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Abstract. Recently, the concept of measure differential equation was intro-

duced in [17]. Such a concept allows for deterministic modeling of uncertainty,

finite-speed diffusion, concentration, and other phenomena. Moreover, it rep-
resents a natural generalization of ordinary differential equations to measures.

In this paper, we deal with the stability of fixed points for measure dif-

ferential equations. In particular, we discuss two concepts related to classical
Lyapunov stability in terms of measure support and first moment. The two

concepts are not comparable, but the latter implies the former if the measure

differential equation is defined by an ordinary one. Finally, we provide results
concerning Lyapunov functions.

1. Introduction. The concept of measure differential equations (briefly MDEs),
introduced in [17], allows for the modeling of various phenomena utilizing the time-
evolution of Radon measures with finite mass over Euclidean spaces, or, more gen-
erally, topological manifolds. Moreover, this concept is a natural generalization of
ordinary differential equations (briefly ODEs) in two ways: It conceptually extends
the definition of vector field as section of the tangent bundle to measures over the
same spaces, and it is possible to define an MDE associated to an ODE extend-
ing the set of solutions. General existence results for weak solutions are achieved
using lattice approximate solutions (briefly LAS), which consist of Dirac masses cen-
tered at lattice points. However, uniqueness can be obtained only at the semigroup
level using Dirac germs, which consist of small-time evolution of finite sums of Dirac
masses. We refer the reader to [17] for details. Notice that a direct comparison with
stochastic differential equations (SDEs) is not easy to provide. Indeed, the concept
of solutions for SDEs is usually based on Brownian motion and Ito integrals, while
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the concept of solution to an MDE is based on the weak integral formulation. In-
tuitively, the MDE approach is more close to the deterministic representation of
uncertanties as in differential inclusions [3].

MDE theory has been analyzed and generalized in various directions. A su-
perposition principle was proved in [7]. An extension to differential inclusions was
provided in [16]. A different direction was taken by the authors of [5] using multival-
ued maps between measures and vector fields, and using Lipschitz-type continuity
as in [20]. A variational formulation was given in [10] for λ-dissipative multifunc-
tions for measures. An extension to evolution equations with sources is found in
[22], which allows for applications to crowd dynamics [21]. Applications of this
approach to biology is discussed in [13]. We refer the reader to [19] for a general
perspective on other applications.

More generally, MDEs are evolution equations for measures. The latter attracted
a lot of attention in recent years. For instance, the general framework of gradient
flow on metric spaces, see [1], provide tools and examples. Both MDEs and gradient
flows are strictly related to optimal transport theory [24, 25]. For instance, the
theory of MDEs is developed based on continuity and Lipschitz continuity property
w.r.t. to the Wasserstein distance on the space of Radon measures and functionals
defined in term of such distances.

Finally, let us point out the connections of measure evolutions with control theory.
Starting from a classical control system ẋ = f(x, u), u ∈ U , one can look for vector
fields compatible with the associated multifunction ẋ ∈ F (x) = {f(x, u) : u ∈
U} and measures on the state space, see [8]. Various results in this direction are
available, including characterizing the value function of optimal control problems
as the viscosity solution of the Hamilton-Jacobi-Bellmann equations [9, 14]. On
the other hand, MDEs can be used to study classical control problems such as
disturbance rejection [18] or provide generalizations to relaxed controls [2, 12].

In this paper, we introduce a stability theory for MDEs in the sense of Lyapunov.
Existence and uniqueness theory for MDEs was developed using the tools provided
by the theory of optimal transport and, in particular, on the Wasserstein distance,
also known in the operations research community as Earth-mover’s distance, see
[15].

After recalling the basic definitions and properties of MDEs, we define two con-
cepts of stability and asymptotical stability. Since the evolving object is a measure,
one can define stability both in terms of the size of the support and the first moment
of the measure. Interestingly, the two concepts are not comparable in the sense that
stability in one sense does not imply stability in the other. This is proven by explicit
counterexamples and occurs for asymptotic stability as well. To further clarify the
picture, we focus on the meaning of convergence to a stable point for a measure.
Convergence in integral sense is equivalent to weak convergence of measures, or con-
vergence for the Wasserstein distance. The latter is implied by convergence of the
support (in norm of the Hausdorff distance), but still the two concepts of stability
remain independent.

Then, we focus on the special case of an MDE defined by an ODE. In such a
case, stability of the first moment, called integral stability, implies support stability.
The latter happens to be equivalent to the classical Lyapunov stability for the
ODE. The same properties hold for asymptotic stability. The key aspect here is the
additional regularity inherited by the MDE from the ODE. In particular, since every
measure can be approximated by finite sums of Dirac masses for the Wasserstein
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distance, the proof relies directly on reducing to the ODE solution, or solutions to
the corresponding linear transport equation.

Finally, we turn our attention to Lyapunov functions. We provide the definition
of the Lyapunov function for the support stability, and prove the sufficiency of the
existence of a Lyapunov function for stability. It is interesting to notice that the
decrease of the Lyapunov function is necessary only on the part of the measure
support maximizing the function. On the other hand, we have to restrict to MDEs
which admit a Lipschitz semigroup obtained as a limit of LAS. A similar approach
is developed for the case of first moment stability. However, we have to require
the Lyapunov function to be estimated from above and below by the Euclidean
norm. Moreover, we introduce a stronger concept of Lyapunv function, called the
measure Lyapunov function. We prove that the existence of a measure Lyapunov
function implies stability in both senses, and that it is equivalent to the existence
of a classical Lyapunov function for the case of an MDE defined by an ODE.

2. Basic definitions. This section provides notation and basic definitions. Let Rn

be the standard n-dimensional Euclidean space. We indicate by TRn = Rn × Rn

its tangent bundle and π1 : TRn → Rn the projection map to the base Rn, i.e.
π1(x, v) = x. Moreover, π13 : (TRn)2 → (Rn)2 indicates the projection on the bases
(first and third component), i.e. π13(x, v, y, w) = (x, y). Given a subset A ⊂ Rn,
χA denotes the characteristic function of A and C∞

c (A), the space of real smooth
functions with compact support in A.

We denote by P(X) the set of probability measures, i.e. Radon measures with
total mass equal to one, on the set X (X will usually be Rn or TRn). Given
µ ∈ P(X), Supp(µ) is the support of µ. The symbol Pc(X) denotes the set of
probability measures with compact support. Similarly, M(X) denotes the set of
positive Radon measures with finite mass and Mc(X) ⊂ M(X) is the subset of
measures with compact support. Given µ ∈ M(X), we set |µ| = µ(X) as its total
mass.

If (X1, d1) and (X2, d2) are metric spaces, µ ∈ P(X1), and ϕ : X1 → X2 is a
measurable map, then the push forward measure ϕ#µ is defined by

ϕ#µ(A) = µ(ϕ−1(A)) = µ({x ∈ X1 : ϕ(x) ∈ A}),
for every Borel set A. Given µ ∈ P(X1) and νx ∈ P(X2), x ∈ X1, the measure
µ⊗ νx is defined by∫

X1×X2

ϕ(x, v) d(µ⊗ νx) =

∫
X1

∫
X2

ϕ(x, v)dνx(v) dµ(x).

Given λ ∈ P(X1×X2), by disintegration we can always write λ = π1#λ⊗νx, where
π1 is the projection on X1 and νx are probability measures on X2.

Let (X, d) be a Polish space (metric, separable, and complete) and µ, ν ∈ P(X).
The optimal transport problem consists of minimizing the cost of moving the mass
of µ to ν defined as follows: A transference plan τ between µ and ν is a probability
measure on X ×X with marginals equal to µ and ν, respectively, i.e., such that

τ(A1 × Rn) = µ(A1), τ(Rn ×A2) = ν(A2),

for all Borel sets A1, A2 ⊂ X. Let P (µ, ν) be the set of transference plans τ from
µ to ν, and for every τ ∈ P (µ, ν) define its transportation cost by

J(τ) =

∫
X2

d(x, y) dτ(x, y).
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The Monge-Kantorovich optimal transport problem consists of finding τ that min-
imizes J(τ) and the Wasserstein distance is given by

WX(µ, ν) = inf
τ∈P (µ,ν)

J(τ).

If X = Rn, we will usually drop the superscript to simplify notation. One can
prove that an optimal transference plan exists under general conditions, see [24].
Let P opt(µ, ν) be the (nonempty) set of optimal transference plans, i.e. minimizing
J(τ), and endow P(X) with the Wasserstein distance and the relative topology. We
also recall the Kantorovich-Rubinstein duality:

WX(µ, ν) = sup

{∫
X

f d(µ− ν) : Lip(f) ≤ 1

}
, (1)

with Lip(f) the Lipschitz constant of f . For more details on optimal transport
and Wasserstein distance, we refer to [1, 24]. By normalization, the Wasserstein
distance can be defined for µ, ν ∈ M(X) as long as |µ| = |ν|. Most results will be
stated for probability measures, but can be generalized verbatim to measures with
finite mass.

3. Measure differential equations. Following the approach of [17], we introduce
the following concepts.

Definition 3.1. A measure vector field (MVF) on M(Rn) is a map V : M(Rn) →
M(TRn) such that |V [µ]| = |µ| and π1#V = µ. Notice that we use the brackets
for the argument of V to underscore the functional dependence on the measure µ.

A measure differential equation (MDE) is an evolution equation given by an
MVF V , formally written as

µ̇ = V [µ]. (2)

A solution to (2) is interpreted in the weak sense as follows.

Definition 3.2. A map µ : [0, T ] → M(Rn) is a solution to (2) if the following
holds. For every f ∈ C∞

c (Rn), the integral
∫
TRn(∇f(x) · v) dV (s)(x, v) is defined

for a.e. s, the map s →
∫
TRn(∇f(x) · v) dV (s)(x, v) belongs to L1([0, T ]), the map

t →
∫
f dµ(t) is absolutely continuous, and for a.e. t ∈ [0, T ] it holds that

d

dt

∫
Rn

f(x) dµ(t)(x) =

∫
TRn

(∇f(x) · v) dV (x, v). (3)

Given µ0 ∈ M(Rn), a Cauchy problem corresponding to (2) is given by

µ̇ = V [µ], µ(0) = µ0. (4)

From now on, for simplicity, we restrict to probability measures, but the theory holds
for Radon measures with finite mass. Therefore, we assume V : P(Rn) → P(TRn).
The theory developed in [17] includes results which are the MDE version of the
classical Peano Theorem and Cauchy-Lipschitz Theorem for ODEs. More precisely,
consider the following assumptions:

(H:bound) V is support sublinear, i.e. there exists C > 0 such that for every µ ∈
Pc(X), the following holds: sup(x,v)∈Supp(V [µ]) |v| ≤ C

(
1 + supx∈Supp(µ) |x|

)
.

(H:cont) Given R > 0, denote by PR
c (Rn) the set of probability measures with sup-

port contained in B(0, R). For every R > 0, the map V : PR
c (Rn) → Pc(TRn)

(restriction of V ) is continuous (for the topology given by the Wasserstein
distances WRn

and WTRn

.)
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To prove the existence of solutions to a Cauchy problem (4), we construct approx-
imate solutions defined as finite sums of Dirac masses centered at the points of a
regular lattice. For N ∈ N, let ∆N = 1

N represent a discrete time step, ∆v
N = 1

N

the velocity step, and ∆x
N = ∆v

N∆N = 1
N2 the space step. Let xi be the (2N

3+1)n

equispaced discretization points of Zn/(N2)∩ [−N,N ]n and vj to be the (2N2+1)n

equispaced discretization points of Zn/N ∩ [−N,N ]n. Given µ ∈ Pc(Rn), define

Ax
N (µ) =

∑
i

mx
i (µ)δxi

, mx
i (µ) = µ(xi +Q), Q = ([0, 1/N2[)n, (5)

and for µ ∈ Pc(Rn) with Supp(µ) ⊂ Zn/(N2) ∩ [−N,N ]n, set

Av
N (V [µ]) =

∑
i

∑
j

mv
ij(V [µ]) δ(xi,vj) (6)

where mv
ij(V [µ]) = V [µ]({(xi, v) : v ∈ vj + Q′}) and Q′ = ([0, 1

N [)n. The approxi-
mation operators Ax

N and Av
N satisfy the following.

Lemma 3.3. Given µ ∈ Pc(Rn), for N sufficiently big, it holds that

W (Ax
N (µ), µ) ≤

√
n∆x

N , WTRn

(Av
N (V [µ]), V [µ]) ≤

√
n∆v

N .

Using these discretization operators, we can define the approximate solutions.

Definition 3.4. Consider V satisfying (H:bound). Given the Cauchy problem
(4), T > 0 and N ∈ N sufficiently big the lattice approximate solution (LAS)
µN : [0, T ] → Pc(Rn) is defined as follows.

Initial step. Set µN
0 = Ax

N (µ0).

Recursive step. For ℓ ≥ 1, define

µN
ℓ+1 =

∑
i

∑
j

mv
ij(V [µN (ℓ∆N )]) δxi+∆N vj . (7)

For time-interpolation, we set

µN (ℓ∆N + t) =
∑
ij

mv
ij(V [µN (ℓ∆N )]) δxi+t vj

. (8)

Notice that, by the definition of ∆N , ∆v
N , ∆x

N , and (7), Supp(µN
ℓ ) is contained in

the set Zn/(N2) ∩ [−N,N ]n, thus µN
ℓ =

∑
i m

N,ℓ
i δxi

for some mN,ℓ
i ≥ 0.

The recursive step is based on first approximating V [µN
ℓ ] by Av

N (V [µN
ℓ ]), and

then using the discretized velocities to move the Dirac deltas of µN
ℓ . For fixed

T > 0, it is easy to achieve uniform bounds for the support of LAS (see [17]).

The equivalent of Peano theorem is given by the following.

Theorem 3.5. Consider an MVF V satisfying (H:bound) and (H:cont). Then, for
T > 0 and µ0 ∈ Pc(Rn) there exists a solution µ : [0, T ] → Pc(Rn) to (4) obtained
as the limit of LASs (for WRn

). If Supp(µ0) ⊂ B(0, R), then

W (µ(t), µ(s)) ≤ C eCT (R+ 1) |t− s|. (9)

To prove the equivalent of the Cauchy-Lipschitz Theorem, we need some addi-
tional notation.
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Definition 3.6. Given Vi ∈ Pc(TRn), i = 1, 2, set µi = π1#Vi, and T (V1, V2) =
{T ∈ P (V1, V2) : π13#T ∈ P opt(µ1, µ2)}. We define

W(V1, V2) = inf

{∫
(TRn)2

|v − w| dT (x, v, y, w) : T ∈ T (V1, V2)

}
. (10)

The functional W is not a metric since it can vanish for distinct elements of
P(TRN ). Even adding the term |x − y| would not give a metric, because the
triangular inequality fails (see [17].) Our last assumption is the following:

(H:lip) For everyR > 0, there existsK = K(R) > 0 such that if Supp(µ),Supp(ν) ⊂
B(0, R), then

W(V [µ], V [ν]) ≤ K W (µ, ν). (11)

We define a Lipschitz semigroup of solutions as follows.

Definition 3.7. For an MVF V satisfying (H:bound) and T > 0, a Lipschitz
semigroup for (2) is a map S : [0, T ] × Pc(Rn) → Pc(Rn) such that for every
µ, ν ∈ Pc(Rn) and t, s ∈ [0, T ], the following holds:
i) S0µ = µ and St Ss µ = St+s µ;
ii) the map t 7→ Stµ is a solution to (2);
iii) for every R > 0, there exists C(R) > 0 such that if Supp(µ),Supp(ν) ⊂ B(0, R),
then

Supp(Stµ) ⊂ B(0, eCt(R+ 1)), (12)

W (Stµ, Stν) ≤ eC(R)tW (µ, ν), (13)

W (Stµ, Ssµ) ≤ C(R) |t− s|. (14)

Finally, we have the following theorem.

Theorem 3.8. Given V satisfying (H:bound) and (H:lip), and T > 0, there exists
a Lipschitz semigroup of solutions to (2) whose trajectories are a limit of LASs for
the Wasserstein distance.

3.1. MDEs defined by ordinary differential equations. Here we report some
results from [17] providing natural connections between ordinary differential equa-
tions (ODEs) and MDEs. Let us start by defining the following.

Definition 3.9. Consider v : Rn → Rn and the corresponding ODE ẋ = v(x). The
MVF V v, corresponding to v, is defined by V v[µ] = µ⊗ δv(x).

Given the usual properties of v, such as sublinear growth, continuity, and Lip-
schitz continuity, we are interested in understanding if V v satisfies (H:bound),
(H:cont), and (H:lip). (H:bound) holds if v is sublinear: there exists C > 0 such
that |v(x)| ≤ C(1 + |x|). Similarly, (H:cont) holds if v is continuous. Finally, we
have the following theorem.

Theorem 3.10 ([17]). V v satisfies (H:lip) for finite sums of Dirac deltas if and
only if v is locally Lipschitz continuous.

Moreover, if v satisfies sublinear growth, then V v satisfies (H:lip) and there exists
a unique Lipschitz semigroup obtained as the limit of LASs.

It is interesting to notice that the relationship between ODEs and MDEs extends
to linear transport equations. More precisely, we have the following proposition.
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Proposition 3.11 ([17]). If v is locally Lipschitz continuous with sublinear growth,
then the solution to the Cauchy problem µ̇ = V v[µ], µ(t) = µ0 ∈ Pc(Rn), is the
unique solution to the linear transport equation

µt +∇ · (v µ) = 0, µ(0) = µ0.

3.2. Further dynamics modeled using MDEs. The aim of this section is to
provide further examples of MDEs. We start with ODEs with one-sided Lipschitz
conditions and singular PDEs producing concentration and delta waves. Then,
we pass to illustrate examples producing mass splitting and finite-speed diffusion,
which are not captured by regular PDEs. Finally, we show an ODE-PDE model for
supply chains.

Example 3.12. Consider an ODE ẋ = v(x) with v satisfying

⟨v(x)− v(y), x− y⟩ ≤ L |x− y|2, (15)

where ⟨·, ·⟩ indicates the scalar product of Rn, and L is bounded on compact sets.
We can associate an MDE as in Section 3.1. Existence and uniqueness theory
results are available in such case [4]. This implies that the corresponding MDE has
existence properties. Moreover, we have the following proposition.

Proposition 3.13. Consider a vector field v : Rn → Rn with sublinear growth
satisfying (15) and let V [µ] = µ⊗x δv(x) be the associated MVF. Then, there exist
unique limits of LAS and a Lipschitz semigroup of solutions obtained as the limit
of LAS.

We omit the proof that can be obtained with a proof similar to Theorem 3.10.
A general theory including multivalued MVF was developed in [10] using a modi-
fication of (H:Lip). Mass concentration can be easily modeled by such MDEs. For
instance, if we set v(x) = ±1 if ±x < 0 and v(0) = 0, then any measure with
compact support will concentrate the mass at 0 in finite time. Similarly, one can
consider the associated semilinear PDE: ut+v(t, x) ·ux = 0, see also [23]. Solutions
concentrating masses are obatined as the limit of LAS for the corresponding MDEs.

Example 3.14. We define an MDE splitting mass at the barycenter. For sim-
plicity, consider probability measures µ on R and define the barycenter as B(µ) =
sup

{
x : µ(]−∞, x]) ≤ 1

2

}
.

Set η = µ(] − ∞, B(µ)]) − 1
2 so µ({B(µ)}) = η + 1

2 − µ(] − ∞, B(µ)[). We
define V [µ] = µ ⊗ νx, with νx = δ−1 if x < B(µ), νx = δ1 if x > B(µ), and if
µ({B(µ)}) > 0,

νB(µ) =
1

µ({B(µ)})

(
ηδ1 +

(
1

2
− µ(]−∞, B(µ)[)

)
δ−1

)
, (16)

otherwise νB(µ) = 0. The solution to (4) with µ0 = δx0 is given by µ(t) = 1
2δx0+t +

1
2δx0−t. Thus, the mass is split in half, traveling in opposite directions.

A generalization of the finite speed diffusion of Example 3.14 is as follows.

Example 3.15. We construct examples of mass diffusion at finite speed. For
simplicity, we focus on probability measures. Given a probability measure µ on R let
Fµ(x) = µ(]−∞, x]) be its cumulative distribution and let λ indicate the Lebesgue
measure. Consider an increasing map φ : [0, 1] → R and define Vφ[µ] = µ⊗x Jφ(x),
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where

Jφ(x) =

δφ(Fµ(x)) if Fµ(x
−) = Fµ(x),

φ#
(
χ[Fµ(x−),Fµ(x)]λ

)
Fµ(x)−Fµ(x−) otherwise.

Roughly speaking, we order the mass of µ left to right, and then we move at speed
φ(a) the mass located at position a ∈ [0, 1] according to such order. If µ(0) = δ0,
then the solution to the Cauchy problem for the corresponding MDE is given by
g(t, x)λ with

g(t, x) =
1

tφ′(φ−1(xt ))
=

(φ−1)′(xt )

t
.

For example, if φ(α) = α− 1
2 , then g(t, x) = 1

tχ[− t
2 ,

t
2 ]
so we get uniformly distributed

mass.

Example 3.16. Supply chains can be modeled by systems of ODE-PDEs as follows:

ρjt + (min{vjρj , cj})x = 0, x ∈ [aj , bj ],
q̇j = min{vj−1ρ

j−1(bj−i−), cj−1} − fj−1(t), t ≥ 0

fj−1(t) =

{
min{min vj−1ρ

j−1(bj−i−), cj−1, cj} qj(t) = 0
cj qj(t) > 0

(17)

where ρj is the density (of goods) on the j-th processor represented by the interval
[aj , bj ], with bj−1 = aj , vj the processing speed, cj the maximal capacity, and qj
the buffer queue in front of processor j. In simple words, the queue fills up when
the inflow from processor j − 1 is higher than the outflow to processor j, see [11].
It is easy to prove that if ρj(0) ≤ cj

vj
, then the same holds for all times, and thus ρj

solves the semilinear equation ρjt + vjρ
j
x = 0. We will consider the linear dynamics

on processors coupled with the queue dynamics.
To describe such dynamics as an MDE, we follow the ideas of Examples 3.14 and

3.15. Given a measure µ on R with finite mass, let Fµ be its cumulative distribution
and set αj = Fµ(aj), βj = Fµ(bj−), and γj = µ(aj). The ordered masses between
αj and βj move with speed vj .

If µ(aj) > 0, then the ordered mass between βj and βj + γj move at speed
cj
γj
.

4. Stability for ordinary differential equations. Here we recall the basics of
Lyapunov stability of ordinary differential equations. Consider the ordinary differ-
ential equation

ẋ = g(x), (18)

where x ∈ Rn, g : Rn → Rn and indicate by t 7→ x(t, x0) the solution such that
x(0) = x0.

Definition 4.1. (Lyapunov stability). Assume g(x̄) = 0. Then, x̄ is stable if
for every ϵ > 0 there exists δ > 0 such that, if |x0 − x̄| < δ, then for every t ≥ 0 we
have |x(t, x0)− x̄| < ϵ.
The point x̄ is asymptotically stable if, in addition, we can choose δ > 0 so that
limt→+∞ x(t, x0) = x̄ whenever |x0 − x̄| < δ.

The stability condition means that, if the initial datum is sufficiently close to x̄,
then the solution remains close to x̄ for all t > 0. Asymptotic stability means that∣∣x(t, x0)− x̄

∣∣ converges to zero as t → +∞.
Lyapunov stability can be proven by constructing a positive function which is

decreasing along trajectories of the system.



LYAPUNOV STABILITY FOR MEASURE DIFFERENTIAL EQUATIONS 9

Definition 4.2. Consider a C1 vector field g : Rn → Rn and x̄ with g(x̄) = 0. A
C1 function V : Rn 7→ R is a Lyapunov function for (18) if:
i) V is positive definite, i.e. V (x̄) = 0 and V (x) > 0 for every x ̸= x̄;
ii) V decreases along trajectories of (18), i.e. for all x, ∇V (x) · g(x) ≤ 0.
We say that V is a strict Lyapunov function, if it is a Lyapunov function and
∇V (x) · g(x) < 0 for every x ̸= x̄.

We have the following:

Theorem 4.3. Let g be a C1 vector field, vanishing at a point x̄ ∈ Rn.

(i) The equilibrium point x̄ is stable if the system (18) admits a Lyapunov function
defined on a neighborhood of x̄.

(ii) The equilibrium point x̄ is asymptotically stable if system (18) admits a strict
Lyapunov function defined on a neighborhood of x̄.

For more details, we refer the reader to [6].

5. Stability for measure differential equations. As shown in Section 4, Lya-
punov (asymptotic) stability for ODEs consists of having bounds (asymptotically
vanishing) on the norm of solutions depending on the norm of the initial condition.
Since solutions to MDEs are measures, there are at least two natural concepts ob-
tained replacing the norm with the size of the support and the first moment of the
measure.

From now on, for simplicity we assume that the equilibrium point is the origin
(x̄ = 0 in the notation of Section 4.) The first natural definition of stability for the
origin for an MDE is as follows.

Definition 5.1. Consider an MVF V. We say that the origin is support stable if
for every ϵ > 0 there exists δ > 0 such that if µ(·) is a solution to the corresponding
MDE with Supp(µ(0)) ⊂ B(0, δ), then Supp(µ(t)) ⊂ B(0, ϵ) for every t ≥ 0.

Similarly, we can define the concept of asymptotic stability.

Definition 5.2. Consider an MVF V for which the origin is support stable. We
say that the origin is asymptotically support stable if there exists δ > 0 such that
if µ(·) is a solution to the corresponding MDE with Supp(µ(0)) ⊂ B(0, δ), then
sup{|x| : x ∈ Supp(µ(t))} → 0 as t → +∞.

The second natural concept is based on the first moment and is stated as follows.

Definition 5.3. Consider an MVF V . We say that the origin is integrally stable if
for every ϵ > 0 there exists δ > 0 such that if µ(·) is a solution to the corresponding
MDE with

∫
|x| dµ(0)(x) < δ, then

∫
|x| dµ(t)(x) < ϵ for every t ≥ 0.

The concept of asymptotic integral stability is stated as follows.

Definition 5.4. Consider an MVF V for which the origin is integrally stable. We
say that the origin is asymptotically integrally stable if there exists δ > 0 such
that if µ(·) is a solution to the corresponding MDE with

∫
|x| dµ(0)(x) < δ, then∫

|x| dµ(t)(x) → 0 as t → +∞.

5.1. Comparison of stability concepts for MDEs. The two concepts of sta-
bility for MDEs are not comparable.

Proposition 5.5. The support stability for an MVF does not imply the integral
stability.
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Proof. To see this, first consider an ODE on R2

ẋ = f(x) (19)

and choose f so that the origin is stable, the unit circle is an unstable periodic
orbit, and there are no other equilibria or periodic orbit.

A function satisfying the above properties is

f(x, y) =
(−(x(1− ρ2)− 2yρ), (−(y(1− ρ2) + 2xρ))

1 + ρ2

with ρ =
√
x2 + y2. Solutions to (19) can be explicitly computed in polar coordi-

nates and satisfy

ρ(t) = earcsinh(e
t sinh(log(ρ0))

with ρ0 = ρ(0) the initial radius. The integral curves of f are depicted in Figure 1.

Figure 1. Integral curves of f .

Now, define Vf as the corresponding measure vector field. Then, the origin
is support stable for Vf . To see this, first let W be a Lyapunov function for f
defined on a neighborhood of the origin. For every ϵ, define Wϵ = inf{W (x) : x ∈
∂B(0, ϵ)} > 0 and set δ = sup{η : B(0, η) ⊂ V −1([0,Wϵ])}. If µ(·) is a solution
to the MDE corresponding to Vf with Supp(µ(0)) ⊂ B(0, η), then W (x) ≤ Wϵ for
every x ∈ Supp(µ(0)). This implies W (x(t, x0)) ≤ Wϵ for every x0 ∈ Supp(µ(0)),
thus Supp(µ(t)) ⊂ B(0, ϵ).

On the other hand, fix ϵ = 1. Then, for every δ > 0, there exists µ0 with∫
|x| dµ0(x) < δ such that µ(R2 \B(0, 1)) > δ

2 > 0. All trajectories starting outside



LYAPUNOV STABILITY FOR MEASURE DIFFERENTIAL EQUATIONS 11

B(0, 1) diverge to infinity, and in particular, indicating by µ(t) the solution to the
MDE starting from µ0, we have

∫
|x| dµ(t)(x) → ∞. Therefore, the origin is not

integrally stable.

Proposition 5.6. The integral stability for an MVF does not imply the support
stability.

Proof. Consider now an MVF on R defined as follows. Given µ with compact
support, let x− = inf{x : x ∈ Supp(µ)}, x+ = sup{x : x ∈ Supp(µ)}, and d =
x+ − x−. Consider d ∈ [0, 1] and two functions D(d) and η(d) with D(d) > d,
1 > η(d) > d

2 , and such that D(d) → +∞ and η(d)D(d) → 0 as d → 0. Given µ,
we can order the mass left to right considering the cumulative distribution function
and let the first 1 − η(d) mass travel towards 0 and the remaining towards D(d).
Then, the origin is integrally stable. Indeed fix ϵ > 0, then for every µ0 with∫
|x| dµ0(x) < δ we can estimate

∫
|x| dµ(t)(x) < η(δ)D(δ) + δ(1 − η(δ)) which is

bounded by ϵ for δ sufficiently small. On the other hand, for every δ there exists µ0

with Supp(µ0) ⊂ B(0, δ) such that some mass travel to D(δ). Since D(δ) → +∞
as δ → 0, we conclude that the origin is not support stable.

5.2. Convergence of solutions and asymptotic stability. The two concepts
of asymptotic stability for MDEs are based on the convergence of the support or of
the first moment of the solution. Here, we consider other concepts of convergence
and compare them. This, in turn, will clarify the relationships between different
concepts of asymptotic stability and possible variations.

We first compare different concepts of convergence for a curve with uniformly
compact support. To do so, let us recall the definition of Hausdorff distance for
closed sets. Given C1, C2 ⊂ Rn closed, we set

d(x,C1) = min
y∈C1

d(x, y), dH(C1, C2) = max{ sup
x1∈C1

d(x1, C2), sup
x2∈C2

d(x2, C1)}.

We have the following.

Proposition 5.7. Let µ : [0,+∞[→ P(Rn) be a continuous curve (for the W
distance), and assume there exists r > 0 such that Supp(µ(t)) ⊂ B(0, r) for every
t > 0. Consider the following concepts of convergence for t → +∞:

(a)
∫
|x| dµ(t) → 0.

(b) W (µ(t), δ0) → 0.
(c) µ(t) ⇀ 0.
(d) dH(Supp(µ(t)), {0}) → 0.
(e) sup{|x| : x ∈ Supp(µ(t))} → 0.

Conditions (a), (b), and (c) are equivalent. Conditions (d) and (e) are equivalent.
Condition (d) implies (b), but not vice versa.

Proof. (a) ⇐⇒ (b). We have W (µ(t), δ0) =
∫
|x| dµ(t).

(b) ⇐⇒ (c). W metrizes the weak convergence for compact supported measures
[24].
(d) ⇐⇒ (e). We have dH(Supp(µ(t)), {0}) = sup{|x| : x ∈ Supp(µ(t))}.
(d) =⇒ (b). We have W (µ(t), δ0) ≤ dH(Supp(µ(t)), {0}).
Finally, the curve t → t

t+1δ0 + 1
t+1δre1 , where e1 is the first coordinate vector,

satisfies (b) but not (d).

The meaning of Proposition 5.7 is that, generally speaking, the convergence to
zero of the support for the Hausdorff distance is equivalent to the support size going
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to zero, and is strictly stronger than the convergence to zero of the first moment.
Moreover, the latter is equivalent to weak convergence and Wasserstein convergence.
Despite this, we cannot compare the two concepts of asymptotic stability as shown
by the following proposition.

Proposition 5.8. Consider an MVF V and assume that the origin is asymptotically
support stable. Then, the origin is not necessarily asymptotically integrally stable.

Vice versa, if the origin is asymptotically integrally stable, then the origin is not
necessarily asymptotically support stable.

The proof of the proposition follows from the counterexamples in the proofs of
Proposition 5.5 and Proposition 5.6. Indeed, the examples given in the proofs are
asymptoticaly stable for one concept but not stable for the other.

5.3. Stability for an MDE defined by an ODE. Here we focus on the stability
of MDEs corresponding to ODEs as defined in Section 3.1. Our first result shows
that, even if the two concepts of stability for MDEs are not comparable, one is
stronger than the other for the special case of an MDE defined by an ODE. More
precisely, we have the following.

Proposition 5.9. Consider an MVF V such that V v[µ] = µ⊗x δv(x) with v locally
Lipschitz with sublinear growth. If the origin is integrally stable, then it is support
stable.

Proof. Assume by contradiction that the origin is integrally stable, but not support
stable. Thus, there exist ϵ > 0 and sequences δν → 0, µν(·) solution to the MDE,
tν > 0, such that Supp(µν(0)) ⊂ B(0, δν) and Supp(µν(tν)) ̸⊂ B(0, ϵ). Choose xν ∈
Supp(µν(tν)) with |xν | > ϵ. Then, there exists yν ∈ Supp(µv(0)) ⊂ B(0, δν) such
that x(tν , yν) = xν . Consider now the sequence of solutions λν(·) to the MDE with
λν(0) = δyν

. Then,
∫
|x|dλν(0) = |yν | → 0 and

∫
|x|dλν(tν) = |y(tν)| = |xν | > ϵ

reaching a contradiction with the assumption of integral stability.

Our second result shows that classical stability of the ODE is equivalent to sup-
port stability.

Proposition 5.10. Consider an MVF V such that V v[µ] = µ⊗x δv(x) with v locally
Lipschitz with sublinear growth. The origin is support stable for V v if and only if
it is Lyapunov stable for v.

Proof. First, assume the origin is support stable for V v. Fix ϵ and let δ be as in
Definition 5.1. Consider x0 ∈ B(0, δ), then the solution to the MDE with initial
condition δx0 satisfies Supp(µ(t)) ⊂ B(0, ϵ). In turn, µ(t) = δx(t,x0) by definition of
V v. Therefore the origin is Lyapunov stable for v.

For the converse, assume the origin is Lyapunov stable for v. Fix ϵ and let δ be
as in Definition 4.1. Consider µ0 with Supp(µ(0)) ⊂ B(0, δ). Then, for every η > 0
there exists m > 0 and x1, . . . , xm ∈ B(0, δ) such that W (µ0,

1
m

∑
i δxi

) < η. By

Theorem 3.10, the solution to the MDE with initial datum 1
m

∑
i δxi

is unique and

satisfies µ(t) = 1
m

∑
i δx(t,xi).

By assumption, we have Supp( 1
m

∑
i δx(t,xi)) ⊂ B(0, ϵ). Again, by Theorem 3.10

and the arbitrariness of η, we conclude that Supp(µ(t)) ⊂ B(0, ϵ), and thus we are
done.

Let us now pass to consider the concepts of asymptotic stability. We have the
following proposition.
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Proposition 5.11. Consider an MVF V such that V v[µ] = µ⊗x δv(x) with v locally
Lipschitz with sublinear growth. If the origin is asymptotically integrally stable, then
it is asymptotically support stable.

Proof. From Proposition 5.9 we know that the origin is support stable. Assume by
contradiction that the origin is not asymptotically support stable. Thus, there exist
sequences δν → 0, µν(·) solution to the MDE, such that Supp(µν(0)) ⊂ B(0, δν)
and sup{|x| : x ∈ Supp(µν(t))} ̸→ 0 as t → ∞. Thus, for every ν, there exist
ην > 0 such that lim supt sup{|x| : x ∈ Supp(µν(t))} ≥ ην . We claim that there
exists yν ∈ Supp(µν(0)) such that lim supt |x(t, yν)| ≥ 1

2ην . Otherwise, for every

y ∈ Supp(µν(0)), there exists t
y such that |x(t, y)| ≤ 1

2ην for t > ty. By the Lipschitz

continuity of v, we have |x(t, z)| ≤ 3
4ην for t > ty and all z in a neighborhood of

y. By compactness, we can take ty uniformly bounded on Supp(µν(0)), reaching a
contradiction. Therefore, the trajectory λν of the MDE with initial datum λν(0) =
δyν satisfies

∫
|x|dλν(t) ̸→ 0 as t → ∞. On the other hand,

∫
|x|dλν(0) = |yν | → 0,

and thus we reach a contradiction.

We also have the following.

Proposition 5.12. Consider an MVF V such that V v[µ] = µ⊗x δv(x) with v locally
Lipschitz with sublinear growth. The origin is asymptotically support stable for V v

if and only if it is asymptotically stable for v.

Proof. First, assume the origin is asymptotically support stable for V v. From
Proposition 5.10, we know that the origin is Lyapunov stable for v. Fix ϵ and
let δ be as in Definition 5.1. Consider x0 ∈ B(0, δ). Then, the solution to the
MDE with initial condition δx0 satisfies sup{|x| : x ∈ Supp(µ(t))} → 0. In turn,
µ(t) = δx(t), where x(·) is the solution to the ODE with x(0) = x0, by definition of
V v. Therefore, the origin is asymptotically stable for v.

For the converse, assume the origin is asymptotically stable for v. Fix ϵ and let
δ be as in Definition 4.1. Consider µ0 with Supp(µ(0)) ⊂ B(0, δ). Then, for every
η > 0, there exist m > 0 and x1, . . . , xm ∈ B(0, δ) such that W (µ0,

1
m

∑
i δxi

) <

η. By Theorem 3.10, the solution to the MDE with initial datum 1
m

∑
i δxi

is

unique and satisfies µ(t) = 1
m

∑
i δx(t,xi). By assumption, we have sup{|x| : x ∈

Supp( 1
m

∑
i δx(t,xi))} → 0. Again, by Theorem 3.10 and the arbitrariness of η, we

conclude.

6. Lyapunov functions. In this section, we introduce the definition of the Lya-
punov function for an MVF related to the two concepts of stability. We focus on
the novelty of the stability concepts, and thus consider smooth Lyapunov functions.
Moreover, we need to restrict the MVF so that the corresponding MDE admits a
Lipschitz semigroup.

We prove sufficiency results for Lyapunov functions being the necessary results
much more difficult to be proven. However, we notice that the concept of sup-
port stability is naturally linking ODEs to MDEs defined in terms of the ODEs.
Therefore, necessary conditions for support stability are expected to be feasible us-
ing standard approaches. On the contrary, necessary conditions results for integral
stability are expected to be much harder.

We start with the first concept of stability.

Definition 6.1. Consider an MVF V and the corresponding MDE. We say that
W : Rn → R is a support Lyapunov function for the MDE if:
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i) W is smooth, W (0) = 0, W (x) > 0 for x ̸= 0.
ii) There exists a neighborhood N of 0 such that the following holds. Given

µ ∈ P, set w(µ) = inf{w ∈ R : µ(V −1([0, w])) = |µ|} (where V −1 indicates
the preimage via V .) Then, for every µ ∈ P with Supp(µ) ⊂ N and (x, v) ∈
Supp(V [µ]) with W (x) = w(µ), it holds that

∇W (x) · v ≤ 0. (20)

We say that W is strict if the inequality in (20) is replaced by the strict inequality.

We have the following.

Theorem 6.2. Consider an MVF V satisfying (H:bound) and (H:Lip), and fix a
Lipschitz semigroup S obtained as the limit of LAS for the corresponding MDE. If
there exists a support Lyapunov function W for the MDE, then the origin is support
stable for the semigroup trajectories. Moreover, if W is strict, then the origin is
support asymptotically stable for the semigroup trajectories.

Proof. Fix ϵ > 0 such that B(0, ϵ) ⊂ N . Define wϵ = min{W (x) : x ∈ ∂B(0, ϵ)}.
Since W (0) = 0 and W is continuous, there exists δ sufficiently small such that
B(0, δ) ⊂ {x : W (x) < wϵ}. Fix µ0 such that Supp(µ0) ⊂ B(0, δ), and consider the
S-trajectory t → Stµ0. Fix η > 0. Then, there existm > 0 and x1, . . . , xm ∈ B(0, δ)
such that W (µ0, λ) < η where λ = 1

m

∑
i δxi

. By definition, the S-trajectory from
λ is approximated by LAS, and thus

W (Stλ, λ
N (t)) ≤ η (21)

for N sufficiently big (where λN indicates the LAS approximate solution starting
from λ). Define φ(t) = sup{W (x) : x ∈ Supp(λN (t))}. Then, setting A(t) = {x ∈
Supp(λN (t)) : W (x) = w(λN (t))}, we get

φ̇(t) =

∫
A(t)

(∇W (x) · v)dV [λN (t)](x, v) ≤ 0

by assumption ii) of Definition 6.1 applied to the S trajectory s → Ssλ
N (t). In

particular, we get Supp(λN (t)) ⊂ {x : W (x) ≤ wϵ}. From (21) and the arbitrariness
of η, we conclude that Supp(Stµ0) ⊂ {x : W (x) ≤ wϵ} ⊂ B(0, ϵ), and thus we
conclude that the origin is support stable for the semigroup trajectories.

Assume now that W is strict and fix δ as above. Then, given µ0 with Supp(µ0) ⊂
B(0, δ), define λ, λN , and φ as above. Then, we get

φ̇(t) < 0

for every time t. Assume, by contradiction, that limt→∞ φ(t) = l > 0. Define the
function

α(θ) = sup{∇W (x) · v :
θ

2
≤ |x| ≤ θ, (x, v) ∈ V [µ], x ∈ Supp(µ) ⊂ B(0, ϵ)}

Then, by smoothness of W and (H:cont), we obtain that α(θ) < 0 for every θ > 0.
Then, we get φ̇(t) < α(2l) < 0 for t sufficiently big, reaching a contradiction, and
thus limt→∞ φ(t) = 0. Since W (x) > 0 for x ̸= 0, we conclude.

For the second concept, we have the following.

Definition 6.3. Consider an MVF V and the corresponding MDE. We say that
W : Rn → R is an integral Lyapunov function for the MDE if:

i) W is smooth, W (0) = 0, W (x) > 0 for x ̸= 0. Moreover, C1|x| ≤ W (x) ≤
C2|x| for some C1, C2 > 0.
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ii) for every µ ∈ P it holds that∫
∇W (x) · v dV [µ](x, v) ≤ 0. (22)

We say that W is strict if the inequality is replaced by the strict inequality in (22)

We have the following.

Theorem 6.4. Consider an MVF V satisfying (H:bound) and (H:Lip), and fix a
Lipschitz semigroup S obtained as the limit of LAS for the corresponding MDE. If
there exists an integral Lyapunov function, then the origin is integrally stable for
the semigroup trajectories. Moreover, if W is strict, then the origin is integrally
asymptotically stable for the semigroup trajectories.

Proof. Fix ϵ and set δ = C2ϵ
C1

. Consider µ0 with
∫
|x|dµ0 ≤ δ. Then,

∫
W (x)dµ0 ≤

C2δ. Let µ(·) = Stµ0. Then, using ii) of Definition 6.3, we get

d

dt

∫
W (x)dµ(t) =

∫
∇W (x) · v dV [µ](x, v) ≤ 0,

and thus ∫
W (x)dµ(t) ≤

∫
W (x)dµ(0) ≤ C2δ.

Therefore, ∫
|x|dµ(t) ≤ 1

C1

∫
W (x)dµ(t) ≤ C2

C1
δ = ϵ

and we are done.
Assume now that W is a strict Lyapunov function. Fix µ0, and set µ(·) = Stµ0

and φ =
∫
W (x)dµ(t). Then, we have

d

dt
φ(t) =

∫
∇W (x) · v dV [µ](x, v) < 0,

and thus φ is strictly decreasing. As in the proof of Theorem (6.2), we have that
limt→+∞ φ(t) = 0, and thus

lim
t→+∞

∫
|x|dµ(t) ≤ 1

C1
lim

t→+∞

∫
W (x)dµ(t) = 0.

We now introduce a stronger concept of Lyapunov function, which is global in
nature and implies stability for both concepts.

Definition 6.5. Consider an MVF V and the corresponding MDE. We say that
W : Rn → R is a measure Lyapunov function for the MDE if:

i) W is smooth, W (0) = 0, W (x) > 0 for x ̸= 0.
ii) For every µ ∈ P and (x, v) ∈ Supp(V [µ]), it holds that

∇W (x) · v ≤ 0. (23)

We say that W is strict if the inequality is replaced by the strict inequality in
(23).

One can easily prove the following.
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Theorem 6.6. Consider an MVF V satisfying (H:bound) and (H:Lip), and fix a
Lipschitz semigroup S obtained as the limit of LAS for the corresponding MDE. If
the MDE admits a measure Lyapunov function, then the origin is support stable
for the semigroup trajectories. If, moreover, C1|x| ≤ W (x) ≤ C2|x| for some
C1, C2 > 0, then the origin is integrally stable for the semigroup trajectories.

Proof. We notice that (23) coincides with (20). Moreover, condition ii) of Definition
6.5 is valid without restrictions on the measure or the point, and thus we conclude
that the origin is support stable.

Similarly, (23) implies condition (22). Therefore we conclude that the origin is
integrally stable if condition i) of Definition 6.3 also holds.

6.1. Lyapunov functions for MDEs defined by ODEs. In this section, we
focus on MDEs defined by ODEs. In this case, the existence of a Lyapunov function
for the ODE is equivalent to the existence of a measure Lyapunov function for the
MDE. More precisely, we have the following.

Theorem 6.7. Consider an MVF V such that V v[µ] = µ ⊗x δv(x) with v locally
Lipschitz with sublinear growth. Then, v admits a Lyapunov function (defined on
Rn) if and only if V v admits a measure Lyapunov function.

Proof. Assume first that v admits a Lyapunov function W . Then, ∇W (x) ·v(x) ≤ 0
for every x ∈ Rn. Since V v[µ] = µ⊗x δv(x), (23) holds true.

Assume now that V v admits a measure Lyapunov function. If µ = δx, then from
(23) we get ∇W (x) · v(x) ≤ 0, and thus we conclude.

From Theorem 6.6, we immediately get the following.

Corollary 6.8. Consider an MVF V such that V v[µ] = µ ⊗x δv(x) with v locally
Lipschitz with sublinear growth. If v admits a Lyapunov function, then the origin
is support stable. If, moreover C1|x| ≤ W (x) ≤ C2|x| for some C1, C2 > 0, then the
origin is integrally stable.

Proof. Since v is locally Lipschitz with sublinear growth, from Theorem 3.10 so-
lutions are unique, form a semigroup, and are limit of LAS. Thus, we can apply
Theorem 6.6.
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IEEE Conference on Decision and Control, 2024.
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