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1 Introduction

Although non-linearly realized symmetries have long been known to be a powerful tool in
many areas of physics, only recently has this technology been brought to bear on theories
of the early universe. For example, it has been realized that perturbations in single-field in-
flation can be described most generally by the effective field theory of spontaneously broken
time diffeomorphisms [1, 2]. Single-field inflation can also be understood in terms of global
symmetries as the spontaneous breaking of the SO(4, 1) conformal symmetry of R3 down to
spatial translations and rotations [3, 4]. The corresponding Goldstone field is ζ, the curva-
ture perturbation of uniform-density hypersurfaces. Moreover, the well-known consistency
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relations [5–9], which constrain the soft limit of correlation functions, arise as Ward identi-
ties for the non-linearly realized symmetries [10–12]. Additionally, symmetry considerations
have proven to be a powerful tool in analyzing correlation functions of spectator fields in
inflation: both gravitons [13] and scalar field perturbations [14–18] are constrained to have
conformally-invariant correlators at late times.

Recently, it has been realized that the de Sitter symmetries — including dilation in-
variance, responsible for the scale invariance of perturbations — need not correspond to the
isometries of a physical metric, as in inflation, but instead can arise as the unbroken sub-
algebra of spontaneously broken conformal symmetry where the dynamical metric is nearly
flat [19–21]. In this conformal mechanism, some fields in the conformal field theory (CFT)
acquire specific time-dependent expectation values, which breaks the SO(4, 2) conformal sym-
metry on (approximate) Minkowski space down to its de Sitter subgroup:

SO(4, 2) −→ SO(4, 1) . (1.1)

As a result of couplings dictated by conformal invariance, spectator fields in the theory evolve
in a fictitious de Sitter background, and consequently massless fields acquire a nearly scale
invariant spectrum of perturbations.1 The de Sitter expansion is fictitious; the physical,
Einstein-frame metric describes a universe which is very slowly contracting or expanding.
Incidentally, such slow evolution drives the universe to be increasingly flat, homogeneous and
isotropic [23], thereby addressing the well-known problems of standard big bang cosmology. A
robust prediction of the scenario is the absence of gravitational waves — because the universe
is approximately static, tensor modes are not appreciably excited. As with any mechanism
relying on multiple fields, a generic prediction is a significant level of non-Gaussianity in the
squeezed/local limit.

An example of this mechanism is Galilean Genesis [20]. This scenario is based on the
conformal galileons [24], a class of conformally-invariant, higher-derivative scalar field theo-
ries, which nevertheless only propagate one degree of freedom. Galilean Genesis capitalizes on
the fact that galileons can violate the Null Energy Condition (NEC) [25] in a stable manner,
to describe a universe which expands from an asymptotically flat initial state. One draw-
back of the original scenario is that fluctuations around (slight deformations) of the NEC-
violating background propagate superluminally. Superluminality can be avoided through
explicit breaking of the conformal group, preserving only dilation [26]. Alternatively, the
Dirac-Born-Infeld (DBI) generalization of the scenario [27, 28] preserves the full conformal
symmetries, but, thanks to a different non-linear realization of the conformal algebra, features
perturbations that propagate strictly sub-luminally around the NEC-violating background.
Another incarnation of the conformal mechanism is the U(1)-invariant model [19, 21, 29],
which describes a complex scalar field rolling down a negative quartic potential. The result-
ing cosmology is a phase of slow contraction before a NEC-violating phase that leads to the
big bang.

In fact, the conformal mechanism is more general than these particular incarnations.
All the important physics — in particular scale invariance — is fixed by the symmetry
breaking pattern (1.1), irrespective of the microphysical details. Applying the technology of
the coset construction [30, 31] for space-time symmetries [32], the most general effective action
describing the Goldstone field π and other “matter” fields, including weight-zero fields, was

1It is well-known that weight-zero fields are forbidden by unitary bounds [22], but these assume a stable
conformally invariant vacuum. The conformal mechanism does not assume such a vacuum, only a time-
dependent symmetry-breaking background. The conformal vacuum can be unstable or not exist.
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~q → 0
∼ Pπ(~q) ×

Figure 1. Schematic representation of the consistency relations: (N + 1)-point functions with a soft
external π leg are related to N -point functions.

derived in [33] systematically in powers of derivatives. By construction, the effective action
linearly realizes the SO(4, 1) de Sitter algebra2 and non-linearly realizes the SO(4, 2) algebra.
Many key properties of the scenario follow immediately from this effective action, e.g., the
scale invariance of massless fluctuations, and the fact that the time-dependent background
is a dynamical attractor.

In this paper we focus on the implications of the symmetry breaking pattern (1.1) on
various correlation functions. As the models under consideration enjoy linearly-realized de
Sitter symmetries, we begin in section 2 by reviewing some elementary properties of field
theory on de Sitter space, focusing in particular on the late-time action of the de Sitter
isometries and their corresponding constraints on correlation functions.

Our primary interest, however, lies in understanding how the non-linearly realized sym-
metries — time translation P 0, boosts J0i, and the temporal component of the special confor-
mal transformations K0 — act on correlation functions. (Notice that the number of broken
generators does not correspond to the number of Goldstones — only one in the case at hand
— as we are dealing with a space-time symmetry [34].) These symmetries are discussed in
section 3. Analogously to single-field inflation, we will find that these result in consistency
relations relating (N + 1)-point correlation functions with a soft external π to a (broken)
symmetry transformation on the N -point functions without the soft π. In section 4, we
derive the equal-time master consistency relation, which is the main result of the paper (see
figure 1):

〈π~qφ~k1 . . . φ~kN 〉
′
q→0

avg
= −Pπ(q)

(
1 +

1

N
qi
∑
a

∂kai +
1

6N
~q 2
∑
a

∂2
ka

)
t

d

dt
〈φ~k1 . . . φ~kN 〉

′ , (1.2)

where the φ’s are fields of arbitrary mass, the ′ indicates a correlation function without the
momentum-conserving delta function, Pπ is the π power spectrum and

avg
= indicates equality

after performing an angular average only over the terms quadratic in q. Since there is only
one Goldstone for 5 broken symmetries, the above consistency relation constrains different
powers of q in the soft limit ~q → 0. The O(q0) part of the constraint results from P 0, the
O(q1) part from J0i, and the O(q2) part from K0. We derive (1.2) using the background-wave

2We will be somewhat loose about notation and refer to both Lie groups and their corresponding algebras
in the same way, e.g., SO(4, 2) for the conformal group/algebra.
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method [6], in which the long-wavelength π mode is treated as a classical background for the
short-wavelength modes; in a follow-up paper, we will show how (1.2) arises as a consequence
of the Ward identities for the broken symmetries, analogous to the classic soft-pion theorems
of chiral perturbation theory [35, 36]. We also check the validity of (1.2) in a myriad of cases
using explicit correlation functions derived from the general effective action of [33].

The consistency relation (1.2) opens up the possibility of strong observational tests
of the conformal mechanism, which is the focus of section 5. In much the same way that
observation of fNL in the squeezed configuration would rule out all single-field models of the
early universe, observation of a violation of one of these consistency relations would rule out
the production of density perturbations by the conformal mechanism. An important caveat in
making contact with observations is the observability of the π mode — although π acquires a
strongly red-tilted spectrum, its contribution to the adiabatic mode is actually strongly blue-
tilted and hence is negligible on scales probed by cosmological observations. (The observed ζ
is dominated by the scale invariant contribution from conversion [37] of the weight-zero fields.)
However, the consistency relation (1.2) does have observational implications for correlators
in two ways. The first is for correlation functions with a soft internal line. In the limit
where M external momenta sum up to a soft total momentum, the amplitude is dominated
by soft-π exchange, thanks to its strongly red-tilted spectrum, and factorizes into a product
of (M + 1)-point and (N −M + 1)-point functions, each with a soft π insertion:

〈φ~k1 . . . φ~kN 〉
′
q→0 =

1

Pπ(q)
〈π−~qφ~k1 . . . φ~kM 〉

′
q→0〈π~qφ~kM+1

. . . φ~kN 〉
′
q→0 . (1.3)

The consistency relation (1.2) then constrains each soft amplitude in the product. We show
how this constrains the form of the four-point function for massless spectator fields χ in the
limit where the sum of two momenta is soft, reproducing the behavior explicitly calculated
in [38–40]. We also find a novel contribution to the four-point function of spectator fields
from a one-loop exchange of two π’s. Despite being a one-loop effect, it is enhanced compared
to the tree-level amplitude by inverse powers of q so that it dominates in the soft limit. Its
momentum dependence is of the τNL form

τNL ∼
P2
π

Pζ
log

q

Λ
, (1.4)

(P indicates the normalization of the power spectrum, i.e. stripped of its momentum de-
pendence) so that we can expect signals in the stochasticity of the scale-dependent bias [41]
and the power spectrum of CMB µ-distortion [42]. Although π itself is not observable, there
is still an observable signature of soft external π fields; as was pointed out in [38–40], the
presence of a long π mode leads to statistical anisotropy in spectator correlation functions,
in particular it leads to anisotropy of the power spectrum of χ:

〈χ~kχ−~k〉
′
π~q

= 〈χ~kχ−~k〉
′
(

1 + c1

√Pπ
2π

H0

k
(3 cos2 θ − 1) + c2

3Pπ
4π2

cos2 θ log
H0

Λ

)
, (1.5)

where θ is the angle between ~k and ~q, H0 is the present-day Hubble parameter, and c1,2

are constant coefficients which depend on the particular realization of the long-wavelength π
modes. We will show that this anisotropy follows solely from symmetry considerations, and
is therefore also a generic prediction of the conformal mechanism.

Since the scenario relies on de Sitter symmetries, it is natural to wonder whether the
conformal symmetries can also be present in the inflationary context. The short answer is yes,

– 4 –



J
C
A
P
0
4
(
2
0
1
3
)
0
2
0

but the inflationary realization is far less natural. Note first that the action we write down for
π cannot be the action for perturbations of the inflaton — they have linearly-realized SO(4, 1)
symmetry, and thus do not fit into the effective field theory of inflation framework. If π were
the perturbations of the inflaton, the corresponding de Sitter space would be eternal, there
is no clock telling inflation when to end. We are therefore led to consider a situation where
π is merely a spectator field3 in multi-field inflation — its presence therefore gives additional
structure to the spectator sector and all of the same consistency relations will hold provided
the entire spectator sector couples in a conformally invariant way to π. However, this is a
somewhat artificial situation. We can of course impose this additional structure, but it does
not buy us anything new — whereas in the conformal mechanism this structure is a necessary
and natural consequence of the mechanism.

Various subtleties of our calculations are addressed in detail in section 6, including
complications introduced by the fact that π is a field of negative 3d conformal weight in a
de Sitter background, the ambiguity (or lack thereof) of off-shell versus on-shell correlators
in the consistency relation, and the translation from the consistency relation (1.2) to the
form expected from the Ward identities for spontaneously broken conformal symmetries. We
summarize our results and discuss future spin-off directions in section 7. Various appendices
collect results peripheral, but important, to our main line of development: appendix A derives
the action of the late-time de Sitter isometries on correlation functions, appendix B reviews
the construction of actions for spontaneously broken conformal symmetry, and appendix C
computes the correlation functions needed to adequately verify the consistency relation.

2 Linearly realized SO(4,1) and 3d conformal transformations

The scenario relies on linearly realized SO(4, 1) invariance, so we begin by reviewing some
properties of scalar fields on de Sitter space. Throughout, we will work in the planar slicing
of de Sitter space, where the line element takes the form4

ds2 =
1

H2t2
(
−dt2 + d~x2

)
, (2.1)

where t < 0 is conformal time. This is identical to the situation in multi-field inflation, where
spectator fields feel a de Sitter geometry and do not back-react appreciably. A key difference,
as emphasized in the Introduction, is that de Sitter space is a fake geometry in the conformal
mechanism — the actual, Einstein-frame metric is slowly evolving. Nevertheless, for the
purpose of this discussion we can remain agnostic as to whether or not the background de
Sitter corresponds to the actual metric.

The de Sitter metric (2.1) corresponds to a maximally symmetric space-time and there-
fore enjoys 10 isometries. Six of these are the familiar translations and rotations of the flat
spatial slices:

xi −→ xi + αi ; (2.2)

xi −→ J ijx
j . (2.3)

3Of course, there is another alternative, namely for the field π itself to acquire a profile and act as the
inflaton. While possible, it is easy to check that the potential for π required by conformal invariance only
supports inflation over a limited region in field space, π . MPl, corresponding to approximately 1 e-fold of
inflation.

4Here we use t as the conformal time coordinate on de Sitter space in order to emphasize the connection
with models in which de Sitter arises as a fictitious background from broken conformal invariance.
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Additionally, de Sitter space is invariant under a dilation of both spatial and time coordinates

xµ −→ λxµ . (2.4)

Finally, it is invariant under the simultaneous transformation of space and time as

t −→ t− 2t(~b · ~x) ; (2.5)

xi −→ xi + bi(−t2 + ~x2)− 2xi(~b · ~x) , (2.6)

where bi is a real-valued 3-vector.
Next, consider a free scalar field on the de Sitter background:

S =

∫
d4x
√−g

(
−1

2
(∂φ)2 −

m2
φ

2
φ2

)
. (2.7)

The de Sitter isometries act on φ as follows: spatial rotations and translations (2.3) act in
the usual way,

δPiφ = −∂iφ ;

δJijφ = (xi∂j − xj∂i)φ , (2.8)

while the remaining four isometries (2.4) and (2.6) act as

δDφ = −(−t∂t + ~x · ~∂)φ ;

δKiφ = −
(
−2xit∂t + 2xi~x · ~∂ − (−t2 + x2)∂i

)
φ . (2.9)

We are interested in how these transformations act at late times (t → 0). In Fourier space,
the equation of motion that follows from the above action in the coordinates (2.1) is

φ̈k −
2

t
φ̇k +

(
k2 +

m2
φ

H2t2

)
φk = 0 , (2.10)

with the well-known solution given by Hankel functions. In the long-wavelength (k → 0)
limit, the time dependence of the mode functions simplifies to

φk ∼ t∆± , with ∆± =
3

2
±

√
9

4
−
m2
φ

H2
. (2.11)

Assuming m2
φ ≤ 9H2/4, the growing mode corresponds to ∆− ≡ ∆, and the time dependence

of the field is φ ∼ t∆ as t → 0. In this limit, we can therefore replace t∂t → ∆ in the
transformation rules (2.9) and neglect O(t2) terms to obtain

δDφ =
(

∆− ~x · ~∂
)
φ ;

δKiφ =
(

2∆xi − 2xi~x · ~∂ + x2∂i

)
φ . (2.12)

These are recognized respectively as spatial dilations and special conformal transformations
for a field of conformal weight ∆. Combined with the spatial rotations and translations (2.8),
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they form the conformal group on R3. Therefore, correlation functions of fields on de Sit-
ter must be invariant under conformal transformations of Euclidean 3-space on the future
boundary [13–17], which is of course the basis of the proposed dS/CFT correspondence [43].
As reviewed in appendix A, these symmetries act on N -point correlation functions in Fourier
space as

δDA′N =

(
N∑
a=1

(
∆a − 3− ~ka · ~∂ka

)
+ 3

)
A′N = 0 ;

δKiA′N = i
N∑
a=1

(
2(∆a − 3)∂kia + kia

~∂2
ka − 2~ka · ~∂ka∂kia

)
A′N = 0 . (2.13)

These constrain the form that the correlation functions take in momentum space. Here we
assumed that the free evolution (2.11) dominates at late times. If this is not the case, as we
discuss in section 6, one cannot trade the time dependence of correlation functions for ∆’s.

3 Non-linearly realized conformal symmetry

Returning to the action (2.7), we will be led to consider a particular choice of mass, corre-
sponding to the quadratic action

Sπ = M2
π

∫
d4x
√−g

(
−1

2
(∂π)2 + 2H2π2

)
, (3.1)

which has m2
π = −4H2 (∆ = −1). In fact, this action is the quadratic action for the

Goldstone of broken conformal symmetry. We briefly review how (3.1) can arise naturally
on an effective de Sitter space through the spontaneous breaking of conformal symmetry in
a flat space quantum field theory. We will consider two simple examples, and see that they
both lead to the quadratic action (3.1) for fluctuations.

• Negative quartic potential. As a first example, we consider φ4 field theory on flat space
with ‘wrong-sign’ coupling constant [19, 21, 29, 33]:

S =

∫
d4x

(
−1

2
(∂φ)2 +

λ

4
φ4

)
, (3.2)

where λ > 0. This action is classically invariant under conformal transformations,5

consisting of space-time translations Pµ, Lorentz transformations Jµν , space-time di-
lation D, and special conformal transformations Kµ. These 15 symmetries form the
algebra SO(4, 2).

Assuming a homogeneous field profile, the equation of motion for φ reduces to φ̈−λφ3 =
0, with zero-energy solution

φ̄(t) =

√
2

λ

1

(−t) ≡
Mπ

H(−t) . (3.3)

Here H will soon be understood as playing the role of a fake Hubble constant. This
background, which describes the field starting out from the top of the potential in the

5Incidentally, this theory is also asymptotically free.
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asymptotic past and rolling down subsequently, spontaneously breaks 5 of the original
conformal symmetries, namely P 0, J0i and K0. The 10 unbroken symmetries, D,
P i, J ij , and Ki, form the SO(4, 1) de Sitter subalgebra. Expanding about the 1/t
background as φ = φ̄+ ϕ, we obtain the following quadratic action for fluctuations:

S =

∫
d4x

(
−1

2
(∂ϕ)2 +

3

t2
ϕ2

)
. (3.4)

Through a field redefinition, φ = φ̄+ ϕ = φ̄eπ = Mπ
H(−t)e

π, and introducing an effective
de Sitter metric

geff
µν ≡

1

H2t2
ηµν , (3.5)

the quadratic action becomes

S = M2
π

∫
d4x
√−geff

(
−1

2
geff
µν∂

µπ∂νπ + 2H2π2

)
, (3.6)

which is precisely of the form (3.1). As advocated, this action arises through the
spontaneous symmetry breaking SO(4, 2)→ SO(4, 1).

• Galilean Genesis. In its simplest guise, Galilean Genesis [20] is achieved with a (wrong-
sign) kinetic term plus a cubic conformal galileon term:

S =

∫
d4x

(
f2e2Π(∂Π)2 +

f3

Λ3
�Π(∂Π)2 +

f3

2Λ3
(∂Π)4

)
, (3.7)

where the scales f,Λ have dimensions of mass, and the scalar field Π is dimension-
less. This action is also invariant under the conformal group SO(4, 2), but in this case
dilations and special conformal transformations act non-linearly to start with. The
equation of motion following from this action admits a background solution of the
form [20]

eΠ̄ =
1

H(−t) , where H2 ≡ 2Λ3

3f
. (3.8)

This solution preserves the de Sitter subgroup of the conformal group. Perturbing
about this solution Π = Π̄ + π, and introducing the effective de Sitter metric (3.5), the
quadratic action takes exactly the form (3.6).

More generally, the action for π follows solely from the pattern of symmetry breaking.
In [33], the most general action for the goldstone of the breaking pattern SO(4, 2)→ SO(4, 1)
was constructed. To cubic order in the fields and second order in derivatives, it is given by
(see appendix B for details of the construction)

Sπ = M2
π

∫
d4x
√−g

(
−1

2
(∂π)2 + 2H2π2 − π(∂π)2 + 4H2π3

)
, (3.9)

which is consistent with (3.1) at quadratic order. This action non-linearly realizes time
translations P 0, boosts J0i and the temporal component of special conformal transformations
K0, which act as

δP0π =
1

t
− ∂tπ ;

δJ0iπ =
xi
t

+ t∂iπ − xi∂tπ ; (3.10)

δK0π = −~x
2

t
−
(
2txν∂ν − x2∂t

)
π .
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Notice that the — näıvely unstable — growing mode solution π ∼ 1/t of (3.1) corresponds
merely to a non-linearly realized time translation, and is therefore harmless.

4 SO(4,2) → SO(4,1) consistency relation

The next question is: how do these non-linearly realized symmetries act on correlation func-
tions? In this section we show that the non-linear realization of conformal symmetry con-
strains the form that correlation functions take in the limit that one of the π external legs is
taken to be very soft.

4.1 Derivation of the consistency relation

In the case of inflation in the decoupling limit, the isometries of de Sitter are spontaneously
broken by the inflaton’s time-dependent background to the subgroup of rotations and trans-
lations. As a consequence of this spontaneous breaking, there are specific relations between
correlation functions of different order. In particular, the (N + 1)-point correlation functions
in the squeezed limit are related to the variation of the N -point correlation functions under
the broken symmetries (dilations and special conformal transformations). These relations go
by the name of consistency relations [3, 5–9]. They are the Ward identities resulting from
the non-linearly realized symmetries in the broken phase of the theory [10–12].

Our aim is to show that similar relations hold in the case of the nonlinearly-realized
SO(4, 2) symmetries. We again expect that the squeezed limit of an (N+1)-point correlation
function is related to the action of the broken generators on the N -point function. In this
case the broken generators are time translations P 0, boosts J0i, and the time component of
a special conformal transformation K0; correspondingly, the consistency relation will contain
three pieces.

In what follows we are going to use the background-wave arguments developed in [3, 6, 8].
In order to derive the consistency relation, the crucial insight is that, due to non-linear
realization of SO(4, 2), the effect of a long background mode of π can be obtained by a
coordinate transformation

〈φ(x1) . . . φ(xN )〉πL = 〈φ(x̃1) . . . φ(x̃N )〉 , (4.1)

where φ is a generic scalar field of the theory. As we will argue shortly, the change of
coordinates is related to the value of the long mode as πL = −δt/t. We can use the previous
equality to express the (N + 1)-point correlation function in terms of the N -point function

〈πL(x)φ(x1) . . . φ(xN )〉 = 〈πL(x)δ〈φ(x1) . . . φ(xN )〉πL〉 = 〈πL(x)δ〈φ(x̃1) . . . φ(x̃N )〉〉 . (4.2)

This relation among correlation functions of different order in real space is the starting point
of our derivation. By computing explicitly the variation of the N -point function on the
right-hand side and then going to momentum space, we will obtain the consistency relation.

Before diving into the details of the full calculation, as an illustration of the method
we consider the simplest case where we have only broken time translation. The coordinate
transformation

t 7→ t′ = t+ a0 (4.3)

will induce the change in the perturbation around the background π′(x′) = π(x)− a0/t, thus
generating the homogeneous mode

πL = −a0

t
. (4.4)
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On the one hand, the (N + 1)-point function satisfies

〈πLφ1 . . . φN 〉 = 〈πLδ〈φ1 . . . φN 〉πL〉 . (4.5)

On the other hand, the N -point function in the presence of a long mode is the same as the
N -point function without the long background but computed in the transformed coordinates:

δ〈φ1 . . . φN 〉πL = δ〈φ1 . . . φN 〉t→t+a0 = a0
d

dt
〈φ1 . . . φN 〉 . (4.6)

Using the relation (4.4) between πL and a0, and substituting the result in (4.5), we finally
obtain

〈πLφ1 . . . φN 〉 = −〈πLπL〉t
d

dt
〈φ1 . . . φN 〉 . (4.7)

This relation is written in real space but going to momentum space is trivial: a homo-
geneous long mode translates to the zero-momentum limit. Thus the (N + 1)-point function
has to be evaluated in the squeezed configuration

〈π~q φ~k1 . . . φ~kN 〉
′
~q→0 = −〈π~qπ~q〉′t

d

dt
〈φ~k1 . . . φ~kN 〉

′ , (4.8)

where primes indicate that the factor of (2π)3δ(
∑~ki) has been removed from correlation

functions. The previous expression has the same form as Maldacena’s consistency relation
for standard inflation [5, 6]. This is not a surprising result. In the case of the decoupling
limit of standard inflation, Maldacena’s consistency relation can be seen as a consequence
of broken dilation invariance. The squeezed limit of the (N + 1)-point function is related to
the scale transformation of the N -point function. In our case, where time translations are
spontaneously broken, we have a similar results — the squeezed limit of the (N + 1)-point
function with a soft π is related to the variation in time of the N -point function.

We are now ready to derive the most general consistency relation by applying the above
method to the full SO(4, 2)→ SO(4, 1) symmetry breaking pattern. Since we have 5 broken
symmetries but only one Goldstone, the consistency relation will contain several terms of
different order in q, each coming from a different broken generator. Our starting point is the
most general infinitesimal conformal transformation of space-time, which can be written as

t 7→ t′ = t+ a0 + cixi + (λ− 1)t+ 2(bµx
µ)t− b0(−t2 + ~x2) ≡ t+ δt ,

xi 7→ x′i = xi + ai − cit+ Jijxj + (λ− 1)xi + 2(bµx
µ)xi − bi(−t2 + ~x2) ≡ xi + δxi .(4.9)

Notice that in δt and δxi, we can neglect all O(t) and O(t2) terms because these will give
subdominant contributions in the late-time limit. The remaining terms in δxi consist of
time-independent translation, rotation, dilation and 3d special conformal transformation, all
of which are linearly realized symmetries. We conclude that for the purpose of deriving
the consistency relation the only relevant part of the coordinate transformation is the time
transformation:

t 7→ t′ = t+ a0 + cixi − b0~x2 = t+ δt . (4.10)

This induces a long mode πL of the form

πL(x) = −δt
t

= −1

t
(a0 + cixi − b0~x2) . (4.11)
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Two important points are worth emphasizing about the shape of the long mode. First, unlike
the case when only the time-translation is broken, the long mode is in general x-dependent.
Three different broken generators correspond to three terms with different powers of xi.
At the level of the consistency relation, this will translate to different broken generators
constraining different powers of q in the ~q → 0 expansion of correlation functions. Second,
the above πL does not correspond to the most general shape of a mode expanded to second
order

π(x) = π(0) + ∂iπ(0)xi +
1

2
∂i∂jπ(0) xixj + . . . (4.12)

Specifically, our coordinate transformation induces only an isotropic profile for the long mode
at quadratic order in coordinates (proportional to ~x2), while the traceless part of ∂i∂jπ(0)
cannot be generated through the coordinate transformation. Consequently, the consistency
relation can only inform us about quadratic terms that are averaged over all angles. We
focus only on the trace part of the long mode

πL(x)
avg
= πL(0) + ∂iπL(0)xi +

1

6
∂2πL(0)~x2 , (4.13)

where here
avg
= means that we have averaged over angles for the terms which are second order

in gradients. Comparing this profile with (4.11) we can read off the values of a0, ci and b0:

a0 = −tπL(0) ; ci = −t∂iπL(0) ; b0 =
1

6
t∂2πL(0) . (4.14)

We now have at our disposal all the necessary ingredients to derive the full consistency
relation. The first step consists of computing the variation of an N -point function under
the coordinate transformation (4.10). Since the only relevant part of the full conformal
transformation is a spatially-inhomogeneous shift in time, it is natural to first calculate
unequal-time correlation functions and then take the equal-time limit at the end of the
derivation. As another technical step, we must choose a point around which to perform
our coordinate transformation. Since the fields in the correlation function are evaluated at
~x1, . . . , ~xN , a natural choice is their average location:

~x+ ≡
1

N

N∑
a=1

~xa . (4.15)

In this way the origin of coordinate transformation is translated in the region of space where
the correlators are calculated. The choice of ~x+ is of course arbitrary, and will drop out of
the final result. The upshot is that the coordinate transformation of interest is

t→ t′ = t+ a+
0 − c+

i (x+
i − xi)− b+0 (~x+ − ~x)2 , (4.16)

where the coefficients are of the form (4.14), but now evaluated at x+: a+
0 = −tπL(x+),

c+
i = −t∂iπL(x+) and b+0 = t∂2πL(x+)/6.

In order to be consistent, we must average all quadratic terms — as a result, the 2b+0 ~x·~x+

term will give zero contribution. The variation of an arbitrary N -point function under this
coordinate transformation is

δ〈φ(t1, ~x1) . . . φ(tN , ~xN )〉πL
avg
=

N∑
a=1

(
a+

0 −c+
i (x+

i −xai)−b+0 (~x2
++~x2

a)
) ∂
∂ta
〈φ(t1, ~x1) . . . φ(tN , ~xN )〉.

(4.17)
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Rewriting this equation in momentum space and using (4.14), we obtain

δ〈φ(t1, ~x1) . . . φ(tN , ~xN )〉πL
avg
=

∫
d3~k1

(2π)3
. . .

d3~kN
(2π)3

d3~q+

(2π)3
(2π)3δ3(~P )π~q+(t) (4.18)

×
∑
a

(
−t ∂
∂ta
A(t1, . . . , tN )

)(
1− iq+

i (x+
i − xai)−

1

6
~q 2

+(~x2
+ + ~x2

a)

)
ei~x+·~q+ei

∑~kb·~xb ,

where ~P ≡ ~k1 + . . .+~kN is the total momentum and A is the Fourier space n-point function.
Expanding the phase ei~x+·~q+ in small momentum ~q+ and averaging all second order terms,
we get(

1− iq+
i x

+
i −

1

6
~q 2

+~x
2
+ + iq+

i xai −
1

6
~q 2

+~x
2
a

)
ei~x+·~q+

avg
= 1 + iq+

i xai −
1

6
~q 2

+~x
2
a +O(q3

+) . (4.19)

The result is independent of ~x+, as anticipated.

The final step in the derivation is to average over the long mode πL(t, ~x). After perform-
ing the average, integrating over ~q+ and replacing the coordinates in front of the exponent
with derivatives with respect to the momenta, we obtain the (N+1)-point correlation function

〈π(t, ~x)φ(t1, ~x1) . . . φ(tN , ~xN )〉 avg
=

∫
d3~k1

(2π)3
. . .

d3~kN
(2π)3

d3~q

(2π)3
(2π)3δ3(~P )Pπ(q)

×
∑
a

(
−t ∂
∂ta
A(t1, . . . , tN )

)(
1− qi∂kai +

1

6
~q 2∂2

ka

)
ei~q·~x+i

∑~kb·~xb . (4.20)

Next we integrate by parts to move the ∂kai derivatives from the exponent to the amplitude

A. Since the delta function δ3(~P ) depends on the momenta ~k1, . . . ,~kN , this will introduce
new terms involving derivatives of the delta function, but these are in fact precisely what is
needed to build up the Taylor expansion of δ3(~P + ~q). Indeed, averaging all second order
terms, it is easy to prove the following relation6

(
1 + qi∂kai +

1

6
~q 2∂2

ka

)(
δ3(~P )A′

)
avg
= δ3(~P + ~q)

(
1+qi∂kai+

1

6
~q 2∂2

ka

)
A′ . (4.21)

Going to momentum space on the left-hand side of (4.20) and comparing the integrands on
each side of the equation, we obtain

〈π~q(t)φ~k1(t1) . . . φ~kN (tN )〉′q→0
avg
= −tPπ(q)

∑
a

(
1 + qi∂kai +

1

6
~q 2∂2

ka

)
∂

∂ta
〈φ~k1(t1) . . . φ~kN (tN )〉′.

(4.22)
As expected, the (N + 1)-point correlation function in the squeezed limit is related to the
action of broken generators of the conformal algebra on the N -point function. Notice that
on both sides the same delta function δ3(~P +~q) has been removed from correlation functions,
which implies in particular that the N momenta on the right-hand side do not form a closed
polygon. As we will see later with explicit checks, this prescription is essential for the
consistency relation to hold.

6Notice a change of the sign in the second term in the brackets coming from integrating by parts.
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From (4.22), it is easy to deduce the equal-time version of the consistency relation:

〈π~qφ~k1 . . . φ~kN 〉
′
q→0

avg
= −Pπ(q)

(
1 +

1

N
qi
∑
a

∂kai +
1

6N
~q 2
∑
a

∂2
ka

)
t

d

dt
〈φ~k1 . . . φ~kN 〉

′ .

(4.23)
This is the main result of the paper. In the remainder of this section, we will verify the
consistency relation in a few examples. Explicit calculations of the correlation functions will
be given in appendix C.

4.2 Explicit checks of the consistency relation

The simplest checks involve the squeezed limit of a three-point function. As a general rule,
note that the three-point function in the squeezed limit does not have any linear correction
in ~q. Indeed, using the symmetric expansion of ~k1 and ~k2,

~k1 = ~k − ~q

2
; ~k2 = −~k − ~q

2
; ~k1 + ~k2 + ~q = 0 , (4.24)

it is easy to see that (4.23) does not give a linear term in q. Consider the three-point function
of a π with two massless spectator field χ given by (C.26). Its expansion in the soft limit,

〈π~q(t)χ~k1(t)χ~k2(t)〉′q→0 =
3πH4

16M2
πM

2
χ

1

q5k6t

(
3(~k · ~q)2 − k2q2 +O(q3)

)
, (4.25)

starts at order q2. Notice that the angular average of the O(q2) terms vanishes, in agreement
with the consistency relation (4.23) — since the two-point function 〈χ~k1χ~k2〉

′ is independent
of time for massless fields, the right-hand side of (4.23) vanishes in this case.

As a less trivial check, consider the three-point function of π with massive (∆ = 1) fields
ϕ given by (C.19). Its squeezed limit after averaging is

〈π~qϕ~k1ϕ~k2〉
′
q→0 = − 9H4

2M2
ϕM

2
π

1

q5k

(
1 +

3(~k · ~q)2 − k2q2

4k4

)
avg
= − 9H4

2M2
ϕM

2
π

1

q5k
. (4.26)

It is straightforward to verify that the consistency relation is satisfied at zeroth order in q
using the explicit expressions for the power spectra given by (C.12) and (C.17). Similarly to
the massless case, the O(q2) terms average to zero. On the other hand, from the right-hand
side of (4.23) we conclude that the consistency relation seemingly predicts non-vanishing
O(q2) corrections. This is an illusion: remembering that the hard momenta do not form
a closed polygon, ~k1 and ~k2 are not equal in magnitude and opposite, and using (4.24) we
obtain

1

k1;2
=

1

k

(
1±

~k · ~q
2k2

1;2

+
3(~k · ~q)2 − q2k2

8k4

)
. (4.27)

Averaging, this gives

1√
k1k2

avg
=

1

k

(
1− 1

24

q2

k2

)
;

1

2
qi
∑

∂kai
1√
k1k2

avg
=

1

k

(
1

12

q2

k2

)
;

1

12
q2
∑
a

∂2
ka

1√
k1k2

avg
=

1

k

(
− 1

24

q2

k2

)
. (4.28)
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Thus, we see that all O(q2) contributions to the right-hand side of (4.23) cancel, as they
should.

Similar relations can be used to check the consistency relation for the three-point func-
tion of the Goldstone field π, given by (C.14). Its squeezed limit (after averaging) gives

〈π~qπ~k1π~k2〉
′
q→0 =

81H4

2M4
πt

4

1

q5k5

(
1 +

5

8

7(~k · ~q)2 − k2q2

k4

)
avg
=

81H4

2M4
πt

4

1

q5k5

(
1 +

5

6

q2

k2

)
. (4.29)

Meanwhile, expanding the right-hand side of (4.23) in the soft momentum ~q gives

81H4

2M4
πt

4

1

q5

(
1 +

1

2
qi
∑

∂kai +
1

12
q2
∑
a

∂2
ka

)
1√
k5

1k
5
2

avg
=

81H4

2M4
πt

4

1

q5k5

(
1 +

5

6

q2

k2

)
. (4.30)

The consistency relation is satisfied.

We can also check the consistency relation for the squeezed limit of the four-point
function (C.22) with one Goldstone and three massive (∆ = 1) fields ϕ. In this case we can
express one of the momenta, say ~k3, in terms of the others: ~k3 = −(~k1 + ~k2)− ~q. Averaging
all terms proportional to q2, we obtain the following set of relations

1

k3

avg
=

1

p

(
1 +

~p · ~q
p2

)
;

1

|~ki + ~q|
avg
=

1

ki

(
1−

~ki · ~q
k2
i

)
(i = 1, 2) ;

1

|~k3 + ~q|
=

1

p
; k3

avg
= p

(
1 +

~p · ~q
p2

+
1

3

q2

p2

)
, (4.31)

where ~p ≡ ~k1+~k2. Using these equations, the four-point function can be expanded to O(q2) as

〈π~qϕ~k1ϕ~k2ϕ~k3〉
′
q→0

avg
= −81πH4λt

8M2
πM

4
ϕ

1

q5k1k2p

(
1−

~k1 · ~q
3k2

1

−
~k2 · ~q
3k2

2

− 2~p · ~q
3p2

+
2

9

q2

p2

)
. (4.32)

Meanwhile, from the right-hand side of the consistency relation we are instructed to act with
various derivatives on the three-point function for massive fields (see (C.18)):

〈ϕ~k1ϕ~k2ϕ~k3〉
′ =

3πH2λ

4M4
ϕ

t3

k1k2k3
. (4.33)

Noting that the action of the Laplacian on monopole terms gives zero, ∂2
ka

1
ka

= 0, and taking
into account the power spectrum of the long mode π, the right-hand side of the consistency
relation becomes

r.h.s. of (4.23) = −81πH4λt

8M2
πM

4
ϕ

1

q5k1k2k3

(
1−

~k1 · ~q
3k2

1

−
~k2 · ~q
3k2

2

−
~k3 · ~q
3k2

3

)
avg
= −81πH4λt

8M2
πM

4
ϕ

1

q5k1k2p

(
1−

~k1 · ~q
3k2

1

−
~k2 · ~q
3k2

2

− 2~p · ~q
3p2

+
2

9

q2

p2

)
. (4.34)

where in the last step we have used the expansion of ~k3. This verifies the consistency relation
in this case.
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Figure 2. Factorization of an (N +M)-point function via an exchange of a soft π.

5 Connection to observables: soft internal lines and anisotropy of the
power spectrum

As we discussed, the breaking of SO(4, 2) implies the existence of the Goldstone field π,
and consequently the consistency relation we derived constrains correlation functions with
soft external Goldstone lines. Unfortunately, the cosmological perturbations we observe
come from a spectator field and not from π, so that it is not obvious how one can connect
the previous results to observations. There are, however, two situations in which SO(4, 2)
is observationally relevant. The first is when diagrams of the spectator field contain soft
internal π lines (for similar results in inflation see [3, 44, 45]). Internal soft π lines are
expected to give the dominant contribution when a sum of external momenta becomes small,
and they will dominate in comparison with soft internal lines of the spectator field, because
of the very red spectrum of the Goldstone. The second possibility stems from the fact that,
even if π is not directly measured, its value during the conformal phase is correlated with the
modes of the spectator field and thus changes their statistics. In particular, very long modes
of π induce an anisotropy in the spectator field power spectrum. These two observational
features were studied in [38–40]. Here we want to stress that these properties are a direct
consequence of the non-linear realization of SO(4, 2) and not specific to a given model. We
will also find an additional important contribution to the four-point function from a loop of
π fields that has been overlooked in the literature. This contribution may be larger than the
tree-level π exchange and it is phenomenologically quite different.

Let us start with soft internal π lines. In the limit in which the sum of N external mo-
menta becomes small, the amplitude of an (N +M)-point function factorizes in the following
way (see figure 2)

〈χ~k1 . . . χ~kM+N
〉′q→0 =

1

Pπ(q)
〈π−~qχ~k1 . . . χ~kM 〉

′
q→0〈π~qχ~kM+1

. . . χ~kM+N
〉′q→0 . (5.1)

The (N + 1) and (M + 1)-point functions are severely constrained by the SO(4, 1) symmetry
and their squeezed limit is further constrained by the non-linear realization of SO(4, 2). In this
way, the amplitude for the (N +M)-point function with a soft internal line can be expressed
in terms N and M -point functions. The simplest case is the four-point function of massless
spectator fields, which was studied in detail in [38–40]. Using the factorization (5.1) above
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and the squeezed limit (4.25) for the three-point function 〈πχχ〉, in the limit ~k1 +~k2 ≡ ~q → 0
we get

〈χ~k1 . . . χ~k4〉
′
q→0 =

π2

144
PπP2

χ

1

qk4
1k

4
3

(
3(k̂1 · q̂)2 − 1

)(
3(k̂3 · q̂)2 − 1

)
, (5.2)

where Pπ ≡ 9H2/2M2
π ; Pχ ≡ H2/2M2

χ are the dimensionless power spectra. It is important
to stress that the shape of the four-point function in the soft internal limit is completely
specified by symmetries since the three-point function 〈πχχ〉 is completely fixed by SO(4, 1)
up to an overall constant. Notice that the squeezed limit of the three-point function is
constrained, as we discussed in the previous section, by SO(4, 2) as well. In the massless case
we cannot obtain terms scaling as q0 or q1, and all terms scaling as q2 must vanish when
averaged over the angles. This is indeed what we have in (5.2).

The four-point function becomes very large in the q → 0 limit, as it scales as 1/q. This
is a consequence of the very red spectrum of π and it can be contrasted, for example, with
inflationary models with reduced speed of sound which are regular in the q → 0 limit [46, 47].
We conclude that a four-point function which becomes large in the soft internal (collapsed)
limit, with the precise shape (5.2), is a general prediction of the conformal mechanism. No-
tice, however, that the overall multiplicative constant in (5.2) cannot be fixed by symmetry
arguments.

If one assumes a linear relation between ζ and χ (non-linearities will give additional
model-dependent contributions to local non-Gaussianity) we get that the four-point function
above has an amplitude

〈ζζζζ〉
P3
ζ

' π2

144
· PπPζ

. (5.3)

Although data analysis has not been performed for the particular momentum dependence
of (5.2), one can get a rough constraint using limits on equilateral models of four-point

function7 obtained in [48]: |tequil
NL | . 7 · 106. This gives

Pπ . 500 . (5.4)

The four-point function we studied is obtained by averaging over the long wavelength
modes of π. However, if we do not take the statistical average, we still have a realization-
dependent effect: long modes of π induce an anisotropy in the power spectrum of the short
modes, as pointed out in [38–40]. Notice that this is possible even though π does not con-
tribute to the observed perturbations: its value during the conformal phase still affects the
observable modes of the spectator field. This effect is also completely fixed, up to an overall
constant, by the symmetries of the problem.

The effect of a long π mode on the observable 2-point function can be read from the
three-point function 〈πχχ〉, given by (4.25), in the squeezed limit

〈π~qχ~k1χ~k2〉
′
q→0 =

π

12
PπPχ

1

q5k6t
q2k2

(
3 cos2 θ − 1

)
, (5.5)

where θ is the relative angle between ~k and ~q. We can write the variation of the power
spectrum of χ in the presence of a given realization of the π field in a schematic way as

δ〈χ~kχ−~k〉
′ =
〈π~qχχ〉′q→0

〈π~qπ−~q〉′q→0

π~q = 〈χ~kχ−~k〉
′ · π

12

1

k
(3 cos2 θ − 1)tq2π~q . (5.6)

7This may be slightly conservative as equilateral shapes are regular in the limit q → 0.
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All modes π~q which are outside the present Hubble radius will contribute to the anisotropy
of the χ power spectrum. The typical size of the effect is given by the square root of the
variance calculated by summing over all super Hubble modes∫

d3q

(2π)3
〈t2q4π~qπ−~q〉′ =

1

2π2

∫ H0

0
q2dq t2q4 Pπ

q5t2
∼ 1

4π2
PπH2

0 . (5.7)

This gives

〈χ~kχ−~k〉
′
π = 〈χ~kχ−~k〉

′
(

1 + c1

√Pπ
2π

H0

k
(3 cos2 θ − 1)

)
, (5.8)

where c1 is a number of order unity, which depends on our position in the Universe [38–40].
Another source of anisotropy in the power spectrum arises by considering a four-point

function 〈ππχχ〉 [38–40]. This induces a variation of the 2-point function 〈χχ〉 in the presence
of two long modes of π. In this case the SO(4, 2) symmetry fixes both the shape and the
normalization of the effect. The variation of the 2-point function 〈χχ〉 in the presence of
two long background modes π1 and π2 corresponds to the composition of the associated
SO(4, 2) transformations. A possible issue is that the broken generators K0, J0i and P0 do not
commute, so that the overall transformation seems to depend on the ordering. Fortunately, in
our case all the commutators of the broken generators of SO(4, 2) give unbroken generators.
These do not change the 2-point function, so that we do not have to worry about non-
commutativity in the case at hand. Since the 2-point function is time-independent, its
variation at lowest order in gradients will come from a boost at second order. Without loss
of generality, we consider a boost along the x-direction. The transformation of coordinates
is given by

x′ = γ(x− vxt) , y′ = y , z′ = z , t′ = γ(t− vxx) , (5.9)

where γ ≡ (1− v2)−1/2. Neglecting parts proportional to t, the induced background field is,
up to second order in vx,

π = −δt
t

=
vxx

t
. (5.10)

In momentum space, the parameter vx is given by

vx = itqxπ~q . (5.11)

The transformation (5.9) implies that in momentum space kx component of the wavevector
has to be multiplied by γ−1, while ky and kz remain the same. Expanding k−3 in the
denominator of the power spectrum, we find that the effect on the 2-point function of χ is:

δ〈χ~kχ−~k〉
′ = 〈χ~kχ−~k〉

3

2

(~v · ~k)2

k2
= −〈χ~kχ−~k〉

3

2
t2q2π2

~q cos2 θ . (5.12)

We can calculate the typical value of t2q2π2
~q in a way similar to before:∫

d3q

(2π)3
〈t2q2π2

~q 〉 =
1

2π2

∫ H0

0
q2dq t2q2 Pπ

q5t2
∼ 1

2π2
Pπ log

H0

Λ
, (5.13)

where Λ is an IR cutoff. The contribution to the anisotropy is given by:

δ〈χ~kχ−~k〉
′ = −〈χ~kχ−~k〉

3

4π2
Pπ log

H0

Λ
cos2 θ . (5.14)
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Figure 3. The four-point function of χ’s with an exchange of one and two soft π’s.

Combining with (5.8), the total anisotropy of the power spectrum is given by

〈χ~kχ−~k〉
′
π~q

= 〈χ~kχ−~k〉
′
(

1 + c1

√Pπ
2π

H0

k
(3 cos2 θ − 1) + c2

3Pπ
4π2

cos2 θ log
H0

Λ

)
, (5.15)

where c2 is another constant of order unity, which depends on the particular position in the
Universe. The two sources of anisotropies are quite different. The first scales as 1/k, and
thus important only for long modes, while the second is scale invariant. Moreover, the first
contribution averages to zero if summed over the possible orientations between long and short
modes, while the second does not. Notice also that the first effect is dominated by π modes
which are slightly longer than the present Hubble radius, while the second gets contributions
from all scales as shown by the logarithmic dependence. The logarithmic enhancement can
overcome the suppression due to the fact that the second effect is of order π2 and not π.

As we have seen, the second contribution to the power-spectrum anisotropy is related to
the correlator 〈ππχχ〉. This suggests that we missed a potentially large contribution to the
four-point function of χ’s in the soft internal limit, coming from a loop of soft π particles (see
figure 3). At first this looks worrisome as we expect a loop diagram to be small compared to
a tree-level one. However, the situation is similar to the one we discussed for the anisotropy.
When only one soft π is exchanged, the interaction with the χ’s arises at order q2 as we
discussed above. When two soft π’s are exchanged, on the other hand, each of them carries
a single soft momentum, as the interaction arises from the non-linear realization of boosts.
Therefore, in going from tree-level π exchange to a one-loop diagram the number of q’s at
the vertices remains the same, and we have the extra loop factor∫

d3q

(2π)3

Pπ
q5
∼ Pπ

q2
. (5.16)

If q is small enough compared with the external momenta, the loop diagram will dominate
over the tree level exchange. Notice that this does not signal a breakdown of perturbation
theory: it is straightforward to check that the exchange of extra π’s is not further enhanced
by powers of 1/q, but only suppressed by powers of Pπ.

The loop diagram is straightforward to evaluate starting from (5.12)

〈χ~k1χ~k2χ~k3χ~k4〉
′
q→0 =

9

2

Pχ
k3

1

Pχ
k3

3

∫
d3q1

(2π)3
(q̂1 · k̂1)(q̂2 · k̂1)(q̂1 · k̂3)(q̂2 · k̂3)

Pπ
q3

1

Pπ
q3

2

, (5.17)

where ~q ≡ ~k1 + ~k2 and ~q1 + ~q2 = ~q. In writing this expression we have assumed that both
internal legs are soft so that their coupling is fixed by the non-linear realization of SO(4, 2).
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Indeed we will see that the loop integral is dominated by having q1 and q2 both of order q.
If we disregard the angular dependence and average over the direction of the short modes,
we get

1

2

Pχ
k3

1

Pχ
k3

3

∫
d3q1

(2π)3
(q̂1 · q̂2)2Pπ

q3
1

Pπ
q3

2

. (5.18)

The loop integral is dominated by long modes and it is IR divergent, similarly to what
happened for the anisotropy of the power spectrum. We get

〈χ~k1χ~k2χ~k3χ~k4〉
′
q→0 ∼

1

24π2

Pχ
k3

1

Pχ
k3

3

P2
π

q3
log

q

Λ
. (5.19)

As promised this result contains, when compared with the tree-level calculation (5.2), a factor
of Pπk2/q2 which may be large for sufficiently small q.

Notice that the momentum dependence of this result (after performing the angular
average) is exactly the one of a τNL non-Gaussianity. Again assuming a linear relation
between ζ and χ we get

τNL ∼
1

96π2

P2
π

Pζ
log

q

Λ
. (5.20)

Using the experimental limit |τNL| . 2 ·104 [49] and neglecting the logarithmic enhancement,
one gets a rough limit on Pπ

Pπ . Pζ1/2 · (96π2 · 2 · 104)1/2 ' 1 . (5.21)

This (rough) limit is stronger than the one obtained from the tree-level four-point func-
tion. The four-point function (5.19) will also contribute both to a stochastic scale-dependent
bias [41] and to the power spectrum of µ-distortion [42]. It would be interesting to under-
stand whether the angle dependence, which is different from a standard τNL shape, affects
these observables.

In this paper we only studied correlation functions in the absence of gravity. As discussed
in [20, 50], this is a good approximation for sufficiently early times; π perturbations give a
negligible contribution to the observable quantity ζ, while χ perturbations will source ζ by
one of the standard conversion mechanisms.

An important concluding remark is in order. Our SO(4, 2) consistency relations are not
as constraining as the ones for single-field inflation. In that case one can derive consistency
relations directly in terms of the observed variable ζ which, if violated, would rule out any
single-field model. Here, on other hand, we can just single out the effects due to the emission
of π, but their relation with observables is ultimately model-dependent: for instance, all the
effects we discussed vanish in the limit Pπ → 0. This is ultimately due to the fact that we
are discussing a multi-field model, where perturbations are sourced by an isocurvature field.
Even though we cannot derive completely model-independent relations, the red spectrum of
π makes the contributions discussed above sufficiently peculiar to be distinguishable from
the other model-dependent effects.

6 Subtleties

We now address two important subtleties which arise in our analysis. The first (section 6.1)
is that, due to the negative mass of the Goldstone field π, it is prima facie unclear when it
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should be possible to consistently assign 3d conformal weights for the transformations (2.13).
We will see that this is only possible when the relevant interaction turns off sufficiently
quickly, so that the in-in integral is dominated by early-time contributions.

The second subtlety (section 6.2) arises when checking the consistency relation: we must
expand the correlation function slightly off-shell8 to check the relations, but it is not clear that
there is a unique way to do this. We show that not only is the procedure unambiguous, but
it is possible to work on-shell at all times by rewriting the consistency relation at each order
in ~q as a differential identity. These identities correspond precisely to the Ward identities
derived from the broken symmetry generators [51].

6.1 Assigning conformal weights

We first discuss a puzzle that arises when considering correlation functions involving the
Goldstone field π. It should have conformal weight ∆ = −1. Indeed, the correlation function
〈πχχ〉 with χ massless satisfies (2.13) with the proper ∆’s. On the other hand this is not
the case for 〈πππ〉 or 〈πϕϕ〉 with ∆ϕ = 1. These correlators are SO(4, 1) invariant but one
is not allowed to replace the time dependence with the free-field conformal weights.

The resolution of this apparent paradox is as follows: the possibility of assigning confor-
mal weights to each field as a function of its mass depends on whether the late-time behavior
of correlation functions is fixed by the free-field evolution. In other words, interactions must
turn off sufficiently fast in time. Since one expects in general that the late-time evolution is
purely classical, it is straightforward to ascertain by inspection whether conformal weights
can be assigned.

To make this a bit more concrete, consider the three-point function

〈φ1(t)φ2(t)φ3(t)〉 = −i
∫ t

−∞(1−iε)
dt′〈φ1(t)φ2(t)φ3(t)H

(3)
int (t′)〉+ c.c. (6.1)

where H
(3)
int is the cubic, interaction-picture Hamiltonian. The dependence on t comes both

from the integration limit and from the φ fields. This second contribution follows the free-field
evolution and allows a consistent assignment of conformal weights. Thus, we want to study
under which conditions the additional t dependence from the integral can be neglected, i.e.,
whether the integral is dominated by early times. Notice that the iε prescription is different
in the two complex-conjugated terms, but we can neglect this difference as we are only
interested in the late-time behavior of the integral. Hence we can write

〈φ1(t)φ2(t)φ3(t)〉 ∼ −i
∫ t

dt′ 〈[φ1(t)φ2(t)φ3(t), H
(3)
int (t′)]〉

= −i
∫ t

dt′ 〈φ1(t)φ2(t)[φ3(t), H
(3)
int (t′)]〉 − i

∫ t

dt′ 〈φ1(t)[φ2(t), H
(3)
int (t′)]φ3(t)〉

− i
∫ t

dt′ 〈[φ1(t), H
(3)
int (t′)]φ2(t)φ3(t)〉 .

(6.2)

In each of the three terms, one leg is evolved non-linearly, and we want to show that this
describes the classical non-linear evolution. Let us focus on the first term for concreteness.
The commutator with the Hamiltonian will contain three pieces, depending on which of the

8Here, our usage of the phrase “off-shell” is slightly nonstandard. What we mean is that the momenta in
the correlation functions do not form a closed polygon.
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three legs φ3 is paired with. For each of these contributions, we can integrate by parts to get
rid of the derivatives acting on the leg we singled out and write the Hamiltonian as

H
(3)
int =

∫
d3x a4 φ(t′) O(2)(t′) , (6.3)

where O(2)(t′) is a quadratic operator which will be paired with the legs φ1 and φ2. In the
late-time limit, we can replace φ1 and φ2 within O(2)(t′) by their growing mode solutions,
which we take to be real. Thus O(2)(t′) becomes a number which acts like a source for the
mode φ3. We have the mode expansion

φ(t′) = φcl(t
′)â† + φ∗cl(t

′)â , (6.4)

with φcl denoting the properly normalized wavefunction. Expanding the commutator, we
obtain

− i
∫ t

dt′ 〈[φ3(t),

∫
d3x a4 φ O(2)(t′)]〉 = −i

∫ t

dt′ a4
[
φcl(t

′)φ∗cl(t)− φcl(t)φ
∗
cl(t
′)
]
O(2)(t′) .

(6.5)
Inside the brackets we recognize the Green’s function, so that this expression gives exactly
the classical non-linear evolution of the field φ3. In the late time limit this Green’s function
has two contributions, of the form

t∆−t′∆+ ; t∆+t′∆− . (6.6)

The first contribution depends on t as the growing mode solution of the free theory.9 There-
fore, this contribution will give the time dependence which follows from the assignment of
conformal weights provided that the integral in (6.5), namely∫ t

dt′
1

t′4
t′∆+O(2)(t′) , (6.7)

converges. This, as we discussed, means physically that the classical interaction is dominated
by early and not late times. Notice that for m2 = 0 and O(2)(t′) = const, we have a
logarithmic divergence. A positive m2 or an interaction containing derivatives makes the
integral converge. What about the second contribution (∼ t∆+t′∆−) in the Green’s function?
This is always suppressed compared with the one we discussed as |t′| < |t|, and they become
comparable at late times t′ ∼ t. Again, if the above integral converges, this late time limit is
irrelevant, and the second contribution to the Green’s function is negligible.

6.2 Off-shell ambiguity

As we have already pointed out, the momenta on the right-hand side of the consistency
relation do not form a closed polygon. In other words, the correlation function has to
be evaluated slightly “off-shell”. However, when calculating the N -point function, there are
many different ways one can go off-shell.10 To see this, let us write a generic N -point function
in the following form

〈φ~k1 . . . φ~kN 〉 = (2π)3δ(~k1 + . . .+ ~kN )A′ . (6.8)

9In what follows we assume that m2/H2 < 9/4 so that ∆± are real.
10We thank Alberto Nicolis for bringing this ambiguity to our attention and for discussions on the matter.
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Adding a term that is zero on-shell to the amplitude A′ does not change the result. For an
arbitrary function ~F , we can write

〈φ~k1 . . . φ~kN 〉 = (2π)3δ3(~P )
(
A′ + ~P · ~F (~k1, . . . ,~kN )

)
, (6.9)

where, as before, ~P =
∑

i
~ki. However, once we go off-shell, it is far from clear that the

right-hand side of the consistency relation gives the same result independently on the choice
of the function ~F . This has to be the case for the consistency relation to make sense, because
the left-hand side is unambiguous. Below we will prove that there is in fact no ambiguity in
the consistency relation, and we will show how it can be rewritten in a form where all the
correlation functions are calculated “on-shell”.

The simplest check is to explicitly compute the action of the differential operator in the
consistency relation on an expression that is zero on-shell and that can be generically written
in the form ~P · ~F (~ki). A straightforward calculation gives(

1 +
1

N
qi
∑
a

∂kai +
1

6N
~q 2
∑
a

∂2
ka

)
~P · ~F

= (~P + ~q) · ~F +
1

N

q2

3

∑
a

∂kaiFi +
1

N
qiPl

∑
a

∂kaiFl +
1

6N
q2Pi

∑
a

∂2
kaFi . (6.10)

Using the fact that ~P + ~q = 0, we see that the first term on the right-hand side is zero, while
the second and third cancel upon averaging. The last term is of order O(q3) and can be
neglected. Indeed, as we expected, adding to the amplitude of an N -point function a term
that vanishes on-shell does not change the result on the right-hand side of the consistency
relation (up to corrections of order O(q3)). This proves that there is no ambiguity, and that
different choices of going slightly off-shell give the same contribution in the end.

We are now going to give a slightly more general proof of the same statement, which will
make more explicit the constraints that different broken generators impose on the relation
among correlation functions. The aim is to start from the consistency relation written in
form (4.22) and rewrite it as a set of different relations that constrain different powers of
~q. If we understand expression (4.22) as a Taylor expansion of the (N + 1)-point function,
then this procedure corresponds to isolating the coefficients in this expansion. Since we have
constraints on momenta from the delta function on both sides, and we are computing one
of the correlation functions slightly off-shell, this procedure is far from trivial. As a first
step, let us rewrite the consistency relation (suppressing for simplicity the corresponding
time dependence of the modes that is the same as before) in the following form

1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
q→0

avg
= −t

∑
a

(
1 + qi∂kai +

1

6
~q 2∂2

ka

)
∂ta〈φ~k1 . . . φ~kN 〉

′ . (6.11)

At zeroth order in ~q this relation trivially becomes

1

Pπ(q)
〈π~qφ~k1 . . . φ~kn〉

′
q→0 = −t

∑
a

∂ta〈φ~k1 . . . φ~kn〉
′ , (6.12)

where both sides are calculated on-shell. As expected, this expression is the same as (4.8).
The right-hand side can be understood as a zeroth order in a Taylor expansion and, obviously,
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in this case there is no ambiguity in the consistency relation. To find the next coefficient in
the Taylor expansion of the left-hand side, we must differentiate with respect to ~q and set
~q = 0.

∂qi

(
1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
q→0

) ∣∣∣∣
q=0

= −t
N∑
a=1

(∂kai + ∂qi)∂ta〈φ~k1 . . . φ~kN 〉
′
∣∣∣∣
q=0

. (6.13)

There are two things to be noticed. Firstly, using the on-shell condition ~k1 + . . .~kN + ~q = 0
we can write ∂qi = −∂kNi . Secondly, since we set ~q to zero, the prime on the correlation
function on the right-hand side now means that this correlator is calculated on-shell. The
previous expression becomes

∂qi

(
1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
q→0

) ∣∣∣∣
q=0

= −t
N−1∑
a=1

(∂kai − ∂kNi)∂ta〈φ~k1 . . . φ~kN 〉
′ . (6.14)

The difference of the derivatives in the brackets can be rewritten in a form of a total derivative

∂kai − ∂kNi = ∂kai +
dkNj
dkai

∂kNj =
d

dkai
. (6.15)

Since the correlator is on-shell and any dependence on ~kN can be removed, we can trivially
include into the sum a total derivative with respect to ~kN . The final expression that we
obtain is

∂qi

(
1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
q→0

) ∣∣∣∣
q=0

= −t
N∑
a=1

d

dkai
∂ta〈φ~k1 . . . φ~kN 〉

′ . (6.16)

The last relation represents the consistency relation for broken boosts, and it corresponds to
the terms in (4.23) that are first order in ~q. The most important point to stress is that, in this
form, the correlation functions on both sides are calculated on-shell, and there is therefore no
ambiguity in the final result. Finally, we can follow the same procedure to isolate the terms
of order q2. The resulting expression is

∂2
q

(
1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
q→0

) ∣∣∣∣
q=0

= −t
N∑
a=1

d2

dk2
a

∂ta〈φ~k1 . . . φ~kN 〉
′ . (6.17)

Equations (6.12), (6.16) and (6.17) are equivalent to the consistency relation (4.23). As
we have already pointed out, in this form all correlation functions are computed on-shell.
This is another proof that in the consistency relation (4.23) there is no ambiguity in off-
shell prescription on the right side of the equation. These derivative identities are in fact
the Ward identities corresponding to the non-linearly realized time translations, boosts and
special conformal transformation, respectively. A formal derivation of these relations using
the machinery of [11] will appear in future work [51].

To perform explicit checks using the derivative form of the consistency relation, we work
on-shell on both sides at all times. Therefore, on the left-hand side, we express one of the
momenta, say kN , as a sum of the other momenta. We then take the squeezed limit, obtaining
a function of q, the small momentum. In order to check the various relations, we can then
take derivatives of this left hand side with respect to q and then set q = 0. On the right-hand
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side, we must also work on-shell. This means that we also write the kN momentum in terms
of the other N − 1 momenta (not including q).

Schematically, the procedure is as follows: consider checking the consistency relation

∂2
q

(
1

Pπ(q)
〈π~qφ~k1 . . . φ~kN 〉

′
)

= − 1

N
t
N∑
a=1

d

dk2
a

d

dt
〈φ~k1 . . . φ~kN 〉

′ . (6.18)

We rewrite the left hand side so that it is a function of N different momenta, that is we take
~kN = −∑~ka − ~q. We then take the squeezed limit q → 0 and differentiate with respect to
q. On the right hand side, we write ~kN = −∑~ka. This means that we actually only have to
take N − 1 derivatives on the right hand side.

For illustrative purposes, we provide an explicit check of the consistency relation in
differential form. Consider the soft limit of the three-point function involving only π fields,
〈π3〉. The three and two-point correlation functions are given by

〈π~qπ~k1π~k2〉
′ =

81H4

4M4
π

(
q5 + k5

1 + k5
2

)
q5k5

1k
5
2t

4
; 〈π~k1π~k2〉

′ =
9H2

2M2
π

1

k5
1t

2
. (6.19)

We take the limit q → 0 to obtain the squeezed limit of the three-point function

1

Pπ(q)
〈π~qπ~k1π~k2〉

′ =
9H2

2M2
πt

2

 2

k5
1

+
5(~q · ~k1)

k7
1

+
5
(

7(~q · ~k1)2 − q2k2
1

)
2k9

1

+O(q3) . (6.20)

From this, we immediately read off:

1

Pπ(q)
〈π~qπ~k1π~k2〉

′
q→0 =

9H2

M2
π

1

k5
1t

2
= −t d

dt
〈π~k1π~k2〉

′ ;

∂

∂qi

(
1

Pπ(q)
〈π~qπ~k1π~k2〉

′
) ∣∣∣∣

q=0

=
45H2

M2
π

ki1
k7

1t
2

= −1

2
t

d

dki1

d

dt
〈π~k1π~k2〉

′ ; (6.21)

∂2
q

(
1

Pπ(q)
〈π~qπ~k1π~k2〉

′
) ∣∣∣∣

q=0

=
90H2

M2
π

1

k7
1t

2
= −1

2
t

d2

dk2
1

d

dt
〈π~k1π~k2〉

′ ,

where the last step in each equation follows from differentiating 〈π~k1π~k2〉
′. Thus the derivative

form of the consistency relation checks out at each order. Note that when checking the
identities in Ward form, it is not necessary to take an angular average in the O(q2) terms.
The Laplacian, ∂2

q , appearing on the left hand side automatically picks out the trace part of
the order q2 terms of the soft mode.

7 Conclusions

Symmetry considerations allow us to make powerful, model-independent statements. In this
paper, we have considered how non-linearly realized symmetries in the conformal mechanism
enforce various relations among the correlation functions of the theory. In doing so, we
have uncovered some model-independent and robust predictions of the mechanism. It is
worthwhile summarizing them:

• Absence of detectable gravitational waves.
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• Model-dependent local non-Gaussianity from the conversion mechanism.

• Anisotropy of the power spectrum, see (5.15), [38–40].

• 4-point function in the soft internal limit due to tree-level π exchange, (5.2), [38–40].
This is relevant on large scales.

• 4-point function in the soft internal limit due to one-loop π exchange, (5.17). This
dominates for sufficiently small internal momentum, and it shows up as stochastic bias
and in the power spectrum of µ distortion.

It will be interesting to study which of the last three signatures is the most constraining,
as they all depend on the same parameters. From our rough estimates and the conclusions
of [52], it seems that the one-loop four-point function is the most constraining, as it gives
Pπ . 1. However, all the experimental constraints are not optimized for the particular shapes
of the four-point functions we got, so that numbers could change sizably when a dedicated
analysis is implemented.

It will also be interesting to further elucidate the properties of correlation functions
when more than one external leg is taken to be soft. These higher-soft limits can serve to
probe the underlying broken symmetry algebra, and could provide another set of consistency
relations, not just for the conformal mechanism, but also in the case of inflation.

Another interesting direction to pursue is to derive the consistency relations for the
DBI version of the conformal mechanism studied in [27, 28]. In this scenario, the symmetry
breaking pattern is the same, but the non-linearly realized conformal symmetries act in a
different way. It would be interesting to understand if the consistency relations are the
same in this case, and whether the generic predictions of the conformal mechanism, such as
statistical anisotropy, go through in this case.
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lis, and Enrico Trincherini for helpful discussions. We are especially grateful to Valery
Rubakov for detailed feedback on a previous draft. M. S. thanks the warm hospitality of
the University of Pennsylvania where a part of this project was finished. This work is sup-
ported in part by the NASA ATP grant NNX11AI95G (A.J. and J.K.), the Alfred P. Sloan
Foundation and NSF CAREER Award PHY-1145525 (J.K.)

A Conformal transformations on correlation functions

In this appendix we derive the action in Fourier space of the linearly-realized dilation and
spatial special conformal transformations on correlation functions.

A.1 Dilation

We will work in an arbitrary number of dimensions, d. The dilation operator acts linearly
on fields in position space as

δDφ = (∆− xA∂A)φ . (A.1)

We note that the field φ can be written in Fourier space using

φ(x) =

∫
ddkeik·xφk , (A.2)
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we may therefore write

δDφ =

∫
ddkφk(∆ + ~k · ~∂k)eik·x . (A.3)

Now, we can integrate by parts to obtain two terms

δDφ =

∫
ddkeik·x

(
∆− d− ~k · ~∂k

)
φk . (A.4)

From this, we deduce the Fourier space transformation rule

δDφk = −
(

(d−∆) + ~k · ~∂k
)
φk. (A.5)

Now, we want to obtain the action of dilation on a correlation function. A correlation function
has two parts, the amplitude and the delta function, schematically it is of the form

δDA = δD

(
δ3(~P )A′

)
, (A.6)

where the prime indicates removal of the delta function and ~P is the sum of the momenta
~P =

∑~k. We may then write

δD

(
δ3(~P )A′

)
= −

N∑
a=1

(
(d−∆a) + ~ka · ~∂ka

) [
δ3(~P )A′

]
= −A′ ~P · ~∂P δ3(~P )−

N∑
a=1

δ3(~P )
(

(d−∆a) + ~ka · ~∂ka
)
A′ .

The term outside the sum may be integrated by parts to obtain a factor of d. The term
where the derivative ~∂P hits A′ vanishes because it multiplies ~Pδ3(~P ) = 0. We then have

δD

(
δ3(~P )A′

)
= δ3(~P )

[
d−

N∑
a=1

(
(d−∆a) + ~ka · ~∂ka

)
A′
]
. (A.7)

From this, we deduce that the dilation operator acts on the amplitude without the delta
function as

δDA′ =
[
−d(N − 1) +

N∑
a=1

(
∆a − ~ka · ~∂ka

)]
A′ (A.8)

A.2 Special conformal transformations

Special conformal transformations act in real space as

δKA = (2∆xA − 2xAx
B∂B + x2∂A)φ . (A.9)

Following the same steps as above, we may write this in Fourier space acting on the primed
correlator as

δKAA′ = i

N∑
a=1

(
2(∆a − d)∂kAa + kAa

~∂2
ka − 2~ka · ~∂ka∂kAa

)
A′. (A.10)
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B Construction of actions for spontaneously broken conformal symmetry

In this section we review the construction of actions for the spontaneous breaking of the
conformal group down to its de Sitter subgroup [33]. Equivalently, this construction gives
actions for fields on de Sitter space that non-linearly realize conformal symmetry. The basic
idea is fairly simple, in order to linearly realize the isometries of de Sitter, we consider a
de Sitter metric gdS

µν . A scalar field action constructed using this metric will be invariant
under the de Sitter group. In order to non-linearly realize conformal symmetry, we add the
conformal mode to this metric and consider

gµν = e2πgdS
µν . (B.1)

B.1 Action for the Goldstone

In order to construct the action for the field π — the Goldstone mode of broken conformal
symmetry — we construct curvature invariants from the metric gµν . Since the metric is
conformally flat, all of the information is contained in the Ricci tensor

Rµν = 3H2gdS
µν − 2∇µ∇νπ − gdS

µν�π + 2∂µπ∂νπ − 2gdS
µν(∂π)2 . (B.2)

Then, in order to construct actions for π, we merely form any diffeomorphism scalar using the
conformal metric, its covariant derivative and the Ricci tensor. The lowest order lagrangian
is given by the invariant volume and the kinetic term is given by the Ricci scalar

Lπ ∼
√−g

(
R− 6H2

)
=
√−gdS

(
1

2
e2π(∂π)2 +

1

2
e2π�π −H2e2π +

H2

2
e4π

)
, (B.3)

where we have added the cosmological term so that there will be no tadpole about π = 0.
Expanding this lagrangian out to cubic order and integrating by parts reproduces (3.9) in
the text. In [33], it was shown that this construction is equivalent to the coset construction
of Callan, Coleman, Wess, Zumino and Volkov [30–32]. This construction misses a four-
derivative Wess-Zumino term (see [53] for details).

B.2 Coupling matter fields

It is also straightforward to couple matter fields to the Goldstone field π; one thing we
can do is use the covariant derivative of the conformal metric (B.1) to construct actions
for matter fields φ, contracting indices with gµν . Additionally, we are allowed to multiply
curvature invariants constructed from Rµν by arbitrary polynomial functions of φ.11 The
two-derivative lagrangian for a scalar field is then of the schematic form

Lφ ∼
√−g

(
−1

2
(∂φ)2 − V (φ) + f(φ)R

)
=
√−gdS

(
−1

2
e2π(∂φ)2 − e4πV (φ) + e4πf(φ)R

)
.

(B.4)
Since our aim is to merely check the consistency relations in a variety of examples, we consider

the case where V (φ) =
m2
φ

2 φ2 + λφ4 and f(φ) = 0. The lagrangian then takes the form

Lφ ∼
√−gdS

(
−1

2
e2π(∂φ)2 −

m2
φ

2
e4πφ2 − λe4πφ3

)
. (B.5)

11Note that since the WZ term shifts by a total derivative, we are not allowed to multiply it by a function.
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Expanding around φ = π = 0 to quartic order yields the action

Sφ = M2
φ

∫
d4x
√−gdS

(
−1

2
(∂φ)2 −

m2
φ

2
φ2 − 2m2

φπφ
2 − π(∂φ)2 − λφ3 − 4λπφ3

)
. (B.6)

B.3 Transformation of π

It is also quite straightforward to work out the way the non-linearly realized conformal
symmetries act on π. Under an infinitesimal diffeomorphism, the metric changes by the Lie
derivative

δgµν = −£ξ gµν = −gρν∇µξρ − gµρ∇νξρ . (B.7)

We assume that the background metric gdS
µν remains fixed (this restricts us to isometries of

de Sitter plus conformal transformations), so we have

2δπgµν = −gρν∇µξρ − gµρ∇νξρ . (B.8)

Tracing over both sides gives δπ = −1
4∇ρξρ. This is the divergence of a vector, so we may

write

δπ = − 1

4
√−g∂ρ

(√−gξρ) = −ξρ∂ρπ −
1

4
∇dS
ρ ξ

ρ . (B.9)

So we have the transformation rule for π,

δπ = −ξρ∂ρπ −
1

4
∇dS
ρ ξ

ρ . (B.10)

From this transformation rule, it is clear that that π will transform linearly under isometries
of the dS metric (∇dS

ρ ξ
ρ = 0) and will transform in a nonlinear fashion under broken trans-

formations. To make this explicit, we must make a choice of de Sitter slicing. Choosing the
planar inflationary slicing:

gdS
µν =

1

H2t2
tµν , (B.11)

we find

δπ = −ξρ∂ρπ −
1

4
∂µξ

µ +
1

t
ξ0 . (B.12)

From this, it is straightforward to derive the symmetries (3.11).

C Correlation functions

Here we collect some results for correlation functions involving spectator fields coupled to
the Goldstone field π.

C.1 Mode functions for massive fields

In this appendix, we derive the expression for the mode functions of a massive scalar field
on de Sitter space in terms of Hankel functions. This expressions are needed to compute
the correlation functions we need to check the consistency relations. Consider the general
quadratic action for a massive scalar

S2,φ = M2
φ

∫
d4x
√−g

(
−1

2
(∂φ)2 −

m2
φ

2
φ2

)
, (C.1)
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where m2
φ is an arbitrary mass. The equation of motion following from this action is

�φ+
2

t
φ̇−

m2
φ

H2t2
φ = 0 . (C.2)

We define the canonically-normalized variable

v =
Mφ

H(−t)φ , (C.3)

whose mode functions satisfy

v′′k +

[
k2 −

(
2−

m2
φ

H2

)
1

t2

]
vk = 0 . (C.4)

Defining x ≡ −kt and ν ≡
√

9
4 −

m2
φ

H2 , after changing variables to fk ≡ vk/
√
x this can be

cast as Bessel’s equation

x2 d2fk
dx2

+ x
dfk
dx

+ (x2 − ν2)fk = 0 , (C.5)

which is well-known to be solved by (we choose Hankel functions as our basis)

fk(x) = c1(k)H(1)
ν (x) + c2(k)H(2)

ν (x) . (C.6)

We fix the coefficients by demanding that in the far past (−kt → ∞), the mode functions
of the canonically normalized variable, vk, have their Minkowski space form. This is the
so-called adiabatic vacuum (Bunch-Davies) choice. That is, we demand

vk(t) −→
−kt→∞

1√
2k
e−ikt (C.7)

Then, using the asymptotic expansion for the Hankel functions as −kt→∞

H(1)
ν (−kt) ∼ −e iπ2 ( 3

2
−ν)
√

2

π

1√
−kt

e−ikt

H(2)
ν (−kt) ∼ e iπ2 ( 1

2
+ν)
√

2

π

1√
−kt

eikt

This implies that we need to take c1(k) = −e− iπ2 ( 3
2
−ν)√π

4
1√
k

and c2(k) = 0 in (C.6). This

leads to the expression for the φk mode functions

φk(t) = −e− iπ2 ( 3
2
−ν)
√
π

4

H(−t)3/2

Mφ
H(1)
ν (−kt) with ν =

√
9

4
−
m2
φ

H2
, (C.8)

where H
(1)
ν (−kt) is a Hankel function of the first kind. Note that for m2 > 9H2

4 the solution
is a Hankel function of imaginary order.
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C.2 In-in integrals

In order to compute correlation functions, we employ the Schwinger-Keldysh or in-in for-
malism (see [5, 54] for an exposition). In this formalism, rather than computing in-out
S-matrix elements, we compute correlation functions sandwiched between the same vaccum.
The correlation function for an operator, O(t) is given by [5, 54]

〈O(t)〉 = 〈0|T̄ ei
∫ t
t0

dt′Hint(t
′)O(t)Te

−i
∫ t
t0

dt′Hint(t
′)|0〉 . (C.9)

Here Hint is the interaction Hamiltonian, T denotes time-ordering while T̄ denotes anti-time-
ordering and t0 is an early time. Generally we will only work to leading order (tree-level)
where the correlation function is given by

〈O(t)〉 = −i
∫ t

−∞
dt′
〈
0
∣∣[O(t), Hint(t

′)
]∣∣ 0〉 . (C.10)

C.3 Correlation functions of π

Here we compute the two and three-point correlators for the Goldstone field π. We consider
the action (3.9). The quadratic equations of motion lead to the following mode function for
the field π

πk(t) = −iH(−t)3/2

Mπ

√
π

4
H

(1)
5/2(−kt) =

−3H√
2k5(−t)Mπ

(
1 + ikt− k2t2

3

)
e−ikt . (C.11)

From this the two-point function can straightforwardly be computed:

Pπ(k) ≡ 〈π~kπ−~k〉
′ =

9H2

2M2
πk

5t2

(
1 +

k2t2

3
+
k4t4

9

)
. (C.12)

Note that this field has an extremely red spectrum, peaking strongly as k → 0.
From the action (3.9), we can also compute the three-point function, 〈π3〉. The inter-

action Hamiltonian, Hint, at this order is minus the lagrangian

Hint = −
∫

d3xLint = M2
π

∫
d3x

[
1

H2t2
π(∂π)2 − 4

H2t4
π3

]
. (C.13)

Applying the formula (C.10), we obtain (at late times)

〈π~k1π~k2π~k3〉
′ =

81H4

4M4
π

(
k5

1 + k5
2 + k5

3

)
k5

1k
5
2k

5
3t

4
. (C.14)

C.4 Massive spectator field, ∆ = 1

The simplest case of a spectator field coupled to π is a massive field with m2
φ ≡ m2

ϕ = 2H2,
corresponding to 3d conformal weight ∆ = 1. We take the action (B.6) with this choice of
mass:

Sϕ = M2
ϕ

∫
d4x
√−g

(
−1

2
(∂ϕ)2 −H2ϕ2 − 4H2πϕ2 − π(∂ϕ)2 − λϕ3 − 4λπϕ3

)
. (C.15)

The mode functions for the field are given by

ϕk(t) =
iH(−t)√

2kMϕ

eikt , (C.16)
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which leads to the two-point function for the spectator

Pϕ(k) ≡ 〈ϕ~kϕ−~k〉
′ =

H2

2M2
ϕ

t2

k
. (C.17)

We can also compute various higher-point correlation functions involving this spectator. The
simplest is the three-point function involving only ϕ, the tree-level correlation function is
given by

〈ϕ~k1ϕ~k2ϕ~k3〉
′ =

3πH2λ

4M4
ϕ

t3

k1k2k3
. (C.18)

Additionally, we can compute the 〈πϕϕ〉 three-point function for these fields. There are two
contributions to the correlation function, one from each of the πϕϕ vertex and the π(∂ϕ)2

vertex; the final result is given by

〈π~qϕ~k2ϕ~k2〉
′ = − 9H4

4M2
ϕM

2
π

1

q5k1k2
(k1 + k2) . (C.19)

This correlation function is invariant under (4d) dilations and under δKi with ∆a = {−1, 1, 1},
agreeing with our general arguments for when conformal weights may be consistently defined,
in spite of the fact that this correlation function does not scale in the näıve way with time.

Finally, we compute a four-point function, involving three ϕ fields and one Goldstone;
this computation is slightly more involved. There are two contributions to this four-point
function, one coming from a contact diagram involving the πϕ3 vertex and one coming from
an exchange diagram at second order in the vertices involving a single π and two ϕ’s. The
interaction Hamiltonian is given by12

H
(3)
int = M2

ϕ

∫
d3x

(
− 1

H2t2
πϕ̇2 +

4

H2t4
πϕ2 +

λ

H4t4
ϕ3

)
H

(4)
int = M2

ϕ

∫
d3x

(
4λ

H4t4
πϕ3

)
. (C.20)

The correlation function is then a sum of three terms

〈π~qϕ~k1ϕ~k2ϕ~k3〉 =− i
∫ t

−∞
dt′〈0|[π~qϕ~k1ϕ~k2ϕ~k3(t), H

(4)
int (t′)]|0〉

+

∫ t

−∞
dt′
∫ t

−∞
dt′′〈0|H(3)

int (t′)π~qϕ~k1ϕ~k2ϕ~k3(t)H
(3)
int (t′′)|0〉 (C.21)

− 2Re

(∫ t

−∞
dt′
∫ t′

−∞
dt′′〈0|π~qϕ~k1ϕ~k2ϕ~k3(t)H

(3)
int (t′)H

(3)
int (t′′)|0〉

)
.

When the dust settles, the four-point function is given by

〈π~qϕ~k1ϕ~k2ϕ~k3〉
′ = −27πH4λ

8M2
πM

4
ϕ

t

q5k1k2k3

(
k1

|~q + ~k1|
+

k2

|~q + ~k2|
+

k3

|~q + ~k3|

)
. (C.22)

12Note that at this order, we must be careful in deriving the interaction Hamiltonian, in this case it is still
minus the interaction lagrangian, but in general this will not be true at quartic order.
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C.5 Massless spectator field, ∆ = 0

We now consider a massless spectator field, corresponding to (B.6) with with m2
χ = λ = 0.

The cubic action for this field is given by

Sχ = M2
χ

∫
d4x
√−g

(
−1

2
(∂χ)2 − π(∂χ)2

)
. (C.23)

The mode functions for χ are the well-known result for massless fields

χ~k(t) =
H√

2k3Mχ

(1− ikt) eikt . (C.24)

Using this, the two point function for a massless field is the standard result

Pχ(k) ≡ 〈χ~kχ−~k〉
′ =

H2

2k3M2
χ

(1 + k2t2) . (C.25)

Additionally, we can compute the three-point function 〈πχχ〉 using the standard techniques,
summarized above. At late times, we obtain

〈π~qχ~k1χ~k2〉
′ =

3πH4

16M2
πM

2
χ

1

q5k3
1k

3
2t

(
q4 + 2q2(k2

1 + k2
2)− 3(k2

1 − k2
2)2

)
(C.26)

− 9H4

8M2
χM

2
π

1

q5k3
1k

3
2

(
q2(k3

1 + k3
2)− (k5

1 + k5
2) + 3(k3

1k
2
2 + k2

1k
3
2)

)
.

This correlation function is invariant under δKi with ∆a = {−1, 0, 0}. Additionally, it has
the leading scaling behavior with respect to time that is expected.
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