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Abstract: Neuropathic pain is a chronic disabling condition with a 7–10% of prevalence in the
general population that is largely undertreated. Available analgesic therapies are poorly effective
and are often accompanied by numerous side effects. Growing evidence indicates cannabinoids
are a valuable treatment opportunity for neuropathic pain. The endocannabinoid system is an
important regulator of pain perception through the CB1 receptors, but CB1 agonists, while largely
effective, are not always satisfactory pain-relieving agents in clinics because of their serious adverse
effects. Recently, several CB2 agonists have shown analgesic, anti-hyperalgesic, and anti-allodynic
activity in the absence of CB1-induced psychostimulant effects, offering promise in neuropathic
pain management. The aim of this study was to evaluate the anti-neuropathic activity of a novel
selective CB2 agonist, COR167, in a preclinical model of peripheral neuropathy, the spared nerve
injury (SNI). Oral COR167, in a dose-dependent manner, attenuated mechanical allodynia and
thermal hyperalgesia after acute and repeated administration, showing the absence of tolerance
induction. At anti-neuropathic doses, COR167 did not show any alteration in the locomotor behavior.
SNI mice showed increased microglial levels of HDAC1 protein in the ipsilateral side of the spinal
cord, along with NF-kB activation. COR167 treatment prevented the HDAC1 overexpression and
the NF-kB activation and increased the levels of the anti-inflammatory cytokine IL-10 through a
CB2-mediated mechanism. Oral administration of COR167 shows promising therapeutic potential in
the management of neuropathic pain conditions.
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1. Introduction

Neuropathic pain is a chronic worldwide disease due to an injury to the somatosen-
sory system, which drastically worsens the patient’s quality of life [1]. So far, there are
few effective therapies, which are generally characterized by numerous side effects. In
seeking more effective innovative therapies, one should take into account the endocannabi-
noid system, a key regulator of chronic pain, especially through modulation of its main
receptors, CB1 and CB2 [2,3]. Even though CB1 stimulation induced analgesia in several
painful states [4–7], CB1 agonists are not ideal pain-relieving agents for clinical use due to
their serious side effects, such as addiction, excessive sedation, fatigue, and dizziness [8,9].
Thus, the alternative of using CB2 receptor modulators could be a therapeutic advantage,
as they lack the negative neurological effects induced by CB1 receptor modulation. The
identification of CB2 receptors in glial cells has opened new therapeutic approaches for
these ligands in chronic pain management [10–12]. Indeed, CB2 are predominantly present
in peripheral and central immune cells and, even if their presence in neurons is still contro-
versial, by modulating the immune system, they exert anti-inflammatory effects [13–15]
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and, thus, a neuroprotective activity [16–20]. Findings reported that lesions to peripheral
nerves increased the expression of CB2 in the dorsal root ganglia [21] and the spinal cord
tissue [13,22] of rodents with neuropathy and CB2 agonists exerted anti-hyperalgesic ef-
fects [21,23–26] through the reduction of neuroinflammation and microgliosis. Selective
CB2 agonists could be potentially used to relieve pain, thus circumventing the psychostim-
ulant side effects of CB1 agonists.

The main aim of this work is to investigate the possible anti-hyperalgesic activity
of a novel CB2 selective agonist, COR167, in an animal model of peripheral neuropathy,
the spared nerve injury (SNI). Previously, COR167 showed neuroprotective activity [27],
counteracted glial tumor growth [28], exerted an analgesic effect in the formalin test of
acute peripheral and inflammatory pain [29], and had anti-neuroinflammatory activity [30].
It has been reported that damage to peripheral nerves induces an increase in the expression
of CB2 receptors in primary sensory neurons through histone modifications [21]. Moreover,
non-psychotropic Cannabis sativa L. oil attenuated peripheral neuropathy symptoms in a
mouse model through the modulation of CB2 and the reduction of neuropathy-induced
HDAC1 overexpression [13]. Histone deacetylase 1 (HDAC1) is an enzyme involved
in pathophysiological processes related to microglial activation in neuropathic pain by
modulating inflammatory processes. In fact, an increase in its expression has been observed
in spinal cord samples of animals with neuropathy [31,32], and HDAC inhibitors are widely
reported in the literature for reducing chronic pain [33]. Here, we investigated whether
COR167 activity may be related to the modulation of HDAC1 both in the spinal cord of mice
with neuropathy and in an in vitro model of neuroinflammation in microglial BV2 cells.

2. Materials and Methods
2.1. Drugs Administration

COR167 (N-(adamantan-1-yl)-6-isopropyl-4-oxo-1-pentyl-1,4-dihydroquinoline-3-car-
boxamide), a selective CB2 agonist, was synthesized as previously reported [29]. COR167
was dissolved in 5% DMSO and orally administered at increasing concentrations (3, 10,
30, and 100 mg/kg). Pregabalin (PREG 30 mg/kg i.p.; Sigma Aldrich, Milan, Italy),
used as a reference drug for mechanical allodynia, was dissolved in saline solution and
administered 3 h before testing. Morphine (MORPH 7 mg/kg i.p.; SALARS, Como, Italy),
used as a reference drug in the thermal hyperalgesia assay, was dissolved in saline. SAHA
(suberoylanilide hydroxamic acid) (10 mg/kg i.p.; Sigma-Aldrich, Milan, Italy), used as a
reference HDACs inhibitor [34], was dissolved in 5% DMSO.

2.2. Animals

CD1 male mice (20–22 g; Envigo, Varese, Italy) were used. Animals were kept at
4–5 animals per cage under controlled environmental conditions (23 ± 1 ◦C, 12 h light/dark
cycle, lights on from 7:00 a.m. to 7:00 p.m., and access to water and food ad libitum). All
experimental procedures and animal care complied with international laws and policies (Di-
rective 2010/63/EU of the European Parliament) under license from the Italian Department
of Health (54/2014-B, 410/2017-PR). Behavioral studies complied with animal research
reporting of in vivo experiments (ARRIVE) guidelines [35,36]. All efforts were made to
minimize the number of animals used and their suffering. Mice were sacrificed by cervical
dislocation for removal of the spinal cord to perform in vitro analysis. The number of mice
employed per experiment was identified on power analysis (G power software) [37].

2.3. Spared Nerve Injury (SNI) Model

The SNI surgical procedure was performed as described [38]. Mice were anesthetized
with a mixture of 4% isoflurane in O2/N2O (30:70 v/v) and placed in a prone position.

Then, a 5 mm incision was made on the right thigh limb (commonly named ipsi) to
expose the sciatic nerve and its three branches. The tibial and common peroneal nerves
were ligated and transected together, while the sural nerve was preserved. For the sham
control group, mice underwent the same manipulation except for nerve ligation and nerve
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transection. The left paw was left unaltered (commonly named contra). The average
absolute threshold (g) was calculated by subtracting contra and ipsi values registered
during the time course. We used two different cohorts of animals: the first (Cohort 1 n = 40)
was used for the dose-response curve, while the second was made up of only a group for
the repeated oral administration of the best active dose (Cohort 2 n = 24).

2.4. Pain Hypersensitivity
2.4.1. Von Frey Filaments

The von Frey test was used to evaluate mechanical allodynia [39]. The tests were
carried out before the operations (reference baseline values) and afterward. Sensitivity
to a mechanical stimulus was measured by von Frey monofilaments. Mice were placed
individually in plexiglass test cages [8.5 × 3.4 × 3.4 (h) cm] with metal mesh floors and
were allowed to acclimate to their surrounding for 1 h before testing. The von Frey monofil-
aments with increasing degrees of strength (0.04, 0.07, 0.16, 0.4, 0.6, 1.0, 1.4, 2.0 g) were
applied to the skin on the lateral side of the paw sole on both ipsilateral and contralateral
sides. Any nocifensive behavior exhibited by the mouse was considered a positive response.
If a negative response occurred, the adjacent larger next filament was used, and testing
continued until three over five positive responses were collected after the first response
change. The averages of the responses were finally calculated.

2.4.2. Hot Plate Test

The hot plate test was used to evaluate the thermal hyperalgesia through a hot plate
analgesiometer maintained at 52.5 ± 0.1 ◦C and performed as described [40]. The latency
time (s) to the response of the animals to the thermal stimulus (shaking or licking their
hind paw) was measured. An arbitrary cut-off time of 45 s was adopted.

2.5. Locomotor Activity
2.5.1. Rotarod Test

Possible side effects of COR167 on motor performance were assessed by the ro-
tarod test [41]. The number of falls in 30 s was counted and used as an indication of
locomotor coordination.

2.5.2. Hole-Board Test

The hole-board test was used to evaluate spontaneous locomotor activity [41]. Each
mouse was tested individually over a period of 5 min. The spontaneous mobility was
determined by registering the movements of each animal on the plane by means of 4 photo
beams crossing the plane from midpoint to midpoint of opposite sides. The exploratory
activity of mice was evaluated with miniature photoelectric cells contained in each hole,
registering the head–hips of each mouse.

2.6. Evaluation of the Anxiolytic-like Effect
Open Field Test

This test evaluated the animals’ anxiety-like behavior [38]. Briefly, animals were
positioned in the center of a rectangular box (78 × 60 × 39 cm), and then the time it
remained in the internal portion was measured, compared to a total duration of 5 min. A
longer permanence of the animal in the center of the arena was taken as an indication of
low levels of anxiety. This test was performed in the baseline condition (before surgery)
and on post-surgical days 7, 14, and 21.

2.7. Tissue Protein Extraction

In order to detect protein expression in the animals’ tissues, spinal cords were removed
on day 14 post-surgery by separating the contralateral and ipsilateral sides. Samples
were homogenized in a lysis buffer containing 25 mM Tris-HCl pH (7.5), 2.5 mM EDTA,
5 mM EGTA, 25 mM NaCl, 4 mM PNFF, 2 mM NaPP, 1 mM PMSF, 1 mM di Na3VO4,
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50 µg/mL aprotinin, 20 µg/mL leupeptin, and 0.1% SDS (Merck, Darmstadt, Germany).
The homogenate was centrifuged at 12,000× g for 30 min at 4 ◦C, and the total protein
concentration was measured in the supernatant (Bradford colorimetric method; Merck,
Darmstadt, Germany).

2.8. BV2 Cells

A murine microglial line BV2 (mouse, C57BL/6, brain, microglial cells, Tema Ricerca,
Genova, Italy) was used for this study. The cells were thawed and placed in a 75 cm2

flask (Sarstedt, Milan, Italy) in a medium containing RPMI with the addition of 10% of
heat-inactivated (56 ◦C, 30 min) fetal bovine serum (FBS, Gibco®, Milan, Italy) and 1%
glutamine. Cells were grown at 37 ◦C and 5% CO2 with daily medium change [39].

2.8.1. Cells Treatments and Neuroinflammation Model

Cells were then pretreated with COR167 and suberoylanilide hydroxamic acid (SAHA,
5 µM) for 4 h and then stimulated with Lipopolysaccharide (LPS, Sigma-Aldrich, Italy)
250 ng mL−1 for 24 h. Both substances were dissolved in DMSO 1% in saline.

2.8.2. Sulforhodamine B (SRB) Assay

The SRB test was used to assess the cell viability. Briefly, cells were seeded in 96-well
plates (2 × 104 cells per well). After treatment, cells were fixed by adding 50% trichloroacetic
acid (Merck, Darmstadt, Germany) in RPMI to the wells and the plate was incubated at
4 ◦C for 1 h. Then, the plate was gently washed with water and allowed to dry for 1 h
before staining with 30 µL of SRB stain (4 mg/mL solution) in 1% acetic acid in double
distilled H2O at rt. After 30 min, the plate was washed 4/5 times with acetic acid to remove
excess stain. A volume of 200 µL of Tris-HCl buffer (pH = 10) was added, and the plate
was placed on a shaker for 5 min. The absorbance was determined spectrophotometrically
at 570 nm using a multiplate reader (Biorad, Milan, Italy). Three independent experiments
(n = 3) were carried out for each treatment. Cell viability values were normalized to the
mean of the control.

2.8.3. BV2 Cell Lysate

Microglial cells were seeded in 6-well plates (3 × 105 cells/well) until 70–80% con-
fluence was achieved. Protein extraction from tissues and cells was performed as de-
scribed [42]. Briefly, proteins from BV2 cells were extracted by radioimmunoprecipitation
assay (RIPA) buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl 1% sodium deoxycholate, 1%
Tryton X-100, 2 mM PMSF) (Sigma-Aldrich, Italy). After homogenization, the samples
were spun at 12,000× g for 30 min, 4 ◦C, the supernatants were collected, and the insoluble
pellet was separated. The total protein concentration was measured in a portion of each
supernatant using Bradford colorimetric method (Sigma-Aldrich, Milan, Italy).

2.9. Immunofluorescence

Mice were perfused transcardially with 4% paraformaldehyde in 0.1 M phosphate-
buffered saline (PBS, pH 7.4) on day 7. Thereafter, the lumbar spinal cord was quickly
removed, postfixed for 18 h with the same fixative at 4 ◦C, and transferred to 10%, then
20%, and then 30% sucrose solution. After preincubation in 5 mg/mL bovine serum
albumin (BSA)/0.3% Triton-X-100/PBS, sections were incubated overnight at 4 ◦C with
the primary antibodies as follows: HDAC1 (1:100; Santa Cruz Biotechnology, Dallas,
TX, USA) and IBA-1 (1:100; Santa Cruz Biotechnology, Dallas, TX, USA). After rinsing
in PBS containing 0.01% Triton-X-100, sections were incubated in secondary antibodies
labeled with Invitrogen Alexa Fluor 488 (1:400; Thermo Fisher Scientific), Invitrogen Alexa
Fluor 568 (1:400; Thermo Fisher Scientific) at room temperature for 2 h. Sections were
coverslipped using Vectorshield mounting medium (Vector Laboratories, Burlingame,
CA, USA). Representative images were acquired through a Leica DM6000B fluorescence
microscope equipped with a DFC350FX digital camera with appropriate excitation and
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emission filters for each fluorophore. Images were acquired with 10× to 40× objectives
using a digital camera. The immunofluorescence intensity was calculated by ImageJ (Wayne
Rasband, National Institute of Health, USA) [43].

2.10. Western Blotting

Protein samples (40µg of protein/lane) were separated by SDS-PAGE on 10% minigel [44].
Thereafter, proteins were then transferred to nitrocellulose membranes for 120 min at 100 V.
After blocking (120 min in PBST containing 5% non-fat dry milk), membranes were incu-
bated overnight at 4 ◦C with primary antibodies: HDAC1 (1:1000), anti-IKBα (1:1000), and
anti-IL10R (1:1000) (Santa Cruz Biotechnology). Blots were then rinsed three times with
PBST and incubated at room temperature for 2 h with HRP-conjugated mouse anti-rabbit
(1:3000) and goat anti-mouse (1:5000, Bioss Antibodies, Woburn, MA, USA). A chemilumi-
nescence detection system (Pierce, Milan, Italy) was used, and signal intensity (pixels/mm2)
was quantified using ImageJ (NIH). GAPDH (1:5000, sc-32233) (Santa Cruz Biotechnology,
Dallas, TX, USA) was used to normalize the signal intensity.

2.11. Statistical Analysis

Results are reported as mean ± SEM. Behavioral tests: a one-way analysis of variance
(ANOVA) followed by the Tukey post hoc test and a two-way ANOVA followed by the
Bonferroni post hoc test were used for statistical analysis. Western blotting experiments:
5 mice per treatment group were included, and each run was in triplicate. The differences
between groups were determined by one-way ANOVA followed by the Tukey post hoc test.
In immunofluorescence experiments, immunoreactive areas are mean values of 5 separate
experiments, and differences among mean immunoreactive areas were analyzed by one-
way ANOVA, followed by the Tukey post hoc test. p value less than 0.05 was considered
significant, and analyses were performed through GraphPad Prism version 9.5 (GraphPad
Software Inc., San Diego, CA, USA).

3. Results
3.1. Analgesic Effect of COR167 Registered in the Hot Plate Test

The analgesic effect of COR167 in acute pain conditions was tested on the hot plate.
COR167 was administered orally at 3, 10, 30, and 100 mg/kg, and the time course of
each dose was recorded at baseline (BL) and then at 30, 60, 90, 120, 150, and 180 min
after administration (Figure 1A). COR167 3 mg/kg did not induce an increase of algic
threshold to any time registered compared to the baseline. COR167 10 mg/kg after oral
administration increased the latency to heat response after 60 min from the administration.
COR167 30 mg/kg showed its peak activity at 90 min, which disappeared at 120 min.
COR167 100 mg/kg has a peak activity shifted to 120 min post-administration (Figure 1B).
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3.2. Mechanical Allodynia in SNI Mice Was Reduced by COR167 after a Single Oral Administration

The antinociceptive activity of COR167 was investigated in a condition of neuropathic
pain. COR167 3–100 mg/kg was tested after 7 days post-induction of spared nerve injury
(SNI) model (Figure 2A), which is a model of peripheral mononeuropathy that induced
strong mechanical allodynia starting from 3 days post-surgery [39]. To measure the me-
chanical allodynia, we used the von Frey filaments 0.07–2.00 g. Coherently with the hot
plate test, oral administration of 3 mg/kg (Figure 2B) did not alter the allodynia produced
by the SNI model in the injured ipsi hind paw, compared to the uninjured contra hind paw.
COR167 10 mg/kg (Figure 2C) reduced the gap of mechanical allodynia between contra
and ipsi after 60 min from oral administration, but the effect disappeared immediately after
90 min. COR167 30 mg/kg (Figure 2D) showed a similar trend to COR167 10 mg/kg, with
a peak of the effect after 60 min from the administration. Finally, the dose of 100 mg/kg
(Figure 2E) showed the same tendency but with an efficacy also on the contra hind paw
after 60 min from administration. Then, to normalize the final effect against allodynia, we
calculated the “average absolute threshold”, which is the difference between contra and
ipsi hind paw values registered at different times. As reported in Figure 2F, we observed
that only the oral administration of COR167 10 mg/kg drastically reduced the differences
between contra and ipsi values, generating an anti-hypersensitivity effect (60 min after
administration; 3 mg/kg: 0.70 ± 0.26; 10 mg/kg: 0.24 ± 0.05; 30 mg/kg: 0.60 ± 0.13;
100 mg/kg: 0.56 ± 0.56).
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(C–E) Dose-dependent attenuation of mechanical allodynia by COR167 (10–30–100 mg/kg p.o.
(F) COR167 10 mg/kg p.o. showed the most prominent antiallodynic activity through the evaluation
of the average absolute threshold. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. contralateral
side. §§ p < 0.01 vs. BL.

3.3. Repeated Oral Administration of COR167 10 mg/kg Reduced Symptoms Associated with the
SNI Model after 14 Days Post-Surgery

Results obtained following single-dose administration encouraged us to continue
investigating the activity of the 10 mg/kg dose following repeated administration. Mice
were treated from post-operative day 3 to 14 (Figure 3A). On the 14th day, we measured
the mechanical threshold in both hind paws (Figure 3B) (contra and ipsi), the response to
thermal hyperalgesia (Figure 3C), motor coordination (Figure 3D), spontaneous locomotor
activity (Figure 3E), and anxiety behavior (Figure 3F). The control group (VEH) showed
persistent mechanical allodynia in the ipsi-lateral side compared to the contra on post-
surgery day 14, as previously observed [39]. Repeated oral administration of COR167
significantly reduced the allodynia in the ipsilateral side (Figure 3A), with an efficacy
comparable to that produced by pregabalin (PREG), a widely employed treatment in
the management of neuropathic pain, used as a reference drug. Concerning thermal
hyperalgesia, the VEH group showed lower values of latency to licking in the ipsilateral
side compared to the contralateral side (13 ± 0.5), which remains stable for the time course.
COR167 showed a tendency to reduce thermal hyperalgesia after 30 min, which became
significant after 60 min and disappeared after 90 min from administration (Figure 3C).
The effect observed at 60 min was of intensity comparable to that shown by MORPH
after 30 min of oral administration, which represents the peak of this analgesic drug
(Figure 3C). Repeated oral administration of COR167 did not produce an alteration of
motor coordination in the rotarod test; indeed, there was not a significant difference in the
number of falls compared to the control group (Figure 3D). In the hole board test, COR167
did not show variations in the number of intrusions in the holes or movements on the
plane, excluding possible side effects on spontaneous mobility (planes) and exploratory
activity (holes) (Figure 3E). Moreover, COR167 increased the time spent in the center of
the box in the open field test compared to the untreated group showing an anxiolytic-like
activity (Figure 3F).

3.4. COR167 Attenuated Neuroinflammation via HDAC-1 Reduction in the SNI Dorsal Horn
Spinal Cord

SNI is characterized by spinal neuroinflammation with a selective increase in HDAC-1
protein expression in the ipsilateral side of SNI mice spinal cord [32,45]. Consistently with
previous observations, Figure 4A shows the colocalization of HDAC-1 (green) with IBA-1
(red), a widely used marker of microglia cells, and both of them are overexpressed in the
ipsilateral side of SNI mice compared to the contralateral side. Immunofluorescence images
and quantification analysis showed the reduction of HDAC-1 protein expression in the
ipsi dorsal horn of SNI-treated mice, compared to the VEH group, after administration
of COR167 10 mg/kg (Figure 4B). Western blot experiments confirmed the HDAC1 over-
expression in SNI spinal cord preparations and the prevention of this effect by COR167
treatment with an intensity similar to that produced by SAHA, a well-known HDAC
inhibitor (Figure 4C). COR167 10 mg/kg reduced the mechanical allodynia in SNI mice
with the same time course observed for SAHA. Both compounds showed a peak of the
effect at 60 min that persisted after 90 min and completely disappeared at 120 min after
administration (Figure 4D). HDAC-1 is involved in the activation of microglia in the pro-
inflammatory state, leading to an up-regulation of the NF-kBp65 activation pathway [33,46]
and a reduction of anti-inflammatory cytokines, such as IL-10 [47]. SNI mice showed a
reduction of IkBα (Figure 4D), an inhibitory protein of NF-kBp65 cytosolic fraction, and
IL-10 (Figure 4E) in the ipsilateral side of the spinal cord tissue compared to the contralat-
eral side. COR167 prevented the activation of the NF-kBp65 pathway, counteracting the
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IkBα (Figure 4D) and IL-10 (Figure 4E) reduction, leading them to values similar to the
contralateral side.
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Figure 3. COR167 attenuation of neuropathic pain after repeated administration. (A) Experimental
protocol. COR167 10 mg/kg p.o. was administered daily from day 3 to 14 post-injury. Tests were
performed on day 14 post-injury. (B) COR167 attenuation of mechanical allodynia in the ipsilateral
side (ipsi) with an efficacy comparable to the reference drug pregabalin (PREG). * p < 0.05, ** p < 0.01,
**** p < 0.0001 vs. contralateral side (contra). (C) Time-course curve for the attenuation of thermal
hyperalgesia by COR167 compared to morphine (MORPH). * p < 0.05, ** p < 0.01 vs. vehicle-treated
mice. (D) Lack of impairment of motor coordination by COR167 repeated treatment in the rotarod
test. (E) COR167 did not alter spontaneous mobility (planes) and exploratory activity (holes) in the
hole board test. (F) Increase of the time spent in the center of the arena by COR167 in the open field
test. * p < 0.05 vs. vehicle-treated mice.
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Figure 4. COR167 attenuation of spinal neuroinflammation via an HDAC1-mediated mechanism.
(A) Over-expression of IBA1 (red) and HDAC1 (green) in the ipsilateral side (I) of SNI mice spinal
cord compared to the contralateral side (C) and their co-localization. ** p < 0.01 vs. contralateral side.
(B) COR167 10 mg/kg p.o. repeated administration reduced HDAC1 overexpression in the ipsilateral
side (ipsi) of SNI mice in immunofluorescence experiments. ** p < 0.01 vs. vehicle. (C) HDAC1
overexpression in the ipsilateral side was reduced by COR167 treatment with an efficacy comparable
to SAHA (10 mg/kg i.p.). * p < 0.05, ** p < 0.01. (D) Time-course curves for COR167 and SAHA in
the von Frey test. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle. (E) Prevention of IkBα decrease by
COR167. * p < 0.05, ** p < 0.01, *** p < 0.001. (F) Increase of the IL-10 protein expression by COR167
treatment. ** p < 0.01.
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3.5. COR167 Prevented Microglia Activation and Reduced HDAC1 Expression in BV2 Cells

To confirm the effect of COR167 on HDAC1 expression, we used a standardized
in vitro neuroinflammation model using murine microglia BV2 cells stimulated with LPS
250 ng/mL for 24 h. As previously reported [46], we observed that BV2 selectively ex-
pressed HDAC1 more than other isoforms after 24 h of LPS stimulation. COR167 was
tested at different concentrations to establish the maximum non-toxic concentration of
10 µM (Figure 5A). BV2 are morphologically dynamic cells; indeed, the changing of their
shape influenced their biological activity. LPS induced an ameboid-like shape with short
ramification, highlighting a “reactive” state (Figure 5B). COR167-pretreated BV2 assumed
a morphology similar to that observed in the CTRL group (Figure 5B). LPS induced a
reduction of cell viability compared to the untreated cells, which is significantly attenu-
ated by COR167. The co-pretreatment of COR167 with the CB2 antagonist AM630 (1 µM)
completely prevented the cytoprotective effect of COR167 (Figure 5C). The increase of
HDAC1 expression produced by LPS was prevented by COR167, confirming the data
obtained in the spinal cord of SNI animals, with an efficacy comparable to that produced by
SAHA 5 µM. This effect on HDAC1 expression was prevented by AM630, demonstrating a
CB2-dependent effect.
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Figure 5. Attenuation of neuroinflammation by COR167 in LPS-stimulated BV2 cells. (A) COR167
dose-response curve (0.1–100 µM) for cell viability in BV2 cells. CT: control untreated cells. ** p < 0.01.
(B) Ameboid-like morphology of LPS-stimulated BV2 cells that was prevented by COR167 10 µM
pretreatment. AM630 (1 µM) prevented the COR167 effect. (C) COR167 attenuated the reduction
of cell viability induced by LPS exposure. This effect was antagonized by AM630 co-treatment.
* p < 0.05, ** p < 0.01, *** p < 0.001. (D) COR167 abolished the LPS-induced HDAC1 overexpression in
BV2 cells with an intensity comparable to SAHA 5µM. AM630 co-treatment completely antagonized
this effect. ** p < 0.01, **** p < 0.0001.

4. Discussion

The selective stimulation of CB2 receptors is increasingly recognized as a safer novel
therapeutic approach for the treatment of neuropathic pain conditions due to the lack of
centrally mediated unwanted effects associated with the activation of CB1 receptors. In
addition to the positive effects induced by CB2 acting natural constituents [25], several
CB2 agonist compounds showed anti-neuropathic activity. Intrathecal administration of
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JWH-015 attenuated nerve injury-induced allodynia in the lumbar five nerve transection
neuropathic pain model in rats [47]. Self-administration of JWH-133 attenuated sponta-
neous pain in the partial sciatic nerve ligation model of neuropathic pain in the absence of
reinforcing effects in animals without pain [48]. GW405833 [49] and AM1241 [50] attenuated
mechanical and thermal hypersensitivity in the chronic constriction injury model in rats.
In the efforts to find a new effective and safe treatment for neuropathic pain, this present
study investigated the antinociceptive, anti-hyperalgesic, and anti-allodynic properties of
COR167 after acute or repeated treatment in mice.

A single oral administration of COR167 induced thermal antinociception in naïve
mice. These findings confirm and extend previous studies showing the analgesic effect
of COR167 in the formalin test of acute peripheral and inflammatory pain [29] and are
consistent with the literature evidence on the pain-relieving activity of selective CB2
agonist compounds. Indeed, intraperitoneal and intraplantar administration of AM1241
induced thermal antinociception in the plantar test in rats [51] and in the tail flick and
hot plate tests in mice [52]. In this present study, we additionally present evidence on
the attenuation of mechanical allodynia and thermal hyperalgesia on trauma-induced
neuropathic pain after an acute oral administration. Comparable results were also obtained
after COR167 repeated treatment. This reversal of neuropathic pain-associated allodynia
and hyperalgesia without tolerance development appears peculiar for CB2-mediated anti-
neuropathic activity since it has been demonstrated for several selective CB2 agonists
such as GW405833 [53] and JW015 [12], in contrast to treatment with mixed CB1/CB2
agonist. Along with pain-relieving effects, COR167 repeated administration showed an
anxiolytic-like activity indicating the capability to attenuate comorbidities associated with
neuropathic pain states.

Evidence indicates that reactive microglia express CB2 receptors [10–12]. An increase
in the protein and mRNA levels of spinal CB2 receptors occurs in neuropathic pain condi-
tions [54,55], indicating the involvement of these receptors in neuropathy-associated spinal
neuroinflammation. Microglia-mediated neuroinflammation relies on transcription factors
such as NF-κB, widely considered the driver of microglia. NF-κB regulates inflammatory
gene transcription, and it is regulated by lysine acetylation [56]. Studies indicate that some
class I HDAC members could have a prominent role. It has been demonstrated that HDAC1
protein levels are increased in the spinal cord of neuropathic mice, and the administra-
tion of selective HDAC1 inhibitors attenuated neuropathic pain symptomatology [31,57]
and reduced the activation of NF-κB [32,45]. Consistently, we found an overactivation
of spinal microglia in the ipsilateral side of SNI mice, along with an overexpression of
HDAC1 in microglial cells. Treatment of SNI mice with COR167 at anti-neuropathic doses
prevented HDAC1 overexpression and NF-κB activation, along with an increase in the
anti-inflammatory cytokine IL-10, through a CB2-mediated mechanism, as confirmed by
experiments conducted in BV2 cells.

5. Conclusions

Due to the key role of spinal microglia in the regulation of central sensitization,
targeting spinal microglial CB2 as a mechanism to produce control over the aberrant
neuroinflammatory response can serve as a promising therapeutic approach for pain relief.
Dampening neuroinflammation by modulating CB2 activity may result in antinociceptive
and neuroprotective effects [58], making CB2 agonist of therapeutic value in conditions
of neuropathic pain. We demonstrated that the oral administration of the selective CB2
agonist COR167 reduced neuropathic pain symptoms induced by SNI in mice. These effects
appeared related to an HDAC1-mediated attenuation of spinal neuroinflammation that
leads to a reduction in the NF-kB activation. Oral administration of COR167 might represent
an innovative therapeutic perspective in the management of neuropathic pain conditions.
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