in the central region of the harmonic
potential, where the density is high enough for the transition to take
place, and a superfluid phase in the outer regions. The properties of
the system are however dominated by the supersolid part.

Origin of the crossover

While the majority of the phase diagram suggests the development
of supersolidity characterized by a single row of density maxima, a
Fourier analysis uncovers a density background with a two-dimensional
structure. In particular, assuming the lattice structure to be triangular
in real space, we expect the Fourier space to show a hexagonal pattern.
To reveal such a pattern, we analyzed the Fourier transform of the
ground state densities looking along the transverse direction, slightly
off from the kx = 0 line, as presented in Fig. 2.5. Formally we evaluate
the quantity

T (ky) = F [ρ(x, y)](kx = k′
x, ky), (2.12)

where k′
x is chosen to maximize the amplitude of the signal Ay. This

amplitude clearly decreases the more the lateral clusters along the
transverse direction are suppressed. Nevertheless, T (ky) presents a
non-vanishing structure even in the case of single-row supersolids.
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Figure 2.5: Detection of the triangular structure of trapped supersolids, via Fourier
analysis. The upper panels show the real space density distribution for three different
supersolid ground states showing an actual 2D structure (left) and a single-row of
clusters (right). The panels in the center show the same density distributions in the
Fourier space. Vertical lines mark kx = 0 (blue) and k ′

x (red) along which we expect
to find transverse peaks in the Fourier signal. The lower panels show such a signal,
normalized to the two-rows case.

We performed the same analysis to probe the role of the triangular
structure in the crossover, finding that it has a direct connection with
the change of nature of the phase transition. Indeed, when the structure
is strongly suppressed, the character of the transition changes from
discontinuous to continuous. The results are presented in Fig. 2.6.
Notably, Fourier peaks are observed not only along the kx, Fig. 2.6c,
direction but also along the ky direction, Fig. 2.6d, albeit with a sig-
nificantly smaller amplitude. Moreover, these peaks are characterized
by a large momentum spacing. This can be linked to the fact that,
when the natural triangular structure is strongly deformed by the trap,
the length scales in the transverse direction are small (compared to
the longitudinal ones). We then expect broader and larger features in
the Fourier signal along ky with respect to kx. Both the effects of the
suppression of the 2D structure and change in the k-space length scale,
are r eported in Fig. 2.6e-f, where we explore the crossover by varying
the atom number N at fixed nuy.

In the Landau picture, this crossover implies that, as the atom
number increases, the 2D triangular structure is gradually suppressed
and deformed. This can be described as a gradual decrease of the cubic
term in the energy expansion, in particular the one associated with the
kinetic energy. Ultimately, this process diminishes the discontinuity
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Figure 2.6: Suppression and deformation of the triangular 2D structure of the density
background of supersolids in the dimensional crossover. Density profiles in real-space
(a) and Fourier-space (b) of a single-row supersolid. The solid lines indicates the cuts
in Fourier density along which we evaluate T (ky ) (red) and the its counterpart along
kx (black), plotted in (d) and (c) respectively. The ratio between the amplitudes
of Fourier signals Ay/Ax (e) and the Fourier spacing of T (ky ) (f) is plotted as a
function of N for supersolid at fixed contrast C̃ ≃ 0.04%. The vertical dotted lines
in (e-f) marks the boundary between continuous and discontinuous transitions.
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until the transition becomes smooth and continuous. The same effect
is noticed when νy is increased while maintaining a constant N . This
behavior can be explained in terms of a change in the supersolid com-
pressibility for changing atom numbers. The triangular structure is
deformed more easily by the trap when N is small, making it possible
for the discontinuous transition to persist even for tight transverse
confinements. To support this argument, we can have a look at the
transverse size of the system. In particular, we analyzed the transverse
width of the density distributions just before the critical point, where
C̃ ∼ 0, for the transitions at the center of the crossover (boundary in
Fig. 2.4). The results are shown in Fig. 2.7a. Remarkably, for a large
part of the investigated confinements, νy > 70Hz, the transverse size
σy at the center of the crossover is close to the characteristic width of a
non-interacting system, which is proportional to the natural harmonic
oscillator length ℓy. Smaller widths result in discontinuous transitions,
supporting the idea that this happens when enough space is available
for the system to develop a deformed 2D structure. Introducing ℓy, is
then required in order to define the available space for the system in
the harmonic confinement.

For νy < 70Hz, instead, σy become larger than ℓy/
√

2 with a very
rapid increase of the peak density, which is plotted in Fig. 2.7c. We
interpret these deviations as the onset of an LHY-dominated regime,
where quantum fluctuations increase the transverse width σy to limit a
further increase in the peak density. The growing importance of the
LHY energy term at high N and low νy affects also the shape of the
supersolid clusters, which is connected again to the compressibility
of the system. In Fig. 2.7b, the deformation parameter βss (defined
in Eq. 2.11) indeed becomes negative in the region of high densities,
meaning that the supersolid clusters start to be elongated along ŷ.
In this regime, continuous transitions (still possible for high enough
atom numbers in the upper left part of the map in Fig. 2.4) lead to a
1D structure of stripes, as reported in previous numerical simulations
[198, 71]. In the opposite region of strong transverse confinements, the
clusters are elongated along x̂, with βss > 0.
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Figure 2.7: Interesting features of supersolids at the boundary between the continuous
and discontinuous regimes. Each point corresponds to the transitions marked with
black dots in Fig. 2.4. (a) Transverse width σy , (b) deformation parameter βss

extracted from the central clusters of the supersolid, and (c) maximum of the linear
density ρ(x). Examples of x-y density distributions are shown as insets.
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2.2 Dimensional crossover in experiments
To validate the theoretical predictions based on the numerical simu-
lations and the analysis discussed in the previous section, we carried
out an experimental investigation of the crossover in the superfluid-
supersolid phase transition. We employ a quantum gas of magnetic
atoms of 162Dy with a dipolar length of add = 130 a0 (see Eq. 2.3),
confined within optical potentials in the same conditions of the nu-
merical simulations already presented. Shifting from continuous to
discontinuous transitions simply requires adjusting the aspect ratio of
the harmonic potential in the y − z plane while keeping the atom num-
ber constant. To do so, we specifically selected two distinct potentials

VC : (νx, νy, νz) = (15.0 (0.7), 101.0 (0.3), 93.9 (0.6))Hz ,
VD : (νx, νy, νz) = (21.8(1.0), 67.0 (0.8), 102.0 (0.7))Hz ,

(2.13)

featuring a continuous and a discontinuous phase transition respectively.
Numerical results for the quantum phase transition associated with
these harmonic traps have been already shown in Fig. 2.3a. In both
scenarios, a single-row of supersolid clusters forms, with thousands of
atoms per site, keeping the mean atom count at the transition approxi-
mately around N = 3 × 104.

The starting point of the experiments is a Bose-Einstein condensate
of about 6 × 104 162Dy atoms in a crossed optical trap at a magnetic
field B ≃ 5.5G. Further details about the experimental techniques
employed to produce such our dipolar condensate can be found in the
introduction to Chapter 4. At this magnetic field value, we sit far
enough from any Feshbach resonance, to have the scattering length,
which is our experimental control parameter, around its background
value of ≈ 140 a0 [179, 180]. The transition is crossed by lowering as

exploiting a series of Feshbach resonances around 5.3G [181, 23], by
adiabatically changing the magnetic field towards the critical value
of the scattering length. Our resolution in controlling the magnetic
field is 1mG, while the field stability is about 0.5mG, which gives us a
stability in as of about 0.3 a0. More details about the magnetic field
calibration are given in Sec. 4.1. Once the quantum phase transition
is crossed, we promptly turn off the optical potential and allow the
system to expand for 90ms, employing a magnetic-field gradient to
counteract gravity. Roughly 200 µs prior to the releasing of the atoms,
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we boost the contact interaction strength by setting as ≃ 140 a0. This
minimizes the influence of dipolar interaction during the first stage
of the expansions. Ultimately, we image the atomic density, which
we interpret as the momentum distribution ρ(kx, ky), using standard
absorption imaging techniques, exploiting the strong optical transition
at 421 nm. The same sequence can be used to probe also the dynamics
of the system once we bring it back into the superfluid phase, after
having crossed the phase transition.

2.2.1 Crossing the superfluid-supersolid transition
and back

Very differently from the theoretical model and the numerical results dis-
cussed in the previous section, in the experiment, the system is brought
out of equilibrium. Indeed, the experiment focuses on the dynamic evo-
lution of the system while varying as, starting from the superfluid side of
the transition. Since we are not talking anymore about the ground state
of the system, being it either in the superfluid or in the supersolid phase,
we need to introduce new considerations. Specifically, the dynamic na-
ture of the problem brings in concepts like adiabaticity, dissipation, and,
in cases of discontinuous phase transitions, hysteresis. Since during the
whole experimental sequence the system is maintained at temperatures
well below the condensation critical temperature (about 60 nK for our
system [116]), I will neglect finite temperature effects, like the presence
of a finite condensed fraction or thermal effects on the system dynamics.

To reduce the effect of non-adiabaticity introduced by the finite
time scales of magnetic field ramps employed in the experiments, we
choose the ramp speed to balance between adiabaticity and the impact
of unavoidable three-body losses [181]. Indeed, even if the slowest pos-
sible ramp would be ideally the best choice, spending a finite time near
a scattering length divergence, while crossing a Feshbach resonance,
has a dramatic effect on the final atom number. The chosen rate (see
Sec. 4.1.1) allows a nearly adiabatic transition across the potential VC .
Besides effects arising from the interactions, the density has also a huge
role in the losses. It’s important to note that the three-body loss rate,
scaling as ρ2, reaches its maximum at the density peaks within the
supersolid phase. These losses have a dual effect on the study of the
phase transition. On one hand, they decrease the density ρ over time,
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Figure 2.8: Observation of both continuous and discontinuous quantum phase tran-
sitions in experiments. (a) Sketch of the trajectories of as as a function of time
for the in-going (filled symbols) and the out-going (empty symbols) ramps. The
three sample distributions are the experimental single-shot images of the momentum
distribution of the system at the different experimental steps. (b-c) Experimental
order parameter C̃ as a function of the scattering length as , during the in-going
(dots) and the out-going (circles) ramps for potentials VC (b) and VD (c). The
vertical dashed lines represents the numerical predictions for the critical point of
the phase transitions. (d-e) Dynamics of C̃ for potential VD in the in-going ramp
at as = 87.3 a0 (d) and in the out-going ramp at as = 100.3 a0 (e). Error bars
on experimental points are the standard error of the mean, associated to 10-20
measurements. The solid lines are fits with a damped oscillation model.
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reducing the visibility of the contrast in time-of-flight images; on the
other hand, they introduce a damping of the excitations associated
with a local increase in density.

Evolution of the contrast

In Fig. 2.8 are reported the primary experimental observations when
crossing the superfluid-supersolid transition in potentials VC and VD.
Specifically, we examine the evolution of C̃ for an in-going ramp from
the superfluid to the supersolid (filled circles) and for a subsequent
out-going ramp from the supersolid to the superfluid (open circles).
The experimental trajectories in the as − t plane are shown in Fig.2.8a.
The characteristic time for forming the supersolid is determined to be
20ms, defining the holding time before imaging.

The distinctive density modulation associated with the supersolid
shows the characteristic side peaks in the momentum distribution,
as illustrated in the insets of Fig. 2.8a representing typical measured
distributions. Those can be related to the theoretical momentum dis-
tribution, ρ(kx, ky), albeit with minor modifications due to interactions
during the expansion. The primary observable is the contrast C̃, which
we can define experimentally by the relative height of the peak at the
characteristic momentum of the supersolid, as outlined in the theory.
To extract C̃ we carry out a systematic analysis of each experimental
image. Firstly, we perform a rotation of the momentum distribution
in the plane to align the interference peaks along the kx direction and
we integrate over ky to obtain the 1D momentum distribution ρ(kx).
Finally, we fit ρ(kx) utilizing a double-slit model

ρ(kx) = A0 exp

[
−

(kx − k0)2

2σ2

]
{1 + A1sin [π(kx − k0)/kr + ϕ]} (2.14)

where A0, k0 and σ are, respectively, the amplitude, center, and width
of the envelope, while A1, kr and ϕ are the amplitude, period (in
the momentum space) and phase of the modulation. In a typical
experimental image, the phase is approximately π/2, resulting in a
central peak sided by two symmetrical lateral peaks. In order to detangle
the contrast C̃ from phase fluctuations around π/2, we rephase the
fitted function by enforcing ϕ = π/2. We define

C̃ = maxL/maxC , (2.15)
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where maxC and maxL represent the values of the central and first
lateral maxima.

Phase transitions in potentials VC and VD exhibit markedly distinct
behaviors, as illustrated in Fig. 2.8b-c. In potential VC (panel b), the
in-going ramp demonstrates a smooth increase of C̃, marked by minor
shot-to-shot fluctuations. During the out-going ramp, C̃ gradually
returns to zero, meaning that the phase transition can be crossed se-
quentially in both directions without inducing significant excitations.
In contrast, potential VD (panel c) displays strong fluctuations of C̃
even before the phase transition followed by a sharp increase around
93 a0. Notably, during the out-going ramp, C̃ remains significantly
high, extending up to at least 10 a0 in the superfluid regime. This
hysteresis-like effect is given by the intrinsic lack of adiabaticity pecu-
liar to discontinuous transitions. Indeed, as I will discuss below, it is
possible to associate the finite contrast we observe in the superfluid
region after the out-going ramp, to the excitation of a collective mode
with the same spatial structure of the supersolid. While transition VC

can be traversed back and forth in an almost adiabatic manner given
our ramp speed, crossing transition VD is intrinsically non-adiabatic,
as expected for continuous and discontinuous phase transitions, respec-
tively.

Hysteresis

Besides the effects of the non-adiabaticity, having a discontinuous
transition raises questions about the possibility of observing an actual
hysteresis, as predicted for first-order phase transitions. Indeed, from
the numerical simulation of the system dynamics, a small hysteresis can
be detected by changing the direction in which we cross the transition
in potential VD, starting from the absolute ground state. The width of
the hysteresis cycle is about 0.5 a0 much smaller than the experimental
resolution on the scattering length, which is 2 a0. Moreover, trying to
emulate the experimental sequence, by entering in the supersolid phase
and ramping back to the superfluid, this effect tends to vanish. From
a formal point of view, it has to be specified that the very concept of
hysteresis cannot be applied to our experimental system which is not at
the equilibrium. However, this intriguing phenomenon could, in theory,
be studied if the dissipation were sufficiently high to allow the system
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to dissipate all the energy acquired during the crossing of the phase
transition.

Dynamics and excitations

The dynamic nature of the experiment gives also another perspective
to look at these two different behaviors. Indeed, to have a complete
picture, we must observe the dynamic of the system triggered by the
crossing of the transition in both directions. Substantial excitations of
various collective modes can be observed in the case of potential VD.
I will first focus on the oscillation of the order parameter C̃, mainly
affecting the dynamics triggered by the discontinuous transition. Such
oscillations are also present for potential VC , albeit with significantly
smaller amplitude, and are given by a non-perfect adiabaticity of the
magnetic field ramps. In a broader context, I will discuss the effect of
the excitations in the two scenarios in the next section 2.2.2.

Turning back to the contrast, Fig. 2.8d-e illustrate the dynamics of
C̃ in trap VD after the in- and out-going ramps. Data points in panel
(c) have to be considered as the first maximum in the time evolution
after the in-going ramp, occurring about 20ms after the end of the
ramp. This gives also a measure of the formation time of the supersolid
structure. We fit the time evolution of the contrast with damped
sinusoidal oscillation of the form

C̃(t) = A sin
(√

(2πν)2 − τ 2 t+ ϕ
)
e−t/τ +Bt+ off (2.16)

extracting the oscillation frequency ν and the damping time τ . After
the in-going ramp (panel d), the oscillation amplitude A is smaller than
its offset off, resulting in a finite contrast throughout the observed time
evolution. The oscillation frequency, ν = 21(3)Hz, agrees with the
so-called amplitude mode of the supersolid, as previously studied in
[182]. Upon crossing back the transition (panel e), we observe again a
sinusoidal oscillation. This time, however, its amplitude is comparable
to its mean value, and the contrast touches zero in the minima of the
oscillation. Intuitively, we describe the two kinds of collective motion
as perturbations around the equilibrium configuration, which is the
supersolid (where ⟨C̃⟩t ̸= 0) after the in-going ramp, and the superfluid
(where instead ⟨C̃⟩t = 0) after the out-going ramp. To complete the
picture, we also note that the damping time decreases by an order
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of magnitude going from the BEC to the supersolid. For VD we get
τ = 100 ± 41 ms at 94.3 a0 and τ = 15 ± 5 ms at 87.4 a0.

To theoretically support our observations, we can compare these
results with a dynamical numerical simulation of the time evolution
of the ground state experiencing a magnetic field ramp analog to the
experimental one. The numerical simulation of the dynamics, carried
out by Prof. Michele Modugno and coworkers, are based on the solution
of the Gross-Pitaevskii equation iℏ∂tψ = δE/δψ∗, by using the FFT
split-step method discussed in [78]. It’s very important to note that this
method does not take into account thermal or quantum fluctuations
(except the LHY correction), and neglects any energy dissipation mech-
anism, such as losses, which are unavoidable in the experiment. Given
the lack of dissipation, the simulations utilized scattering-length ramps
slower by one order of magnitude compared to the experiment. As a
matter of fact, the ramp speed employed in the experiment, 0.5 a0/ms,
in the simulations is not distinguishable from a sudden quench of the
scattering length. In practice, the slowdown is chosen by investigating
the effect of different ramp speeds in the case of continuous transitions,
employing trap VC , for example. With ȧs = 0.05 a0/ms, we obtain a
quasi-adiabatic crossing of the continuous transition, similar to what
we observe in the experiment, afflicted by the dissipation. As shown
in Fig. 2.9, the contrast grows after the in-going ramp on a timescale
similar to the experimental formation time, then oscillates around a
relatively high value. On the other hand, the out-going ramp induces an
oscillation in C̃ with a smaller amplitude and minima at zero. Both the
dynamics can be visualized in real space by looking at the 1D density
profiles reported in Fig. 2.9f-h, where clearly the equilibrium phases are
modulated (c) or unmodulated (g) respectively for the in- and out-going
dynamics. This fact agrees with the idea that the latter dynamics is in
fact a collective mode of the superfluid, akin to the so-called roton mode
[138], but in the high amplitude regime, where a rigorous Bogoliubov
analysis is not possible. Remarkably, the same collective mode can
be excited starting with a superfluid at a fixed scattering larger than
the critical one, by sudden removal of a static periodic potential with
the same structure of the supersolid [17], or simply by initialize the
density of the starting point of a numerical simulation, shaped like
a supersolid. The relation between this collective oscillation and the
roton mode, peculiar to dipolar systems, is also supported by the fact
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Figure 2.9: Numerical simulations of the dynamics of C̃ in the potential VC . (a)
Dynamics after the in-going ramp from 95 a0 to 93 a0 showing the growth of C̃
after the supersolid formation time and its oscillations around a non-zero value. (e)
Dynamics after the out-going ramp from 90 a0 to 95 a0, showing that the oscillations
touch zero. Panels (b-d) and (f-h) show the snapshots of the density distribution
along x at selected times indicated by vertical lines in (a) and (e).
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that the oscillation amplitude diminishes significantly if the dipolar
energy term is removed from Eq. 2.1.

Another type of excitation triggered by the crossing of the phase
transition, is the so-called breathing mode, namely the oscillation of
the width of the cloud. The longitudinal and transverse breathing
modes for the traps used in the experiment have been investigated
numerically in [3]. The results are reported in Fig. 2.10, showing the
behavior of longitudinal width of the supersolid wSS as a function
of time, for a sudden quench and the ramp speed replicating the
experimental observations. Note that the amplitude of wSS oscillations
is smaller in the ramp case, but remains somewhat finite for both
traps. Indeed, to form the clusters the system has to move density
along the longitudinal direction, drastically changing its width, which
starts to oscillate, once the supersolid is formed. Even if not studied
in detail in the present case, those oscillations feature two frequencies,
that can be related to the spontaneous symmetry breaking of both
global phase and translational symmetries, distinctive of the supersolid
state [182]. Remarkably, from the insets in Fig. 2.10, the transverse
dynamics are very different between the two traps. Indeed, the large
oscillation of the transverse width for VD is strongly suppressed for
the potential VC . This qualitative analysis supports the idea that, in
tighter traps featuring continuous transitions the transverse degree
of freedom is frozen, realizing in practice a quasi-1D system. The
effect of the dynamics of the transverse width can also be checked
by eye, looking at the snapshots of the time evolution in Fig. 2.10.
Indeed, while for VC the system develops only in the longitudinal
degree of freedom, for VD case the density background extends also
in the transverse direction, with secondary density maxima that form
a deformed triangular structure. This observation demonstrates that
the large oscillations in the transverse width for VD are given by a 2D
response of the superfluid background of the system. On the other
hand, for potential VC , the small oscillations at very high frequencies
observed for the transverse width may be explained by a compressional
mode of the clusters themselves, which involves much higher energies.
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Figure 2.10: Breathing mode excited by crossing the superfluid-supersolid transition
in trap VD (a) and VC (b). In the main plot, the longitudinal width of the system
wSS (normalized to the associated equilibrium width) is plotted as a function of time,
after a sudden quench of the scattering length (dotted blue line) or a ramp with
speed 0.05 a0/ms (solid blue line). In the insets of the main plot, the time evolution
of the transverse width of the system is plotted in light blue. The top panels show
the snapshots of typical 2D densities during the time evolution. The associated time
steps are marked with red dots in the main plot.
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2.2.2 Measurement of the expansion energy

To analyze the general effects of the excitations in the experiment,
besides the amplitude and breathing modes already discussed, we
extract the total energy of the system from the momentum distribution
measured experimentally. Indeed, during the expansion all the energy
contributions are converted into kinetic energy, therefore by comparing
the momentum distributions of a generic phase to the one of the
superfluid ground state, we obtain a relative measure of the energy
gained by the system during its dynamics across the transition. This
quantity obviously depends also on the number of atoms in the system,
which suffer from shot-to-shot fluctuations, and, as already mentioned
for the dissipation mechanisms, decrease sensibly in the supersolid
phase. In Fig. 2.11 both the relative total energy and the atom number
are presented for the same data of Fig. 2.8. Formally, the total energy
of the system after the expansion is given by

Eexp = ℏ2⟨k2
x + k2

y⟩/(2m) , (2.17)

and it is plotted in Fig. 2.11a as the deviation ∆E from the same
quantity extracted from the superfluid ground state (namely we adjust
the energy offset so that the point at largest as value is set to zero).
Clearly, VD shows stronger excitations in both directions with respect
to VC , nevertheless, a quantitative comparison between the two traps
for the in-going ramp is difficult, since the supersolid resulting from the
discontinuous transition has a larger contrast, hence a larger kinetic
energy contribution. On the other hand, a direct comparison can be
done on the superfluid side, where the temporal average of C̃ is zero
for both potentials. On this side, we see that the energy excess for
trap VC is about 0.5 nK, while it’s much larger for VD, around 4 nK.
These numbers can be checked with numerical simulations of the dy-
namics, which give 0.5 nK and 2.5 nK respectively. It’s important to
note that Eexp overestimates the total energy of the system since we
boost the contact interaction just after the release of the system from
the optical potentials. Therefore the deviations of the measured energy
excess in potential VD from the numerical results, are at least reasonable.
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Figure 2.11: Variation of the total energy of the system and atom number across
the phase transition. (a-b) Expansion energy extracted from experimental data for
potentials VC and VD . (c-d) Change in the mean atom number (normalized to
its maximum value in the superfluid side) due to losses across the transition for
potentials VC and VD . In all panels dots and circles represent the energy variation
after the in-going and out-going ramps respectively.
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Atom losses

The atom number relative to its maximum value for a pure superfluid
system, i.e. point at the largest aS, is shown in Fig. 2.11b. Atom
losses, which increase when we enter in the supersolid phase, are mainly
due to three-body collisions, that can be modeled as dN/dt = −K3ρ

2.
While K3 is approximately constant across the rather small region of
the explored magnetic field, losses are enhanced by the increase in the
peak density at the position of the clusters. For the in-going ramp,
we observe a reduction of the atom number up to 40% of the initial
value for both potential VD and VC . Coming back to the superfluid no
significant losses are observed, supporting the idea that having already
reduced the system density, losses are less effective. Since losses are
linked with the formation of the supersolid, looking at the atom number
is also interesting from the perspective of determining the character
of the transition. Indeed, even if N is not the order parameter of
that phase transition, we observe a very similar behavior to C̃. In
particular, for VD a clear jump to lower atom numbers (or a spike in the
losses) can be detected at the transition point, helping to establish the
experimental value of the critical scattering length for discontinuous
transitions.

Energy-Atom number correlations

To extract Eexp, taking into account the changing atom number across
the transition, we performed the following analysis. Starting from the
measured momentum distributions ρ(kx, ky), we compute δρ = ρ− ⟨ρ⟩
for each experimental shot. The average density ⟨ρ⟩ is calculated on
the entire dataset, over 800 (500) images for potential VD (VC). The
energy difference E − ⟨E⟩ is then given by

∆Eraw =
(
ℏ2

2m

)∫
δρ(kx, ky)k2dkxdky , (2.18)

which gives the energy excess per particle, since the distributions are
normalized to

∫
ρ(kx, ky)d2k = 1. To cancel out the effect of atom losses,

we correct ∆Eraw taking into account the correlations between energy
and atom number. The correlations are the effect of repulsive contact
interactions that act in the first instants of the otherwise free evolution.
Subtler effects, given by the dipole-dipole interactions are not taken into
account. Note that there are still no theoretical models to describe the



44 The superfluid-supersolid quantum phase transition

Figure 2.12: Analysis of the expansion energy presented in Fig. 2.11. As an example we
show the experimental data for the in-going ramp in the potential VD . Panels (a-b)
show excess energy (raw data) and atom number as a function of the scattering length.
The horizontal dashed line marks the average atom number N̄ in the superfluid side.
Different colours correspond to the subsets in panels (c-f) where the solid lines are
the linear regressions used to rescale raw data in panel (a) using Eq. (2.19).
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effect of these long-ranged interactions over the expansion of a dipolar
gas. Since contact interactions are linear in density, we expect linear
correlations in the energy-N plane. The correlation analysis is presented
in Fig. 2.12. We first divide our data sets into groups, gathering the
realizations at different scattering lengths with common average atom
numbers N̄ . The different groups are highlighted in shades of color
in panels Fig. 2.12a-b, showing respectively the raw energies defined
in Eq. 2.18 and the raw atom numbers as a function of the scattering
length. In panels (c-f) we use a linear regression ∆Eraw = γN + ∆E0
to capture the correlations of each group. Raw data are then corrected
using the following relation

∆E = ∆Eraw − γi (N − N̄) . (2.19)

With this rescaling, ∆E is increased if N < N̄ and decreased in the
opposite case, by an amount proportional to γi for each group. The
data obtained are then averaged to extract ∆E plotted in Fig. 2.11.

2.2.3 Fluctuations of the order parameter
Until this point, I have discussed many different experimental obser-
vations, pointing in the direction of demonstrating the two different
natures of the phase transition for the two studied trapping configura-
tions. In particular, I highlighted evidence showing that, also in our
finite system, discontinuous transitions may be observed, arguing that
are reminiscent of first-order phase transitions well studied theoretically
in the thermodynamic limit. In this section, I will show that indeed this
link can be traced, by demonstrating that is possible to infer the shape
of the Landau free energy, directly from the experimental fluctuations
of the order parameter C̃. Studying the histograms of C̃ occurrences
at different regions of scattering length, and looking at the accumu-
lation points, it is possible to detect the presence of one, or multiple
minima in the Landau free energy of the system. The shot-to-shot
fluctuations of the order parameter can have different origins. Since
we do not observe finite temperature effects in our experiments10, we
estimate thermal fluctuations small enough to be neglected. On the
other hand, we should expect a sensible contribution from quantum
fluctuations, which we know play a huge role in the physics of super-
solids. As I discussed in Sec. 2.1, they are essential for the stability of
10No thermal fraction can be detected either in the supersolid or in the superfluid phases
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Figure 2.13: Distributions of the order parameter C̃ in different scattering length
regions, revealing the different character of the phase transition. (a) Experimental
data for the potential VC . The histograms show the contrast relative to the regions
(I-IV) specified in the right-hand plot, showing C̃ after crossing the transition with
the in-going ramp. (b) Same analysis for potential VD . Each region contains 100-150
experimental points. The single- and double-peak feature in region II, demonstrate
the single and double-minima structure of the free energy in potential VC and VD

respectively.

the supersolid ground state and contribute to many interesting proper-
ties of their structure. However, technical noise such as the variable
atom number from shot to shot (visible in the raw data plotted in
Fig. 2.12), dominates in our experiment, making it impossible to detect
quantum fluctuations. Luckily, technical fluctuations can be used as
a tool to probe the energy landscape of our system, since they have
different distributions depending on the shape of the Landau free energy.

The distributions of C̃ for the two different potentials VC and VD

are reported in Fig. 2.13, together with the data of the in-going ramp
already shown in Fig. 2.8b-c. The histograms group together the C̃
data for the two different traps, binned in four regions of scattering
length. We first analyze what happens for potential VC . The first
region (I) lays well before the transition, where the system is fully
superfluid, hence C̃ = 0 in each experimental realization, giving a spike
in the corresponding histogram at this value. In the second region (II),
at smaller as, the density modulation starts to form and we observe
a small signal in the histograms at finite C̃. This small population
grows further when we cross the phase transition, entering the third
region (III). Here the peak at C̃ = 0 is strongly depleted and the signal
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spreads along a broad region of contrast. When the scattering length
as is further decreased (IV), the average contrast increases and the
histograms become noisier. This reflects the increasing noise in the
atom number for decreasing scattering lengths, where losses modify
the density distribution affecting also the position of the transition
point. The main difference in the case of VD, is that, just before the
transition (II) the peak at zero contrast in the histograms splits, and
we observe a sensible population at large C̃. This is indeed direct
proof of the presence of a secondary minimum at finite contrast in
the Landau energy, which can be populated also before crossing the
phase transitions thanks to quantum and technical fluctuations [20].
This double-peak feature is still present, even if less evidently, in the
third region (III) and then vanishes once we come closer to the droplet
crystal regime at small as.

The single or double-minima structure in the free energy can be also
investigated using our Landau model discussed in Sec. 2.1.2. Indeed, in
Fig. 2.3b,d, we already showed the results for the calculated energy as a
function of C̃ for both VC and VD. As we verified experimentally, they
show respectively a single and a double-minima, around the same value
of contrast of the fluctuations peaks. However, the model is not exact
because it only accounts for the variation of C̃, while in the experiment
the whole density distribution changes with the interactions, and during
the dynamics. At a qualitative level, we can compare the height of the
energy barrier for the discontinuous case with the of energy gained by
the system, measured experimentally through the expansion energy. In
Fig. 2.3d, the calculated barrier is indeed 5 nK, which is very close to
the energy excess reported in Fig. 2.11a and of same order of magnitude
of the system temperature.

2.2.4 Supersolid phase coherence

In this chapter, I focused on one of the main properties of supersolids,
which is their crystal structure and how it is related to the character
of the transition. The other essential ingredient for a supersolid is
phase coherence, which will be more at the center in the next chapter.
Leaving aside the details of the experimental measure of the super-
fluid phase, here I just want to show how the coherence properties
of the supersolid change for the different types of transitions. This
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Figure 2.14: Coherence of the supersolid after crossing the continuous (magenta)
or the discontinuous (blue) phase transitions, in trap VC or VD respectively. (a)
Distribution of the phase of the interference pattern just after the transition point.
(b) Same distribution in the region of scattering length corresponding to higher
density contrasts. The shaded areas represents ϕ̄± σ2ϕ, with average phase ϕ̄ and
variance σ2ϕ.

has an important impact on choosing the best experimental configura-
tion to measure delicate effects related to phase coherence such as the
superfluid fraction of the supersolid, as I will discuss in the next chapter.

The phase extracted from the momentum distribution after crossing
the phase transition is reported in Fig. 2.14. For both types of transition,
we group data into two different regions of scattering length. Similar to
what has been done for the fluctuations of the order parameter, we have
a first region just after the transition point (intervals [89 : 93] a0 for VC

and [90 : 92] a0 for VD); and a second region extending deeper in the
supersolid phase (intervals [86 : 89] a0 for VC and [88 : 90] a0 for VD).
At larger scattering lengths the supersolid is not formed and the phase
cannot be measured from the interference pattern recorded after the
expansion. For a continuous uniform distribution between 0 and π, we
expect the variance of the phase to be σ2

ϕ = π2

12 ≈ 0.8 11. For both types
of transition and in each region of scattering length, we observe a phase
variance that is lower than this value, meaning that our system is indeed
phase-locked, as we expect for a supersolid. However, the variance is

11For such distributions ranging from a to b, the variance is (b − a)2/12.
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very different between the two types of transitions. Although they both
show that the variance increases for decreasing as, as an effect of the
losses that disrupt the coherence of the system, the distribution for the
potential VD, featuring a variance σ2

ϕ = 0.17 in the first region, is rather
broad if compared to the very narrow phase variance of σ2

ϕ = 0.035
for VC . In the second region, the variances become σ2

ϕ = 0.48 for VC ,
in agreement with previous results reported in [181], and σ2

ϕ = 0.055
for VC . This rather large difference in phase coherence demonstrates
that by crossing a continuous transition, the supersolid phase is not
scrambled by fluctuations, and indeed the system shows a remarkably
high coherence, even if the transition is crossed in a finite time.





The dipolar supersolid as a
Josephson junction

Chapter 3
In the previous chapter, I introduced the supersolid phase using the
language of quantum phase transitions, focusing on understanding the
character of the transition and its connection to the supersolid struc-
ture. Although it plays a huge role in the system phenomenology, it’s
important to stress that the density modulation of the supersolid is not
the right quantity to describe the supersolid phase. The extraordinary
properties of supersolids are indeed more complex than the simple
existence of a modulated density in a superfluid, which can be easily
created in quantum gases experiments by employing external periodic
or quasi-periodic potentials produced from optical lattices and super-
lattices [60]. In supersolids, the modulation of the superfluid density
must be spontaneous, and the supersolid lattice has to share the same
possibility, as an actual crystal, to host excitations typical of solids,
such as phonons [182], and, as I already discussed in Chapter 2, to have
a finite rigidity that allows deformations. The concept of rigidity is
indeed very general [8] and does not apply only to the solid part of a
supersolid. Also the superfluid part of this counterintuitive quantum
phase, has a finite rigidity, which is captured by the phase stiffness
Λ, describing the superfluid response of the system [53]. Akin to how
rigidity measures resistance to deformation in classical mechanics, the
phase stiffness indicates how difficult it is to change the phase of the
order parameter locally. Defined as the energy cost for locally perturb-
ing the phase of the macroscopic wavefunction, a finite phase stiffness
describes all fundamental phenomena appearing in a superfluid [105].
Differently from fully superfluid systems, the crystal and phase rigidities
are coupled in supersolids, resulting in a reduction of the phase stiffness
due to the appearance of a crystal structure. In this chapter, I will focus
on a novel method, reported in a very recent work [16] by our group,
to quantitatively measure and provide an intuitive description of this
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reduction. This has been achieved through an experimental assessment
of a key quantity for supersolids, the so-called superfluid fraction fs,
based on the Josephson effect [80]. Indeed, we demonstrated the possi-
bility of inducing Josephson oscillations, namely coherent oscillations
of the number of atoms and the phase difference, between two adjacent
clusters of the dipolar supersolid, showing that the superfluid fraction
is linked to the Josephson frequencies.

Originally, the supersolid phase of matter was defined as a quantum
state described by a macroscopic wavefunction with a spatial modulation
originating from the simultaneous, spontaneous breaking of the global
phase and translational symmetries [61, 9, 38, 103]. In the spirit of
looking for a finite superfluid response in a solid system, the promising
candidate to host a supersolid phase was, at the time, solid helium. In
this context, A. J. Leggett proposed in the 1970s that a finite superfluid
response could be quantified by the superfluid fraction fs, which he
connected with the nonclassical rotational inertia (NCRI) of a standard
superfluid, such as liquid helium at low T , under rotation [103]. In
particular, the moment of inertia I for a cylindrical system is

I = (1 − fs)IC , (3.1)

which is zero for a fully superfluid system with unitary superfluid frac-
tion, and increases towards the classical value IC for fs < 1, reaching
IC for a classical system with fs = 0. Leggett’s argument is that, in the
presence of a periodic modulation of the wavefunction, the superfluid
fraction would be reduced, deviating from the unitary value, hence
reducing I. In this sense, a sub-unity superfluid fraction would measure
the reduction of the superfluid response given by the density modu-
lation. The search for a sub-unity superfluid fraction in solid helium
was at the center of many experimental efforts [86, 87], based on global
measurements of the NCRI using torsional oscillators to put solid 4He
under rotation while reducing the system temperature. However, the
preliminary results of a supersolid behavior failed to be confirmed due to
difficulties in detangling the NCRI from other temperature-dependent
properties, such as the 4He shear modulus [48, 34], and eventually the
presence of a supersolid was ruled out [85]. The idea of measuring the
superfluid response from rotations has been picked up in the context of
dipolar supersolids where many properties connected to the superso-
lidity have been already tested experimentally. The first observations
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[181, 22, 42] demonstrated the presence of a density modulation coexist-
ing in a phase coherent system; then the presence of Goldstone modes,
associated with the spontaneous double symmetry breaking were ex-
perimentally assessed [63, 182], demonstrating the finite rigidity of the
emerging crystal structure. A definitive proof of the superfluidity of the
supersolid, besides the observation of long coherence times, was indeed
the measurement of the rotational inertia of a dipolar supersolid [183].
The main result of the experiment is reported in Fig. 3.1. Inspired by
Leggett’s argument, a single-row dipolar supersolid (similar to the one
analyzed in the previous chapter) was rotated, exciting the so-called
scissors mode of the system [123, 124], by triggering a sudden rotation
of the atomic cloud around its vertical axis (inset in Fig. 3.1a), and
studying the resulting dynamics. From the oscillatory motion of the
supersolid, the NCRI can be extracted and, using Eq. 3.1 (modified
to take into account the trap geometry), converted in a qualitative
estimation of fs. In Fig. 3.1a, is reported the behavior of superfluid
fraction across the phase transition: below the critical point we have a
fully superfluid system, while in the supersolid, numerical simulations
(black dots) show a decrease of fs. The experimental point in blue,
lying in the supersolid region, is slightly below fs = 1, demonstrating a
large superfluid fraction of the dipolar supersolid. This measurement,
however, is largely dominated by the contribution of the single clusters
(black diamonds) rather by a Leggett-like mechanism. Looking at a
snapshot of the scissors dynamics taken from numerical simulations
(Fig. 3.1b), we can see that, even if the two main clusters rotates around
the center giving a finite contribution to the moment of inertia, the
velocity field inside each cluster is more or less constant, as the one
of the superfluid halo around the clusters. Although the moment of
inertia increases to approach IC , the superfluid fraction remains very
high. This overestimation of the global superfluid fraction makes it
practically impossible to detect a deviation from unitarity. The same
technique, applied to larger supersolids with 1D or 2D lattice struc-
ture, appears to be even worse since the scissors excitation triggers
a more complex response [132]. In particular, it has been shown in
[156], that in such systems the scissors oscillations have multiple fre-
quencies, all connected to the NCRI, which are difficult to measure
experimentally, especially if their period approaches the system lifetime.

The method discussed in this chapter comes from a different ap-
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Figure 3.1: Estimation of the superfluid fraction fs of a dipolar supersolid under
rotation via scissors mode dynamics. (a) Superfluid fraction as a function of the
interaction parameter ϵdd adapted from [183]. Black dots are the results extracted
from numerical simulations of the experimental system. The vertical dashed line
marks the critical point of the superfluid-supersolid quantum phase transition. The
red squares are experimental data on the superfluid side, while the blue circle is the
result for the supersolid. Open triangles represent the superfluid fraction calculated
from the simulated system ground-state, by Leggett’s theory. Black diamonds are
the contribution to fs given by the superfluid bulk of the clusters. The protocol used
to excite the scissors mode is sketched in the inset. (b) Typical snapshot of the
scissors dynamics, from numerical simulations. Higher density regions correspond
to brighter colors. The velocity field calculated as the gradient of the phase of the
wavefunction, is represented with colored arrows. Two kinds of motions are marked
with black arrows: the transport of mass along the external superfluid halo, and the
rotation of the central clusters.
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proach, shifting from the measurement of global quantities, such as
the NCRI, to local ones. We employ the Josephson effect, to probe
the local coupling between two adjacent clusters of a dipolar super-
solid, which is intimately connected with the superfluid fraction. The
Josephson effect, namely the presence of a supercurrent between two
superfluid (or superconductor) reservoirs separated by a weak link, has
been tested in a number of experiments involving quantum gases of
both bosonic [173, 30, 5, 108] and fermionic nature [187], where the
weak link is externally imposed using optical potentials. Differently,
in the supersolid, the barriers between the supersolid clusters are only
given by interactions, without any external potential. This suggests the
idea of describing the supersolid as an array of self-induced Josephson
junctions. Indeed, in our work [16] we demonstrate such behavior,
and we derive the superfluid fraction from the Josephson oscillations
in a single lattice cell of the supersolid. Remarkably, by using the
generality of the superfluid stiffness, we draw a connection between the
superfluid fraction and the coupling energy of the junction. The latter
measures the tunneling across the barrier, so it is not interesting in
standard bosonic Josephson junctions, where this is usually an external
parameter (typically the depth of the optical potential used to create
the weak link). In the case of the supersolid, this is instead a key
quantity, which quantifies the superfluidity of a supersolid. Depending
on the interactions only, we explored a broad range of values of fs,
demonstrating its tunability in dipolar supersolids, from 0.1 towards
unity.

Although dipolar supersolids are maybe the most striking example
of a supersolid state of matter, with strong superfluidity effects, by
following the original definition, a very broad class of materials should
be related to the phenomenon of supersolidity, even if in some cases a
clear demonstration of the supersolid character of such materials is still
to be proven. Indeed, many quantum phases with a spontaneous modu-
lation of the superfluid density have been recently observed. In strongly
confined 3He, pair density wave (PDW) order has been observed exper-
imentally [107, 170], arising from the scattering of Copper pairs on the
system boundaries. Other PDW phases have been observed in different
kinds of superconductive systems, such as iron-based superconductors
[113] and cuprates [66, 1], where the superfluid density is connected
to the critical temperature Tc [73]. Potential phases associated with
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a supersolid state might be present within the neutron star’s crust
[136], as well as in excitons found in semiconductor heterostructures
[45]. Instead, a direct connection with supersolidity has been traced
in 4He films on graphite substrates and in various ultracold atoms
systems. In 4He films, the second layer of helium shows a periodic
density modulation induced by the graphite crystal lattice [133, 40],
with a decreasing superfluid density as a function of the coverage. The
spontaneous breaking of translational symmetry has been observed in
ultracold quantum gases in optical cavities [106], where atoms sponta-
neously arrange in an ordered structure arising from the infinite range
of interactions mediated by the cavity photons. A supersolid phase is
also under investigation in spin-orbit coupled condensates [110, 151],
where the mixing of different spin states coupled by Raman beams,
gives rise to a striped modulated density in the condensate.

In this rich but rather complex scenario, emerges the need for a
unifying property able to quantify the deviations of supersolids from
ordinary systems. The sub-superfluid fraction proposed by Leggett
fits perfectly in this context. Not only it is the key property for
supersolids, but its measure may be also experimentally accessible
in a variety of systems thanks to the connection with the Josephson
dynamics. In particular, this possibility is extremely interesting for the
superconductor materials showing PDW order [1], where Leggett’s idea
of a reduced superfluid fraction has never been considered, in favor
of the standard superfluid stiffness Λ which is usually assessed from
penetration depth measurements [186]. There is indeed evidence that
Λ is lower in superconductors hosting PDW phases [133, 40, 24], than
in ordinary superconductors.

3.1 Phase stiffness of a dipolar supersolid

Considering a macroscopic wavefunction ψeiϕ, the general definition of
the superfluid fraction [103, 53] is the deviation of the kinetic energy
cost Ekin associated with a local perturbation of the phase, from the
case of homogeneous superfluid Ehom

kin

fs =
Ekin (δϕ)
Ehom

kin (δϕ)
, (3.2)
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where δϕ → 0 is a phase twist on a distance d. A reduced superfluid
fraction is then associated with a reduction of the energy cost to locally
twist the phase of the system. This concept is pictured in Fig. 3.2.
In his seminal paper [103], Leggett considers N bosonic helium atoms
confined in a cylindrical annulus with radius R and thickness d, which
is rotating at a constant angular velocity Ω. For such a system the
kinetic energy1 is IΩ2/2, where the moment of inertia depends on the
superfluid fraction through Eq. 3.1 and IC = N mR2. For ordinary
superfluids, the moment of inertia, thus the kinetic energy associated
with the motion, vanishes for Ω → 0, due to the quantization of angular
momentum [72]. In this context, a reduced superfluid fraction gives rise
to a finite I, meaning that the system starts to rotate in the annulus. To
calculate the free energy of the system, we must pass in the co-rotating
frame [77], where the effect of the rotation at velocity v = ΩR is to add
a phase factor to the wavefunction in the laboratory frame ψ. Indeed,
considering the transformation x′ → x−vt, p′ → p−mv, where primed
variables are in the co-rotating frame, the phase of the wavefunction in
the two references ϕ′ and ϕ must verify

ϕ′(x′, t′) = ϕ(x, t) + 1
ℏ

(
mv2

2 t−mvx

)
. (3.3)

This additional phase factor in the co-rotating frame depended linearly
on the position, meaning that the effect of the rotation in this reference
is a change in the phase along the annulus. Calculating the phase
difference accumulated over the total length of the annulus, we have

ϕ′ (2πR) − ϕ′ (0) = ϕ (2πR) − ϕ (0) − 1
ℏ
mv2πR. (3.4)

This last term can be understood as a phase twist δϕ over a distance
d = 2πR

δϕ = 2πm
ℏ

ΩR2 , (3.5)

which depends on the angular velocity of the rotation. If we now come
back to the general definition of fs in Eq. 3.2, we must calculate Ekin

as
Ekin = ℏ

2m

∫
dxn (x) |∇ϕ (x) |2 (3.6)

by assuming the form of the density n (x) along the annulus2. Instead,
1This accounts for the free energy of the system, connected to the rotation.
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Figure 3.2: Reduction of the superfluid stiffness for density modulated superfluids
perturbed by a local phase twist. Shaded gray regions represent the profiles of the
superfluid density for a homogeneous system (a) and for a supersolid (b-c). The red
curve shows the spatial dependence of the phase of the macroscopic wavefunction
in the case of a linear phase twist (a), a rotating supersolid (b), and the Josephson
excitation (c) employed in our experiment. The green shaded area represents
the kinetic energy density associated with the phase variation for the three cases
(integrand of Eq. 3.6). The integral of the green areas is proportional to the superfluid
stiffness. The superfluid fraction of of Eq. 3.2 is such integral, normalized to the one
of the homogeneous case (a). Note that the reduction of fs is the same for (b-c),
which have the same kinetic energy density.
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the form of ϕ (x) must be searched in order to minimize Ekin. For a
homogeneous superfluid (Fig. 3.2a), with n (x) = consts, we know that
ϕ (x) is simply a linear gradient, corresponding to a superfluid velocity
vs = ℏδϕ/(md). The denominator in Eq. 3.2 is then Ehom

kin = Nmv2
s/2.

In the case of periodic modulated density n (x+ λ) = n (x), Leggett
derived ϕ (x) employing a variational approach [103, 104] to minimize
the energy in Eq. 3.6, finding

ϕ (x) = δϕ
∫ x

0

dx′

n (x′)

(∫ d

0

dx′

n (x′)

)−1

. (3.7)

As shown in Fig. 3.2b, this phase profile has also a modulation, as the
density, with the phase gradient increasing in the low-density region
while being almost zero in the high-density regions. The accommodation
of most of the phase variation in weak links, results in an overall
reduction of the kinetic energy, which reads

Ekin (δϕ) = ℏ2N

2md2 δϕ
2f up

s (3.8)

with the superfluid fraction defined as the following integral over the
unit cell

f up
s =

(
1
λ

∫ λ

0

dx

n̄(x)

)−1

(3.9)

where n̄ denotes the normalized 1D superfluid density of the system.
It’s important to note that this expression of the superfluid fraction
corresponds to an upper bound since we have reduced the full three-
dimensional problem of the annulus to one dimension. Taking into
account the dependence of the density along the vertical and transverse
directions, if any, would result in a further reduced superfluid fraction
which eventually hit the lower bound f lo

s , obtained by integrating
over the other directions f up

s , where now n̄ = n̄ (x, y, z). Focusing on
the upper limit, for homogeneous superfluids we have n̄ = 1, hence
f up

s = 1. For the supersolid, where the density is modulated we have
instead f up

s < 1, and approaches zero if, at least in one point in the
unit cell, n̄ → 0. The latter case occurs in dipolar systems when
dipole-dipole interactions are strong enough to localize all the atoms
in the clusters, with no overlaps between adjacent sites, realizing an

2We consider densities depending only on the position along the annulus, and constant
over the width of the annulus, reducing the problem to a 1D model.
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incoherent array of droplets, known as droplet crystal [181]. I stress
that a reduced superfluid fraction in supersolids is not linked to thermal
effects. Indeed, from Leggett’s theory is clear that the reduction of fs

comes only from the shape of the superfluid density, even if the thermal
fraction of the system is zero (namely at T = 0). The mapping between
rotating supersolids and static systems with a phase twist becomes
clear if we now write Eq. 3.8 making δϕ explicit

Ekin = ℏ2N

2md2fs

(2πm
ℏ

ΩR2
)2

= 1
2ICΩ2fs , (3.10)

which is precisely the kinetic energy for the rotating system with
f lo

s ≤ fs ≤ f up
s . This mapping allows us to bring Leggett’s theory to a

wider field of application, since the superfluid fraction in Eq. 3.9 derived
for rotating supersolids, is not peculiar to rotations, but is generalized
to all kinds of phase twists.

In [16] we follow this line of thought, associating the superfluid
fraction to the Josephson effect. As sketched in Fig. 3.2c, we consider a
phase twist similar to the one in Eq. 3.7, but with changing sign every
lattice cell of the supersolid. In this context, the mapping with rotations
is lost, since the resulting motion of the system is rather an oscillation
of the peak density between adjacent clusters without a global flow
of density, i.e. the average global phase gradient is zero. However, if
we focus on a single supersolid cell, we can still define a phase twist3

∆ϕ over a distance d = λ, and all the previous results, derived in the
annulus, remain valid. In particular, since Ekin in Eq. 3.8 depends
on the square of the phase twist, we find exactly the same kinetic
energy density in both cases (Fig. 3.2b-c). The important difference
between the two approaches comes instead when we attempt to measure
fs experimentally. As discussed in the introduction of this chapter,
in the case of rotation we basically need to measure the moment of
inertia I to extract the superfluid fraction of the system. Modeling the
supersolid as an array of Josephson junctions, we have direct access to
Ekin measuring the local coupling between a single junction, instead
of a global measure as in the rotation case. Indeed, as I will discuss
in more detail in the next section, when a small ∆ϕ is imposed on the
single junction the kinetic energy is given by Ekin = NK∆ϕ2 [173],
3Here I use a different notation, since ∆ϕ is now externally imposed, and doesn’t have
anything to do with the phase factor δϕ in Eq. 3.5, which was given by the rotation.



Josephson model of a supersolid 61

where K is the coupling energy (or tunneling) of the junction, which
can be measured by studying the Josephson oscillations. Inserting this
into Eq. 3.2, we can derive an alternative expression for the superfluid
fraction

fs = K

ℏ2/(2md2)
, (3.11)

which has to be compared with Eq. 3.9. Indeed, Leggett derived an
expression analogous to the upper bound of the superfluid fraction in
Eq. 3.9 for the coupling energy of a single Josephson junction [196].
However, a connection between fs and K, has never been considered.
This could sound surprising since the two concepts seem to be intimately
linked in the supersolid phase, where a sub-unity superfluid fraction
directly means a finite Josephson coupling between adjacent clusters
and vice versa.

3.2 Josephson model of a supersolid
Let’s now discuss how a supersolid can be described as an array of
Josephson junctions. I will start with an overview of the well known
model which describes a single bosonic Josephson junction [173], which
is commonly used to describe the dynamics of a Bose-Einstein conden-
sate trapped in a double-well potential. In this context, it’s typical to
build a two-mode model, where the system wavefunction is decomposed
in two mutually orthogonal modes: the symmetric ground state ψS

and the first anti-symmetric excited state ψA of the double well poten-
tial. The coupling energy of the system is then defined as the energy
difference between these two modes

K = εA − εS

2 . (3.12)

To write the Josephson Hamiltonian, we use a change of basis to
combine ψA and ψS into two new modes, localized either on the left,
ψL, or the right well, ψR. We can then associate to the localized modes
the populations NL, NR, and the phases ϕL, and ϕR. The Josephson
variables are defined as the relative difference of phase and populations

Z = NL −NR

N
,

∆ϕ = ϕL − ϕR .
(3.13)
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The Josephson Hamiltonian with these variables is

HJ = −KN
√

1 − Z2 cos (∆ϕ) + 1
4UN

2Z2 , (3.14)

where U is the interaction energy for the mode ψL,R. Here we con-
sider a symmetric double well, with UL = UR = U . Noting that
the Josephson variables Z and ∆ϕ are canonically conjugate, namely
Ż = 2/ (ℏN) ∂ZH and ∆̇ϕ = −2/ (ℏN) ∂∆ϕH, we can write two coupled
differential equations for the evolution of Z and ∆ϕ

ℏŻ = −2K
√

1 − Z2 sin (∆ϕ)
Z,∆ϕ≪1

−−−−−−→ −2K sin (∆ϕ)

ℏ∆̇ϕ = 2K Z
√

1 − Z2
cos (∆ϕ) −NUZ

Z,∆ϕ≪1
−−−−−−→ − (2K +NU)Z ,

(3.15)
with a rather simple form in the limit of small oscillations Z , ∆ϕ ≪ 1.
Typically, ∆̇ϕ in this limit is rescaled by 2K, and rewritten simply as
∆̇ϕ = − (1 +Λ)Z, introducing the dimensionless interaction parameter
Λ = NU/2K.

To get the equation of motion of the Josephson dynamics, hence
the Josephson frequency, we compute Z̈ starting from the Eqs. 3.15,
obtaining

ℏ2Z̈ = −4K2
[
1 +Λ

√
1 + Z2 cos (∆ϕ)

]
Z

Z,∆ϕ≪1
−−−−−−→ −4K2 (1 +Λ)Z ,

(3.16)
which, in the strongly interacting regime Λ ≫ 1, gives Z̈ = −2KNUZ,
which is the equation of motion of a harmonic oscillator with frequency

ω
(2)
J =

√
2KNU , (3.17)

where the label (2) specifies that this expression only holds for the
two-mode model. This has been experimentally verified over a broad
range of interaction strengths Λ in [175], also probing the Josephson
dynamics in the limit of large amplitudes. Remarkably, for a large
enough initial imbalance Z0, the onset of macroscopic quantum self-
trapping (MQST) has been observed, as predicted by the model [173].
In this regime, the initial kinetic energy given to the system by the large
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imbalance, produces fast oscillations of Z with a non-zero average value.
The phase difference ∆ϕ, instead, increase linearly time, changing by
2π over the period of Z oscillations. The MQST dynamics triggers
at a critical value Z∗

0 = 2
√
Λ− 1/Λ. It’s important to note that this

phenomenon cannot be produced by large initial phase imprints, i.e.
there is no critical value of ∆ϕ0. Indeed, the two-mode model here
presented can be mapped in the oscillatory dynamics of a nonrigid
pendulum [173], where Z is the velocity and ∆ϕ is the angle of the
bob. It is then immediate to understand what happens if we increase
the initial velocity over the critical value: the bob to rotate, with
angular velocity oscillations around a non-zero value, while the position
increases linearly. The same effect cannot happen if, instead of starting
with an initial velocity, we trigger the dynamics by changing the initial
angle. Large phase (angle) excitations can only produce anharmonicity
in the oscillations manifested as deviations from a sinusoidal form. This
is captured by the general solution of Eq. 3.16 which can be integrated
numerically in the limit of large oscillations.

To take a conceptual step closer to the supersolid, I will try to
extend this model, intuitively, to the case of a Josephson junctions
array (JJA). For example, we can think of an ideal system of junctions
identical to the one already introduced, therefore, if we now consider
a single junction of the array, all the previous results may apply. The
only difference, with respect to the isolated junction, is that now the
inflow (or outflow) of atoms in a given reservoir has an additional
contribution due to another coupled well. Indeed, in the case of a JJA,
each reservoir has two neighbors. From this argument is not surprising
that the Eqs. 3.15 must be modified to take into account the additional
currents, by substituting K → 2K in Ż. Note that ∆̇ϕ is unchanged
since depends only on the instantaneous difference between the modes
populations, weighted by the interaction energy (i.e. does not depend
on the currents). The additional factor of two in Ż transfers then to
the frequency as a factor

√
2 with respect to the result in Eq. 3.17 of

the two-mode model.

The case of the supersolid is even more complex since the system in-
homogeneity makes the couplings and the interaction energies different
for each junction. However, as I will discuss in the next section, we find
that under the right conditions among the energy scales which are fixed
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Figure 3.3: Sketch of the inhomogeneous system. Starting from the center clusters
we define the interaction energies U, U ′, and U ′′, and the coupling energies between
clusters K , K ′, and K ′′. Note that this sketch is not to scale, and the real lateral
modes are indeed very small (see Fig. 3.5a for reference).

by the equilibrium density profile, we can derive an effective model for
the supersolid, similar to the one presented here. The idea of a simple
description of the Josephson dynamics in a complicated system, as the
supersolid, is also supported by the experimental observation discussed
below. The main result, from the point of view of the Josephson effect,
is that not only the supersolid can sustain Josephson oscillations, but
these constitute a normal mode of the system, characterized by a single
frequency. Previous theoretical models of the Josephson dynamics in
supersolids have instead focused only on a phenomenological model of
the relaxation dynamics towards the system ground state [76], associat-
ing the measured phase fluctuations with the Josephson couplings.

3.2.1 Six-mode Josephson Model

The Josephson model we developed for describing the supersolid is
mainly inspired by the typical experimental configuration sketched in
Fig. 3.5. We consider six inhomogeneous clusters labeled by the index
j = 1 . . . 6, characterized by a population Nj and a phase ϕj, with
different couplings and interaction energies. Given the symmetry of
the wavefunction with respect to the trap center, we choose K34 = K,
K23 = K45 = K ′, and K12 = K56 = K ′′, and similarly U3 = U4 = U ,
U2 = U5 = U ′, and U1 = U6 = U ′′. For small perturbations of the
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equilibrium, the equations for the currents in each mode are given by

Ṅ1 = −2K ′′
√
N2N1 sin (ϕ21) ,

Ṅ2 = 2K ′′
√
N2N1 sin (ϕ21) − 2K ′

√
N3N2 sin (ϕ32) ,

Ṅ3 = 2K ′
√
N3N2 sin (ϕ32) − 2K

√
N4N3 sin (ϕ43) ,

Ṅ4 = 2K
√
N4N3 sin (ϕ43) − 2K ′

√
N5N4 sin (ϕ54) ,

Ṅ5 = 2K ′
√
N5N4 sin (ϕ54) − 2K ′′

√
N6N5 sin (ϕ65) ,

Ṅ6 = 2K ′′
√
N6N5 sin (ϕ65)

(3.18)

while the time evolution of phase differences ϕj,j−1 = ϕj − ϕj−1 are
instead

˙ϕ21 = E1 + U ′′N1 − U ′N2 ,
˙ϕ23 = E0 + U ′N2 − UN3 ,
˙ϕ34 = U (N3 −N4) ,
˙ϕ45 = −E0 + UN4 − U ′N5 ,
˙ϕ56 = −E1 + U ′N5 − U ′′N6 ,

(3.19)

where the energy offsets E0 and E1 are calculated as the energy of the
harmonic traps at the positions x2,5 = ±3λ/2, and x1,6 = ±5λ/2 for
the inner and outer lateral peaks respectively. Note that to derive the
Eqs. 3.19 we have considered the limit (N4 +N3)U/ (2K) ≫ 1 (analo-
gous to the strongly interacting limit Uplambda ≫ 1 in the two-mode
model)4, thus neglecting the tunneling terms in the evolution of the
phases. Moreover, considering small oscillations, we can substitute the
time-dependent populations Nj with their associated equilibrium values
N̄j in Eqs. 3.18 and Eqs. 3.19.

Let’s now focus on a single unit cell of the supersolid. In particular,
we want to address the dynamics of the population imbalance ∆N =
N3 −N4 and phase difference ϕ34 = ϕ3 − ϕ4, between the two central
clusters. For an infinite and homogeneous supersolid, the results of
the previous section apply, and we recover Josephson oscillations at
frequency

√
4KN34U , where N34 is now the total number of atoms in

the central clusters. In inhomogeneous supersolids, for arbitrary values
4We checked from numerical simulations that in the whole range investigated our
system has (N4 + N3)U/ (2K ) > 25
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Figure 3.4: Results of the 6-mode model compared to numerical simulations. Time
evolution of Z (a) and ∆ϕ (b). Thick lines are numerical eGPE simulations, while
dot-dashed lines are the calculations from the 6-mode model. (d) Relative currents
between the central and lateral clusters appearing in Eq. 3.21. The solid line is
(N3 − N4) /2, while the dashed line is (N6 + N5 − N2 − N1). Both quantities are
extracted from numerical eGPE simulations, showing that the condition on the
currents is satisfied for our system, with α = 2.

of the coupling and the interaction energies, the dynamics resulting
from the Eqs. 3.18 and Eqs. 3.19 can be integrated numerically showing
multiple frequencies given by all the contributions of the different
clusters. In the real case, however, the parameters of the model are
not arbitrary since the supersolid adjusts its density in the harmonic
potential realizing a particular configuration. The dynamics observed
in numerical simulations and predicted by the six-mode Josephson
model, presented in Fig. 3.4, shows indeed clear oscillations at a single
frequency. Analytically, this can be derived from the Eqs. 3.18 and
Eqs. 3.19, assuming

U ′′

U ′ = 1 + K ′

K ′′

√√√√N̄3

N̄1
,

U ′

U
=
1 + K

K ′

√√√√N̄3

N̄2

1 + K ′′

K ′

√√√√N̄1

N̄3

−1

.

(3.20)

This condition on the energy scales translates into the currents as

Ṅ3 − Ṅ4 = α
(
Ṅ6 − Ṅ1 + Ṅ5 − Ṅ2

)
, (3.21)



Observation of Josephson oscillations 67

where α = (U/U ′ − U/U ′′)−1 takes into account the system inhomo-
geneity. The conditions in Eqs. 3.20, can be verified by extracting all
the involved parameters from numerical simulations. A more direct
approach is instead to look at the two sides of Eq. 3.21, which is verified
in our system for α = 2.

The resulting Josephson oscillations are described by the two cou-
pled equations

˙∆N = −4KN34 sin(∆ϕ) ,
˙ϕ34 = U∆N ,

(3.22)

where we keep only linear terms in ∆N/N . Remarkably, these equations
are formally identical to the low amplitude limit of Eq. 3.15, with
the only modification of the additional factor of two in the current,
due to the presence of neighboring clusters. In order to compare
these results with the experimental observation, we need to define our
observables. Indeed, in the experiment, we cannot resolve directly
the population of the individual clusters, since the optical resolution
of our imaging system is of the same order as the supersolid lattice
spacing λ. As I will discuss more in detail in the next sections, what
we measure is instead the population difference between the left and
right halves of the system. The phase difference ϕ34 is instead measured
from the interference pattern obtained after expanding the supersolid
cloud (see Sec. 3.6.3). Thus, we define the experimental variables as
Z = (N1 +N2 +N3 −N4 −N5 −N6) /N and ∆ϕ = ϕ34. Noting that,
from Eq. 3.21 with α = 2, we have ∆N = 2NZ, we can rewrite the
Josephson equations 3.22 with the experimental variables

Ż = −2KN34

N
sin(∆ϕ) .

∆̇ϕ = 2NUZ ,
(3.23)

Studying the equations of motion of the system, we recover

ωJ =
√

4KN34U , (3.24)
which is identical to the prediction for the Josephson junctions array.

3.3 Observation of Josephson oscillations
To experimentally study Josephson oscillations in the dipolar supersolid,
we need to carefully prepare the supersolid as close as possible to its
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ground state, selectively excite the Josephson mode, and then, be able to
detect both the phase difference and the population imbalance between
neighboring lattice sites, following their time evolution. The system is
prepared in a harmonic trap very similar to VC (Eq. 2.13), used pre-
viously in the superfluid-supersolid transition experiment. With trap
frequencies (νx, νy, νz) = 2π (18, 97, 102)Hz, the confinement along the
transverse direction is sufficiently strong to suppress the 2D response
of the system (as discussed Sec. 2.1.3) and allow an adiabatic crossing
of a continuous quantum phase transition towards the supersolid phase
[15, 10, 3]. This is done by reducing the scattering length as of the
system, increasing the relative strength ϵdd = add/as of dipole-dipole
interactions triggering the supersolid formation. Further details on the
preparation of the supersolid are reported in Chapter 4. The transition
point for our experimental system, which typically has N = 3 × 104

atoms, is ϵdd = 1.38 and the supersolid range extends up to ϵdd = 1.45
above which another quantum phase transition leads to the so-called
droplet crystal [181], which is characterized by a vanishing Josephson
coupling between the clusters. Changing the interactions doesn’t affect
only such coupling, but also changes the interaction energy U in each
cluster. As shown in Fig. 3.5a, our trapped supersolid is inhomogeneous
and features two central clusters with coupling K and interaction energy
U , plus four other smaller clusters spaced by λ ≃ 4 µm.

To trigger the Josephson oscillations we use a phase imprinting
technique [26, 117] to tailor the supersolid phase profile in a shape
similar to the one presented in Fig. 3.2. To imprint a phase differ-
ence between adjacent clusters, that changes sign every lattice cell, we
employ a long-spaced optical lattice with period ≈ 2λ, as sketched in
Fig. 3.5a. The lattice is aligned such that the position of one of the
central clusters matches a maximum of the light intensity, while the
other lies in a minimum. The lattice depth is about Vlat ∼ kB100 nK.
By shining the lattice light for a brief pulse of about τ = 100 µs, we
imprint a phase difference ϕ0 ∝ Ulatτ of about π/2 between two clusters.
At this point we let the Josephson dynamics run freely, by keeping the
harmonic confinement and removing the optical lattice.
At a given time t of the system dynamics, we evaluate the population

imbalance Z between the left and right halves of the supersolid and
the phase difference ∆ϕ between adjacent clusters, by either in-situ
phase-contrast imaging (see Sec. 4.3) or standard absorption imaging
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Figure 3.5: Exciting and detecting the Josephson dynamics. (a) Sketch of the experi-
mental system, showing the supersolid density profile obtained by eGPE numerical
simulation at the equilibrium (black line) and the optical lattice used for the phase
imprinting is (dashed green line). (b) Single shots of the experimental realizations
and corresponding signals obtained by integrating along the horizontal direction. Top
row: interference pattern after a free expansion. Red curves are fit functions used to
extract the phase difference ∆ϕ. Bottom row: in-situ images. Colored areas indicate
the populations of the left and right halves of the supersolid used to extract the
population imbalance Z .
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performed after a free expansion of the cloud. Single shots of the
dynamics (Fig. 3.5b) show the interference pattern expected from the
expansion of the supersolid and the typical double peaks signal associ-
ated with its density, for different evolution times t. Since the spatial
resolution of the in-situ imaging used for the experiment, is slightly
lower than the supersolid spacing λ, we employ an optical manipulation
of the density, in order to increase the separation of the central clusters.
A few ms before the imaging we use the same optical lattice used for
the phase imprinting, but with a much shallower depth, to smoothly
separate the central clusters: the one sitting on the minima remains
practically untouched, while the other is pushed away by the lattice
potential and the dipolar repulsion. The resulting density (lower panel
in Fig. 3.5b) conserves the information about the imbalance Z. More
details about the so-called optical separation and the detection of the
phase difference are given in Sec. 3.6. Moreover, the design of a new
imaging scheme with increased resolution, able to address the supersolid
clusters directly, is discussed in Chapter 4.

The results for the Josephson oscillations are reported in Fig. 3.6.
We detect oscillations with single-frequency both in Z and ∆ϕ, with a
mutual phase shift of π/2 as expected for standard bosonic [173, 30, 5,
108] or fermionic [187] Josephson junctions. This characteristic phase
relation between Z and ∆ϕ, is indeed a smoking gun of the Josephson
effect [80], since demonstrates that the phase and population imbalance
follow the Eqs. 3.23. As shown in Fig. 3.6, the observation time is
limited in the experiment by the lifetime5 of the system, which is about
100ms. Since the observed frequency decreases for increasing ϵdd (i.e.
for larger contrasts of the supersolid density modulation), this poses a
limit to the lower frequencies detectable in the experiment, which are
of the order of 10Hz.

We extract the Josephson frequencies by fitting the experimental
data with sinusoidal functions with frequency, amplitude, phase shift,
and vertical offset as free parameters. Our experimental data agree
with numerical simulations of the Josephson dynamics carried out by

5This is defined by the coherence time of the supersolid which is limited by the losses.
Indeed, even if the number of atoms is still enough to detect a density modulation in-
situ, the unavoidable losses at the density peaks scramble the phase of the supersolid,
washing away the interference fringes in time-of-flight.
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Figure 3.6: Josephson oscillations of Z (a) and ∆ϕ (b) as a function of time at
ϵdd = 1.428. Dots are experimental points. Solid lines are numerical simulations for
the same parameters. The dotted lines are sinusoidal fits to the experimental data.

integrating numerically the time-dependent extended Gross-Pitaevskii
equation (eGPE) with the same parameters of the experiment. To
further validate our observations, we also applied the same excitation
scheme discussed here to standard BEC, tuning ϵdd in the superfluid
side of the quantum phase transition, without detecting any oscillation.
This demonstrates that the concept of supersolidity is very much asso-
ciated with the possibility of sustaining Josephson oscillations, without
employing external potential to shape the system density creating weak
links.

We repeat the measurement by varying the interaction parameter
ϵdd, corresponding to different depths of the supersolid density modu-
lation, hence lower Josephson couplings. The associated decrease of
the measured Josephson frequency ωJ as a function of ϵdd is presented
in Fig. 3.7. The experimental data (red and blue markers) are com-
pared with the numerical simulations (black dots), showing an overall
agreement with minor deviations for large ϵdd. The decrease on ωJ for
increasing ϵdd, supports the idea that by weakening the link between
the superfluid clusters of the supersolid, the current decreases and the
systems get more and more localized. This led to a drastic reduction
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Figure 3.7: Josephson frequencies as a function of the interaction parameter ϵdd .
Red dots are the experimental frequencies for ∆ϕ. Filled and open blue dots are the
frequencies for Z measured by in situ imaging with and without optical separation,
respectively. Black points are the results of numerical simulations. The dashed line
is a guide for the eye. The insets show the modulated ground state density profiles
obtained from numerical simulations for different values of ϵdd . The vertical dotted
line marks the critical point of the superfluid-supersolid quantum phase transition.

of the coupling energy K, witnessed by the reduction of ωJ , while
modifying only slightly the interaction energy U , which changes of
15% roughly within the whole investigated region (based on numerical
grounds).

In Fig. 3.7 are reported different types of experimental data, associ-
ated with different experiments. Indeed, the measurement of Z and ∆ϕ
are not simultaneous, and we need to run the experiment twice6 with
identical preparation and excitation, to measure both observables. In
principle, an experimental sequence allowing the measurement of both
in-situ densities and time-of-flight momentum distributions may be
realized by exploiting non-destructive measurements of the supersolid
density. The phase-contrast imaging employed already in our exper-
iment is indeed non-destructive since works with non-resonant light.
However, to optimize the signal-to-noise ratio in our measurement, we

6In each run we scan the evolution time t, with typically 20 realizations per temporal
point in order to have enough statistics.
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use light not too far from resonance, resulting in a sensible perturbation
of the wavefunction caused by the imaging light. Further details on the
phase-contrast imaging technique are discussed in Chapter 4. The red
dots in Fig. 3.7 are the results for ωJ extracted by the phase difference
oscillations. The blued dots are instead the Josephson frequencies
extracted from the population imbalance Z employing the optical sepa-
ration introduced above and discussed in Sec. 3.6. Only for high enough
contrasts in the density modulation, namely at ϵdd = 1.444, we are
able to distinguish clearly the supersolid clusters and extract Z directly
without any optical manipulation of the density distribution. For this
interaction parameter, we performed the oscillation measurement with
and without the optical separation. The latter, marked with the open
blue circle in Fig. 3.7, agrees with both the data point obtained with
the separation and with the associated data point extracted from the
∆ϕ oscillations, demonstrating the validity of our method. When the
density contrast is too small, for ϵdd < 1.41, the signal-to-noise ratio
in Z is too high (even with the optical separation) to detect clear
oscillations. In this regime, we rely only on the Josephson frequencies
based on ∆ϕ.

Here I want to stress that, even if the Josephson model of the super-
solid holds only up to a certain K, where the multi-mode description
is valid, and breaks when the supersolid modulation is too shallow,
the results of numerical simulations show that the model holds for the
whole range of ϵdd investigated. Indeed, the numerical simulations, not
affected by technical problems such as the finite resolution, show for
both Z and ∆ϕ clear oscillations with the characteristic Josephson
phase shift, up to ϵdd = 1.39. Another interesting point of discussion
concerns the small deviations of experimental data from the numerical
simulations at large ϵdd. This effect may be related to the different exci-
tation regimes employed in the experiment. Indeed, while in numerical
simulations the Josephson dynamics is studied in the small amplitude
regime (where a perturbative approach is valid), the initial imprinted
phase is large in the experiment, around 1 rad. This high amplitudes
regime is discussed in Sec. 3.6.1. Even if the deviations from the small
amplitude regime can be sensible (at large ϵdd we have deviations of
about 25%), the experimental data has been validated by simulating
the high amplitude oscillations using larger initial phase imprints. In
Fig. 3.6, solid lines, showing the results of such simulations, are in
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good agreement with our observations. Nevertheless, the unperturbed
Josephson frequencies (predicted also by the model in Sec. 3.2) plotted
in Fig. 3.7 are the ones extracted in the small amplitude regime.

3.4 Measurement of the superfluid
fraction

To translate the measured Josephson frequencies in the superfluid
fraction we use the definition in Eq. 3.11, where K is evaluated as

K =
ω2

J

4N34U
, (3.25)

obtained simply by reversing the Eq. 3.24 derived for ωJ with the
6-mode model. This relation remains valid in the regime of high ampli-
tudes. To calculate K, we use the quantity N34U provided by numerical
simulations. Here N34 is simply the number of atoms in the central
clusters at the equilibrium, that can be extracted from the simulated
ground states, and U is their interaction energy. To evaluate U , we
study the linear dependence between ∆̇ϕ and Z (see Eq. 3.23) on nu-
merical data of the Josephson dynamics. The other parameter entering
the superfluid fraction is the spacing of the supersolid structure λ (d in
Eq. 3.11), which we obtain from in-situ images to be λ = 3.7(2) µm at
large ϵdd, where we are able to resolve the two central clusters. Even if
the density peaks associated with the two clusters are overlapped due
to our finite resolution their center of mass is well defined, meaning
that the uncertainty over the average λ could be smaller than the reso-
lution if we consider enough statistics. However, we don’t have direct
access to the details of the supersolid density. From the numerical
simulations, we have evidence that the spacing λ weakly depends on
ϵdd, but in our configuration, the deviations from the average value are
smaller than the experimental uncertainty considered in our calculation.

Our results are reported in Fig. 3.8a. The black points represent
the calculated superfluid fractions, based on the Josephson frequen-
cies extracted by the phase difference oscillations, using the procedure
explained above. The systematic underestimation of the Josephson
frequencies in the high amplitude regime (see Fig. 3.12), is taken into
account by applying a systematic uncertainty to fs which increases
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Figure 3.8: Measurement of the superfluid fraction from the Josephson dynamics. (a)
Behavior of the superfluid fraction as a function of the interaction parameter ϵdd .
The experimental points (black and pink) are compared to the numerical results
(green dots) and the prediction of Leggett’s bounds (gray lines). Black points are the
experimental fs extracted from the Josephson frequencies ωJ . The errorbars take
into account the experimental uncertainties propagated in Eq. 3.11 and Eq. 3.25,
plus a systematic underestimation of ωJ of 15% due to the high amplitude regime of
the oscillations (see Sec. 3.6.1). Pink points are the experimental fs extracted from
the current-phase relations (see Eq. 3.23), assuming the fraction of atoms in the
central clusters N34/N and NU from the numerical simulations. The pink circle is
the same quantity, for the data point where the optical separation was not employed
in the detection of the imbalance Z . The green points are the results of the same
analysis for numerical data. The errorbars are calculated from the uncertainties in
the linear regressions used to extract the numerical values of NU and K . An example
of the analysis of the current-phase relation is reported in (b) for numerical (left)
and experimental data (right). The shaded regions in each plot are the confidence
bands for one standard deviation. The Legget’s bounds in (a) are calculated from
the ground state density distributions obtained by static simulations.
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the upper error bars of 15%. The superfluid fraction shows a smooth
reduction for increasing ϵdd, changing of a factor of ten between unity,
near the transition point at ϵdd = 1.38, towards the lower point exper-
imentally accessible, with fs ∼ 0.1 at ϵdd = 1.444. Our data are in
good agreement with the numerical ones, marked as green dots. The
latter are derived by using Eq. 3.11, but evaluating K directly from
the so-called phase-current relation. Similarly to the analysis carried
out to extra U , the coupling energy K can be derived from the linear
dependence of the current Ż on the phase sin (∆ϕ). An example of such
analysis is reported in Fig. 3.8b, where the phase-current relation is
plotted for numerical data simulated in the high amplitude regime7. For
the experimental configurations where we have the paired measurements
of Z and ∆ϕ, we carried out the same analysis, presented in Fig. 3.8c
for the same parameters of the numerical simulation. We calculated
numerically Ż and sin (∆ϕ) starting from the respective time evolution
of imbalance and phase difference, and we then extracted the slopes
−4K(N34/N). To determine K, we inserted the fraction of atoms in
the central clusters N34/N evaluated from numerical simulations at the
equilibrium. Besides the larger error bars, of the single data points
in Fig. 3.8c, the associated fs calculated with this technique are in
good agreement with both the experimental data extracted from the
other analysis and numerical data. It’s important to note, that this
alternative analysis doesn’t rely on numerical input besides the fraction
N34/N , which is however model independent. In particular, we don’t
have to rely on the interaction energy U , which is based on the validity
of the 6-mode model. Nevertheless, we checked that in the experiment
the interaction energy is of the same order as the predicted U , by look-
ing at the linear regression between Z and ∆̇ϕ. This analysis is much
noisier than the one used to extract K, but we derive an experimental
value (NU)epx ∼ 4 nK

3.4.1 Comparison with Leggett’s model
Both experimental and numerical results are compared to the superfluid
fraction predicted by Leggett’s model. This is evaluated by calculating
numerically the integral in Eq. 3.9 for the ground state density profiles

7Typically the linear dependence is between Ż and ∆ϕ. In the regime of high amplitudes,
we substitute ∆ϕ→ sin (∆ϕ).
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of our system. We calculate bother the upper and lower bounds of the
theory [104], plotted in Fig. 3.8a as gray solid lines at the boundary
of the shaded region. Note that the two bounds would coincide if the
ground state density dependence on the transverse variables y and z
is such that n(x, y, z) = n(x)n(y, z). This separability condition is not
perfectly met in our system, but the two bounds are close enough to be
able to compare our results with Leggett’s theory. This is due mainly
to the fact that the supersolid structure, for this trapping configuration,
develops in 1D (see Sec. 2.1). The nice agreement between predicted
and observed values demonstrates that Leggett’s model applies to our
system and that our experimental method is a valid alternative to
global measurements for assessing the superfluid fraction of a dipolar
supersolid. Indeed, our local measure quantifies the superfluid fraction
of the central cell of our confined system, but I argue this quantity
would be the same for an ideal infinite system with the same density
modulation as ours. In other words, our method allows for local probing
of the superfluid fraction without the effects produced by the system
inhomogeneity, which instead afflicts global measurements, such as the
rotations.

Another approach for the measure of fs which I did not discuss here,
but has been recently applied to condensates loaded in optical lattices
[184, 36], is based on the anisotropy in sound velocities measured along
different directions, which is introduced by the density modulation.
This effect can be linked to a reduced superfluid fraction due to the
broken translational symmetry. In the case of a standard superfluid
loaded in an external potential, such as an optical lattice, the reduction
of superfluidity is not surprising, since the presence of one, or many
weak links reduces the transport within the system affecting the sound
velocity [191]. The remarkable result of these recent experiments is
that the measured superfluid fraction agrees once again with Leggett’s
predictions. Indeed, in [36] the density modulation in the condensate is
created by employing a large-spaced optical lattice, that allows for the
experimental measure of Leggett’s fs directly from the atomic density.
This result agrees with the superfluid fraction data based on the sound
velocities measurements and shows a slow reduction of fs for increasing
depth of the optical lattice. This is due mainly to its large spacing,
allowing for a large number of atoms per lattice site, a characteristic in
common with our dipolar supersolid.
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Previous measurements of the superfluid fraction have been carried
out, once again in superfluids in optical lattices, by studying the ef-
fective mass [30, 89] of the bosons, which is modified by the periodic
external potential [88]. However, both these approaches share the same
global nature as rotations. Moreover, in these studies, the presence
of an external potential deeply modifies the properties of the system,
virtually canceling many new phenomena which may arise from the
spontaneously reduced superfluid fraction peculiar to supersolids. Be-
sides partially quantized supercurrents [185] and vortices [56, 7], for
which there is still no experimental observation, an interesting property
of our system is the presence of a low-energy Goldstone mode. In the
next section, I will discuss the impact of such a mode on the Josephson
dynamics observed in our trapped system.

3.5 Beyond the Josephson model
Probably the most important difference between a supersolid and a
standard bosonic Josephson junctions array is the fact that, in su-
persolids, the spontaneous breaking of the continuous translational
symmetry leads to a low-energy Goldstone mode associated with the
position of the lattice sites. Indeed, when the supersolid forms the
system has a certain degree of arbitrariness in choosing where to put
the weak links. Moreover, since there isn’t any external potential to
fix the position of the weak links, they can move during the dynamics.
In an infinite system, where any spatial shift of the supersolid lattice
structure (maintaining the density periodicity) doesn’t change the free
energy, the energy cost of such motion is zero. This means that an
arbitrary small perturbation of the lattice position would trigger a
shape-preserving global motion of the supersolid. In a trapped system,
the scenario is different because the energy cost of shifting the supersolid
structure is finite due to the harmonic confinement. Here I consider
only harmonic traps since the phenomenon would be totally different
for a box-like potential, where the energy cost for any perturbation is
nominally infinite and the supersolid structure tends to form only at
the edges [157].

The trapped Goldstone mode has been observed and characterized
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Figure 3.9: Experimental evidence of the Goldstone mode. (a) Fluctuations of the
cluster positions (upper panel) and center of mass (lower panel) of the supersolid for
about 100 experimental shots. (b) Distributions of the positions of the right cluster
(green) and of the center of mass (pink).

for dipolar supersolids in [63]. It consists of a slow oscillation of the
position of density maxima (and minima) with a coupled oscillation
of the population imbalance, in order to keep the position of the cen-
ter of mass of the supersolid unchanged. To understand why these
oscillations are coupled, we must consider the finite superfluidity of
the supersolid. Without the possibility of having currents between the
supersolid clusters, the oscillatory motion of the supersolid in the trap
would be described by the dipole mode, i.e. an oscillation of the center
of mass position with at the trap frequency ωx. However, the finite
couplings between the supersolid clusters, allow to minimize the energy
cost of the oscillation, by moving mass in the direction opposite to the
motion of the lattice. The result is an oscillation of the the imbalance,
which counters the one of the center of mass. The energy associated
with this motion is lower than the trap energy ℏωG < ℏωx, and tends to
zero for vanishing harmonic potentials, recovering the same condition
of the infinite case.

Given its low frequency, the Goldstone mode cannot be followed
experimentally because its time scale exceeds the system’s lifetime.
However, it can be detected from correlations between the measured
imbalance and the position of the clusters in many experimental shots
[63]. A similar analysis is shown in Fig. 3.9, where we report the
positions of the supersolid clusters for many realizations of the super-
solid, without any further manipulation or excitations. In order to
extract a good signal we employ a supersolid with a larger number
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of atoms with respect to the one used for the Josephson experiment,
showing three main clusters instead of two. We obtain these data for
large ϵdd, where the position of the clusters can be extracted from the
density profiles without using the optical separation. The presence of a
Goldstone mode is revealed by the broad distribution of the positions
of the cluster, which appear to strongly fluctuate from shot to shot,
while the center of mass of the system remains much more stable. The
detected fluctuations in the cluster positions have a standard deviation
of σclusters ∼ 1 µm, which needs to be compared with the center of mass
fluctuations, which shows σcom ∼ 0.5 µm.

From theoretical predictions based on numerical solutions of the
Bogoliubov-de-Gennes equations [68], the Goldstone mode has been
interpreted as the odd parity mode associated with the softening of the
roton accompanying the phase transition towards the supersolid. Its
energy is predicted to be about a few Hz, therefore the Goldstone mode
is spontaneously excited by thermal fluctuations in experiments. This
translates as noise introduced both in Z and ∆ϕ. Indeed, a random
displacement of the supersolid will produce a non-zero initial imbalance
(due to the Goldstone mechanism) and an error in the imprinted phase
(due to the wrong alignment with the optical lattice). We estimate
the additional noise on our observables, due to the presence of the
Goldstone excitations, to be about 20% of the measured Josephson
amplitudes.

In the numerical simulations, not affected by thermal fluctuations, it
is possible to study the coupling between the Goldstone and Josephson
dynamics, which is analyzed in Fig. 3.10. Here we excite the Josephson
dynamics inducing an initial imbalance Z0, instead of imprinting a
phase difference. When the new equilibrium density is initialized with
Z0 > 0, we also produce a finite displacement of the weak link position
x0 (Fig. 3.10a), which triggers the Goldstone mode. Evaluating Z
and ∆ϕ as a function of time, we see the standard Josephson oscil-
lations at the expected frequency ωJ , on top of a slower oscillation
associated with the motion of the barrier. For example, for Z we find
ωJ = 2Pi×23.85(3)Hz and ωG = 2Pi×3.56(8)Hz, the latter matching
the oscillation frequency of x0. We checked that exciting the Josephson
dynamics with the phase imprinting technique drastically reduces these
slow oscillations since it doesn’t excite the motion of the barrier.
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Figure 3.10: Coupling of the Goldstone mode to the Josephson dynamics in numerical
simulation. The position of the weak link x0 (a) shows a clear oscillation at the
Goldstone frequency ωG ≪ ωJ . (b) The oscillations of both Z (blue) and ∆ϕ red,
show a double frequency character given by the mixing of ωG and ωJ .

Even if it’s clear that the Goldstone doesn’t affect the oscillations
of the mean values of Josephson observables during the dynamics, it’s
not straightforward to understand the connection of the Goldstone
mechanism with the fluctuations of Z and ∆ϕ. Indeed, it’s intuitive
to link the nature of the fluctuations to the lowest energy mode of the
system, but in the case of supersolids the coupling between Goldstone
and Josephson leads to the need for specific theoretical models. In
standard bosonic Josephson junctions, the phase fluctuations are linked
only to the energy scales of the Josephson mode [141, 57] by

⟨∆ϕ2⟩ = T

EJ

, (3.26)

where EJ ∼ 2NK is the Josephson energy. Based on this prediction, we
can try to estimate the temperature of our system, using the measured
Josephson frequencies and the phase fluctuations reported in Fig. 2.14
which gave ⟨∆ϕ2⟩ = 0.035. We then find

kBT = hωJ

(NU)exp

N⟨∆ϕ2⟩ ≈ 80nK , (3.27)

where we used (NU)exp ∼ 4 nK introduced at the end of Sec. 3.4,
ωJ ∼ 20Hz, and N ∼ 104 for simplicity. We note that the derived
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temperature is too high to be correct since exceeds by far the critical
temperature for the condensation. Moreover, a careful analysis of the
thermal fraction on the superfluid side reveals a temperature around
10 nK for our system. One possibility to get a lower temperature, which
would agree with our observation, is to substitute in the model the
energy scale of the Goldstone mode, thus obtaining

kBT = hωG

(NU)exp

N⟨∆ϕ2⟩ ≈ 8nK , (3.28)

where ωG is now 2 nK. Although this is just a rough estimation, based on
the one theoretical model describing the thermal fluctuations of bosonic
Josephson junctions, the fact that using the Goldstone frequency we
get the right order of magnitude for our system is quite remarkable.
Indeed, the fluctuation properties of supersolids both of thermal and
quantum nature, would be an interesting topic for further research.

3.6 Experimental tools
In this section, I will briefly discuss the experimental techniques involved
in the selective excitation and detection of the Josephson oscillations
discussed in this Chapter. Further details about the preparation of the
supersolid, and the imaging techniques can be found in Chapter 4.

3.6.1 Excitation of the Josephson dynamics
As already explained, we employ an optical lattice to imprint an initial
phase difference between the central cluster of our supersolid. The
optical potential of the lattice, with respect to the position of the clus-
ters, is depicted in Fig. 3.5. The lattice is realized with 1064 nm laser
beams, intersecting at a small angle, such that the resulting spacing
is dlat = 7.9(3) µm. The technical details about the optical scheme to
realize the lattice potential are given in [14]. In order to imprint the
same phase difference in each experimental shot, both the intensity and
the alignment of the lattice need to be stable. Moreover, the intensity
and pulse duration of the imprint must be calibrated, to estimate the
values of the imprinted phase. In Fig. 3.11a, we show the stability of
the lattice over a typical experimental run. We first prepare a standard
BEC, which is then loaded in a deep lattice potential, in order to
distinguish clearly the position of the lattice peaks by looking at the
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Figure 3.11: Characterization of the optical lattice used for the phase imprinting.
(a) Density peaks of a BEC loaded into the optical lattice. The positions of each
lattice site (black dots) relative to the center of mass of the system give a standard
deviation of σlat ∼ 0.35 µm, over 45 experimental shots. (b) Calibration of the
imprinted phase difference, measured on the supersolid after expansion, as a function
of the imprinting pulse duration. The lattice depth is Ulat ∼ 100 nK (estimated
by oscillation frequencies of single site dipole oscillations). The dashed line is the
expected imprinted phase (Ulatτ/ℏ).

in-situ density. Such positions are then referenced to the center of mass
of the system which is practically the same for the standard BEC (free
or loaded into the optical lattice) and the supersolid. The stability in
the position of the lattice peaks is better than 10% of its period, and
much smaller than the shaking of the supersolid due to the Goldstone
fluctuations (see Fig. 3.9). Indeed, we associate the latter with most
of the noise in the excitation protocol. The asymmetry in the lattice
position is due to the alignment with the supersolid clusters (spaced by
λ = 3.7(2) µm), which is optimized for the ratio dlat/λ.

The calibration of the phase difference imprinted by the optical
lattice, reported in Fig. 3.11b, is done by varying the duration of the
imprinting pulse τ at fixed intensity, corresponding to a lattice depth
of about Ulat = kB100 nK. After the imprint, we immediately release
the supersolid from the trap and we evaluate the phase difference
∆ϕ between the central clusters (see Sec. 3.6.3) which corresponds to
the imprinted phase ϕ0. We compare our results with the prediction
ϕ0 = τUlat/ℏ, finding a good agreement with the observed data. Note
that for too short pulses, with τ = 50ms for example, the imprinted
phase could be too small if compared to the noise coming from the
Goldstone. Thus, in the experiment, we employ longer pulses of the
order of τ = 100ms, which are compatible with imprinted phase differ-
ences of at least 1 rad.
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Figure 3.12: Comparison between the numerical and experimental results for the
Josephson frequencies as a function of the amplitude of the oscillations. Numerical
simulations (black dots) and experimental data (red dots and open red triangles)
show a reduction from the small amplitude regime of about 15% around at 1.5 rad.
The measures reported in Fig. 3.7 are in the amplitude regime marked by the shaded
area.

In this excitations regime the amplitudes of both ∆ϕ and Z are not
small enough to be treated perturbatively, then we expect deviations
from the measured Josephson oscillations and the ones predicted by the
theory and verified by numerical simulations carried out in the regime
of small excitations. Indeed, if we compare numerical and experimental
results in the same conditions, we find that a small reduction of the
Josephson frequencies for increasing oscillation amplitudes may occur.
Our results are presented in Fig. 3.12, confirming a reduction of ωJ

of about 15%, with respect to the small amplitudes regime. This
discrepancy is taken into account when we extract the superfluid fraction
in Fig. 3.8, which is based on the Eq. 3.24, obtained in the small
amplitude regime.

3.6.2 Detection of the imbalance
The population imbalance is extracted from in-situ density images we
acquire in the x-y plane, through an imaging system with a spatial
resolution of about 3 µm, slightly smaller than the supersolid spacing
4 µm. The in-situ density is captured using dispersive phase-contrast
imaging [82] using the same light employed for absorption imaging, at
421 nm, but with a large detuning. This is fixed at δ = 5Γ421, as a
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compromise to reduce the effects connected with the light absorption,
while keeping a large enough dispersive signal which is proportional to
the ratio I/δ, with I being the light intensity. Further details about
the imaging technique can be found in Sec. 4.3.

We transform each in-situ image into a one-dimensional profile, in-
tegrating along the transverse direction y. Then we detect numerically
the positions of the supersolid clusters by looking at the peaks in the
signal, and the populations N1 +N2 +N3, N4 +N5 +N6 integrating
the signal to the left and to the right of the minimum between the
peaks, respectively. From the left and right populations, we compute
the experimental observable Z = (N1 +N2 +N3 −N4 −N5 −N6) /N .

As explained in Sec. 3.3, we are only able to resolve clearly the two
main clusters for high contrasts (large ϵdd values), where the density
modulation leads to a very weak link between the two main clusters.
In other cases, the supersolid is still distinguishable from a standard
superfluid, but the clusters are not resolved and, in particular, the
minimum between the peaks in the extracted 1D profile described
above, is not well defined. To increase the signal-to-noise ratio of our
detection we need to further manipulate the atomic cloud exploiting
the symmetry of the system and dipolar interactions. Our technique
employs the same optical lattice used for the selective excitation of the
Josephson mode, to separate the two main clusters of the supersolid
at a larger distance, which is now accessible by our limited optical setup.

The optical separation is done by shining a shallow lattice potential
on the cloud about 5ms before the imaging pulse. The lattice potential
traps the position of the cluster sitting at its minimum, while the
dipolar repulsion between the two clusters makes the other one move
in the opposite direction, falling into the next minima. The result is an
overall increase in the cluster distance, which we studied numerically
in Fig. 3.13. However, also the lateral clusters are modified by the
lattice potential, thus also the detected imbalance changes during the
separation. As reported in Fig. 3.13a, the change in Z is simply an
additional offset, which doesn’t depend on the starting value (before the
optical separation). For this reason the observed Josephson frequencies
remain valid, even if the baseline of the oscillations is modified by our
manipulation. In Fig. 3.13b, we reported the change of the distance
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Figure 3.13: Numerical simulations of the dynamics of the system during the optical
separation. (a) Evolution of Z for three different supersolids with initial population
imbalance Z0 = 5% (green), Z0 = 0% (red) and Z0 = −5% (blue), when the shallow
optical lattice is applied. (b) Separation of the clusters during the same dynamics.
The upper insets show two experimental in-situ images of supersolids with Z = 0
before (left) and after the optical separation (right). The lower insets are snapshots
of the separation dynamics: the blue solid line is the supersolid density, the red
dashed line is the lattice potential (not to scale), and the gray shaded curve is the
supersolid density convoluted with a Gaussian accounting for the finite resolution.
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between the clusters, which reaches the lattice spacing right after 5ms
of dynamics. From the snapshots of the numerical simulation, we see
the tendency of the clusters to repel one another, keeping the system
from rearranging the left clusters together and leading to a structure
with three main density maxima. This however must be then convolved
with a larger Gaussian envelope to take into account the finite resolution
of our system. The resulting signal is something more similar to a
two-peak structure, which corresponds with the typical experimental
images (see snapshots in Fig. 3.13).

Experimentally, we checked that in the same conditions of atom
number and ϵdd, the Josephson frequencies measured with and without
the optical separation are consistent with one another (see the discus-
sion on Fig. 3.7). Moreover, the separation technique alone, without the
phase imprinting, don’t trigger oscillations in the imbalance. This last
check was done both on the supersolid and on the superfluid since the
separation allows us to measure a finite Z even without a spontaneous
density modulation. We conclude that, although our lattice is not
aligned symmetrically to the supersolid (a configuration that would
favor the separation) the optical separation employed in our measures
produces the desired effect on the supersolid density, without drastically
perturbing the imbalance.

3.6.3 Detection of the phase difference

The detection of ∆ϕ is based on time of flight absorption imaging,
which gives us the density distribution in momentum space. Such
distributions, as already shown in the snapshots of Fig. 3.5, show an
interference pattern due to the superposition of the expanding coherent
matter waves originating from each supersolid cluster. We analyze
this complex interference figure via a simple double-slit model, and we
extract the phase difference between the two main clusters ϕ3 − ϕ4. I
will now discuss the details of the procedure, to get an intuition of why
the interference from our multi-cluster supersolid can be described as a
double-slit interference.

We employ a standard absorption imaging after a time of flight
τfly = 61ms, which is enough to have a complete overlap of the super-
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solid clusters and enough magnification from the expansion to resolve
the interference fringes. To reduce the effect of dipole-dipole interac-
tions within the first ms of the expansion (where the density is still
high and the clusters close to one another), we boost the scattering
length as almost to the background values (hence reducing ϵdd below 1),
about 200 µs before releasing the atoms from the optical trap. Since the
imaging beam comes from below the atoms, the density distribution is
recorded in the horizontal plane, integrating over the depth of focus of
the objective (which is comparable to the size of the system along the
z direction), obtaining ρ(kx, ky). Note that to keep the atom in focus
during the expansion, we apply a magnetic gradient along z, which
cancels the gravity. From the momentum distribution, we infer the
phase difference from the position of the interference fringes relative to
the center of the Gaussian envelope of the distribution.

The recorded signal ρ(kx, ky) is then integrated over ky to obtain
a one-dimensional distribution ρ(kx), which is then fitted with the
function

ρ(kx) = G (kx, k0.σ)
[
1 + A1cos

2 (π (kx − k0) /kr + θ)
]

, (3.29)

which is basically the same8 as the one in Eq. 2.14 described in the
previous Chapter. Note that, since the fringes are described as a
cos2(x), the actual phase difference is given by ∆ϕ = 2θ. This analysis
is repeated for typically 20-30 realizations for each observation time t
of the supersolid dynamics. The results are then combined using the
circular mean

∆̄ϕ = arg

 n∑
j=1

ei∆ϕj

 , (3.30)

which is the appropriate way to average together periodic quantities9.
The corresponding error is given by the circular standard deviation
[54].

The outlined procedure would be rigorous for studying the phase
difference between two clusters, only when there are only two of them in
the supersolid. However, although in our case we have six overlapping

8The only difference is the choice to use either a sin2 or cos2 modulations.
9Note that arg(x) indicates the argument of the complex number x and i is the
imaginary unit.
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Figure 3.14: Analysis of the double-slit model for the phase difference detection. (a)
Sketch of the real part of the test wavefunction, built with 4 Gaussian clusters and
alternating phase factors. (b) Results of the Fourier transformed and convoluted
wavefunctions for different phase differences. Dots are the results of the calculations.
Solid blue lines are non-linear fit curves using the model in Eq. 3.29. (c) Results
of the analysis for ∆ϕ ranging from −π to π (black dots). The red and the black
dotted lines are a guide to the eye.

clusters contributing to the interference pattern, the double-slit model
gives still a good approximation of ∆ϕ, provided we take into account
two main effects. The first one is the finite resolution of the imaging
system used for the time of flight measurements. This settles a cutoff to
the lowest k which is possible to detect in the momentum distribution,
making our observations only sensible to the supersolid k, associated
with the distance between neighboring clusters λ. Indeed, for infinite
resolutions, one should be able to also detect smaller k, given by the
interference between overlapping clusters lying multiples of λ apart
from one another. Thus, the measured distribution only shows the
effects of the neighboring cluster interference.

The second thing to account for is the inhomogeneity of the sys-
tem. To analyze this effect we conducted a numerical analysis, starting
on a simple distribution with 4 inhomogeneous clusters. The results
of the analysis are shown in Fig. 3.14. We start considering a real
space wavefunction of 4 Gaussian clusters separated by λ. The side
modes amplitudes are 1/3 of the main ones (see Fig. 3.14a). Then
we build our test wavefunction by multiplying each Gaussian mode
for a phase factor with an alternate sign, as in the experiment. As
sketched in Fig. 3.14b, we simulate the expansion of the wavefunction
by calculating its Fourier transform and convolving it with a large
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Gaussian envelope to take account for the finite resolution (0.2 µm−1).
The obtained distribution is then fitted with the model in Eq. 3.29, and
the detected phase difference is plotted as a function of the imprinted
one. In Fig. 3.14b, we see that the double-slit model gives precise
results only around ∆ϕ = 0 rad and ∆ϕ ∼ ±1.6 rad, while in the other
regions there are deviations from the expected values up to 0.5 rad,
which are taken into account in the errorbars of Fig. 3.6. Note that such
deviations, for the particular configuration of our experiment, don’t
affect the measured Josephson frequencies, since the crests, nodes, and
troughs of the oscillations lay in the vicinity of the points where the
double-slit is more precise. Finally, we note that the obtained value of
∆ϕ has the opposite sign with respect to the imprinted phase. This
is due to the fact that the imprinted phase difference between lateral
and central clusters is −∆ϕ. The measured phase difference is then the
sum of two negative contributions from the lateral clusters and a pos-
itive one coming from the central clusters, which is of the order of −∆ϕ.



Probing and manipulating
a dipolar supersolid

Chapter 4
In this chapter, I will discuss the experimental techniques employed
for the study of the superfluid-supersolid quantum phase transition
and the Josephson dynamics in the supersolid phase, presented in the
previous chapters. Before delving into the details, I will give a very
concise overview of the experiment focusing on the main steps needed
to produce a dipolar Bose-Einstein condensate of dipolar atoms. The
details concerning the experimental sequence together with a more
technical description of our apparatus are reported in [115, 116].

The atomic species used in our experiment is dysprosium, the
rare-earth metal with the largest magnetic dipole ever cooled down
to the quantum degeneracy. This extraordinary property stems from
its electronic structure, [Xe]4f 106s2, which brings dysprosium atoms
in the ground state 5I8 to have a total angular momentum J = 81.
The complexity of this electronic structure results in a rich landscape
of electronic transitions.For the laser cooling, we employ two transi-
tions at 421 nm and 626 nm connecting the ground with two excited
states obtained by promoting one of the 6s2 inner electrons to the
6p orbital, either in the 1P1 or 3P1 states. Given its large linewidth,
Γ421 = 2π× 32.3 MHz allowing to scatter lots of photons, the blue light
is used for the first stages of cooling and for the absorption imaging
of the atomic cloud. The red light is used in the 3D Magneto-Optical
Trap (MOT), where the atoms are trapped and further cooled, before
being able to get trapped in a purely optical dipole trap. Our setup and
the geometry of the cooling and trapping beams are shown in Fig. 4.1.

We produce a vapor of 162Dy in an oven operating at T ∼ 1200◦C,
1Having zero nuclear spin, our bosonic isotope don’t have a hyperfine structure.



92 Probing and manipulating a dipolar supersolid

Figure 4.1: Scheme of the experimental setup and geometry of the laser beams
involved in the cooling and trapping of dysprosium. (a) Model of the experimental
setup. Blue beams mark the 421 nm laser lights used for collimating and slowing
down the atomic beam. Red beams mark the 626 nm lights used for the MOT.
Two pairs of coils, namely the MOT coils (regulating the quadrupole field and the
magnetic field gradient) and the Feshbach coils (used to tune as), sit near the vertical
upper and lower window of the science cell. Another pair of transverse coils is used to
compensate for the Zeeman slower field and adjust the atom’s position. (b) Top view
of the octagonal science chamber. The big arrows mark respectively the Zeeman
slower ZS (blue) and MOT (red) directions. The two thin blue beams show the
directions of the angled slowing. The infrared cavity field is sketched in gray. The
two cavity mirrors, sitting along the gray dashed line, are held vertically by two in
vacuum supports. Thin red beams represent infrared laser beams employed to trap
the condensate: ODT1 and ODT3 realize the crossed dipole trap, while the two OL
beams form the long-spaced optical lattice used to manipulate the supersolid in the
Josephson experiment.
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which is then turned into an atomic beam after being collimated by a
transverse cooling stage, where a pair of back-reflected elliptical blue
beams cross just after the oven nozzle. The atomic beam is then slowed
down with a Zeeman slower operating with blue light, and loaded into
the MOT. To maximize the number of atoms trapped we use also a pair
of angled slowing beams that cross just before the MOT location [118].
Moreover the 626 nm light is frequency-modulated to enhance the the
capture velocity of the MOT by widening the laser linewidth, which is
naturally pretty narrow, with Γ626 = 2π × 136 KHz. During the MOT
loading the atomic magnetic dipoles are polarized along the vertical
direction ẑ via a low magnetic field2 of about 1.5G generated by a pair
of coils, called Feshbach coils, since they are used during the experi-
ment to control the scattering length via Feshbach resonances. After
its loading, the MOT is compressed by ramping down the frequency
modulation and modifying the magnetic gradient, in order to obtain
a denser, but colder sample. At this point we have typically 5 × 107

(n ∼ 1011 cm−3) atoms at T ∼ 20 µK. To further reduce the system
temperature towards the condensation threshold, which is TC ∼ 60 nK,
we load the atoms in fully optical potentials, realized with infrared light
at 1064 nm, to do evaporative cooling.

For the first stage of evaporation, we employ an in vacuum optical
cavity with finesse F ≈ 1500 which allows to amplify the injected
infrared light obtaining very intense cavity fields. As a result, all the
atoms in the portion of the atomic cloud overlapping the deep cavity
potential, are captured in a series of disks lying 532 nm from one another
along the cavity axis. At this point, the cavity field is ramped down
by controlling the injected power. During the cavity evaporation, the
scattering length as is increased by increasing the Feshbach magnetic
field and approaching the resonances at 5.3G, to enhance the effect
of elastic collisions crucial to thermalize the cloud at lower temper-
atures. Before turning off the cavity field completely the atoms are
loaded in a crossed dipole trap and the scattering length is suddenly
decreased, while we still have a thermal gas, to approach the critical
value for the supersolid phase transition. This abrupt change cannot
be done on a BEC, since it will produce excitations ultimately leading
to heating the cloud. At the end of the evaporation, we end up with
approximately 4 × 104 atoms at T ∼ 10 nK, trapped in an elongated

2The exact value changes with the optimization of the MOT loading
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Figure 4.2: Magnetic field calibration. (a) Radio-frequency spectroscopy signal. The
loss feature in the atom number is fitted with a Gaussian function (blue line) peaked
at resonance. (b) The resonance RF values (translated in B fields) are probed for
different values of the voltage controlling the Feshbach coils. The red line is a linear
fit. (c) Model of the dependence of the scattering length on the magnetic field (blue
line). The dashed black line marks the background scattering length abg . A detail of
the model is presented as inset, where the light blue lines are calculated assuming
the uncertainties on the positions and width of the Feshbach resonances considered.

optical dipole trap (ODT) with a vertical frequency, resulting from
the competition of optical confinement and gravitational sag, of the
order of 100Hz. The trap frequencies in the x̂-ŷ plane are fixed by
tuning the powers in the two infrared beams ODT1 and ODT3, which
allow us minimal control over the trap aspect ratio. The typical trap
employed in the experiment, as discussed in the previous chapters, is
elongated along x̂, which is also the direction where the supersolid devel-
ops its density modulation once the quantum phase transition is crossed.

4.1 Magnetic fields
Already at the MOT stage, dysprosium atoms are naturally pumped
into the lowest Zeeman sublevel |J = 8,mJ=−8 [50], becoming strong
magnetic dipoles that are kept aligned to the vertical direction by
the constant Feshbach field. For too low fields (of the order of the
Earth’s magnetic field) the dipoles depolarize, resulting in a sub-optimal
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loading of the MOT. As discussed in the beginning of this chapter, the
magnetic field is controlled during the evaporation sequence to enhance
the thermalization and, once the BEC is obtained, to control the role
of dipolar interactions. To cross the superfluid-supersolid quantum
phase transition, the ratio between dipolar and contact interactions ϵdd

must be controlled accurately, thus requiring a precise calibration of the
Feshbach field. In Fig. 4.2 the typical results for the field calibration
are presented. The first step is to translate the current flowing in the
Feshbach coils into a value for the magnetic field. Since the current is
stabilized by an external PID loop controlled with a voltage signal, we
need to convert the control voltage into the actual field generated by the
coils. This is done by coupling the ground state with the higher Zeeman
sub-level mJ = −7 with radio-frequency pulses at about 9.2MHz, and
analyzing the induced losses in the atom number. Indeed, when atoms
are pumped to the higher magnetic sub-levels and then decay to the
ground state due to dipolar relaxation [43], the excess of kinetic energy
is enough to kick them out of the trap. This loss mechanism depends on
the detuning, thus from the loss spectroscopy signal we can accurately
establish the position of the RF transition. The RF pulses are generated
by a self-built antenna with 10 windings of copper wire arranged on a
circular coil of about 3 cm diameter. These reduced dimensions allow
the antenna to sit just below the lower window of the science chamber,
without affecting the laser light shining through, and minimizing the
screening of the RF field by the vacuum apparatus. The RF coil is then
driven by a function generator (Stanford DS345) producing pulses of
50ms, triggered by the software controlling the experimental sequence,
without the need for further amplification. The relation between the
resonant radio-frequency and the magnetic field is given by

νRF [MHz] = µB gJ
h

B [G] = µ

8h B [G] , (4.1)

where µ is the magnetic moment of dysprosium and gJ = µ/(8µB)
is the Landé g-factor3 for J = 8. As it’s shown in Fig. 4.2a, we ex-
tract νRF fitting the loss spectroscopy signal with a Gaussian function,
where the typical width is 2KHz, which gives the uncertainty on the
calibration. The width can be reduced by decreasing either the am-
plitude or the duration of the RF pulse, which however reduce also

3With µ = 9.93µB, we obtain gJ = 1.24 which agrees with the measurement reported
in [134].
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the signal-to-noise ratio of the measurement. This procedure is re-
peated for different magnetic field values, by changing the Feshbach
voltage, obtaining the calibration line reported in Fig. 4.2b, which reads
−0.391384 [G]+3.21047 [G/V]x [V]. Before each experimental session,
we run a single RF spectroscopy scan, comparing the expected B field
from the calibration to the measured value (extracted from Eq. 4.1).
We observe no changes in the slope and only a slight modification of
the offset, mainly due to thermal deviations affecting the electronics,
which have to be corrected on a daily basis. The magnetic field stability,
within a single experimental session, lasting typically 4 hours, is about
0.5mG.

To translate the magnetic field into a value of scattering length,
we modify the model described in [23] (plotted in Fig. 4.2c). The
model takes into account three Feshbach resonances lying at 5.126(1)G,
5.209(1)G, 21.95(5)G and characterized by widths of 35(1)mG, 12(1)mG,
and 2.4(8)G respectively. The resonance at highest field has been
characterized in [116]. Considering a background scattering length of
abg = 139(4) a0, as is given by

as(B) = abg

(
1 − δB1

B −B1

) (
1 − δB2

B −B2

) (
1 − δB3

B −B3

)
, (4.2)

where Bi and δBi are the positions and widths of the Feshbach reso-
nances. The scattering length stability derived from the model is about
0.25 a0, which is much smaller than the uncertainty associated with its
absolute value, of about 4 a0, translating to a relative uncertainty in ϵdd

of about 4%. This is mainly due to the large error affecting the back-
ground scattering length [179, 180]4. To assess the overall systematic
uncertainty on the absolute value of as, we can compare the experimen-
tal critical value of the scattering length for the superfluid-supersolid
quantum phase transition, with its numerical counterpart. Indeed, by
looking at the sharp features in the contrast of the modulation (see
Fig. 2.8) or the atom number (see Fig. 2.2.2) proper to discontinuous
phase transitions, we can measure the shift between observed and ex-
pected critical as. Using the harmonic potential VD in Eq. 2.13, we
establish a shift of about 6.7 a0 shift as, which is used to correct all the
experimental data in the previous chapters.

4The contribution of the finite width in the RF signal only amounts to 0.5 a0.
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4.1.1 Adiabaticity

The magnetic field is decreased during the experiment, walking down
the branch of scattering length plotted in the inset of Fig. 4.2c, in
order to cross the transition in the region around 90 a0. In principle,
this must be done as slowly as possible, in order to prevent effects of
non-adiabaticity such as spurious excitations of the system or heating,
that can be disruptive, especially because they can scramble the global
phase of the supersolid. On the other hand, the finite lifetime of the su-
persolid, dominated by the losses enhanced by the vicinity of Feshbach
resonances together with the increase of the peak density, pushes us to
be as fast as possible. Moreover, approaching the supersolid region we
cross many narrow Feshbach transitions, peculiar to the dense resonance
spectrum of dysprosium [122], requiring to spend the least amount of
time at a given magnetic field, in order to avoid drastic losses. As a
compromise, we employ two different ramps: the first one is fast, and
it’s used to bring us near the supersolid region avoiding the narrow
resonances; the second one is slower and it’s used to cross the transition
almost adiabatically. To understand the effect of the last ramp speed,
on the experimental observables, we performed a detailed study of the
adiabaticity we can achieve in our system. In particular, we have to
make sure of two things. First, the different characters of the quantum
phase transition, investigated in the harmonic potentials VD and VC

(see Eq. 2.13) discussed in Chapter 2, must not depend on the ramp
speed. In particular, the discontinuous behavior of the phase transition
in trap VD should not be an artifact due to a non-adiabatic crossing.
Second, we have to check that the quasi-adiabatic ramp used in the
experiment, is slow enough to keep the system the least excited possible.
This is crucial for the experimental observation of collective modes
selectively excited after crossing the transition, such as the Josephson
dynamics discussed in Chapter 3.

We first performed a similar experiment as the main one discussed
in Sec. 2.2, but varying the ramp speed used to cross the phase transi-
tion and come back to the superfluid side. This is done for both VC

and VD, using the ramp speed employed for the main experiment (see
Fig. 2.8) which is 0.5 a0/ms, a slow ramp at half this speed, and another
one, twice as fast. For the tests, we start from the superfluid side and
we cross the transition, then we hold as fixed in the supersolid phase (at
about −2 a0 from the transition point) for a holding time of th = 15ms.
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Figure 4.3: Effect of the scattering length ramp speed on the experimental observable
C̃ . Blue and magenta points and lines refer to experimental data and fit for VD and
VC respectively. Circles mark the residual contrast after crossing twice (towards the
supersolid and back) the quantum phase transition. Dots are instead the measured
C̃ after the in-going ramp only. Dotted lines are linear regressions demonstrating
the linear dependence between the residual contrast and the ramp speed. Solid lines
mark the confidence bands for 1 σ.

At last, we ramp the scattering length back to the superfluid side (at
about +4 a0 above the transition), we wait a variable time tw, and we
release the system from the trap in order to measure the contrast C̃
from the momentum distribution imaged after the system expansion.
The results of this double crossing in the potential VD and VC , presented
in Fig. 4.3, show that the residual C̃ in the superfluid side increases for
both potential for faster ramp speeds. As discussed in Sec. 2.2, this is a
measure of the non-adiabaticity of the scattering length ramps, which is
reflected in the amplitude of the contrast oscillations in the superfluid.
To average out the effects of other collective modes triggered by the
ramp, we average together data sets corresponding to different waiting
times tw = 10, 20, 30ms. The contrast observed for VD consistently
exceeds that of VC , and, although both show an almost linear increase
with the ramp speed, the slope is higher for VD. This demonstrates that
crossing the transition point twice has a speed-dependent contribution
for both continuous and discontinuous transitions to C̃. This behavior
can be attributed to the finite formation time of the supersolid, which
is around 15ms, comparable with the oscillation period of the contrast
(see Fig. 2.8d-e and Fig. 2.9). Since the in-going ramp is not signifi-
cantly longer than the formation time, the supersolid doesn’t form at
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the lowest available energy. In this sense, the formation time of the
supersolid marks the key time scale to compare with, when choosing the
correct ramp duration. The formation time of the dipolar supersolid
has been studied numerically in [3, 4], where the dynamics after the
scattering length ramp is slowed down due to the absence of dissipation
(given mainly by atom losses in the experiment). In particular, in [4]
it is shown that the formation time depends on the growth ratio of
the most unstable mode of the superfluid, which is the roton mode,
thus depending mainly on the initial state before starting the ramp.
This suggests that different trapping potentials lead to different time
scales in the growth of the roton at the instability point and so different
formation times for the resulting supersolid. It’s important to note
that even when extrapolating to zero ramp speed using a linear fit
(dashed lines in Fig. 4.3), the residual contrast for VD continues to be
larger than the one for VC . This reaffirms the discontinuous nature
of transition in VD. The nonzero intercepts at zero speed for VC , it’s
instead given by atom losses, which lead to a loss of adiabaticity at
long times.

A second type of analysis is focused only on potential VD. The idea
is to study the contrast after the on-going ramp, just after the transition
as a function of the ramp speed, to see if the finite jump of C̃ at the
transition is produced by the non-adiabaticity of the ramp. To do so,
we ramp the scattering length to 92.5a0, just before the nominal value
for the transition point, and we post-select the realization consistent
with a supersolid, by neglecting all the images where C̃ = 0. As before,
we wait a time th + tw before releasing the system from the trap, with
th = 15ms and tw = 10, 20, 30ms. Data sets corresponding to different
waiting times are averaged together to minimize the impact of other
collective modes. The average C̃ as a function of the ramp speed,
shown in Fig. 4.3, is almost constant over the whole speed range. This
demonstrates that, indeed, the jump is independent of the ramp speed
and it’s only given from the discontinuous nature of the phase transition.
Note that the same analysis cannot be done for potential VC since the
transition point is not marked by a sharp increase of C̃. An alternative
analysis could be performed instead on the variance of the supersolid
phase, determining the coherence of the system. However, from the
results already presented in Fig. 2.14, we conclude that the speed chosen
for the experiment is slow enough to keep the phase coherence of the
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system intact, even when we go deep in the supersolid phase, where
decoherence is enhanced by atom losses.

4.2 Trap geometries
The geometry of the optical dipole trap employed in the experiment
can be minimally tuned controlling the power in the infrared beams at
the end of the evaporation. Indeed, the beam profile of the two dipole
beams have different aspect ratios: 1:1 for the ODT1 and 1:3 for the
ODT3. Thus, controlling the relative intensities of the beams, we can
control the aspect ratio of the crossed trap. All the harmonic traps
used in the experiment have the same vertical confinement, around
100Hz, since the natural length of the harmonic oscillator in the verti-
cal direction fixes the spacing of the supersolid structure. With this
vertical confinement, we produce supersolid with a lattice spacing of
about λ ∼ 4 µm, which results, given our number of atoms, in an inho-
mogeneous supersolid with 4 main clusters. As shown in the previous
chapters, the number of clusters can be reduced by adjusting the atom
number (basically waiting for a fraction of the BEC lifetime, in order
to lose atoms), and the structural properties of the emerging supersolid
can be controlled by manipulating the x-y aspect ratio of the trap. This
can be done by controlling the power of the crossed dipole trap beams,
keeping fixed the vertical frequency, and changing the transverse ones.
Our standard optical trap gives the harmonic potential VD (defined in
Eq. 2.13), which is elongated in the x direction and with a 1 : 3 aspect
ratio in the x-y plane, resulting in a discontinuous phase superfluid-
supersolid quantum phase transition. To manipulate the character of
such transition, we need a more confining trap along the transverse
direction. We first evaporate in VD then, when the scattering length is
still high above the critical point, we compress the atoms by slightly
increasing the power of the ODT1 and ODT3 beams, to reach the
configuration of trap VC (see Eq. 2.13). In the compression process, we
don’t observe any heating, but the higher density in VC increases the
atom losses, so the standard atom number in the so-called continuous
trap is about 4 × 104. A similar procedure to reach trap VC , is used for
the Josephson experiment described in Chapter 3.

Trap frequencies are measured by looking at the dipole mode of
the condensate in time of flight measurements. To excite the dipole
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oscillation, after preparing the standard condensate in the harmonic
potential of interest, we perturb it imprinting a force using either a
pulse of Zeeman slower compensating coils or a pulse of quadrupole
magnetic field gradient generated by the MOT coils. The former
excites the dipole mode mainly in the transverse direction, triggering
oscillations of the center of mass of the atomic cloud in the x-y plane,
which is then imaged with our standard vertical imaging. The magnetic
gradient, instead, is used to produce dipole oscillations along the vertical
direction. To better address these oscillations, we use an alternative
scheme employing a blue imaging beam coming from the side (namely it
is directed in the same path of the long-spaced optical lattice sketched
in Fig. 4.1b) and a secondary camera. Although this lateral imaging has
a lower spatial resolution, it is enough to measure dipole oscillations.

4.3 Dispersive phase-contrast imaging
To image the supersolid in-situ without the disruptive effects produced
by diffraction in standard absorption images at such high densities, we
employ a different technique, where atoms act instead as a dispersive
medium. The idea is to use linearly polarized light detuned by δ from
the 421 nm transitions to suppress the absorption from the atom cloud.
When the light passes through the atoms it acquires a dispersive phase
shift proportional to n/δ (where n is the integrated 3D density), and
by analyzing the phase shift, after separating the light perturbed by
atoms from the rest, we can reconstruct the density directly. Since the
atoms do not absorb photons, but just scatter detuned light, this tech-
nique is used for non-destructive imaging of ultracold gases in various
experiments. Here I just report the first realization of this imaging
scheme [25], employed on 7Li to precisely measure the atom number in
the condensate, and the many experimental works on dipolar quantum
gases [167, 194, 69, 174, 16].

Our imaging scheme is sketched in Fig. 4.4. We use linearly po-
larized light with δ = 5Γ421 coming from below the vacuum cell and
collimated to a large beam diameter such that the atoms feel an almost
constant light intensity I. The atomic cloud rotates the polarization
of the incoming light by an angle β, proportional to the cloud density.
The scattered light is then collected by a single objective lens with
f = 75mm and then reflected by a dichroic mirror, used to separate
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the blue light from the 626 nm MOT light, towards a tube lens with
f = 500mm. At this point, the light passes through a λ/2 waveplate
which adds constant angle θ to the polarization. At the focal plane of
the second lens, we use a polarizing beam-splitter to mix the scattered
and unperturbed light with polarization angles β + θ and θ respec-
tively. Changing θ we can choose the so-called dark field configuration,
where all the unperturbed light is filtered out by the polarizing beam-
splitter, or the bright field configuration, where the measure has a
finite background, but a better sensitivity. We can reconstruct the
two-dimensional in-situ density as [193]

n2D ∝ δ

Γ421

[
θ − arccos

(√
IA − ID

IB − ID

cos θ
)]

, (4.3)

where IA and IB, are the recorded light intensities with and without
the atomic cloud, while ID is the dark configuration with no imaging
light.

To collect these images, we use a third lens with f = 75mm at a
distance p from the focal plane of the second lens, refocusing the image
of the atoms on the sensor of an EMCCD camera (Andor iXon), in
order to increase the system magnification up to M ∼ 50. To acquire
IA and IB in the same conditions, we use the Fast Kinetic acquisition
mode of the camera. This allows us to register the image IA with a first
pulse of imaging light on a reduced portion of the camera sensor, move
the information to another sector of the chip, and use a second light
pulse to register IB (reusing the first sector of the chip). In between
the two imaging pulses, we use a resonant cleaning pulse of 421 nm
light, coming from the horizontal direction, which destroys the atomic
cloud. The third image, ID is recorded instead at the beginning of each
experimental run. The column density is then calculated via software in
real-time, combining the recorded images and the imaging parameters.

4.4 Design of a new quantum gas
microscope

From the discussion in Chapter 3 about the detection of the cluster
populations from the supersolid in-situ density, it is clear that the major
limiting factor is the optical resolution of our imaging scheme. This has
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Figure 4.4: Sketch of the optical scheme for the dispersive phase-contrast imaging.
The path of the imaging light is marked in blue. The light scattered by the atomic
cloud is represented in gray. The red line is the path of the vertical mot beam.
The picture shows the detail of the mechanical support holding f1, f2, the dichroic
separating the MOT from the imaging light after the atoms, and the lens used to
collimate the MOT beam which is then back-reflected by the upper mirror.

been designed specifically for the Josephson experiment since it was
crucial to measure both phase differences and population imbalance
oscillations. The key requirement of the design is the long working
distance, of about 66.5mm, needed to focus the atomic cloud inside the
science cell, which is not equipped with re-entrant viewports typically
used in combination with high-resolution objectives. In our design,
sketched in Fig. 4.4, the light scattered by the atoms is collected by
a single lens, held near the glass window of the cell by a mechanical
support which can be adjusted in the three spatial directions by a mi-
crometric translational x,y,z stage. We mounted on the same support
the dichroic mirror, the tube lens, and the MOT re-collimation lens, so
the overall alignment is preserved if we need to adjust the position of
the objective lens. This design also allows testing and minimizing the
relative tilts of the optical elements, in order to achieve the the best
configuration.
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4.4.1 Current scheme
The main problem of the current scheme comes from the achromatic
doublet (AC508-075A) with f = 75mm used as objective lens, which
has in fact very poor optical performances if compared to commercial
high-resolution microscopes, typically reaching the diffraction limit.
This is typically expressed by the resolution RDL, given by the Rayleigh
criterion [21]

RDL = 0.61 λL

NA
, (4.4)

which corresponds to the Airy disk radius, typically calculated by ray-
tracing software. Here λL = 421 nm is the wavelength of the light
used for the imaging. Using the full lens aperture (the semi-diameter is
25.4mm) we have a relatively high numerical aperture NA = 0.3, which
gives at our wavelength a sub-micron diffraction-limited resolution, of
about 0.85 µm. However, the real case is much worse since the doublet
is subjected to all kinds of optical aberrations. The single parameter
used to describe the impact of such aberrations is the Strehl Ratio, SR
which is defined as the height of the point spread function5 (PSF) in
the real case, relative to the diffraction-limited one. With full aperture,
we obtained from ray-tracing simulations SR < 0.1, meaning that
aberrations completely scramble the PSF drastically reducing the light
in the central peak. This reduction can be countered by reducing the
numerical aperture. Indeed, by positioning an iris on the second lens of
our scheme (see f2 in Fig. 4.4) and reducing the objective lens aperture
by 1/3, we achieve a resolution6 RP SF ∼ 3 µm, with SR ∼ 0.7. In
this configuration we have NA = 0.09 and RDL = 2.74 µm. In the ray-
tracing simulation, we’ve also considered the fused silica window of the
glass cell between the atoms and the objective, with a thickness 7.5mm.

The system has been then simulated as a whole, including the other
two lenses f2 = 500mm (LA1380A) and f3 = 75mm (LA1145A), opti-
mizing their positions to have a total magnification M = 50 between the
plane of the atoms (which is now the object plane) and the image plane
placed at the position of the camera. These additional lenses are not
critical for the overall performances, and we achieve a SR ∼ 0.6 on the
camera plane for on-axis fields. The off-axis performances (simulated
by adding point-like sources at a finite distance from the optical axis)

5This is just the image of a point-like light source, produced by optical setup
6We estimate the resolution RPSF , from the size of the PSF on the image plane
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stay the same up to a decenter of 0.1mm on the object plane. This
defines also the Field of View (FOV) of our microscope. These features
have been also measured experimentally on a test setup, using a 1951
USAF target (R1DS1P), extracting a resolution of about 3 µm.

4.4.2 New design

To improve the spatial resolution of our system, we plan to substitute
the first lens by employing a commercial diffraction-limited N-BK7
aspheric lens (AL50100GA), keeping the current scheme which needs
only to be slightly modified since the focal length of the new lens
is fA = 100mm. By itself, the aspheric achieves SR ∼ 0.99, with
an aperture of 36mm, and a resolution RP SF ≈ RDL = 1.4 µm for
fields on-axis. Off-axis performances are slightly worse. The resolution
decreases to RP SF = 1.6 µm for fields decentered by 250 µm. These
simulations are performed with collimated light passing through the
objective and focused on the plane of the atoms. To introduce the
displacement in the plane of the atoms (image plane), we use tilted
incoming fields. The angle where we lose the diffraction limit is ∼ 0.19 ◦
corresponding to a FOV of about 600 µm, well above the supersolid
dimensions. Simulating the PSF size through the focal point, we also
find the Depth of Focus (DOF) of the system, about 10 µm, which is of
the same order as the size of the supersolid clusters along the z direction.

Taking into account the fused silica window, we lose the diffraction-
limited performances and we have to further reduce the aperture to
33mm and optimize the distance between the aspheric and the window
(keeping fixed the distance between the latter and the atoms) in order to
minimize the spherical aberration and optimize the Strehl ratio. In this
new configuration, the performances are similar to the ones without
glass window, as reported in Fig. 4.5. We achieve RP SF = 1.5 µm,
SR > 0.9 with NA = 0.16. Note that for marginal rays (decentered by
300 µm), the spot size increases to 2.2 µm. The DOF, instead increases
to 15 µm as an effect to the reduced aperture. This last step would be
not necessary if we use another optical element to counter the spherical
aberrations introduced by the glass window, keeping the same NA. In
particular, we tested a custom positive meniscus with R1 = 400mm and
R2 = 500mm sitting between the objective and the cell. Optimizing
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Figure 4.5: Simulated performance of the aspheric lens used in the new design of the
imaging scheme. (a) Spot diagram at the image plane for on-axis (blue) and 300 µm
off-axis field (green). The calculated PSF radii are respectively 1.5 µm and 2.1 µm.
The Airy disk (black) radius is 1.56 µm. (b) Spot diagram through focus for the
on-axis field. The Airy disk is reported in black. (c) Modulation Transfer Function
[62] for the optical system for on-axis (blue) and off-axis fields (green). The two
green lines refer to the longitudinal and transverse directions with respect to the
field decenter. (d) Strehl Ratio as a function of the field tilt in the object plane. The
maximum tilt for achieving diffraction-limited performances fixes the FOV. Black
lines in (c-d) mark the diffraction limit.
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Figure 4.6: Tests of the new imaging system. (a) Full view of the USAF target
used for the tests. (b) Image of the smallest resolved element on the target. The
spacing is 2.19 µm. (c) Image of a larger element, with spacing similar to that of the
supersolid 4.28 µm. The bottom panels in (c-d) show the extracted 1D profiles and
the fit function (red line) used to extract the spatial resolution, which is respectively
1.9(3) µm for (c) and 1.7(2) µm for (d).

the relative positions of the two elements we find diffraction-limited
performance, with not so small tolerances on the inter-distances (of the
order of 1mm). Since the overall performances are good even without
the meniscus, we use the simple trick of reducing the aperture, gaining
in depth of focus, thus decreasing the complexity of the objective align-
ment on the atoms. We simulated the whole system, from the atoms
to the camera, reversing the design discussed above and adding the
same two commercial lenses as before (LA1380A with f2 = 500mm and
LA1145A with f3 = 75mm). Being p the distance between f3 and the
image produced by f2, and q the distance between f3 and the camera,
we fix p = 80mm > f3 and q = 800mm, so the total magnification is
M = 50 (a first 5 factor coming from the combination of the objective
and second lens, multiplied by an additional factor of 10 = p/q). For
point-like sources decentered up to 100 µm in the object plane, we
obtain diffraction-limited performances with this design. Note that the
tolerance on the position of the third lens is rather small: a shift of
about 100 µm is sufficient to drastically reduce the SR.

The final experimental configuration has been tested with a reduced
magnification M ∼ 12.7 and a test camera with pixel size 5.2 µm, em-
ploying the USAF target. The results are presented in Fig. 4.6. The
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intensity profile coming from a single element on the target, is fitted
with a series of step functions (which mimic the shape of the USAF
element) properly spaced with a Gaussian which takes into account the
finite resolution. The measured resolution is then R = σ/0.35, where
σ is the Gaussian width. We obtain R = 1.7(2) µm for an element
with similar spacing to the one of the supersolid. Remarkably, we are
also able to resolve the smallest element on the target, with a spacing
d = 2.19 µm, which is below the resolution of the current imaging
system.

4.5 Towards arbitrary tailored optical
potentials

The higher resolution of the new imaging scheme would also allow
projecting light onto the atomic cloud with micrometric precision. This
opens up the possibility of exploiting spatial light modulators to build
tailored optical potentials to trap and manipulate the dipolar supersolid.
Since the supersolid breaks the translational symmetry in the directions
orthogonal to the dipoles, the natural choice is to project such poten-
tials in the x-y plane, on top of the standard harmonic confinement.
The latter has to be modified from the usual elongated shape (used
for the experiments discussed in this thesis) to a more cylindrically
symmetric one, allowing the realization of different geometries in 2D.
Among all the possible configurations, the most straightforward is
the homogeneous box-like potential, which is typically employed for
the study of other quantum phases in order to get rid of the inho-
mogeneities arising from the harmonic confinement. Curiously, the
presence of strong walls has quite the opposite outcome in the case
of dipolar gases, where the un-screened long-range repulsion leads to
the accumulation of most part of the atoms toward the edges [157, 81].
The other paradigmatic configuration for the study of supersolidity,
without the effect of an inhomogeneous density, is the annular geometry.

Starting from the connection with the seminal work by Leggett
[103], the annulus is indeed the most interesting configuration to study
the dipolar supersolid since it realizes a simple one-dimensional system
with periodic boundary conditions, approaching the configuration of
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an infinite system at the thermodynamic limit. The annulus is also
the natural platform to benchmark the superfluid properties of super-
solids, such as partially quantized supercurrents [56, 185, 7, 130] and
non-classical rotational inertia [168, 183, 156]. Moreover, it would be
extremely fascinating to study in the annulus the collective modes
peculiar to the supersolid, such as the Josephson oscillation between
neighboring clusters (discussed in Chapter 3) or zero-energy Goldstone
mode [201], with no influence of the external confinement.

4.5.1 DMD setup
In order to shape the projected light intensity and tailor the potential
for the supersolid, we use a Digital Micromirror Device (DMD) which is
basically a two-dimensional array of tiltable mirrors which can be used
to locally control the reflectivity on the device surface. By controlling
each pixel of the DMD we can create complex intensity patterns, which
then are focused onto the atoms. Indeed, the light reflected by the
DMD, after a first demagnification stage, will be then collected by the
same objective described in the previous section. To do so we plan to
integrate the optical scheme for the DMD light with the one reported
in Fig. 4.4, exploiting the polarizing beam splitter which serves as a
filter for the dispersive phase-contrast imaging. Since we choose to
work with repulsive light at about 404 nm, which is not far from the
imaging wavelength, we can use this scheme without optimizations of
the objective to support different wavelengths. Our setup employs a
Texas Instruments DLP9000X DMD chip, driven by a Vialux V-9001
module, which is controlled by dedicated software. Besides the pos-
sibility of projecting static patterns, the high switching rate of this
model allows the manipulation of light intensity in real-time, to produce
time-dependent potentials which can be employed in the experimental
sequence.

To design the DMD optical scheme we started by estimating the
total demagnification needed to image the DMD pattern on the atoms.
Given the size of the DMD chip, the number of intensity shades em-
ployed for the feedback7, and the dimension of the desired potential we

7To be able to control the intensity on a single point in the plane of the atoms, more
than one pixel is used on the DMD, effectively reducing its available surface.
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Figure 4.7: Scheme of the DMD test setup and results of the feedback algorithm used
for the image correction. (a) Optical scheme for the test of the DMD. The violet
light is used for the DMD illumination. The light reflected from each DMD pixel
is represented in a gray shade. (b) From left to right: image used to calibrate the
mapping between the DMD screen and the camera sensor; square pattern without
image correction; the same pattern corrected after 6 iterations of the feedback
algorithm. (c) Picture of the DMD surface with micromirrors displaying the symbol
of dysprosium element. Adapted from [146].

want to project on the atomic cloud, we set the total demagnification to
be MDMD = 1/25. The test setup used for the DMD tests is sketched
in Fig. 4.7a. Since the combination of tube lens and objective in the
imaging scheme gives a magnification Mobj = 1/5, we use the same
lenses in 4f configuration for the first stage of the DMD, achieving the
required total magnification MDMD. With this scheme, the light from
each DMD pixel is collected by f1 = 500mm, passes through an iris
sitting in the Fourier plane of the system, and is then focused onto the
camera by the lens f2 = 100mm. The iris aperture is adjusted to filter
out high spatial frequencies in the final image [49].

From the optical point of view, the DMD behaves as a blazed
optical grating, thus its efficiency in reflecting light depends on the
illumination angle. Since the lens f1 is far from the DMD we only use
the zero diffractive order. The efficiency, measured as the intensity of
the light in the zero-order divided by the total incident intensity, has
a maximum for incident light at the blazing angle αB = 12 ◦, which
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is the tilt of the micromirrors set in the ON position8. Nevertheless,
we use an illumination angle of α = 2αB, which has the advantage
of having the reflected light orthogonal to the DMD surface. In this
configuration, the efficiency is around 20%.

In order to correct for the Gaussian profile of the laser beam used for
the DMD illumination, we employ a feedback algorithm that compares
the light intensity measured on the camera with a target and computes
an optimized pattern for the DMD pixels [49, 146]. In Fig. 4.7b, are
shown the images used to calibrate the algorithm and the results, before
and after the feedback iterations, for a square pattern. Note that the
flatness of the image increases drastically after just 6 iterations. Note
that, although the correction of the image is crucial for projecting
bright potentials, it is not a strict requirement when the DMD is used
with repulsive light, since the atoms are lying in dark spots. Moreover,
the feedback acts by switching off the DMD pixels where the Gaussian
beam intensity is maximum, thus decreasing the total light intensity.
Therefore, a compromise must be found between optimizing the flatness
of the image without losing too much light.

4.5.2 Dipolar supersolid on a ring
The first application of our new DMD system would be the creation of
a ring potential to study the dipolar supersolid. Using repulsive light,
we plan to create a dark annulus and load the atoms initially confined
in a cylindrical optical trap. In Fig. 4.8, is reported an example of
ring potential, together with numerical simulations of its effect on our
system. The first step consists in having the ring potential smooth
and homogeneous enough, to host a standard superfluid with constant
density along the annulus. Any defect in the potential would produce
unwanted localization effects in both the superfluid and the supersolid,
making the study of superfluid phenomena impossible. Another prob-
lem is the unavoidable presence of diffraction fringes in the dark area
of the annulus, given by the very small sizes of the desired potential.
Indeed, we estimate the optimal ring dimensions to be R = 5 µm and
δR = 2 µm, with R and δR being respectively the radius and thickness of
the annulus on the plane of the atoms. With our current atom number
and vertical trapping frequency, we expect the supersolid to host 6-8

8The micromirrors in the OFF position are tilted by −12 ◦.



112 Probing and manipulating a dipolar supersolid

Figure 4.8: Dipolar superfluid and supersolid phases on a ring. (a) Image of the
dark annulus produced by the DMD, scaled to realize a ring potential employed to
simulate numerically the behavior of the superfluid-supersolid phase transition. (b-c)
Ground state densities of a superfluid and a supersolid respectively. Adapted from
[146].

clusters. While the maximum R is basically limited by the maximum
atom number, we chose δR to be small enough9 to ensure the system
features a continuous phase transition towards the supersolid.

The lack of homogeneity of the ring walls and the stray light in
the dark area due to diffraction, have been studied with our test setup.
We find that filtering out the Fourier components at high spatial fre-
quencies by reducing the aperture of the iris helps in smoothing out
the diffraction fringes in the vicinity of the ring walls. Moreover, the
overall homogeneity can be improved using the feedback algorithm
described in [146]. We also found that our illumination configuration
with α = 2αB strongly reduces the image distortions since the DMD
pixels are lying at the same distance from the first lens. An alternative
scheme typically used with gratings is the Littrow configuration (or
autocollimation), where the DMD surface is tilted by αB, so incoming
and outgoing light are in the same direction and must be separated
by polarizing filters [49]. Although this configuration is more compact,
the tilt of the DMD surface with respect to the other optical elements
introduces distortions, that turned out to be quite important for our
application.

To test the overall quality of the ring potential we used the acquired

9With this choice δR is slightly above the spatial resolution of our objective, and we
expect the actual thickness to be reduced further by the finite resolution.
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images on the camera, properly rescaled, to calculate the ground state
and first excited states solutions for a free particle, looking for the con-
figuration that gives the maximum delocalization of the wavefunction
along the annulus. We find that, together with the tilt of the DMD
surface, the performances of f2 are pretty critical. In order to minimize
the spurious effects introduced by this lens, we use an aspheric, identical
to the objective lens, mounted on an x-y-z translational stage that
allows a precise alignment.

Circular harmonic trap

As I already mentioned, in order to create the ring potential with our
spatial light modulator we first need to modify the current infrared
crossed dipole trap to achieve a circular shape instead of an elongated
one. Since the geometry and beam waists of the infrared beams do
not allow us to reach such a configuration, we built a new crossed
dipole trap based on a horizontal light sheet and a vertical beam, both
at a wavelength of 532 nm, which is attractive for dysprosium. The
light sheet beam has waists (wx ,wz) = (190 , 20) µm, tightly confining
the atoms in the vertical direction and producing a weak confinement
along the x direction. To add a confinement potential along the y
direction, we use a vertical beam with the same aspect ratio of the
horizontal sheet, but at lower power, such that the weak axis is x and
the tight axis is y. This way, we can compensate for the anisotropy of
the confinement in the plane given by the light sheet alone. The sketch
of the beams arrangement is reported in Fig. 4.9a, together with the
spatial profile of the sheet beam mode.

The resulting harmonic confinement is almost cylindrical, with
trap frequencies (νx , νy , νz) = (30 , 32 , 140) Hz. To obtain the BEC in
the circular trap we start the evaporation with our standard infrared
crossed dipole trap and we turn on the green beams when the gas is
still thermal. Instead of keeping the infrared beams on at the end of the
evaporation ramp, we smoothly turn them off letting the system settle
in the green potential. With this sequence, we achieve a BEC of about
85% of the atoms in the circular trap, with respect to the infrared alone.
In Fig. 4.9b we show the time-of-fligt density distribution of a sample
of condensed atoms with N = 2.5 × 104, held in the circular trap. Note
that the small thermal fraction present could be further reduced by
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Figure 4.9: Production of a BEC in the new circular trap. (a) Sketch of the 532 nm
beams employed to build the circular harmonic potential. The lower panel shows
the profile of the beam used for the horizontal light sheet, imaged in the x-z plane
with a magnification M = 1. From gaussian fits of the beam mode, we measure
the waists to be (wx ,wz) = (190 , 20) µm. (b) Bose-Einstein condensate of about
2.5× 104 atoms in the circular harmonic trap, imaged after an expansion of about
20ms.

stabilizing the power of the green beams (to avoid parametric heating
[164]), and optimizing the evaporation ramp.

4.6 Repulsive light at 404 nm
As discussed in the previous sections, we want to confine 162Dy atoms
in a trap resulting from the combination of the attractive 532 nm
beams and a repulsive ring-shaped potential projected by the DMD. To
produce repulsive light for dysprosium we choose to work slightly blue-
detuned from a strong transition coupling the ground state with the
excited [Xe]4f 10 (5I8) 6s6p (1P0) (8, 1)7 state at 404.7 nm with Γ/ (2π) ≈
30MHz [195]. This choice is motivated by the possibility of employing
commercial laser diodes in this spectral region and the vicinity of the
imaging wavelength which makes it possible to use the same objective
to project the repulsive light on atoms. Moreover, we expect the atomic
polarizability to be strongly enhanced (with respect to other spectral
regions [83, 152, 90]) by the presence of the transition, allowing the use
of low-power laser sources.

The important disadvantage of working so close to a strong transi-
tion is that the spectral profile of the laser source employed for the DMD
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illumination has to be filtered precisely to prevent resonant light from
hitting the atoms, thus reducing drastically the lifetime of the system.
We find that, curiously, an external cavity diode laser (ECDL) in single-
mode operation provides a good start for building such a source, but
the spectral tails due to spontaneous emission are still strong enough
to significantly shorten the lifetime, even when the central wavelength
is 1 nm away from resonance. Moreover, the maximum power output of
ECDLs in this spectral region is typically around 50mW, so the margin
to achieve strong enough potentials for the atoms becomes thin.

The goal is then to demonstrate the possibility of creating potentials
of the order of 100 nK, which is enough to manipulate an already
condensed sample, without reducing the system lifetime or heating the
system. I will discuss this possibility by showing the details of a suitable
laser system built for DMD illumination and, equally importantly, the
measurement of atomic polarizability carried out with a new technique
developed by our group.

4.6.1 Blue laser

We employ a Nichia NDV4313 diode laser which, without any exter-
nal cavity, runs multimode at a central wavelength of about 405 nm
and a maximum power of 120mW. We realized the external cavity
with an optical grating with 3600 grooves/mm in the Littrow configura-
tion positioned after an aspheric collimation lens attached to the laser
mount. In single-mode operation, the light wavelength can be tuned
by changing the tilt of the grating over a 1 nm range, but the output
power is reduced to 20mW due to the losses in the feedback process.
As anticipated in the introduction to this section, the spectrum in this
configuration is not sufficiently clean to make the source usable to trap
atoms.

We develop a filtering scheme, sketched in Fig. 4.10 together with
the results for the system lifetime, employing an additional optical
grating and a single-mode fiber. The working principle is the same as a
spectrum analyzer, where the incident light on the grating is spatially
separated in its spectral component, which then is selected by a slit,
which in our case is a fiber. This way we can select precisely a tiny
region of the laser spectrum, that coincides with the peak emission of
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Figure 4.10: Effect of the spectral filter on the atomic lifetime. (a) Sketch of the
optical setup for the spectral filtering of the laser light. (b) Measured lifetime on the
condensate held in the standard infrared harmonic trap, when we shine 2mW of blue
light at 403.6 nm single-mode. Blue points represent the atom losses for unfiltered
light, while for red points we employ the spectral filter.

the ECDL mode, and send it to the atoms. Besides working as an exit
slit of our filter, the fiber cleans also the spatial mode of the diode laser,
which is then resized and focused onto the atoms. In Fig. 4.10b, we
see that the lifetime of the system is > 2 s using filtered light, while is
of the order of hundreds of milliseconds without the filter. This last
measure can be done by simply coupling the zero-th diffractive order
on the filtering grating into the same fiber. Using either the zero-th or
the first order we can choose between unfiltered or filtered light.

Although this measure demonstrates the long lifetime of the system,
given we take care of the spectral tails of the ECDL, the setup is
strongly limited by the power output. To increase the total amount
of light available, we developed a master-slave scheme where a first
ECDL running in single-mode, is used to feedback a second diode
(identical to the first one). In this case, the power of the slave is larger,
of about 40mW, maintaining the characteristics of the master laser.
In order to reduce the losses from the filtering method, we also use a
tilted spectral filter (Semrock LL01-405) to cut the high wavelengths
from the spectrum, instead of the grating. Note that the filter simply
suppresses the intensity of light in the excluded spectral region, without
eliminating it completely, thus we have slightly more losses with respect
to the data in Fig. 4.10, but the lifetime is still above 2 s.
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Figure 4.11: Measurement of the total polarizability from the momentum imprinted
by blue light onto the atomic cloud. (a) Sketch of the measurement procedure. The
atoms, held in x0 by the standard infrared potential, are pushed by a pulse of light
with a force F which depends on the alignment. After releasing the atoms from
the trap, the cloud falls and expands. We measure the displacement δ with respect
to x0 of the center of mass of the cloud (black dot) in time-of-flight images. (b)
Typical behavior of the measured displacement δx as a function of the alignment of
the beam. Here ∆ is the distance of the atoms to the beam center. Black dots are
experimental results, fitted with the derivative of a Gaussian (blue line).

4.6.2 Measure of the atomic polarizability
To be sure that the dipole potential exerted by the blue light onto
the atoms is enough to realize repulsive confinements with the DMD,
we also need to know the polarizability of dysprosium atoms at this
wavelength. Since there is no such data available in the literature, we
developed a new method to experimentally extract the polarizability
α by measuring the dipole force in time-of-flight. This is conceptu-
ally different from the standard methods to measure α for attractive
wavelengths, which usually rely on the measurement of trap frequencies
[83, 152, 90], not possible in the case of repulsive potentials.

The working principle of our method is sketched in Fig. 4.11. We
start with the condensate in our standard infrared trap and we use
a pulse of tightly focused linearly polarized blue light to push the
atoms imprinting momentum to the cloud. Just after the blue pulse
the infrared trap is turned off and the atoms fall under the action of
gravity. After the expansion we image the momentum distribution,
detecting the displacement δ in the x-y plane which is proportional
to the repulsive force. The latter depends clearly on the alignment of
the blue beam with the atomic cloud. Assuming a point-like density
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distribution (for simplicity) and Gaussian beam profile, we expect the
force to behave like the derivative of a Gaussian with a maximum

Fmax(ω) =
2α(ω)Pe−1/2

πϵ0cwzw2
x

, (4.5)

when the atomic cloud sits at half the beam waist from the beam
center. Here we assumed the beam to be perfectly aligned along z and
pushing only along x (since y is the direction of propagation). In the
equation, α is the total polarizability, P is the light power, and wz,
wx are the beam waists along z and x. Controlling the position of the
beam ∆ we measure the displacement reported in Fig. 4.11b. From the
distance between the two maximum values, we infer the waist of the
blue beam at the position of the atoms. This is quite remarkable since
represents a direct measure of the waist, without the use of any further
propagation. The uncertainty of the measure is mainly due to the finite
precision in controlling ∆, which is modified using two motorized screws
acting on the mirror directing the blue light to the lens which focuses
it onto the atoms. The beam tilt induced by the mirror is translated
in a displacement of the beam into the focal plane by the lens. We
calibrated the single step of the motor to induce a displacement of 4 µm
in the plane of the atoms. From the data in Fig. 4.11b, the obtained
waists are wx = 58(7) µm and wz = 38(3) µm.

To extract the total polarizability we first align the blue beam
to have the maximum force described by Eq. 4.5, then we vary the
incident power P , and from the slope of a linear regression, we derive
α. To extract the contribution of the scalar, vectorial and tensorial
polarizabilities, we employ the polarization of the blue light. For linearly
polarized light the vectorial component vanishes and, for the ground
state of dysprosium we can derive [125]

α(ω) = αs(ω) + 3 cos2 θ − 1
2 αt(ω) , (4.6)

where αs and αt are respectively the scalar and tensorial component
of the polarizability and θ is the angle between the quantization axis
(defined by the external magnetic field B = Bẑ) and the polarization
vector of the electric field of incident light. Given the sinusoidal depen-
dence of the total polarizability on the polarization angle, we separate
the scalar and tensorial component, by measuring δ as a function of θ.
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Figure 4.12: Polarizability of 162Dy around 404 nm. The experimental points repre-
sents the scalar (blue) and tensorial (red) polarizabilities as a function of the laser
wavelength. The maximum of the total polarizability (green) is reported in the same
range. Solid lines are theoretical predictions from [51, 109].

From Eq. 4.6, we have the maximum displacement for θ = π/2 + ℓπ
where α = αs − αt/2, and the minimum displacement for θ = π + ℓπ
where α = αs +αt. From these relations, we can extract both αs and αt.

We performed these kinds of measurements by varying the wave-
length of the blue laser. Our results are reported in Fig. 4.12, showing
that the maximum total polarizability is indeed very large, of about
−13000 a u at 404.1 nm, just 0.6 nm from the transition. With these
numbers and the actual optical power available for the DMD scheme,
taking also into account its diffraction efficiency and the transmission
losses due to the optical fibers, we estimate to reach potential walls even
higher than 100 nK, which was our initial goal. Indeed, considering
1.5mW of blue power, focused on a waist of 60 µm, we calculate the
height of the ring walls to be 1.5 µK.





Towards novel topological
excitations in a spinor

condensate

Chapter 5

In this chapter I will present the work I carried out as a visiting student
during my stay at the Kirchhoff Institut für Physik (Heidelberg, DE),
where I worked in the group of Prof. Markus K. Oberthaler on a 87Rb
spinor Bose-Einstein condensate [84, 176]. The beauty of this quantum
system is the richness of accessible internal magnetic states in differ-
ent energy manifolds that allow for full control over the preparation,
the evolution, and the readout of its many-body state. This platform
is therefore ideal for exploring many fundamental phenomena such
as quantum phase transitions [119, 147], out-of-equilibrium dynamics
[166, 148, 149, 150, 102, 100], topological excitations [101, 171, 172],
entanglement [128, 129, 92, 93, 94, 91] and entropy transport [31]. For
the scope of this chapter, I will just give an overview of the rich physics
one can investigate in such a system, focusing only on the details of
the experimental work I took part in during my visiting period in the lab.

In general, a spinor condensate can be understood as a mixture of
bosonic particles in different spin states, that can interact either by stan-
dard collisions or spin-dependent ones, able to change the spin states
of particles, which are described collectively by a multi-component
wavefunction. Tuning the interactions, the energy landscape of the
system can be changed, giving rise to different quantum phases in the
ground state, depending on the relative populations of the spin states.
Here I will focus on a quasi-one-dimensional spin-1 system, exploring
a quantum phase transition from the polar phase [169], where the
total spin F1 is zero, towards the so-called easy-plane ferromagnetic

1Here F is the length of the spin vector defined later in Sec. 5.1.1
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phase [150], characterized by a finite transverse spin length F⊥ with
respect to the quantization axis. In the experiment, we typically cross
this phase transition with a sudden quench of the quadratic Zeeman
shift, leading to a non-equilibrium dynamics towards the new ground
state. This dynamics have been observed and discussed in [148]. As
a preliminary study on the possibility of observing novel topological
excitations emerging from the evaluation of the system dynamics, I
contributed to characterizing the relaxation dynamics in a new set of
observables, confirming previous results, and studying the response of
the system to perturbations once in the new ground state. These mea-
surements constitute the first steps toward the experimental validation
of an effective theory (under development) governing the system, which
is expected to host a variety of topological excitations, such as real-time
instantons [172].

During early evolution after the quench, the excitations of the
system are understood as Bogoliubov perturbations that grow within
the system giving rise to a peculiar spatial dependence of the spin.
The emerging structures can be described as the occupation of un-
stable momentum modes around a specific finite k-vector predicted
by the Bogoliubov theory [84]. This spatial structure of the spin is
not persistent at later times, since the interactions redistribute the
momentum population over a finite range of k-vectors [147]. It’s curious
to note that the unstable modes of spinor condensates in a quasi-2D
confinement, have been proposed to be linked to a possible supersolid
phase [37], coming from the interplay of dipolar and spin interactions
in the spin-1 system. Indeed, it was observed experimentally that a
spatial pattern of magnetization emerges in such systems during slow
evaporation [161] Moreover, the system prepared out of equilibrium
with a non-homogeneous magnetization texture can spontaneously relax
into a spatially modulated structure of spin domains [189]. However, a
conclusive connection between these phenomena and the presence of a
supersolid has not been traced. Another type of modulated state in the
spin condensate is the so-called spin-wave, where the modulation of the
spin length is not spontaneous, but is the result of the system evolution
in the presence of external magnetic field gradients. Spin waves have
an important practical utility in the experiment since they are used for
calibrating the readout sequence (See Sec. 5.1.2), and they constitute a
fascinating initial condition to start the out-of-equilibrium dynamics
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[148].

At later evolution times, other non-linear and topological exci-
tations come into play. An interesting phenomenon comes from the
possibility of having random excitations of the relative phase between
the different spin states. Similarly to what happens with rough waves,
phase excitations can build up during the time evolution, as they are
focused by an effective potential, giving rise to a cusp divergence in the
spin length at a given point in space and time. These kinks realize a
vortex-like structure in space and time and can be described as real-
time instantons, topological excitations predicted to appear randomly
after the quench from the polar to the easy-plane phase[172]. However,
the out-of-equilibrium dynamics is complicated, and revealing such
objects on top of the disordered dynamics of the experimental system is
challenging since they appear randomly in the system. This is a major
problem for the detection of such excitations since we are not able to
measure time series in experiments, which typically rely on absorption
images. Another approach to studying this type of excitation would
be to prepare a single time-space vortex in a deterministic manner,
exploiting the possibility to locally manipulate the spinor condensate in
experiments. Driven by this idea, the ongoing project is to study real-
time instantons in a quasi-1D system, properly initializing the system
in order to have a deterministic formation of instantons in a precise
space-time point. Both the right initial condition and the experimental
sequence needed to realize it are the subject of ongoing investigations.

Contributions

The results presented in this chapter are preliminary, and they are part
of a larger project under the supervision of Prof. Markus K. Oberthaler
and coworkers. In particular, I want to acknowledge the contribution of
Helmut Strobel, Yannick Deller, Stefan Lannig and Felix Klein for the
experimental part, and of Ido Siovitz for the discussion of theoretical
aspects and numerical simulations.
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5.1 The 87Rb spinor condensate
The experimental platform is a quantum gas of 87Rb confined in an
elongated optical trap realizing a quasi-1D system, where all the relevant
dynamics happen along only one spatial direction. As the other alkalis,
87Rb has a simple but rather interesting atomic structure, presented
in Fig. 5.1. In the ground state, the electronic configuration is [Kr]5s 1

, with a single electron in a s shell resulting in a 2S1/2 state. The
electronic spin J = 1/2 couples with the nuclear one I = 3/2, splitting
the electronic ground state into two hyperfine levels with total spin
F = 1, 2 separated by ∆Ehfs ≈ 6.8GHz. The rubidium gas is cooled
down with standard techniques and condensed in the lowest-lying level,
the F = 1, which is the only relevant state for the spin physics we want
to discuss in this chapter. However, it’s important to note that the
possibility of accessing the F = 2 state is crucial, as I will describe in
Sec. 5.1.2, for both the readout sequence and the global manipulation
of the spinor wavefunction. When external magnetic fields are applied2,
each hyperfine level splits into sub-states labeled by their spin projection
mF = −F, . . . ,F along the quantization axis z, and separated by an
energy shift

∆E|F,mF⟩ = µB gF mF Bz. (5.1)

Let’s now focus on the F = 1 manifold, and see how interactions
are modeled in a spinor condensate. Since the total magnetic moments
of the particles are small, we neglect dipole-dipole interactions and
long-range effects, retaining short-range collisions as the only mecha-
nism for two particles to interact in our diluted gas. Being a scattering
process, a two-body collision should conserve quantities such as the
total energy, momentum, and spin. In particular, when two atoms
collide they can either maintain their initial internal state or change
Zeeman sub-level across the manifold. I will refer to the first process as
standard or density collisions and to the second one as spin-changing
collisions (SCC). The latter are of fundamental importance in our spinor
condensate since they allow for coherent population transfer between
the different spin states, giving rise to the different magnetic phases
that we can explore in our system (see discussion in Sec. 5.2).

2This picture applies to low magnetic fields, where the energy shift is small compared
to the hyperfine splitting and we are far from the Paschen-Back regime
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Figure 5.1: Structure of 87Rb 2S1/2 hyperfine manifolds. (a) Scheme of the levels in the
presence of a weak magnetic field, splitting each F manifold in −F · · ·+F sub-states.
The hyperfine and linear Zeeman energy shifts are indicated. (b) The same scheme
after moving in the frame of reference co-rotating with the spin precession at the
Larmor frequency ωL. The F = 2 manifold is nor resolved. The energy difference
from mF = ±1 in the F = 1 manifold is given by the quadratic Zeeman shift q.
Coupling the mF = 0 state with the upper manifold, with a microwave with rabi
frequency Ω and detuning δ, q can be tuned experimentally.
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Considering two atoms respectively in the mi and mj sub-states,
the interesting case is the one with mi = mj = 0, so the only option
to conserve mi +mj , is to transfer the atoms to the (mi,mj) = (1, −1)
states. Of course, also the opposite process is allowed, where a pair of
(mi,mj) = (1, −1) atoms are transferred to the mF = 0 state, making
the spin dynamics possible within the system. The strength of pair
production and recombination processes depends on the intensity of
the SCC, which is not affected by the linear Zeeman shift described in
Eq. 5.1, since the spin-changing collisions are symmetric with respect
to mF. From this point of view, it is convenient to describe the system
in the rotating frame, sketched in Fig. 5.1(b), canceling the Larmor
precession and the energy shifts between the different sub-states. At
a given magnetic field, the energy difference between the mF = 0 and
the mF = ±1 sub-states is only given by the quadratic Zeeman shift
∝ q m2

F [165], which ultimately determines the rate of spin-changing
collisions.

Tuning q makes then possible to control the spin dynamics: at
large q, SCCs are energetically suppressed and only standard collisions
can happen, while when q is of the order or the interaction strength,
which is about 2Hz for the measurements taken in this thesis, the
spin dynamics is enabled. Experimentally, the quadratic Zeeman shift
can be tuned by coupling the mF = 0 state with the F = 2 manifold
through a microwave with a given Rabi frequency Ω and detuning δ.
This microwave dressing introduces a light shift that effectively moves
the mF = 0 level with respect to the side modes mF = ±1, so that
q = q0 + Ω2/(4δ) (q0 is the bare quadratic Zeeman shift). The stability
of the MW power, which fixes Ω, is crucial to keep q constant which is
stabilized during the experiment. The performance of this stabilization
constitutes the major limit for the overall experimental stability.

5.1.1 Theory of the spin-1 system

The spinor condensate in the F = 1 manifold is usually described in
terms of the spinor field Ψ̂

Ψ̂ =


ψ̂+1

ψ̂0

ψ̂−1

 (5.2)
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collecting in a single object the field operators ψ̂†
m, ψ̂m, which describe

the creation and annihilation of particles in the m = 0, ±1 sub-states.
The fields ψ̂m depend on space and satisfy bosonic commutation rela-
tions [

ψ̂m(r), ψ̂†
m′(r)

]
= δmm′δ(r − r′)[

ψ̂m(r), ψ̂m′(r)
]

=
[
ψ̂†

m(r), ψ̂†
m′(r)

]
= 0.

(5.3)

Acting on those fields, we consider the spin operators F̂j = Ψ̂†f̂jΨ̂ with
j = x, y, z and the f̂j are the spin matrices

f̂x = 1
√

2

0 1 0
1 0 1
0 1 0

 , f̂y = i
√

2

 0 1 0
−1 0 1
0 −1 0

 , f̂z =

1 0 0
0 0 0
0 0 −1

 .

(5.4)
It is also useful to gather the spin operators in the vector F̂ =
(F̂x, F̂y, F̂z), and define the transverse spin operator

F̂⊥ = F̂x + iF̂y =
√

2
(
ψ̂†

0ψ̂+1 + ψ̂†
−1ψ̂0

)
, (5.5)

since the real part of its expectation value F⊥ is the order parameter of
the polar to easy-plane phase transition, which evolves during the system
dynamics (spin changing collisions conserve Fz, which is typically zero
from the initial condition). The total number density of the condensate
can be written as n̂ = n̂−1 + n̂0 + n̂+1, where n̂m = ψ̂†

mψ̂m is the number
density of the m = 0, ±1 state.

Hamiltonian

With the given definitions, we can now look at the Hamiltonian for the
spin-1 system. The non-interacting Hamiltonian takes into account the
kinetic energy, the confinement potential Vtrap, and both the linear and
quadratic Zeeman shifts

Ĥ0 =
∫

dr
∑

m m′
ψ̂†

m

[
−ℏ2∇2

2M + Vtrap + p(fz)m m′ + q(f 2
z )m m′

]
ψ̂m

(5.6)
where (fz)m m′ = mδ

m m′ is the matrix element of the spin matrix f̂z.
As discussed in Sec. 5.1, the linear Zeeman term ∝ p does not affect the
spin dynamics and can be neglected by moving in the co-rotating frame.
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To write down the interacting part of the Hamiltonian, we need to
take a closer look at how the interactions can be described. Usually, to
model a low-energy scattering process we rely on a single parameter:
the s-wave scattering length. When two atoms with F = 1 collide, the
total spin can couple either to F′ = 0 or F′ = 2, and we can define a
scattering length for both processes: we call them respectively a0 and
a2 [84]. These two interaction channels can be combined together to
form two interacting terms in the Hamiltonian

Ĥint = 1
2

∫
dr

[
c0 : n̂(r) : +c1 : F̂2(r) :

]
(5.7)

where the coupling constants c0 and c1, respectively for standard and
spin-changing collisions, are written as

c0 = g0 + 2g2

3h c1 = g2 − g0

3h (5.8)

and gF = (4πℏ2/M)aF for F = 0, 2, are the coupling constants for the
short-range pseudopotential of the single-channel scattering process
VF(r, r′) = gFδ(r−r′) describing the interaction of two atoms in r and r′.
In the case of 87Rb, the density interactions are repulsive (c0 > 0), and
the coupling between the spins is ferromagnetic (c1 < 0), meaning that
the system gains energy whenever two spins point in different directions.
This energy can be spent to transfer pairs to the side modes, balancing
out the interaction cost. This is why, in a nutshell, a rearrangement of
the relative populations of the spin states can lead to a finite transverse
magnetization F⊥.

Mean-field theory

The mean-field description of our spinor condensate can be obtained
by replacing the field operators ψ̂m with their expectation values ⟨ψ̂m⟩.
To do so, we must expand ψ̂m using the creation and annihilation
operators â†,â, on a basis ϕ(r) describing their spatial behavior:

ψ̂m(r) =
∑

k

âmkφmk(r). (5.9)

Here the sum is running on all the possible momentum states k, but
for simplicity, we can assume that only the k = 0 is populated in
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the condensate and drop the k index. To describe N atoms in the
condensate, we must apply an operator of this kind to the vacuum

|N⟩ = 1
√
N !

(∑
m

ςmâ
†
m

)N

|vac⟩ (5.10)

with coefficients ςm satisfying ∑m |ςm|2 = 1. The expectation value of
ψ̂m on such a state is

ψm(r) =
√
Nςmφm(r). (5.11)

The full state defined in 5.2 can be therefore replaced by Ψ(r) =
(ψ−1,ψ0,ψ+1) and, if we are not interested in the spatial features of
our spinor gas, we can just specify the complex coefficients (|ς−1|2eiϕL/2,
|ς0|2eiϕS , |ς+1|2e−iϕL/2), where

ϕL = ϕ+1 − ϕ−1

ϕS = ϕ0 − (ϕ+1 + ϕ−1)/2,
(5.12)

are called Larmor phase and spinor phase respectively. From their
definition, it’s clear that the Larmor phase is the relative phase between
the side modes mF = ±1, while the spinor phase is the phase difference
between the central mode mF = 0 and the side modes.

Spin-1 observables

Differently from a spin-1/2 system, which can be easily mapped into a
two-level system recovering the Bloch sphere as a helpful visualization
tool, spin-1 systems are more complex, since their symmetry group has
a larger dimension, and require more effort to be represented graph-
ically. Indeed, the dynamics of a spin-1 state cannot be understood
only in terms of the rotations in the three-dimensional spin space de-
fined in Eqs. 5.4. During the dynamics, the spin vector’s length can
also be modified (without loss of coherence) thanks to the additional
degrees of freedom of the SU(3) symmetry group describing spin-1 sys-
tems. A modification of the spin length can be understood, considering
quadrupole operators of the form

Q̂ij = f̂if̂j + f̂j f̂i − 2
3δij1, (5.13)
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as a rotation of the spin vector in the Q̂ij-f̂k plane, which decreases
the spin length, for example, decreasing the projection along f̂x in
favor of the one along Q̂yz. These rotations are also connected to the
fluctuations of the spin length in spin-1 systems, as the definition of
quadrupole operators in Eq. 5.13 is linked to the covariance matrix of
the spin operators [91].

Being mainly interested in the length and orientation of the spin,
it’s clear that we need at least two different spaces to describe our
system: the spin space fx-fy-fz and the so-called spin-nematic space
fx-Qyz-Q0, where Q̂0 = −1/31 − Q̂zz

3 Typically, we can change the
readout sequence in the experiment to simultaneously measure either
the pair fx-fy or fx-Qyz. In the first case, we can extract the transverse
magnetization F⊥ as the projection of the spin vector in the fx-fy plane,
and the Larmor phase as the angle of the spin vector with respect to
the fx axis. Whit fx-Qyz, we have instead only partial information
about the spin length, but we can extract the spinor phase ϕS. The
details of the readout sequence are presented in the next section.

5.1.2 Experimental tools
To present the experimental techniques involved in this project, I will
start with the setup depicted in Fig. 5.2, giving an overview of the
main ingredients needed to study the spin physics outlined at the be-
ginning of this chapter. The details about 87Rb cooling, trapping, and
condensation are given in [147]. Here I will focus on three fundamental
aspects of the experiment: the high-fidelity preparation of the sample
in a given state Ψ(r), the manipulation of the spinor phase via global
rotations, and the readout of the system after long evolution times.

As sketched in Fig. 5.2, our spinor condensate of about N ≈ 105

atoms, is kept at a typical temperature of about 20 nK in a glass cell
at a constant magnetic field B = 0.884ẑG, confined by a combination
of optical potentials shaping an elongated cloud along the x̂ direc-
tion. The condensation is achieved by evaporating in a crossed dipole
trap (XDT), which is then gradually turned off while ramping up the
power of an optical beam forming a wave-guide (WG) along the x̂ with

3The expectation value of Q̂0 is connected to the population imbalance between the
mF = ±1 side-modes and the central mode mF = ±0.
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Figure 5.2: Sketch of the experimental setup from [100]. The condensate is held
at the center of the vacuum glass cell, trapped by the XDT and WG red-detuned
laser beams. The two radio frequency coils RF1 and RF2, face respectively ŷ and x̂
directions such that it is possible to control the polarization of the RF pulse that
couples the sub-states of the hyperfine manifolds. A single-loop microwave antenna
is placed just outside the glass cell to selectively control the couplings between the
F = 1 and F = 2 sub-states and the microwave dressing used to control q.
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(ωx, ω⊥) = 2π× (1.6, 170)Hz. At this point, the gas reaches in practice
a quasi-1D regime, with a linear density of about n = 400 µm−1 in the
central region of the wave-guide. Shining a pair of blue-detuned laser
beams in the transverse direction, we can also reach an almost constant
density, turning the harmonic confinement given by the wave-guide
alone into a one-dimensional box-like potential. These blue-detuned
beams come from a series of two crossed AODs4 which control the posi-
tion of the beam focus in the x-z plane. Besides the optical confinement,
the other key element of the system is a set of radio frequency (RF)
and microwave (MW) coils used to control the spin state. By precisely
tuning the frequency of such coils and the experiment timing, we can
use the coil to build very complex sequences of pulses for the state
preparation and readout of our system. In simple words, the RF coils
are used to couple together all the mF sub-states in a given manifold5,
while the MW coil is used for the microwave dressing that controls the
effective quadratic Zeeman shift q, and, ultimately, the spin-changing
collisions.

Let’s now have a closer look at the experimental sequence. In the
following, I will use the notation |F,mF⟩ to address a certain sub-state
of the system.

Preparation

When the gas is condensed all the atoms are in |1, −1⟩, which is the
trapped state in the magnetic trap used for the cooling stage. Usually, we
want the spin dynamics to start either in the polar state, where all the
atoms are in |1, 0⟩ and the spin is not defined or with an elongated spin
F⊥. The first configuration can be prepared with the pulse sequence
sketched in Fig. 5.3(a): first we do a π-pulse from |1, −1⟩ to |2, −1⟩
and shortly after another π-pulse towards |1, 0⟩. Even for optimized
transfers, minor imperfections in the timing and detuning of these
pulses may lead to spurious populations in the |1, ±1⟩ states or in the
F = 2 manifold. These can be eliminated by a short pulse of magnetic
gradient (produced by the MOT coils) which pushes atoms in |1, ±1⟩
out of the trap.

4Acousto-Optic Deflector
5even if the hyperfine spacing is nearly the same for both F = 1 and F = 2, we can
selectively enable the coupling in each of them by controlling the relative phase of
the coils.
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Figure 5.3: Different pulse schemes for the preparation and manipulation of the spin
vector. (a) Preparation of a polar state. Atoms are transferred by a first MW π-pulse
from the initial state |1,−1⟩ to |2,−1⟩, and from there to |1, 0⟩ with another MW
π-pulse. The spurious population left in the |1,±1⟩ states are then cleaned using
a Stern-Gerlach cleaning pulse (c). (b) Global rotation of the spinor phase ϕS .
Whatever the population is in the side-modes, atoms are transferred from |1, 0⟩ to
|2, 0⟩ and back, applying a couple of MW π-pulse with a phase difference θ. This
affects just the phase factor of the ψ0, changing in practice ϕS by θ. (d) Sketch of
the RF coupling used to transfer populations among the F = 1 manifold. Tuning the
frequency of the RF we can address selectively the F = 2 manifold, or both of them.

Manipulation

At any point during the system’s evolution, we can perform global
rotations of the spin vector, once again by applying a sequence of
pulses coupling the different sub-states. For the scope of this chapter, I
will describe in particular how such rotations can be used to control
the spinor phase ϕS defined in Eq. 5.12. To imprint a spinor phase
rotation of an angle θ to the whole system, we just need to modify
ψ0(r) with a phase factor eiθ. This is done by the two microwave pulses
sketched in Fig. 5.3(b), coupling |1, 0⟩ to |2, 0⟩, having the phase of the
second π-pulse shifted by θ. This procedure obviously requires precise
calibration of the θ = 0 phase value set for the Arbitrary Waveform
Generator that drives the microwave antenna. The calibration can
be done by optimizing the amplitude of a spin wave. To create such
perturbation, the system is prepared with an elongated spin and then
it evolves in the presence of a magnetic field gradient along x̂, such
that the Larmor frequency becomes space-dependent. At a generic time
t during the dynamics, the effect of this space-dependent dephasing
results in a spatial modulation of the spin length. The amplitude of
this modulation is maximum for ϕS = 0, so repeating this measure for
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Figure 5.4: Sketch of the fx -fy readout sequence from [100]. The different nature of
pulses, their time duration, and their effect on the spin vector are presented as a
function of the experimental time. The first RF rotation (coupling only the states
in F = 1) maps the fx observable onto fz of the F = 1 manifold. Then, three MW
pulses transfer half of the population of |1,±1⟩ and |1, 0⟩ states to |2,±2⟩ and |2, 0⟩
respectively, transferring the information about fx in the F = 2 manifold. To correct
for the dephasing of the spin accumulated during the pulse sequence we now use a
spin echo pulse (an RF π-pulse rotating around fx . Then, the second RF rotation is
performed, mapping the fy observable in the fz of the F = 1.

different θ, we can calibrate the optimal phase value.

Readout

As anticipated in the previous section, our goal is to extract information
about the transverse spin length F⊥ and both the Larmor and spinor
phases by measuring either fx-fy or fx-Qyz. Let’s consider first the
simple case of the fz readout, where we have to measure the popu-
lation imbalance between |1, −1⟩ and |1, 1⟩ which gives directly the
expectation value of the f̂z operator. To do so, we resolve the different
sub-states with standard absorption imaging after a short time of flight
in the presence of a magnetic gradient along ẑ. This realizes the so-
called Stern-Gerlach imaging, where sub-states with opposite magnetic
moments (such |1, ±1⟩) are pushed in opposite directions and can be
then resolved by a high-resolution objective [91]. After having recorded
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the populations Nm, fz is simply given by

fz = N+1 −N−1

N+1 +N0 +N−1
. (5.14)

This quantity clearly depends on the x̂ spatial direction but in our case
tends to be constant for homogeneous densities.

Let’s now come to the more complex sequence, needed for the
fx-fy readout. The sequence is presented in Fig. 5.4. Indeed, we can
use the F = 2 manifold to efficiently store part of the population in
each sub-state, using it as an ancillary spin-1 system, and address
it separately from the true spin-1 system left in the lower manifold.
Since we measure always fz-like observables, we start by mapping fx

into fz by rotating the spin vector around the Fy axis using an RF
π/2-pulse. At this point, repeating the measure 5.14 on the F = 1
manifold, would give us fx, but we will lose the information about fy.
Before the imaging, we need then to transfer half of the population
from the F = 1 manifold to the F = 2 one, by applying MW π/2-pulses
coupling each sub-state with its respective one above. At this point,
we copied the information about fx in F = 2, and we can now rotate
in the F = 1 to map fy into fz, again using an RF π/2 rotation, but
this time around Fx. Note that this second RF pulse doesn’t rotate the
state stored in F = 2. At the end of the sequence, we have fx mapped
into fz in F = 2 and fy mapped into fz in F = 1. Our observables are
then given by

fx =
N2,+2 −N2,−2

N2,+2 +N2,0 +N2,−2

fy =
N1,+1 −N1,−1

N1,+1 +N1,0 +N1,−1
.

(5.15)

For each experimental shot, these two quantities are calculated at each
position in the atomic cloud and can be plotted in the fx-fy plane. The
distance of the data distribution from the origin gives an experimental
measure of F⊥.

To extract the spinor phase, we must use a different readout se-
quence which gives us fx-qyz, sketched in Fig. 5.5. The sequence starts,
as before, with the mapping of fx into fz in the F = 1 manifold. This
information is stored in the F = 2 manifold by transferring half of
the population from the |1, ±1⟩ and |1, 0⟩ states to |2, ±1⟩ and |2, 0⟩
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Figure 5.5: Sketch of the fx -qyz readout sequence from [94]. The different nature of
pulses and their time duration are presented as a function of the experimental time.
First, half of the population in the F = 1 manifold is transferred to |2,±1⟩ and |2, 0⟩
respectively, which is then used as an auxiliary spin-1 manifold. Then, we use an RF
pulse to do a π/2 rotation in both F = 1 and F = 2. The RF frequency is in fact
chosen such that the detuning is the same for both manifolds. In F = 1, the π/2
rotation maps fx into fz . The phase of the pulse is chosen such that in F = 2 the
same rotation maps qyz into the |2,±1⟩ states.

respectively. Then we have to map qyz into fz in F = 1. To do so,
we first reverse the initial mapping rotation, and then we apply a
spinor phase global imprint of π/2 using the same procedure sketched
in Fig. 5.3(b). This rotates the quadrupole qyz into fx that can be
mapped with another RF rotation (identical to the initial one) into fz.
In the end, the observables are extracted from the relative populations
in the side modes, as

fx =
N2,+1 −N2,−1

N2,+2 +N2,+1 +N2,0 +N2,−1 +N2,−2

qyz =
N1,+1 −N1,−1

N1,+1 +N1,0 +N1,−1
.

(5.16)

Similarly to the fx-fy case, these observables are calculated at each
position in the atomic cloud for each experimental realization and
plotted, this time, in the fx-qyz plane. As I will show in the next sections,
when the system develops an elongated spin the energy minima in the
fx-qyz are two points. By studying the slope of the line connecting the
minima we can extract the spinor phase from the experimental data.
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Figure 5.6: Mean-field phase diagram of the F = 1 manifold of a 87Rb spinor
condensate in a single spatial mode. Three different magnetic phases emerge as a
function of the quadratic Zeeman shift q, acting as the energy separation between
|1, 0⟩ and |1,±1⟩, and the spin-changing interactions strength c1. Polar phase: all
the atoms are in the lowest energy level |1, 0⟩. Easy-plane ferromagnetic phase: the
competition between q and the spin-changing collisions allows population transfer in
the |1,±1⟩. This mechanism is triggered at a critical value q∗ = 2n|c1|. Easy-axis
ferromagnetic phase: at negative q the atoms occupy either |1, 1⟩ or |1,−1⟩.

5.2 The polar to easy-plane ferromagnet
quantum phase transition

In Sec. 5.1 I briefly discussed the role of the quadratic Zeeman shift
q and the importance of the spin-changing collisions for the emergent
quantum phases of a spinor condensate. Indeed, we can have an
intuitive description of such phases just by looking at the behavior
of the energy levels in Fig. 5.1(b) when we change q. For q larger
than the critical value q∗, we saw that the spin-changing collisions are
turned off and the ground state is the so-called polar (P) phase, where
all the atoms collectively occupy the lowest energy level mF = 0. In
this phase, the spin direction is not defined because the expectation
values fx = fy = fx = 0 however, the spin fluctuations vanish only
in the fz direction and are finite in the fx-fy plane. Since we are not
interested in the fluctuation properties, we can represent the polar
phase as a point in the origin of the spin sphere. When q approaches
the critical value, a quantum phase transition is crossed and the system
develops a finite transverse spin F⊥. Indeed, spin-changing collisions
bring pairs of mF = 0 atoms to the side-modes, giving rise to a spin
vector with finite length with random Larmor phase ϕL. This phase is
called easy-plane (EP) ferromagnet and can be represented as a circle of
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radius F⊥ in the fx-fy plane of the spin sphere. At q = 0 the transverse
magnetization takes the maximum value F⊥ = 1, then for negative
values of the quadratic Zeeman shift, we cross another quantum phase
transition where the lowest energy states are the mF = ±1. This
phase is the so-called easy-axis (EA) ferromagnet, which minimizes
the ferromagnetic interaction energy by having a full occupation of
either mF = 1 or mF = −1. This phase is not important for the scope
of this chapter, since it can be reached during the system dynamics
only by preparing the initial condition with a finite magnetization fz,
which is conserved during the system evolution. On the contrary, in
the experiment, we want to start in the polar phase and drive the
quantum phase transition toward the easy-plane phase. However, the
easy-axis phase could be extremely interesting to explore since driving
the system through the two phase transitions separating it from the
polar state, one can generate entanglement within the system [120].
The emerging phase diagram is sketched in Fig. 5.6 as a function of q
and c1. Note that, while q can be tuned in the experiment, c1 < 0 is
fixed with c0/|c1| ≈ 200 in the case of 87Rb.

5.2.1 Mean-field phase diagram
The different phases introduced so far, can be understood by looking
at the mean-field picture. Considering the Hamiltonian Ĥ0 + Ĥint,
obtained by putting together Eq. 5.6 and Eq. 5.7, we can write the
total energy per particle as

ϵ = Vtrap + p
(
|ς+1|2 − |ς−1|2

)
+ q

(
|ς+1|2 + |ς−1|2

)
+ 1

2nc0 + 1
2nc1F

2.
(5.17)

As already mentioned, we are interested in the experimental config-
urations where Fz = 0 and is fixed during the dynamics, therefore
the linear Zeeman shift term can be neglected since |ς+1| − |ς−1| = 0.
Moreover, for homogeneous densities the Vtrap and the first interaction
term nc0, accounting for the density interactions, are simple constants.
The only two terms we retain are the quadratic Zeeman shift and the
spin-changing collision terms. These can be rewritten as

ϵ = q

2

(
1 −

√
1 −

(
F2

x + F2
y

))
+ 1

2nc1
(
F2

x + F2
y

)
, (5.18)

which, as a function of Fx and Fy is plotted in Fig. 5.7. This energy
landscape can show either a single minimum in the origin in the po-
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Figure 5.7: Mean field energy of Eq. 5.18 as a function of Fx and Fy . At high values
of q we have a single minimum sitting in the origin. Quenching to q < 2n|c1| the
free energy develops a minimum at a finite distance, and the old ground state is
now an unstable state. Since the energy depends only on

(
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)
the system is

free to explore all the the values of the Larmor phase ϕL. Once in the new energy
minimum, the perturbations of the spin length F⊥ can be described by oscillations
of the spinor phase ϕS .

lar phase, for q > 2n|c1| or, below this critical value, a bottle-bottom
shape with a minimum at a distance F⊥ describing the easy-plane
ferromagnet. Since the energy only depends on the spin length, the
system is free to explore all the possible values of the Larmor phase
ϕL without paying an energy cost. Modifications of the transverse
spin length can be described by modifications of the spinor phase
ψS. Changing adiabatically q, we can pass from the polar phase to
the easy-plane phase continuously, developing a non-zero F⊥ accord-
ingly to the position of the energy minimum, therefore slow changes
in q can be described as slow rotations in the spin-quadrupole space
which modifies the spinor phase, from ψS ≈ π (where the spin vector is
basically along the quadrupole) towards an elongated spin state ψS ≈ 0.

The intuitive picture presented above is strictly valid only for a
single spatial mode condensate, indeed for extended systems, we must
take all the possible k modes in Eq. 5.9 into account. This results
in the presence of stable and unstable modes in the condensate for
a given q, giving rise to perturbations with a specific k vector, that
can grow in the system. The unstable k modes at a given q predicted
by the Bogoliubov theory have been calculated in [84]. For the scope
of this chapter, we are not interested in the spatial behavior of the
perturbations, since they are only relevant at short times during the
dynamics of the system, where the perturbative approach applies and
Bogoliubov theory holds.
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Figure 5.8: Dynamics of a the system in the nematic subspace Fx -Qyz after a quench
from a polar phase. The quadratic Zeeman shift is fixed to q, just below the
critical value. Each distribution is extracted from a sample of 100-150 experimental
realizations. In single realizations, the observables are extracted from the spin modes
populations calculating the quantities in Eqs. 5.16, pixel-by-pixel. The last panel to
the right is a sketch of the free energy expected in the easy-plane phase.

5.2.2 Quench dynamics

Experimentally, we explore the relaxation dynamics after the quench
sketched in Fig. 5.7, by suddenly enabling the microwave dressing after
the preparation of the system in the polar phase, and tuning q below
the critical value 2n|c1|. In this experiment the spinor gas is confined
in a box-like potential, thus the density is almost constant along the
longitudinal direction of the cloud. This is crucial to have a global value
of the critical q, such that the energy landscape does not depend on
spatial coordinates. After the quench we wait a variable time, ranging
from a few milliseconds up to 20 s, and then we image the spin and
density distributions.

In Fig. 5.8, the Fx-Qyz distributions extracted from experimental
data are presented as a function of the evolution time, for a fixed value
of q corresponding to the easy-plane phase. At t = 0 the nematic
distribution is concentrated in the origin since the spin length is zero
and the spinor phase ϕS is not well defined. In the first second, of
the dynamics, the distribution spreads along the diagonal direction,
following the energy contours typical of the easy-plane phase. Indeed,
the energy landscape in the Fx-Qyz plane (as sketched in the last panel
on the right of Fig. 5.8) has a typical eight shape, coming from the
interplay between the quadratic Zeeman shift (last term in the free
hamiltonian 5.6) and the spin changing collisions (the term proportional
to c1 in the interaction hamiltonian 5.7). After 1 s of evolution, the
system begins to relax in the two minima, lying on the Fx axis at a
finite distance from the origin, reflecting the establishment of a finite
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transverse spin length F⊥. The same dynamics in the Fx-Fy plane
would be an evolution from a point in the origin (polar) towards a
ring, as expected for the bottle-bottom potential in Fig. 5.7. At late
times (see the panel at 15.6 s) the histogram shows a nice double-peak
structure, slightly tilted from the horizontal direction. This tilt is due
to a probable imperfection in the readout sequence, which shifts the
spinor phase of the system, thus rotating the measured distribution
along Q0. To test this hypothesis, we performed similar measures on
the other basis, measuring Fx-Fy, to exclude a possible error in the
system preparation. The data are consistent with the previous one,
reported in [102], confirming that the origin of the tilt is linked to the
other detection sequence.

Most of the dynamics seem to happen in the first 16 s or so, curiously
revealing a faster relaxation with respect to previous experiments [102].
At later times the double peak structure remains unchanged on top of
a small fraction of excitations, which persists up to 20 s. Note that,
the dynamics affecting the spin length F⊥, can also be understood as
the spinor phase changing during the system evolution. Indeed, the
spinor phase follows an effective mean field potential even far from
equilibrium in the extended system. As I’ll discuss in the next section,
it is reasonable to assume that the spinor phase is settling in the minima
of periodic potential energy derived by low energy effective field theory
calculations6.

5.3 Spinor phase detection and
manipulation

To understand better the behavior of the spinor phase, we analyzed
its distributions in a similar experiment where we instead fixed the
observation time and varied the value of q. The idea is to exploit the
system dynamics to explore the effective potential experienced by the
spinor phase, and map it on the fluctuations of ϕS. Similarly to the
technique explained in Chapter 2 to extract the shape of the free energy
from the fluctuations of the supersolid order parameter, we want the
system to be enough energetic so that the fluctuations can probe better

6Such calculations are currently under analytical and numerical investigations by Ido
Siovitz (Kirchhoff Institut für Physik - Heidelberg, DE ).
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Figure 5.9: Behavior of the spinor phase for different q. (a) Distributions in the
Fx -Qyz plane extracted after t = 1 s from the quench, starting from the polar phase.
Note that the second panel from the right is equivalent to the one in Fig. 5.8 for
t = 0.9, however, the lower statistics affect the quality of the Fx -Qyz histograms.
(b) Distribution of the spinor phase ϕS extracted from the histograms in panel (a).

the shape of the potential. We thus fix the evolution time to 1 s.

In Fig. 5.9 are shown the results for q ranging from 7.5Hz to 4.5Hz.
Note that this is the experimental value of q, which has a frequency
offset from the nominal case. Thus the second phase transition from
the easy-plane to the easy-axis ferromagnet shouldn’t occur at q = 0
in the experimental reference. Indeed, already around 4.5Hz, we see
important deviations from the expected elongated distribution in the
Fx-Qyz plane7. For larger values of q we see instead the expected be-
havior for the easy-plane phase: the separation between the two lobes
of the distribution starts to grow around 7.5Hz and the spin projection
along x̂ become maximal around 6.5Hz.

The spinor phase shows interesting behavior. Basically in the whole
investigated range, ϕS shows a periodic structure at multiples of π, which
shifts only at low q, retaining its periodicity. This periodic structure
is perfectly symmetric around π for large q, where the separation

7If we quench into the easy-axis phase, we expect the distribution to look more similar
to the polar phase, which is our initial condition. In fact, the free evolution from the
polar phase towards the easy-axis ferromagnet is not allowed in our system, where
the Fz must be conserved.
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between the lobes of the Fx-Qyz is still small. At smaller q, in fact,
such distribution spreads more along Fx and ϕS start to show slight
asymmetries, connected with the tilt already discussed in the previous
section. The interesting result is the presence of a periodic structure,
that can be mapped in a periodic effective potential, which regulates
the evolution of ϕS over time.

5.3.1 Global spinor phase rotations

To get more quantitative results on the effective potential that governs
the spinor phase during the evolution, we carried out another type
of experiment, where the system is prepared closer to the easy-plane
ground state and then perturbed. The perturbation consists of a global
rotation of the spinor phase, which is described by a rotation along Q0
in the nematic sphere. To do so, we employ the technique discussed
in Sec. 5.1.2, which allows us to imprint a finite spinor phase to the
system just after the preparation. We start as before from the polar
phase, we quench q, we wait about 16 s for the system to relax, and
then we imprint a global phase rotation. This way the system starts
very near the ground state, and we can study its dynamics dominated
by the spinor phase perturbation.

In Fig. 5.10 are shown the results for the oscillations of the spinor
phase caused by the global imprint. The spinor phase is perturbed by
δϕS ∼ 0.08π, leading to damped oscillation with a frequency of 13(1)Hz.
To extract the spinor phases from the two-dimensional histograms in
Fig. 5.10a, we rotate counter-clockwise each distribution for an angle
θ, we calculate the horizontal projection and we look for its maximum
value A (θ). This is now a 1D distribution showing, as a function of θ,
a peak for the optimal angle θ = π − ϕS with a width, which depends
on the shape of the initial distribution, that can be associated with the
spinor phase uncertainty. Both the optimal angles and the width are
extracted from the Gaussian fits of A (θ) and then rescaled to obtain
ϕS. We repeated the experiment for larger imprints, with δϕS ∼ 0.15π,
obtaining oscillations at the same frequency and similar damping. The
comparison between our experimental results and numerical simula-
tions of our system focused on the spinor phase, is part of the ongoing
investigations. It will be also interesting to check the behavior of the
spinor phase when the waiting time between the quench and the global
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Figure 5.10: Linear response measurements with global rotations of ϕS . (a) Typical
evolution of the system prepared in an elongated spin with F⊥ ∼ 0.8, after a global
rotation of the spinor phase. The time steps between the different histograms is
the same of the analysis in panel (b). The histogram shows the Fx -Qyz plane in
the same scale of previous figures. (b) Extracted spinor phase and analysis of the
damped oscillations. The left panel shows experimental data (black dots) and the
best-fit curve corresponding to a characteristic frequency of 13(1)Hz (dashed red
curve). The right panel shows the reference for the values of ϕS .

imprint is longer. In that scenario, ϕS would be completely settled in
the minima of the effective potential and the system would be closer
to a single spatial mode setting, where no spatial excitations are present.

Our data proves that the spinor phase can be manipulated precisely
in experiments, opening the way to the more fascinating scenario of
local perturbation of ϕS. Indeed, the evolution of such perturbations
in an effective periodic potential as the one we started to characterize
experimentally, may lead to interesting phenomena connected to caustics
[172].



Conclusions and outlook
Chapter 6

In this thesis I discussed the results of my experimental work in the
context of dipolar supersolids and spinor condensates, tied together
by the common language of quantum phase transitions. While dipolar
supersolids are a new fundamental state of matter still requiring the
exploration of their defining properties, in the case of ferromagnetic
phases in spin-1 systems, which have been extensively studied in the
last decades, an interesting direction is the study of their topological
excitations. Although the two systems are quite different, there are mul-
tiple points of contact both from the fundamental and technical point of
view. Both dipolar gases and spin-1 systems feature instabilities leading
to either density or spin spatial modulations, where the latter has been
proposed in the past as a candidate for supersolidity [161]. Moreover,
the concept of superfluid fraction, which has a fundamental relevance
for supersolids, can be extended to spin systems [84]. Connecting these
two topics, it would be interesting to understand the relation between
the spin stiffness [64] and the properties of the easy-plane ferromagnetic
phases that can be realized in spin-1 condensates. Another interesting
aspect would be to probe the density or momentum correlations in
dipolar supersolids, with the same tools used to probe spin correlations
in spinor condensates [94].

Crystalline and superfluid properties of dipolar supersolids

In this work, I focused mainly on the superfluid-supersolid quantum
phase transition showing the results of two experiments, in which
we studied the behavior of the phase transition across a dimensional
crossover [15, 10], and we measure for the first time the superfluid
fraction of a dipolar supersolid [16]. With the first experiment we
reconciled a rather large variety of previous theoretical, numerical and
experimental results, tracing a connection between the character of
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the quantum phase transition and the supersolid dimensionality. We
used Landau theory of quantum phase transitions [97] to build a model
suitable for trapped supersolids, comparing numerical simulations and
experimental data with the model predictions and demonstrating that
both continuous and discontinuous transitions can happen in single-row
supersolids. In the second experiment we shifted our focus from the crys-
talline structure of dipolar supersolids towards their superfluid response,
establishing a new method to measure Leggett’s superfluid fraction
[103] from Josephson oscillations [80]. Our main idea is the mapping of
Leggett’s model, developed for rotations, into a Josephson description
of the supersolid, where the superfluid fraction is directly linked to
the Josephson coupling energy [173], which can be measured exper-
imentally from the Josephson frequencies or the phase-current relations.

Remarkably, the superfluid-supersolid quantum phase transition
can be studied experimentally in finite-sized systems, as the one de-
scribed in this thesis, where the effect of the external confinement on
the supersolid structure give an additional knob to change the physics
at play. Indeed, we find a crossover from 1D-like systems exhibiting
continuous phase transitions and 2D-like system featuring discontinu-
ous phase transitions, by changing the transverse confinement or the
atom number. This crossover is linked to the soft nature of the super-
solid structure which can be deformed and compressed by the external
potential. When the natural two-dimensional structure in the plane
transverse to the dipoles orientation is suppressed along one direction,
the supersolid lattice forms in only one dimension. In this configu-
ration, the transition is similar to the one of true one-dimensional
systems showing a continuous behavior. In an intermediate regime,
where the 2D structure is suppressed, but still present in the super-
fluid background of the system, single-row supersolids still feature a
discontinuous phase transition, reminiscent of the true two-dimensional
case. Increasing the atom number has the same effect of increasing
the transverse confinement, up to the point where density is so high
that the effect of quantum fluctuations become dominant, resulting
in a second crossover towards a discontinuous region [18, 197], which
however we explored only numerically.

We demonstrated that the continuous or discontinuous charac-
ter of the supersolid transition can be controlled in experiments, by
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changing the transverse harmonic confinement. Indeed, we studied the
behavior of the quantum phase transition in two different harmonic
potentials associated to a continuous and a discontinuous character
respectively, finding a variety of experimental evidences of the two
different transitions. The most striking difference is the behavior of
the order parameter C̃ once the transition is crossed back to reach the
superfluid side, revealing an excess of energy gained in the discontinuous
case as excitations of the system. The comparison with the continuous
configuration, shows that this effect can arise only from the lacking
of adiabaticity typical of discontinuous transition, where for any finite
speed of the crossing we can’t follow adiabatically the system ground
state. The energy excess measured in the experiment is of the same
order of the height of the free energy barrier calculated with our model
for the trapped system. The different character of the continuous and
discontinuous phase transitions is also evident from the shape of the
distributions of the order parameter in different region of scattering
length, showing one or two maxima respectively, associated to a single
or double-minima structure in the Landau free energy.

Intuitively, the possibility to use continuous transitions to produce
excitations free supersolids is the key to study this fascinating phase of
matter without the presence of spurious effects. This is particularly im-
portant for the measurement of low energy collective excitations which
can be washed out in highly excited systems, or in revealing fragile
effects such as quantum correlations. The first use of the continuous
phase transition has been the measurement of the superfluid fraction
from the Josephson oscillations. The Josephson dynamics, namely a
coherent oscillation of both the population imbalance and the phase
difference between two adjacent superfluids connected by a weak link,
is a natural effect in the dipolar supersolid, which realizes an array
of coupled Josephson junctions in absence of an external potential to
form the barriers between neighboring clusters. Indeed, we find that
the Josephson oscillations are a normal mode of the system, which can
be excited selectively in experiments. In our experiment we initialize
the Josephson oscillations by imprinting a phase difference between
adjacent supersolid clusters and then we follow the system dynamics.
We found that starting with a supersolid too far from its ground state
(such as in the case of discontinuous transition) make it impossible
to observe Josephson oscillations, probably because the initial phase



148 Conclusions and outlook

profile is scrambled by the excitations. The high coherence of the
supersolid produced by continuous transitions is then a crucial aspect
for the superfluid fraction measurement.

We showed that the original model by Leggett [103] for supersolids
on a ring under rotations, can be mapped in linear supersolids with
a phase twist, allowing to shift from a global measurement of the su-
perfluid fraction, as the one provided by the nonclassical rotational
inertia, to a local one, which in our case is based on the Josephson
coupling between the central clusters of our supersolid. We find, by
using the general definition of superfluid fraction, a direct connection
between fs and the coupling energy K of a single junction, and we build
a 6-modes model to describe the trapped supersolids as a Josephson
junctions array in order to compare experimental and numerical results
with theoretical predictions. From the experimental data, we extract
the coupling energy K from the Josephson frequencies, using the re-
sults from the model, or from the phase-current relations, which are
model independent. Once K is translated into fs, we find a remarkable
agreement with Leggett’s bounds, demonstrating the reduced superfluid
fraction of the dipolar supersolid, arising only from the breaking of
the translational symmetry. Given its generality, our method may be
applied in many other supersolid-like phases, especially in supercon-
ducting systems [1] where the Josephson coupling has been already
used to probe other properties of the system. Moreover, the supersolid
realizes a new type of Josephson junction array, since the weak links,
relying only on the interactions, are not fixed by an external potential
and can move during the dynamics.

New directions

The impact of the additional degree of freedom associated to the Gold-
stone mode of the supersolid lattice, to the fluctuations of the Josephson
observables is still to be investigated. This direction would be inter-
esting for linear systems, where a model of the fluctuations in the
number and phase difference may lead to the estimation of the system
temperature, like in standard bosonic Josephson junctions [57], as well
as for supersolids confined in a ring potential, where the Goldstone
fluctuations costs no energy. The next experimental step is indeed the
realization of a dipolar supersolid in a ring potential, employing the
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techniques I discussed in this work. Choosing the right thickness of the
ring potential, we can achieve a one-dimensional system with boundary
conditions, approaching the ideal case of an infinite supersolid, and
realize the ideal setup to study superfluidity. Exploiting the continuous
phase transition, we would be able to form the supersolid near its
ground state, and manipulate it using light shaped by our spatial light
modulator. For example we can imprint a global phase gradient to put
the system under rotation and study the moment of inertia as in the
original theory by Leggett [103] or partially quantized supercurrents
[185]. Moreover, we can study collective modes of the system, like the
Josephson oscillations and the Goldstone mode [201] without the effects
of the density inhomogeneity.

Another interesting direction, which instead involve the linear ge-
ometry, is the study of quantum correlations and entanglement in the
dipolar supersolids. Although our system is currently dominated by
technical noise (mainly fluctuations in the atom number), it would be
interesting to understand if phenomena like entanglement in momentum
space can be detected in the supersolid. Indeed, there are evidences
that quantum correlations increase crossing a quantum phase transi-
tions [120], leading to entanglement creation. In the case of dipolar
supersolids, it would be intuitive to think about correlations arising
from pair production in two opposite momentum states ±kSS, that
globally form the density modulation. Since the phase of the system
is preserved during the breaking of the translational symmetry, the
process must be coherent. Quantum correlations can also be measured
looking at the Josephson observables, measuring again the fluctuations
of both number and phase [140].

Ongoing research on topological excitations in spinor
condensates

My work about spinor condensates, which has been the topic of my
visiting period in Heidelberg, is part of a preliminary investigation on
the possible detection of novel topological excitations resulting from
quenching across a quantum phase transition [172]. The main idea is
that the chaotic dynamics of the spinor phase after the quench from the
polar to the easy-plane phase could produce an exotic kind of vortex
excitation, the so-called real time instanton, characterized by a cusp
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divergence of the spin length which vanish at a precise point in space
and time. To describe the emergence of such topological excitation, a
preliminary model of an effective periodic potential governing the spinor
phase is under investigation, motivated by analytical calculations based
on a low energy effective theory carried out by the theory group in
Heidelberg. In this thesis I discussed a preliminary set of experimental
measures aimed to characterize such effective potential. The next
experimental step would be to establish a procedure to deterministically
prepare the system in order to create real-time instantons in a precise
spatio-temporal point of the dynamics, making it possible to detect
this fascinating object for the first time.
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[63] M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel,
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and T. Pfau. Supersolidity in two-dimensional trapped dipolar
droplet arrays. Phys. Rev. Lett., 127:155301, Oct 2021. doi:
10.1103/PhysRevLett.127.155301. URL https://link.aps.org/
doi/10.1103/PhysRevLett.127.155301.

https://link.aps.org/doi/10.1103/PhysRev.188.898
https://link.aps.org/doi/10.1103/PhysRev.188.898
https://link.aps.org/doi/10.1103/PhysRevLett.32.292
https://link.aps.org/doi/10.1103/PhysRevLett.32.292
https://doi.org/10.1038/nature17411
https://doi.org/10.1038/nature17411
https://link.aps.org/doi/10.1103/PhysRevLett.104.195302
https://link.aps.org/doi/10.1103/PhysRevLett.104.195302
https://link.aps.org/doi/10.1103/PhysRevLett.123.193002
https://link.aps.org/doi/10.1103/PhysRevLett.123.193002
https://link.aps.org/doi/10.1103/PhysRevX.11.011037
https://link.aps.org/doi/10.1103/PhysRevLett.127.155301
https://link.aps.org/doi/10.1103/PhysRevLett.127.155301


Bibliography 161

[71] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng,
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[147] M. Prüfer. Experimentally testing quantum field theory
concepts with spinor Bose gases far from equilibirum.
PhD thesis, Universität Heidelberg, 2020. URL https:
//www.google.com/url?q=https%3A%2F%2Fwww.kip.uni-
heidelberg.de%2FVeroeffentlichungen%2Fdownload%
2F6456%2Fpdf-6456.pdf&sa=D&sntz=1&usg=AOvVaw1FE-
rlrgum0_VmkfwkPzJ7.
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