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Abstract: Today, the complexity of urban systems combined with existing and emerging threats
constrains administrations to consider smart technologies and related huge amounts of data generated
as a means to take timely and informed decisions. The smart city needs to be prepared for both
expected and unexpected situations, and the possibility to mitigate the effect of the uncertainty behind
the causes of disruptions through the analysis of all the possible data generated by the city open new
possibility for resilience operationalization. This article aims at introducing a new conceptualization
for resilience and presenting an innovative full stack solution to exploit Internet of Everything (IoE)
and big multimedia data in smart cities to manage resilience of urban transport systems (UTS), which
is one of the most critical infrastructures of the city. The approach is based on a novel data driven
approach to resilience engineering and functional resonance analysis method (FRAM), to understand
and model an UTS in the context of smart cities and to support evidence driven decision making. The
paper proposes an architecture taking into account: (a) different kinds of available data generated in
the smart city, (b) big data collection and semantic aggregation and enrichment; (c) data sense-making
process composed by analytics of different data sources like social media, communication networks,
IoT, user behavior; (d) tools for knowledge driven decisions able to combine different information
generated by analytics, experience, and structural information of the city into a comprehensive and
evidence driven decision model. The solution has been applied in Florence metropolitan city in the
context of RESOLUTE H2020 research project of the European Commission.

Keywords: smart resilient city; big multimedia data; complex system; big data analysis; disaster
resilience; evidence driven decision support system; functional resonance analysis method; Internet
of Everything; tree value logic

1. Introduction

According to the United Nations Population Fund by 2030, roughly 66 percent or
5 billion people, will live in urban areas. Therefore, the demand for services in urban areas
is increasing exponentially in parallel with the city complexity.

Jointly, climatic extreme events and disasters may intensify or become more frequent
in regions not accustomed to cope with such events [1]. Therefore, even if a city can reach
a good understanding of the kind of threats and severity it is potentially exposed to, (by
means conventional risk analysis [2] or recalling past experiences), the damage caused
by extreme events occurred in recent years, reveals a dramatic lack of awareness and
preparedness impacting on the capacity of a community to absorb, quickly recover, and
learn from the disruption. For instance, according to the JRC research outcomes [3], the
number of deaths from weather disasters could increase 50-fold in Europe by the start
of the next century, if no measures for adaptation are taken. Assessing the impact on
Europeans over a 30-year interval, period 2071–2100, JRC found that two out of three
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people in Europe might be affected by weather-related disasters annually, which makes
an estimate of 351 million people. By contrast, between 1981 and 2010, 25 million people
had been exposed: just 5% of Europe’s entire population. However, the analysis assumed
no reduction in human vulnerability or city resilience enhancement over time thanks to
adaptation.

The need to better understand the causes of disasters through the analysis of all the
possible data generated by the city to be prepared for an expected and unexpected situation
is evident [4]. The global trend of smart city implementation has brought significant
investments to deploy every kind of smart technologies (e.g., environmental sensors, traffic
sensors, public Wi-Fi) in the urban area with the aim of increasing awareness and control
on city events and dynamics. Moreover, the level of “smartness” [5] and data generated are
increased in many cities around the world making a number of events detectable (e.g., river
level, pollution, wind speed, traffic flows, human movements), opening new possibilities
to manage urban resilience through a data driven approach. According to [6], the boost to
efficiency and optimization that underline smart city implementation fails to acknowledge
secondary effects and feedbacks that cause changes in the system as a whole. Overall,
the increased complexity and fast pace changing nature of urban systems are generating
many emergent challenges, in the face of which most currently used management and
operational practices have demonstrated many shortfalls as explained in [7]. In particular:

(a) the underspecified nature of operations in complex systems (many adverse events
are the result of unexpected combinations of normal performance variabilities [8])
generates potential for unforeseeable failures and cascading effects;

(b) the existence of multiple sub-systems with non-linear and sometimes hidden inter-
actions, requires approaches to cope with “unknown unknowns” that is not always
fully understood;

(c) existence of a number of methods and scales of analysis not fully standardized;
(d) multiple stakeholders and institutions which have different worldviews and compet-

ing opportunistic goals.

Facing such issues requires the adoption of a holistic view able to guide ICT invest-
ments and deployments toward shared and well-defined goals, namely city resilience
and sustainability, is needed. Cities need to strengthen the science-policy interaction, to
properly assess their metabolism dynamics, and to increase socio-ecological sustainability
and resilience in facing known and unknown challenges.

In order to cope with above mentioned issues, this article aims to investigate the
possibility of adopting a big data driven approach for resilience management in a socio-
technical system as a smart city.

The paper is focused on a new conceptualization for resilience suitable for the pur-
poses and on a full-stack solution developed in the framework of the RESOLUTE European
Commission research and development project (http://www.resolute-eu.org). The ap-
proach exploits the opportunity given by the Internet of Everything paradigm, to collect,
process and transform the urban big multimedia data (U-BMD) generated within the sys-
tem by people and “things”, into valuable knowledge for decision making in resilience
and sustainability. The focus is on the urban transport system considered as the set of
transport infrastructures and modes that support urban movements of passengers and
freight. Today urban transport systems (UTS) have developed a prominent safety and
business critical nature, thus enhancing resilience of UTS is considered imperative for two
main reasons: (i) it provides essential support to every socio-economic activity and rescue;
(ii) the paths that convey people, goods, service and information, are the same through
which risks are propagated [9]. In fact, the increment of the population in urban areas, the
increasing interdependencies among physical and cyber infrastructure, the neighboring
of transportation systems with hazardous production facilities—along with the threats of
climate change and terrorism—are creating significant challenges for the UTS as a critical
infrastructure system. The present paper aims to provide methods and technologies to
operationalize UTS resilience exploiting the data generated in the smart city.

http://www.resolute-eu.org
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The article is organized as follows: in Section 2 is presented the related work; in Section 3
is defined the methodology to exploit U-BMD; in Section 4 is introduced the 3-TierS Resolute
U-BMD Architecture to operationalize resilience management; in Section 5 is described the
application of the RESOLUTE Architecture to a smart city scenario based on different data
sources and data analysis; in Section 6 are provided the conclusions and forthcoming steps.

2. Related Work
2.1. Resilience

Resilience is a multi-faced and not yet standardized concept so that a number of
definitions and assessment methods exist [10]. Resilience has emerged as an attractive
concept with respect to cities when they are started to be considered as complex and
adaptive socio-technical systems [11]. The emerging notion of “resilience thinking” inspired
by that of “system thinking”, offers a new way of understanding such system complexity
and a new approach to manage their resources to continually adapt through cycles of
change in order to achieve sustainability [6].

The definitions and conceptualizations of resilience present in literature such as [12–15]
can be roughly clustered into two views: (1) resilience as a performative property derived
by the system ability to cope with changing conditions; and (2) resilience as an emerging
property derived by the system adaptive capacity.

The first one is based on the National Academy of Science definition [13] that adopts
a “functionality-based” [14] view. In particular, resilience is exhibited along four temporal
based phases (plan, absorb, recover, adapt) during which the functionality of a system
is monitored and the level of resilience is quantified within a specific time window. In
other words, the functionality Q(t) is measured as a percentage function of time, and the
resilience is quantified as the integral of the functionality function (see Figure 1 Actuality
part) [15]. In this view, the resilience can be assessed only though numerical approach
(simulation) or after the conclusion of the event. The performance-based perspective of
resilience is also adopted by the 100 Resilient Cities (100RC) initiative—supported by The
Rockefeller Foundation. In fact, while resilience engineering focuses the actual capability
of a system of adjusting its functioning on changing conditions, the 100RC perspective
seems to be looking at the performance (the actuality) obtained during acute shocks as well
as chronic stresses [16].
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Figure 1. Resilience as a dynamic concept. The adaptive capacity is built through a continuous
process where the four resilience cornerstones are implemented. The coping ability is exhibited as
soon as an event occur and follows the four phases: prepare, absorb, recover, and adapt.

The second view is based on concept adaptive capacity and seems to be more suitable
to treat city resilience. In fact, more than half of the urban resilience definitions retrieved in
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the review carried out in [17], associate generic adaptability, flexibility, or adaptive capacity
concepts to urban resilience. The concept of the adaptive cycle for cities is derived by the
panarchy theory [18] grounded on ecosystems dynamics. As defined in [19], the panarchy
related to a city includes the definition of a dynamic set of urban adaptive cycles that evolve,
irreversibly and uniquely, as they adapt to new stressors (e.g., resource demands, crisis).
A city—as a complex socio-technical system—should be considered stochastic, dynamic,
and unpredictable by nature. In this respect, urban resilience should be related with the
system performance, and its capability of controlling and coping with continuous changing
conditions. In particular, sustaining this adaptability requires overall enhanced operational
efficiency, mainly by optimizing the allocation and utilization of available resources whilst
striving to continuously minimize operational failures. Within this context, resilience can be
seen as an emergent property of a complex system and it is about managing high variability
and uncertainty in order to continuously pursue successful performance of a system.

In this perspective, as argued in [12], only the “potential” for resilience can be actually
observed and quantified in a system, and not the resilience itself. Such an intrinsic capabil-
ity of a system to adjust its functioning prior to, during, or after an expected or unexpected
stressing event, is oriented to continually sustain system operations [20]. Thus, this “poten-
tial” for resilience can be evaluated against the so called “resilience cornerstones” [21,22],
namely:

• Respond (knowing what to do): it is related to the capacity of the system, to respond
to a stressor by continuously adjusting system performance to changing conditions.

• Monitor (knowing what to look for): it is related to the capacity of the system, to
monitor both the system and the context collecting data and information to detect
events and reduce the uncertainty.

• Anticipate (knowing what to expect): it is related to the capacity of the system to
early identify and evaluate potential threats as well as their consequences for system
operation seizing the opportunities for changes offered by the needs of adaptation.

• Learn (knowing what has happened): it is related to the capacity to learn from past
experiences either successful or not.

In summary, the essence of resilience lies in the system capacity to recognize when
variability in its performance is unanticipated and falls beyond the expected range and
to actively dampen such variability through continuous adaptation [14]. In order to cope
with such a variability, the limited capacities of the system should be known and managed
to achieve the right synchronization and coordination level [2].

2.2. Smart City and Internet of Everything

The new global trend that moves toward the Internet of Everything (IoE) implementa-
tion contributes to accelerate the evolution of the city that become even more smart. The
IoE represents an enabling paradigm to enhance the resilience in smart city, contributing to
monitoring, detecting, and dampening the unwanted and unexpected variability caused by
a critical event [7]. The IoE can be considered a natural evolution of the Internet of Thing
(IoT) concept [23–25], In fact, the IoE includes the following four key elements [26–28]:

(a) People: considered as end-nodes always connected to the Internet and as a source of
knowledge, information, decisions, behaviors and so forth.

(b) Things: it ranges from physical sensors and actuators with limited computational
capabilities, to smart devices (e.g., smartphones) able to generate and process a
relevant amount of data as multimedia resources.

(c) Big Multimedia Data: huge stream of raw data generated, exchanged analyzed and
processed to enable reliable decisions and control mechanisms,

(d) Processes: methodologies and mechanisms for automation to leverage high speed
connectivity represented by the 5G (and the future 6G) among data, things, and
people to add value.
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The IoE paradigm helps to manage an end-to-end ecosystem of connectivity cantered
on people and on their relationships, social collaborations, and grouping dynamics (con-
nected community) within the smart city, enabling a proactive participation of the citizens
in building the city resilience [2,27]. The collaboration of the people that act “as a (intelli-
gent) sensor” implies the exploitation of the social media as a source of complex signals that
needs to be collected, filtered, elaborated, and interpreted. In fact, as highlighted in [29]
and [30], data from social media can be inaccurate, extemporaneous, malicious, and/or
noisy. To this end, the goal of reducing uncertainty and making reliable decisions for the
resilience of the city cannot be achieved by relying on this data source only and a clever
integration of different sources is required.

According to [31], the data collection process and management to provide the aid,
relief, and response in critical situations, have always challenged public decision makers,
emergency services and disaster management community due to: (1) time constraints; (2)
scattered nature of data sources, owners, and types; (3) speed of access to data; and (4)
huge data volume. In fact, a smart city generates different multimedia data types that can
be classified into the following two macro categories:

Batch/periodic: it includes points of interests, geo-referenced services, GIS based maps
(e.g., flooding susceptibility map), accidents statistic, satellite/LiDAR images, etc. This
information is typically accessible in several diverse both open and proprietary formats,
such as: SHP, TIFF, KML, CVS, ZIP, XML, XLS, etc.

Near real time/real time: it includes data coming from IoT/wireless sensor networks
of urban sensors (e.g., free spaces in parking, air temperature, pollution measures, triage
status, Wi-Fi, public transport system, smart lighting, etc.), wearable sensors, social me-
dia (e.g., Twitter, Facebook, Instagram), instant messaging applications (e.g., Telegram),
volunteered geographic information (VGI) including those from navigators, volunteered
reporting-based applications [32], and so forth.

Until now, resilience management has largely focused on descriptive (i.e., what hap-
pened?) or diagnostic analytics (i.e., why it did happen?) following an expert judgment-based
approach [33]. Today, emerging technological innovations such as IoE (including social media,
location-based systems, and big data analytics—BDA) have opened up the opportunity for
real time monitoring (i.e., what it is happening?), thus, a dynamic evidence driven system
resilience management [2,14,34], and predictive analytics based on increasingly reliable big
data (i.e., what it will happen?) is now at hand. Ad depicted in Figure 2, Big data are usually
related to the 3V (velocity, volume, variety), but the perspective is becoming wider with 4V
(+value), 5V (+veracity) [35], etc. According to [36], a fourth V has been added to the standard
3V, namely ‘value’ and identified as the capability of the big data, to generate a public value
in different contexts, such as: business, social, political, etc.
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The availability of such a quantity of information in smart city actually leads to a
question: what about their actual usefulness? There are valuable examples of analysis
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based on big data and IoT as reviews in [37]. However, is possible to turn its cost into value
for resilience-based decisions? To this end, it is necessary to transform U-BMD from raw
state into information and then into knowledge pandering the sort of continuum that such
three elements as stated in [38]. In fact, if a single data source is taken alone, it does not
carry any implication or useful deduction for future actions. This can be done effectively
only transforming smart city data into knowledge. Knowledge is created through a process
of information interpretation, contextualization, and prioritization, whose results are used
to guide decisions. Figure 3 depicts such a transformation process which has been adopted
in present work and adapted from [36].
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Figure 3. KID (knowledge, information, data) driven decision-making process in urban context.
Different data sources available in the smart city should be properly processed to became valuable
knowledge for decision makers.

Every decision aims at generating an effect. The effect of such a decision becomes
evident by means of new U-BMD generated by the actors affected by these decisions.
Such control loop grants a continuous adjustment of the decisions during the disaster
emergency, to both: (i) align the effects to the intentions and (ii) reduce time needed for
recovery and bounce back (or forward) to desired conditions. In order to translate U-BMD
into value for the disaster resilience management, the following steps must be taken: (a)
understanding the system; (b) understanding informational needs for decision making; (c)
selecting/producing data needed to support such decisions; (d) transforming data into
knowledge; (e) supporting decision making.

3. Method
3.1. Towards a Novel Definition of Resilience

However, a clear integration of the two concepts is still lacking at theoretical and
operational level in literature. To this end, in the present work, a reconciliation has been
proposed decomposing resilience concept in two different foundational but inherently
interlinked elements: adaptive capacity and the coping ability. Resilience emerges as
a result of a dynamic process between them through which successful performance is
continually pursued [39]. According to this view, the adaptive capacity represents the
potentiality of the system that needs to be continuously built along the four cornerstones
(anticipate, respond, monitor, learn) in order to enable the full expression of the system
coping ability in terms of survivability, adaptability, and sustainability.

Coping ability represents the exploitation of the resilience potential (adaptive capacity)
and it is exhibited during a specific critical event. This means that it can be evaluated
in terms of system functionality dynamics (loss and recovery) along the time but only
in relation to a specific unexpected event. The definition of what is a triggering event is
difficult in resilience management. In risk analysis the events to be considered are pre-
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defined and the uncertainty remains mostly related to the effects side (magnitude, position,
etc.). On the other hand, when unknown events occur and high level of uncertainty
is also related to the causes of the event (unknown unknowns), the coping ability is
expressed by how performance levels are maintained over time through adaptation to
changing conditions. Such a continuous adaptation performance is difficult to be assessed
in socio-technical systems because of the underspecified nature of operations (e.g., the
human performance in an emergency is not fully predictable only on the base of the skill
owned) [8]. According to this, in the present work we show a significant enhancement
in the UTS adaptive capacity in relation to the introduction of smart technologies such
as U-BMD.

3.2. Functional Resonance Analysis Method

The functional resonance analysis method (FRAM) [40] is a modeling tool for complex
systems that focuses on system functions, their interdependencies, and dynamics.

A FRAM function that could have a human, technological or organizational nature,
contributes to transforms the state of the system towards fulfilling the operational purpose.
This introduces in the modeling a diversity of factors relating to system dynamics, which
frequently are unobserved within models based on organizational structures or process
flows. FRAM takes into account the non-linear nature of performance in complex systems,
as opposed to building cause-effect sequences of events in time. The accidents are produced
by unexpected interaction and composition of function performance variabilities. Hence
FRAM supports resilience assessment by providing an understanding mechanism towards
damping the sources of variability. In this respect, FRAM is based on four basic principles:

(a) The equivalence of success and failure that emerge from performance variability.
(b) Variability represents the deviation of the performance respect to the expectation.
(c) Emergence of either success or failure is due by the unexpected interaction of variabil-

ity of different functions.
(d) The unexpected ‘amplified’ effects of interactions between different sources of vari-

ability are at the origin of the so-called functional resonance phenomena that leads to
a disruption.

The fundamental step in the use of this method is the identification and description
of functions and their interdependencies. In Figure 4, the FRAM function is represented.
Each function is defined by six descriptors (time, control, output, resource, precondition,
and input). A function refers to the activity—or to a set of activities—of the system which
are required to produce an expected outcome.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 36 
 

 

Each function is defined by six descriptors (time, control, output, resource, precondition, 
and input). A function refers to the activity—or to a set of activities—of the system which 
are required to produce an expected outcome. 

 
Figure 4. Functional unit of FRAM 

The analysis of the potential sources of variability represents the entry point of the 
assessment of the system capacities needed to cope with expected and unexpected varia-
bility emerging from system operation. The method is designed to solve the gap existing 
between the understanding of how the system is imagined to work and how it actually 
works [39]. The method is at the base of retrospect analysis but it is also promising for the 
prospective one, and in particular for the real time quantitative approach [41]. 

Several initiatives are exploring the possibility to extend FRAM towards a quantita-
tive analysis. In [42], has been exploited the expert knowledge using questionnaire and 
analytical hierarchy process to transform linguistic scale into numerical scale. The use of 
expert knowledge has been adopted also in [2], where the fuzzy logic has been used to 
translate judgments into values through membership functions. A similar approach has 
been followed also in [43]. 

A semi-quantitative analysis based on Monte Carlo simulation is proposed in [44]. 
The idea is to evaluate the variability of the output of a function quantifying the resulting 
effect (amplifying, neutral, dampening) of the coupling between upstream and down-
stream functions. These approaches represent the remarkable effort of the FRAM commu-
nity to move towards quantitative analysis. However, these approaches to FRAM quanti-
fication are not based on the heterogeneous and dynamic data as generated by a smart 
city. Their utility remains confined at the analysis level while the intent of the present 
work is to transform the FRAM model into a tool to support close to real time data driven 
decision making in an operational setting. 

In this respect, the introduction of a new point of view defined as “Work-As-Desired” 
[22] to build a reference model (instead of a representation or simulation of the reality) as 
a baseline (e.g., thresholds) for the assessment, represents one of the main contributions 
towards the integration of the data driven quantitative analysis in FRAM. 

In particular, the recommended breadth-before-depth approach [45] has been fol-
lowed and two subsequent steps has been defined: 

First step: The definition of the desired functions that a system should comprise to 
be resilient (see Table 1).  

T C

I O

P R

FRAM 
Function

Time: 
Can be a resource
and a constraint at 
the same time

Controls: 
Supervised or adjust 
function performance

Output
Outcome of the functions and
Become input of other functions

Input
That which trigger 
and engage 
function 
operation 
To produce the 
output 

Resources
That is needed or
consumed by the function 
to process the input

Preconditions
Conditions that can be met before 
the function can be  carried out

Figure 4. Functional unit of FRAM.

The analysis of the potential sources of variability represents the entry point of the
assessment of the system capacities needed to cope with expected and unexpected vari-
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ability emerging from system operation. The method is designed to solve the gap existing
between the understanding of how the system is imagined to work and how it actually
works [39]. The method is at the base of retrospect analysis but it is also promising for the
prospective one, and in particular for the real time quantitative approach [41].

Several initiatives are exploring the possibility to extend FRAM towards a quantita-
tive analysis. In [42], has been exploited the expert knowledge using questionnaire and
analytical hierarchy process to transform linguistic scale into numerical scale. The use of
expert knowledge has been adopted also in [2], where the fuzzy logic has been used to
translate judgments into values through membership functions. A similar approach has
been followed also in [43].

A semi-quantitative analysis based on Monte Carlo simulation is proposed in [44]. The
idea is to evaluate the variability of the output of a function quantifying the resulting effect
(amplifying, neutral, dampening) of the coupling between upstream and downstream
functions. These approaches represent the remarkable effort of the FRAM community to
move towards quantitative analysis. However, these approaches to FRAM quantification
are not based on the heterogeneous and dynamic data as generated by a smart city. Their
utility remains confined at the analysis level while the intent of the present work is to
transform the FRAM model into a tool to support close to real time data driven decision
making in an operational setting.

In this respect, the introduction of a new point of view defined as “Work-As-Desired” [22]
to build a reference model (instead of a representation or simulation of the reality) as a baseline
(e.g., thresholds) for the assessment, represents one of the main contributions towards the
integration of the data driven quantitative analysis in FRAM.

In particular, the recommended breadth-before-depth approach [45] has been followed
and two subsequent steps has been defined:

First step: The definition of the desired functions that a system should comprise to be
resilient (see Table 1).

Table 1. FRAM-based UTS functions.

Anticipate Monitor Respond Learn

A1—Manage financial affairs M1—Monitor safety and
security R1—Restore/repair operation L1—Provide adaptation and

improvement insights

A2—Develop Strategic plan M2—Monitor Operation R2—Coordinate emergency
action L2—Collect event info

A3—Perform risk assessment M3—Monitor Resource
availability - -

A4—Training Staff M4—Monitor user generated
feedback - -

A5—Coordinate service
delivery - - -

A6—Manage awareness and
user behavior - - -

A7—Develop/update
procedures - - -

A8—Manage human
resources - - -

A9—Manage ICT resources - - -
A10—Maintain

physical/cyber infrastructure - - -

Second step: Definition of the interdependencies (second step) that should be present
to secure system resilience.

The obtained result is a reference model to be used to define indicators for each function
of the systems. This allows the calculation of the system resilience index, a synthetic proxy
indicator for resilience, able to quantify the system adaptive capacity [21,22,25,39]. It is
worth noticing that the definition of the indicators should follow a consensus-driven process
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involving all the actors and stakeholders that in one way or another are connected to these
indicators, both, because they can be the evaluators of these indicators or the evaluated [34,46].
Thus, the quantification of the enhancements of the adaptive capacity obtained with the
introduction of ICT in smart city aims at representing valuable information for decision-
makers at strategic, tactical, and operational levels.

3.3. Urban Big Multimedia Data Approach

In order to translate U-BMD into valuable knowledge and wisdom [38,47] for the
resilience management, the following multi-steps approach has been defined and described
in detail in the underlying sections:

1. Understanding the urban transport system (UTS): use of the FRAM approach in
managing critical events

2. Understanding what information is needed to take decisions
3. Selecting/producing U-BDM: methodologies to be adopted to select and collect the

data needed
4. U-BDM collection and integration: data collection
5. U-BDM sense making, how the data is transformed into information
6. Knowledge driven decision: how the information is transformed into knowledge

3.3.1. Understanding the UTS System

According to [48], a socio-technical system can be analyzed basing on the functions it
performs rather than by how it is structured. From this point of view, in order to evaluate
the system performance variability, it is necessary to: (i) understand how likely each func-
tion of the system can vary; (ii) identify the interdependencies among the different functions.
In order to obtain this result, the functional resonance analysis method (FRAM) [47] has
been exploited. FRAM aims to capture the dynamics of complex systems considered as a
set of coupled or mutually dependent functions, by modeling the non-linear dependencies
and variability of each function. As explained by Hollnagel in [49], performance variability,
that is, the range of results in a function or an overall system’s performance, highly depends
on the variability of the working conditions of the system. Understanding, quantifying,
and managing such a variability may reduce the impact of a critical event and speed up the
recovery process supporting informed decision making [46]. Applying the FRAM approach
in the UTS (urban transport system) and basing on the European Resilience Management
Guidelines (ERMG), released by RESOLUTE project (http://www.resolute-eu.org), [39]),
the UTS reference model can be defined by 18 functions (see Table 1). The functions and
the related interdependencies have been defined following the “Work-As-Desired” [22]
approach as introduced in Section 2. In particular, a several experts have identified the
main desirable functions against which it is possible to assess a complex system, as UTS.

The six functions highlighted in green in the Table 1 are those in which the adoption
of IoE and U-BMD may have a relevant impact in reducing the potential variability and
uncertainty in the system (smart city). Therefore, the U-BDM to be managed must be
oriented to support them.

3.3.2. Understanding Information Needs

In order to understand decision makers’ needs in terms of information availability,
it is necessary to engage city operators (fire brigades, civil protection, mobility operators,
etc.) in the system requirements elicitation. Therefore, some focus groups and workshops,
centered on critical scenarios (flash flooding, big floods, traffic jam, car accidents, bomb
attacks, etc.) must be organized. The aim is to elicit both explicit and implicit operator’s
knowledge on how the system works, when comparing such “as-imagined” performance
against the actual performance carried out during the emergency (“work-as-done”). Such
an analysis of results may identify several drawbacks (e.g., fragmented responsibilities,
lack of data sharing and communication among operators) [9], which could be mitigated
if some of the decisions taken by operators during disaster, are improved in terms of

http://www.resolute-eu.org
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efficiency (timing, allocated resource, etc.) and effectiveness. A list of critical decisions to
be enhanced as emerged during a number of RESOLUTE workshops and focus groups.
In Table 2, the result of the mapping between the critical decisions and the UTS functions
most involved, is provided.

Table 2. Enabled decisions–functions mapping.

Enabled Decisions Anticipate Respond Monitor Learn

When and if resource availability
should be improved (e.g., operators,

volunteers, funds, means)
A1, A2, A3 - M3 -

Which kind and how many units
must be dispatched during a critical
event—better situational awareness.

A8, all M1, M3, M4 L2

When and where population should
be evacuated to a safer area

(respond);
- R2 M4 -

Delivering timely and correct
information to the public, etc.
(respond, anticipate, learn);

A9 R2 M4 -

If/when suspending or redirecting
public/private-transport-services

(anticipate, respond);
A5 R1 M1, M2, M4 -

How much and when investing in
infrastructure

maintenance/improvement
(anticipate, learn);

A1, A2, A3, - M1, M2, M3 -

Training population and enhance
their awareness A4, A6 - - L1

Most of these decisions require a comprehensive knowledge in order to be reliable in
producing a positive effect at systemic level.

3.3.3. Selecting/Producing U-BMD

Instead of collecting everything “just in case” or starting with the data you need to get
access to, the approach suggested was to start by taking into account the system’s aims
and interdependencies identified in the first step (understanding the UTS system) [50]. In
this step the relevant data to be accessed or acquired is identified. It is important to remark
that no data is inherently better or more valuable than another, until it is put in relation
with other datasets and with the general decision-making criteria. This is subjected to a
continuous process of improvement. In fact, every time a decision is taken, the analysts can
realize that the level of uncertainty behind that decisions could be mitigated/reduced by
using a different measurement or a dataset that is not actually available. This consideration
has been used to drive the improvement of the monitoring capability generating new
datasets/data streams as the Wi-Fi access data streams in real time.

3.3.4. U-BMD Collection and Integration

Addressing the complexity of U-BMD collection is crucial. The kinds of data are
very diverse in terms of volume, velocity, and variety, as well as in terms of accessibility
and license for reuse. For instance, data generated within public utilities (energy, water,
gas, etc.) like the GIS based pipeline positions or the operations data may fall within
information security policies. Several kinds of U-BMD are available in a city: GIS maps
(including seismic risk maps, hydrological risk maps, services, descriptors of structures
such as schools, hospitals, infrastructures, etc.), social media streams, urban IoT data
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streams, video surveillance streams, etc. Such diversity must be managed through a
flexible, scalable and comprehensive methodology and tools. In particular, the adoption of
an ontology to semantically aggregate all the U-BMDs, can offer support to the subsequent
contextualization and sense-making process.

3.3.5. U-BMD Sense-Making

The U-BMD must be processed in order to transform data into information. All the
collected data are tracks of events occurring in the city. The challenge is represented by
the necessity of analyzing such tracks to extract significant facts (the “real signal”). For
instance, the public Wi-Fi access data stream in a smart city, if properly processed (e.g.,
clustering analysis), may reveal concentration and trajectories of people in specific areas.
Similarly, the analysis of the social media streams (e.g., Twitter) with natural language
processing (NLP) and descriptive statistical techniques, may disclose the mood of the
citizens, their opinions, some specific trends, etc.

3.3.6. KID Driven Decisions

This step consists in the transformation of U-BMD derived information into knowl-
edge. This transformation is enabled by the adoption of decision support systems (DSS).
A DSS is a computer-based information system supporting organizational decision mak-
ing [36,51,52]. The objective of a DSS is to provide support to decision makers to give them
help to solve problems by gathering: (i) the decision makers’ expertise; and (ii) the data
coming from the system; while analyzing them in a more intelligent and faster way with
respect to humans [2].

4. U-BMD Architecture
4.1. Tier Architecture

In order to operationalize the approach, the RESOLUTE three-tier cloud-based archi-
tecture has been designed and implemented (see Figure 5). The tiers do not necessarily
correspond to physical locations on various computers within a network, and rather they
are the logical layers of the system functionalities. The three-tier architecture reflects the
necessity to establish a set of technical procedures and approaches to produce new knowl-
edge, useful to take decisions, starting from a large set of no correlated data and passing
thought the information concept, described in Section 3. The tiers on which the architecture
is based are:

• Tier I—Urban Big Multimedia Data Management
• Tier II—Information (U-BMD Sense Making)
• Tier III—Knowledge (Knowledge Driven Decision Support System)

The proposed approach can be classified at the 3rd tier according to the resilience
assessment method classification defined in [53,54]. In fact, they not only can be considered
a means to enhance the system resilience thanks to their capability of dampening the system
variability, but they allow quantitative resilience assessment and data-driven resilience
management. In particular, they enhance the for adaptive capacities as follows:

(a) Anticipate: by continuously assessing city vulnerabilities and identifying when the
system operates closer to safety boundaries, predicting behaviors and event dynamics,
supporting evidence-based decisions at strategic, tactical, and operational level, thus
moving a step forward with respect to current practices based on pre-simulated
emergency scenarios.

(b) Respond: by delivering real-time, context-aware, personalized, and ubiquitous advice
to the citizens by exploiting IoE technologies

(c) Monitor: by improving the granularity, timelines, precision, quality and comprehen-
siveness of information about the city metabolism dynamics.

(d) Learn: by applying advanced analysis on U-BMD (e.g., deep learning, data analysis
and prediction, sentiment analysis) to extract valuable information and knowledge
for decision-making;
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Figure 5. Three-tier RESOLUTE U-BMD Architecture. The architecture recalls the KID steps of data transformation for
decision making presented in Figure 3.

4.2. Tier I—Urban Big Multimedia Data Management

The urban big multimedia data management layer consists of two different sub-layers:
data acquisition and data aggregation.

4.2.1. Data Acquisition Sub-Layer

It implements the multi-source big data ingestion mechanism addressing aspects such
as: variability, velocity, complexity, variety, geo-spatial aspects, integration, and size. In
particular, a complex knowledge base is composed of two elements: (a) an RDF triple store
based on an ontology which describes all the city elements (streets, services, buildings,
sensors, etc.); and (b) a scalable NoSQL (HBase) to accommodate real time data generated
by such elements [55].

It is well known that different types of datasets/data streams require different method-
ologies and approaches for their collection and ingestion. For instance, the ingestion of
data relating to real time traffic sensors is implemented through an ETL (extract, transform,
and load) process (e.g., Penthao Kettle) invoking a web service via HTTP Post managed
by the owner of the data. In most cases, the real-time data are pushed directly into the
mapping process to feed a temporary SQL store. They are typically streamed both into a
traditional SQL store and then converted into triples in the RDF store with the Karma tool
and in the NoSQL database (HBase). In some cases, real time data are streamed into an IOT
broker first and then are into some NoSQL database and even driven IOT Applications.
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The different kind of data can be grouped in the following main categories, also visible
in Figure 4: Smart City Data, UTS Data, Twitter Data, City Network Data.

Smart City Data: it consists of a collection of static or slow dynamic open and private
data coming from the city and its territory. Usually, this information is published by public
and private organizations (e.g., city council, civil protection) in different file formats such
as html, xml, csv, shp, etc. Many times, such kind of information are extracted from legacy
systems and are the result of specific processing such as: number of visitors in a museum
in a specific moment, weather forecasts for a specific area, events in the city, flooding
vulnerability/susceptibility, and so forth.

UTS Data: it is related to datasets regarding mobility and transport aspects typically
involved in a smart city [56,57], such as:

• Traffic Manager to track the status of the traffic in the city
• Public Transport schedule plans and real time status;
• Road network status: roads, bridges, underpasses, etc.;
• Parking position and status, car and bike sharing, movements of public vehicles,

cycling paths, etc.

Social Media Data: it consists in collecting and analyzing data streams coming from
Twitter by creating dedicated thematic channels, which can be tuned to monitor one or
more search queries on Twitter with a sophisticated and expressive syntax. The solution
has been set up only on Twitter data since it is a microblog platform strongly oriented to
redistribution of post on real time.

City Network Data: it consists of data generated by mobile devices and/or networks
acting in the city. In a smart city context, this type of channel is essential for taking care of
the people/citizens’ presence and flow. An interesting example is represented by mobile
device data collected by mobile phone operators, which can be used to determine the
number of people connected/present in a city area. Unfortunately, the level of granularity
(number of users in a certain instant) provided by the cells is about 1000 m per side,
and therefore too large to extract detailed information of the citizens’ movement to be
used for emergency management applications. Fundamental for analyzing the habits and
activities of citizens is the information that can be extracted and properly anonymized
from city Wi-Fi or IoT networks that offer a much higher degree of resolution. For example,
they can be of great help in determining which services citizens use the most analyzing
the dynamic of the concentration of the connections to a specific access point in the city.
However, it should be remembered that the Wi-Fi data provides results only in relation to
the location of the access points (AP). Therefore, if the city is not systematically covered
by AP, we will have jagged information. One way to overcome this limitation is to use
crowdsourcing through dedicated mobile apps that can be used to track user behavior
and to perform measurements on the city, aiming to calculate origin–destination matrices,
typical trajectories and warm places. For example, the “Firenze dove cosa.” (Florence where
what . . . ) App (available for both iOS and Android) allows this data collection by providing
useful information for free. Even in this case, however, the monitoring is carried out only
on the basis of the behavior of the population that installed the “City App”. Therefore, any
assessment based on this information must take this limitation into account.

4.2.2. Data Aggregation Sub-Layer

The data coming from the many different sources above described are semantically
aggregated and are compliant with the Km4City Multi-Ontology [58]. The semantic relation
among the different data plays a relevant role in supporting the U-BMD transformation
into knowledge. Organizing the data according to a specific holistic view, formalized
through the domain ontology, has been a relevant step to support the next sense-making
process. In fact, it is possible to formalize properties (e.g., vulnerability associated to assets)
which exist in nature, thus reducing the complexity of the system description.

The data aggregation system is illustrated in Figure 6, where the semantic aggregator
and reasoner collect data from data sources, to fuse it in a unified and semantically interop-



Sensors 2021, 21, 435 14 of 34

erable model based on Km4City multi-domain ontology. Such a semantic aware data fusion
approach reduces representation inconsistencies and overlaps of information coming from
different structures, operators, and sources, [59]. The km4City multi-domain ontology has
been adopted to model city entities and their logical and physical relationships enabling
the inferential processes in the resulting knowledge base-KB (RDF Graph Database [57,58]).
The KB can be used to create strategies for Data Quality improvement [60,61] as well as
to set up new cross-domain services (e.g., early warning [62]). The obtained KB can be
used to design new smart services (e.g., multimodal contextual routing) as well as support
decision makers providing data driven integrated views of the city metabolism. Some
existing approach fit this case as: CitySDK grounded on OASC (Open & Agile Smart Cities),
Km4City [58,63], which is exploited by Sii-Mobility Smart City project and provides Smarty
City API [64]; and SPUD [65], a commercial-based solution proposed by IBM.
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These solutions require tools to map data to ontology to support the reconciliation
as performed by DataLift in [66] and by Km4City in [58]. In both cases, vocabularies,
algorithms, and dedicated languages have been used, as in SILK [65].

The creation of an ontology to support city resilience and impact assessment, ex-
panding the pre-existing Km4City Multi-ontology, required a deep dive into the data sets
available in the city, in order to identify the informative potential, establish the needed
semantic relationships. The analysis of the above-mentioned data sets allowed us to create
an integrated ontological model organized in eight main macro-classes as: Administration,
Street-guide, Point of Interest, Service, Local Public Transport, Sensors, Temporal, Weather
(see Appendix A).

4.2.3. Ontology Extension for Dynamic Damage Analysis

The Km4City multi-ontology has been extended with new concepts dedicated to
manage risk and resilience at city level. The objective was to design a semantic aware data
model able to support real time risk and resilience computing and to extract information
related to the level of damage occurring in an urban area. The impact is computed by
considering different kinds of city asset exposed (services, assets, people, etc.) and their
operational status at the time of the event. In fact, the value of a service (e.g., school)
that is closed at the time should be considered reduced and the resulting damage quan-
tification should vary accordingly. The scope is to support prompt and well-informed
decisions to cope with the emergency. The damage is calculated with the product of vul-
nerability for the value of the exposed element in relation to a critical event with a certain
intensity/magnitude. Therefore, the damage calculation depends on:

• Asset vulnerability: depends on the type of asset, its location, its physical characteris-
tics (materials, design), and so forth;
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• Asset value: it depends on its characteristics and functions and it has an economic
and/or social value according to the role played in the society;

• Magnitude of the event: the magnitude of the event is calculated through specific
Observation collections.

Observation: this class models the observations (measurements) performed by a
Sensor. To manage the damage analysis the following observations have been included in
the ontology:

• PluviometricObservation v km4c : Observation models instances of rainfall observa-
tions received by the related sensors;

• Thermometry v km4c : Observation it models instances of ground temperature
received by the related sensors;

• EarthquakeObservation v km4c : Observation it models instances of seismic obser-
vations received by the related sensors;

• TrafficObservation v km4c : Observation it models instances of traffic observations
received by the related sensors;

Geometry: The geospatial ontology (http://www.opengeospatial.org/standards/
geosparql) has been used for the geometry class to model areas and points. A geometry is
associated with a sensor entity to define its position or to other physical elements of the
city to describe paths (cycling paths, bus lines, etc.).

Asset: This class models the main elements considered in the city such as services,
people, infrastructures, etc. An asset is a something in the city that can be exploited.

km4c : Service v risk : Asset

AssetValue: it defines the value of the asset. It includes:

(a) PhysicAssetValue used to model economic values/importance for the population
related to business/physical asset;

(b) ServiceAssetValue used to model economic values/importance for the population
related to the type of service;

(c) SocialAssetValue to model the value and/or the social importance related to as-
set/service.

Vulnerability: this class is used to model the levels of vulnerability of an asset. Each
level of vulnerability is characterized by the following features: geographical area, asset
type; links to a type of indicators; and reference to a range of indicator values.

Indicator: this class models a sensor indicator and offers insight on what it is observed
by that sensor.

The resulting extension of the Km4City ontology can be validated and exploited with
a SPARQL query-based process. In fact, with the proposed extension, is possible to study
simulated scenarios or perform real time monitoring by linking to each sensor one or more
geographic regions. The sensor observations are used to calculate the damage the event has
caused to assets within the target area. For example, the following SPARQL query allows
you to estimate the impact of a 4.5 intensity seismic event in a certain area by identifying all
the affected assets (managed with the Km4City: service class) and their values (managed
with the risk extension: hasAssetValue).

SELECT * WHERE {
?v a risk:SeismicVulnerability;
risk:forAssetType “Service”;
risk:fromMinIntensity ?min;
risk:toMaxIntensity ?max;
gis:hasGeometry/gis:asWKT ?wkt.
FILTER(?min ≤ 4.5 && 4.5 ≤ ?max)
?s a km4c:Service;
geo:lat ?lt; geo:long ?ln.

http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
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?s risk:hasAssetValue ?avalue.
FILTER(st_intersects(st_point(?ln,?lt),?wkt))
}

Such queries can be pre-configured and executed on demand for what-if analysis or
as a close to time processes in case of emergency management. The approach exploits the
data integration and the semantic-aware interconnections among the entities modeled in
the knowledge base.

4.2.4. Data Transformation Multi-Steps

The data aggregation sub-layer elaborates data coming from the data acquisition sub-
layer and makes a set of transformations steps than can be resumed in the following actions:
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1. Quality Improvement, QI: since the ingested datasets may present different errors
and inaccuracies. This is the reason why it is crucial to enhance the data quality, so as to
produce reliable and useful information/knowledge for their composition and exploitation.

2. Reconciliation: in this step the lack of coherence and relations among entities
referring to the same concept but coming from heterogenous datasets and data providers,
is addressed. In fact, entities can present mismatch in semantics on names of the elements,
dates, GPS coordinates, ZIP code, e-mails, telephone numbers, area codes, etc. For in-
stance, the methodology adopted for the service consists in trying to link each service
(Km4City: Service) to the street and civic number; the subsequent attempt to carry out the
reconciliation at street-level, and at the street segment level.

3. RDF Triple generation and Aggregation: this step generates RDF triples for every
static and slow-dynamic datasets, while the real time data are collected in a NoSQL
database. The triples are stored in the RESOLUTE semantic data storage and are based on
Km4City multi-domain ontology (http://www.disit.org/km4city/schema) whose aim is
to semantically fuse all the information coming from the data acquisition sub-layer in an
RDF data store.

4. Data validation: in this step verification and validation techniques to check cor-
rectness and consistency of the data and their relationships have been applied through
a SPARQL query-based validation of RDF triples has been performed. Such a valida-
tion allows the verification of the fundamental constraints and the correct execution of
multi-reasoning (geo spatial, temporal, and semantic).

5. Dataset load/indexing into the knowledge base, it loads the RDF triples on the
knowledge base.

At the end of this processes, the enriched and fused data are made available to the
upper tiers through specific RESTfull APIs, separating the activity of data management
from that of analysis.

4.3. Tier II Information—U-Bmd Sense Making

This tier is devoted to transform data into information through sense making processes.
To this end, data analyses have been applied such as: (1) human behavior analysis; (2) social
media analysis; (3) predictions, etc. Each of these methodologies, described in detail in this
section, represents a signal to be used in preparing and learning as well as responding and
recovering phases.

4.3.1. Wi-Fi-Based Human Behavior Analysis Module

According to [67,68], human mobility is proven to be highly predictable, since 85%
of the time a mobile user stays in his/her top five favorite locations. However, under
emergency, human behavior may be highly unpredictable, because of fear, wrong heuristics,

http://www.disit.org/km4city/schema
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lack of information, altered risk perception, etc. In this scenario, public Wi-Fi networks
can be used to track city users’ behavior in space and time (see Figure 7). In this respect,
Florence Smart city has implemented a free Wi-Fi network (Florence Wi-Fi) deploying more
than 1500 Aps on the territory. Some of these Aps (about 365) have been instrumented
for the user connection’s tracking. The data of device connections can be put in relation
with a movement behavior. For the analysis, we referred to data collected in a period from
May 2016 to May 2018 with about 400 K single events per day including connection and
disconnection. The analysis found that the 60% of such connected users are tourists that
use the free city Wi-Fi for less than 24 h. In 6 months, about 1.15 M distinct users have been
detected, which means about 2.3 M of distinct users per year in a city having about 14 M of
new arrivals per year and 350 K inhabitants. According to these figures we could infer that
we tracked about 16% of people flows.
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Figure 7. Florence heat-map. This heatmap put in spatial relation city users’ most patronized
places with the position of the 1500 Wi-Fi APs of the whole network (using a color gradient scale to
discriminate between different densities of measures).

This data may represent a valuable source of information and knowledge. For instance, has
been identified the “hottest places” (in terms of events on the APs) as reported in Figure 8. Places
are represented with GPS (Lat/Log) data. This result provides us insight on how the people
use the city in a certain time window. Knowing where the people are increase the possibility to
respond to a critical event in an efficient way.

Every day, the WIFI network detects about 34 K distinct users of which 10% are new
users. In Figure 8, is depicted the distribution of the so-called hottest places in Florence
(cutting the list of the first 12). The city usage along the daily 24 h have been recorded and
different trends have been clustered into 12 distinct clusters revealing strong differences
among them. For example, there are zones where there are picks in the morning (arrival)
and in the late afternoon (departure). In other areas (e.g., gardens), the presence density
increases in the mid-morning and mid-afternoon while for lunch there is minimum. Thus,
there are APs that experience a relevant workload during the early mornings and late
afternoon only, others are stressed mainly on late evenings (time), others during the on-
weekend days, and so forth.
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Figure 8. Distribution of hottest places in Florence (truncated series). The chart shows the cumulated
number of Wi-Fi accesses in last 180 days (y-axis) associated to a lat/long of the access points
distributed in the city (x-axis).

In particular, the trend depicted in Figure 9 (blue line) has been extracted from 56 mil-
lion of data records and estimated by computing the averaged value per time slot of the
AP every working day. This trend has been compared with the one detected in real time
(red line) in a specific day.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 36 
 

 

different trends have been clustered into 12 distinct clusters revealing strong differences 
among them. For example, there are zones where there are picks in the morning (arrival) 
and in the late afternoon (departure). In other areas (e.g., gardens), the presence density 
increases in the mid-morning and mid-afternoon while for lunch there is minimum. Thus, 
there are APs that experience a relevant workload during the early mornings and late 
afternoon only, others are stressed mainly on late evenings (time), others during the on-
weekend days, and so forth. 

In particular, the trend depicted in Figure 9 (blue line) has been extracted from 56 
million of data records and estimated by computing the averaged value per time slot of 
the AP every working day. This trend has been compared with the one detected in real 
time (red line) in a specific day. 

 
Figure 9. An example of trend related to a certain AP along the daily 24 h (blue line), the current 
detection (red line) and the subsequent prediction (red line after the gap). 

An anomaly is detected in case of relevant deviations from the average. It is worth to 
remark that it is not possible to infer the cause of such a deviation using only this source 
of data. To this end, a multi-source approach is necessary. 

In particular, in emergency conditions, is it crucial to predict the people distribution 
in the city and infer patterns in city user’s behavior in order to have a reliable baseline for 
comparison (expected vs. actual). The approach is based on data mining techniques which 
cluster APs on the basis of their normalized temporal pattern. This process groups city 
zones according to their usage. Clustering the zones on the base of the APs’ data can be of 
great help in understanding if there are zones that exhibit similar exploitation or flow 
patterns. 

In particular, the averaged trend along the 24 h of a day has been calculated for each 
AP of the 345 instruments for the tracking and for each day of the week. Then a scale factor 
and the normalized averaged pattern (from 0 to 1) have been computed. We focused on 7 
days divided in 48-time slots per day (30 min). The first AP patterns emerged from the 
analysis has revealed a marked difference between the working days and the weekend. 
Thus, we decided to cluster such time series by considering three distinct groups: Satur-
days (Sa), Sundays (Su), and the working days (W). From a statistical perspective, the 
temporal pattern for each AP has an average and an interval confidence for each time slot 
(as reported in Table 3). 

Table 3. Standard Deviation and Population for AP Clusters (W: Working days, Sa: Saturday, Su: 
Sunday). 

Cluster Id Avg. Std. Dev. W Sa Su 
1 0.2379 172 23 24 
2 0.0849 23  43 43 
3 0.0882 8  42 34 
4 0.1820 3 30 26 
5 0.1059 20 15 14 
6 0.0822 38 15 8 
7 0.1311 9 57 34 

Prediction Real time detection 

Average trend 

Figure 9. An example of trend related to a certain AP along the daily 24 h (blue line), the current
detection (red line) and the subsequent prediction (red line after the gap).

An anomaly is detected in case of relevant deviations from the average. It is worth to
remark that it is not possible to infer the cause of such a deviation using only this source of
data. To this end, a multi-source approach is necessary.

In particular, in emergency conditions, is it crucial to predict the people distribution
in the city and infer patterns in city user’s behavior in order to have a reliable baseline for
comparison (expected vs. actual). The approach is based on data mining techniques which
cluster APs on the basis of their normalized temporal pattern. This process groups city zones
according to their usage. Clustering the zones on the base of the APs’ data can be of great
help in understanding if there are zones that exhibit similar exploitation or flow patterns.

In particular, the averaged trend along the 24 h of a day has been calculated for
each AP of the 345 instruments for the tracking and for each day of the week. Then a
scale factor and the normalized averaged pattern (from 0 to 1) have been computed. We
focused on 7 days divided in 48-time slots per day (30 min). The first AP patterns emerged
from the analysis has revealed a marked difference between the working days and the
weekend. Thus, we decided to cluster such time series by considering three distinct groups:
Saturdays (Sa), Sundays (Su), and the working days (W). From a statistical perspective, the
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temporal pattern for each AP has an average and an interval confidence for each time slot
(as reported in Table 3).

Table 3. Standard Deviation and Population for AP Clusters (W: Working days, Sa: Saturday, Su: Sunday).

Cluster Id Avg. Std. Dev. W Sa Su

1 0.2379 172 23 24
2 0.0849 23 43 43
3 0.0882 8 42 34
4 0.1820 3 30 26
5 0.1059 20 15 14
6 0.0822 38 15 8
7 0.1311 9 57 34
8 0.1374 2 23 55
9 0.1226 4 32 38
10 0.1460 52 12 3
11 0.2487 11 13 21
12 0.1617 1 28 31

At this point, a clustering process has been applied to identify similarities in time
series, as it occurs in the dynamic time warping [69], and by using different clustering
algorithms such as K-means clustering algorithm [70], hierarchical clustering [71], density-
based clustering or subspace clustering [72], and metrics to evaluate both a better ranked
clustering algorithm and proper number of clusters.

Another valuable analysis to understand city usage and human behavior that can be
performed with U-BMD data is represented by the origin–destination matrix generation.
The OD matrix representing flows among the areas of the city can be defined as

ODn, n =

 a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n


where: ai,j represents the total number of people flowing from ai to aj and is defined as

ai,j = ∑
t∈T

nt(i, j)

T is the set of unique people flows, nt(i, j) is the number of traffic counts from ai to aj
for the trace t.

In case the OD matrix calculated exploiting APs data, what can be actually evaluated
is the intensity of the flows while the OD vertex are considered fixed since they are
represented by the position of the APs. Moreover, the OD matrices are typically quite
widespread, as you can see in Figure 10a, where the OD matrix for Florence is reported. It
is evident that the city is used in a different way in different areas (see Figure 10b). In fact,
AP areas present different kinds of trend in terms of people density along the daily 24 h
and along different days of the week [68,72].

The analysis can be carried out for each time slot of the day or full day, for incoming
and outgoing flows, and at different levels of resolution (zoom). The information generated
by the OD matrix can be used to reduce uncertainty about people behavior while moving
in the city. Therefore, knowing that a critical event occurs in an area that at that moment is
likely to be affected by a flow of movement of people, will allow a more effective response
in terms of resources employed (all those really necessary to manage the volume of people)
and timeliness.
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Figure 10. OD matrix for Florence downtown. In the OD matrix can be provided as: (a) classical
view; (b) advanced interactive view where is possible to visualize inflow, outflow, time slot selection,
user kind, and so forth.

4.3.2. Social Media Analysis: Twitter Vigilance Module

The datasets derived from social media are basically obtained from Twitter. Data are
collected using the RESTFull APIs provided by the social network itself. Twitter generates
a huge stream of information, and thus it is crucial to have a filtering strategy in advance
in order to collect only the relevant information only and reduce the noise.

To do so the Twitter Vigilance (http://www.disit.org/tv/) tool (TV), developed in
DISIT lab and used as a RESOLUTE project, has been used. The tool is able to collect,
process, and analyze twitter streams by both defining filters (channels) and applying
techniques of Natural Language Processing (NLP). The scope is to detect relevant variations
in the defined channel in terms of numbers of tweets, the sentiment, and so forth. For
example, the Figure 11 represent the interface of TV where a significant variation (negative)
on the sentiment feature in the defined channel “Meteo” (Weather) has been detected.
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The TV analyses the channel looking for nouns, verbs, adjectives, and deciding
the acceptance level (negative/positive) of such terms. The Figure 12 represent another
example of to a channel dedicated to monitor twitter related to heavy raining. In this case,

http://www.disit.org/tv/
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the crowdsourcing based on Twitter allowed the detection of an issue in the city caused
by the rain before the official authorities did. This means that, if properly managed (e.g.,
detection of strong increment of tweets and retweets), Twitter can be considered a social
sensor for early warning mechanism.
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Figure 12. Sentiment analysis terms exploration.

However, crowdsourced data must be treated carefully. In fact, the assessment of the
reliability of the information provided is still a challenge. In this respect, some criteria can
be applied as the actual presence of users on the ground acting as a sensor (e.g., Twitter
georeferenced). On the other hand, the absence of people when an event occurs, does not
make the Twitter a reliable source for early warning since no one is present to report that is
happening. This is exactly what happened during the Arno river embankment collapse in
Florence caused by a water pipe disruption (see Figure 13). The event started at 6:15 a.m.
on 25/05/2016 but no variation had been detected on TV. According to the Figure 13, the
first relevant variation had been detected only in the afternoon of the same day. Another
increment had been detected hours later, and in the days after, with a number of retweets
because of the popularity of the place.
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Once the conditions for data reliability are defined, predictive models on Twitter
dataset can be applied. Recent case studies and applications have been developed at DISIT
Lab [73,74], using high-level and low-level metrics which were defined and monitored
thanks to the Twitter Vigilance analysis tool. The latter has turned out to offer very
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good predictive capabilities in several different domains, for instance, predicting people’s
attendance to large public events (such as EXPO 2015, see Figure 14), as well as predicting
the audience of popular TV programs and shows.
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Figure 14. Twitter Vigilance predictive models for people attendance at EXPO 2015. The picture
shows the comparison results among different models built on the collected Twitter Vigilance data
and the real number of registered visitors.

According to this analysis and other related experiences [74], it is noteworthy that
using social media data represents a powerful tool requiring a deep understanding of
its dynamics, its capacity of meaning, and the related method on how to extract such
meanings.

Since the social media data have the characteristics of the Big Data (4V), a dedicated
architecture based on distributed crawlers executed on a cluster of N nodes has been imple-
mented for Twitter Vigilance (see Figure 15). The data acquisition is based on the concept of
Twitter Vigilance Channel (TVC) that acts as a filter. The TVC consists in a set of searching
queries based on the combination of some parameters as keywords, hashtags, user’s IDs,
citations, and so forth. The collected tweets are elaborated through back-office processes
based on statistical analysis, NLP, and sentiment analysis, as well as general data indexing. TV
users can define and monitor the high-level metrics and set up custom rules to produce alerts
and other customized actions. Every metric can be calculated at different time frame (daily,
hourly, and real-time) according to the user needs. The metrics calculated are stored in a
dedicated SQL database and made accessible to the front-end user interface. The TV interface
allows the customizing of the search query, implements dashboards, provides reports and
file export features (e.g., to CSV format) for visual analytics, temporal trends and time series
visualizations, data results navigation, Twitter user’s statistics and analysis.
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4.4. Tier III—Knowledge-Driven Support System

The last tier is represented by the decisional layer. It has been supported by the
implementation of the Resilience DS tool, an evidence driven decision support system
(EDDSS) that exploit the information and knowledge generated by the Tier II to quantify.

This tool is built on top of the SmartDS tool [74], an Evidence Support Logic (ESL)
based tool that uses the Italian Flag (IF) Representation [75] as a three-values logic to
measure uncertainties. A general schema for the modified AHP (analytic hierarchic process)
model, including the IF representation, is shown in Figure 16.
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Resilience DS

The Resilience DS is a collaborative tool inspired by System Thinking [76] view that
integrates the FRAM methods in a decision support system (DSS) fueled with data and
experts’ judgments. The Resilience DS tool moves the FRAM modeling approach towards
its computability and quantification, by introducing several formal checks to assess the
completeness, consistency, and complexity of the model and to connected it with the data
make available by the Tier 2 [77].

SmartDS operates with two entities: models and instances [74,76]. A model identifies
a set of decisional criteria modeled as a hierarchical decision tree and having the root
standing for the goal to be achieved (see Figure 16). The nodes belonging to the first level
of the tree represent the decisional criteria which have been defined to achieve the goal.
Lower-level nodes can describe sub-criteria, as well as properties of corresponding upper
level criteria: the factors that contribute to take the decision.

In the next step, the weights related to each criterion of the decisional tree should be
estimated. This is performed by using the evaluation matrix, whose single elements are
obtained by pairwise comparisons of the decisional criteria. Considering a generic level l̃
of the hierarchy, composed of N criteria Cl̃1, . . . , Cl̃N , the pairwise comparison matrix is
defined as

P̃l =


pl̃

11 · · · pl̃
1N

...
. . .

...
pl̃

N1 · · · pl̃
NN

,

where elements pl̃
ij (i, j = 1, . . . , N) are the Saaty’s scale values representing the compar-

isons among criteria. The comparison matrix P has the property according to which its
symmetrical elements stand in a reciprocal relationship (in agreement with the Saaty’s
rating scale)

pl̃
ij =

1

pl̃
ji

, 1 ≤ i, j ≤ N
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Subsequently, a normalization by column is made over P, thus obtaining the P̃l matrix.
Under the assumption of having N nodes at level l̃, the P̂ matrix is defined as

P̂̃l =


p̂l̃

11 · · · p̂l̃
1N

...
. . .

...
p̂l̃

N1 · · · p̂l̃
NN

 =


pl̃

11
σ1

· · · pl̃
1N

σN
...

. . .
...

pl̃
N1
σ1

· · · pl̃
NN
σN


where

σ1 =
N

∑
k=1

pl̃
k1, . . . , σN =

N

∑
k=1

pl̃
kN

Priority weighs Ṽl1, . . . , ṼlN are finally obtained by computing the arithmetic mean
over the rows of the normalized matrix P̂̃l .

The next step is the assignment of weights to each node/factor. Weights are assigned
on the basis of a mutual priority degree estimated among each pair of defined decisional
criterion. Priority weights are computed, for each level, by comparing each pair of de-
cisional criteria using the Saaty’s scale coefficients [74]. This rating scale assigns integer
values from 1 to 9, according to the relative relevance between the compared elements.
Such an operation leads to the creation of a pairwise comparison matrix for each level of
the decision tree.

The IF representation has been integrated, since the belief that an event may occur,
can be only partial. In this respect, a certain level of confidence should be considered and
quantified. On such grounds, given a generic proposition or event E, the probability that it
will happen(E), and the probability that it will not P(not(E)), the measure of uncertainty
can be defined as: 1–P(E)–P(not(E)).

Hence, IF is a simple graphical representation of the triple: [P(E), 1–P(E)–P(not(E)),
P(not(E))]; where P(E) is represented with green, P(not(E) as red and, 1–P(E)–P(not(E)) is
represented with white (see Figure 17).
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Figure 17. Three-value logic IF. This representation is for a generic proposition or event E with some
examples explained.

Once the modified AHP-IF model is created, decision makers can create an instance of
it. The instance identifies a hierarchical decision tree-based model fueled with data needed
to compute the final decision. The data can be from different sources such as:

(1) Data from external sources obtained with HTTP API requests: the tool supports a
semantic ware query to an external RDF semantic repository accessing to the SPARQL
endpoint URLs and a query to a generic HTTP REST requests and calls to dedicated
services/APIs. It is possible to combine up to two queries for each single node and
the results are compared to threshold values defined by decision makers.

(2) Data from stakeholders’ opinions and feedbacks. In particular, opinions can be
directly mapped to IF values: the value for the green color is obtained from the
percentage of favorable opinions, the value for the white color is obtained from to the
percentage of uncertainty opinions or answers not provided, and the value for the
red color is derived by the percentage of opinions against that criterion/condition.

Once the instance is deployed, it continues to query data sources, process data and
produce results adjusting the probability that an event occurs in close to real time.
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5. Results

According to the scenario-based design (SBD) technique [78], the flash flooding sce-
nario is analyzed to demonstrate the enhancement in the system’s adaptive capacity
obtained by using U-BMD when managing disaster resilience. The flash flooding is an
extreme event which is going to be even more recurrent in areas that are not used to (and
thus not prepared) for such extreme event. The main characteristics of the flash flooding
scenario are:

(a) Impossibility to identify exactly the involved areas.
(b) Extreme intensity of rainfall
(c) Abrupt reduction of temperature and visibility
(d) Sudden overflowing of water on roads, underpasses, etc.
(e) Sudden traffic flow reduction

To cope with this situation the following decisions should be enabled to mitigate the
impact and sustain a certain level of UTS service functionality:

- D1: send an appropriate rescue team in due time (if needed)
- D2: send appropriate street maintenance team in due time (if needed)
- D3: closure of the underpasses in the affected area
- D4: redirection of the incoming traffic towards alternative routes
- D5: provide safety recommendation to people in the affected area considering poten-

tial risks (e.g., high water in a specific area because of particular land shaping)
- D6: alert population about status of the event to orient their decisions (e.g., to discour-

age passage in the area)

To demonstrate the capability of the U-BMD to be exploited in disasters resilience man-
agement a subset of the FRAM-based model representing the UTS has been identified [2,50].
Indeed, during a critical event (absorption phase), all the UTS functions are involved in the
absorption and recovery phases. However not all the functions are equally engaged. In the
example we have identified the most relevant functions being at the forefront during an
emergency.

M4—Monitor User-Generated Feedback: this function is devoted to monitor every
kind of feedbacks generated by the service users to produce in real time, fundamental
support to the deployment of operational adjustments. This function integrates in the in
the context of operational monitoring, the assessment of user generated feedback to early
detect issues and to take informed decision.

• Output: User-Generated Critical Event Detection

M2—Monitor Operations: this function is related to the deployment of a system
operation performance assessment tools and practices integrating multi-stakeholders’
indicators with the overall service delivery needs. This turns out to be a key point to
generate overall system performance understanding.

• Output: Critical Event Detection

R2—Coordinate Emergency Action: this function is dedicated to manage emergency
during a critical event. The function is triggered by a M2 and/or M4 functions if a critical
event is detected. The function has associated some decisions that should be taken. Such
decisions produce outputs for other functions in the model.

• Output:

- Rescue (D1,D2)
- Operation Changes (OC) (D3,D4)
- Advices (D5,D6)

A6—Manage Awareness and User Behavior: As providers of fundamental public
services, critical infrastructures tend to be significantly exposed to individual and collective
behaviors, in many cases not only the one by service end-users, but also by a wider audience.
Recent ICT technological developments offer a great potential to enhance the audience
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interactions and the use of this potential for an increased effectiveness in managing and
deploying operational adjustments to different relevant events and circumstances.

• Output: Early Warnings

In Figure 18, such functions are represented with their interdependencies as extracted
by the UTS general model presented in the ERMG [50]. In particular, monitor operation re-
ceives “service performance” as input from service delivery function which is not evaluated
here (in grey). “Service performance” includes U-BMD from sensors like traffic, rainfall,
conditions of underpasses, weather, etc. Similarly, the function “Monitor User-Generated
Feedback” is received from the function “Use of the Service Feedbacks and Behaviors”
as input. They are represented in terms of both presence and movement of people on
the ground as detected with public Wi-Fi and social media like Twitter. The output of
both functions is similar and is represented by the detection of a critical event: “Critical
Event Detection” and “User Generated Critical Event Detection” respectively. The two
outputs trigger the function “Coordinate Emergency Action” of which one of the outputs
is “advice/command” to be processed by the “Manage Awareness and User Behavior”
in order to forward an “Early Warning” towards the population. Then, to close the loop,
the “Early Warning” is used as resource by people to orient their local decisions which are
detected by the “Monitor User-Generated Feedback” function.
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Figure 18. Sub-set of UTS FRAM model.

Decisional support for the Coordinate Emergency function can be provided through
the SmartDS tool, in order to automate some decisional process relying on data analysis (for
instance, data from sensors, users etc.). For example: (1) provided that the whole scenario is
a complex model and assuming for each FRAM function several different inputs, resources,
time, control, and preconditions entries (as described in Paragraph 3.2); (2) we hold that
both Monitor Operations and Monitor User-Generated Feedback functions provide the
following resources to analyze their inputs. Thus, according to the FRAM model the
following inputs are taken into account by the SmartDS engine querying RESOLUTE
Knowledge Base (KB) by using Smart City APIs and fueling the AHP-based models of the
decisions to be taken in Coordinate Emergency function:

• Monitor Operations resources:

- Traffic observation from sensors applying user defined thresholds on results to
detect traffic flow trends, predictions, and reconstructions;

- Underpasses water level observation: for underpass water level, applying user
defined thresholds in order to detect if water exceeds the safe level in a given
underpass;

- Rainfall observation from pluviometry sensors at different times, applying user
defined thresholds on results to detect if rain level exceeds a safe value;

- Temperature observation from thermometric sensors at different times, applying
user defined thresholds on results to detect if temperatures abruptly drop down;
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- Weather reports and predictions: related to temperature, dew point, humidity,
etc.;

- Pollution reports and predictions: related to environmental sensor data and
reports;

• Monitor User Behavior and User Generated Feedback resources:

- People density real time and predictions, established analyzing data coming from
the city Wi-Fi sensors and resulting data analytics as previously described;

- Prediction on parking lots collecting data analytic results and thresholding on the
basis of their values.

- Twitter Vigilance metrics: collecting volume, natural language processing and
sentiment analysis metrics (as well as custom high-level metrics defined by users)
about Florence weather related channels.

The output of SmartDS computation affects the input of the Manage Awareness and
User Behavior function, and therefore the Early Warning output signal. The implementation
of the SmartDS computation for the above-described resources as to the Monitor Operations
Resources and Monitor User-Generated Feedback is depicted in Figures 19 and 20.
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On such grounds, the level of activation of the early warning rely on the result of the
weighted contribution provided by the Critical Event Detection and UG Critical Event
Detection inputs plus other parameters (inputs, resources, preconditions, time, control)
modeled in the Coordinate Emergency that, in turn, inputs the Manage Awareness and
User Behavior decision tree. Because of the complexity of FRAM model (presence of loops,
one output can be input for more than one function, etc.) and the needs of maintaining
in the analysis a systemic perspective instead of a process-based perspective (where only
specific paths are focused), it is not possible nor interesting to build a unique generic tree
for the entire FRAM model. To this end, each function is computed separately and in
parallel; and the results are propagated through the defined interdependencies with a
step-based advancement. Hence decisions related to the R2 function are taken on the basis
of the data driven event detection generated by the M2 and M4 functions, considered as a
result of their parallel evaluation and the related outputs’ propagation in the model.

The improvement of the outputs of R2 decisions represents the real added value of
the approach. For instance, the advice output forwarded by the R2 to the A6 function
can be translated into tailored information to be provided to the city users at the right
time and place via several kinds of channels: SMS, mobile apps [79], direct calls, message
variable panels in relevant points of the city, tv news, radio news, social media, etc. The
rescue action is now timely and appropriate since position and magnitude of the event are
known in few seconds as well as the actual resource available to be allocated. The proposed
approach brings several benefits in the resilience management. Such benefits have been
assessed against the three main dimensions in which the output variability can occur such
as time (T), precision (P), and confidence (C).

The results obtained in Table 4 shows the remarkable improvement obtained with
the adoption of U-BMD in particular and smart technologies in general. The result is
also comparable with the resilience improvement obtained with smart technologies and
quantified in [2].

Table 4. Evaluation.

Output Variability
without U-BMD

Variability
with U-BMD

Time Precision Confidence Time Precision Confidence

Critical Event
Detection

Too late
(>30 min)

Imprecise
(based on
operator

reporting)

Mid In time
(s/RT) Precise High

User Generated
Critical Event

Detection

Not at all/
Too late

(>30 min)

Imprecise
(based on few

reports of
citizens)

Low In time
(s/RT)

Acceptable/
Precise

Mid/
High

Alert Not at all/
Too late Imprecise Low/

Mid
In time
(s/min)

Acceptable/
Precise High

Rescue Too Late/
In time Acceptable/Imprecise Mid In time Precise High

Operation
Changes

Not at all/
Too late

Acceptable/
Imprecise Mid In time

(s) Precise High

Impact

- UTS service disruption
- Slow recovery
- Human experience-based learning for

adaptation

- UTS graceful degradation for the service
survival

- Quick recovery
- Evidence-driven learning for adaptation

The introduction of U-BMD produces a relevant reduction of the variability expe-
rienced in the current condition, moving from suffering an interruption to managing a
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graceful degradation in service. This leads to better use of the resources available to man-
age the emergency and to a quick recovery. Finally, the possibility to save data represents
a unique opportunity to build and share knowledge within and across the institutions
involved in the UTS resilience management. In this sense, the adaptive capacity of the UTS
results enhanced by the solution proposed.

6. Conclusions

The article aimed at presenting a full-stack approach to exploit U-BMD generated by
the IoE in a smart city to enhance the UTS resilience management in the context of smart city.
The challenge of managing U-BMD is meant to address the big data. In disaster resilience,
timely decisions with reduced uncertainty are crucial for the application of adaptation
strategies. To this end, a novel conceptualization for resilience suitable for its data driven
operationalization and the related multi step methodology for its implementation that
includes system understanding, information requirement definition, U-BMD collection and
integration, U-BMD sense making process, and evidence-driven decision support system
tools, have been defined. System understanding has been addressed adopting the FRAM
approach, that is able to describe system functions and interdependencies. Once the model
of UTS is defined, the information requirement elicitation from operators and decision
makers has to be carried out. The system modeling and the information requirements
allow the definition of criteria for U-BMD pre-selection. Such a U-BMD pre-assessment is
crucial for cost reduction, especially management costs related to useless data collected
only “just in case”. U-BMD have been managed through a three-tier platform including:
(a) the U-BMD management layer, where heterogeneous datasets with different stream
rates, volume and formats are collected and fused according to a specific ontology; (b) the
U-BMD sense making for information extraction layer that includes a number of analytics
applied on the single data streams such as: WIFI clustering applied on WIFI access data
stream, Twitter Vigilance applied on twitter streams, Parking analysis applied on parking
sensors data stream, etc.; (c) the knowledge-generation layer where ResilienceDS and
SmartDS work together to model the UTS system according to FRAM methodology, so as
to import the model into a three value logic decision tree tool able to link the models to
data through APIs and queries. The reduction of uncertainty has been proven by tracking
the evolution of white part of IF over time for most of the several formalized functions.
From our analysis, this fact has been due to effect of formalization of the processes, which
increased the awareness of decision makers and of experts, and velocity and precision for
their assessment exploiting the big data tools.

To conclude, this full stack solution aimed at supporting a timely and better-informed
decision making in emergency as well as in daily operation within a complex system as
UTS or a smart city itself, exploiting the U-BMD generated in a smart city. The operator
can make data driven timely decisions in emergencies or in a planning phase (e.g., urban
design [80], cost benefit analysis [81]) concerning the priorities for action, so as to safeguard
the security of goods and people involved therein [82], while simultaneously studying
which are the areas having a potential greater risk, as to the occurrence of an event, in
order to implement preventive policies. However, it is worth to remark that the quality
of the outcome provided by the system is intrinsically related to the quality of the data
managed [60,61,83]. The future evolution of such system can be represented by the Digital
Twin. The possibility to create a leaving virtual representation of UTS connected to real
data, is at hand. The creation of a simulation models that continuously update and change
as their physical counterparts’ change will allow a better evaluation of the decision space
for resilience and a deeper understanding of the effect of such decisions.
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Appendix A

KM4City Macro Classes
Administration: it includes classes related to the structures of any public administra-

tion. It includes the class Resolution, which represents ordinances and resolutions issued
by each administration and meant for instance to change any traffic stream. As an example,
a Description Logic based axiom is here reported:

Municipality v PublicAdministration u
(∀isPartO f Province.Province) . . .

Province v PublicAdministration u
(∀hasMunicipality.Municipality)u

(∀isPartO f Region.Region) . . .

Street-guide: it includes entities such as Road, Node, RoadElement, Administra-
tiveRoad, permitted maneuvers and related access rules to the limited traffic zones, and so
forth. Because of the complexity of the entity, the OTN vocabulary [84,85], has been used
to model traffic which can be considered a direct encoding of GDF (Geographic Data Files)
in OWL (https://www.w3.org/OWL/). Some DL based axioms are described here below:

Road v otn : Road u

(∀containsElement.km4c : Element)u

(∀isInMunicipality.km4c : Municipality) . . .

RoadElement v otn : Road_Elementu

otn : Edgeu

(= 1 startsAtNode. Node)u

(= 1 endsAtNode. Node)

Point of Interest (PoI): includes place as well all services and activities. The classifica-
tion of individual services and activities is built on main and secondary categories planned
at regional level. In addition, this macro segment of the ontology may benefit from reusing
the Good Relation model of commercial offers. For example, a DL axiom is:

Hotel v Accommodation v Service v otn : Service

http://www.resolute-eu.org
http://www.sii-mobility.org
https://www.km4city.org
https://www.disit.org/tv
https://www.disit.org/tv
https://www.snap4city.org
https://www.w3.org/OWL/
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Service: it is a classification of services in KM4City, from banks to schools classified in
about 20 classes and more than 530 subclasses.

Local Public Transport: includes the data related to LPT (Local Public Transport)
companies, scheduled times (modeled with General Transit Feed Specification-GTFS), the
landrail logical and physical graphs (SHP file), and real time data related to the passages at
stops. The scheduled timelines are modeled according to. For example:

BusStop v gt f s : Stop

BusStop v Tras f erServicesAndRenting

Sensors: it models the sensors installed in the city and the related data. A critical
sensor data stream is that related to the traffic. For example:

Tra f f icObservation v Observation u

(∀measuredBySensor.SensorSite)u

(∀instantObserv.time : Instant) . . .

Temporal: macro class which updates concepts related to time (time intervals and
instants) within the ontology, thus enabling to associate a timeline with the recorded events
and allowing forecasts. It may benefit from time ontologies such as OWL-Time, [85].

Weather: it collects all weather reports and prediction generated by collecting hetero-
geneous meteorological data ingested by different kinds of sensor (temperature, pluviome-
try, humidity, wind intensity and direction, snow, etc.).
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