
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Neural Architecture Search
by Growing Internal
Computational Units

Vincenzo Laveglia

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Neural Architecture Search by Growing
Internal Computational Units

Vincenzo Laveglia

Advisor:

Prof. Edmondo Trentin

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Friedhelm Schwenker, Ulm University, Germany
Prof. Hazem Abbas, Ain Shams University, Cairo, Egypt

XXXI ciclo — October 2019

Acknowledgments
First I want to thank my advisor, Edmondo Trentin, who conveyed me the passion
for this topic and stimulated with his discourses. He has been a friend and an inspi-
ration. I thank him for guiding me along this path.

I amgrateful to all the Professors andResearchers of theArtificial IntelligenceGroup
of the University of Siena for all the very formative discussions and support. A spe-
cial thanks to Franco Scarselli and Monica Bianchini.

A huge acknowledge goes to allmy friends and colleagues that sharedwithme these
years at the Artificial Intelligence Lab. In particular to Alessandro Rossi, Francesco
Giannini, Dario Zanca and Andrea Zugarini, whom I shared ideas and intuitions,
providing me with important feedbacks and suggestions. Their support has been
invaluable.

I wish also to expressmy gratitude to Roldano Cattoni and Stefan Scherer for having
supervised my work every year, and for their precious indications.

I am deeply grateful to my family for their loving support.

Thanks to Cecilia, for her patience throughout these years.

Finally, thanks to University of Florence for granting me the PhD fellowship that
has made possible the pursuing of this goal.

ii

Abstract

Choosing the right neural network architecture for a given learning task is
still an open problem. It is well known among practitioners that it often re-
quires several trials, with a consequent wasting of lot of time. It is an active
research area, and several solutions have been proposed in last years. Anyway,
the nowadays common practise is to set a certain architecture and than update
its configuration (networkweights) in order to achieve good performances. Fur-
thermore, over the search for the right number of neurons and layers, also other
components, as the activation functions, need to be considered in the choice of
the right neural architecture. The aim of this research is to go over the classical
concept of learning model, where the architecture is static and the model per-
formances are evaluated only at the whole model level. The idea is to design
a learning model that can autonomously define an its own internal structure,
and with the capacity to discover the particular components of its architecture
that need to be empowered, avoiding in this way to impact the whole model
configuration. The steps taken in achieving this goal have gone through the de-
velopment of the following three milestones: Target Propagation, Depth-Growing
Neural Networks and Downward-Growing Neural Architectures; which also reflect
the organization of the Thesis.
Here we define the Depth Growing Neural Network framework (DGNN), as hav-
ing the following main features: first, a dynamic architecture, it evolves during
the learning process in order to autonomously find the internal structure that
best suits the needed computational power; second, the evolution process is
driven by an evaluation of the single components of its architecture, the so called
metaneurons; their performances are rated with regards to their expected out-
comes, and the worst performing metaneurons are chosen to be upgraded. Ad-
hoc algorithms have been developed to estimate metaneuron outcomes, these
are identified as Target Propagation techniques.
The mentioned evolution process basically consists in the transformation of a
single internal neurons, or a set of them, in a more complex structure, as a set
of interconnected neurons; obtaining in this way more powerful computational
units. We define these more complex structures as subnets. The internal neu-
rons of the subnets can evolve in turn, realizing in this way a recursive process
that can lead to the building of deep architectures. The definition of the right
setting for these new structures is acted using a classical gradient descent ap-
proach, by back propagating the errors with respect to the estimated outcomes
of the subnets.
As mentioned above, few techniques have been developed for estimating the
metaneuron (and subnet) outcomes. These consist in propagating the neural
network target outputs to the internal layers of the network, defining in this
way layer-specific targets, allowing to formalize a layer-specific and potentially
neuron-specific loss function.

iii

AlthoughDGNNcan represent a step through the development of autonomously
defined architectures, empirical evidence highlighted some of their limitations,
first of all the difficulty for subnets to learn their given learning tasks. This was
basically a consequence of how the DGNN architecture was conceived.
The solutions designed to overcome limitations highlighted in the DGNN, re-
sulted in the development of theDownward-GrowingNeural Architecture (DGNA)
framework. The latter indirectly shares the same goal and philosophy of its an-
cestor, but implements a completely different growing strategy. Here the evo-
lution of the architecture is seen as a consequence of another goal, that is to
improve the performances of the model by defining more and more complex
decision regions. This is realized by replacing computational units, that define
a certain decision region, with more powerful computational components. An
in depth analysis of this topic is carried on in the Thesis, identifying as a result-
ing solution the replacement of hidden neurons and their input connections
with brand new subnets, one for each hidden neuron. This approach entails a
substantial modification of the first layer of the network, contrariwise to what
happenswith the previousmodel. Experimental results validate this technique.

Contents

Contents 1

List of Figures 3

List of Tables 6

1 Introduction 9

2 Target Propagation 13
2.1 Definitions . 15
2.2 Existing Methods . 16
2.3 Error Driven Target Propagation . 19
2.4 Residual Driven Target Propagation 24
2.5 Gradient Based - Residual Driven Target Prop 28
2.6 Experiments with the Refinement Algorithm 30
2.7 Remarks . 34

3 Depth Growing Neural Networks 35
3.1 Related Works (adaptive activation functions) 36
3.2 The DGNNModel . 37
3.3 Training Algorithm . 40
3.4 Parallelizing the Algorithm . 45
3.5 Experimental Results . 47
3.6 Remarks . 72

4 Downward-Growing Neural Architectures 73
4.1 Related Works . 74
4.2 Growing Architectures as a Search Strategy 77
4.3 The Learning Algorithm . 81
4.4 Experimental results . 86
4.5 Remarks . 98

5 Conclusions 99

1

2 CONTENTS

A Publications 101

Bibliography 103

List of Figures

2.1 An illustration of how targets propagate downward through the network. 24
2.2 Learning and generalization curves for dnet. 31
2.3 Learning and generalization curves of the procedure layer_backprop(.)

applied to the three hidden layers of dnet. 32
2.4 Learning and generalization curves of the procedure layer_backprop(.)

applied to the output layer of dnet. 32

3.1 Representation of a DGNN having depth k = 0. The meta-neurons are
represented with a custom circular shape. On the left side are indicated
the mapping functions associated to the single layers. 40

3.2 Representation of a DGNN having depth k = 1 (after a growing step).
The meta-neurons at depth k = 0 have been replaced by subnets S1, ..., S4

having depth k = 1. Here all meta-neurons have been replaced, and all
subnets have the same architecture. 41

3.3 Two subnets S[k]
1 , S[k]

2 are represented as being part of two consecutive
standard layer, where the dotted lines represent the connections having
fixed weights w = 0 . 44

3.4 Vertebral, depth-0 . 49
3.5 Vertebral, depth-1 . 50
3.6 Vertebral, depth-1 subnets . 50
3.7 Vertebral, depth-2 . 50
3.8 Vertebral, depth-2 subnets . 50
3.9 Vertebral, depth-3 . 51
3.10 Vertebral, depth-3 subnet . 51
3.11 Vertebral, depth-0 acc. 51
3.12 Vertebral, depth-1 acc. 51
3.13 Vertebral, depth-2 acc. 52
3.14 Vertebral, depth-3 acc. 52
3.15 Vertebral, depth-0 . 53
3.16 Vertebral, depth-1 . 53
3.17 Vertebral, depth-1 subnets . 53

3

4 List of Figures

3.18 Vertebral, depth-2 . 54
3.19 Vertebral, depth-2 subnets . 54
3.20 Vertebral, depth-3 . 54
3.21 Vertebral, depth-3 subnets . 54
3.22 Vertebral, depth-0 acc. 54
3.23 Vertebral, depth-1 acc. 54
3.24 Vertebral, depth-2 acc. 55
3.25 Vertebral, depth-3 acc. 55
3.26 Vertebral 10-th fold,

depth-0 acc. 56
3.27 Vertebral 10-th fold,

depth-1 acc. 56
3.28 Vertebral 10-th fold,

depth-2 acc. 56
3.29 Vertebral 10-th fold,

depth-3 acc. 56
3.30 MNIST depth-0 loss . 59
3.31 MNIST depth-1 loss . 59
3.32 MNIST depth-1 subnet’s loss . 59
3.33 MNIST depth-2 loss . 59
3.34 MNIST depth-2 subnet’s loss . 59
3.35 MNIST depth-0 acc. 60
3.36 MNIST depth-1 acc. 60
3.37 MNIST depth-2 acc. 60
3.38 Deer-Truck depth-0 loss . 62
3.39 Deer-Truck depth-1 loss

. 63
3.40 Deer-Truck depth-1 subnet’s loss . 63
3.41 Deer-Truck depth-2 loss

. 63
3.42 Deer-Truck depth-2 subnet’s loss . 63
3.43 Deer-Truck depth-0 acc. 64
3.44 Deer-Truck depth-1 acc. 64
3.45 Deer-Truck depth-2 acc. 64
3.46 Deer-Horse depth-0 loss . 65
3.47 Deer-Horse depth-1 loss

. 66
3.48 Deer-Horse depth-1 subnet’s loss . 66
3.49 Deer-Horse depth-2 loss

. 66

List of Figures 5

3.50 Deer-Horse depth-2 subnet’s loss . 66
3.51 Deer-Horse depth-0 acc. 67
3.52 Deer-Horse depth-1 acc. 67
3.53 Deer-Horse depth-2 acc. 67
3.54 Car-Dog depth-0 loss . 68
3.55 Car-Dog depth-1 loss

. 69
3.56 Car-Dog depth-1 subnet’s loss . 69
3.57 Car-Dog depth-2 loss

. 69
3.58 Car-Dog depth-2 subnet’s loss . 69
3.59 Car-Dog depth-0 acc. 70
3.60 Car-Dog depth-1 acc. 70
3.61 Car-Dog depth-2 acc. 70

4.1 This image visually describes what we expect from a growingmodel. We
have a set of points ∈ R2 belonging to two classes (cross and circles). We
assume a single hidden layer MLP as classifier. Left: separation surfaces
defined by two hidden neurons. Right: separation surfaces expected to
be generated by a growing model, where o′1 is the "evolved version" of o1. 79

4.2 Left: standard 1 hidden layer feedforwardnetwork (FFN), or base-network.
Right: the grown network, after replacing the leftmost neuron and its in-
put connection with a subnet. 81

List of Tables

2.1 Accuracy on MNIST 10-fold classification task (avg. ± std. dev. on a
10-fold crossvalidation) . 30

2.2 Comparison between the proposed algorithm and the established ap-
proaches, in terms of error rate and number of adaptive parameters. . . . 30

3.1 Vertebral 10-fold cross-validation acc. ± std 57
3.2 MNIST 5-folds crossvalidation accuracy. 58
3.3 MNIST 5-folds crossvalidation MSE loss. 58
3.4 Deer-Truck 5-folds crossvalidation acc. ± std. dev. 62
3.5 Deer-Truck 5-folds crossvalidation MSE loss ± std. dev. 62
3.6 Deer-Horse 5-folds crossvalidation acc. ± std. dev. 65
3.7 Deer-Horse 5-folds crossvalidation MSE loss ± std. dev. 65
3.8 Car-Dog 5-folds crossvalidation acc. ± std. dev. 68
3.9 Car-Dog 5-folds crossvalidation MSE loss ± std. dev. 68

4.1 Characteristics of the datasets used to validate our model. 86
4.2 DGNA considered hyperparameters . 87
4.3 Accuracy values for the different growing sub-steps and relative average

improvement. 88
4.4 MSE loss values for different growing sub-steps and relative average im-

provement. 88
4.5 Accuracy values for different growing sub-steps and relative average im-

provement. 89
4.6 MSE loss values for different growing sub-steps and relative average im-

provement. 89
4.7 Accuracy values for different steps. and relative improvement. 90
4.8 MSE loss values for different steps. and relative improvement. 90
4.9 Accuracy values for different steps. 91
4.10 MSE loss values for different steps. 91
4.11 Accuracy values for different sub-steps. 92
4.12 MSE loss values for different sub-steps. 92
4.13 Accuracy values for different steps. 93

6

List of Tables 7

4.14 MSE loss values for different steps. 93
4.15 Accuracy values for different growing steps. 94
4.16 MSE loss values for different growing steps. 94
4.17 Considered hyperparameters . 96
4.18 Accuracy comparison for different models trained with the UCI datasets 96

Chapter 1

Introduction

Despite the recent success of neural networks in being extremely performing inmost
of the application fields, they were left behind the scene for many years. Artificial
neural networks (ANNs), were originally defined in [42], in the middle of last cen-
tury. After the first AI winter, started in the end of 60s, when Minsky and Papert
identified few computational issues [43], stating that these could not be properly
trained, ANNs came back to the light in the middle of 80s, when the backpropaga-
tion (BP) training algorithm was defined [56, 49], making them usable. As it often
happens, history is cyclic, and in the middle of 90s, the scientific community begun
again to pay less attention to ANNs, because of their limitations. In the end of 00s,
fewof the drawbacks that let neural networks fall in this secondAIwinter (end of 90s
- beginning of 00s), as the difficulty of training deep architecture and the high com-
puting power required, were partially solved. The development of graphic cards,
the availability of always bigger datasets, and new training techniques like layer-
wise training [4], gave birth to the renaissance of neural networks, in their new form
of deep architecture or deep neural networks (DNN) [3]. Other works, like that of
dropout [52] and the introduction of ReLU [24] affirmed this new trend.

It has been seen that ANNs work outstandingly even if dealing with input pat-
terns of huge size and at predicting thousands of classes. Also emerged that deep
architectures extract very interesting data representations in a hierarchical fashion
for each of its internal layers. It deserves to be said that DNNs set foot in all themain
areas, like computer vision, speech recognition, natural language processing/un-
derstanding, reaching state of the art results in most of them. Lastly, it has been
seen that if set in a specific configuration and trained using a particular procedure,
said generative adversarial [25], DNNs can work as generative models, obtaining im-
pressive results. From these considerations, it is clear that if properly used, DNNs
can be very useful to tackle most problems. However it must be said that optimize
such models is not trivial at all.

9

10 Introduction

It is well known among practitioners that training a DNN can potentially results
in very burdensome experiences. Apart of the backpropagation algorithm to barely
execute, lot of aspects must to be taken into account. Lot of experience is required.
Given a task T represented with the dataset D = {(xj, ŷj)

N
j=1}, where xj ∈ Rn and

ŷj ∈ Rm, the first step in creating a DNN able to tackle T is the setting of the input
and output size, that correspond to the sizes of the generic input pattern and output
target, in this case n and m. The second step is the choice of activation functions for
the output layer. This is not an arbitrary choice. Output functions codomain has to
be such that it will contains the target values. The third step is the choice of inter-
nal structure of the network, on which the model’s performances mainly depend.
The main aspects to consider are: the number of layers, the size of each layer (often
all internal layers have the same size), that greatly affect the computational capabil-
ities of the network. Lastly, the choice of activation functions for hidden layers. If
dealing with many layers, quasi-linear activation functions (ReLu [24], Elu [12], etc.)
are advisable, in order to overcome common issues related to the nature of the BP
training algorithm [23]. Once the architectural choices have been made, a learning
strategy must be implemented. This entails the mini-batch size, a drop-out value
[52], an eventual batch-normalization [29], and other common used features. As
it is, the choice of the best architecture and learning strategy is not a deterministic
phenomena, but most of the time it is the outcome of a long search strategy. It is
demonstrated by the fact that hyperparameters optimization is an active research
area. Several complex hyper-parameter selection algorithms have been developed
by the scientific community, and some of them in turn relies on gradient descent
strategy [21]. To be able to manage all these describes tools, and understanding the
related consequence, experience is required. The latter practise can be considered a
subfield of what is known as AutoML [28], that aims at defining more and more au-
tomated procedures to engineer machine learning systems. AutoML also covers the
topic of neural architecture search (NAS) [18], which this Thesis mainly deal with.
Although we place this work in the NAS field, some slight differences exists. The
here proposed algorithms do not perform a "search" operation in the strict sense, (as
most works mentioned in [18]), rather they aim to bring out the neural architecture
as a consequence of a network growth process.

Chapter 2 of the thesis deals with concept of Target Propagation. Here some affine
and related techniques are discussed, then a detailed description of the new pro-
posed algorithms is held. Furthermore, one of these algorithms is used as a tool in
the definition of a technique aimed at refining pre-trained neural networks. This is
extensively explained, and few experimental results are given.
In chapter 3 the Depth Growing Neural Network framework (DGNN) is introduced.
Here it is formalized, its training algorithm is described and an optimization strat-
egy for its implementation is introduced. In the last section of the chapter experi-

11

mental results are reported. Themodel has been tested on the vertebral column dataset
of UCI machine learning repository [16], the MNIST dataset, and 3 sub-problems of
CIFAR-10 dataset [35] . Experiments have been designed to show the ability of the
model to act as expected, and to confirm its behaviour. First two experiments onUCI
Vertebral report the learning curves and the accuracy for two specific runs, showing
different performance behaviours at varying the subnet size hyperparameter; while
last experiment is a 10-fold cross validation process, aimed at reporting the grade
of stability of performances. Other experiments on bigger dataset as MNIST and
CIFAR-10 are intended to confirm what emerged with the UCI dataset.
Even if seems promising, to the state of the art, expectations on the DGNN model
have only partially been verified.
In chapter 4 an extensive discussion of the idea behind theDownward-GrowingNeural
Architecture (DGNA) is carried on. The learning algorithm is described, and an ex-
perimental section on 7 UCI dataset is performed. It worth to say that results assess
the effectiveness of the proposed algorithm, and a comparison section with other
results state that is it is in line with other well established deep network models and
often even considerably better.

Contributions:
The work done in the development of this Thesis is completely original. Each of
the chapters introduces new definitions and algorithms that are the outcome of the
research activities pursued during the PhD.
The contribution of this Thesis to the topic of "neural architecture search" can be
summarized in the following points:

• The definition of several Target Propagation algorithms.

• The definition of the Depth-Growing Neural Network model (DGNN).

• Thedefinition of theDownward-GrowingNeural Architecture framework (DGNA),
and the assessment of its effectiveness as an alternative neural architecture
search tool.

Chapter 2

Target Propagation

Artificial neural networks, are optimized using a three-decades old algorithm, com-
monly known as backpropagation (BP) [49], that in this work we will also remind as
standard backpropagation, to not confuse with other similar algorithms that will be
defined in next sections.
The idea behind BP is that each weight of the network is partially accountable for
the output error of the model, regarding the particular input-target pair (x, ŷ); it
works as in the following. In order to reduce the output error, weights of network
are updated w.r.t. to how that particular parameter influenced or could potentially
influence the decision of the network. For the generic weight wi, this corresponds
to the calculation of the partial derivative of the the loss function Lw.r.t the generic
weight wi, ∂

∂wi
L. The weights are then updated as in

w′i = wi − η
∂L
∂wi

(2.1)

where η is the learning rate i.e. the size of the step that we take in the direction of
the gradient. Eq. 2.1 corresponds to find a new network configuration associated
to a smaller loss function value. It is basically done moving the weights through
the hyperspace in the direction indicated by the negative of the gradient of L with
respect to the weights of the model. Bearing in mind the architecture of a multi-
layer neural network, the calculation of the gradient with respect to the weights of
internal (or hidden) layers, is done using the chain rule of the derivative. While
standard backpropagation works outstandingly on networks having a limited num-
ber of hidden layers, several weaknesses of the algorithm emergewhen dealingwith
significantly deep architectures [23]. In particular, due to the non-linearity of the ac-
tivation functions associated to the units in the hidden layers, the backpropagated
gradients tend to vanish in the lower layers of the network, hence hindering the cor-
responding learning process. Besides its numerical problems, BP is also known to
lack any plausible biological interpretation [5]. To overcome these difficulties, re-
searchers proposed improved learning strategies, such as pre-training of the lower

13

14 Target Propagation

layers via auto-encoders [4], the use of rectifier activation functions [24], and the
dropout technique [52] to avoid neurons co-adaptation.

Amongst these and other potential solutions to the aforementioned difficulties, tar-
get propagation has been arousing interest in the last few years [39, 10], albeit it still
remains an under-investigated research area. Originally proposed in [8, 9] within
the broader framework of learning the form of the activation functions, the idea un-
derlying target propagation goes as follows.
While in BP the signals to be back propagated are related to the partial derivatives of
the global loss function w.r.t. the layer-specific parameters of the network, in target
propagation the real target outputs (naturally defined at the output layer in regu-
lar supervised learning) are propagated downward through the network, from the
topmost to the bottommost layers. In so doing, each layer gets explicit target out-
put vectors that, in turn, define layer-specific loss functions that can be minimized
locally (on a layer by layer basis) without any need to involve explicitly the partial
derivatives of the overall loss function defined at the whole network level. There-
fore, the learning process gets rid altogether of the troublesome numerical problems
determined by repeatedly backpropagating partial derivatives from top to bottom.

The goal of this chapter is to discuss a new potential neural network training
technique/framework, said target propagation. The main idea here is to determine
target values for each neuron (and layer) of the network. Analogously to how stan-
dard backpropagation works, this targets are first calculated for the topmost layer
and using a propagation technique, new targets are determined for the internal lay-
ers, in a top-bottom fashion.

2.1 Definitions 15

2.1 Definitions
Given a neural network dnet having ` layers, given the generic output target ŷ` of
the network, which is associated to the `-th layer (the output layer), target propagation
consists in estimating the target value ŷ`−1 for layer `− 1. In order to accomplish
the task, a specific function φ(.) has to be realized, such that

ŷ`−1 = φ(ŷ`) (2.2)

When dnet is fed with an input vector x, the i-th layer of dnet (for i = 1, ..., `, while
i = 0 represents the input layer which is not counted) is characterized by a state
hi ∈ Rdi , where di is the number of units in layer i, hi = σ(Wihi−1 + bi) and h0 = x
as usual. The quantity Wi represents the weight matrix associated to layer i, Wi ∈
Rdi×di−1 , bi ∈ Rdi denotes the corresponding bias vector and σi(.) represents the
vector of the element-wise outcomes of the activation functions for the specific layer
i, but most of the times the layer index is omittedwhen it is not needed. (The logistic
sigmoid activation function is used in the present research).
Consider a supervised dataset D = {(xj, ŷj)|j = 1, ..., N}. Given a generic input
pattern x ∈ Rn and the corresponding target output ŷ ∈ Rm both drawn from D,
the state h0 ∈ Rn of the input layer of dnet is defined as h0 = x, while the target state
ĥ` ∈ Rm of the output layer is ĥ` = ŷ. Relying on this notation, it is seen that the
function fi(.) realized by the generic i-th layer in dnet can be written as

fi(hi−1) = σ(Wihi−1 + bi) (2.3)

Therefore, the mapping Fi : Rn → Rdi realized by the i bottommost layers of dnet
over current input x can be expressed as the composition of the i layer-specific func-
tions as follows:

Fi(x) = fi(fi−1...(f1(x))) (2.4)
Eventually, the function realized by dnet (that is `-layer network) is F`(x). Bearing
in mind the definition of D, the goal of training dnet is having F`(xj) = ŷj for j =
1, ..., N. This is achieved by minimizing a point-wise loss function measured at the
output layer. In the work done, this loss is the classic squared error represented as
L(xj; θ) = ‖F`(xj)− ŷj‖2

2, where θ represents the overall set of the parameters of dnet
and ‖·‖2 is the euclideian norm. In the traditional supervised learning framework
the targets are defined only at the output layer. Nevertheless, while no explicit "loss"
functions are associated to the hidden layers, the backpropagation (BP) algorithm
allows the update of the hidden layers weights by back-propagating the gradients
of the top level loss L(.). To the contrary, target propagation consist in propagating
the topmost layer targets ŷ to the lower layers, in order to obtain explicit targets for
the hidden units of the network, as well. Eventually, standard gradient descent with
no BP is applied in order to learn the layer-specific parameters as a function of the
corresponding targets.

16 Target Propagation

2.2 Existing Methods
As already said, target propagation (TP) is still an under investigated research area,
although several works exists in the literature. Here we roughly show some of the
main works that most relate to the topic of this research. A first attempt to go in the
direction of target propagation was made in the middle of 80s [37], although using
threshold based (binary valued) architectures, where each neuron could only take
values {−1, 1}. In such a way, estimating the target was basically equivalent to esti-
mating the sign. Here we mention the TP methods based on the pseudoinverse and
gradient descent algorithms introduced in [10], an affine approach said synthetic
gradient described in [31] and the autoencoder based TP technique found in [39].

Pseudoinverse Based Target Prop

Given a network having ` layers, using the notation introduced in the previous sec-
tion, the generic network output can be written as y = σ(W`h`−1 + b`), where σ(.)
is the non-linear activation function of the output layer. Consequently, the generic
target output value can be written as ŷ = σ(W`ĥ`−1 + b`). Looking at the latter, the
first idea the can be conceived in order to find the targets for layer `− 1, is that of
mathematically explicit ĥ`−1 from the equation. So we can think to propagate the
target to layer `− 1 as in the following:

ĥ`−1 = W−1
` (σ−1(ŷ)− b`). (2.5)

Unfortunately, this equation can be solved only is thematrixW` is invertible. Among
the conditions required for a matrix to be invertible, it is necessary that W` be a
square matrix; this basically entails that layers ` − 1 and ` have to be of the same
size, which is not a very conventional neural network architecture. To overcome
this issue, an inversion technique that deals with non-square matrix can be used, as
the Moore-Penrose pseudo-inverse [47], whose mathematical description goes over
the scope of this work. This approach has been used in [10], anyway this is just
an approximation, and the bigger is the difference between the size of layers ` and
` − 1, the bigger is the approximation error, often leading to numerical problems
and instability. Basically this approach can be used only if the network architecture
respects the conditions described above, or if the difference between layers size is
negligible. Furthermore, the size of matrix to invert should also be considered, due
to the expensive computational cost of the inversion operation.

Gradient Based Target Prop

In [10], the author describes a gradient based technique aimed at the estimation of
target values for layer `− 1. Having y = σ(W`h`−1 + b`) and ŷ = σ(W`ĥ`−1 + b`)

2.2 Existing Methods 17

as before, for the estimation of ĥ`−1 the author aims at minimizing a loss function
L(ŷ,y) = ‖ŷ− y‖2

2, where y is the output realized by feeding the `-th layer with the
newly generated ĥ`−1, who is here estimated using the following update rule

ĥ`−1 = ĥ`−1 − η
∂L(ŷ,y)

∂ĥ`−1
(2.6)

where the updating continues until a stopping policy is met. As it has been defined,
its computational cost scales linearly with the number of output targets to invert.
This makes it not usable when dealing with large dataset. To overcome this issue,
target estimation can be performed in batch or mini-batch mode.

Synthetic Gradient

A very interesting work, loosely related to the topic of this section, but with few
things in common, is the one proposed in [31]. It was conceived with the goal of
being able to train the multiple layers of a generic network all in parallel, without
waiting for the gradients of the global loss function to be propagated back through
the upper layers. To do that, for each layer i, with i = 1, ..., ` − 1, a specific neu-
ral network neti is defined, aimed at learning to predict the value of the gradient
that will be back propagated to layer i by the upper layers, given the outcome of
the i-th layer. Basically this approach is analogous to TP, but it estimates the layer-
specific gradients instead of the targets. What make it interesting is the auxiliary
layer-specific network, that has also been used in a recent TP algorithm, described
in the following paragraphs.

Difference Target Propagation

A recent milestone regarding the target propagation topic, achieved using common
continuous valued neural network architecture, is the one described in [39]. Here
for each layer of the network, targets are estimated using an autoencoder like ap-
proach. To this end, [39] proposed an approach called difference target propagation
(DTP) that relies on autoencoders. DTP is aimed at realizing a straight mapping
ŷ`−1 = φ(ŷ`) from the targets ŷ` at layer ` to the expected targets ŷ`−1 at layer
`− 1. The main idea is to realize a function gi(.) associated to every layer-specific
function fi(.) as hi−1 = gi(hi) and such that fi(gi(hi)) ' hi. This function gi(.)
is seen as the decoding part of a more generic auto-encoder, that can be formal-
ized as the composition of functions gi(fi(.)). This decoding part is trained in order
to minimize a layer-specific loss Li = ‖gi(fi(hi−1)) − hi−1‖2

2, so that the learning
process will make gi(.) ' f−1

i (.). As it is, it estimates the inverse mapping. In
order to be able to estimate the inverse mapping also for target values, such that
ĥi−1 = gi(ĥi), thinking to target values as data points laying in the neighbour-
hood of the training set points, the loss is update by introducing a random noise

18 Target Propagation

as Li = ‖gi(fi(hi−1 + ε))− (hi−1 + ε)‖2
2, where ε ∼ N(0, σ), who is aimed at learn-

ing to estimate the inversemapping for neighbours hi−1 + ε, who hopefully are very
close to target points ĥi−1. As shown by [39], the technique is effective (it improves
over regular gradient-descent in the experiments carried out on theMNIST dataset),
although the accuracy yielded by DTP does not compare favorably with the state-
of-the-art methods (mostly based on convolutional networks). Moreover, DTP offers
the advantages of being readily applied to stochastic and discrete neural nets.

2.3 Error Driven Target Propagation 19

2.3 Error Driven Target Propagation
Differently fromDTP, the core of the present approach is that the backwardmapping
from layer ` to `− 1 shall be learnt by a regular feed-forward neural network as an
explicit function ϕ(.) of the actual error e` = ŷ` − y` observed at layer ` (namely,
the signed difference between the target and actual outputs at `), that is ŷ`−1 =

ϕ(ŷ`, e`). In so doing, after training has been completed, the image of ϕ(ŷ`, 0) is an
estimated optimal value of ŷ`−1 that is expected to result in a null error e` = 0when
propagated forward (ŷ` = f`(ϕ(ŷ`, 0)) i.e. from ` − 1 to `) through the original
network. It is seen that learning ϕ(.) requires that at least a significant fraction of
the training samples results in small errors (such that e` ' 0). This is the reason
why the proposed technique can hardly be expected to be a suitable replacement
for the established learning algorithms altogether, but it rather results in an effective
refinement method for improving significantly the models realized by pre-trained
deep neural networks. The proposed approach is different from that introduced
in [4, 3], as well, since the latter relies on gradient-descent (or, the pseudo-inverse
method) and, above all, it does not involve e`.
In this research, at the core of the target propagation algorithm there is another,
subsidiary network called the inversion net. Its nature and its application to target
propagation are handed out in the following section.

The Inversion Net
Let us assume that the target value ĥi is known for a certain layer i (eg. for the
output layer, in the first place). The inversion net is then expected to estimate the
targets ĥi−1 for the preceding layer, that is layer i− 1. In this research the inversion
net is a standard feed-forward neural network having a a much smaller number of
parameters than dnet has, e.g. having a single hidden layer. In principle, as in [39],
the inversion net could be trained such that it learns to realize a function gi() : Rdi →
Rdi−1 defined as

gi(ĥi) = ĥi−1 (2.7)
where ĥi−1 represents the estimated target at layer i − 1. Let us assume that such
inversion nets were trained properly to realize gi(.) for i = `, ..., 1. Then, layer spe-
cific targets could be defined according to the following recursive procedure.
Basis of recursion: first of all, if the layer i is the output layer, i. e. i = `, then ĥi = ŷ
and g`(ŷ) = ĥ`−1.
Recursive step: the target outputs for subsequent layers (`− 1, ..., 1) are obtained by
applying gi(.) to the estimated targets available at the adjacent upper (i.e. i-th) layer.
The actual error driven training procedure for the inversion net proposed herein
modifies this basic framework in the following manner. Given the generic layer i
for which we want to learn the inversion function gi(.), let us define a layer-specific

20 Target Propagation

dataset Di = {(x′i,j, ŷ′i,j)| j = 1, ..., N} where, omitting the pattern specific index j
for notational convenience, the generic input pattern is x′i = (ĥi, ei) given by the
concatenation of the target value at layer i (either known, if i = `, or pre-computed
from the upper layers if i < `) and the corresponding layer-specific signed error
ei = ĥi − hi. Herein, hi is the actual state of layer i of dnet upon forward propaga-
tion of its input, such that x′i ∈ R2×di . In turn, ŷ′i is defined to be the state of the
(i− 1)-th layer of dnet, namely ŷ′i = hi−1.
Once the supervised dataset Di has been built this way, the inversion net can be
trained using standard BP with an early-stopping criterion. We say that this scheme
is error-driven, meaning that the inversion net learns a target-estimation mapping
which relies on the knowledge of the errors ei stemming from the forward-propagation
process in dnet. Once training of the inversion net is completed, the proper target-
propagation step (from layer i to i − 1) can be accomplished as follows. The in-
version network is fed with the vector (ĥi, ei) where we let ei = 0 in order to get
gi(ĥi) = ĥi−1 ' f−1

i (ĥi). In so doing, the inversion net generates layer specific tar-
get that, once propagated forward by dnet, are expected to result in a null error, as
sought. The resulting training procedure is formalized in Algorithms 1 and 2 in the
form of pseudo-code. The algorithms assume the availability of two procedures,
namely: f eedForward(net, x), realizing the forward propagation of an input pattern
x through a generic neural network net; and backpropagation(net,D), that imple-
ments the training of the network net via BP from the generic supervised training
set D.

In order to reduce the bias intrinsic to the training algorithm, target propagation
is accomplished relying on a modified strategy, as in different target propagation
scheme [39], accounting for the bias that the layer specific inversion nets gi(.) are
likely to introduce in estimating the corresponding target outputs ĥi−1. To this end
we let

ĥi−1 = hi−1 + gi(ĥi, 0)− gi(hi, 0) (2.8)

The rationale behind this equation is the following. First of all, gi(.) can be also
applied to invert the actual state hi of dnet instead of the target state ĥi. Ideally, if the
mapping realized by the inversion net were perfect, we would have gi(hi, 0) = hi−1.
To the contrary, since gi(.) is the noisy outcome of an empirical learning procedure,
in practise gi(hi, 0) 6= hi−1 holds, i.e. an offset is observed whose magnitude is
given by |gi(hi, 0)−hi−1|. Equation (2.8) exploits this offset as a bias corrector when
applying gi(.) to the computation of ĥi−1 as well. Note that whenever gi(hi, 0) =

hi−1 (unbiased inversion net) then the equation reduces to ĥi−1 = gi(ĥi, 0), as before.
The details of the present bias-correction strategy are handed out in [39].

2.3 Error Driven Target Propagation 21

Algorithm 1 Training of the inversion net
Input: initialized inversion net invNeti with 2× di input units and di−1 output units,
deep network dnet, training set D = {(xj, ŷj)

N
j=1}, layer i, targets ĥi

Output: the trained inversion net invNeti for layer i, capable of computing ĥi−1 from
ĥi

1: Di = ∅
2: for j = 1 to N do
3: feedForward(dnet, xj)
4: ei,j ← ĥi,j − hi,j

5: x′i,j ← (ĥi,j, ei,j)

6: ŷ′i,j ← hi−1,j

7: Di = Di ∪ {(x′i,j, ŷ′i,j)}
8: end for
9: invNeti = backpropagation(invNeti,Di)

Algorithm 2 Target propagation
Input: trained inversion net invNeti, layer i, number of patterns k, targets to be
propagated ĥi,j, j = 1, ..., N
Output: the propagated targets ĥi−1,1, ..., ĥi−1,N

1: for j = 1 to N do
2: ei,j = 0
3: x′i,j = (ĥi,j, ei,j)

4: ĥi−1,j = feedForward(invNeti, x′i,j)
5: end for

Refinement of Deep Network Learning

The notions introduced in previous paragraphs and the pseudo-code contained in
algorithms 1 and 2 clearly explain how a target propagation technique can be real-
ized using the error driven approach. An attempt to train neural networks exclusively
relying on this error driven target propagation algorithm (EDTP), without using the
standard BP, has been done. It acts as in the following. After a standard neural net-
work initialization step, starting from the topmost layer `, for each layer i (i = `, ..., 2),
targets are generated for the subsequent layer i− 1. Using this generated targets, a
layer specific loss Li(.) is defined. Now, from the bottommost layer to the topmost,
layer weights are updated in order to minimize the associated Li(.). Even if the
results are promising, actually this pure target propagation training strategy does
not overcome the standard BP algorithm. For such a reason, this target prop tech-
nique (algorithm 1 and 2) has been chosen to be the building block for a refinement
technique for pre-trained neural network. The goal is to further improve the perfor-

22 Target Propagation

mances of pre-trained networks, by keep on updating the network weights relying
on the layer-specific loss, generated as before. This is expected to lead to improved
performances especially in deep network, where lower layer weights suffer for the
vanishing gradient problem [23, 6]. Therefore, it is well known that with standard
BP the magnitude of the gradient reaching lower layers can be very small, and those
weights are only weakly updated. On the other hand, updatingweights using layer-
specific losses do get rid of this issue, improving the network performances. The
overall approach goes as follows:

1. The deep network is pre-trained via BP, as usual

2. Targets are propagated downward through the layers, as in Alg. 1 and 2

3. The network is trained layer-wise accordingly. This phase is said refinement

Algorithm 3 provides a detailed description of this refinement strategy. The al-
gorithm invokes a routine Initialize_Network(net) used to randomly initialize
a generic feed-forward neural network net before the beginning of the standard
training phase. Finally, the routine layer_backprop(hi−1,j, ĥi,j) realizes the adap-
tation of the weights between layers i− 1 and i (for i = 1, ..., `) via online gradient-
descent. This application of gradient-descent uses hi−1,j as input and ĥi,j as the
corresponding target output. It is seen that extensions of the procedure to batch
gradient-descent and/or multi-epochs training are straightforward by working out
the skeleton of pseudo-code offered by Algorithm 3.

2.3 Error Driven Target Propagation 23

Algorithm 3 Refinement of network learning based on target propagation
Input: deep network dnet, supervised training set D = {(xj, ŷj)

k
j=1}

Output: the refined network dnet
Procedure network_refinement(dnet, D)
1: for j = 1 to N do . Layer state calculation
2: for i = ` to 1 do
3: if i = ` then
4: ĥi = ŷ
5: end if
6: hi = Fi(x)
7: hi−1 = Fi−1(x)
8: end for
9: end for
10: for i = ` to 2 do . Target propagation
11: Initialize_Network(invNeti)
12: invNeti = train_inv_net(invNeti, dnet,D, i, ĥi)
13: ĥi−1,1, ..., ĥi−1,k = target_prop(invNeti, i, ĥi,1, ..., ĥi,k)
14: end for
15: for j = 1 to N do . Layer-wise training
16: for i = 1 to ` do
17: if i = 1 then
18: hi−1,j = xj
19: end if
20: layer_backprop(hi−1,j, ĥi,j)
21: end for
22: end for

The algorithm so defined results being a promising refinement technique. It is
especially indicatedwhen dealingwith deepmultilayer networks having non-linear
activation function, where the refinement of lower layers can imply a meaningful
performance improvement, as sought.

24 Target Propagation

Figure 2.1: An illustration of how targets propagate downward through the net-
work.

2.4 Residual Driven Target Propagation

In the previous sections we discussed at some length about the concept of target
propagation. We introduced a technique, said "error driven target propagation" and
explained how it can be used as an alternative technique to train neural networks
without back propagating errors downward through the layers, as in standard BP.
We then showed how this technique can be used as a refinement tool to further
improve the performances of pre-trained networks. In this section we introduce
another target propagation algorithm, said residual driven target propagation (RDTP).
The motivation leading to the conceivement of this new approach is the following.
Assuming to have a neural network dnet with a single hidden layer of size d, single
output unit and an input layer of size n, and that this network was pre-trained us-
ing a supervised training-set D = {(xj, ŷj)

N
j=1}. As defined before, given a network

having ` layers, target propagation consists in estimating the target values for layer
`− 1, given the targets at layer `, bymeans of a function φ(.) such that ŷ`−1 = φ(ŷ`),
and such that f`(φ(ŷ`)) ' ŷ`, where f`(.) is the function realized by the `-th layer
(using the definitions introduced in section 1.1). As we already know, φ(.) is a layer-
specific function. Here, instead of estimating the targets ĥ`−1 as in the usual way, we
aim at estimating the residual values z`−1, where with the term "residual" we mean
the difference between the actual state h`−1 and the desired, although unknown,
target value ĥ`−1, such that h`−1 + z`−1 = ĥ`−1. This approach is advantageous
mostly when dealing with pre-trained model, for the following considerations. As-
suming to train a neural network using D, and that this trained model reaches top

2.4 Residual Driven Target Propagation 25

performance (as 100% accuracy in a classification task or zero mean squared error
in a regression task), here we have that hi = ĥi for i = 1, ..., `, that is that layers state
values exactly correspond to layer target values, because we cannot do better, and
these values are just what was needed. In this situation, it is clear that the residual
value z`−1 = ĥ`−1 − h`−1 is null at the end of the training process; while starting
from the first epoch, it kept decreasing, until being zero. From the last analysis, in-
dicating with t the particular training epoch, and with τ a certain time period, we
can say that z`−1(t + τ) ≤ z`−1(t) if the training process is such that the loss func-
tion keeps decreasing at the same time. From the afore considerations, it is easy to
understand that after a pre-training process we have that |z`−1| � |h`−1| with a
consequent more bounded co-domain for the inversion function φ(.). This basically
translates in a more error-robust target propagation technique.
There is another motivation that makes residual driven target propagation even
more interesting. To the contrary of what happens with other TP algorithms, in
RDTP, if for a particular input pattern does not stand any output error, the resid-
ual estimated is just zero (as will be shown later), z`−1 = 0, and ĥ`−1 = h`−1 + 0,
meaning that the actual state is just the target. This guarantees that, in case of a lay-
erwise training phase, the knowledge contained into the network will be kept safe,
in other words, what has been correctly learned from the network in a pre-training
phase will not be altered. This is not guaranteed with other target prop techniques.
RDTP works as described in the following lines. The core of the present approach
is the estimation of the residues z`−1 at layer `− 1, given the network output error
(ŷ − y)2. Once the residues are estimated, we can easily define the target values
for layer ` − 1 as ĥ`−1 = h`−1 + z`−1, where we have omitted the dependence on
the input pattern. Given dnet, as defined at the beginning of the section (where `

and ` − 1 in this case correspond to the output and hidden layer of the MLP re-
spectively), using an ad-hoc notation (indicating with the apexes and subscripts the
layer-specific and the neuron-specific indexes respectively), bearing inmind that we
have assumed an output layer with a single unit, we write the network output as

y = σ`

(d`−1

∑
u=1

w(`)
u h(`−1)

u + b(`)
)

(2.9)

with

h(`−1)
u = σ`−1

(n

∑
k=1

w(`−1)
u,k xk + b(`−1)

u

)
(2.10)

where the input x ∈ Rn. Now we can say that the generic network target value is
equal to

ŷ = σ`

(d`−1

∑
u=1

w(`)
u ĥ(`−1)

u + b(`)
)

(2.11)

26 Target Propagation

where ĥ(`−1)
u for u = 1, ..., d`−1 are the hidden layer target values. Knowing that

z(`−1)
u = ĥ(`−1)

u − h(`−1)
u , and consequently ĥ(`−1)

u = h(`−1)
u + z(`−1)

u , we can rewrite
the latter as

ŷ = σ`

(d`−1

∑
u=1

w(`)
u (h(`−1)

u + z(`−1)
u) + b(`)

)
(2.12)

= σ`

(d`−1

∑
u=1

w(`)
u h(`−1)

u︸ ︷︷ ︸
ã

+
d`−1

∑
u=1

w(`)
u z(`−1)

u︸ ︷︷ ︸
ãz

+b(`)
)

(2.13)

and in order to derive the residual values, we need to explicit ãz. After these con-
siderations, we can also define the target output as

ŷ = y + yz (2.14)

where yz is the output component related to the residues, that we consider such that
yz = σ`(ãz). From which we can do

yz = ŷ− y (2.15)
ãz = σ−1

` (yz) (2.16)

Now we can estimate the internal residues starting from ãz. Where we know that
ãz = ∑

d`−1
u=1 w(`)

u z(`−1)
u . The idea behind the estimation of the zu values is the follow-

ing. We state that when a pattern x ∈ D is fed into the network dnet, and an output
error yz is detected, each unit at layer `− 1 is responsible in somehow for that par-
ticular error. We formalize the concept of "responsibility for the u-th neuron" of a
generic layer i of size di as a quantity r(i)u (x) ∈ [0, 1] such that

di

∑
u=1

r(i)u (x) = 1 (2.17)

meaning that the outcomes of all units in layer i in response to the particular input
x, entail a notion of responsibility, which is distributed among all the neurons of the
layer. We defined the responsibility of a certain neuron u on a given pattern x as the
outcome of the particular neuron, normalized over the outcomes of all the neurons
within layer:

r(i)u (x) =
σi(au)

∑di
k=1 σi(ak)

(2.18)

where au and ak are the activations of the generic units u and k. We will optionally
omit the dependence on x for simplicity. The last step, who leads to the estimation
of the single-units residues z(i)u , u = 1, ..., di, is based on the assumption that the

2.4 Residual Driven Target Propagation 27

higher is the responsibility on a certain error, the higher is the "needed" residue z(i)u .
This arises from the idea that the outcome of a generic unit u is proportional to the
competence that it has on the given input pattern, or more formally on the region
of the domain that the pattern belongs to. If the outcome of the neuron is close to
zero, with a consequent null responsibility value, r(i)u (x) ' 0, it means that u it is
not competent on x. This entails a intrinsic sparsity property in neural networks,
where only a fraction of neurons are active at the same time. In order to keep this
property unchanged (in case of a further layer-wise training), we define residues
proportionally to the responsibilities of the single neurons. In particular know-
ing that ãz = ∑

d`−1
u=1 w(`)

u z(`−1)
u , we empirically decompose ãz assuming that each

component of the sum is proportional to the corresponding responsibility value as
r(`−1)

u ãz = w(`)
u z(`−1)

u , from which we have

z(`−1)
u =

r(`−1)
u ãz

w(`)
u

(2.19)

The whole procedure is described in Algorithm 4, where we have also introduced a
pattern-specific index j for each parameter.

Algorithm 4 Residual Driven Target Propagation Algorithm
Input: training set D = {(xj, ŷj)

N
j=1}, the network dnet, the output layer i + 1

Output: the propagated targets at layer i. For dnet, layer i corresponds to the single
hidden layer.
Procedure residual_target_prop(dnet,D, i + 1)
1: for j = 1 to N do
2: yj = Fi+1(xj)
3: yz,j = ŷj − yj

4: ãz,j = σ−1
i+1(yz,j)

5: for u = 1 to di do
6: r(i)u (xj) =

σi(au)

∑d
s=1 σi(as)

7: z(i)u = r(i)u ãz

w(i+1)
u

8: ĥ(i)u = h(i)u + z(i)u . h(i)u = σi(au)
9: end for
10: ĥi,j = (ĥ(i)1 , ..., ĥ(i)di

)

11: end for

28 Target Propagation

2.5 Gradient Based - Residual Driven Target Prop

The RDTP algorithm described in the previous section does not require auxiliary
neural networks for the estimation of targets, as it happen in other techniques, mak-
ing this a much faster alternative for target propagation (from a computational per-
spective), because it consists in a well define set of operations that have to done only
once for each single pattern . Anyway this approach has a weak point. It can be
applied only to neural networks having single output unit. The immediate conse-
quence is that, it is not possible to further propagate targets from layer `− 1 to layer
` − 2, because ` − 1 is in most of the cases is a layer of size greater than one. To
the state of the art, RDTP as it is, can only be applied to standard MLPs with single
output units. Therefore, to overcome this limitations, an extended version of the
algorithm has been conceived. This is called Gradient Based RDTP. The main idea
is the same of the standard RDTP, that is to estimate residual values z`−1 for layer
`− 1 such that we can derive the propagated targets as ĥ`−1 = h`−1 + r`−1 � z`−1,
where the residues aremultiplied element-wise by the responsibility of neurons (we
have used a vectorial notation) in order to keep unchanged the sparsity property of
the neural network, as mentioned before. Here we estimate the residues z`−1 with
a gradient descent approach, defining the following

ĥ′` = σ`

(
W`(h`−1 + r`−1 � z`−1) + b`

)
(2.20)

and minimizing the loss function L(ĥ`, ĥ
′
`) = ‖ĥ` − ĥ′`‖2

2, iteratively updating z`−1
as

z′`−1 = z`−1 − η
∂L(ĥ`, ĥ

′
`)

z`−1
(2.21)

that is a typical gradient descend update rule. It can be done in online or batch
style. In order to propagate the targets to the preceding layers, the process must
be repeated changing the layer-specific parameters. In algorithm 5 it is shown the
detailed process, where calculate_layer_resp(net, i, x) calculates the responsibilities
for layer i of network net element-wise as in eq. (2.18), in response to the input x,
while estimate_residues(net, x, ri, ĥi+1,hi) performs the residues estimation for layer
i using the update rule in eq. (2.21) until a stopping criterion has met; furthermore
a pattern specific index has been introduced for all involved parameters.

2.5 Gradient Based - Residual Driven Target Prop 29

Algorithm 5 Gradient Based - Residual Driven Target Prop Algorithm
Input: training set D = {(xj, ŷj)

N
j=1}, the network dnet, the layer i

Output: the propagated targets at layer i− 1
Procedure gradient_based_RDTP(dnet,D, i)
1: for j = 1 to N do
2: if i = ` then
3: ĥi,j = ŷj
4: end if
5: hi−1,j = Fi−1(xj)
6: ri−1,j = calculate_layer_resp(dnet, i− 1, xj)
7: zi−1,j = estimate_residues(dnet, xj, ri−1, ĥi,j,hi−1,j)
8: ĥi−1,j = hi−1,j + ri−1,j � zi−1,j
9: end for

This herein introduced technique, solves someof the limitation of RDTP.Anyway
it is of immediate understanding the the estimation of the residues scales linearly
with the number of patterns of the training set. So attention has to be paid to this
aspect.

30 Target Propagation

2.6 Experiments with the Refinement Algorithm
In this section we show the performances of the refinement algorithm introduced
in the section 2.3 and widely described in [36] . Experiments were conducted on
the popular MNIST dataset [38], 70000 patterns representing pixel-based images
of handwritten digits (10 classes overall) having dimensionality of 784. A 10-fold
crossvalidation strategy was applied, where for each fold 80% of the data were used
for training, 10% for validation, and 10% for test. Our aim here is to exploit MNIST
as a significant and difficult learning task suitable to assess the effectiveness of the
present approach, and to compare the proposed algorithms to established non- con-
volutional feed-forward networks and target propagation methods previously ap-
plied to MNIST as [51, 39]. Gradient-based training of the main network dnet (the
classifier) relied on RMSProp [53], and learning rate of 0.01, while for the inver-
sion net and the layer-wise refinement of dnet the Adam [32] variant was used, with
learning rate of 0.001. The network hidden layers were composed of 140, 120 and
100 neurons respectively, with sigmoid activation function. All components were
trained using MSE loss. The inversion net hidden layer was composed of 200 units
with sigmoid activation functions.

Table 2.1: Accuracy on MNIST 10-fold classification task (avg. ± std. dev. on a
10-fold crossvalidation)

Algorithm Training Test
RMSProp 99.48 ± 0.13 98,12 ± 0.05
Target Propagation 87.30 ± 0.29 86.64 ± 0.27
Refinement 99.65 ± 0.08 98.27 ± 0.06

Table 2.2: Comparison between the proposed algorithm and the established ap-
proaches, in terms of error rate and number of adaptive parameters.

Algorithm Test Error #Parameters

Refinement 1.73 ± 0.06 3.04× 105

[39] 1.94 5.36× 105

[51] 1.6 1.28× 106

Table 2.1 compares the accuracies for dnet trained with RMSProp, bare target
propagation and with the refinement. In terms of learning capabilities (evaluated

2.6 Experiments with the Refinement Algorithm 31

0 1000 2000 3000 4000 5000
Steps

0.00

0.02

0.04

0.06

0.08
Lo

ss

dnet - learning and generalization curves

Training
Validation

Figure 2.2: Learning and generalization curves for dnet.

on the training set), the refinement (that consists in applying target propagation to
the pretrained dnet) yelds a 32.75% average error rate reduction over RMSProp. In
terms of generalization (evaluated on the validation set) an average error rate reduc-
tion of 8.20% was observed. Table 2.2 offers a comparison among MNIST classifiers
based on non-convolutional feedforward neural networks using no augmentation of
the training set. The comparison involves the error rate as observed and the num-
ber of parameters of the model, that is an index of model complexity. It is seen that
the error rate achieved by the proposed refinement algorithm is in the middle be-
tween its competitors, but the complexity of the machine is dramatically smaller.
Figure 2.2 presents the learning and generalization curves (mean squared error on
training and validation sets, respectively) obtained running regular BP learning of
dnet in one of the 10-folds of the present experiment. Note that the loss used to plot
the learning curve was evaluated, from step to step, on the corresponding train-
ing mini-batch only, while the generalization curve was always evaluated on the
whole validation set. In fig. 2.3 are the learning and generalization curves of the
layer-specific gradient-descent adaptation of the weights in the 1st, 2nd, and 3rd
hidden layers of dnet, respectively, by means of the application of the procedure
layer backprop(.) to the target propagated via the inversion net. Figure 2.4 shows
the curves for layer_backprop(.) applied to the weights in the topmost layer of dnet.
Although eventually one is interested in solving the original learning problem, it
is seen that the layer-specific sub-problems are actually difficult high-dimensional
learning problems, which may just not admit any sound single-layered solution.
This explains the observed difficulties net by gradient descent in minimizing the

32 Target Propagation

0.8

1.0

L1
 L

os
s

1e 2 layer_backprop(): hidden layer 1

Training
Validation

0.8

1.0

L2
 L

os
s

1e 2 layer_backprop(): hidden layer 2

Training
Validation

0 1000 2000 3000 4000 5000
Steps

0.6

0.8

L3
 L

os
s

1e 2 layer_backprop(): hidden layer 3

Training
Validation

Figure 2.3: Learning and generalization curves of the procedure layer_backprop(.)
applied to the three hidden layers of dnet.

0 1000 2000 3000 4000 5000
Steps

0.02

0.04

0.06

0.08

0.10

Lo
ss

layer_backprop(): output - learning and generalization curves

Training
Validation

Figure 2.4: Learning and generalization curves of the procedure layer_backprop(.)
applied to the output layer of dnet.

2.6 Experiments with the Refinement Algorithm 33

corresponding layer-specific loss functions.
Target propagation emerges as a viable approach to learning and refinement of deep
neural networks, tackling the vanishing-gradient issues stemming form application
of plain BP to deep architectures. Albeit preliminary, the empirical evidence stresses
that the proposed refinement strategy yields classification accuracies that are in line
with the state- of-the-art algorithms for training feed-forward networks.

34 Target Propagation

2.7 Remarks
Propagation of targets outputs to internal layers of neural networks is nowadays
an under investigated research area. In this chapter an overview of most interest-
ing works done in this direction has been made, especially of those most related to
this thesis. Three new algorithms, Error Driven Target Prop (EDTP), Residual Driven
Target Prop (RDTP) and Gradient Based RDTP (GB-RDTP) conceived during the de-
velopment of this thesis have been introduced. While all these techniques share the
same goal, the estimation of target for internal layers, they are based on different
ideas and approaches. The EDTP, while resulting slower than the RDTP due to its
neural-based nature, it can be used in all possible situations/architectures. On the
contrary, the RDTP results in amuch faster technique, but usable only when dealing
with MLPs having single output unit. The same considerations done for EDTP are
valid also for GB-RDTP, because the latter uses a gradient descent technique for the
estimation of residues, and does not suffer of any architectural limitations. In next
chapters we will see how the contemporary use of more of these techniques became
very useful for the development of the present work.

Chapter 3

Depth Growing Neural Networks

Managing DNNs and relative learning strategy can be very challenging. Knowing
the suitability of a certain DNN architecture for a given learning task T requires at
least the expectation of a certain number of training epochs. At the end of this pro-
cess we are able to measure performances of the model, and establish if the chosen
architecture fits or if a new training process with a different architecture is needed.
This described process, especially if dealing with lot of data and big architectures,
can result in lot of time wasting.
In last years the community is addressing efforts in the direction of always more au-
tomated techniques to create and train DNNmodels. In this context, the idea of the
depth growing neural network model (DGNN) comes out. Basically it was conceived
with the aim of realizing a new neural networkmodel, able to overcome some of the
aforementioned issues, and that would be easier to train.
It mainly deal with the topic of neural architecture search: size and number of lay-
ers, and type of activation functions. The key idea that drove the conception of
the DGNN model, was to define a neural model whose performance improvement
was due to a progressive adaptation of its activation functions to the problem at
hand. The aimwas to have models whose outcomes were resulting from linear (and
non-linear) combination of more (or very) complex non-linearities. This idea has an
important role in the architectural imprint of the DGNNmodel.

35

36 Depth Growing Neural Networks

3.1 Related Works (adaptive activation functions)
In this section we discuss few affine models, that are able to autonomously set some
of their architectural configurations. Here we focus on the topic of autonomously
finding the best activation functions setting for a given network, that can be consid-
ered as a sub-task of the more general one of finding the right neural network ar-
chitecture. In particular we analyze models aimed at learning their activation func-
tions.

One of the first works in the area of learnable activation functions is the work [11],
where the author tries to learn the smoothness θ of a sigmoid activation function
σ(x) = 1

1+e−x/θ . One same line is the work of [54], where the author further gen-
eralizes the sigmoid activation function as σ(x) = λ

1+e−x/θ and aims at learning the
amplitude λ.

An important work in the area of learnable activation function is [26], the maxout
network. This consists in a feedforward network having special kind of neurons said
maxout units. These units i have an activation function of the form yi = max(xW1 +

b1, xW2 + b2, ..., xWk + bk)where x is the previous layer state and W1, b1, ..., Wk, bk are
learnable parameters. If we set all components but one to zero, it is easy to see that
in this way we obtain the standard ReLU [24] activation function. By learning the
appropriate parameters we could potentially approximate any kind of activation
function, at the cost of a substantial increase of the number of parameters to learn.

Similar is the work of [1], where the adaptive piecewise linear unit (APL) is defined.
It consists in neurons with the following activation function: yi(x) = max(0, x) +
∑S

s=1 as
i max{0,−x + bs

i }, where S is a fixed hyperparameter and as
i and bs

i are learn-
able parameters, as

i determines the slope and bs
i the bias.

Among existing works on the topic of learning the activation functions, we need
to mention the work of [10], that inspired the idea of DGNN model. Here the au-
thor aims at learning the activation functions of the hidden layer of an MLP using
auxiliary smaller neural networks, whose training set was generated using a gradi-
ent based approach. It is similar to the work of this Thesis, with the difference that
the DGNNmodel can recursively replace its internal neurons, aiming in this way at
defining a deep architectures. So we can say that while the goal of [10] was limited
to the search of the best fitting activation functions, here we aim at finding the best
architecture. Furthermore, the research activity on the DGNN model lead to the
development of new target propagation techniques, and some of them are used in
the DGNN training process.

3.2 The DGNNModel 37

3.2 The DGNNModel
We define the depth growing neural network model, said DGNN for convenience,
as a neural network having a single internal (hidden) layer composed of particular
neurons said meta-neurons, defined here; while input and output layers have stan-
dard neurons. The particularity of meta-neurons is that each of them, during the
training process can eventually be replaced with a neural network, having single
internal layer, that we call subnet, whose architecture will be specified later. The
consequence of this replacement is that the activation function realized by the spe-
cific meta-neuron, is now realized by a subnet, that regardless of its architecture, is
surely able to realizemore complex functions. Indeed, among the goals of the frame-
work is that activation functions of meta-neurons must be learned by their replaced
subnets. This process of replacing the meta-neuron with a subnet is said growing
step, and we say that the meta-neuron evolves in a neural network. While the idea of
realizing activation functionwith small neural network is not new [10], one of the as-
pects that make this framework unique, is that subnet’s single hidden layer in turn
is composed of meta-neurons, realizing in this way a potential recursive growing
process, with a consequent definition of a deep multilayer network. This strategy
is aimed at realizing a model with a greater computational power w.r.t. MLPs, that
can be compared with standard deep neural networks. The interesting novelty, that
can make this framework appealing, is that this growing process may be seen as a
natural evolution of the network internal architecture structure, leading to a config-
uration that best fits the computational needs for the given learning problem.

In the following lines we list the components involved in the framework, in order
to give a more formal definition. Given a DGNN model that we call net, with its
internal layer having size dnet, we have:

1. Meta-neurons qi , with i = 1, ..., dnet

2. Subnet Si, (i = 1, ..., dnet) is the network used to replace the meta-neuron qi. Si
internal layer has size dSi .

3. pa(Si) is the parent network of Si, whose particular meta-neuron qi evolved in
the subnet Si.

4. rel(Si) is the set of all subnets Sj, (j = 1, ..., dpa(Si)
) generated by the evolution

of meta-neurons of pa(Si).

5. depth(.) is a function that associate an integer value to a subnet ormeta-neuron.
Meta-neurons qi (i = 1, ..., dnet) of net have depth(net) = depth(qi) = 0 because
they have not been generated by a growing process, so they have not a parent
network. The subnet Si (and its meta-neurons) generated by the evolution of

38 Depth Growing Neural Networks

qi (i = 1, ..., dnet) will have depth(Si) = 1. In general we have depth(Si) =

depth(pa(Si)) + 1. The depth of a subnet corresponds to the depth of its meta-
neurons. The depth of a just initialized DGNN is zero.

6. D = {(xj, ŷj)
N
j=1} with xj ∈ Rn, ŷj ∈ Rm is the dataset used to train a certain

DGNN.

7. D[k]
i is the subnet-specific dataset aimed at training the subnet S[k]

i . We indicate
with apexes within the square brackets "[k]" the depth of the component (sub-
net or meta-neuron), so that x[k] and y[k] are the generic input and output of a
subnet at depth k, and we write

D[k]
i = {(x[k]ij , ŷ[k]ij)

N
j=1)}, x[k]ij ∈ R, ŷ[k]ij ∈ R (3.1)

with this convention we say that x[0] and ŷ[0] are the input and output of a sub-
net at depth 0, that corresponds to the just initialized DGNN, and x[0] = x and
ŷ[0] = ŷ, thereforeD[0] = D. In general when the depth is not indicate, it is as-
sumed to be zero. The depth indication is especially needed when illustrating
recursive procedures; it is optionally being replaced by an accent " ′ ", when
indicating that the subnets/neurons have depth = 1.

Here we give a formalization of the mapping operations defined in a DGNN.
In figure 3.1 is represented a newly initialized DGNN, having single internal layer.
From now on, in order to rely on a depth-specific notation, we introduce the follow-
ing. Knowing that the building blocks of this framework are subnets with single
hidden layer, that regardless of the type of neurons correspond to the well known
MLPs and that the same DGNNwhen just initialized is an MLP, we define the func-
tions realized by these building blocks, as the composition of functions fL(.) and
fU(.) realized by their lower and upper layers respectively. So in case of a depth-0
DGNN, the function f (.) realized by the model can be represented as

y = f (x) = fU(σ(fL(x))) (3.2)

where fL(x) = WLx + bL is a linear mapping, σ(.) is an elementwise activation
function and fU(o) = σ(WUo + bU), where o is the outcome of the lower layer
computation. Explaining the depth-specific notation, we can re-write the (3.2) as
y = f [0](x) = f [0]U (σ[0](f [0]L (x))), and in case of a depht-1 DGNN, where all the
meta-neurons evolved in respective subnets, we have that the mapping is realized
as

y = f [0]U (f [1](f [0]L (x))) (3.3)
where f [1](.) stands for the mapping realized by the depth-1 layer (set of subnets at
depth-1), and therefore we can write

y = f [0]U (f [1]U (σ[1](f [1]L (f [0]L (x))))). (3.4)

3.2 The DGNNModel 39

It is easy to note that what differs (3.2) from (3.3) is that in the last one the activations
are now realized by f [1](.).

So basically the outcome of a depth-k DGNN can be represented as the following
composition of layer-specific mapping functions:

f [0]L → f [1]L → ...→ f [k]L → σ[k] → f [k]U → ...→ f [1]U → f [0]U (3.5)

that corresponds to

y = (f [0]U ◦ f [1]U ◦ ... ◦ f [k]U ◦ σ[k] ◦ f [k]L ◦ ... ◦ f [1]L ◦ f [0]L)(x) (3.6)

Furthermore, to indicate the outcomes at a particular depth i < k, we define F[i]
L and

F[i]
U as seen in the following schema

F[i]
L︷ ︸︸ ︷

f [0]L → ...→ f [i]L → ...→ f [k]L → σ[k] → f [k]U → ...→ f [i]U︸ ︷︷ ︸
F[i]

U

→ ...→ f [0]U (3.7)

From which we write

F[i]
L = f [i]L (f [i−1]

L ...(f [0]L (x)) (3.8)

F[i]
U = f [i]U (f [i+1]

U ...(f [k]U (σ[k](F[k]
L (x))))) (3.9)

.
So far we gave the definition of the DGNN model, we described the philosophy
behind the framework, we listed its main components and formalized its mapping
dynamics. In the next section we describe the steps to take in order to train a DGNN
model.

40 Depth Growing Neural Networks

Figure 3.1: Representation of a DGNN having depth k = 0. The meta-neurons are
representedwith a custom circular shape. On the left side are indicated themapping
functions associated to the single layers.

3.3 Training Algorithm
From the description of this newly defined model held in the previous section, it is
clear that DGNNhas amodular structure: it is basically a deep neural network com-
posed of smaller neural networks , that we call subnets, added during the learning
process. As it is, it requires a particular learning strategy, that can be summarized
in the following points.

1. Given D = {(xj, ŷj)
N
j=1} with xj ∈ Rn, ŷj ∈ Rm, define the architecture of the

particular DGNN said net, such that input and output layers have size n and
m respectively and choose the hidden layer size dnet.

2. Train the DGNN net using backpropagation as in the usual way. This is what
we call the first training phase.

3. If the network performances are not satisfying, let the network grow, until some
stopping criteria are met. This corresponds to the second training phase.

This sequence represents the basic steps to take in order to train a DGNN model.
While the first and second steps are clear, because correspond to what happen in

3.3 Training Algorithm 41

W1,1

y1

x1 x2 x3

y2

W2,4

W4,3

fU[0]

fL[0]

σ[1]

W1,1

fL[1]

fU[1]

q1[1] q2[1] q3[1] q4[1] q1[1] q2[1] q3[1] q4[1] q1[1] q2[1] q3[1] q4[1]q1[1] q2[1] q3[1] q4[1]

S1[1] S2[1] S3[1] S4[1]

Figure 3.2: Representation of a DGNN having depth k = 1 (after a growing step).
The meta-neurons at depth k = 0 have been replaced by subnets S1, ..., S4 having
depth k = 1. Here all meta-neurons have been replaced, and all subnets have the
same architecture.

classic DNN models, the third requires a much more in-depth discussion. Here we
give a detailed description.

The Growing Step
The growing step is the backbone of theDGNN framework. It leads theDGNN from
its initial condition, to a situationwhere it develops an its own configuration adapted
to the needed computational power (in terms of units and layer). Given a partially
trained DGNN, who performed the first training phase (depth k=0), assuming that
we want the model to grow, the following steps must be followed.

1. Selection of an appropriate architecture for the subnet S′i. The typical archi-
tecture (see fig. 3.2) consists in one neuron for input and output layer, and an
arbitrary number dSi ofmeta-neurons for the internal layer (empirical process).
Basically this step consists in choosing hidden layer size of the subnet.

2. Generation of subnet-specific datasets. The DGNN as it is, regardless of the
type of neurons, consists in a neural network with single hidden layer. Think-
ing at the subnet-specific datasetD′i for S′i, we have that x′i,1, ..., x′i,N are inputs to
the particular meta-neuron qi, while targets ŷ′i,1, ..., ŷ′i,N correspond to the val-
ues thatwewanted qi to generate. Knowing that aDGNNcan be seen as aMLP

42 Depth Growing Neural Networks

with special hidden neurons, the need of creating subnet-specific datasets for
all subnets S′i (i = 1, ..., dnet) acts as follows. Target values {(ŷ′i,j)N

j=1} are noth-
ing but the propagation of output targets to the hidden layer (holding meta-
neurons at depth-0). From a vector perspective, the generic propagated target
can be seen as ŷ′ = φTP(ŷ), where φTP(.) is a generic target propagation func-
tion. Input values {(x′i,j)

N
j=1} are generated feeding the network with input

patterns and getting activations of the depth-0 layer, x′ = F[0]
L (x) (minding

that lower layers have linear activation function). The propagation of target
can be addressed using appropriate target propagation algorithms seen in the
previous chapter.

3. Choice of meta-neurons to replace. Once we have the subnet-specific dataset
for all meta-neurons of the layer, we can estimate an error measure for each
meta-neuron, as ei = ∑N

j=1(y
′
i,j− ŷ′i,j)

2, where y′i,j is the real outcome of the i-th
meta-neuron with respect to the j-th pattern. This step may also be performed
for all meta-neurons at the same time in a vector way. Based on this simple
verification, a setP of bed-performingmeta-neurons is chosen for the growing
process.

4. Meta-neurons replacement. Each meta-neuron qi ∈ P is replaced with the
associate subnet S′i.

5. Training of the subnets. The replacing subnets S′i, i = 1, ..., |P|, are trained
with standard backpropagation algorithmas in the usualway, using the subnet-
specific datasets D′i ad-hoc generated.

The performing of the above sequence of steps, defines a single growing step for the
DGNN model. As said since the beginning, the growth process can be recursive,
so that a meta-neuron belonging to a certain subnet (generated by the evolution of
another meta-neuron), can in turn grow and evolve in another subnet. Anyway, for
each growing step, at whatever level of recursion it is, all the above defined steps
must be always executed.

Subnet-specific Dataset Creation
As seen above, one of most important steps involved in the growing process is the
generation of the subnet-specific datasets. It is directly related to selection of meta-
neurons to grow and the training of replacing subnets. Once a subnet S′i replaced
a selected meta-neuron qi, as specified in the philosophy behind DGNN model, we
want S′i to realize a more complex function than the standard one associated to qi
(sigmoid, ReLu, etc.). Going over the concept of activation functions, we want the
subnet to realize a function such that the new input-output mapping of the network

3.3 Training Algorithm 43

will result in a lower output error, or in other words we want S′i to learn a useful
non-linearity that contributes to decrease the loss function values. To do that, we
train S[k+1]

i with a dataset D[k+1]
i where the input patterns x[k+1] correspond to acti-

vations of the replaced depth-k meta-neurons, while the targets ŷ[k+1] are generated
with a certain target propagation technique. It means that we want the old input
to map on new target values. From this perspective, we want the meta-neuron to
grow when the subnet it belongs to has not enough computational power to learn
the particular assigned mapping. So basically, given net, a partially-trained DGNN
having depth k, the operations involved in this step for the generic input and target
are the followings:

1. Generation of activations of depth-kmeta-neurons, or input to subnets at depth
k + 1:

x[k+1] = F[k]
L (x) (3.10)

2. Generation of targets at depth k + 1:

ŷ[k+1] = φTP(ŷ[k]) (3.11)

where φTP(.) is a target propagation function.

For the particular subnet S[k+1]
i , the datasetD[k+1]

i corresponds to the values of the i-
th component of the pair (x[k+1], ŷ[k+1]). In the next sectionwe discuss the particular
target propagation technique implemented by the function φTP(.).

The Hybrid Target Propagation Approach

Although any target propagation algorithm might be used, here we rely on RDTP
and GB-RDTP (gradient-based RDTP). We know that for construction the RDTP
method can be used only when dealing with neural networks having single output
unit (and single hidden layer). So when dealing with such kind of architectures,
RDTP is the best choice. Anyway, in most cases we handle DGNNwith several out-
put units, e.g. a simple classification problemwith 3 classes needs a neural network
with 3 output units.
So to propagate targets in DGNNwith several output unit, we defined the following
hybrid technique: when the DGNN has depth k = 0, GB-RDTP is used to propagate
targets to the hidden layer (to meta-neurons at depth 0), then in the following grow-
ing step, the RDTP is used to propagate targets at meta-neurons at depth k > 0. We
act as mentioned because for depth k > 1 we propagate targets to subnets internal
layers, and as we know, subnets have single output units, so it perfectly fits for the
standard RDTP. In algorithm 6 is shown the pseudo-code for this ad-hoc developed

44 Depth Growing Neural Networks

q1,1[k] q1,2[k] q1,3[k]

S1[k]

q1,4[k] q2,1[k] q2,2[k] q2,3[k]

S2[k]

q2,4[k]

Figure 3.3: Two subnets S[k]
1 , S[k]

2 are represented as being part of two consecu-
tive standard layer, where the dotted lines represent the connections having fixed
weights w = 0

hybrid approach, bearing in mind that TP algorithms are meant to propagate tar-
gets for all neurons of a certain layer (from layer ` to ` − 1), here are intended to
propagate targets for all subnets of a given depth (from depth k to k + 1).

Algorithm 6 Hybrid Target Propagation
Input: the DGNN net, output size m, depth k, targets ŷ[k].
Output: ŷ[k+1] (propagated targets at depth k + 1).
1: if m > 1 and k == 0 then
2: ŷ[k+1] = Gradient_Based_RDTP(net, ŷ[k]) . ŷ[k] = ŷ
3: else
4: ŷ[k+1] = RDTP(net, ŷ[k])
5: end if

3.4 Parallelizing the Algorithm 45

3.4 Parallelizing the Algorithm

In the previous section we have seen which are the steps required to train a DGNN
model. Here we analyze those steps in order to find the best way to optimize the
training process. As already mentioned, the DGNN framework has a modular na-
ture and this also affects the training algorithm. From previous sections, it clearly
emerges to the reader that operations required to grow the singlemeta-neurons/subnets
of the same depth k, most of the time can be performed in parallel. A first optimiza-
tion step that could be considered is performing the parallel training of involved
subnets for a given depth. Going over this approach, with the aim of leveraging
massive parallel hardware like graphic cards, here we look at the set of subnets at a
given depth k, as if they were nothing but a particular pair of two consecutive stan-
dard neural network layers, as indicated in figure 3.3. With this consideration, we
can realize the growing step for a set of depth-k subnets by building and training two
standard neural network layers, using some ad-hoc strategy. Using this approach,
pretending to train multiple depth-k subnets at the same time by training two stan-
dard layers, does not allow us to use specific hyper-parameters for each subnet, so
we are forced to use the same configuration for all subnets of the same depth-k. So
here we can act in a depth-wise fashion.

Following the aforementioned considerations, routines used in algorithm 7 and 8
are intended to be acted in a depthwise/layerwise way. Here we give a brief de-
scription of them. Choose_subnet_architectures(k) returns the number of meta-
neurons for the subnets at depth k, Create_new_datasets(net, k, D[k]) generates the
subnet specific dataset for subnets at depth k (all at once),
Select_metaneurons_to_grow(net, k, D[k+1]) chooses the metaneurons to replace,
Replace_metaneurons(P ,A) replace the metaneurons with a set of subnets that we
call SubnetLayer[k+1] that consists in a pair of standard layer as in fig. 3.3,
backpropagation(SubnetLayer[k+1]) train the subnets (the pair of layer) all at once,
using the standard backpropagation algorithm.

Algorithm 7 Growing Step
Input: the depth-k DGNN net, k, D[k].
Output: the DGNN having depth k + 1, D[k+1].
1: A = Choose_subnet_architectures(k + 1)
2: D[k+1] = Create_new_datasets(net, k, D[k])
3: P = Select_metaneurons_to_grow (net, k, D[k+1])
4: SubnetLayer[k+1] = Replace_metaneurons(P ,A)
5: backpropagation(SubnetLayer[k+1])

46 Depth Growing Neural Networks

Algorithm 8 DGNN Training
Input:The DGNNmodel dgnn, dataset D
Output: the trained/grown DGNN
1: k = 0
2: backpropagation(dgnn)
3: while stopping conditions != True do
4: dgnn, D[k+1] = Growing_Step(dgnn, k, D[k])
5: k = k + 1
6: end while

From the previous section describing the training process and from the new con-
cept of "subnets-layer" afore introduced, few considerations on the hyperparameters
and good practice to manage them need to be done. The training algorithm requires
the selection of new introduced hyperparameters:

• γ ∈ [0, 1] the percentage of meta-neurons to grow.

• ρ the size of the hidden layer of the subnets. It is typically∼ [4, 7] for all depth
k ≥ 2.

Furthermore, as already said before, the configuration of hyperparameters, under
this depth-wise approach, is the same for all subnets of a same depth k.

3.5 Experimental Results 47

3.5 Experimental Results
In this section we analyse the results obtained by experimenting the techniques/al-
gorithms presented in this chapter. The section contains 3 main experimental se-
tups. In the first one the model is tested on the Vertebral dataset of the UCI reposi-
tory [16], in the second one on MNIST, the hand written digits images dataset, and
in the third one on 3 sub-tasks of the CIFAR-10 dataset, containing small generic im-
ages. The first two experiments on the Vertebral dataset are intended to graphically
show themodel behaviour, while the last one, a 10-folds cross validation procedure,
is aimed at confirming the behaviour observed in first two experiments.
For each experiment, and for each of the growing steps we show the learning and
generalization curves and the respective accuracy for training, validation and test
set. Furthermore, for depths greater than zero we show the learning curves for the
depth-specific subnet-layer loss.

48 Depth Growing Neural Networks

UCI Vertebral
In the following setting we show how a DGNN model behaves with a real world
dataset. Here we deal with the vertebral column dataset of UCI machine learning
repository [16]. This dataset has been chosenwith the goal of comparing the DGNN
model with [10], that as said in the previous section, inspired the DGNN idea. The
comparison is done at the end of the section. This is a small size dataset, having 310
patterns and 2 classes, where each pattern x ∈ R6.
The next two experiments have the same configuration apart for the ρ value. These
two particular configuration show that the DGNN with bigger subnets (ρ = 6) is
not affected by phenomena that occurs in the smaller-subnet DGNN (ρ = 5), as
performance deterioration.

3.5 Experimental Results 49

DGNN with ρ = 5

Regarding the DGNN architecture, input and output sizes are defined by the input
and targets dimensionality of the dataset, while the hidden layer is composed of 8
neurons (metaneurons) with sigmoid activation functions. Subnets have one input
and output neuron (for construction) and ρ = 5 (hidden neurons/metaneurons).
The training of the main model (depth-0) is conducted with stochastic gradient de-
scent with mini-batch size of 8, learning rate of 0.01, with cross-entropy loss and
sigmoid activation function on the output neurons. For the growing of internal lay-
ers (depth > 1) we set γ = 0.6, indicating that 60% of metaneuron must grow (in
this case corresponding to ' 5 metaneurons), and max_depth = 3. Lastly, we used
Adam as training algorithm for internal layers [33] with learning rate 0.0001. These
hyperparameters are selected using a random-search strategy. The dataset is ran-
domly split in training, validation and test set with percentages of 80%, 10%, 10%.
In the following figures we show the learning curves for each specific depth. We
indicate with "Loss" the loss of the DGNNmodel, and with "Subnets Loss" the loss
of the depth-specific subnet layer, bearing in mind that a set of subnets at the same
depth can be seen as a neural network itself.

0 2000 4000 6000 8000 10000
Epochs

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Lo
ss

Depth-0 Learning Curves
Train
Val

Figure 3.4: Vertebral, depth-0

50 Depth Growing Neural Networks

0 500 1000 1500 2000
Epochs

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.5: Vertebral, depth-1

0 500 1000 1500 2000
Epochs

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.6: Vertebral, depth-1 subnets

0 1000 2000 3000 4000 5000
Epochs

0.18

0.19

0.20

0.21

0.22

Lo
ss

Depth-2 Learning Curves

Train
Val

Figure 3.7: Vertebral, depth-2

0 1000 2000 3000 4000 5000
Epochs

0.005

0.010

0.015

0.020

0.025

Lo
ss

Depth-2 Learning Curves
Val
Train

Figure 3.8: Vertebral, depth-2 subnets

3.5 Experimental Results 51

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.18

0.19

0.20

0.21

0.22

Lo
ss

Depth-3 Learning Curves

Train
Val

Figure 3.9: Vertebral, depth-3

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.004

0.006

0.008

0.010

0.012

Lo
ss

Depth-3 Learning Curves
Train
Val

Figure 3.10: Vertebral, depth-3 subnet

We can see that the DGNN loss remains quite the same for depth k > 1. The
internal loss (the one related to the depth-specific subnet layer) decreases, meaning
that the subnets correctly learn from the depth-specific dataset D[k]. Next figures
represent the accuracy statistics of the model. Each figure shows the evolution of
performances during the training at a specific depth k, (k = 0, ..., 3).

0 2000 4000 6000 8000 10000
Epochs

64

66

68

70

72

74

76

78

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Train
Test
Val

Figure 3.11: Vertebral, depth-0 acc.

0 500 1000 1500 2000
Epochs

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

 %

Depth-1 Classification Performances
Test
Val
Train

Figure 3.12: Vertebral, depth-1 acc.

52 Depth Growing Neural Networks

0 1000 2000 3000 4000 5000
Epochs

70

72

74

76

78

80

82

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Test
Train
Val

Figure 3.13: Vertebral, depth-2 acc.

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

74

76

78

80

82

Ac
cu

ra
cy

 %

Depth-3 Classification Performances

Val
Train
Test

Figure 3.14: Vertebral, depth-3 acc.

From the figures we can observe that there is an improvement of the perfor-
mances for all curves (train, validation, test) when growing the model from depth-0
to depth-1. The step-wise behaviour for validation and test set accuracy is mainly
due to the limited number of patterns belonging to each of them. Training accuracy
improves from 78,71% to 83,13%, validation accuracy from 73,3% to 80,0% and test
accuracy from 73,3% to 80,0%. In further growing steps, performances do not im-
prove, validation and training accuracies remain quite the same, while we observe
a worsening of the test set.

3.5 Experimental Results 53

DGNN with ρ = 6

Here we use the same configuration of the previous experiment, with the only dif-
ference of using subnets with 6 metaneurons (ρ = 6) instead of 5. We can see that
the phenomena of deterioration seen in previous experiment does not occur, and
even if not improving for depth k > 1, the statistics remain the same in subsequent
growing steps.

0 2000 4000 6000 8000 10000
Epochs

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Lo
ss

Depth-0 Learning Curves
Train
Val

Figure 3.15: Vertebral, depth-0

0 500 1000 1500 2000
Epochs

0.18

0.20

0.22

0.24

0.26

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.16: Vertebral, depth-1

0 500 1000 1500 2000
Epochs

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.17: Vertebral, depth-1 subnets

54 Depth Growing Neural Networks

0 1000 2000 3000 4000 5000
Epochs

0.18

0.19

0.20

0.21

0.22

Lo
ss

Depth-2 Learning Curves

Train
Val

Figure 3.18: Vertebral, depth-2

0 1000 2000 3000 4000 5000
Epochs

0.005

0.010

0.015

0.020

0.025

Lo
ss

Depth-2 Learning Curves
Val
Train

Figure 3.19: Vertebral, depth-2 subnets

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.18

0.19

0.20

0.21

0.22

Lo
ss

Depth-3 Learning Curves

Train
Val

Figure 3.20: Vertebral, depth-3

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.004

0.006

0.008

0.010

0.012

Lo
ss

Depth-3 Learning Curves
Train
Val

Figure 3.21: Vertebral, depth-3 subnets

0 2000 4000 6000 8000 10000
Epochs

64

66

68

70

72

74

76

78

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Train
Test
Val

Figure 3.22: Vertebral, depth-0 acc.

0 500 1000 1500 2000
Epochs

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

 %

Depth-1 Classification Performances
Test
Val
Train

Figure 3.23: Vertebral, depth-1 acc.

3.5 Experimental Results 55

0 1000 2000 3000 4000 5000
Epochs

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Test
Train
Val

Figure 3.24: Vertebral, depth-2 acc.

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

74

76

78

80

82

84

Ac
cu

ra
cy

 %

Depth-3 Classification Performances

Val
Train
Test

Figure 3.25: Vertebral, depth-3 acc.

56 Depth Growing Neural Networks

10-Fold Crossvalidation

Here we show the statistics of a 10-fold cross-validation experiment, using the same
hyperparameter configuration of the second experiment. We plot the accuracy per-
formance for a generic randomly selected fold (in this case the 10-th). An improv-
ing can be observed for the train (77,5% to 82,5%) and test performances (82,05% to
84,62%) in the first growing step, while the validation remains constant (77,3%). For
the subsequent steps, the performances do not improve.

0 2000 4000 6000 8000 10000
Epochs

66

68

70

72

74

76

78

80

82

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Train
Test
Val

Figure 3.26: Vertebral 10-th fold,
depth-0 acc.

0 500 1000 1500 2000 2500
Epochs

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 %

Depth-1 Classification Performances
Test
Val
Train

Figure 3.27: Vertebral 10-th fold,
depth-1 acc.

0 500 1000 1500 2000 2500
Epochs

74

76

78

80

82

84

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Test
Train
Val

Figure 3.28: Vertebral 10-th fold,
depth-2 acc.

0 500 1000 1500 2000
Epochs

74

76

78

80

82

84

Ac
cu

ra
cy

 %

Depth-3 Classification Performances

Val
Train
Test

Figure 3.29: Vertebral 10-th fold,
depth-3 acc.

In table 3.1 we can see the cross-validation statistics. Although the standard de-
viation values are very high, the average values indicate that a performance im-
provement exists. At the end, the performance reached in the last experiment are

3.5 Experimental Results 57

Table 3.1: Vertebral 10-fold cross-validation acc. ± std

Train (%) Validation (%) Test (%)
Depth-0 76,26 ± 3,11 76,28 ± 4,78 75,21 ± 2,56
Depth-1 78.69 ± 3.95 78.79 ± 6.29 77.79 ± 6.10
Depth-2 79.26 ± 4.06 78.54 ± 6.10 77.79 ± 6.10
Depth-3 79.26 ± 4.06 79.21 ± 6.90 77.79 ± 6.10

not comparable with the work of [10]. Anyway we could potentially compare the
two techniques from the perspective of the improvement achieved. In [10] the im-
provement obtained on the test-set corresponds to 0, 65% of accuracy, while in this
experimental setting it seems to be 2, 58%.

58 Depth Growing Neural Networks

MNIST

In this section are described results of a DGNN model trained on MNIST dataset.
The DGNN is composed of 60 metaneurons, and 10 output neurons with sigmoid
activation function. The MSE criterion is used for training the model. Each subnet
is composed of 10 metaneurons and only the 60% of metaneurons are grown. The
training stops at the second growing step, because not further improving was de-
tected. The training was performed using Adam optimization [33] with a learning
rate of 0.001 for all the depths. Due to the size of the dataset, mini-batches of size
32 are used. The improvement of the loss function on validation data was used as
stopping criteria, in particular the process ends after 200 steps.

In table 3.2 is shown the accuracy for each single depth. In table 3.3 are shown
the loss function values for training and validation data. While there are not im-
provements on the accuracy performances, we can recognize an improvement on
the loss values during the first growing step (from depth-0 to depth-1). In particu-
lar, there is an 8.99% improvement on the training loss and a 7, 56% improvement
on the validation loss. In fig. 3.30 to 3.34 are shown the learning and generalization
curves for the each growing step, while fig. 3.35 to 3.37 contain the accuracy values
during the training time for the specific depths, for one of the folds.

Table 3.2: MNIST 5-folds crossvalidation accuracy.

Train (%) Validation (%) Test (%)
Depth-0 98.56 ± 0.16 97.42 ± 0.16 97.13 ± 0.14
Depth-1 98.56 ± 0.14 97.40 ± 0.18 97.12 ± 0.15
Depth-2 98.55 ± 0.14 97.42 ± 0.18 97.11 ± 0.14

Table 3.3: MNIST 5-folds crossvalidation MSE loss.

Training Loss Validation Loss

Depth-0 (3.78± 0.2)× 10−3 (5.29± 0.16)× 10−3

Depth-1 (3.44± 0.2)× 10−3 (4.89± 0.15)× 10−3

Depth-2 (3.45± 0.2)× 10−3 (4.90± 0.15)× 10−3

3.5 Experimental Results 59

0 20 40 60 80 100 120
Epochs

0.004

0.006

0.008

0.010

0.012

0.014

Lo
ss

Depth-0 Learning Curves
Val
Train

Figure 3.30: MNIST depth-0 loss

0 20 40 60 80 100 120 140
Epochs

0.00350

0.00375

0.00400

0.00425

0.00450

0.00475

0.00500

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.31: MNIST depth-1 loss

0 20 40 60 80 100 120 140
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.32: MNIST depth-1 subnet’s loss

0 20 40 60 80 100 120
Epochs

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

0.0048

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.33: MNIST depth-2 loss

0 20 40 60 80 100 120
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Lo
ss

Depth-2 Learning Curves

Train
Val

Figure 3.34: MNIST depth-2 subnet’s loss

60 Depth Growing Neural Networks

0 20 40 60 80 100 120
Epochs

93

94

95

96

97

98

Ac
cu

ra
cy

 %

Depth-0 Classification Performances

Val
Train
Test

Figure 3.35: MNIST depth-0 acc.

0 20 40 60 80 100 120 140
Epochs

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

Ac
cu

ra
cy

 %

Depth-1 Classification Performances

Test
Val
Train

Figure 3.36: MNIST depth-1 acc.

0 20 40 60 80 100 120
Epochs

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Train
Val
Test

Figure 3.37: MNIST depth-2 acc.

3.5 Experimental Results 61

CIFAR-10
In this section we show the performances of a DGNNmodel trained using subtasks
of the CIFAR-10 dataset [35]. CIFAR-10 consists of 60000 images (50000 training -
10000 test) of 32x32 pixels each, organized in 10 classes (airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, truck). Each pixel is an integer values in (0, 255)
and each image is a tensor of size (3 x 32 x 32), where 3 is due to the RGB channels.
It is a well known dataset, mostly used for object detection tasks, but due to its in-
trinsic difficulty it is also used to test the soundness of machine learning models in
general. As the goal of this experiment is to test the DGNNmodel, and not to reach
the state of the art on computer vision tasks, we select patterns belonging to specific
pairs of CIFAR-10 classes, reducing in this way the problems to binary classification
tasks. In order to face the problem using non-convolutional neural networkmodels,
for each image channel, we define a frequency histogram of 40 bins (intervals), and
then the concatenation of the 3 histograms, standardized, is used as input pattern.
The several classes in the dataset are equally distributed, so each single binary sub-
dataset is composed of 10000 training patterns and 2000 test patterns; the 10% of
training patterns are used as validation set. For each single sub-problem, a 5-fold
crossvalidation procedure is performed.
Knowing that data of the different sub-problems belong to the same dataset, the
same architecture has been used for all of them. The DGNN has 50 metaneurons
(hidden layer) and a single output neuron, with subnets of size 12, and 60% of meta-
neurons growing. Mini batches of size 32 have been used, to deal with the size of
the dataset. The chosen sub-problems are the following binary classification tasks:
"Deer-Truck", "Deer-Horse" and "Car-Dog". For the first two, a learning rate of 0.001
for all depths has been used, while for the last one, a learning rate of 0.0001 has
been chosen for depth-0. Furthermore, for last sub-problem, a weight decay of 10−4

is used. Adam optimization algorithm [32] is used for all tasks with an early stop-
ping criterion that stops the training if no improvement is seen on the validation loss
after 150 weight-update steps.

62 Depth Growing Neural Networks

"Deer-Truck" Classification

Here we report the performances of the "deer-truck" classification task. The DGNN
training ends at depth = 2 because was not seen any further improvement . In table
3.4 the accuracy for each single depth is shown, we can see that on the validation
set an improvement exists, even if it is not significative, due to its large standard
deviation. In table 3.5 we can observe a significative loss function values reduction,
from depth-0 to depth-1, of 7.5% on the training set, and of 7.99% on the validation
set.

Table 3.4: Deer-Truck 5-folds crossvalidation acc. ± std. dev.

Train (%) Validation (%) Test (%)
Depth-0 77.22 ± 0.44 75.37 ± 1.32 73.50 ± 0.64
Depth-1 76.91 ± 0.51 75.53 ± 1.38 73.33 ± 0.56
Depth-2 76.92 ± 0.54 75.57 ± 1.37 73.35 ± 0.51

Table 3.5: Deer-Truck 5-folds crossvalidation MSE loss ± std. dev.

Training Loss Validation Loss
Depth-0 0.1621 ± 0.0024 0.1758 ± 0.0081
Depth-1 0.1500 ± 0.0028 0.1628 ± 0.0081
Depth-2 0.1500 ± 0.0028 0.1628 ± 0.0081

In fig. 3.38 to 3.42 are shown the learning and generalization curves for the dif-
ferent depths and the relative subnets.

0 50 100 150 200
Epochs

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Lo
ss

Depth-0 Learning Curves
Val
Train

Figure 3.38: Deer-Truck depth-0 loss

3.5 Experimental Results 63

0 50 100 150 200 250 300 350 400
Epochs

0.15

0.16

0.17

0.18

0.19

0.20

0.21

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.39: Deer-Truck depth-1 loss

0 50 100 150 200 250 300 350 400
Epochs

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.40: Deer-Truck depth-1 subnet’s
loss

0 25 50 75 100 125 150 175 200
Epochs

0.15175

0.15200

0.15225

0.15250

0.15275

0.15300

0.15325

0.15350

0.15375

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.41: Deer-Truck depth-2 loss

0 25 50 75 100 125 150 175 200
Epochs

0.0128

0.0130

0.0132

0.0134

0.0136

0.0138

0.0140

0.0142

Lo
ss

Depth-2 Learning Curves
Val
Train

Figure 3.42: Deer-Truck depth-2 subnet’s
loss

In fig. 3.43 to 3.45 is shown the accuracy for each specific depth.

64 Depth Growing Neural Networks

0 50 100 150 200
Epochs

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Test
Train
Val

Figure 3.43: Deer-Truck depth-0 acc.

0 50 100 150 200 250 300 350 400
Epochs

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

 %

Depth-1 Classification Performances

Val
Train
Test

Figure 3.44: Deer-Truck depth-1 acc.

0 25 50 75 100 125 150 175 200
Epochs

74

75

76

77

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Val
Train
Test

Figure 3.45: Deer-Truck depth-2 acc.

3.5 Experimental Results 65

"Deer-Horse" Classification

In this section we show the statistics of the "deer-horse" classification task. From
table 3.6, we can see that accuracy does not improve during themodel growth, while
from table 3.7 we can observe that the MSE loss function values improves (reduces)
during the first growing step. In particular we have a 7, 6% loss improvement on the
training set and of 7, 7% on the validation set.

Table 3.6: Deer-Horse 5-folds crossvalidation acc. ± std. dev.

Train (%) Validation (%) Test (%)
Depth-0 65.58 ± 1.02 61.80 ± 0.41 63.30 ± 0.22
Depth-1 65.31 ± 1.20 61.73 ± 0.59 63.67 ± 0.41
Depth-2 65.39 ± 1.18 61.67 ± 0.34 63.58 ± 0.37

Table 3.7: Deer-Horse 5-folds crossvalidation MSE loss ± std. dev.

Training Loss Validation Loss
Depth-0 0.2171 ± 0.0035 0.2285 ± 0.0023
Depth-1 0.2006 ± 0.0035 0.2109 ± 0.0023
Depth-2 0.2006 ± 0.0035 0.2109 ± 0.0023

In fig. 3.46 to 3.50 are shown the learning and generalization curves for each
single depth and the relative subnet-layers.

0 50 100 150 200
Epochs

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Lo
ss

Depth-0 Learning Curves
Val
Train

Figure 3.46: Deer-Horse depth-0 loss

66 Depth Growing Neural Networks

0 50 100 150 200 250 300 350 400
Epochs

0.200

0.205

0.210

0.215

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.47: Deer-Horse depth-1 loss

0 50 100 150 200 250 300 350 400
Epochs

0.030

0.035

0.040

0.045

0.050

0.055

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.48: Deer-Horse depth-1 subnet’s
loss

0 20 40 60 80 100 120 140 160
Epochs

0.196

0.198

0.200

0.202

0.204

0.206

0.208

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.49: Deer-Horse depth-2 loss

0 20 40 60 80 100 120 140 160
Epochs

0.0186

0.0187

0.0188

0.0189

0.0190

0.0191

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.50: Deer-Horse depth-2 subnet’s
loss

In fig. 3.51 to 3.53 is shown the accuracy for each specific depth.

3.5 Experimental Results 67

0 50 100 150 200
Epochs

60

62

64

66

68

70

72

74

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Test
Train
Val

Figure 3.51: Deer-Horse depth-0 acc.

0 50 100 150 200 250 300 350 400
Epochs

59

60

61

62

63

64

65

66

67

Ac
cu

ra
cy

 %

Depth-1 Classification Performances

Val
Train
Test

Figure 3.52: Deer-Horse depth-1 acc.

0 20 40 60 80 100 120 140 160
Epochs

62

63

64

65

66

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Val
Train
Test

Figure 3.53: Deer-Horse depth-2 acc.

68 Depth Growing Neural Networks

"Car-Dog" Classification

In this section we show the statistics of the "car-dog" classification sub-problem.
From the table 3.8 it seems that the accuracy slightly improves over the validation
and test data, but it is weakly supported by the standard deviation values. From the
table 3.9 instead we can see a loss value reduction on both training and validation
set. More in detail, there is a 7.61% improvement on the training loss, and of 7.77%
on the validation set.

Table 3.8: Car-Dog 5-folds crossvalidation acc. ± std. dev.

Train (%) Validation (%) Test (%)
Depth-0 67.20 ± 1.03 62.07 ± 1.19 62.58 ± 0.31
Depth-1 66.84 ± 1.09 62.60 ± 1.36 62.58 ± 0.54
Depth-2 66.90 ± 0.97 62.67 ± 1.22 62.65 ± 0.56

Table 3.9: Car-Dog 5-folds crossvalidation MSE loss ± std. dev.

Training Loss Validation Loss
Depth-0 0.2103 ± 0.0052 0.2264 ± 0.0034
Depth-1 0.1943 ± 0.0045 0.2088 ± 0.0033
Depth-2 0.1943 ± 0.0045 0.2089 ± 0.0033

In fig. 3.54 to 3.58 are shown the learning and generalization curves for each
single depth and the relative subnet-layers.

0 100 200 300 400 500 600
Epochs

0.22

0.23

0.24

0.25

0.26

0.27

Lo
ss

Depth-0 Learning Curves
Val
Train

Figure 3.54: Car-Dog depth-0 loss

3.5 Experimental Results 69

0 50 100 150 200
Epochs

0.200

0.205

0.210

0.215

0.220

0.225

0.230

Lo
ss

Depth-1 Learning Curves
Train
Val

Figure 3.55: Car-Dog depth-1 loss

0 50 100 150 200
Epochs

0.036

0.038

0.040

0.042

0.044

0.046

Lo
ss

Depth-1 Learning Curves
Val
Train

Figure 3.56: Car-Dog depth-1 subnet’s
loss

0 50 100 150 200
Epochs

0.200

0.202

0.204

0.206

0.208

0.210

0.212

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.57: Car-Dog depth-2 loss

0 50 100 150 200
Epochs

0.0300

0.0302

0.0304

0.0306

0.0308

0.0310

0.0312

0.0314

Lo
ss

Depth-2 Learning Curves

Val
Train

Figure 3.58: Car-Dog depth-2 subnet’s
loss

In fig. 3.59 to 3.61 is shown the accuracy for each specific depth.

70 Depth Growing Neural Networks

0 100 200 300 400 500 600
Epochs

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 %

Depth-0 Classification Performances
Test
Train
Val

Figure 3.59: Car-Dog depth-0 acc.

0 50 100 150 200
Epochs

56

58

60

62

64

66

Ac
cu

ra
cy

 %

Depth-1 Classification Performances

Val
Train
Test

Figure 3.60: Car-Dog depth-1 acc.

0 50 100 150 200
Epochs

61

62

63

64

65

Ac
cu

ra
cy

 %

Depth-2 Classification Performances

Val
Train
Test

Figure 3.61: Car-Dog depth-2 acc.

3.5 Experimental Results 71

Results Considerations
The proposed DGNN model has been tested on the Vertebral UCI dataset, MNIST,
and three sub-problems extracted from the CIFAR-10 dataset. It has been seen that
theDGNN reaches its goals partiallywith the Vertebral dataset, but the standard de-
viations are too high. Anyway in some single experiments, as the one represented
in fig. 3.22-3.25, it is clear that the model works, improving the accuracy perfor-
mances at least on the first growing step. In experiments conducted onmuch bigger
dataset asMNIST andCIFAR-10 theweakness of the framework is evenmore visible,
where no substantial improvement has been seen on the accuracies. On the other
way around, analysis of the loss function values clearly demonstrate that a signifi-
cant improvement exists, even if limited to the first growing step, and it is confirmed
by all experiments performed on MNIST and the three sub-tasks on CIFAR-10, and
it typically stands around the 7%− 8% for both training and validation set.
Anyway, it is clear that the loss values can improve (but not too much) without al-
tering the accuracy values. Basically, while the accuracy does not take into account
the confidence of a given classification outcome, loss function does. So improving
the loss value without altering the accuracy means that the growing step make the
model more confident, or in other words make the decision function more fitted to
the data points at hand.

72 Depth Growing Neural Networks

3.6 Remarks
In this chapter we introduced the motivations and the idea that led to the develop-
ment of the DGNN model. We formalized the model, and defined an appropriate
learning algorithm. At the end, an extensive experimental section has been con-
ducted.
From experiments it basically turns out that the model works only partially. The
growing algorithm is well posed, and in certain scenario it is able to improve model
performances. Unfortunately not always. From the other way around, it worths to
note that it does not destabilize the learning process of the whole model.
The main limitation seems to be the difficulty of the learning problem generated for
the specific internal subnets. Albeit some mathematical tools to assess the difficulty
of a learning problem (seen as a function) exists, only empirical investigations have
been conducted. Being the input and output layer of the internal subnets composed
by a single neurons, we had to opportunity to graphically inspect some of the subnet
specific dataset generated. From this first analysis was immediately evident that in
some situations, the functions that subnets were required to learn were extremely
difficult and would require hundreds of hidden units, without any warranty of con-
vergence.
Being aware of the limitations of the developed model, further research has been
conducted to overcome these issues. In the next section, identified solutions are
extensively discussed.

Chapter 4

Downward-Growing Neural
Architectures

The need of a neural network that autonomously defines its architecture has already
been discussed in the chapter 1 and chapter 3 of the present work. From the experi-
mental section of the chapter 3, it appears that theDGNN framework does not reflect
the expectations, and few architectural limitations have been highlighted. This con-
text pushed the research activity along new directions, in order to overcome these
limitations and continue to pursue the original goal. The solutions identified to solve
the DGNN issues then resulted in the definition of a different framework, with dif-
ferent growing strategies, architectures and learning algorithm.
In this chapterwe introduce theDownward-GrowingNeural Architecture (DGNA) frame-
work. Although the main goal remains the same, the perspective from which prob-
lem is faced changes. The searching for the right neural architecture becomes the
consequence of a different objective, that is the definition of a model whose related
separation surfaces become more and more complex, in order to better classify data
at hand and improving performances. This is realized by adding further computa-
tional units to the architecture, in a well specific manner. This new perspective led
us to conceive a different growing strategy.

73

74 Downward-Growing Neural Architectures

4.1 Related Works

It worths to say that the idea of let a neural network structure evolve, as in a natural
development process is not new, rather it dates back at the same period of the devel-
opment of the idea of neural network. In this section we discuss few most famous
(and related) growing neural network architectures.

Cascade-Correlation. One of the first important work in the area of growing neural
architecture is "Cascade-Correlation" neural networks [19]. The idea behind the de-
velopment of the model is the same that drove our proposed model (DGNA), that
is to add further computational units to the model in order to hopefully improve its
computational capability and reduce the model errors. At the beginning, a single
layer neural network is created, without hidden layers, where the number of input
and output units is driven by the nature of the problem, as always. Being the con-
figuration a one-layer model, it does not require the use of backpropagation [49] to
define gradients for internal layer, and learning algorithm like perceptron [48] or
Widrow-Hoff learning rule [57] can be used. After a first learning phase, if the per-
formances of the model are not as expected, the growing phase starts. It consists in
adding a single neuron per time to the model. Once the new neuron is added, each
existing neuron in the model (except output neurons) will be connected to the new
one, and its input connection weights will be learned bymaximizing the correlation
between the outcome of the newly introduced neuron and the network output. As a
second step, the values of the input connections are frozen and the output weights
are learned using a single-layer learning algorithm as before. Then the process is re-
peated until convergence, bearing in mind that the output of the newly introduced
neuron will be served as input to the next added neuron.
This basically generate a deep architecture where each hidden layer is composed of
single neurons, and each internal neuron has a direct connection with all previous
neurons.

Growing Neural Gas. Another model to consider is "Growing neural gas" [22].
This is an unsupervised learning model, therefore not strictly related to the nature
of our proposed model framework. This is an extension of the original "neural gas"
model [41], a competitive hebbian-learning [40] based unsupervised network aimed
at learning the topology of data. It is basically and incremental version of [41], where
during the learning, further computational units are introduced.

Greedy layerwise. A work that deserve our attention, for two reasons, is [4]. The
first reason is that it can be considered a growing architecture, second is that it is
one of the milestone of the deep learning phenomena. In this work are described

4.1 Related Works 75

the first techniques that lead the to creation of deep architectures. In particular, al-
gorithms defined in [4] where basically used to pre-train deep neural networks. The
method consists in growing a network architecture adding one layer per time, and
training the newly introduced layer in an autoencoding like fashion.

Deep Growing Learning. An interesting interconnection between growing mod-
els and the semi-supervised techniques is [55]. In a partially labeled setup, as the
model learns from the supervised data, it is used to estimates the labels for unla-
beled data, augmenting in this way the size of the supervised dataset. In order to
face the more and more increasing size of the dataset, it needs more computational
power, and further layers are plugged into the network. The new layer is initialized
as a copy of the previous one, then a fine tuning procedure is acted.

Dynamically expandable neural network. Within the reasons that drove the re-
search in the area of dynamic architectures (where growing can be considered an
instance of this), recently emerged the need of having architectures able to face the
problemof continual learning. Itmeans that the learning taskmay change over time,
adding further classes to the problem at hand and/or new data to be classified.
The key idea in [58] is to use the knowledge of an already trained model, to train a
further model in order to tackle the new task. Basically there are 3 possible strate-
gies, depending on the difference (in terms of data distributions) between the new
task data and the old one. 1. Selective retraining: the data belong to similar distri-
butions. One or more output neurons are added. The last layer is trained while
keeping fixed all other weights of the model. Then the whole model is retrained,
updating only the weights above a certain threshold. 2. Dynamic Expansion: the
tasks have rather different distributions. The capacity of the network is increased
by adding a certain number of further neurons. 3. Network Duplication: to prevent
the catastrophic forgetting, that is the model begins to worst the performance on
the old task. The neurons whose related weights differ more than a value γ (hy-
perparameter) from the old weights, are duplicated on the same layer. After this
duplication process, the network is retrained.

Adanet. Another interesting work to mention is "Adanet" [13]. The idea is always
the same, let a given model grows until performances improve. Here the objective
to minimize is a trade-off between themodel complexity and the empirical risk. The
learning procedure is similar to previously seen ones. Themodel starts in a base con-
figuration, then further computational units are added incrementally. Here they act
as follows: given a base model h` having ` layers, they create two candidate net-
work h′` and h′`+1, having respectively ` and `+ 1 layers. The added networks can
be connected with each unit in h`, leveraging in this way the already existing data

76 Downward-Growing Neural Architectures

representations. In order to choose the one that better contribute to improve the ob-
jective function, both candidate are tested. So the model keeps the learning process
first using h′` and then using h′`+1. The one that produce better results is chosen to
extend the architecture. As it is easy to image, the computational cost can be very
high, especially when dealing with big architectures.

4.2 Growing Architectures as a Search Strategy 77

4.2 Growing Architectures as a Search Strategy
With this framework we aim at finding good network architecture configurations
using a growing strategy. We start with a certain network configuration, that we
name base-model or base-network and thenwe let it evolve adding other computational
units, as emulating a natural growing process. Advantages of these approaches
over the well known trial-and-error strategies are that the work done in training the
base-model (although if it results in a not very performing model) is not wasted.
The growing process leverages the existing architecture (and relative connection
weights), using it as a starting point to define more complex models, entailing in
this way a very significant time saving.
As described in the related works section, several strategies have been proposed to
solve the problemof searching the best fitting architecture, most of them consisted in
altering the architecture (adding or removing neurons, adding further layers or even
parallel networks as in Adanet [14]) by relying on some specific criteria: improving
some generalization objective, getting better reward in a reinforcement learning con-
text, etc. The here proposed solution is to evolve a given architecture by following
a different growing paradigm.

Analysis of decision regions
Several growing solutions have been defined over the years, but to the best of our
knowledge all motivated their proposed solution leveraging the fact that having a
greater number of computational elements can obviously improve the learning ca-
pability. Intuitive explanations of how this could happen were only partially seen.
In this work we justify, even if only intuitively, the reason that led to the definition of
the proposed growth strategy, explaining how and why this is expected to improve
the performance of the model.

Given a MLP, what do we expect from a growing process? "We want the separa-
tion surfaces of the individual hidden neurons, that are initially straight lines, to become
non-linear, going to better adapt to the data to be separated."

To answer this question, we deeply analysed the contribution of single hidden neu-
rons in the learning and classification process. To carry on this analysis we begin
considering the example case of an MLP having layers L0, L1, L2 where the hidden
layer L1 is of arbitrary size, L0 (input layer) is of size 2 and L2 (output layer) of size
1 . The function realized by the MLP is y = f2(f1(x)) where fi = σ(Wix+ bi) is the
layer-specific function and corresponds to a mapping Rdi−1 → Rdi , di is the i-th layer
size (in terms of units), f0 is relative to the input layer, therefore it is not considered
and σ : R→ R is the elementwise activation function.

78 Downward-Growing Neural Architectures

Considering a classification problem with two classes Ω = {ω1, ω2} associated the
dataset T = {(xj, ŷj)

N
j=1, xj ∈ R2, ŷj ∈ {0, 1}}where targets 0,1 indicate classes ω1 e

ω2 respectively, the goal of the learning process is to let the generic network output
y be as close as possible to the respective target value ŷ, given the input pattern x.
We consider all the network neurons as having logistic sigmoid as activation func-
tion. Once the training has been completed, we can consider the weights as con-
stants. Omitting the layer-specific notation, the k-th neuron of L1 realizes the func-
tion ok = σ(x1wk1 + x2wk2 + bk), which is basically a logistic regression; that is the
k-th component of the related layer-specific function f1(.).
Depending on the value of the generic data point x = (x1, x2), ok is valued on the
tails or in themiddle range of the sigmoid. It is known that when dealingwith high-
valuedweights, formost of data points, ok is valued on the tails, reaching values very
close to 0 and 1. Rethinking this considerations from the input space perspective,
that here is R2, we have a region R1 where ok is closer to 1 and a region R0 where
ok is very close (or closer) to 0. So, what separates R0 and R1 are the points where
ok = 1

2 exactly. More formally, we define the separation surface associated to the
k-th neuron of the i-th layer as Sk

i = {x : Fk
i (x) = γ}, where Fi(x) = fi(fi−1... f0(x)),

and in case of sigmoid activation function γ = 1
2 . Knowing that σ(.) is a sigmoid

function, this separation region stands when x1wk1 + x2wk2 + bk = 0. The latter can
be easily rewritten as

x2 = −x1
wk2

wk1
− bk

wk1
(4.1)

that is the equation of a straight line having slope −wk2
wk1

and offset − bk
wk1

.

So, the computation performed by the layer L1 can be seen as the sets of the out-
comes of the neuron-specific logistic regressions, that graphically corresponds at
indicating in which of the two neuron-specific decision regions (R0, R1) the generic
data point belongs to, for each of the single units (see fig. 4.1).

The consideration done for L1 can be re-proposed for L2 too. The difference is
that L2 is fed with the outcomes of L1. Furthermore, being L2 the output layer, its
separation surface corresponds to the separation surface of the whole classifier. In
general we can say that a separation surface Sk

i is function of the separation surfaces
defined at the previous layer: S1

i−1,S2
i−1, ...,Sdi−1

i−1 . So the output separation surface
in this case is Sk

2 = φ(S1
1 , ...,Sd1

1), and in simple architectures like the one considered
above, from empirical evidence we know that Sk

2 is approximatively a piecewise lin-
ear shape, where the linear parts correspond to the separation surfaces generated in
the preceding layer. At the end of the day, we have that the separation surface re-
alized by the classifier is approximatively the one composed by the union of pieces
of the straight lines identified by the neurons in L1, as shown in fig. 4.1 left. After

4.2 Growing Architectures as a Search Strategy 79

o1 o2
x2

x1

o2
x2

x1

o'1

Figure 4.1: This image visually describeswhatwe expect from a growingmodel. We
have a set of points ∈ R2 belonging to two classes (cross and circles). We assume
a single hidden layer MLP as classifier. Left: separation surfaces defined by two
hidden neurons. Right: separation surfaces expected to be generated by a growing
model, where o′1 is the "evolved version" of o1.

this discussion the goal is clearer. In most cases, quasi piecewise linear decision re-
gions are not sufficient to separate data efficiently. In this scenario, what we expect
from a growingmodel is the ability tomodify its structure/configuration in order to
overcome limitations due to the architectural setup. We expect the model to define
decision regions adaptable to the model needs, in order to improve performances.
The expected behaviour is well described in fig. 4.1.

In case of input spaces having higher dimensionality, let’s say m, the outcome of
the k-neuron is ok = σ

(
∑m

h=1 wkhxh + bk

)
, and the equation realizing the separation

surface is ∑m
h=1 wkhxh + bk = γ, that is an hypercube of dimensionality m− 1.

The growing strategy

To increase a network architecture we could define two simple "brute force" tech-
niques: adding neurons to the layer and adding further layers to the network. Most
of these techniques have already been tested, and it is clear that adding compu-
tational units to the model can be a benefit for the performances. Anyway, some
drawbacks exist for the two simple strategies listed above:

1. Even if a single hidden layer FFN (feedforward network) can compute any
function [15] with an appropriate number of hidden units, adding units indef-
initely to the hidden layer can increase the difficulties for the learning problem.

80 Downward-Growing Neural Architectures

2. Adding further layers to the model, can theoretically improve the learning ca-
pability, but it works only if the first hidden layer has a sufficient number of
units [45].

From the analysis carried out in the previous section, it is clear how each unit in the
internal layer contributes to the classification process in a simple one hidden layer
network. Here we are going to define a growing process strategy, leveraging the
considerations that emerged from the previous analysis. Our solution aims at solv-
ing at the same time both the two above mentioned issues.

From the graphical perspective described in previous paragraphs, what we expect
from a growing model is the evolution of the separation surfaces Sk, with a process
that let it become non-linear, so able to define more accurate separation regions.
Knowing that the linear decision surface Sk

i is the set of points where ok is equal to
a certain value γ (in case of sigmoidal activation function γ = 1

2), and knowing that
the function realized by ok is ok = σ(win

k x+ bk) that depends on the neuron input
weights indicated as win

k = (wk1, wk2) and the bias, with σ(.) the generic activation
function, the idea is to replace the neuron and all its input connections (win

k , bk) with
amore powerful processing component realizing a non-linear function ϕ : Rd0 → R,
such that the related decision surface Sk will result in a more complex and adapt-
able shape. This more powerful processing component in turn is a smaller neural
network that we call subnet Sub. After this step, we have that ok = ϕ(x;W), where
W represent all the weights of the subnet.
This procedure aimed at realizingmore suitable decision regions, also entails amod-
ification of the original network architecture, that it is gradually adapting to com-
putational needs, as in a sort of growing process.

The above defined process can be realized for each neuron of L1. In this way, at the
end of the growing process, we have that the network developed a further internal
layer. As a consequence, with this techniques we have that the original first-layers
completely changed. Albeit the growing strategy has been introduced using a two
dimensional input space context as sample, it works for any input dimensionality.
Furthermore it is easy to infer that the procedure can be repeated multiple time,
defining in this way a network architecture with an arbitrary number of internal
layers. This process as a whole, can be seen as a possible solution to the problem of
neural architecture search.
In the next section we describe how to let the subnet Subk develop a weights config-
uration that can realize the needed function ϕ(.) useful to our goals.

4.3 The Learning Algorithm 81

x1 x2

o2

y

x1 x2

o2

y

𝑜′# = 	𝜑(𝑥)𝑜# = 𝑓(𝑥)

Figure 4.2: Left: standard 1 hidden layer feedforward network (FFN), or base-
network. Right: the grown network, after replacing the leftmost neuron and its
input connection with a subnet.

4.3 The Learning Algorithm

In this section we describe the learning algorithm of the proposed growing model.
Webasically define the downward-growingneural architecturemodel, namedDGNA
for convenience, as a neural network having a single hidden layer, with the particu-
larity that its structure can evolve in order to improve the model performances. As
already discussed in the section regarding the growing process, we see the gradual
evolution of the network architecture as a consequence of the will of defining more
complex decision regions (based on the needs). As briefly discussed in previous
sections, the growing process can be recursively applied to the model, in order to
define neural architectures having an arbitrary number of internal layers, avoiding
in this way the well known issues to deal with when training deep neural networks
as in the usual way [23, 6].

The search for the right neural architecture is still an unregulated practise, any kind
of connection within any units in the network and within any layers (even non-
consecutive) is admissible. As already said, we may decide to run the search by
adding more units in the hidden layer, since from [15] we know that a one hidden
layer network is able to compute any function, with an appropriate number of hid-
den neurons. Unfortunately, this solution has some limitations: firstwemay need an

82 Downward-Growing Neural Architectures

enormous quantity of neurons, and second it is well known that training network
with huge hidden layers can be very difficult, or even worse, the training process
may not converge.
So we choose to increase the computational capability of the model by adding units
in a depth-wise fashion, knowing from [44] that deep network can realizemore com-
plex functions than shallow nets requiring smaller layers.

Neural Architecture Search: The Growing Algorithm
Here we describe the DGNA learning process, using the tools ad-hoc realized, de-
scribed in preceding sections. We can see the neural architecture search as a se-
quence of growing steps, where each growing step is composed of the following
sub-steps, that are the core of the algorithm:

1. Base-training: the classical process of training a one hidden layer feedforward
network with backpropagation.

2. Neuron and connections replacement: replace neurons in L1, and their spe-
cific input connections, with subnets Subk, k = 1, ..., d1, and training of the
subnets.

3. Refinement: end-to-end retraining of the grown neural architecture.

The first step to take in order to solve a given learning problem T is the definition of
a certain neural architecture (FFN), hence this network is trained with backprop as
in the usual way. This is what we call the base-training sub-step. At this point it may
happen that the performances of the model does not meet our expectations, so we
let the model evolve, according to the growing technique described in the previous
section: the neurons of the hidden layer and their input connections are replaced
with subnets. These subnets are then trained in turn, so as to be able to carry out
more complex functions (and related surface decisions). This is the real growth step.
As a last sub-step of the algorithm, it is to train the new architecture altogether, so
as to align all the weights to optimize the general function (main). This sub-step is
said refinement.

So we made sure that a simple MLP would grow of one level of depth, in practice
by replacing the neuron and its specific input connections with a subnet, for each
neuron of the layer. Thus now we find ourselves with a network having two hid-
den layers. Obviously it can happen that even this architecture does not meet our
requirements yet, so we can think that the new architecture can also grow further.
To proceed using a recursive approach, in terms of algorithm and implementation,
we can think of the subnets generated in the previous step as a single network, i.e. a

4.3 The Learning Algorithm 83

single layer FFN, towhichwe apply the same growth process as in the previous step.
Obviously in this case the base-trainingmust be considered as already done, and the
algorithm begins directly from the second point (neuron and connection replace-
ment). The algorithm 9 represents the process described above; most of the proce-
dure used in the pseudo-code are easily associated with the ones described above,
while check_stopping() make sure that the performances are improving and that
the max allowed depth is not reached, otherwise the algorithm is terminated. The
algorithm 10 indicates how to train set of subnets more efficiently, a topic that is
discussed more in details in next sections.

Algorithm 9 Neural Architecture Search
Input: X, Y, max_depth, n_subnets, subnet_size
Output: the trained Downward-Growing Neural Architecture dgna
1: for i from 0 to max_depth do
2: if i == 0 then
3: dgna = create_dgna(in_dim, out_dim, h_dim)
4: dgna = backpropagation(dgna, X, Y) . Train the base-network
5: Y(i−1)

T = Y
6: else
7: dgna(i) = SubLayer(i−1)

8: end if
9: Y(i)

T = estimate_targets(dgna(i), X, Y(i−1)
T)

10: SubLayer(i) = create_subnets(n_subnets, subnet_size)
11: SubLayer(i) = train_subnets(SubLayer(i), X, Y(i)

T)
12: dgna(i) = replacement(dgna(i), SubLayer(i))
13: dgna(i), loss = refinement(dgna(i), X, Y(i−1)

T)
14: if check_stopping(loss, max_depth) then
15: break
16: end if
17: end for

Containing the overfitting: subnet-layer training algorithm

Here we describe the procedure defined to train set of subnets in parallel. With the
term subnet-layerwe indicate the subnets that replacemore neurons of the same hid-
den layer. The reason behind the need of defining an ad-hoc training procedure is
that of preventing from overfitting issues. It is mainly due to the significant increase
in the number of parameters that the model may incur. Training the subnet-layer
practically consists in training a set of subnets. Although this can be done sequen-
tially or in parallel (for optimization issues), it consists in solving a certain number
of different training problems, each with a its own specific dataset. So to ensure that

84 Downward-Growing Neural Architectures

the general model is not affected by overfitting, we must ensure that even the sub-
nets are not. A way to reach the goal is to guarantee that each single subnet protects
its own generalization capabilities by applying an early stopping criteria indepen-
dently from all other subnets.
The idea is to define a two-steps training process. The first step consists in training
each single active subnet for a single epoch. We say that a subnet is active if it does
not meet the stopping conditions yet. Subnets whose performances improved af-
ter this single training epoch are added to the "proposed-subnets" list. The second
step consists in evaluating performances of the whole model using the "proposed-
subnets" list as subnet-layer. If performances of the main model improve, than the
"proposed-subnets" becomes the new "subnet-layer". The procedure is repeated un-
til convergence, as described in the algorithm 10.

Algorithm 10 Subnet-Layer Training
Input: X, Y, YT, main_net, dgnn, SubLayer
Output: The trained subnet-layer
1: proposed_subnets = SubLayer . Initialization
2: for e from 1 to max_epoch do
3: for k from 1 to n_subnets do . 1 epoch of training for each subnet.
4: Sub = SubLayer[k]
5: Sub, losse = train_epoch(Sub)
6: check_stopping_condition(Sub)
7: if losse < losse−1 then
8: proposed_subnets[k] = Sub
9: end if
10: end for
11: loss_proposed = evaluate_with_layer(main_net, proposed_subnets)
12: loss_actual = evaluate_with_layer(main_net, SubLayer)
13: if loss_proposed < loss_actual then
14: SubLayer = proposed_subnets
15: end if
16: check_stopping_condition(main_net)
17: end for
18: return net

Dealing with many neurons: subnets weights sharing

When dealing with hidden layers having many neurons, substituting each neuron
and its input weights with a subnet and then train all the subnets can become un-
feasible. To overcome this issue, it was thought to share the weights of multiple
subnets. In this way, supposing we want to replace k neurons and the relative input
connections, instead of creating k subnets, each having single output and a certain

4.3 The Learning Algorithm 85

number h of hidden neurons, we may create a single subnet having h hidden neu-
rons (or even more) and k output neurons.
To contain the number of hyperparameters, we define the following good practice
for the architectural choice of subnets. In order to reduce the search space, first we
impose some constraints on the type of architecture that we want to generate. Typi-
cally, deep architectures are rectangular, where all internal layers have the same size,
or pyramidal, where each layer has less neuron than the previous one. Assuming to
choose the rectangular architecture, we automatically impose the constraint that the
sum of the hidden neurons of the replacing subnets must be equal to the size of the
hidden layer of the main network. Therefore, the only remaining hyperparameter
is the number of subnets.
In this regard we need only to pay attention in choosing the right number of hidden
units for the base-network such that it must be divisible by the number of subnets. It
is generally recommended from a minimum of 2-3 to a maximum of 10. The choice
need to be done also considering the dataset size, where using fewer subnets can
results in a significant time saving.

86 Downward-Growing Neural Architectures

4.4 Experimental results
Here we describe the experiments that validate the effectiveness of the downward-
growing neural architecture (DGNA) model. Experiments have been designed to
prove firstly the effectiveness of the proposed algorithm, and second to demonstrate
that the achieved results are comparable to the state of the art, and sometimes are
even better.

UCI Datasets
We have chosen the following datasets, in order to span through different charac-
teristics that can profile a dataset, as number of features, number of output classes,
and number of patterns. The datasets involved in the experimentations are: Adult,
Ozone, Ionosphere, Wine, Vertebral, Blood; their main characteristics are shown in
table 4.1.

Table 4.1: Characteristics of the datasets used to validate our model.

Adult Ozone Ionosph. Pima Wine Vertebral Blood
examples 48842 2536 351 768 178 310 748
features 14 72 34 8 13 6 5
classes 2 2 2 2 3 2 2

Those are taken from the work of [20], where 121 UCI datasets [17] were reorga-
nized to run a massive experimentation in order to compare performances of most
existing machine learning classifiers, thus releasing a ranking based on their perfor-
mances. Each dataset is first organized in train-test fold pairs to be used to find the
best hyperparameter configuration and second in 4 different folds, to be used for a
cross-validation purpose. We chose this setup because it has been used in several
works as [34, 46] and many others, stating it as a good dataset collection to be used
for comparison, especially for general purpose models.
We than compare our results with those obtained in [34], where authors compared
their proposed model with several existing neural network models, on all the 121
UCI datasets, generating in this way a broad and varied benchmark.

All our experiments have been conducted in the same way. First, the hyperparame-
ters (obviously except the number of layers) have been optimized on the predefined
validation set, then the model has been evaluated using the 4 predefined folds (3
for training, from which we use 10% for validation, and 1 fold as test set). Training
is stopped if the validation loss does not improve at least of 2% after 200 epochs.

4.4 Experimental results 87

Hyperparemeters have been chosen using the random-search strategy [7], selecting
the configuration having the best validation loss.
For each single dataset we report the loss and accuracy for each step of the growing
process.

Table 4.2: DGNA considered hyperparameters

Hyperparameter Considered values
hidden units {8,16,32,40}
hidden layers Autonomous
learning rate {0.1, 0.01, 0.001}
layer form Rectangular
weight decay {0.01, 0.001, 0.0001}
subnets { 4 to 20, #hidden units}
subnet hidden units #hidden units

#subnets

88 Downward-Growing Neural Architectures

Ionosphere

DescriptionThe Ionosphere dataset is composed of 351 examples of 34 features each
and 2 classes. It contains radar data indicating the presence or not of free electrons
in the ionosphere. In the following tables are reported the accuracy and loss values
for training, validation e test set for each of the growing step. Then the total im-
provement is reported in the bottom.
In tables 4.3 and 4.4 it is evident how results benefit from the growth process. In
this particular case it is interesting to note also how the std.dev. values becomes
more and more smaller during the growth. Accuracy values on training validation
e test set improve of 5.19%, 6.48% and 5.69% respectively, with an error reduction of
roughly 46,6% on the test set if compared to the base-training. We see a consistent
improvement in the loss values, with a reduction of 95.77%, 56.12% and 48.82% for
training, validation and test sets respectively.
At the end, our model reaches 93.47% accuracy on the test-set.

Table 4.3: Accuracy values for the different growing sub-steps and relative average
improvement.

Train (%) Validation (%) Test (%)
base tr. 94.70 ± 3.82 88.89 ± 5.86 87.78 ± 2.03
repl. 99.15 ± 0.99 92.59 ± 3.70 92.90 ± 1.24
refin. 99.89 ± 0.18 95.37 ± 1.60 93.47 ± 0.49
improv. 5.19% 6.48% 5.69%

Table 4.4: MSE loss values for different growing sub-steps and relative average im-
provement.

Train Validation Test
base tr. 0.0567 ± 0.0453 0.0989 ± 0.0428 0.1079 ± 0.0206
repl. 0.0095 ± 0.0119 0.0464 ± 0.0161 0.0602 ± 0.0087
refin. 0.0024 ± 0.0033 0.0434 ± 0.0149 0.0563 ± 0.0047
improv. 95.77% 56.12% 48.82%

Architecture and hyperparams: The base network is composed of 32 hidden
sigmoid units with one output unit; the growing step has been realized using 4
subnets, each having 20 internal hidden units and 8 output units. Three learning-
rates have been used, one per sub-step: 0.01, 0.1, 0.01, and relative L2 penalty: 0.01,
0.001, 0.0001.

4.4 Experimental results 89

Vertebral

Dataset: The vertebral column dataset in its binary classification version, is com-
posed of 310 patterns and 6 features each. It contains biomechanical data related to
orthopaedic patients, classifying them as normal or abnormal.
Result: In tables 4.5 and 4.6 are shown the accuracy and loss values for training, val-
idation and test set for each of the growing step. The total improvement is reported
at the bottom of each table. It is clear how performances improve both from the
accuracy and loss perspective for each of the growing step. The model reaches an
accuracy of 87.01%, with an improvement of 8.11% with respect to the base model.

Table 4.5: Accuracy values for different growing sub-steps and relative average im-
provement.

Train (%) Validation (%) Test (%)
base tr. 81.46 ± 1.19 80.21 ± 6.83 78.90 ± 2.96
repl. 87.44 ± 2.23 82.29 ± 8.53 87.01 ± 2.05
refin. 88.64 ± 2.56 84.38 ± 6.83 87.01 ± 1.84
improv. 7.18% 4.17% 8.11%

Table 4.6: MSE loss values for different growing sub-steps and relative average im-
provement.

Train Validation Test
base tr. 0.1448 ± 0.0065 0.1556 ± 0.0273 0.1545 ± 0.0075
repl. 0.0799 ± 0.0059 0.1043 ± 0.0432 0.1023 ± 0.0180
refin. 0.0746 ± 0.0088 0.0959 ± 0.0394 0.1021 ± 0.0160
improv. 48.48% 38.37% 33.9%

Architecture and hyperparams: the base network is composed of 17 hidden
units, with a replacement of 1 subnet per neurons; each subnet has 7 hidden neu-
rons, the learning rates used in the 3 steps are 0.1, 0.01, 0.001 respectively and the
L2 penalties are 0.01, 0.0001, 0.0001.

90 Downward-Growing Neural Architectures

Wine

Dataset: TheWine dataset is composed of 178 examples and 13 features and belong-
ing to 3 classes. Features represent chemical data related to wine, aiming at defining
its provenance. In tables 4.7 and 4.8 are reported the accuracy and loss values for
training, validation and test set for each of the growing step.
Results: the performance of the model are good since the first sub-step. Anyway
it happens that the growth process results in a slightly worsening of training set
performances (that were very high since the beginning). On the other hand, this en-
tails a generalization improvement, as can be seen in the validation performances.
The same happens for the test set accuracy, even if it is not reflected in the test loss
behaviour. At the end, the model reaches a test accuracy of 99.43%, with an im-
provement of 1.13% with regard to the base model.

Table 4.7: Accuracy values for different steps. and relative improvement.

Train (%) Validation (%) Test (%)
base tr. 99.79 ± 0.36 98.21 ± 3.09 98.30 ± 0.98
repl. 99.17 ± 0.59 100.00 ± 0.00 98.86 ± 1.14
refin. 99.58 ± 0.42 100.00 ± 0.00 99.43 ± 0.98
improv. -0.21% 1.79% 1.13%

Table 4.8: MSE loss values for different steps. and relative improvement.

Train (10−3) Validation (10−3) Test (10−3)
base tr. 5.40 ± 1.30 11.69 ± 11.65 7.98 ± 4.26
repl. 10.37 ± 4.54 9.23 ± 8.70 12.96 ± 6.13
refin. 5.37 ± 2.24 7.04 ± 6.57 9.17 ± 4.56
improv. 0.56% 39.78% -14.91%

Architecture and hyperparams: The base network is composed of 10 hidden
units and 3 output units. The growing step has been realized using one subnet per
neuronwhere each subnet had 12 hidden units. Learning rates used: 0.1, 0.01, 0.001,
L2 penalties: 0.01, 0.0001, 0.0001.

4.4 Experimental results 91

Ozone

Dataset: TheOzonedataset is composed of 2536 examples, 72 features, and 2 classes.
The data is relative to climate features.
Results: tables 4.9 and 4.10 report the accuracy and loss values for training, valida-
tion and test set, for each of the growing step. There is a very small improvement,
but with respect to the std.dev it is not very significant.

Table 4.9: Accuracy values for different steps.

Train (%) Validation (%) Test (%)
base tr. 97.50 ± 0.47 96.73 ± 0.23 97.24 ± 0.18
repl. 97.28 ± 0.25 96.99 ± 0.23 97.28 ± 0.20
refin. 97.38 ± 0.43 96.86 ± 0.00 97.32 ± 0.27
improv. -0.18% 0.13% 0.08%

Table 4.10: MSE loss values for different steps.

Train (10−2) Validation (10−2) Test (10−2)
base tr. 1.92 ± 0.23 2.42 ± 0.28 2.32 ± 0.08
repl. 1.91 ± 0.24 2.33 ± 0.21 2.35 ± 0.20
refin. 1.74 ± 0.21 2.20 ± 0.17 2.30 ± 0.19
improv. 9.37% 9.09 % 0.86%

Architecture and hyperparams: The base model has 40 neurons. The growing
step is realized using 4 subnets, each having 25 hidden units and 10 output units.
Learning rates used are 0.001, 0.1, 0.001 and L2 penalties 0.01, 0.001, 0.0001.

92 Downward-Growing Neural Architectures

Pima

The dataset contains 768 examples, 8 features and 2 classes.
Results. In tables 4.11 and 4.12 loss and accuracy improvements are reported. We
observe an improvement of the accuracies on validation and test set.

Table 4.11: Accuracy values for different sub-steps.

Train (%) Validation (%) Test (%)
base tr. 78.19 ± 0.68 78.02 ± 3.31 75.00 ± 2.68
repl. 77.27 ± 0.63 79.74 ± 3.31 77.08 ± 2.05
refin. 77.90 ± 0.80 80.60 ± 02.83 77.08 ± 2.05
improv. -0.29% 2.58% 2.08%

Table 4.12: MSE loss values for different sub-steps.

Train Validation Test
base tr. 0.15144 ± 0.00327 0.13778 ± 0.02163 0.16137 ± 0.01360
repl. 0.14928 ± 0.00301 0.13612 ± 0.01974 0.16712 ± 0.01250
refin. 0.14677 ± 0.00305 0.13601 ± 0.01679 0.16564 ± 0.00965
improv. 3.08% 1.28% -2.65%

Architecture: Base network has 15 hidden units, 1 subnet per neuron has been
replaced, each subnet has 7 hidden units. Learning rates: 0.1, 0.001, 0.001, L2 penal-
ties: 0.001, 0.01, 0.01.

4.4 Experimental results 93

Blood

The data is related to the blood transfusion service centre in Taiwan. This ha 748
examples and 5 features.
Tables 4.13 and 4.14 represent model performances for the single growing sub-step
and the relative improvements. It is clearly visible the improvement on each data
split, both from the accuracy and loss perspective.

Table 4.13: Accuracy values for different steps.

Train (%) Validation (%) Test (%)
base tr. 77.33±1.30 76.75±3.80 77.14±0.58
repl. 79.66±1.83 77.63±3.37 79.28±3.67
refin. 79.17±1.17 78.51±2.88 80.35±3.03
improv. 1.84% 1.76% 3.21%

Table 4.14: MSE loss values for different steps.

Train Validation Test
base tr. 0.16148 ± 0.00218 0.15271±0.01092 0.16343±0.00851
repl. 0.13931±0.00712 0.13641±0.01577 0.15661±0.01045
refin. 0.13696±0.00450 0.13196±0.01343 0.15165±0.00866
improv. 15.18% 13.58% 7.20%

Architecture and hyperparameters. Themainmodel has 12 hidden units, and in
the growing step one subnet per neuron has been used. Each subnet has 12 hidden
units. Learning rates used 0.1, 0.01, 0.001, and weight decays: 0.001, 0.0001, 0.001.

94 Downward-Growing Neural Architectures

Adult

Dataset. The adult dataset contains census data features, with labels indicating if
the year income is lower or higher of $ 50.000. It contains 48842 example, 14 features
and 2 classes. In tables 4.15 and 4.16 are reported respectively the accuracy and loss
values for each growing step (and relative sub-steps). Here the growing step has
been recursively applied generating a 4 hidden layer architecture. Anyway we have
also reported the 4-th growing step albeit the best architecture in obtained in the
3-rd growing step. The improvement data is related to the best architecture found.

Table 4.15: Accuracy values for different growing steps.

Train (%) Val. (%) Test (%)
base tr. 85.67 86.09 85.38

step-1 repl. 85.86 86.31 85.49
refin. 86.13 86.31 85.60

step-2 repl. 85.91 86.40 85.50
refin. 86.37 86.18 85.53

step-3 repl. 85.66 86.46 85.66
refin. 85.66 86.28 85.63

step-4 repl. 85.58 86.71 85.28
refin. 85.60 86.31 85.20
improv. -0.01 0.37 0.28

Table 4.16: MSE loss values for different growing steps.

Train Val. Test
base tr. 0.09824 0.09491 0.09958

step-1 repl. 0.09091 0.08836 0.10071
refin. 0.08836 0.08717 0.09902

step-2 repl. 0.09111 0.08946 0.10115
refin. 0.08817 0.08859 0.10012

step-3 repl. 0.09395 0.09185 0.10339
refin. 0.09391 0.09220 0.10365

step-4 repl. 0.09488 0.09222 0.10557
refin. 0.09525 0.09253 0.10603
improv. 4.37% 3.22% -3.83%

Architecture and hyperparams. Base model has 8 hidden units, then replaced
by 4 subnets each having 20 hidden units and 2 output units. Learning rates: 0.001,
0.01, 0.001 and L2 penalties: 0.01, 0.0001, 0.0001.

4.4 Experimental results 95

Comparison

This section states how the DGNA experimental results stands with respect to other
machine learning models. Here we compare the results obtained with our model,
introduced in previous subsections, with the ones obtained using other state of the
art deep neural models.

As previously mentioned, in this experimental section we rely on the UCI dataset
organization generated in [20], where they defined folds splitting (both for hyperpa-
rameters search and crossvalidation procedure) for 121 UCI datasets. This dataset
collection is becoming more and more a valid alternative to benchmarking gen-
eral purpose neural network models, especially for the very different nature of the
datasets at hand, and their different characteristics (both in terms of number of fea-
tures and available examples). This can lead towards a fairer models evaluation.
Our results are compared with the ones obtained in [34]. Although the work done
in [34] is not related to the topic of neural architecture search or growing networks,
in order to assess the performances of their proposed solutions, they trained a sig-
nificant number of neural models on all of the 121 UCI dataset, using the same data
organization defined in [20]. For each of the 121 dataset, they trained 7 different type
of neural networks, and for each network an optimization was performed in terms
of architecture (number of layers and neurons per layer) and hyperparameters, us-
ing an ad-hoc validation set. The obtained architectures and hyperparameters were
then used to train and evaluate the models on the pre-defined 4 folds. The consid-
ered hyperparameters are reported in table 4.17. We mainly choose this benchmark
[34] because of the significant number of results available for comparison and sec-
ondly because they used exactly the same fold partitions.
At the end, the DGNA results are compared with self-normalizing neural networks
(SNN) [34], ReLU networks [24], residual networks (ResNet) [27], networks with
batch-normalization (BN) [30], network with weight normalization (WN) [50] and
network with layer normalization (LN) [2].
Results of the comparison are in table 4.18. Furthermore, although not explicitly
reported, authors in [34] state that SNN architectures have an average of 10.8 layers,
BN 6.0, WN 3.8, LN 7.0 ReLU 7.1, and 6.35 blocks for ResNet, that can be considered
way bigger architectures if compared to the ones obtained with our algorithm.

In table 4.18 we compare the results obtained with out proposed DGNA, with re-
sults of different neural models obtained in [34]. We need to bear in mind that this
results are strictly related to the particular dataset organization used [20], and may
result slightly different from ones obtained with a generic k-folds crossvalidation
procedure. Unfortunately standard deviations are not reported in [34].
Beyond noting that all considered results are in line, it is interesting to note that in

96 Downward-Growing Neural Architectures

Table 4.17: Considered hyperparameters

Hyperparameter Considered values
hidden units {256, 512, 1024}
hidden layers {2, 3, 4, 8, 16, 32}
learning rate {1, 0.1, 0.01}
dropout rate {0, 0.5}
layer form {rectangular, conic}

Table 4.18: Accuracy comparison for different models trained with the UCI datasets

Dataset DGNA SNN ReLU ResNet BN WN LN
Ionoshpere 93.47±0.49 88.64 90.91 95.45 94.32 93.18 94.32
Wine 99.43±0.98 97.73 93.18 97.73 97.73 97.73 97.73
Vertebral 87.01±1.84 83.12 87.01 83.12 83.12 66.23 84.42
Blood 80.35±3.03 77.01 77.54 80.21 76.47 75.94 71.12
Pima 77.08±2.05 75.52 76.56 71.35 71.88 69.79 69.79
Ozone 97.32±0.27 97.00 97.32 96.69 96.69 97.48 97.16
Adult 85.66 84.76 84.87 84.84 84.99 84.53 85.17

most of the cases, results obtained with our model surpass the ones obtained with
other deep neural model, in particular this happens in 4 of the 7 use cases, while
with the Vertebral dataset we exactly reach the top performance 87.01% of accuracy,
also reached with a deep ReLU network. In the case of Ionosphere dataset, DGNA
reaches the 3-rd best results andwithOzonedatasetwe reach the secondbest results.

4.4 Experimental results 97

Results considerations
In this experimental section we run our proposed model, the DGNA, on 7 UCI
datasets. In each single experiment, an improvement has been recognized for each
of the growing sub-steps (base training, replacement and refinement). This let us
assume that the proposed growing algorithm is effective.
Each of the single substep contributes to improve the model loss and consequently
of the relative accuracy. Furthermore, obtained results are comparable with per-
formances reached using well established deep neural network models, and in few
cases are even better.
At the end of the day, our model consists in a different way of defining multilayer
architecture, by progressively adding computational units, where this process is
driven by the well defined goal of progressively define more complex decision re-
gions. In a certain way, what we expected, and that is partially confirmed by experi-
mental results, is that the application of a growing-step, at least results in a network
having the same performance of the previous architecture. It can be clearly seen in
the Adult dataset results, table 4.15 and table 4.16. Although actually a theoretical
proof is missing, relying on the same intuition that lead to the definition of this new
growing algorithm, this is due to the particular growing strategy chosen. Basically
because a subnet used to replace a neuron with its input weights, is obviously able
to realize at least the old straight line separation surface previously defined by the
latter neuron configuration. Anyway, by adding further and further layers, with the
consequent estimation of subnet’s target, numerical problem are clearly introduced,
potentially taking to a gradually worsening of the model performances.
Another point to consider is the latent role of "target propagation". Beyond themain
goal of defining targets for the inner subnets, this techniquewas also conceivedwith
the aim of simplifying a certain given problem. So what practically happens is that
the learning problem that the subnet has to deal with, is typically a simpler learn-
ing problem than the original one. Also here, a theoretical proof would be helpful.
While this idea was the same also for the Depth Growing Neural Network framework,
this could not happen because of the particular configuration of subnet architecture;
and propagating targets did not simplify learning problems as expected. These two
mentioned points are the main differences of the Downward-Growing Neural Archi-
tecture with respect to other growing models, and it seems to let the model achieve
promising results.

98 Downward-Growing Neural Architectures

4.5 Remarks
In this chapter we presented the solutions engineered to solve some limitations of
the DGNN framework. These solutions resulted in the definition of a brand new
framework, the Downward-Growing Neural Architecture (DGNA). The latter basically
differs from theDGNN in the growing strategy adopted and the learning algorithm.
While in DGNN only the hidden units are replaced (recursively), without altering
the remaining part of the architecture, here in the DGNA the subnet replace the
hidden neurons and their input connections too, by adding computational units at
the bottom of the whole model. Defining in this way exactly a downward growing
architecture.
Then an experimental setup has been realized, testing the model with 7 datasets of
the UCI repository [17].
Experimental results seem to assess that the algorithm works as expected, continu-
ally improving themodel performance after the single growing steps (and substeps).
An experimental comparison of the obtained results has been done with other deep
learning model, and in some cases our results outperform all the others.

Chapter 5

Conclusions

The search for the neural network architecture that best fits the learning problem
is still an open problem. Nowadays, although some alternative exists, most practi-
tioners still rely on trial and error approaches. In this Thesis we tackled the above
mentioned problem, trying to propose brand new solutions.
The efforts done in reaching the goal, entailed the definition of three milestones,
that reflect the organization of this work: Target Propagation, Depth-Growing Neural
Network and Downward-Growing Neural Architectures.
Since the beginning, the idea was to define a growing neural network model by
progressively adding more complex inner components. First attempts were in the
direction of defining working target propagation techniques, in order to define inner
subnet-specific datasets to properly train the new introduced components. In chap-
ter 2 is discussed the idea of target propagation, and new algorithms are proposed.
Then an application of the target propagation paradigm as a refinement learning
tool is tested.

The first working version of the growing model that implements our aimed so-
lution is introduced in chapter 3, the Depth Growing Neural Network framework. It
aims at autonomously find the best architecture while at the same time keep updat-
ing its parameters configuration. This is reached by evaluating the performances
of the internal computational units, the metaneurons, based on which few of them,
the worst performing ones, are chosen to be grown. As said in previous sections,
this goal has been reached thanks to the definition of ad-hoc target propagation tech-
niques. From the experimental section emerges that the framework is only partially
effective. Albeit it does not always improve accuracy statistics in classification prob-
lems, it significantly reduces the loss function values.
Aware of the limitations intrinsic of the DGNN model, further research efforts led
to the definition of the Downward-Growing Neural Architecture framework. The key
ideas and the learning dynamic are extensively discussed in chapter 4. Here an

99

100 Conclusions

experimental section was carried on 7 datasets of the UCI repository, and a compar-
ison with other results obtained using different deep neural architectures is held.
From the experimental section emerges that the application of the DGNA growing
algorithm significantly improves the model performances on each of the 7 dataset;
furthermore the comparison shows that in 4 of the 7 tested dataset our results sur-
pass all the others.

The conducted research led to definition of a robust growing model, with promis-
ing performances. Few pieces are still missing to complete the puzzle, that could be
helpful in understanding someof themodel properties. First, a theoretical proof that
the adopted learning strategy helps the learning convergence of the model would
be an interesting success. Furthermore, smarter techniques to drive the selection of
the architecture of the subnets would be very helpful.
Another direction that has not been pursued is that of realizing an asynchronous
growing strategy, were not all the neurons are replaced at the same time, but the
operation is done on demand. A simple version of this asynchronous growing strat-
egy was implemented in the DGNN. A solution may be to prune few nodes of the
network (and relative connection weights) after each growing step, in this way only
most important units are kept, or further grown. Eventually, another evolution to
consider may be the extension of the framework to deal with sequential data. In this
context, the adaptive structure of the model could play a major role in processing
variable-length sequences.
The philosophy that drove the development of the framework, places it in a direc-
tion that seems to be the natural evolution of learning paradigms that are naturally
inspired, like artificial neural networks are.

Appendix A

Publications

Conference/Workshop papers
1. Marco Bongini, Vincenzo Laveglia, Edmondo Trentin, “A Hybrid Recurrent

NeuralNetwork/Dynamic ProbabilisticGraphicalModel Predictor of theDisul-
fide Bonding State of Cysteines from the Primary Structure of Proteins”. AN-
NPR, pages:257–268, 2016. Candidate’s contributions: data preprocessing al-
gorithms evaluation, experimental setting design and implementation, analy-
sis of results.

2. Vincenzo Laveglia, Edmondo Trentin, “ A Refinement Algorithm for Deep
Learning via Error-DrivenPropagation of TargetOutputs”. ANNPR, pages:79–
89, 2018. Candidate’s contributions: target propagation algorithm ideation,
experimental setting design and implementation, analysis of results.

Journal papers
1. MarcoBongini,VincenzoLaveglia, EdmondoTrentin, “DynamicHybridRan-

dom Fields for the Probabilistic Graphical Modeling of Sequential Data: Defi-
nitions, Algorithms, and an Application to Bioinformatics.”. Neural Processing
Letters 48(2), pages:733–768, 2018. Candidate’s contributions: ideation and
design of a postprocessing module, experimental setting design and imple-
mentation, analysis of results.

101

Bibliography

[1] Forest Agostinelli, Matthew D. Hoffman, Peter J. Sadowski, and Pierre Baldi.
Learning activation functions to improve deep neural networks. CoRR,
abs/1412.6830, 2014.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[3] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in Neural Information Process-
ing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Informa-
tion Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006,
pages 153–160, 2006.

[5] Yoshua Bengio, Dong-Hyun Lee, Jörg Bornschein, and Zhouhan Lin. Towards
biologically plausible deep learning. CoRR, abs/1502.04156, 2015.

[6] Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE Trans. Neural Networks,
5(2):157–166, 1994.

[7] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[8] Ilaria Castelli and Edmondo Trentin. Semi-unsupervised weighted maximum-
likelihood estimation of joint densities for the co-training of adaptive activation
functions. In Partially Supervised Learning - First IAPR TC3 Workshop, PSL 2011,
Ulm, Germany, September 15-16, 2011, Revised Selected Papers, pages 62–71, 2011.

[9] Ilaria Castelli and Edmondo Trentin. Supervised and unsupervised co-training
of adaptive activation functions in neural nets. In Partially Supervised Learning -
First IAPRTC3Workshop, PSL 2011, Ulm, Germany, September 15-16, 2011, Revised
Selected Papers, pages 52–61, 2011.

103

104 BIBLIOGRAPHY

[10] Ilaria Castelli and Edmondo Trentin. Combination of supervised and unsuper-
vised learning for training the activation functions of neural networks. Pattern
Recognition Letters, 37:178–191, 2014.

[11] Chyi-Tsong Chen and Wei-Der Chang. A feedforward neural network with
function shape autotuning. Neural Networks, 9(4):627–641, 1996.

[12] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus). CoRR,
abs/1511.07289, 2015.

[13] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott
Yang. Adanet: Adaptive structural learning of artificial neural networks. In
Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pages 874–883, 2017.

[14] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott
Yang. AdaNet: Adaptive structural learning of artificial neural networks. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 874–883, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

[15] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[16] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[19] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning ar-
chitecture. In Advances in neural information processing systems, pages 524–532,
1990.

[20] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
Do we need hundreds of classifiers to solve real world classification problems?
The Journal of Machine Learning Research, 15(1):3133–3181, 2014.

[21] Luca Franceschi, Michele Donini, Paolo Frasconi, andMassimiliano Pontil. For-
ward and reverse gradient-based hyperparameter optimization. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

BIBLIOGRAPHY 105

pages 1165–1173, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[22] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in
neural information processing systems, pages 625–632, 1995.

[23] XavierGlorot andYoshuaBengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010, pages 249–256, 2010.

[24] Xavier Glorot, Antoine Bordes, andYoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
pages 315–323, 2011.

[25] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 2672–2680, 2014.

[26] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and
Yoshua Bengio. Maxout networks. In Proceedings of the 30th International Confer-
ence on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages
1319–1327, 2013.

[27] KaimingHe, XiangyuZhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[28] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine
learning-methods, systems, challenges, 2019.

[29] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, pages 448–456, 2015.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the 32Nd
International Conference on International Conference on Machine Learning - Volume
37, ICML’15, pages 448–456. JMLR.org, 2015.

106 BIBLIOGRAPHY

[31] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals,
Alex Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural inter-
faces using synthetic gradients. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 1627–1635, 2017.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[34] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in neural information processing
systems, pages 971–980, 2017.

[35] Alex Krizhevsky, VinodNair, and GeoffreyHinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[36] Vincenzo Laveglia and Edmondo Trentin. A refinement algorithm for deep
learning via error-driven propagation of target outputs. InArtificial Neural Net-
works in Pattern Recognition - 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy,
September 19-21, 2018, Proceedings, pages 78–89, 2018.

[37] Yann Le Cun. Learning process in an asymmetric threshold network. In E. Bi-
enenstock, F. Fogelman Soulié, andG.Weisbuch, editors,Disordered Systems and
Biological Organization, pages 233–240, Berlin, Heidelberg, 1986. Springer Berlin
Heidelberg.

[38] Yann LeCun, Léon Bottou, Yoshua Bengio, and PatrickHaffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[39] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference
target propagation. In Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015,
Proceedings, Part I, pages 498–515, 2015.

[40] Thomas Martinetz. Competitive hebbian learning rule forms perfectly topol-
ogy preserving maps. In International conference on artificial neural networks,
pages 427–434. Springer, 1993.

[41] ThomasMartinetz, Klaus Schulten, et al. A" neural-gas" network learns topolo-
gies. 1991.

BIBLIOGRAPHY 107

[42] Warren SMcCulloch andWalter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[43] Marvin L Minsky and Seymour Papert. Perceptrons: an introduction to com-
putational geometry. 1969.

[44] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On
the number of linear regions of deep neural networks. In Advances in neural
information processing systems, pages 2924–2932, 2014.

[45] Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. Neural
networks should be wide enough to learn disconnected decision regions. In
International Conference on Machine Learning, pages 3737–3746, 2018.

[46] Matthew Olson, AbrahamWyner, and Richard Berk. Modern neural networks
generalize on small data sets. In Advances in Neural Information Processing Sys-
tems, pages 3619–3628, 2018.

[47] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the
Cambridge Philosophical Society, 51(3):406–413, 1955.

[48] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY,
1961.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, vol. 1. chapter Learn-
ing Internal Representations by Error Propagation, pages 318–362. MIT Press,
Cambridge, MA, USA, 1986.

[50] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks. In Advances in Neural
Information Processing Systems, pages 901–909, 2016.

[51] Patrice Y Simard, Dave Steinkraus, and John C Platt. Best practices for convolu-
tional neural networks applied to visual document analysis. In null, page 958.
IEEE, 2003.

[52] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simpleway to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[53] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31, 2012.

108 BIBLIOGRAPHY

[54] Edmondo Trentin. Networks with trainable amplitude of activation functions.
Neural Networks, 14(4-5):471–493, 2001.

[55] GuangcongWang, Xiaohua Xie, Jianhuang Lai, and Jiaxuan Zhuo. Deep grow-
ing learning. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 2812–2820, 2017.

[56] Paul Werbos. Beyond regression:" new tools for prediction and analysis in the
behavioral sciences. Ph. D. dissertation, Harvard University, 1974.

[57] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical
report, Stanford Univ Ca Stanford Electronics Labs, 1960.

[58] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learn-
ingwith dynamically expandable networks. In International Conference on Learn-
ing Representations, 2018.

	Contents
	List of Figures
	List of Tables
	Introduction
	Target Propagation
	Definitions
	Existing Methods
	Error Driven Target Propagation
	Residual Driven Target Propagation
	Gradient Based - Residual Driven Target Prop
	Experiments with the Refinement Algorithm
	Remarks

	Depth Growing Neural Networks
	Related Works (adaptive activation functions)
	The DGNN Model
	Training Algorithm
	Parallelizing the Algorithm
	Experimental Results
	Remarks

	Downward-Growing Neural Architectures
	Related Works
	Growing Architectures as a Search Strategy
	The Learning Algorithm
	Experimental results
	Remarks

	Conclusions
	Publications
	Bibliography

