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Abstract  This study proposes an innovative approach to develop 
a regional-scale landslide forecasting model based on rainfall 
thresholds optimized for operational early warning. In particular, 
it addresses two main issues that usually hinder the operational 
implementation of this kind of models: (i) the excessive number of 
false alarms, resulting in civil protection system activation without 
any real need, and (ii) the validation procedure, usually performed 
over periods too short to guarantee model reliability. To overcome 
these limitations, several techniques for reducing the number 
of false alarms were applied in this study, and a multiple valida-
tion phase was conducted using data from different sources. An 
intensity-duration threshold system for each of the five alert zones 
composing the Liguria region (Italy) was identified using a semi-
automatic procedure called MaCumBA, considering three levels of 
criticality: low, moderate, and high. The thresholds were developed 
using a landslide inventory collected from online newspapers by 
a data mining technique called SECaGN. This method was cho-
sen to account for only those events that echo on the Internet and 
therefore impact society, ignoring landslides occurred in remote 
areas, not of interest for civil protection intervention, which would 
adversely affect the model performance because they would result 
in false alarms. A calibration phase was performed to minimize 
the impact of false alarms, allowing at least one false alarm per 
year over the moderate criticality level. In addition, an innovative 
approach to include antecedent rainfall as the third dimension of 
the intensity-duration thresholds was applied, generating a consist-
ent reduction in false alarms. The results were validated through an 
independent landslide inventory and were compared with (i) the 
alert issued by the regional civil protection agency to observe the 
improvements achieved with the proposed model and to evaluate to 
what extent the proposed model is consistent with the assessments 
of the civil protection and (ii) a dataset of the national states of 
emergency to verify the suitability of the developed thresholds for 
alerting citizens. The thresholds obtained showed high predictive 
capabilities, confirming their suitability for implementation in an 
operational landslide early warning system.
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Introduction
Landslides are one of the most frequent natural hazards in the 
world, causing every year casualties and massive economic dam-
ages (Froude and Petley 2018; Haque et al. 2019). In Italy, landslides 
are a very recurring geomorphological process (Herrera et al. 2018): 

Franceschini et al. (2022a, b) identified over 30,000 landslide events 
from 2011 to 2021 by mining Italian online newspapers; according to 
Bianchi and Salvati (2022) and Rossi et al. (2019), in Italy, landslides 
were responsible for 1071 fatalities from 1972 to 2021, and for about 
5.6 billion € of damages from 2000 to 2018; moreover, according to 
Italian regulations and governmental-level inventories, about 20% 
of Italian territory is officially mapped as exposed to landslide haz-
ard (Iadanza et al. 2021).

A cost-effective approach for landslide risk mitigation is the use 
of forecasting models for early warning purposes. Several methods 
exist in the literature and can be broadly divided into two main 
groups: (i) physically based and (ii) empirical/statistical models. 
Physically based models use complex mathematical relationships 
with the aim of faithfully reproducing the physical processes that 
triggers the slope instability (Montgomery and Dietrich 1994; Baum 
et al. 2008; Rossi et al. 2013; Medina et al. 2021; Reid et al. 2015; Bout 
et al. 2018). They are generally applied at the slope or catchment 
scale, because they require several hydrological and geotechnical 
input parameters that are difficult to spatialize over large areas due 
to their extreme heterogeneity (Tofani et al. 2017; Vannocci et al. 
2022), thereby making such models mainly limited to prototypal 
applications (Alvioli and Baum 2018; Tofani et al. 2017; Canli et al. 
2018; Salvatici et al. 2018; Schmaltz et al. 2019; Schilirò et al. 2021). 
Therefore, regional landslides early warning systems (LEWS) are 
typically based on rainfall thresholds (Piciullo et al. 2018; Gariano 
et al. 2020), defined as a rainfall condition beyond which slope insta-
bility occurs (Caine 1980; Guzzetti et al. 2008; Segoni et al. 2018a, b; 
Piciullo et al. 2018). Rainfall thresholds are typically derived using 
only two input data: rainfall records, used to characterize each trig-
gering event, and an inventory of past landslide events, to be used 
for back analysis and for which the time of occurrence is known. 
These data are usually divided into two subsets, one for the thresh-
old definition (calibration phase) and the other one for testing its 
predictive capabilities (validation phase). Although physically based 
approaches are more accurate, rainfall thresholds are fast and suf-
ficiently accurate for regional-scale predictions, and can easily be 
understood and implemented for operational warning purposes.

However, at present, two important issues strongly limit the 
implementation of statistical rainfall thresholds for operational 
applications: (i) the high number of false alarms (FAs, or errors 
of commission: alerts issued because rainfall exceeds the thresh-
old, but without the occurrence of landslides) and (ii) the lack of a 
robust validation phase (Piciullo et al. 2017, 2020).

Some studies show that for rainfall thresholds, a good hit 
rate, that is, the ratio between correct alarms (CAs: threshold 
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exceedances with landslides reported) and missed alarms (MAs: 
no thresholds exceedances, but landslides reported), is gener-
ally achieved at the cost of a high number of FAs, restricting 
their potential use in an operational LEWS (Staley et al. 2013; 
Corsini and Mulas 2017; Abraham et al. 2020, 2021, 2022; Rosi et al. 
2016, 2019, 2021; Gariano et al. 2020; Segoni et al. 2023). Indeed, 
considering a landslide risk scenario articulated on three critical-
ity levels, namely low, moderate, and high (Segoni et al. 2018a, b; 
Piciullo et al. 2018; Segoni et al. 2022; Sala et al. 2021), an FA can 
be considered negligible for precautionary purposes only at the 
low criticality level. Repeated FAs at moderate or high criticality 
levels have a significant economic impact on the civil protection 
system, and the countermeasures adopted to contrast the critical 
situation, such as the recurrent closure of roads or evacuation of 
buildings, can cause disservices that are difficult to justify (Sala 
et al. 2021). Moreover, an excessive number of FA may cause a 
lack of confidence in the warning system itself by the population, 
which, by observing repeated FAs, will tend to consider poten-
tially critical situations without due attention (Amato 2014).

For implementation in a LEWS, a comprehensive validation 
phase evaluated using an independent dataset is mandatory, as it 
allows ascertaining whether the predictive capabilities of a thresh-
old can be considered valid in the future and not only for the 
calibration period. However, this procedure is rarely conducted 
over extensive datasets, due to the scarcity of data, which makes 
challenging the partitioning of the database into two robust sub-
sets (Von Ruette et al. 2011; Martelloni et al. 2012; Leonarduzzi et al. 
2017; Segoni et al. 2018a, b; Martinengo et al. 2023).

To overcome these issues, this paper defines a set of multiple 
rainfall thresholds specifically conceived for operational applica-
tions and including original approaches to decrease the number 
of FAs and to include a robust multi-source validation process.

First, MaCumBA (Massive Cumulate Brisk Analyzer) soft-
ware, developed by Segoni et al. (2014a, b), was used to define a 
set of three intensity-duration (I-D) thresholds (corresponding 
to increasing criticality levels) for the five alert zones (AZs) in 
which the Liguria region (North-West Italy) is partitioned. In 
order to optimize the threshold system for operational warning 
applications, a landslide database collected by a data mining tech-
nique called SECaGN (Semantic Engine to Classify and Geotag-
ging News) and developed by Battistini et al. (2013) was used 
in this study. This technique prioritizes landslide events with a 
significant impact on the society while neglecting non-impactful 
occurrences, resulting in a database focused on events of actual 
interest for civil protection.

Afterward, the number of FAs exceeding the moderate and high 
criticality level thresholds was limited by an innovative calibration 
method, to further minimize their impact on the civil protection sys-
tem. Building on the methodology proposed by Rosi et al. (2021), a 
third rainfall parameter was considered to account for the antecedent 
rainfall and its spatial pervasiveness: OMAR (optimized mean areal 
rainfall) is calculated as the mean rainfall amount fallen in an AZ 
(averaging all available measurements) during a given time period, 
which specific duration is identified as the one that minimizes false 
alarms without negatively affecting the hit rate of the basic intensity-
duration threshold system. This procedure allowed a massive filtering 
of FAs, improving the predictive performance of thresholds.

Finally, a robust validation procedure was carried out. A standard 
validation process was performed using a subsample of the landslide 
dataset (2010 to 2019 data used for calibration, 2020–2021 data used 
for validation). Afterward, the model results were compared with 
alternative source of information, including (i) the alerts issued by the 
warning system currently in use in the Liguria region, for the period 
2015–2021, and (ii) a dataset of national-level emergencies (Gatto 
et al. 2023), for the period 2013–2021. While the first allowed evaluating 
if the model outputs are consistent with the alert levels that the civil 
protection system would have issued, the second allowed to focus the 
validation of the model with respect to high-severity landslide events.

Materials

Test site description
Liguria is located in the north-western portion of the Italian terri-
tory with an east–west oriented elongated shape with approximately 
240 km length, for a total area of around 5400 km2 (Fig. 1). The Ligu-
rian territory is divided into 4 provinces (La Spezia, Genova, Savona, 
and Imperia) and 235 municipalities. The morphology of this region 
is very peculiar as elevation can change in very few kilometers from 
the beach to mountains higher than 2000 m (Fig. 1a). The Liguria 
region is characterized by approximately 35% of hilly territory, only 
2.5% of limited plains close to the sea and mainly by mountainous 
area (around 62.5%) comprising the Ligurian Alps, the Ligurian 
pre-Alps, and the Marguareis Alps (with the highest Mt. Saccarello, 
2200 m a.s.l.).

The mean annual precipitation (MAP) of the Liguria region, 
obtained from available rain gauges data (described in the “Rainfall 
database” section), shows a close correlation between rainfall and 
orography, since the lower rainfall values are distributed along the 
coast, with a minimum of about 600 mm/year registered in the west 
coast, while the highest precipitation values, with a peak of 2600 mm/
year, are concentrated in the Ligurian Alps and pre-Alps (Fig. 1b).

Geologically (Fig. 1c), the territory is mainly composed of meta-
morphic rocks and metaconglomerates, arenaceous and calcareous 
flysch, and recent deposits (Giammarino et al. 2002).

Due to these meteorological conditions and the geomorphological 
setting, Liguria is one of the regions most affected by landslides 
in Italy (Guzzetti et al. 2004; D’Amato Avanzi et al. 2011; Cevasco 
et al. 2013, 2015; Giordan et al. 2017; Pepe et al. 2019; Calvello and 
Pecoraro 2018; Franceschini et al. 2022b).

The DPCM of February 27, 2004, divides the study area into 5 AZs, 
from Ligu-A to Ligu-E (Fig. 1d) based on the hydrogeological, climatic, 
and geomorphological characteristics of the territory, as well as on the 
administrative boundaries of municipalities. This criterion is used by 
the civil protection authority to issue the alerts, and for this reason, 
this work provides a specific rainfall threshold system for each AZ.

Landslides inventory

Traditionally, methods for setting up landslide inventories include 
remote sensing methodologies (Bianchini et al. 2018; Solari et al. 
2020), photo interpretation and field surveys (Brunsden 1985), data 
retrieval from technical reports (Guzzetti et al. 2008; Kirschbaum 
et al. 2010; Vennari et al. 2014; Rosi et al. 2019; Collini et al. 2022), or a 
combination of these (Dikau et al. 1996; Rosser et al. 2017). All these 
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traditional approaches are usually quite accurate, but time-consuming,  
and could be very costly. Landslides detection by deep learning 
(Catani 2021; Bhuyan et al. 2023; Nava et al. 2022; Meena et al. 2021) is 
an innovative approach that allows the collection of multi-temporal 
inventories starting from satellite images rapidly, automatically, 
cheaply, and with high accuracy, but also identifying such landslides 
occurred in remote areas, with no impact on citizens or buildings.

Data mining is another recently developed technique used to 
obtain information related to natural hazards from online newspa-
per articles (Battistini et al. 2013, 2017; Kreuzer and Damm 2020). In 
fact, several studies have verified that mass media are generally the 
first and primary source of information about hazards for the public 
(Fischer 1994). Social media report a natural disaster much faster than 
observatories (Battistini et al. 2013; Goswami et al. 2018; Franceschini 
et al. 2022a). Moreover, the use of this technique implicitly discards 
the landslides that had no impact on society, because they occurred in 
isolated areas, without threatening buildings, infrastructure, or crops. 
Even if this characteristic may be a downside in some applications 
where the completeness of inventories is important, in operational 
civil protection applications, this feature could represent an advan-
tage. Landslides occurred without impacting society, if identified by 
a forecasting model, would actually result in false alarms, since they 
would not be reported to the authorities. Conversely, using landslide 
news from social media would allow to calibrate the forecasting model 
specifically to identify landslides associated with a significant level or 
risk or significant impacts on society, which represent relevant events 
for civil protection purposes.

SECaGN is a data mining technique developed by Battistini et al. 
(2013), based on a mechanism for acquiring Internet news related 
to natural hazards, considered a source of data on landslide events. 

SECaGN is applied within Google News, as it considers national and 
local newspapers more comprehensively (Franceschini et al. 2022b). 
Through publication date and places toponyms, each news item is 
dated and geolocated with a fully automatic procedure.

The landslide news dataset used to calibrate the thresholds in 
this study was deeply analyzed by Franceschini et al. (2022a, b) for 
the period from 2010 to 2019 for the whole Italian territory. A total 
of 1218 online newspaper articles were collected from Google News, 
considering only those within the Liguria region and with high 
spatial and temporal accuracy. The reporting day and/or localiza-
tion of each landslide has been verified and, if necessary, adjusted 
manually using the information obtained from the news. In addi-
tion, only rainfall-induced events were considered, excluding other 
types of landslides (such as rockfalls and anthropic-induced land-
slides). Overall, 315 landslide events were used for rainfall thresh-
olds calibration.

For model validation, an independent dataset has been col-
lected from SECaGN, for the period from 2020 to 2021. It has been 
analyzed and manually classified through the method adopted by 
Franceschini et al. (2022b). For the study area, 515 articles have been 
harvested, referring to rainfall-induced landslides with high spatial 
and temporal accuracy. A total of 45 landslide events have been 
identified for the validation phase.

Rainfall database

Italy is furnished with dense network of rain gauges consisting of 
more than 4500 stations spatially distributed throughout the entire 
territory, with a total of 115 rain gauges located in the Liguria region 
(Del Soldato et al. 2021).

Fig. 1   Investigated area: a digital elevation model, b mean annual precipitation and localization of rain gauges, c lithology, and d alert zones 
of the Liguria region
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For this study, hourly records were derived from the rainfall 
database for the period 2010–2021. Some rain gauges present few 
time gaps, where no data have been recorded, mainly due to instru-
ment malfunctions; however, they do not represent a limitation of 
the proposed statistical analysis, because the technique used for the 
realization of the rainfall thresholds (MaCumBA, fully explained in 
the “2D rainfall thresholds” section) allows multiple rain gauges to 
be associated with each landslide within a specific search radius, 
providing the missing records. The rainfall records were analyzed 
to remove noise and errors and identify gaps of data, for example, 
negative rainfall values or values higher than 400 mm/h, which are 
obvious erroneous rainfall measurements.

Alternative validation datasets

Before implementing rainfall thresholds into operational warning 
systems, the best practice, widely acknowledged in the literature, 
involves a thorough validation. However, this practice is not yet 
fully established due to the limited availability of data (Segoni et al. 
2018a). Typically, the primary focus is on calibration, and only a 
small percentage of data is used for validation purposes. This 
approach is justified by the need for a strong statistical foundation 
for defining thresholds, and for research purposes, testing them on 
a limited dataset may be considered satisfactory in confirming their 
validity. Nevertheless, for operational early warning applications, it 
is crucial to demonstrate the thresholds’ reliability with a high level 
of accuracy for future predictions. The use of a few years of data for 
validation does not provide a precise assessment of the threshold 
performance, thereby making problematic their implementation 
within an operational warning system (Gariano et al. 2015).

Due to limited data availability, this study employs rainfall and 
landslide data from 2020 to 2021 for classical validation purposes. 
To enhance the robustness of the validation phase, an innovative 
analysis is proposed, which involves the use of two alternative data-
sets of different sources.

The first dataset is composed of the alerts issued by the exist-
ing early warning system in use in the region. A comparison with 
this data allows determining whether the proposed thresholds offer 
improvements or reveal potential limitations. Currently, the Liguria 
region employs a weather-based LEWS. In practice, the same level 
of criticality calculated for meteorological hazard is also attributed 
to cascading hazards like landslides (https://​www.​regio​ne.​ligur​ia.​
it/​homep​age-​prote​zione-​civile. last accessed on 20 June 2023). The 
past alerts issued by the region were provided by the Regional Envi-
ronmental Protection Agency of Liguria (ARPAL), from 2015 to 2017, 
and from the GitHub repository of the Italian National Department 
of Civil Protection for the period 2018–2021 (https://​github.​com/​
pcm-​dpc/​DPC-​Bolle​ttini-​Criti​cita-​Idrog​eolog​ica-​Idrau​lica).

The second dataset is the national-level civil protection emer-
gencies collected by Gatto et al. (2023). For Italian legislation, 
national-level emergencies are extremely critical events that require 
extraordinary measures and nationwide coordination due to high 
magnitude, severity of impacts, and spatial extension. Therefore, 
a comparison with this dataset allows to verify if the model acted 
correctly during critical meteorological events, in particular how 
thresholds responded to large-scale and high-severity phenom-
ena. The ground effects of these emergency events are manifold, 
including floods, landslides, and huge damages to infrastructures, 

private properties, and population. These types of events could 
impact small or large territories in a limited time period or could 
last up to months, and according to Gatto et al. (2023), sometimes 
it is not possible to narrow down the start and end dates of these 
events, resulting in scarce temporal detail. Moreover, commonly 
not every AZ is hit during an event, meaning that some areas could 
not be damaged or included in a national-level emergency state. 
This results in events with poor temporal detail, such as the emer-
gency related to Vaia storm, issued for an entire month on which 
several regions were impacted at different times, including Liguria, 
and also containing days without precipitation. More in general, 
the longer the period reported the scarcer the temporal detail, the 
higher could be the number of FAs or NAs (non-alarms, rainfall 
does not exceed the threshold and no landslides are reported) not 
directly related to the main event. From 2013 to 2022, Liguria was hit 
11 times by events which required the declaration of a national-level 
emergency state, on which this validation was performed.

Rainfall threshold analysis

2D rainfall thresholds
The threshold analysis was performed using MaCumBA, a soft-
ware developed by Segoni et al. (2014a, b) and tested in several case 
studies in Italy (Rosi et al. 2015, 2021; Segoni et al. 2014a, b) and in 
other countries (Rosi et al. 2016, 2019). MaCumBA provides a semi-
automated, fast, and objective analysis and allows the establishment 
of a multiple thresholds system for the identification of three levels 
of increasing criticality.

The thresholds defined by MaCumBA are based on the general 
power law first proposed by Caine (1980):

where I represents the rainfall intensity (mm/h) and D is the dura-
tion of the rainfall (h); α, the intercept on the y-axis (> 0), and β, 
the angular coefficient of the line (< 0), are empirical parameter 
characteristics of the rainfall data distribution.

One of the peculiarities of MaCumBA is the definition of an 
additional parameter to characterize the thresholds, called No-
Rain-Gap (NRG). It expresses the number of consecutive hours 
without rain that is required to consider a rainfall event ended. 
This parameter plays a key role, ensuring the replicability of the 
analysis and facilitating the implementation of thresholds in an 
operational warning system (Segoni et al. 2014a, b).

MaCumBA procedure can be summarized into three main 
phases:

1.	 Identification of rainfall events and definition of I and D 
parameters for each event for each rain gauge

2.	 Selection of the most appropriate rain gauge for the charac-
terization of each landslide, choosing the rain gauge, within a 
certain search radius from the landslides, with the most com-
plete time series related to each event

3.	 Choice of the most representative I-D threshold using a 95% 
confidence interval and plotting it in a log–log graph

The identified threshold is used to separate the ordinary level, 
which represents the absence of criticality, from the low criticality 

I = �D�
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https://github.com/pcm-dpc/DPC-Bollettini-Criticita-Idrogeologica-Idraulica
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level. Then, it is translated upward to calibrate two higher thresh-
olds representing the limits of the moderate and high criticality 
warning levels. In this study, a site-specific calibration procedure 
to define the moderate and high criticality thresholds is proposed, 
based on the number of FAs that exceed these thresholds. We 
assume that the social and economic costs of activating the civil 
protection system for a moderate criticality alert are so onerous 
that no more than one FA on average per year is justified; therefore, 
for the 10-year calibration period, the moderate criticality threshold 
was defined by moving up the low criticality threshold until only 
about 10 FAs would be committed. Considering that a FA above the 
high criticality threshold weighs heavily on the civil protection sys-
tem, both economically and in terms of confidence in the warning 
system itself by the population, to define this threshold, the shift 
ended when no FAs were committed (Segoni et al. 2022). In this way, 
a low number of FAs is guaranteed for the moderate and high criti-
cality thresholds, making them perfectly suitable for operational 
purposes and much more sustainable by the civil protection system, 
without affecting the predictive capabilities of the thresholds.

The proposed methodology was applied for the calibration 
period, from 2010 to 2019, to define a landslide warning system on 
three levels of criticality for each AZ of the Liguria region. Then, 
the thresholds have been validated with an independent dataset 
of 2 years, from 2020 to 2021, to verify if the calibration criterion 
based on the number of exceedances without a landslide is effective.

3D rainfall thresholds

Although the major strength of rainfall thresholds is their simplic-
ity, recently, many authors are attempting to include other param-
eters to better reproduce cause and effect relationships between 
rainfall and landslides, and among the most investigated param-
eters, they are using soil moisture or other proxies to indirectly 
take it into account (Chen et al. 2017; Segoni et al. 2018b; Zhao et al. 
2019; Rosi et al. 2021; Kim et al. 2021). In fact, it is widely accepted 
in traditional literature that even short-term, low-intensity rainfall 
can trigger landslides if it occurs during a wet season, therefore, in 
an already partially saturated soil (Nocentini et al. 2023).

To account for both triggering and predisposing rainfall, we 
built on the methodology proposed by Rosi et al. (2021) to get an 
optimized 3D threshold system that reduces false alarms without 
reducing the number of hits (correct predictions of landslides). 
These 3D thresholds are defined by coupling classical intensity-
duration rainfall thresholds (defined in the x- and y-axes of a 

Cartesian plane) with a new rainfall parameter (considered in the 
z-axis), called optimized mean areal rainfall (OMAR), which was 
defined as follows.

For each rainfall event, the cumulative rainfall measured in 
some reference long-term period was identified for each rain gauge 
of the same alert zone. The reference periods considered in this 
study were 7, 15, 30, and 60 days long. For each event, the anteced-
ent rainfall of all the rain gauges was averaged obtaining a single 
value, characteristic of the whole AZ (OMAR): OMAR7, OMAR15, 
OMAR30, and OMAR60. OMAR can be considered an indicator of 
how a rainstorm event is widespread in the territory, which is a key 
feature of meteorological events in civil protection hazard manage-
ment, as it affects the capability of local administrations to face it 
and take adequate countermeasures. For each reference long-term 
duration, all landslide-triggering event events were plotted together 
with non-triggering ones to identify the OMAR value equal to the 

Table 1   I-D thresholds parameters for the low criticality threshold of each AZ

AZ Landslides news 
(calibration)

Landslides news 
(validation)

Rain gauges NRG (h) α low criticality 
level

β

Ligu-A 414 128 31 72 9.05  − 0.58

Ligu-B 377 200 28 72 21.78  − 0.67

Ligu-C 323 112 33 72 10.80  − 0.45

Ligu-D 81 59 11 36 16.70  − 0.57

Ligu-E 23 16 11 60 22.36  − 0.67

Table 2   I-D thresholds performance for each criticality level and AZ, 
for calibration dataset

AZ Criticality level Equation Calibration

FA CA MA

Ligu-A Low 9.05*10−0.58 186 90 4

Moderate 21*10−0.58 10 39 -

High 34*10−0.58 0 22 -

Ligu-B Low 21.78*10−0.67 97 88 13

Moderate 36*10−0.67 8 35 -

High 56*10−0.67 0 18 -

Ligu-C Low 10.80*10−0.45 182 68 10

Moderate 22*10−0.45 10 21 -

High 45*10−0.45 0 5 -

Ligu-D Low 16.70*10−0.57 85 30 3

Moderate 31*10−0.57 6 17 -

High 78*10−0.57 0 2 -

Ligu-E Low 22.36*10−0.67 94 9 0

Moderate 43*10−0.67 10 7 -

High 73*10−0.67 0 0 -
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minimum cumulative rainfall obtained for the landslide events cor-
rectly identified by the 2D thresholds. If this OMAR value is used as 
the 3rd threshold, only non-landslide below the 2D threshold (false 
alarms) is filtered out. The last step of the procedure is to identify 
which OMAR (OMAR7, OMAR15, OMAR30, and OMAR60) filters out 
the highest number of false alarms, without reducing the number of 
correct predictions. That would be selected as the OMAR and will 
be used in the z-axis of the 3D threshold.

Results
Through the procedure summarized in the previous section, the 
thresholds were obtained for each AZ of the Liguria region. Table 1 
shows the I-D threshold parameters for the low criticality level, for 
each AZ, obtained by applying MaCumBA. Indeed, equations and 
performance for calibration phase are reported in Table 2.

In order to further improve the effectiveness of the proposed 
2D thresholds, a third parameter (OMAR) was introduced to add 
a third dimension to the thresholds, resulting in a reduction in the 
number of FAs for each criticality level. Table 3 provides a sum-
mary of the results obtained during the calibration phases of the 
3D thresholds for each AZ; instead, Fig. 2 illustrates an example of 
a 3D threshold obtained for Ligu-C.

Discussions
The threshold equations in each AZ (Table 1) exhibit significant 
variations. These differences can be attributed to various physi-
cal setting of the study area, such as the rainfall patterns and the 
geomorphological and lithological characteristics, as well as to the 
number of available landslides and rain gauges (Rosi et al. 2017). 
For each criticality level, Ligu-A shows the lowest 2D thresholds 
compared to the rest of the region. This is primarily attributed to 
the low MAP levels of this AZ (Fig. 1b). Instead, in the rest of Ligu-
ria, the presence of a complex orography in the proximity of the 
coastline promotes the development of more severe rainfall events 
(Furcolo et al. 2016). These phenomena are becoming increasingly 
frequent, particularly in the central and eastern zones of the region, 
due to climate change (Libertino et al. 2018). Such elevated levels of 
rainfall result in higher thresholds.

As shown in Table 2, the number of FAs is more than double the 
total number of CAs for each AZ, except for Ligu-B where the num-
ber of FAs is still higher. These results are not satisfactory, especially 
if these thresholds are to be used for operational early warning. 
The proposed calibration method for moderate and high critical-
ity thresholds, which allows for a maximum of 1 FA/year above the 
moderate threshold and 0 FA/year above the high threshold, is 

Table 3   Summary table of 3D thresholds results obtained for calibration phase

AZ Period of 
cumulation

OMAR (mm) Filtered FA 
low criticality

Filtered FA 
moderate 
criticality

% of filtered FA 
low criticality

% of filtered FA 
moderate criticality

New FA tot CA

Ligu-A 7 days 4.78 16 4 9% 40% 170 90

15 days 8.62 18 3 10% 30% 168 90

30 days 13.78 11 1 6% 10% 175 90

60 days 49.79 19 0 10% 0% 167 90

Ligu-B 7 days 16.40 17 1 18% 13% 80 88

15 days 38.40 26 1 27% 13% 71 88

30 days 46.80 12 0 12% 0% 85 88

60 days 84.50 10 0 10% 0% 87 88

Ligu-C 7 days 13.52 69 9 38% 90% 113 68

15 days 35.04 82 8 45% 80% 100 68

30 days 46.65 50 5 27% 50% 132 68

60 days 87.01 28 2 15% 20% 154 68

Ligu-D 7 days 48.31 42 4 49% 67% 43 30

15 days 91.44 57 4 67% 67% 28 30

30 days 105.62 43 3 51% 50% 42 30

60 days 145.08 29 1 34% 17% 56 30

Ligu-E 7 days 104.23 65 5 69% 50% 29 9

15 days 227.64 78 6 83% 60% 16 9

30 days 294.50 66 5 70% 50% 28 9

60 days 352.33 53 5 56% 50% 41 9
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largely respected for each AZ, and effectively mitigates the impact 
of these errors on the proposed operational warning system.

The same trend showed for 2D threshold of Ligu-A is observed 
also for the OMAR thresholds, which exhibit the lowest values of 
the region. During the calibration of the 3D thresholds, the high-
est number of filtered FAs is obtained when using OMAR values 
calculated over 15 days for most AZs (from Ligu-B to Ligu-E, for 
the 15-day period, the number of FAs has been reduced to the mini-
mum: 71, 100, 28, and 16, respectively), except for Ligu-A, where a 
60-day period leads to one additional FA being filtered with respect 
to the 15-day one (167 remaining FAs instead of 168). In order to 

achieve greater consistency across all AZs, it was decided to con-
sider the 15-day cumulative threshold as the optimal configuration, 
including for Ligu-A, despite this one additional FA accounted in 
this case. Table 3 highlights the significant reduction in the number 
of FAs at the low criticality level, with a peak of 82 filtered FAs in 
Ligu-C (from Ligu-A to Ligu-E, there is a reduction in the number 
of FAs at the low criticality level by 10%, 27%, 45%, 67%, and 83%, 
respectively). Moreover, there is an important reduction in FA clas-
sified at the moderate criticality level, with a peak again for Ligu-C, 
where 8 FAs were filtered, thereby further mitigating the impact of 
these errors on the civil protection system (from Ligu-A to Ligu-E, 

Fig. 2   Example of 3D rainfall thresholds obtained for the Ligu-C Alert Zone for calibration phase: a 3D view and b profile view (x–z plane)
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there is a reduction in the number of FAs at the moderate criticality 
level by 30%, 13%, 80%, 67%, and 60%, respectively). The OMAR 
thresholds in Ligu-D and Ligu-E are higher compared to the other 
AZ, which is in accordance with the considerably higher levels of 
MAP with respect to the other AZs (Fig. 1b).

The excellent results achieved in the calibration phase were 
further confirmed by validating the 2D and 3D thresholds, utiliz-
ing an independent landslide database for the period 2020–2021 
obtained by SECaGN. The outcomes of validation phase for 2D 
rainfall thresholds are presented in Table 4, while the results for 3D 
thresholds’ validation are shown in Table 5. Figure 3 illustrates an 
example of the results obtained for the validation of the 3D thresh-
old of Ligu-C.

The validation of the 2D thresholds (Table 4) demonstrated 
that the chosen criterion for handling the FAs is largely respected, 
with the exception of one single event. In Ligu-A, the rainfall event 
of 15/08/2020, with a duration of 2 h and particularly intense 
(26.8 mm/h), results above the high criticality threshold, but no 
landslides were reported following this event. This occurrence 
represents the only FA above the highest criticality threshold in 
12 years of simulation throughout the Liguria region. The number 
of MAs remains relatively low in each zone, with a maximum of 7 
in Ligu-C. Despite the implementation of the third dimension in 
each threshold, it was not possible to eliminate the FA at the high 
criticality level observed in 2020 for Ligu-A (Table 5). In addition, 
in Ligu-D, the validation of the 3D thresholds effectively filtered 
out 4 FAs at the low criticality level, but also removed a landslide 
event correctly identified by the 2D thresholds. In this AZ, which 
experiences heavy precipitation and has a higher OMAR value, the 

Table 4   Summary table of 2D thresholds results for validation phase

AZ Criticality level Validation

FA CA MA

A Low 28 9 2

Moderate 2 3 -

High 1 2 -

B Low 17 10 4

Moderate 1 4 -

High 0 0 -

C Low 11 6 7

Moderate 1 0

High 0 0 -

D Low 6 2 3

Moderate 1 0 -

High 0 0 -

E Low 26 2 0

Moderate 2 0 -

High 0 0 -
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inadvertent removal of CAs is more likely due to the 3D thresh-
old. Overall, with only 2 significant errors observed over a 12-year 
analysis period, it is evident that the proposed model demonstrates 
a promising performance.

The capability of the OMAR threshold to differentiate between 
ordinary rainfall conditions and those causing slope instability is evi-
dent in the removal of many FAs while preserving all correct alarms 
(except one), as compared to the classic I-D threshold. This outcome 
can be interpreted as a capability of the proposed system to account 
simultaneously of triggering rainfall (expressed by rainfall intensity) 
and other rainfall prerequisites (expressed by OMAR) that in the 
study area are not sufficient, alone, to trigger a landslide but can 

set hazardous hydrological preconditions on the hillslopes. Those 
preconditions are usually addressed by rainfall thresholds based on 
antecedent rainfall accumulated over relatively long time periods or 
by antecedent precipitation indexes (Glade et al. 2000; Vessia et al. 
2014; Zhao et al. 2019; Lazzari et al. 2020; Rosi et al. 2021; Kim et al. 
2021). The main novelty and strength of the proposed approach is 
that, while usually rainfall thresholds are based either on antecedent 
rainfall indexes or on peak intensity rainfall, the 3D thresholds used 
in this study pursue both strategies at the same time.

The results of the comparison between the proposed thresholds 
and the alerts issued by the current warning system used in Liguria 
are shown in Table 6. It is evident that the proposed 3D thresholds 

Fig. 3   Example of 3D rainfall thresholds obtained for the Ligu-C alert zone for validation phase: a 3D view and b profile view (x–z plane)
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have led to a significant reduction in the number of FAs. The zone 
with the highest reduction in FA is Ligu-E, where 133 FAs have been 
removed. In Ligu-A, there are 23 more FAs at the low criticality level, 
but 7 fewer FAs at the moderate criticality level and 1 fewer FA at the 
high criticality level. In total, 345 FAs have been removed, of which 
97 are at the moderate or high criticality level. Therefore, the imple-
mentation of the proposed methodology drastically reduces the 
economic and social impact of these errors on the civil protection 
system. Additionally, an increase in CA was observed. In total, the 
events correctly predicted by the proposed thresholds are 98 more 
than those predicted by the current warning system, including 40 
events at the moderate or higher criticality level.

The results obtained by the comparison with the national-
level emergency dataset are shown in Table 7. In order to access 
the dataset provided by Gatto et al. (2023) and obtain additional 
information about each event, it was inserted into the table the field 
“Emergency state code,” containing the same code assigned to each 
event by the author. The empty cells indicate the AZs that are not 
involved in the state of emergency.

During all national emergency events analyzed, threshold 
exceedances have been recorded. Most of the exceedances results 
in CA, namely 40 in total, of which 30 exceeded the moderate 

criticality threshold and 15 the high criticality threshold. Only 20 
FAs have been registered, of which only 5 as moderate criticality 
and zero as high criticality over 8 years across the entire region. 
In Ligu-B, the only AZ involved in all 11 analyzed events, no FAs 
have been recorded, while Ligu-A and C have registered only 3 
and 4 FAs, respectively, with low criticality.

There is only one emergency event that registered more FAs 
than CAs, the 2016_05, with 0 CA and 1 FA. The report for this 
event published by ARPAL explains that the ground effects 
observed were primarily due to strong wind, causing signifi-
cant damage to the railway and road network, but the associated 
rainfall was moderate, and only a few landslides were reported 
(https://​www.​arpal.​ligur​ia.​it/​conte​nuti_​stati​ci/​pubbl​icazi​oni/​
rappo​rti_​eventi/​2016/​Report_​spedi​tivo_​20161​014_​vers0​8nov.​
pdf, last accessed on 20 June 2023). This clarifies why there were 
only a few threshold exceedances in this case.

As previously explained, these national-level emergency 
events have a duration of several days, in some cases even months 
(Vaia storm, code 2018_06). In these cases, it is possible that mul-
tiple exceedances, including FAs and NAs, were observed during 
the emergency, even if they are not directly linked to the pri-
mary event of the emergency. These exceedances should not be 

Table 6   Results of the comparison between the LEWS currently in use in Liguria and the proposed 3D thresholds

AZ Criticality level Current LEWS Proposed 3D thresholds Differences

CA FA MA CA FA MA CA FA MA

Ligu-A Low 5 87 48 49 110 4 44 23  − 44

Moderate 1 14 - 21 7 - 20  − 7 -

High 0 2 - 11 1 - 11  − 1 -

Total 5 87 48 49 110 4 44 23  − 44

Ligu-B Low 10 129 38 37 37 11 27  − 92  − 27

Moderate 6 29 - 18 3 - 12  − 26 -

High 0 7 - 7 0 - 7  − 7 -

Total 10 129 38 37 37 11 27  − 92  − 27

Ligu-C Low 23 128 27 36 53 14 13  − 75  − 13

Moderate 7 19 - 6 0 -  − 1  − 19 -

High 2 4 - 2 0 - 0  − 4 -

Total 23 128 27 36 53 14 13  − 75  − 13

Ligu-D Low 11 105 17 21 17 7 10  − 88  − 10

Moderate 5 19 - 11 1 - 6  − 18 -

High 1 9 - 2 0 - 1  − 9 -

Total 11 105 17 21 17 7 10  − 88  − 10

Ligu-E Low 1 137 4 5 4 0 4  − 133  − 4

Moderate 0 27 - 3 0 - 3  − 27 -

High 0 5 - 0 0 - 0  − 5 -

Total 1 137 4 5 4 0 4  − 133  − 4

https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2016/Report_speditivo_20161014_vers08nov.pdf
https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2016/Report_speditivo_20161014_vers08nov.pdf
https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2016/Report_speditivo_20161014_vers08nov.pdf
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considered missed responses of the model to these highly critical 
events, because they may be related to situations with no or low 
precipitation, therefore well recognized by the model.

Ligu-D and Ligu-E are frequently excluded from these emergency 
states because they did not suffer significant damages. In fact, they 
are the areas most affected by high rainfall but with a low population 
density (https://​ec.​europa.​eu/​euros​tat/​stati​stics-​expla​ined/​index.​
php?​title=​Popul​ation_​and_​housi​ng_​census_​2021_-_​popul​ation_​
grids​&​stable=1, last accessed on 20 June 2023); therefore, a lower 
impact on society may be observed even in case of similar rainfall 
rates. Ligu-A is also often excluded because it is the least rainy area 
of the region, leading to lower hydrogeological risks.

Conclusion
In this study, a specific set of three-dimensional rainfall thresholds 
has been developed for each AZ of the Liguria region. The main 
objective is to optimize these thresholds to m13ake them suitable 
for operational warning purposes. To achieve this goal, the work 
focuses on addressing two major challenges that hinder the imple-
mentation of thresholds in a LEWS: the high occurrence of FAs and 
the limited statistical reliability of incomplete validation phases.

A set of intensity-duration thresholds has been calibrated to 
minimize the number of FAs, allowing for a maximum of one FA 
per year above the moderate criticality threshold and zero above 
the high criticality threshold. Additionally, the number of FAs has 
been further reduced by introducing an additional parameter (opti-
mized mean areal rainfall, OMAR) through an innovative proce-
dure, resulting in a three-dimensional threshold system optimized 
to reduce false alarms as much as possible without reducing the 
number of landslide events correctly identified. In addition, these 
3D thresholds allow to account at the same time for both triggering 
and predisposing rainfall, thus providing a more complete repre-
sentation of the physical mechanism of landslide triggering, while 
maintaining a simple and easy to implement methodology. Despite 
the positive outcomes, it should be remarked that like any other 
empirical approach, the proposed methodology is very site specific. 
Therefore, we suggest applying the presented 3D rainfall threshold 
approach on areas characterized by geomorphological and climatic 
homogeneity. In perspective, the method can be applied also on 
wider areas (e.g., an entire nation), provided that the area is divided 
into a mosaic of smaller and relatively homogenous alert zones to 
be analyzed and calibrated independently. In this work, the Liguria 
region was divided into five alert zones; wider and more hetero-
genic areas would require a higher number of subzones to obtain 
an effective threshold system.

The high predictive capabilities of the obtained thresholds were 
demonstrated through a robust multi-source validation process, 
which involved a classical validation phase with an independent 
landslide dataset, followed by a second phase that included two 
different comparisons: one with the alert issued by the LEWS cur-
rently in use in the region and another using a dataset of national-
level emergencies. These comparisons allowed for testing the 
thresholds for an operational context, identifying their strengths 
and weaknesses, and simulating a real situation. This methodol-
ogy allows researchers and administrative operators to make more 
objective decisions regarding the implementation of the most reli-
able thresholds in a LEWS. Moreover, the proposed method can be Ta

b
le

 7
  

(c
o

n
ti

n
u

ed
)

E
m

er
ge

nc
y 

St
at

e 
C

od
e

C
ri

ti
ca

lit
y

Li
gu

-A
Li

gu
-B

Li
gu

-C
Li

gu
-D

Li
gu

-E
to

ta
l

C
A

FA
N

A
C

A
FA

N
A

C
A

FA
N

A
C

A
FA

N
A

C
A

FA
N

A
C

A
FA

N
A

20
19

_1
4

Lo
w

M
od

er
at

e
H

ig
h

1 1 1

0 0 0

0 - -

1 0 0

0 0 0

0 - -

1 0 0

0 0 0

0 - -

1 1 0

0 0 0

0 - -

0 0 0

1 0 0

0 - -

4 2 1

1 0 0

0 - -

20
20

_0
3

Lo
w

M
od

er
at

e
H

ig
h

1 0 0

0 0 0

0 - -

1 0 0

0 0 0

0 - -

2 0 0

0 0 0

0 - -

to
ta

l
Lo

w
M

od
er

at
e

H
ig

h

9 8 7

3 0 0

3 - -

12 8 6

0 0 0

3 - -

10 5 0

4 0 0

5 - -

7 7 2

5 1 0

5 - -

2 2 0

8 4 0

3 - -

40 30 15

20 5 0

19 - -

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_and_housing_census_2021_-_population_grids&stable=1
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_and_housing_census_2021_-_population_grids&stable=1
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_and_housing_census_2021_-_population_grids&stable=1


569

569Landslides  21  •  (2024)

easily replicated, serving as a valuable alternative in cases where 
data scarcity hinders reliable validation.
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