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Abstract
In this work, we consider symmetric positive definite pencils depending on two
parameters. That is, we are concerned with the generalized eigenvalue problem
(A(x) − λB(x)) v = 0, where A and B are symmetric matrix valued functions in
R

n×n, smoothly depending on parameters x ∈ � ⊂ R
2; furthermore, B is also pos-

itive definite. In general, the eigenvalues of this multiparameter problem will not
be smooth, the lack of smoothness resulting from eigenvalues being equal at some
parameter values (conical intersections). Our main goal is precisely that of locat-
ing parameter values where eigenvalues are equal. We first give general theoretical
results for the present generalized eigenvalue problem, and then introduce and imple-
ment numerical methods apt at detecting conical intersections. Finally, we perform
a numerical study of the statistical properties of coalescing eigenvalues for pencils
where A and B are either full or banded, for several bandwidths.
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1 Introduction

In this work, we consider the eigenvalue problem for a pencil (A(x), B(x)), that is,
the generalized eigenvalue problem

(
A(x) − λB(x)

)
v = 0 , (1)

where x ∈ R
2 represents parameters varying in an open and connected subset � of

R
2. The functions A and B are symmetric and take values in Rn×n; B is also positive

definite, a fact that we will indicate with B � 0. Moreover, we will assume that A

and B (and B−1) are continuous and bounded functions of the parameters with k ≥ 0
continuous derivatives. We write M ∈ Ck(�,Rn×n) to indicate a n × n continuous
real valued matrix function M , depending on parameters in �, and having k ≥ 0
continuous derivatives; we write M ∈ C if M is just continuous (i.e., k = 0), and
M ∈ Cω if M is real analytic.

We recall that the eigenvalues of (1) are roots of the characteristic polynomial

det(A − λB) = 0 ,

and since det(B) �= 0, there are n eigenvalues of (1) and it is well known (see below)
that they are all real. Furthermore, since the coefficients of the polynomial det(A −
λB) are as smooth as the entries of A and B, and the roots of a polynomial of (exact)
degree n depend continuously on its coefficients, then the n eigenvalues of (1) can be
labeled so to be continuous functions of the parameter x, e.g., in decreasing order:

λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x).

A main interest of ours is to locate parameter values where the eigenvalues of (1)
coalesce: these are called conical intersections (or “CIs” for short), and it is well
understood (and see below) that at these values one should not expect any smoothness
for the eigenvalues (nor for the eigenvectors, of course). To locate CIs, our method
will consist of the following steps.

Our task in this work is to validate Algorithm 1.1, both theoretically and computa-
tionally. In Section 3, we will validate “Step 1,” namely that for 2-parameter problems
the restriction to a closed loop is generically giving distinct eigenvalues. In Section 2,
we will validate “Step 2” and derive differential equations for V and � along the
loop. Finally, in Section 3, we will validate “Step 3” by our main result, Theorem
3.13, which will give sufficient conditions for the existence inside � of parameter
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values where eigenvalues of the pencil coalesce, and which ones. But, beside our the-
oretical developments, we will also give and implement new algorithms for carrying
out the above steps, and use these to perform a statistical study of the number of CIs
for 2-parameter problems, for the cases of full and banded pencils; for banded prob-
lems, our study will show meaningful and unexpected differences with respect to the
simpler case of the symmetric eigenproblem, i.e., B(t) = I in (1).

Remark 1.1 Since B is positive definite, it induces an inner product, and hence a
concept of orthogonality. As a consequence, one may expect that results similar to
the standard case (symmetric eigenproblem and Euclidean inner product) should fol-
low. This is indeed correct, as we will see below. Yet, the required “modifications”
are new, and of theoretical interest. Furthermore, the algorithmic developments for
the generalized eigenproblem are quite a bit different from those of the standard
eigenproblem, and this produces substantially more efficient techniques than those
resulting from a conversion to a symmetric eigenproblem. See below.

Eigenproblems depending on parameters are receiving increasing interest in
recent years. Beside our own work on the subject, chiefly related to the symmet-
ric/Hermitian eigenproblem (see references at the end), Mehl et al. in [20] consider
rank one perturbations of structured pencils, Jarlebring at al. in [13] and Kalinina
in [14] focus on double eigenvalues of linear combinations A + μB, with arbitrary
matrices A, B ∈ C

n×n, Berkolaiko et al. in [1] consider the real symmetric eigen-
problem from a numerical perspective, and Uhlig in [25] considers the same problem
but focuses on coalescence of eigenvalues of 1 parameter families of matrices.

Remark 1.2 An important source of pencils like (1) arises from the second order
problem

Mÿ + Dẏ + Cy = F(t) , (2)

where the matrices M, D, C ∈ R
n×n are all symmetric and positive definite and

typically arise from finite element discretization of beams’ structures and the like.
For n � 1, to obtain a computationally viable approach, a widely adopted technique
consists in projecting (2) onto a subspace spanned by a restricted set of eigenvectors
v of the generalized (frictionless) eigenproblem

(M − λC) v = 0 . (3)

For example, in [23] the projection is taken with respect to the m eigenvec-
tors v1, . . . , vm, associated to the m smallest eigenvalues of (3). Writing V =
[v1 . . . vm] ∈ R

n×m, instead of (2) one considers

M̃z̈ + D̃ż + C̃z = F̃ (t) , (4)

where y = V z, z ∈ R
m, and M̃ = V T MV , D̃ = V T DV , C̃ = V T CV , and M̃

and C̃ are diagonal (see [8]). Alas, in general, the projection is well defined only if
there is a gap between the eigenvalues associated to the eigenspace onto which we
are projecting, and the other eigenvalues. By finding parameter values where a pair
of eigenvalues coalesce, our present work gives a precise indication of this spectral
gap, among all possible sets of eigenvalues, in different parametric regions.
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A plan of our paper follows. In Section 2, after reviewing some basic results on
theory and techniques for the generalized eigenproblem when the given matrices do
not depend on parameters, we give smoothness and periodicity results for the param-
eter dependent case. In particular, we give smoothness results about square roots and
Cholesky factors when the matrices are smooth functions of several parameters, and
specialized results when they are analytic function of one real parameter. We give a
general block-diagonalization result, and, for the 1-parameter case, we derive novel
differential equations for the smooth eigenfactors (see Theorem 2.11), and finally
give relevant periodicity results. All of these results are needed for the development
in Section 3, where we first discuss the codimension of having equal eigenvalues
(which justifies, given our emphasis on locating CIs, why we consider pencils that
depend on two parameters). Then, we give the key theoretical results about detection
of parameter values where the eigenvalues of the generalized eigenproblem coalesce,
validating the approach outlined in Steps 1-2-3 of Algorithm 1.1. In Section 4, we
discuss algorithmic development for detection of coalescing eigenvalues. Finally, in
Section 5, we give numerical results on locating conical intersections of random func-
tions ensembles for pencils (A, B) depending on two parameters, and are either full
or banded, and give evidence on the power law distribution of CIs in terms of the size
of the problem.

2 Smoothness and periodicity results

Numerical methods for (1) when A, B ∈ R
n×n, A = AT , B = BT � 0, are given

(constant) matrices are quite well developed (see [24] for a review). In essence, the
standard techniques pass through taking either the square root of B or its Cholesky
factorization, the latter being the most common choice in the numerical community
(e.g., it is the method implemented in MATLAB). For convenience, we review these
below for

(A − λB) v = 0 , A = AT , B = BT � 0 . (5)

(a) Square root. It is always possible to reduce the problem (5) to a standard
symmetric eigenvalue problem:

(A − λB)v = 0 ⇐⇒ B1/2(B−1/2AB−1/2 − λI
)
B1/2v = 0

⇐⇒ (Ã − λI)w = 0 , w = B1/2v ,

where B1/2 is the unique symmetric positive definite square root of B, and Ã =
B−1/2AB−1/2. Clearly, from the eigenvalues/eigenvectors of this last problem,
we can get those of (5). Since Ã = ÃT , we note that the eigenvalues of (5) (and
those of (1) for any given value of x) are real, as previously stated.

(b) Cholesky. Similarly, since B is positive definite, it admits a Cholesky factoriza-
tion

B = LLT , L lower triangular , (6)

from which it is immediate to obtain

(A − λB)v = 0 ⇐⇒ L
(
L−1AL−T − λI

)
LT v = 0
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⇐⇒ (Ã − λI)w = 0 , Ã = L−1AL−T , w = LT v ,

and again from the eigenvalues/eigenvectors of this last problem, we can get
those of (5). We note that the Cholesky factor is not unique, but it can be made
unique by fixing the signs of Lii , the standard choice being Lii > 0. In this
work, we will always restrict to this choice.

We conclude this review of the non-parametric case with the following simple
(and well known) result, which says that the eigenvectors’ matrix V can be taken to
be orthogonal with respect to the inner product induced by B. This property is called
B-orthogonality.

Lemma 2.1 For (5), the eigenvector matrix V ∈ R
n×n, V = [v1, . . . , vn], can be

chosen so to satisfy the relation

V T BV = I . (7)

If the eigenvalues are distinct, then, for a given ordering of the eigenvalues, the matrix
V in (7) is unique up to the sign of its columns.

Proof Regardless of having used the square root of B or its Cholesky factor, we
saw that (A − λB)v = 0 ⇐⇒ (Ã − λI)w = 0, with Ã = B−1/2AB−1/2 or
Ã = L−1AL−T . Since Ã = ÃT , then Ã has an orthogonal matrix of eigenvectors W :
WT W = I , and thus V = B−1/2W , or V = L−T W , satisfies V T BV = I . In case
the eigenvalues are distinct, then it is well understood that, for a given ordering of the
eigenvalues, the orthogonal matrixW is unique up to the sign of its columns; that is, if
W1 and W0 are two orthogonal matrices giving the same ordered eigendecomposition
of Ã, we must have W1 = W0D with D = diag(±1, . . . , ±1). Therefore, we will
also have V1 = V0D.

Corollary 2.2 With the notation of the proof of Lemma 2.1, we also have

V T
1 BV0 = D ⇐⇒ V1 = V0D .

Proof (⇐) Since V T
0 BV0 = I , then obviously DV T

0 BV0 = D.
(⇒) From V T

0 BV0 = I and V T
1 BV0 = D, given invertibility of V0 and B, we get

V1 = V0D at once.

Next, we give several results for the generalized eigenvalue problem (1), extending
results from the standard eigenvalue problem, that is, (1) with B = I :

[A(x) − λI)] v = 0 . (8)

It is well known (e.g., see [3, 6, 15]) that even for this standard eigenvalue problem the
eigenvalues/eigenvectors cannot be expected to inherit the smoothness of A, unless
eigenvalues are distinct. In the case of 2 parameters, in general, there is a total loss of

smoothness when the eigenvalues coalesce (e.g., take A =
[

x1 x2
x2 −x1

]
), and even in

the 1 parameter case there is a potential loss of smoothness of the eigenvectors when
eigenvalues coalesce (see [3]).
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Below, we show that, in reducing the pencil (1) to a symmetric eigenproblem like
(8), smoothness is kept.

2.1 Square root

Before proceeding, we recall the following simple but important result (see [17, The-
orem 1.5.3] and the discussion therein).

Lemma 2.3 Let a ∈ Ck(�,R), k ≥ 0 an integer, be a strictly positive function of
p real parameters x ∈ �, where � is an open, bounded, and connected subset of
R

p, and let a be continuous and uniformly bounded in �̄. Then, the function
√

a(x),
where

√
a(x) is the unique positive square root of a, is also a Ck function of x.

Furthermore, if a ∈ Cω(J,R) is analytic in the parameter x ∈ J , where J is an open
and bounded interval of the real line, then so is its square root.

Next, we first observe that it is easy to infer that the Cholesky factor of B is as
smooth as B itself (for functions of one parameter, see [2]).

Theorem 2.4 Let B ∈ Ck(�,Rn×n) be symmetric positive definite for all x ∈ � ⊂
R

p. Then, its Cholesky factor L in (6) with Lii > 0 is also a Ck function for x ∈ �.
Furthermore, if B ∈ Cω(J,Rn×n) is analytic in the parameter x ∈ J , where J is an
open and bounded interval of the real line, then so is the Cholesky factor.

Proof The proof is immediate. Write B =
[

b11 cT

c B̂

]
and let L1 =

[ √
b11 0

c/
√

b11 I

]
, so

that L−1
1 BL−T

1 =
[
1 0
0 B1

]
, where B1 = B̂ − ccT /b11. Obviously, B1 is symmetric,

positive definite, and as smooth as B, and the result follows using Lemma 2.3. The
analytic case also follows in the same way since in this caseB1 and

√
b11 are analytic.

Next, we show that the square root B1/2 is also a Ck function. First, we point
out that a symmetric positive definite matrix function B, continuously depending on
parameters x ∈ R

p, has a unique symmetric positive definite square root S which
depends continuously on x. We will write B1/2 for this square root of B. Both
uniqueness and continuity can be inferred from results in [10, Chapter 6]; in partic-
ular, continuity follows from Theorem 6.2 therein, which in turn cites the work [9];
therefore, its proof is omitted.

Lemma 2.5 Let B ∈ C(�,Rn×n), where � is an open subset of Rp, p ≥ 1. Further-
more, let B(x) be symmetric positive definite for all x ∈ �. Then, for any x ∈ � there
exists a unique symmetric positive definite square root B1/2(x) of B(x). Moreover,
B1/2(x) is a continuous function of x.

Using Lemma 2.5, we can get the result on smoothness.
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Theorem 2.6 With the same notation as in Lemma 2.5, let B be a Ck function, k ≥ 1.
Then, the unique positive definite square root B1/2 of B is also a Ck function.

Proof Let S = B1/2 and use that S2 = B. We know that S(x) is continuous,
and that B(x) is smooth. Next, we define the first partial derivatives from formally
differentiating the relation S2 = B. That is, consider

Bxi
= XiS + SXi , i = 1, . . . , p . (9)

The linear systems given by the Lyapunov equations in (9) are uniquely solvable,
since S is positive definite and thus invertible. Now, the unique solution of an invert-
ible linear system Cz = b with C and b continuously depending on parameters,
obviously defines a continuous solution z, from which we conclude that the unique
solutions Xi of (9) are continuous functions of the parameters x. Finally, we observe
that Sxi

= Xi , i = 1, . . . , p.
At this point, we can look at higher derivatives. We see the situation for the second

derivatives, from which the general argument will be evident.
Rewrite (9)

Bxi
= Sxi

S + SSxi
, i = 1, . . . , p ,

and consider the second partial derivatives from formally differentiating this relation.
We get:

Bxixj
= XijS + Sxi

Sxj
+ Sxj

Sxi
+ SXij , i, j = 1, . . . , p . (10)

Rearranging terms in (10), we obtain

Bxixj
− Sxi

Sxj
− Sxj

Sxi
= XijS + SXij ,

which is again uniquely solvable and gives a continuous solutionXij , and we observe
that Sxixj

= Xij . Finally, observe that, from the left-hand-side of (10), we get that
Xij = Xji , that is, Sxixj

= Sxj xi
, and thus the order of differentiation of the second

partial derivatives does not matter.
Continuing to formally differentiate, we obtain continuous higher derivatives and

the result follows.

For completeness, we specialize Theorem 2.6 to the case of B real analytic.

Theorem 2.7 Let B ∈ Cω(R,Rn×n), symmetric and positive definite for all x. Then,
the unique positive definite square root B1/2 is analytic in x as well.

Proof The proof rests on a fundamental theorem (see Rellich [21], or Kato [15]),
whereby an analytic Hermitian function admits an analytic eigendecomposition.
Thus, we can write B(x) = W(x)D(x)WT (x) where W and D are analytic, W is
orthogonal, and D is diagonal with Dii(x) > 0 (we note that the eigenvalues in D

are not necessarily ordered). Then, we have B1/2(x) = W(x)D1/2(x)WT (x), where
D1/2(x) = diag

(√
Dii(x) , i = 1, . . . , n

)
. The result now follows from Lemma

2.3.

Next, we look at a general block-diagonalization result for the parameter depen-
dent generalized eigenproblem, specializing a result given by Hsieh-Sibuya and
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Gingold (see [12] and [7]) for the standard eigenvalue case. Then, we give more
refined results for the case of one parameter, and further specialize some results to
the case of periodic pencils. All of these results will form the justification for our
algorithms to locate conical intersections (see Sections 3 and 4).

2.2 General block diagonalization results

In order to simplify the problem we consider, the following result is quite useful.
It highlights that the correct transformations for the pencil under study are “inertia
transformations.”

Since our interest is for the case where A and B depend on two (real) parameters,
this is the case on which we focus in the theorem below.

Theorem 2.8 (Block-Diagonalization) Let R be a closed rectangular region in R
2.

Let A, B ∈ Ck(R,Rn×n), k ≥ 0, with A = AT and B = BT � 0, and suppose that
the eigenvalues of the pencil (A, B) can be labeled so that they belong to two disjoint
sets for all x ∈ R: λ1(x), . . . , λj (x) in �1(x) and λj+1(x), . . . , λn(x) in �2(x),
�1(x) ∩ �2(x) = ∅ , ∀x ∈ R. Then, there exists V ∈ Ck(R,Rn×n), invertible, such
that

V T (x)A(x)V (x) =
[

A1(x) 0
0 A2(x)

]
, V T (x)B(x)V (x) =

[
B1(x) 0
0 B2(x)

]
, ∀x ∈ R ,

where A1, B1 ∈ Ck(R,Rj×j ), with A1 = AT
1 and B1 = BT

1 � 0, and A2, B2 ∈
Ck

(
R,R(n−j)×(n−j)

)
, with A2 = AT

2 and B2 = BT
2 � 0, so that the eigenvalues

of the pencil (A1, B1) are those in �1 and the eigenvalues of the pencil (A2, B2)

are those in �2, for all x ∈ R. Furthermore, the function V can be chosen to be
B-orthogonal: V T BV = I for all x.

Proof We show directly that the transformation V can be chosen so that V T BV = I ,
from which the general result will follow.

One way to proceed is by using the unique smooth positive definite square root of
B, B1/2, so that the eigenvalues of the pencil are the same as those of the standard
eigenvalue problem with function Ã = B−1/2AB−1/2. Because of Theorem 2.6,
the function Ã is as smooth as A and it is clearly symmetric. Therefore, from the
cited results in [7, 12], we have that there exists smooth, orthogonal, W such that

WT ÃW =
[

A1 0
0 A2

]
, with the eigenvalues of Ai being those in �i , and Ai = AT

i ,

i = 1, 2. Now we just take V = B−1/2W .

We notice that the function V of Theorem 2.8 is clearly not unique, not even if we
select one for which V T BV = I .

The block diagonalization result Theorem 2.8 can easily be extended to several
blocks. In the case of n distinct eigenvalues, one ends up with a full smooth diago-
nalization. Because of its relevance in what follows, we give this fact as a separate
result.
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Corollary 2.9 With same notation as in Theorem 2.8, assume that the eigenvalues of
the pencil (A(x), B(x)) are distinct for all x. Then, the eigenvalues can be labeled so
to be Ck functions of x. Moreover, we can also choose the corresponding eigenvector
function V to be a Ck function of x and to satisfy the relations V T (x)A(x)V (x) =
�(x) = diag(λ1(x), . . . , λn(x)), and V (x)T B(x)V (x) = I , for all x.

Similarly, let A, B ∈ Ck(R,Rn×n), k ≥ 0, with A = AT and B = BT � 0,
and let the eigenvalues of the pencil (A(t), B(t)) be distinct for all t ∈ R. Then,
they can be labeled so to be Ck functions of t . Moreover, we can also choose the
corresponding eigenvector function V to be a Ck function of t and to satisfy the
relation V (t)T B(t)V (t) = I for all t .

2.3 One parameter case: smoothness

First of all, from Corollary 2.9 we have that the 1-parameter smooth pencil
(A(t), B(t)), t ∈ R, can be smoothly diagonalized. This is a fact that, for the stan-
dard case (B = I ) and for 1-parameter functions, is well known since the work of
Lancaster and Rellich [18, 21]. Secondly, we have the following simple but useful
result on the uniqueness of V .

Corollary 2.10 Consider the 1-parameter case of Corollary 2.9, and call V a smooth
function of eigenvectors of the pencil (A(t), B(t)) satisfying V (t)T B(t)V (t) = I ,
and rendering a certain ordering for the diagonal of �. Such V is unique and
any other possible (smooth) function of eigenvectors yielding the same ordering of
eigenvalues is obtained from V by sign changes of V ’s columns.

Proof Since the eigenvalues are distinct, then the eigenvectors are uniquely deter-
mined up to scaling. In other words, the only freedom in specifying V is given
by V → V S where S = diag(si , i = 1, . . . , n) with si �= 0. By requiring that
V T BV = I , we get that we must have S2 = I , that is, s2i = 1, i = 1, . . . , n, as
claimed.

We are now ready for the most important result of this section, a derivation of the
differential equations satisfied by the smooth factors V and �, under the assumption
of distinct eigenvalues. So doing, we will generalize known results in [3] for the
standard eigenproblem (i.e., when B = I ). As it turns out, the generalization is not
immediate.

2.3.1 Differential Equations for the factors

Consider (1), with A, B ∈ Ck(R+,Rn×n), A = AT and B = BT � 0, and assume
that the eigenvalues of the pencil (A(t), B(t)) are distinct for all t . As seen above,
we can choose V and � = diag(λ1, . . . , λn) smooth as well, satisfying A(t)V (t) =
B(t)V (t)�(t) and V (t)T B(t)V (t) = I , for all t .

As seen in Corollary 2.10, we must fix a choice for V . So, suppose we have an
eigendecomposition at t = 0, that is, we have V0 and �0 so that

A(0)V0 = B(0)V0�0 , V T
0 B(0)V0 = I .
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Wewant to obtain differential equations satisfied by the factors V and� for all t ≥ 0,
with initial conditions V (0) = V0 and �(0) = �0.

Since the factors are smooth, we can formally differentiate the two relations

(a) V T AV − � = 0 and (b) V T BV = I . (11)

Differentiation of (11)-(a) gives

V T AV̇ + V̇ T AV = �̇ − V T ȦV ,

from which using AV = BV �, and hence V T A = �V T B, we obtain

�̇ − V T ȦV = �(V T BV̇ ) + (V̇ T BV )� or

�̇ − V T ȦV = �(V T BV̇ ) + (V T BV̇ )T � . (12)

Now, using the structure of � (diagonal) we observe that relatively to the diagonal
entries we have (using that the diagonals of V T BV̇ and of (V T BV̇ )T are the same):

λ̇i = (V T ȦV )ii + 2λi(V
T BV̇ )ii , i = 1, . . . , n , (13)

that is, the eigenvalues in general satisfy a linear non-homogeneous differential
equation.

Next, differentiating (11)-(b), we obtain V̇ T BV + V T ḂV + V T BV̇ = 0 from
which we get

(V T BV̇ )T + (V T BV̇ ) = −(V T ḂV ) ; (14)

hence, we can obtain an expression for the symmetric part of (V T BV̇ ), and in
particular in (13) we can use

2(V T BV̇ )ii = −(V T ḂV )ii , i = 1, . . . , n .

What we are missing is an expression for the anti-symmetric part of (V T BV̇ ). To
arrive at this, we use (12) relative to the off-diagonal entries. This gives the following
for the (i, j) and (j, i) entries:

λi(V
T BV̇ )ij + (V̇ T BV )ij λj = −(V T ȦV )ij or

(λi + λj )(V
T BV̇ )ij + λj

[
(V̇ T BV )ij − (V T BV̇ )ij

]
= −(V T ȦV )ij (15)

and

λj (V
T BV̇ )ji + (V̇ T BV )jiλi = −(V T ȦV )ji or

(λi + λj )(V
T BV̇ )ji + λi

[
(V̇ T BV )ji − (V T BV̇ )ji

]
= −(V T ȦV )ji or

(λi + λj )(V̇
T BV )ij + λi

[
(V T BV̇ )ij − (V̇ T BV )ij

]
= −(V T ȦV )ij , (16)

where we have used symmetry of V T ȦV and the fact that the (i, j)th entry of a
matrix is the (j, i)th entry of its transpose. Now, adding the last two expressions in
(15) and (16), we obtain

(λi + λj )
[
(V T BV̇ )ij + (V̇ T BV )ij

]
+

(λj − λi)
[
(V̇ T BV )ij − (V T BV̇ )ij

]
= −2(V T ȦV )ij , (17)
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and thus we can obtain an expression for the antisymmetric part of (V T BV̇ ), upon
using (14) for its symmetric part.

So, finally, using (14) and (17), we can obtain a formula for the term V T BV̇ which
depends on B, Ḃ, � and V . Let us formally set C = V T BV̇ , and summarize the
sought differential equations for V and �:

V̇ = V C, with V (0) = V0 ,

�̇ = diag(V T ȦV ) − �diag(V T ḂV ), with �(0) = �0, (18)

where the coefficients for C are given by

C + CT = −V T ḂV , that is, Cij + Cji = −(V T ḂV )ij ,

Cij − Cji = 1

λj − λi

[
2(V T ȦV )ij + (λi + λj )(Cij + Cji)

]
(19)

We summarize in the following Theorem.

Theorem 2.11 (Differential Equations for the Generalized Eigenvalue Problem) Let
A, B ∈ Ck(R+,Rn×n), k ≥ 1, A = AT and B = BT � 0, and assume that the
eigenvalues of the pencil (A(t), B(t)) are distinct for all t ≥ 0. Let V0 and �0 be
such that A(0)V0 = B(0)V0�0 and V T

0 B(0)V0 = I . Then, we have A(t)V (t) =
B(t)V (t)�(t), and V (t)T B(t)V (t) = I , for all t ≥ 0, where the Ck factors � and
V satisfy the differential (18)–(19), subject to the initial conditions V (0) = V0 and
�(0) = �0.

Example 2.12 (Standard Eigenproblem) A most important special case of the previ-
ous analysis is of course the case where B = I , the standard eigenproblem. In this
case, since Ḃ = 0, we obtain major simplifications. For one thing, (13) is a simple
integral not a linear differential equation for the eigenvalues:

λ̇i = (V T ȦV )ii , i = 1, . . . , n . (20)

Furthermore, from (14), we observe that V T V̇ must be anti-symmetric, and thus we
have that C = V T V̇ is such that CT = −C. Hence, (19) simplifies to read

Cij = (V T ȦV )ij

λj − λi

, for i �= j , and Cii = 0. (21)

Formulas (20) and (21) of course match those derived for the standard eigenproblem
in [3].

2.4 Periodicity

Our algorithms to locate conical intersections rely on being able to smoothly compute
the eigenvalues of the pencil (under the assumption that the eigenvalues are distinct)
along closed loops in parameter space (see Step 2 of Algorithm 1.1). For this reason,
we next give some results on periodicity for the square root and the Cholesky factors
of a positive definite periodic function, as well as some general results on periodicity.
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Definition 2.13 A function f ∈ Ck(R,R) (k ≥ 0) is called periodic of period 1,
or simply 1-periodic, if f (t + 1) = f (t), for all t . Moreover, we say that 1 is the
minimal period of f if there is no τ < 1 for which f (t + τ) = f (t), for all t . In the
same way, we say that the pencil (A, B) is periodic of period 1 if A(t + 1) = A(t)

and B(t + 1) = B(t), and further of minimal period 1 if either A or B is such.

Cholesky factor and positive definite square root of a 1-periodic positive definite
function are also 1-periodic. This is the content of the next Theorem.

Theorem 2.14 Let the function A ∈ Ck(R,Rn×n), k ≥ 0, be symmetric positive
definite and of minimal period 1.

(a) Let L be the unique Cholesky factor of A: A(t) = L(t)LT (t), where L is lower
triangular with positive diagonal, for all t . Then, also L has minimal period 1.

(b) Let S = A1/2 be the unique positive definite square root of A: S = ST � 0,
S2 = A. Then, also S has minimal period 1.

Proof The result is a straightforward consequence of the uniqueness of L and S.

The next result is a corollary to Theorem 2.8.

Corollary 2.15 Let V ∈ Ck(R,Rn×n) be the function of which in Theorem 2.8. Let
� be a simple closed curve in R, parametrized as a C� (� ≥ 0) function γ in the
variable t , so that the function γ : t ∈ R → R is C� and of (minimal) period 1. Let
m = min(k, �), and let Vγ be the Cm function V (γ (t)), t ∈ R. Then, Vγ is Cm and
1-periodic.

Proof The result is immediate upon considering the composite function Vγ and using
the stated smoothness and periodicity results.

Remark 2.16 In case the eigenvalues of the pencil (A, B) are distinct in R, then the
B-orthogonal function V has diagonalized (A, B). For a given ordering of the eigen-
values, as we already remarked V is essentially unique: the degree of non-uniqueness
is given only by the signs of the columns of V . Naturally, in this case, Corollary 2.15
will give that a smooth Vγ will be a 1-periodic function.

The last result we give is a generalization of [6, Lemma 1.7] and it essentially
states that if the pencil (A, B) has minimal period 1, then there cannot coexist
continuous eigendecompositions of minimal periods 1 and 2. It is a simple yet impor-
tant result that, together with Theorem 3.13, forms the theoretical backing of our
algorithms in Section 4.

Lemma 2.17 Let the functions A, B ∈ Ck(R,Rn×n), k ≥ 0, with A = AT and
B = BT � 0, be of minimal period 1 and let the pencil (A(t), B(t)) have distinct
eigenvalues for all t . Suppose that there exist V = V (t) continuous and invertible,
and � diagonal such that

A(t)V (t) = B(t)V (t)�(t) , ∀t ,
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with:

(i) � ∈ C(R,Rn×n) diagonal with distinct diagonal entries, and s.t. �(t + 1) =
�(t);

(ii) V ∈ C(R,Rn×n) invertible, with

V (t + 1) = V (t) D , ∀t ∈ R ,

where D is diagonal with Dii = ±1 for all i, but D �= In.

Then, there cannot exist an invertible continuous matrix function T diagonalizing the
pencil and of period 1.

Proof By contradiction, suppose that there exists continuous T of period 1 such
that A(t)T −1(t) = B(t)T −1(t)�(t), for all t ∈ R. Therefore, we must have
A = BT −1�T and A = BV �V −1 from which �(T V ) = (T V )�. But, �(t) has
distinct diagonal entries for all t ∈ R, so that T (t)V (t) must be diagonal for all
t ∈ R. Denote its diagonal entries by c1(t), . . . , cn(t), and so (since T V is invertible)
ci(t) �= 0, for all t . But T (t + 1)V (t + 1) = T (t)V (t)D, for all t ∈ R, hence there
must exist an index i for which ci(t + 1) = −ci(t), which is a contradiction, since
the functions ci’s are continuous and nonzero for t ∈ R.

3 Coalescing eigenvalues for two parameter pencils

In this section, we study the occurrence of equal eigenvalues for (1) when A and B

depend on two (real) parameters.
First, we consider the case of a single pair of eigenvalues coalescing, then general-

ize to several pairs coalescing at the same parameter values. To begin with, we show
that having a pair of coalescing eigenvalues is a codimension 2 property.

3.1 One generic coalescing in�

First, consider the 2×2 case. The following simple result is the key to relate a generic
coalescing to the transversal intersection of two curves.

Theorem 3.1 Let A = AT ∈ Ck(�,R2×2) and B = BT � 0 ∈ Ck(�,R2×2), k ≥ 1.

Write A(x) =
[

a b

b c

]
and B(x) =

[
α β

β γ

]
. Then, the generalized eigenproblem

(A − λB) v = 0 , (22)

has identical eigenvalues at x if and only if
{

aγ = αc

(aγ + cα)β = 2αγ b
⇐⇒

{
aγ = αc

cβ = γ b
. (23)
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Proof The problem

([
a b

b c

]
− λ

[
α β

β γ

])
v = 0 can be rewritten as

([
ã b̃

b̃ c̃

]
−

λ

[
1 d̃

d̃ 1

])
w = 0, where ã = a/α, b̃ = b/

√
αγ , c̃ = c/γ and d̃ = β/

√
αγ , and

w =
[

v1
√

α

v2
√

γ

]
. We observe that the sign of the entries of v and of w is the same, and

we also note that d̃2 < 1 (since B is positive definite).
We further have the following chain of equalities:

([
ã b̃

b̃ c̃

]
− λ

[
1 d̃

d̃ 1

])
w = 0 ⇐⇒

([
ã b̃

b̃ c̃

]
c̃ + ã

2

[
1 d̃

d̃ 1

]
− (λ − c̃ + ã

2
)

[
1 d̃

d̃ 1

])
w = 0 ⇐⇒

([
â b̂

b̂ −â

]
− μ

[
1 d̃

d̃ 1

])
w = 0 ,

where

â = ã − c̃

2
, b̂ = b̃ − ã + c̃

2
d̃ , μ = λ − ã + c̃

2
. (24)

(Note that we have reduced the problem to one for which A has 0-trace.) Now, an
explicit computation gives

μ1,2(t) = −b̂d̃ ±
√

b̂2 + (1 − d̃2)â2

1 − d̃2
. (25)

We have identical eigenvalues μ1 = μ2 (hence λ1 = λ2) if and only if
{

â = 0
b̂ = 0

.

Rephrasing in terms of the original entries, this is precisely what we wanted to verify.

The next result is about periodicity of the eigenvectors of a 2×2 pencil along a loop
that encircles a generic coalescing point, and under specified “generic assumptions.”
The proof is similar to what we did in [6, Theorem 2.2] for the symmetric eigenprob-
lem, with the necessary changes due to dealing with the generalized eigenproblem
and also fixing some imprecisions we had in there.

Theorem 3.2 (2 × 2 case) Consider A, B ∈ Ck(�,R2×2), k ≥ 1, with A = AT and
B = BT � 0. For all x ∈ �, write

A(x) =
[

a b

b c

]
, B(x) =

[
α β

β γ

]

and let λ1 and λ2 be the two continuous eigenvalues of the pencil (A, B), labeled so
that λ1(x) ≥ λ2(x) for all x in �. Assume that there exists a unique point ξ0 ∈ �
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where the eigenvalues coincide: λ1(ξ0) = λ2(ξ0). Consider the Ck function F : � →
R
2 given by

F(x) =
[

a(x)γ (x) − α(x)c(x)

b(x)γ (x) − β(x)c(x)

]
,

and assume that 0 is a regular value for both functions aγ − αc and bγ − βx. 1

Then, consider the two Ck curves �1 and �2 through ξ0, given by the zero-set of the
components of F : �1 = {x ∈ � : a(x)γ (x) − α(x)c(x) = 0}, �2 = {x ∈ � :
b(x)γ (x) − β(x)c(x) = 0}. Assume that �1 and �2 intersect transversally at ξ0. 2

Let � be a simple closed curve enclosing the point ξ0, and let it be parametrized
as a C� (� ≥ 0) function γ in the variable t , so that the function γ : t ∈ R →
� is C� and 1-periodic. Let m = min(k, �), and let Aγ , Bγ be the Cm functions
A(γ (t)), B(γ (t)), for all t ∈ R. Then, for all t ∈ R, the pencil (Aγ , Bγ ) has the
eigendecomposition

Aγ (t)Vγ (t) = Bγ (t)Vγ (t)�γ (t)

such that:

(i) �γ ∈ Cm(R,R2×2) and diagonal: �γ (t) =
[

λ1(γ (t)) 0
0 λ2(γ (t))

]
, and

�γ (t + 1) = �γ (t) for all t ∈ R;
(ii) Vγ ∈ Cm(R,R2×2), Vγ (t + 1) = −Vγ (t) for all t ∈ R, and Vγ is

Bγ -orthogonal: Vγ (t)T Bγ (t)Vγ (t) = I , for all t ∈ R.

Proof Because of Theorem 3.1,

λ1(x) = λ2(x) ⇐⇒ F(x) =
[
0
0

]
,

and, by hypothesis, ξ0 is the unique root of F(x) in �. Moreover, under the assump-
tion of ξ0 being the only root of F in �, just like in the proof of Theorem 3.1 (see
(24)), we can also rewrite the problem in the simpler form

F(x) = 0 ⇐⇒ G(x) = 0 where G(x) =
[

â(x)

b̂(x)

]
.

Furthermore, 0 is a regular value for both function â and b̂, and therefore G(x) = 0
continues to define smooth curves intersecting transversally at ξ0, call them �̂1 and
�̂2 (these are just rescaling and shifting of the curves �1 and �2). Moreover, we let
(Â, B̂) be the pencil associated to these simpler functions:

Â(x) =
[

â(x) b̂(x)

b̂(x) −â(x)

]
, B̂(b) =

[
1 d̃(x)

d̃(x) 1

]
, x ∈ � .

1This implies that the zeros set of these functions is actually a Ck curve (or collection of Ck curves). For
background on these concepts, see [11].
2Transversal intersection means that the two tangents to the curves at ξ0 are not parallel to each other.



Numerical Algorithms

At this point, we will prove the asserted result for �̂1 and �̂2 by first showing that
it holds true along a small circle C around ξ0, and then show that the same results
hold when we continuously deform C into �.

Since �̂1 and �̂2 intersect transversally at ξ0, we let C be a circle centered at ξ0, of
radius small enough so that the circle goes through each of �̂1 and �̂2 at exactly two
distinct points (see Fig. 1).

Furthermore, let C be parametrized by a continuous 1-periodic function ρ, ρ(t +
1) = ρ(t), for all t ∈ R.

Consider the pencil (Â(ρ(t)), B̂(ρ(t))), t ∈ R, which is thus a smooth (and 1-
periodic) pencil, with distinct eigenvalues, so that its smooth eigenvalues μ1,2 in (25)
(where all functions â, b̂, d̃ are evaluated along C) will necessarily satisfy μj (t +
1) = μj (t), j = 1, 2. The smooth eigenvectors of (Â(ρ(t)), B̂(ρ(t))), call them

W(t), are uniquely determined (for each t) up to sign. Call

[
u1
u2

]
the eigenvector

relative to μ2, so that

[(
â b̂

b̂ −â

)
− μ2

(
1 d̃

d̃ 1

)](
u1
u2

)
= 0 .

Fig. 1 Transversal Intersection at ξ0
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From this, a direct computation shows that (recall that, presently, all functions are
computed along C)

⎧
⎪⎪⎨

⎪⎪⎩

(
â(1 − d̃2) + b̂d̃ +

√
b̂2 + (1 − d̃2)â2

)
u1 = −

(
b̂ + d̃

√
b̂2 + (1 − d̃2)â2

)
u2

(
−â(1 − d̃2) + b̂d̃ +

√
b̂2 + (1 − d̃2)â2

)
u2 = −

(
b̂ + d̃

√
b̂2 + (1 − d̃2)â2

)
u1 .

Therefore, from these it follows that u1 (respectively, u2) changes sign if and only
if b̂ goes through zero and â > 0 (respectively, â < 0). Therefore, each of the two
functions u1 and u2 changes sign only once over any interval of length 1, and since
no continuous function of period 1 can change sign only once over one period, it
follows that u1 and u2 must be 2-periodic functions and the periodicity assertions
of the theorem follow relatively to the curve ρ(t) for the eigenvector function W .
That is, along C we have that W has period 2. Finally, we note that the eigenvector
function V has columns whose entries have the same sign as those of W (see the third
line in the proof of Theorem 3.1), so that the periodicity assertion holds for V .

Finally, the extension from the circle C to the curve � enclosing the point ξ0 fol-
lows by a homotopy argument similar to what was done in [6] (see the final part
of the proof of Theorem 2.2 and Remark 2.5 in [6]). One takes a continuous homo-
topy h(s, t), (s, t) ∈ [0, 1] × [0, 1], such that h(0, t) = ρ(t), h(1, t) = γ (t), for all
t ∈ [0, 1], h(s, 0) = h(s, 1) for any s ∈ [0, 1], and h continuously (in s) deforms
ρ(·) into γ (·). Then, consider the restrictions A(h(s, t)) and B(h(s, t)), (s, t) ∈
[0, 1] × [0, 1]. Using the block diagonalization result Theorem 2.8, we get that there
are continuous V (s, t) and �(s, t) such that V T (s, t)A(h(s, t))V (s, t) = �(s, t)

where � is diagonal, and V is B-orthogonal: V T (s, t)B(h(s, t))V (s, t) = I . Next,
take the functions fk(s) = vT

k (s, 0)B(h(s, 0))vk(s, 1) for k = 1, 2 and recall that
B(h(s, 0)) = B(h(s, 1)) since h(s, 0) = h(s, 1) for all s ∈ [0, 1]. So, we have that
f1 and f2 take values in {−1, 1}. But they are continuous, and so they have to be con-
stant. Therefore, we must have f1(0) = f1(1) = −1 and f2(0) = f2(1) = −1, from
which Vγ (1) = −Vγ (0) and the asserted periodicity of Vγ follows.

The assumption of transversality for the curves �1 and �2 at ξ0 is generic within
the class of smooth curves intersecting at a point. As a consequence, we can say
that ξ0 is a generic coalescing point of eigenvalues of (22) when �1 and �2 intersect
transversally at ξ0. As a consequence, within the class of Ck functions A, B, generi-
cally we will need two parameters to observe coalescing of the eigenvalues of (22),
and such coalescings will occur at isolated points in parameter space and persist (as a
phenomenon, the parameter value will typically change) under generic perturbation.

Example 3.3 Take A(x, y) =
[
4x + 3y 5y

5y −4x + 3y

]
, B(x, y) =

[
5 3
3 5

]
. Then, the

eigenvalues satisfy the relation λ1,2 = ±√
x2 + y2, (23) gives the solution x =

y = 0, and the eigenvalues are not differentiable there. If we perturb the data as

A → A + ε

[
1 1
1 −1

]
, then the solution of (23) is x = −ε/4, y = −5ε/16.
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Combining Theorem 3.2 with Theorem 2.8, we can characterize the case of a
symmetric-definite pencil inRn×n whose eigenvalues coalesce uniquely at a point ξ0.

First, we define what we mean by generic coalescing point for the eigenvalues of
an n-dimensional pencil when there is only one such point.

Definition 3.4 Let A, B ∈ Ck(�,Rn×n), k ≥ 1, with A = AT and B = BT � 0.
Let λ1(x), . . . , λn(x), x ∈ �, be the continuous eigenvalues of the pencil (A, B),
ordered so that

λ1(x) > λ2(x) > . . . > λj (x) ≥ λj+1(x) > . . . > λn(x) , ∀x ∈ � ,

and

λj (x) = λj+1(x) ⇐⇒ x = ξ0 ∈ � .

Let R be a rectangular region R ⊆ � containing ξ0 in its interior. Moreover, let

(1) V ∈ Ck(R,Rn×n) be a B-orthogonal function achieving the reduction guaran-
teed by Theorem 2.8:

V T (x)A(x)V (x) =
⎡

⎣
�1(x) 0 0

0 A2(x) 0
0 0 �3(x)

⎤

⎦ , and

V T (x)B(x)V (x) =
⎡

⎣
Ij−1 0 0
0 B2(x) 0
0 0 In−j−1

⎤

⎦ , ∀x ∈ R ,

where �1 ∈ Ck
(
R,R(j−1)×(j−1)

)
and �3 ∈ Ck

(
R,R(n−j−1)×(n−j−1)

)
, such

that, for all x ∈ R, �1(x) = diag(λ1(x), . . . , λj−1(x)), and �3(x) =
diag(λj+2(x), . . . , λn(x)). Moreover, A2 = AT

2 ∈ Ck
(
R,R2×2

)
, B2 = BT

2 �
0 ∈ Ck

(
R,R2×2

)
and the pencil (A2, B2) has eigenvalues λj (x), λj+1(x) for

each x ∈ R;

(2) for all x ∈ R, write A2(x) =
[

a(x) b(x)

b(x) d(x)

]
, B2(x) =

[
α(x) β(x)

β(x) γ (x)

]
. Assume

that 0 is a regular value for the functions aγ − αc and bγ − βc, and define the
function F and the curves �1 and �2 as in Theorem 3.2.

Then, we call ξ0 a generic coalescing point of eigenvalues in � if the curves �1 and
�2 intersect transversally at ξ0.

Remark 3.5 Arguing in a similar way to [6, Theorem 2.7], it is a lengthy but simple
computation to verify that Definition 3.4 is independent of the transformation V used
to bring the pencil (A, B) to block-diagonal form.

Corollary 3.6 Coalescence of one pair of eigenvalues for a pencil (A, B) where
A = AT and B = BT � 0 is a codimension 2 phenomenon.
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Proof This is because coalescence is expressed by the two relations in (23), or –as

seen in the proof of Theorem 3.1– by the two relations

{
â = 0
b̂ = 0

. This, coupled with

Definition 3.4, gives the claim.

As a consequence of its definition, and of Corollary 3.6, it is generic for coalescing
points of two-parameter symmetric-definite pencils to be generic coalescing points.

Remark 3.7 Corollary 3.6 is the reason why in this work we focus on pencils
depending on two parameters. Being eigenvalues’ coalescence a codimension 2 phe-
nomenon, one typically needs to vary two parameters in order to observe it at isolated
points in parameter space; 1-parameter pencils, instead, are generally expected to
have distinct eigenvalues.

As already exemplified by Example 3.3, at a point where eigenvalues of the pen-
cil coalesce, there is a complete loss of smoothness of the eigenvalues. In fact, the
situation of Example 3.3 is fully general, as the next example shows.

Example 3.8 Without loss of generality (see the proof of Theorem 3.1), take the
symmetric-definite pencil (A, B) with

A(x) =
[

a(x) b(x)

b(x) −a(x)

]
, B(x) =

[
1 d(x)

d(x) 1

]
.

and let ξ0 be such that a(ξ0) = b(ξ0) = 0, and (because of transversality) we also

have that the Jacobian

[ ∇a

∇b

]

ξ0

=
[

ax ay

bx by

]

ξ0

is invertible, that is, axby −aybx �= 0.

Now, the eigenvalues μ1,2 of the pencil are given by (25): μ1,2(x) = −bd±√
h(x)

1−d2
,

with h(x) = b2 + (1 − d2)a2. Expanding the function h(x) at ξ0, we get

h(x) = h(ξ0) + ∇h(ξ0)(x − ξ0) + 1

2
(x − ξ0)

T H(ξ0)(x − ξ0) + . . . ,

and a simple computation gives h(ξ0) = 0, ∇h(ξ0) = 0, and

H(ξ0) = 2

[
b2x + a2x(1 − d2) bxby − axay(1 − d2)

bxby − axay(1 − d2) b2y + a2y(1 − d2)

]

so that at ξ0: H11 > 0, H22 > 0, and det(H(ξ0)) = (1 − d2)(bxay − axby)
2

is positive, because of the previously remarked transversality. Therefore, H(ξ0) is
positive definite, and in the vicinity of ξ0 the eigenvalues have the form μ1,2 =
−bd±

√
‖z‖22+O(‖x−ξ0‖42)

1−d2
where z = H 1/2(ξ0) (x − ξ0). As a consequence, the eigen-

values’s surface have a double cone structure at the coalescing point. This justifies
calling the coalescing point a conical intersection, or CI for short. Obviously, there
is a total loss of differentiability through a conical intersection.

In the next theorem, we extend Theorem 3.1 to the case of a (n, n) pencil, with a
single generic coalescing of eigenvalues in �.
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Theorem 3.9 Let A, B ∈ Ck(�,Rn×n), k ≥ 1, with A = AT and B = BT � 0.
Let λ1(x), . . . , λn(x), x ∈ �, be the continuous eigenvalues of the pencil (A, B).
Assume that

λ1(x) > λ2(x) > . . . > λj (x) ≥ λj+1(x) > . . . > λn(x) , ∀x ∈ � ,

and

λj (x) = λj+1(x) ⇐⇒ x = ξ0 ∈ � ,

where ξ0 is a generic coalescing point.
Let � be a simple closed curve in � enclosing the point ξ0, and let it be

parametrized as a C� (� ≥ 0) function γ in the variable t , so that the function
γ : t ∈ R → � is C� and 1-periodic. Let m = min(k, �), and let Aγ , Bγ be the Cm

restrictions of A, B, to γ (t), t ∈ R.
Then, for all t ∈ R, the pencil (Aγ , Bγ ) admits the diagonalization Aγ (t)Vγ (t) =

Bγ (t)Vγ (t)�(t), where

(i) � ∈ Cm(R,Rn×n), �(t + 1) = �(t), and �(t) = diag(λ1(t), . . . , λn(t)),
∀t ∈ R;

(ii) Vγ ∈ Cm(R,Rn×n) is B-orthogonal, and

Vγ (t + 1) = Vγ (t)D , D =
⎡

⎣
Ij−1 0 0
0 −I2 0
0 0 In−j−1

⎤

⎦ .

Proof The proof combines the block-diagonalization result, Theorem 2.8, with the
(2, 2) case, Theorem 3.1. It follows closely the proof of [6, Theorem 2.8], and is
therefore omitted.

It is worth emphasizing that for the eigenvectors associated to eigenvalues which
do not coalesce inside �, we have vγ (t + 1) = vγ (t). In other words, a continu-
ous eigendecomposition V along a simple curve � not containing coalescing points
inside (or on) it, satisfies V (t + 1) = V (t). This consideration, coupled with the
uniqueness up to sign of a B-orthogonal function eigendecomposing a pencil with
distinct eigenvalues, gives the following.

Corollary 3.10 Let (A, B) be a Ck symmetric-positive definite pencil for all x ∈ �.
Let � be a simple closed curve in �, parametrized by the C� and 1-periodic function
γ . Let m = min(k, �), and let (Aγ , Bγ ) be the smooth pencil restricted to �. If there
are no coalescing points inside � (nor on it), then any Cm eigendecomposition V of
the pencil (Aγ , Bγ ) satisfies V (t + 1) = V (t).

3.2 Several generic coalescing points in�

Here, we consider the case when several eigenvalues of the pencil coalesce inside a
closed curve �. In line with our previous analysis of generic cases, we only consider
the case when coalescing points are isolated and generic, as characterized next.
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Definition 3.11 Consider the pencil (A, B), with A, B ∈ Ck(�,Rn×n), k ≥ 1,
A = AT and B = BT � 0. A parameter value ξ0 ∈ � is called a generic coalescing
point of eigenvalues if there is a pair of equal eigenvalues at ξ0, no other pair of
eigenvalues coalesce inside an open simply connected region �0 ⊆ �, and ξ0 is a
generic coalescing point of eigenvalues in �0.

In these cases, we have the following result which elucidates how each of several
coalescing points contributes to the sign changes of the eigenvectors around a loop
that encircles the points.

Theorem 3.12 Consider the pencil (A, B), where A, B ∈ Ck(�,Rn×n), k ≥ 1,
A = AT and B = BT � 0. Let λ1(x) ≥ . . . ≥ λn(x) be its continuous eigenvalues.
Assume that for every i = 1, . . . , n − 1,

λi(x) = λi+1(x)

at di distinct generic coalescing points in �, so that there are
∑n−1

i=1 di such points3.
Let � be a simple closed curve in � enclosing all of these distinct generic coalescing
points of eigenvalues, and let it be parametrized as a C� (� ≥ 0) function γ in the
variable t , so that the function γ : t ∈ R → � is C� and 1-periodic. Let m =
min(k, �) and let Aγ and Bγ be the Cm restrictions of A and B to γ (t). Then, for all
t ∈ R, there exists V ∈ Cm(R,Rn×n) diagonalizing the pencil (Aγ , Bγ ): Aγ V =
Bγ V �, where

(i) � ∈ Cm(R,Rn×n) is diagonal: � = diag
(
λ1(t), . . . , λn(t)

)
, for all t ∈ R, and

�(t + 1) = �(t);
(ii) V is Bγ -orthogonal, with

V (t + 1) = V (t) D , ∀t ∈ R ,

where D is a diagonal matrix of ±1 given as follows:

D11 = (−1)d1 , Dii = (−1)di−1+di for i = 2, . . . , n − 1, Dnn = (−1)dn−1 .

In particular, if D = I , then V is 1-periodic, otherwise it is 2-periodic with
minimal period 2.

Proof Since the eigenvalues are distinct on �, we know that there is a Cm eigende-
composition V of the pencil (Aγ , Bγ ), and that V is Bγ -orthogonal. The issue is to
establish the periodicity of V . Our proof is by induction on the number of coalescing
points.

Because of Theorem 3.9, we know that the result is true for 1 coalescing point. So,
we assume that the result holds for N − 1 distinct generic coalescing points, and we
will show it for N distinct generic coalescing points; note that N = ∑n−1

i=1 di .
Since the coalescing points are distinct, we can always separate one of them, call

it ξN , from the other N − 1 points, with a curve α not containing coalescing points,
and which stays inside the region bounded by �, joining two distinct points on �,

3Of course, some di ’s may be 0.
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y0 = γ (t0) and y1 = γ (t1), with t0, t1 ∈ [0, 1), so that α leaves ξN and all other
coalescing points ξi’s on opposite sides (see Fig. 2). Let j, 1 ≤ j ≤ n − 1, be the
index for which λj (ξN) = λj+1(ξN).

Now, consider the following construction. Take a smooth eigendecomposition of
(Aγ , Bγ ) along �, starting at y0 and returning to it; the loop is done once, and to fix
ideas, we will transverse it in the counterclockwise direction. Denote the continuous
matrix of eigenvectors of (Aγ , Bγ ) at the beginning of this loop as V0 and that at the
end of the loop as V1.

Since the curve α does not contain any coalescing point, the matrix V1 would be
the same as if, instead of following the curve �, we were to follow �0 from y0 to y1,
then go from y1 to y0 along α, back from y0 to y1 along α in opposite direction and
then from y1 to y0 along �1: (�0∪α)∪((−α)∪�1). Denote the matrix of eigenvectors
of (Aγ , Bγ ) at the end of the first loop (�0∪α) by V 1

2
. Using the induction hypothesis

along the closed curve �0 ∪ α, we have

V0 = V 1
2
D̂ ,

where D̂ is a diagonal matrix D̂ = diag(D̂11, . . . D̂nn), with

D̂11 = (−1)d̂1 , D̂ii = (−1)d̂i−1+d̂i for i = 2, . . . , n − 1, D̂nn = (−1)d̂n−1

and d̂i = di , for all i �= j , and d̂j = dj − 1. Now, by looking at what happens on
the second loop, by virtue of Theorem 3.9, we have that all columns of V 1

2
coincide

with those of V1, except for the j th and (j + 1)st ones which have changed in sign.
Putting everything together, we have V0 = V1D with D as given in the statement of
the Theorem.

Fig. 2 Figure for proof of Theorem 3.12
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We do not study nongeneric coalescings, since they are not robust under pertur-
bation; see [6] for considerations on these cases, for the symmetric eigenproblem.
With this in mind, in the final result we give below, we should think of all coalescing
points as being generic.

The following Theorem, which is the main result of this work, yields a sufficient
condition for the existence of (generic) conical intersections inside a certain region.
In a nutshell, it says that a change of sign of an eigenvector of a pencil around a loop
betrays the existence of a coalescing point for the corresponding eigenvalue inside
the loop. This is, together with Lemma 2.17, the foundation on which we base our
numerical algorithm to detect CIs.

Theorem 3.13 Consider the pencil (A, B), where A, B ∈ Ck(�,Rn×n), A = AT

and B = BT � 0. Let λ1(x) ≥ . . . ≥ λn(x) be its continuous eigenvalues. Let
� be a simple closed curve in � with no coalescing point for the eigenvalues on it,
and let it be parametrized as a C� (� ≥ 0) function γ in the variable t , so that the
function γ : t ∈ R → � is C� and 1-periodic. Let m = min(k, �) and let Aγ and
Bγ be the Cm restrictions of A and B to γ (t), and let V be Cm and Bγ -orthogonal
diagonalizing the pencil (Aγ , Bγ ). Let V0 = V (0) and V1 = V (1), and define D

such that V0D = V1.
Next, let i1 < i2 < · · · < i2q be the 2q indices4 i for which Dii = −1. Let us

group these indices in pairs (i1, i2), . . . , (i2q−1, i2q). Then, λν and λν+1 coalesced at
least once inside the region encircled by � if i2j−1 ≤ ν < i2j for some j = 1, . . . , q.

Remark 3.14 Some comments are in order. As always, we implicitly assume all CIs
to be generic.

(i) To exemplify, suppose that, with the notation of Theorem 3.13, we have D11 =
D33 = −1, all other Dii’s being 1. Then, inside the region encircled by �, the
pairs (λ1, λ2) and (λ2, λ3) have coalesced at an odd number of points.

(ii) Theorem 3.13 yields a sufficient but not necessary condition for coalescence
of eigenvalues. It is a topological result, similar in spirit to the Intermedi-
ate Value Theorem, and cannot distinguish whether, inside �, some pair of
eigenvalues have coalesced an even number of times or not at all.

4 Algorithms to locate coalescing eigenvalues

The procedure we implemented to locate coalescing generalized eigenvalues is based
on Theorem 3.13, and on the smooth generalized eigendecomposition A(t)V (t) =
B(t)V (t)�(t) along 1-d paths, as stated in Theorem 2.9. Our goal is to obtain a
sampling of these smooth V and � at some values of t . Given a 1-parameter pencil
(A(t), B(t)), for t ∈ [0, 1], with A, B ∈ Ck([0, 1],Rn×n), A = AT and B = BT �

4The reason for the number of indices being even is that Aγ (t)V (t) = Bγ (t)V (t)�(t), and V (t + 1) =
V (t) D. Since V is continuous and invertible, then its determinant is either always positive or always
negative. But, since V (1) = V (0)D, then we must have det(D) = 1.
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0, we can assume that the eigenvalues are distinct for all t ∈ [0, 1], and λ1(t) >

λ2(t) > . . . > λn(t).
To compute � = diag(λ1, λ2, . . . , λn) and V we used a continuation procedure

of predictor-corrector type, similar to the one developed in [5] to obtain a sampling
of the smooth ordered Schur decomposition for symmetric 1-d functions. For com-
pleteness, we briefly describe here the step from a point tκ to the point tκ+1 of the
new procedure, further remarking on the differences between the present procedure
and the one in [5], to which we refer for a discussion of some algorithmic choices.

Given an ordered decomposition at tκ : A(tκ)V (tκ ) = B(tκ)V (tκ)�(tκ) and a
stepsize h, we want the decomposition at tκ+1 = tκ + h: A(tκ+1)V (tκ+1) =
B(tκ+1)V (tκ+1)�(tκ+1), where the factors V (tκ+1) and �(tκ+1) lie along the
smooth path from tκ to tκ+1. To get �(tκ+1) is easy to do with canned soft-
ware, like eig in MATLAB, since the eigenvalues are distinct, so we will keep
them ordered. Furthermore, a B-orthogonal matrix Vκ+1 such that A(tκ+1)Vκ+1 =
B(tκ+1)Vκ+1�(tκ+1) can be also obtained by standard linear algebra software, like
the eig MATLAB command, and re-ordering. Then, recalling Corollary 2.10, we
know that V (tκ+1) = Vκ+1S, where S is a sign matrix, S = diag(s1, . . . , sn),
si = ±1, i = 1, . . . , n, that is, V (tκ+1) can be recovered by correcting the signs of
the columns of Vκ+1. Specifically, by enforcing minimum variation with respect to a
suitably predicted factor V pred , we set S equal to the sign matrix which minimizes∥∥SV T

κ+1B(tκ+1)V
pred − I

∥∥
F
.

Despite the overall simplicity of the basic step we just described, if the stepsize h is
too large with respect to the variation of the factors, predicting the correct signs of the
eigenvectors to follow the smooth path may be a hard task. This difficulty is typically
encountered when there is a pair of close eigenvalues, as happens in presence of a
veering phenomenon5. In this case, smoothness could be maintained only by using
very small stepsizes, being the variation of the eigenvectors inversely proportional to
the difference between eigenvalues (see the differential (18)). Therefore, we proceed
in two different ways, depending on the distance between consecutive eigenvalues.
We say that a pair of eigenvalues (λi , λi+1) is close to veering at tκ+h if the following
condition holds:

|λi+1(tκ + h) − λi(tκ + h)|
|λi(tκ + h)| + 1

< toldist,

otherwise the eigenvalues are considered well separated6. At the starting point tκ ,
eigenvalues are assumed to be well separated. This is by far the most frequent case.
Yet, to be able to compute the sought smooth generalized eigendecomposition, it is
essential to consider the possibility of having close eigenvalues; to handle this case,
we have adopted the strategy detailed below.

Case 1. A pair of eigenvalues is close to veering at tκ + h.
In practice during a veering close eigenvalues may become numerically undis-

tinguishable, and the corresponding B-orthogonal eigenvectors change very rapidly

5Eigenvalues’ veering is a typical phenomenon for eigenvalues of parameter dependent problems. It occurs
when two curves of eigenvalues seem to be about to coalesce but suddenly “veer away” from each other.
6In our experiments, we have used toldist = 106eps ≈ 10−10.
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within a very small interval, out of which the eigenvalues are again well sepa-
rated. To overcome this critical veering zone, we proceed by computing a smooth
block-diagonal eigendecomposition (see Theorem 2.8):

V T
B (t)A(t)VB(t) = �B(t) = diag(�1(t), , ...,�p(t)), V T

B (t)B(t)VB(t) = I, t ≥ tκ , (26)

where close eigenvalues are grouped into one block, so that the eigenvalues of each
�i are well separated from the others. We do not expect, nor consider, the nongeneric
case of three or more close eigenvalues. Hence, each �i(t) is either an eigenvalue or
a 2 × 2 block. Using the Cholesky factorization of B = LLT , we first re-write (26)
as follows:

V T
B L

︸ ︷︷ ︸
WT

B

L−1AL−T
︸ ︷︷ ︸

Ã

LT VB︸ ︷︷ ︸
WB

= �B, V T
B L

︸ ︷︷ ︸
WT

B

LT VB︸ ︷︷ ︸
WB

= I, t ≥ tκ .

Then, to compute the smooth orthogonal transformation WB and block-diagonal �B ,
we use a procedure for the continuation of invariant subspaces, which is based on
Riccati transformations (see [4] and [5] for details of this technique). Starting at tκ ,
we continue with this standard block eigendecomposition until all eigenvalues are
again well separated; this happens at some value tf , and we set tκ+1 = tf . Then,
VB(tκ+1) = L−T (tκ+1)WB(tκ+1).
A key issue is how to recover the complete smooth eigendecomposition at tκ+1.
Indeed Theorem 2.8 guarantees the existence of decomposition (26) but not its
uniqueness, as can be easily verified by rotating the columns of VB - or WB - cor-
responding to a 2 × 2 diagonal block. In [5], to which we refer for the details, we
show how these subspaces can be rotated to obtain an accurate predicted factor V pred

which allows to correct the signs of Vκ+1’s columns, and continue the complete
smooth eigendecomposition at tκ+1 + h.

Case 2. All eigenvalues are well separated.
In this case, through our predictor-corrector strategy the stepsize is adapted based on
both eigenvalues and eigenvectors variations. The following parameters

ρλ = max
i

|λi(tκ+1) − λ
pred
i |

|λi(tκ+1)| + 1
and

ρV =
(
tr

[
(V (tκ+1) − V pred)T B(tκ+1)(V (tκ+1) − V pred)

])1/2
√

n
(27)

are used both to update the stepsize and to accept or reject a step (see Steps 4 and 5
in Algorithm 4.1 below). Accurate predictors are hence mandatory for the efficiency
of the overall procedure. We obtain them by taking an Euler step:

�pred = �(tκ) + h �̇κ, V pred = V (tκ) + h V̇κ ,

in the differential (18), where the derivatives �̇(tκ ) � �̇κ and V̇ (tκ ) �
V̇κ are approximated by replacing Ȧ(tκ ) with (A(tκ+1) − A(tκ))/h and Ḃ(tκ )

with (B(tκ+1) − B(tκ))/h. Setting AV = V (tκ)T A(tκ+1)V (tκ ) and BV =
V (tκ)T B(tκ+1)V (tκ ) we have

�pred = diag(AV ) − �(tκ)(diag(BV ) − I ), V pred = V (tκ)(I + P + H), (28)



Numerical Algorithms

where P = (I − BV )/2, and H is the skew-symmetric matrix such that

Hij = −Hji = (AV )ij

λi − λj

− λi + λj

λi − λj

(BV )ij

2
, for i < j, Hii = 0 for i = 1, . . . , n.

We remark that ρV , �pred and V pred reduce to the corresponding quantities we
used in [5] for the standard symmetric eigenvalue problem, when B = I and V is
orthogonal.

Furthermore, after we reached tκ+1 with a successful step, we compute the
following predicted eigenvalues of secant type:

λsec
i = λi(tκ+1) + hλ̇sec

i = λi(tκ+1) + h
λi(tκ+1) − λi(tκ )

tκ+1 − tκ
, i = 1, . . . , n.

Step 7 in Algorithm 4.1 uses these secant prediction, and its rationale is that if λsec
i <

λsec
i+1 for some i (recall that we have to obtain λi > λi+1), then the new step tκ+1 + h

is likely to fail, and therefore h will be safely reduced as in (29).

Remark 4.1 Observe that smooth factors � and V could be obtained also via a
smooth Schur decomposition Ã(t) = Q(t)�(t)QT (t) of the symmetric matrix
Ã = L−1AL−T , with B = LLT , by using the procedure developed in [5] and
setting V = LT Q. However, Algorithm 4.1 which is tailored to the original general-
ized eigenproblem turns out to be much more efficient; for general A and B, in our
experiments in MATLAB the main cost is given by step 2 of the algorithm, which we
resolve with a call to eig, and using eig(A, B) typically costs less than half of the
execution time encountered forming Ã and using eig(Ã).
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5 Randommatrix ensemble and experiments

Making use of the algorithms presented in Section 4, we have performed a numerical
study on coalescence of eigenvalues for parametric eigenproblems and in this Section
we report on these experiments.

Remark 5.1 Before describing our results, we emphasize several computational
advantages of working directly with the pencil (A, B) rather than converting it to a
standard eigenproblem prior to computing its eigenvalues.

• To begin with, it is less costly (much less so) (see Remark 4.1). This is not sur-
prising, since for nearly 50 years the numerical linear algebra community has
invested in methods tailor-made for the generalized eigenproblem.

• Working with the pencil allows to retain the structure of the pencil. For example,
sparsity is generally lost after conversion to a standard eigenproblem.

• Furthermore, consider the case of pencils with banded A, B. In this case, the
differential (18) used in the prediction phase of Algorithm 4.1 respect the banded
structure of our problem, and this fact is exploited to obtain less costly predictors
than those that would be obtained after conversion to a standard eigenproblem.

Next, we consider pencils A − λB whose matrices belong to a random matrix
ensemble called “SG+.” This ensemble has been introduced in [23] for modelling
uncertainties in computational mechanics. Matrices in this ensemble are character-
ized by a property called dispersion, which is controlled by a dispersion parameter
δ that must satisfy 0 < δ <

√
(n + 1)(n + 5)−1. Moreover we contemplated

also banded SG+ matrices, i.e., matrices in SG+ “truncated” so to have bandwidth
b = 1, . . . , n − 1, where b = 1 means tridiagonal and b = n − 1 means “full.” Our
goal is to investigate the effect of bandwidth and dispersion on how the number of
conical intersections varies as we increase the dimension of the matrices.

We now illustrate in detail how our random matrix functions are defined. First,
given integers n ≥ 2 and b = 1, . . . , n − 1, and dispersion parameter 0 < δ <√

(n + 1)(n + 5)−1, we construct the following n × n matrices (only the non-zero
entries are explicitly defined):



Numerical Algorithms

where N(0, 1) is the normal distribution with zero mean and variance 1, while
�(ai, 1) is the gamma distribution with shape ai and rate 1. Then, for all (x, y) in
R
2, we define the following matrix functions:

LA(x, y) := cos(x)LA,1 + sin(x)LA,2 + cos(y)LA,3 + sin(y)LA,4 + DA,

LB(x, y) := cos(x)LB,1 + sin(x)LB,2 + cos(y)LB,3 + sin(y)LB,4 + DB,

A(x, y) := LA(x, y)LA(x, y)T ,

B(x, y) := LB(x, y)LB(x, y)T .

We point out that:

a) all matrices LA,k and LB,k are strictly lower triangular and have bandwidth
b, while DA and DB are diagonal; therefore, both A(x, y) and B(x, y) have
bandwidth b;

b) A(x, y) = A(x, y)T and B(x, y) = B(x, y)T are positive definite for all (x, y);
c) the nonzero entries of all matrices LA,k , LB,k , DA and DB are independent ran-

dom variables; more precisely: A(x, y) ∈ SG+ for all (x, y), and the same is
true for B(x, y);

d) the probability density function of the diagonal entries of DA and DB matrix
depends on their position along the diagonal.

In our experiments, we have fixed five values of the dispersion parameter: δ =
0.05, 0.25, 0.45, 0.65, 0.85, and considered four possible bandwidths b = 3, 4, 5, full.
For each combination of δ and b, and for dimensions n = 50, 60, . . . , 120, we have
constructed 10 realizations of matrix pencils A(x, y) − λB(x, y) and performed a
search for conical intersections for the pencil over the domain � = [0, π ] × [0, 2π ].
The detection strategy consisted of subdividing the domain � into 64 × 128 square
boxes and computing a smooth generalized eigendecomposition of the pencil around
the perimeter of each box using the algorithm described in Section 4. The presence
of conical intersections inside each box is betrayed by sign changes of the columns
of the smooth B-orthogonal matrix that diagonalizes the pencil, see Theorem 3.13
and the subsequent remarks.

Our purpose is to fit the data with a power law

# of CIs = c dimension p, (30)

averaging the number of conical intersections over the 10 realizations. The outcome
of the experiments is condensed in Fig. 3, which shows the superposition of the 20
linear regression lines obtained by computing a least squares best fit over the loga-
rithm of the data, so that p and c in (30) represent, respectively, slope and intercept
of the lines. The figure reveals 4 groups of 5 lines each, where lines in the same
group share the value of the bandwidth. It is evident that the dispersion parameter δ

has a negligible effect on the exponent p, and mostly also on the factor c (with the
exception of the full bandwidth case). In contrast, bandwidth has a significant effect
on the exponent p, that increases from p ≈ 2 of the full bandwidth case to p ≈ 2.6
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Fig. 3 For each value of b = 3, 4, 5, full and δ = 0.05, 0.25, 0.45, 0.65, 0.85, we have performed a log-
log linear least squares regression. The figure shows the best fit lines for all combinations of b and δ, and
also the average exponent (slope after the log-log transformation) p for each value of b

of the heptadiagonal case. A similar study was conducted in [5] for the GOE (Gaus-
sian Orthogonal Ensemble) model. For convenience, below we report on the values
of the exponent p obtained for the two models (for the SG+ model we average over
all values of δ, since variations for different values of δ are negligible):

Interestingly, the table above shows similar –quadratic– power laws for both mod-
els in the “full” case; but, as the bandwidth decreases, the SG+ model displays a
slower growth of the exponent p than the GOE model.

Finally, let us give a brief account of the computational time required by our exper-
iments. All computations have been performed on the “Partnership for an Advanced
Computing Environment” (PACE), the high-performance computing infrastructure at
the Georgia Institute of Technology, Atlanta, GA, USA. On this computing environ-
ment, the computation that required the longest time was the heptadiagonal case with
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largest dimension n = 120, and was about 12.5 h. By contrast, the fastest compu-
tation corresponded to the full bandwidth case and smallest dimension n = 50 and
was about 15 min. This confirms that the computational effort is directly proportional
to the number of conical intersections, which in turn is directly proportional to the
exponent p. This fact comes with no surprise: in the vicinity of each conical intersec-
tion, the eigenvectors exhibit rapid variations that require severe restrictions on the
stepsize for our continuation algorithm.

Remark 5.2 We were not able to perform experiments for the tridiagonal and pen-
tadiagonal cases. This is due to the fact that, as the bandwidth gets small and the
dimension large, a significant amount of sharp variations of the eigenvectors occur
within intervals of size smaller than machine precision, ruling out our (but, actually,
any) numerical continuation solver. These difficulties were already encountered (and
explained) in [5] for the tridiagonal case on the standard eigenproblem (see Remark
3.1 therein). Because of these numerical difficulties, in [5, Section 2.3] we devised
ad-hoc techniques for the tridiagonal case, techniques based upon the fact that for a

symmetric tridiagonal matrix A =

⎡

⎢⎢
⎢
⎢
⎣

a1 b2

b2
. . .

. . .
. . .

. . . bn

bn an

⎤

⎥⎥
⎥
⎥
⎦
, a necessary condition to have

repeated eigenvalues is that bi = 0, for some i. Unfortunately, in the case of a tridi-
agonal pencil (A, B), there is no such simple necessary condition that has to hold for
having repeated eigenvalues. For these reasons, the case of A and B tridiagonal is left
open for future study, and our results in the present work do not include this case.

6 Conclusions

In this work, we have considered symmetric positive definite pencils, A(x)− λB(x),
where A and B are symmetric matrix valued functions in Rn×n, smoothly depending
on parameters x, and B is also positive definite. We gave general smoothness results
for the one parameter and two-parameter case, and gave results to characterize the
(generic) case of coalescing eigenvalues in the two-parameter case, the so-called con-
ical intersections. In the one parameter case, we derived novel differential equations
for the smooth factors. We further presented, justified, and implemented, new algo-
rithms of predictor-corrector type to locate parameter values where there are conical
intersections. Our prediction was based on a Euler step relative to the underlying dif-
ferential equations. These algorithms were used to perform a statistical study of the
number of conical intersections for pencils of several bandwidths.

Several issues are still requiring a more ad-hoc study. For example, the case of
both A and B tridiagonal (e.g., see [26]) is still not resolved in a satisfactory way for
the generalized eigenvalue problem, and perhaps the techniques of [19] or [16] can
be adapted to the parameter dependent case examined by us. But also other problems
remain to be examined, especially from the algorithmic point of view, like the case of
large number of equal eigenvalues seen in some engineering works (e.g., see [22]).
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