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Abstract: Modern hospitals have to meet requirements from national and international institutions
in order to ensure hygiene, quality and organisational standards. Moreover, a hospital must be
flexible and adaptable to new delivery models for healthcare services. Various hospital monitoring
tools have been developed over the years, which allow for a detailed picture of the effectiveness and
efficiency of the hospital itself. Many of these systems are based on database management systems
(DBMSs), building information modelling (BIM) or geographic information systems (GISs). This
work presents an automatic recognition system for hospital settings that integrates these tools. Three
alternative proposals were analysed in terms of the construction of the system: the first was based on
the use of general models that are present on the cloud for the classification of images; the second
consisted of the creation of a customised model and referred to the Clarifai Custom Model service;
the third used an object recognition software that was developed by Facebook AI Research combined
with a random forest classifier. The obtained results were promising. The customised model almost
always classified the photos according to the correct intended use, resulting in a high percentage of
confidence of up to 96%. Classification using the third tool was excellent when considering a limited
number of hospital settings, with a peak accuracy of higher than 99% and an area under the ROC
curve (AUC) of one for specific classes. As expected, increasing the number of room typologies to be
discerned negatively affected performance.

Keywords: artificial intelligence; CNN; image classification; hospital settings

1. Introduction

This work aims to provide a method for the automatic classification and labelling
of hospital rooms based on their typologies. The need for such a method stems from the
fact that many computer-aided facility management (CAFM) systems are being used in
hospitals nowadays, but their value and usefulness is tightly linked to the correlation
between the data they provide in terms of room use and performed activities and the
real situation. Looking at the current situation, in which the updating of these data is
delegated to inspectors who manually assign the use of rooms based on inspections and
surveys, improving the level of automation in updating this information is paramount.
Each hospital is a very complex structure that provides a multitude of services. This
complexity keeps growing because modern technology increases the range of diagnostic
capabilities and expands the number of treatment options [1]. A combination of medical
research, engineering and biotechnology has resulted in a multitude of new treatments
and instrumentation, which often require specialised training and facilities for their use.
Therefore, hospitals have become more expensive to run and healthcare managers are
increasingly interested in quality, cost, effectiveness and efficiency issues, leading to the
need to develop new technical tools that allow hospital monitoring through measuring
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quantitative, architectural, technological and people-related parameters [2–4]. From these
reflections, the idea of this project was born and we aimed to present solutions for the
automatic classification of hospital settings from images of hospital spaces in order to
manage them more quickly and efficiently. The pervasive presence of autonomous mobile
robots (AMRs) in hospitals [5], which are often provided with video cameras, is likely to
increase, as testified by many EU-funded projects, such as “Robotics4EU” [6] and “Odin
Smart Hospitals” [7]. These robots continuously move around hospitals and can acquire
photos and videos of the hospital rooms. The method suggested in this article is a novel
supplement to such technologies, allowing for the extraction of as much information as
possible from these valuable sources and leveraging their presence to also provide decision-
makers with knowledge of the real usage of hospital spaces. With regard to the Italian
healthcare system, it is necessary to refer to the Decree of the President of the Italian
Republic, issued on 14 January 1997 [8], which states that in order to carry out healthcare
activities in the national territory, it is necessary to comply with specific accreditation
requirements. This document is the first legislative reference with a national nature, which
identifies the minimum, general and specific requirements for authorising the exercise of
public and private health activities. Within established terms, regions can integrate these
requirements for authorisation and define additional requirements for the accreditation of
already authorised structures. Consequently, since 1997, regions have followed different
transposition paths and issued different requirements for authorisation and accreditation.
All requirements can be grouped according to their type: organisational, structural, plant
and technological [9]. In Tuscany, the healthcare system is governed by the Regional Law
of 24 February 2005, no. 40 [10], and by its subsequent amendments and additions. Within
these documents, the different types of requirements for different healthcare settings can
be found. Thanks to these legislative documents, it is possible to identify the characteristics
of different types of hospital settings. Clearly, all wards, operating rooms, intensive care
units and the many other spaces that constitute modern hospitals have very different
characteristics. For the design and implementation of a system that performs the automatic
classification of such settings, it is important to identify the structural and technological
elements that distinguish rooms that are used for different purposes, together with their
specific plant elements.

1.1. Related Works

This subsection presents related works that address the problems of developing
technical tools to improve hospital facility management (FM). Providing healthcare facility
management professionals with enhanced decision-making support systems would have
a positive impact on the productivity and success of these structures. Irizarry et al. [11]
proposed a conceptual ambient intelligent environment for enhancing the decision-making
process of facility managers. This environment uses building information modelling
(BIM) and mobile augmented reality (MAR) as the technological bases for the human–
computer interfaces and uses aerial drones as technological tools. The BIM approach is
becoming very common for designing and managing hospitals. Spatial and structural
functional data could be obtained using this approach, but implementing a complete BIM
model for a complex scenario, such as healthcare structures, requires many resources.
Wanigarathna et al. [12] investigated how BIM can be used to integrate a wide range of
information and improve built asset management (BAM) decision-making during the in-
use phase of hospital buildings. In parallel, many authors [13–16] have proposed systems
that are based on the applications of data management in the Internet of Things (IoT) in
order to better manage hospital organisation. In particular, healthcare computer-aided
facility management (CAFM) and healthcare space management activities are strategic
for establishing a dialogue between information and stakeholders. They extrapolate the
elements characterising the functions of the management process from the heterogeneity of
data and users. CAFM techniques have the aim of defining expert tools for the control of the
information that is associated with assets. This is carried out through integrated systems of
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graphical and numerical databases. Luschi et al. [4] illustrated the methodology and tools
used by a multidisciplinary research team, which was composed of architects and computer
engineers who supported the requalification project for the Careggi University Hospital of
Florence. The authors described a tool that was developed by the team: SACS (System for
the Analysis of Hospital Equipment), a custom software that guides AutoCAD to manage
and analyse digital floor plans of buildings that are encoded on specific levels. The software
maps the departments and related operating units, uses, healthcare technologies and
environmental comfort by grouping the information into single room and homogeneous
areas, thereby providing quantitative and qualitative results [8]. However, the labelling
of rooms is performed manually, room by room, and no automatic classification system
was described. In [17], an integrated workplace management system (WMS) tool was
introduced. It produces key performance indicators (KPIs) and quantitative parameters
that are typical of CAFM systems. Such systems allow for the assessment of an entire
building or technological estate and can also prioritise the assignment of the most urgent
interventions. The system imports plain 2D maps to offer a central management cockpit
that deals not only with structural and constructional data, but also technologies, assets
and medical equipment.

Over the years, some papers on automatic room classification have been produced. A
system that extracts both structural and semantic information from given floor plans was
proposed in 2012 [18]. In 2018, Brucker [19] presented an approach to automatically assign
semantic labels to rooms that are reconstructed from 3D RGB maps of apartments. Evidence
for the room types is generated using state-of-the-art deep learning techniques for scene
classification and object detection based on automatically generated virtual RGB views, as
well as geometric analyses of the mapped 3D structures. Recently, a new article proposed a
floor plan information retrieval algorithm, which is based on shape extraction and room
identification. A classification model based on a regression model was also proposed to
classify rooms according to their function [20].

In particular, there have been some recent studies dedicated to room categorisation
and semantic mapping. Sünderhauf et al. [21] introduced transferable and expandable
place categorisation and semantic mapping using a robot without environment-specific
training. Mancini et al. [22] realised a work that focused on the problems of semantic place
categorisation using visual data. They presented a deep learning model for addressing
domain generalisation (DG) in the context of semantic place categorisation. In a 2019 study,
Pal et al. [23] designed five models for room labelling that combined object detection and
scene recognition algorithms. In 2020, Li et al. [24] presented a regional semantic learning
method based on convolutional neural networks (CNNs) and conditional random fields.
The method combines global information that is obtained by a scene classification network
with local object information that is obtained by an object detection network to train a CRF
scene recognition model. In 2021, Jin et al. [25] proposed a deep learning-based novel
feature fusion method for indoor scene classification, which combines object detection and
enriched semantic information. Finally, Liu et al. [26] proposed a vision-based cognitive
system to support the independence of visually impaired people. A 3D indoor semantic
map is first constructed with a hand-held RGB-D sensor and is then deployed for indoor
topological localisation. CNNs are used for both semantic information extraction and
location inference. The semantic information is then used to further verify the localisation
results and eliminate errors.

1.2. The Role of Artificial Intelligence

The project presented in this article aimed to implement a system for the automatic
classification of hospital settings through tools based on artificial intelligence (AI) [27,28].
AI is a field of computer science that includes several branches, among which is machine
learning (ML). ML encompasses a range of methods and algorithms that make a program
able to identify patterns from data or improve learning. hlDeep learning (DL), a class of
ML algorithms, creates learning models at multiple levels [29]. In the specific case of our
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project, the aim was image classification. In this context, ML allows the manual selection of
features and provides a classifier for sorting the images. The features are then used to create
a model for assigning categories to objects in images. In DL workflows, the significant
features are automatically extracted from images. In addition, DL performs end-to-end
learning through a network that automatically learns to process raw data and carry out an
activity, for example, a classification. Another key difference is that DL algorithms scale
data, while superficial learning uses convergence. By superficial learning, we mean ML
methods that do not allow for further development once a certain level of performance has
been reached, even when further training examples and data are added to the network.
A key benefit of DL networks is the possibility to improve performance as data formats
increase. The optimal approach clearly depends on the problem at hand and the tools that
are available for that purpose. As far as image classification and object recognition are
concerned, ML can be an effective technique in many cases, especially when the image
characteristics (features) that are best suited to differentiating classes of objects are known.
For applications of object recognition and image classification, DL has become the best tool
thanks to convolutional neural networks (CNNs) [30–32]. A CNN consists of tens or hundreds
of layers, each of which learns to detect different image features. Indeed, each level hosts
a “feature map”, which is the specific characteristic that each node is looking for. For
this purpose, filters are applied to each image at different resolutions and the output of
each processed image is used as the input for the next layer. Filters can initially consist
of very simple features, such as brightness and edges, and can then gradually take on
more complex shapes that uniquely define the object. As with other neural networks, a
CNN is composed of an input layer (which is the set of all images taken from the dataset),
several hidden layers and an output [33–35]. The image classification performance of
CNNs has been improving steadily since 2015 [36–38]. This performance is mainly due
to training, which is a human-like process. All of the main technological companies
within the medical field are studying AI applications. These applications are mainly
for archiving medical records [39,40] and for medical diagnostics [41–43], with important
applications in oncology [44,45]. The use of AI has recently been extended to cardiovascular
imaging techniques [46], diagnosis of pulmonary/respiratory diseases [47,48], as well as to
hepatology [49], and ocular diseases [50,51]. An interesting future research direction would
be the study of AI applications for neurocritical care, especially the design of a system that
can evaluate better strategies for neurocritical care patients [52].

Although the BIM-based approach is interesting and looks promising for the future,
the availability of hospital 3D BIM models is very limited at the moment. The approaches
based on CAFM software are extremely time-consuming and rely on the continuous manual
updating of data from manual surveys. To the best of our knowledge, none of the works
based on automatic room categorisation have been specific for healthcare settings, which
is a challenging task compared to general purpose classifiers. Finally, the key issues of
systems based on RGB-D cameras are that they need specific hardware and cannot exploit
large volumes of available images and videos that come from widely spread RGB cameras,
nor can they use available databases of images for training. Our research aimed to fill
the gaps mentioned above by means of a system that can achieve a high performance for
automated hospital-specific room categorisation and requires nothing but simple, widely
available and medium-quality RGB images. The proposed system does not require a
manual labelling step, which is required in many existing works, nor does it require 3D
BIM models or manual data entry.

1.3. Novelty of the Proposed Approach

The goal of our project was to develop a mechanism for automatically classifying
hospital facilities to be used for the continuous updating of the CAFM systems that are
currently utilised in hospitals, whose worth and utility is directly tied to the correlation
between the data they offer and the actual reality. A schematic representation of the
system is shown in Figure 1. The system solves the problem of having to carry out
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continuous inspections to manually update CAFM systems. Images of rooms that are taken
by robots, surveillance cameras or other sources are interpreted by the designed classifier
and labelled with a specific use. Hospital CAFM systems are then continuously updated
with this information.

Figure 1. Schematic representation of the proposed system. Images of rooms that are taken by robots,
surveillance cameras or other sources are interpreted by the designed classifier and labelled with a
specific use. Hospital CAFM systems are then continuously updated with this information.

The usefulness of the proposed approach is related to huge time savings compared to
the current process of updating information about the use of hospital rooms. In fact, this
process currently requires manual surveys from inspectors who then manually update the
hospital CAFM systems. An automated process based on artificial intelligence that is able
to classify and label rooms by just analysing pictures would be a tremendous gain for both
saved time and update frequency. We addressed different operational solutions:

• We analysed and compared three general models for environment classification:
Google Vision API, Microsoft Azure Cognitive Services and the Clarifai General Model;

• We then created a customised model that was specifically trained for our needs using
the Clarifai Custom Model;

• Finally, we carried out one last type of classification using Detectron2, an object detec-
tion software that works in combination with an RF classifier for image recognition.

In the next section, we describe the different methodologies that were used to analyse
the AI-based image classification methods in our project. Section 3.1 reports the results
that were obtained by the different classification techniques. A discussion of the obtained
results is developed in Section 4.

2. Materials and Methods

Three alternative methods for image classification are being proposed. The first relies
on the use of cloud-based image understanding services that are offered by IT service
providers, such as Amazon, Google, Microsoft and Clarifai. These service providers offer
application programming interfaces (APIs), which enable the classification of images without
requiring the large amounts of training data and long training times that are standard for
DL. The second option comprises the independent development of an on-site software that
is based on CNN models, which requires configuration and training [53–55]. There are



Electronics 2022, 11, 1697 6 of 43

different ways to approach customised recognition using DL, namely using a pre-trained
model or training a model from scratch. In our work, the preferred solution was to refine a
pre-trained network using transfer learning (TL). This approach transfers knowledge from
one or more related tasks to boost learning in the target task [56]. It is generally much faster
and simpler than training a model from scratch since it requires a minimal amount of data
and computing resources [57]. The third alternative consists of using an object recognition
software (Detectron2, which was developed by Facebook AI Research (FAIR) [58]) combined
with a random forest (RF) classification algorithm. The RF algorithm classifies intended uses
(IUs) based on the results from Detectron2.

2.1. Datasets
2.1.1. First Dataset

In order to test the three general models and create a customised model to compare
them to, we approached the matter of selecting a set of images of the objects of interest.
The quality of a dataset is crucial for implementing a user model. The larger the dataset,
the higher the quality of the resulting model. Several datasets of different sizes can be
considered. Among these, one of the best-known datasets within the image recognition
community is ImageNet [59,60], which currently contains 14.2 million images. On the
WordNet Structure web page, it is possible to identify the types of images of interest. Our
objective was to classify hospital images into four categories: “hospitalisation”, “accep-
tance”, “surgery” and “diagnostic and therapeutic radiology”. We selected a dataset that
included 80 photographs, which were acquired from Google Images [61] and belonged to
four different IUs, as shown in Appendix A:

• 20 “surgery” images (from 1 to 20);
• 20 images of “diagnostic and therapeutic radiology” (from 21 to 40);
• 20 “hospitalisation” images (from 41 to 60);
• 20 “acceptance” images (from 61 to 80).

The dataset characteristics are described in Appendix C, in terms of size and quality.
The general models were tested using all 80 photographs. Afterwards, since it was necessary
to train and test our customised model, we split the photographs of this dataset into two
distinct groups:

• The training set, which was only used during the model training phase. This set was
composed of images that were divided into two groups:

– Positive examples, i.e., photographs for each of the four classes that were intro-
duced as positive benchmark examples;

– Negative examples, i.e., photographs of negative examples that were imported
for each of the four classes from the remaining IUs.

• The test set, which was used in the model performance verification phase. This was
made up of 40 images from the four chosen IUs.

Two versions of the customised model were produced:

• The first version comprised 10 positive examples and 18 negative examples for each
IU (6 images for each incorrect IU);

• The second version comprised 20 positive examples and 18 negative examples for
each IU (6 images for each incorrect IU).

The 80 photographs that were selected for the training and test sets of the two versions
of the model are shown in Appendix A. An additional 10 images were used for each IU in
the second version of the model. These 40 images, which were different from the previous
images, increased the training sets of the four IUs. They are not included in this manuscript
for brevity, but they are available from the corresponding authors. Their description is
presented in Appendix C, in terms of dimensions and quality. The following criterion was
used to select the negative examples: for each IU, the first six elements that were used as
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positive examples for the other three IUs were selected as negative examples. For example,
for the “surgery” IU, the negative examples were represented by the following images:

• Items 21, 22, 23, 24, 25 and 26 (from the “diagnostic and therapeutic radiology” IU);
• Items 41, 42, 43, 44, 45 and 46 (from the “hospitalisation” IU);
• Items 61, 62, 63, 64, 65 and 66 (from the “acceptance” IU).

The selection of the training set, along with its division into positive and negative
examples, and the test set for the first version of the customised model is shown in Table 1.
The same selection for the second version of the customised model is shown in Table 2.

Table 1. Selection of the training set, along with its division into positive and negative examples, and
the test set for the first version of the customised model.

IU Positive Training Examples Negative Training Examples Test Set

Surgery 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 21, 22, 23, 24, 25, 26, 41, 11, 12, 13, 14, 15,
42, 43, 44, 45, 46, 61, 62, 16, 17, 18, 19, 20

63, 64, 65, 66

Radiology 21, 22, 23, 24, 25, 26, 27, 1, 2, 3, 4, 5, 6, 41, 42, 43, 31, 32, 33, 34, 35,
28, 29, 30 43, 44, 45, 46, 61, 62, 63, 64, 36, 37, 38, 39, 40

65, 66

Hospitalisation 41, 42, 43, 44, 45, 46, 47, 1, 2, 3, 4, 5, 6, 21, 22, 23, 51, 52, 53, 54, 55,
48, 49, 50 24, 25, 26, 61, 62, 63, 64, 56, 57, 58, 59, 60

65, 66

Acceptance 61, 62, 63, 64, 65, 66, 67, 1, 2, 3, 4, 5, 6, 21, 22, 23, 71, 72, 73, 74, 75,
68, 69, 70 24, 25, 26, 41, 42, 43, 44, 76, 77, 78, 79, 80

45, 46

Table 2. Selection of the training set, along with its division into positive and negative examples, and
the test set for the second version of the customised model.

IU Positive Training Examples Negative Training Examples Test Set

Surgery 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 24, 25, 26, 41, 11, 12, 13, 14, 15,
81, 82, 83, 84, 85, 86, 87, 42, 43, 44, 45, 46, 61, 62, 16, 17, 18, 19, 20

88, 89, 90 63, 64, 65, 66

Radiology 21, 22, 23, 24, 25, 26, 27, 1, 2, 3, 4, 5, 6, 41, 42, 43, 31, 32, 33, 34, 35,
28, 29, 30, 91, 92, 93, 94, 43, 44, 45, 46, 61, 62, 63, 64, 36, 37, 38, 39, 40

95, 96, 97, 98, 99, 100 65, 66

Hospitalisation 41, 42, 43, 44, 45, 46, 47, 1, 2, 3, 4, 5, 6, 21, 22, 23, 51, 52, 53, 54, 55,
48, 49, 50, 101, 102, 103, 24, 25, 26, 61, 62, 63, 64, 56, 57, 58, 59, 60
104, 105, 106, 107, 108, 65, 66

109, 110

Acceptance 61, 62, 63, 64, 65, 66, 67, 1, 2, 3, 4, 5, 6, 21, 22, 23, 71, 72, 73, 74, 75,
68, 69, 70, 111, 112, 113, 24, 25, 26, 41, 42, 43, 44, 76, 77, 78, 79, 80
114, 115, 116, 117, 118, 45, 46

119, 120

2.1.2. Second Dataset

This section describes the dataset that was used for developing and testing two models
that were based on the Detectron2 object recognition software. Two datasets were built in
order to compare the results obtained from the first model, which was trained using the
first dataset considering only three IUs, to those obtained from the second model, which
was trained using the second dataset considering nine IUs:

• The first model examined “hospitalisation”, “radiology” and “surgery” rooms, for
which 40 images per room were acquired from Google Images [61] using the corre-
sponding keywords for a total of 120 images in the first dataset;
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• The second model included six more IUs (“ambulance”, “analysis laboratory”, “in-
tensive therapy”, “medical clinic”, “rehabilitation and physiotherapy” and “toilet”)
for a total of nine hospital settings, for which 40 images per room were selected from
Google Images [61] using the corresponding keywords for a total of 360 images in the
second dataset.

A full description can be found in Appendix C for both datasets (Tables A7 and A8),
in terms of image quality and size.

To train the object recognition algorithm, the two datasets were divided into three
separate sets, as shown in Tables 3 and 4:

• The training Set, which was composed of 25 images per IU and was used to train the
algorithm to recognise the objects of interest;

• The validation Set, which was composed of 10 images per IU and was used to refine
the hyperparameters of the model during training;

• The test Set, which was composed of the remaining 5 images per IU and was used at
the end of the training to produce a final evaluation of the model.

Two versions of each model were considered: the first used the original dataset and
the second used a dataset that was modified by data augmentation changes.

Table 3. Selection of the training set, validation set and test set for the first version of the Detectron2
model (3 IUs).

IU Training Set Validation Set Test Set

Hospitalisation 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Radiology 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Surgery 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Table 4. Selection of the training set, validation set and test set for the second version of the Detectron2
model (9 IUs).

IU Training Set Validation Set Test Set

Ambulance 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Analysis Laboratory 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Hospitalisation 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Intensive Therapy 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Medical Clinic 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35



Electronics 2022, 11, 1697 9 of 43

Table 4. Cont.

IU Training Set Validation Set Test Set

Radiology 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Rehabilitation 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
and 19, 20, 21, 22, 23, 24, 25, 26,

Physiotherapy 27, 28, 29, 30, 31, 32, 33, 34, 35

Surgery 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

Toilet 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 36, 37, 38, 39, 40
19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35

2.2. Models Based on Image Understanding Services: General Classification Models

Many service providers offer general image classification models, including Google
Vision API [62], Amazon Rekognition [63], Microsoft Azure Cognitive Services [64] and the
Clarifai General Model [65]. All of these models provide similar features, such as object
labelling, face detection, text extraction (optical character recognition, OCR), image attribute
statistics, etc. Information about the models underlying these services is, for the most part,
not available in the public domain, except for Clarifai, which has made the CNN model it
uses public. Nevertheless, since CNNs are now considered to be state of the art within the
field of image recognition, it is very likely that most services exploit this approach [28,57].

An image-based cognitive API receives an image from an external application, extracts
specific information from it and then returns the information, usually in JavaScript Object
Notation (JSON) format. This information usually contains a set of words called “tags” or
“labels”, which are objects and concepts that the API has recognised within the given image.
Some examples of tags that may be returned by an API include “living room”, “indoors”
or “classroom”. The labels are also accompanied by a confidence percentage value, which
denotes how well the model recognises those specific objects or concepts in the image.
It is not possible to go into any meaningful detail about the documentation concerning
how cloud services are trained. The manufacturers simply state that their models undergo
continuous training using images from the web. Brief descriptions of the services offered
by Google, Microsoft and Clarifai are provided below:

Google Cloud Vision (API Vision): Google offers two AI-based computer vision products
for image understanding: AutoML Vision and API Vision [62,66,67]. AutoML Vision allows
users to build their own customised models through TL, whilst the second product is based
on “ready-to-use” models. API Vision labels images to quickly classify them into millions
of predefined categories and can detect objects and faces by determining their position and
number. In order to test API Vision, Google launched a demonstration website through
which the API issues labels, identifies and reads texts and detects faces in each selected
image [68–70].

Clarifai General Model: The Clarifai and Microsoft service providers also offer services
that are similar to Google’s. In particular, Clarifai offers an open-image API called Clarifai
Predict [65], whose operation is similar to Google’s API in that once an image is entered,
a list of labels and corresponding probability levels is generated. In this case, a generic
image classification model, such as the Clarifai General Model, or a customised model can
be applied [71,72].

Microsoft Azure Cognitive Services: Microsoft Azure Cognitive Services [64] enable visual
data processing in order to label content (from objects to concepts), extract printed and
handwritten text and recognise familiar objects, such as trademarks and places of interest.
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2.3. Models Customised through Transfer Learning

As already pointed out, it is often preferable to create a customised model through
TL. Many service providers offer such solutions, which make it extremely easy to develop
individualised models. These include Google AutoML Vision, which allows the automation
of custom model training so that images can be classified using the labels that were selected
by users, based on their own specific requirements. Users can simply upload their images
and train their models using a specific graphical user interface (GUI). Then, they can export
the images to on-site devices or cloud-based applications. Another similar tool is Amazon
Rekognition Custom Labels. Again, the user needs a small number of training images (usually
a few hundred or less) that are specific to their use. Even IBM Watson Visual Recognition,
which runs in the cloud or on iOS devices, enables users to train custom image models
and develop their own image classifiers using specific image collections by leveraging TL.
Finally, Clarifai also allows users to build their own models from a model that has been
pre-trained through the Clarifai Custom Model service [73]. This service works similarly to
the previous solutions, thereby allowing users to employ their own images and label them
with the concepts that they need.

Implementation of the Customised Models

To create a customised model that was trained specifically for our needs, we selected
the above-mentioned Clarifai Custom Model, which allowed us to create our model using
a free community plan that includes a limited number of monthly operations and inputs.
First, we selected the dataset, as shown in Section 1. Once the collection and organisation
of the set of images was complete, we moved on to the implementation of the model on
the Clarifai platform. It was then necessary to create an application. Inside the application,
we introduced the concepts of interest, i.e., the four IUs: “surgery”, “diagnostic and
therapeutic radiology”, “hospitalisation” and “acceptance”. These were the four outputs
that we wanted to obtain from the model. The model was then trained using the Custom
Model section of Clarifai. Starting from a predefined model offered by Clarifai, we could
implement our own classification model by splitting the training images into positive and
negative examples for each considered concept. We only loaded the images that we needed
to obtain the first version of the model; afterwards, we introduced the additional photos
that were needed for the development of the second version of the model. The Clarifai
starting model that we chose to train the custom model was the edit context-based classifier
model, which is the most suitable option for image classification. Once the model had been
trained, we moved on to creating two workflows, one for each version of the model. Each
workflow was a calculation graph in which the output from one model could be used as
the input for the next model. We introduced our custom model into the workflow (the
first and the second versions into the two different workflows) as the output from another
model of the Clarifai visual embedder type. Indeed, the custom model that we created had
“embeddings” as inputs and returned “concepts” as outputs. Therefore, a Clarifai model
was used that returned the appropriate outputs (embeddings) from the images. We used
the test sets to evaluate the performances of the two versions of the customised model, after
they had been built and trained. For each version, the four groups of ten images relating
to the four considered IUs were analysed, as specified above. The data were collected as
already described for the first approach, building a total of eight tables (four tables for each
version of the model). Each column was specific to one of the images for that particular
IU, while each row corresponded to one of the four “trained” concepts. The confidence
percentage with which our model assigned each label (in rows) to each image (in columns)
was found at the intersection of each row and column. Positive classification outcomes
were highlighted in green, while negative results were in red.
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2.4. Combined Use of Detectron2 and an RF Classification Algorithm

The classification took place using Detectron2, an object detection software [58] whose
outputs are in the form of a dataframe that trains an RF classifier for image recognition.
Detectron2 is an open-source software system, developed by FAIR, which implements state-
of-the-art computer vision algorithms. This software is implemented on PyTorch, an open-
source ML framework [74], and is capable of providing fast training using single or multiple
graphic processing units (GPUs). Detectron2 includes the implementation of state-of-the-
art detection and segmentation algorithms. RF is a scheme for building a classification
ensemble with a set of decision trees that grow in randomly selected subspaces [75,76]. It
leverages several decision tree classifiers in different subsamples of the dataset and uses the
average to improve its predictive accuracy and control overfitting. Decision trees are non-
parametric supervised training methods that are used for classification and regression [77].
The goal is to create a model that predicts the value of a target variable by learning simple
decision rules, which are deduced from data features. In this project, we used the RF
classifier model from the scikit-learn library [78].

2.4.1. Dataset Pre-Processing

The open-source LabelMe software was used to annotate the dataset images [79].
LabelMe was developed by the Computer Science and Artificial Intelligence Laboratory (CSAIL)
at the Massachusetts Institute of Technology (MIT). It is a software for building image
databases that are to be used within computer vision or datasets that are already annotated
and ready for use. LabelMe creates JavaScript Object Notation (JSON) files for each image.
These text files contain a lot of information, such as the “label”, which identifies the
annotated object, the “points”, which are the coordinates of the points that describe the
perimeter of the object, and other information that is necessary to solve the object detection
problem. In the first version of our model, we annotated 120 images by identifying the
main objects within the three selected hospital rooms. The following eight labels were
used: “bed”, “cabinet”, “chair”, “monitor”, “operating table”, “RMN machine”, “surgical
light” and “window”. In total, 240 images were annotated in the second version and we
also added the following labels: “ball”, “bidet”, “bicycle”, “desk”, “examination bed”,
“grab bar”, “IVD”, “mirror”, “sink”, “stool”, “surgical instrument table”, “toilet” and “wall
bars”. Overall, 21 objects were considered. The datasets of both versions were uploaded to
Roboflow, a framework for computer vision developers that helps to collect and organise
data that are to be pre-processed [80]. Roboflow has public datasets that are readily
available for users and offers the opportunity to upload your own custom data. There is
also the possibility to customise your dataset during pre-processing. Roboflow allows you
to automatically split the images into three types of datasets: training, validation and test
datasets. The validation dataset is used to refine the hyperparameters of the customised
model. The available images of each hospital setting were divided into the three datasets:
25 training images, 10 validation images and 5 test images. Roboflow also allows you
to edit training images by adding features such as orientation and data augmentation. It is
recommended to apply these characteristics to make the model more precise and invariant
to the photo angle, the brightness of the room and blur. We considered two variations of
both datasets:

• The first version contained the dataset without modifications: 75 training images,
30 validation images and 15 test images for the first model; 225 training images,
90 validation images and 45 test images for the second model;

• The second version contained the modified dataset, with an image rotation of up to
±45° and a blur of up to 1 pixel were applied (this choice was motivated by the size of
the images that were downloaded from Google): 224 training images, 30 validation
images and 15 test images for the first model; 671 training images, 90 validation images
and 45 test images for the second model.

These data were converted into the COCO format [81] used by the Facebook API and
Detectron2 for training.
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2.4.2. Parameter Selection and Model Calibration

The complete dataset (after annotation and parting into the training, validation and
test datasets) was uploaded to the cloud using the appropriate Roboflow web service. We
then proceeded to register the dataset on Detectron2 in its standard format.

Detectron2: Parameters and Calibration

We selected the “faster_rcnn_X_101_32 × 8d_FPN_3x” model because of its highest
average precision (AP = 43.0), according to the tests carried out by the developers using
Big Basin, which is a new generation GPU server. However, this was at the expense of
long training times (0.638 s/iter) and a large memory consumption (6.7 GB). The name,
definition and set value of each hyperparameter are listed in Table 5.

The last hyperparameter referred to the test configuration and the others referred to
the training configuration.

Once the training was configured and carried out, we evaluated our model’s perfor-
mance through the average precision, average recall and total loss metrics:

• Average precision (AP) is the ratio between the true positives (correct answers) and
the sum of the true positives and false positives (incorrect answers that are considered
correct by the model). It indicates the percentage with which the model identifies an
object. In the results, six types of average precision were considered, whose meaning
is described in Table 6. Three APs were based on the intersection over union (IoU),
which represents the overlap between the “predicted” and real bounding boxes. A
bounding box is a box that is outlined around the object of interest in order to locate it
within the image. The IoU is calculated as the intersection area of the union area of
these two cited bounding boxes. A value of 1 represents a perfect overlap.

• Average recall is the ratio between the true positives and the sum of the true positives
and false negatives (correct answers but considered wrong by the model). It indicates
the percentage with which the model correctly identifies an object.

• Total loss evaluates the model’s behaviour with the datasets: the lower the value, the
better the behaviour. It is calculated during the training and validation phases.

Table 5. Name, definition and set value of each hyperparameter of the Detectron2 model.

Name Definition Set Value

cfg.DATALOADER.NUM_WORKERS Number of data loading threads 2

cfg.SOLVER.IMS_PER_BATCH Number of images per batch on 2
all machines (GPU) and number
of training images per iteration

cfg.SOLVER.BASE_LR Learning rate controlling how 0.00025
quickly the model adapts

to the problem (less than 1.0)

cfg.SOLVER.MAX_ITER Number of iterations during Mod 1 ver 1:2500
training (variable) 1 ver 2:5000

Mod 2:5000

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE Number of regions per image 128
used to train the region

proposal network (RPN)

cfg.MODEL.ROI_HEADS.NUM_CLASSES Number of classes/objects noted 9 with 3 hospital settings
in the dataset (the number of 22 with 9 settings

classes + 1)

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST Threshold for object identification: 80%
the object is not taken into account
when its confidence percentage is

lower than this threshold
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Table 6. The metrics used to evaluate the model (average precision and average recall). AP is the
average precision of the intersection over union (IoU) in steps of 0.05, from 0.5 to 0.95. AP (IoU = 0.50)
and AP (IoU = 0.75) correspond to APs with IoUs of 0.50 and 0.75, respectively. AR describes the
doubled area under the recall–IoU curve.

Average Precision (AP)

AP AP at IoU = 0.50:0.05:0.95 (primary challenge metric)
AP (IoU = 0.50) AP at IoU = 0.50 (PASCAL VOC metric)
AP (IoU = 0.75) AP at IoU = 0.75 (strict metric)

AP Across Scales

AP Small AP for small objects: area < 322 px
AP Medium AP for medium objects: 322 px < area < 962 px

AP Large AP for large objects: area > 962 px

Average Recall (AR)

AR (max = 1) AR given 1 detection per image

RF Classifier: Parameters and Calibration

The RF algorithm used a dataframe as the input, which is a two-dimensional structure
within which data is stored. Two pieces of information were needed: the features identifying
the characteristics of the object to be classified and the target, which is the label of the object
to be classified to which the features correspond. The dataframe was generated from each
dataset. The datasets were obtained from the Detectron2 outputs, more specifically from
the pred_classes values of each image. The pred_classes output was a vector consisting of
all objects recognised by Detectron2 within an image, with object encoded with a number.
For instance, “cabinet” was encoded with 4, “examination bed” was encoded with 8, etc. In
each dataset, the values corresponding to the features of the dataframe were all objects that
were used to train Detectron2 (9 features in the first model; 21 features in the second model),
while the target elements were the rooms to which the identified features corresponded.
Each feature equalled the number of identical objects identified in the image. Consider
the following example: 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0. Among
the twenty-two elements in this vector, twenty-one were features, while the last one was
the target (0 was “ambulance”). We chose to count the number of objects instead of only
checking for their presence because some rooms were almost identical in terms of the
objects inside them but different in the number of hosted objects. The training was carried
out using the default hyperparameter values. The parameters used for the evaluation of
the model’s performance are listed below, where TP means true positive, FP means false
positive, TN means true negative and FN means false negative:

• Accuracy is the ratio of correctly predicted observations to the total observations, i.e.,
(TP + TN)/(TP + TN + FP + FN);

• Score is the harmonic mean between precision and recall (which is usually more useful
than accuracy, especially for non-symmetrical datasets and when the costs of false positives
and false negatives are very different), i.e., 2 ∗ ((precision ∗ recall)/(precision + recall));

• Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations (the higher the value, the lower the number of false positives),
i.e., TP/(TP + FP);

• Recall or TPR is the ratio of correctly predicted positive observations to all truly
positive observations, i.e., TP/(TP + FN);

• Specificity is the ratio of correctly predicted negative observations to the total negative
observations, i.e., TN/(TN + FP);

• The receiver operating characteristic curve (ROC curve) is a graph showing the diag-
nostic capability of a binary classification system as a function of its discrimination
thresholds, which plots the true positive rate (TPR) versus the false positive rate
(FPR = 1 − TPR) at different threshold settings;
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• The area under the ROC curve (ROC AUC score) is the area under the ROC curve,
which equals 1 when the classifier works perfectly.

3. Results
3.1. Comparison of the General Models of Cloud Services

We analysed and compared the three general models that were previously introduced:
Google Vision API, Microsoft Azure Cognitive Services and the Clarifai General Model.
The key objectives were to verify whether these models are suitable for the classification of
hospital settings and figure out which of them produces the best results. For this purpose,
each of the models was applied to the same test dataset, which was composed of the
80 photographs described in Section 1 and shown in Appendix A.

Data were organised into twelve tables: three tables for each of the four IUs (one
for each examined cloud service). Each column of the tables was dedicated to one of the
20 images for that specific IU, while each row corresponded to the label that was assigned
by the model. At the intersection of each row and column, the confidence percentage with
which the model recognised the label of that row when examining an image from that
column was displayed. A selection of these tables is reported in Appendix B.

3.2. Results Obtained with the Clarifai Custom Model

For a better visualisation of the differences between the two versions of the customised
model, the results tables were sorted by IU. The tables relating to the results obtained with
the first version of the model were placed first, then those relating to the second version.

• Tables 7 and 8 refer to the results obtained for the “surgery” IU;
• Tables 9 and 10 refer to the results obtained for the “radiology” IU;
• Tables 11 and 12 refer to the results obtained for the “hospitalisation” IU;
• Tables 13 and 14 refer to the results obtained for the “acceptance” IU.

Table 7. Results obtained with the first version of the customised model for the “surgery” IU. Each
column refers to one of the test images (11 to 20) and each row shows the labels that were returned
by the model. The row–column intersection shows the success rate in recognising the concept stated
in the row for the image in that column.

Image
11

Image
12

Image
13

Image
14

Image
15

Image
16

Image
17

Image
18

Image
19

Image
20

Surgery 27% 11% 19% 84% 5% 67% 2% 10% 70% 66%
Acceptance 0% 0% 0% 0% 0% 0% 0% 4% 0% 0%

Hospitalisation 5% 2% 0% 2% 5% 0% 0% 0% 1% 0%
Radiology 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 8. Results obtained with the second version of the customised model for the “surgery” IU. Each
column refers to one of the test images (11 to 20) and each row shows the labels that were returned
by the model. The row–column intersection shows the success rate in recognising the concept stated
in the row for the image in that column.

Image
11

Image
12

Image
13

Image
14

Image
15

Image
16

Image
17

Image
18

Image
19

Image
20

Surgery 85% 48% 37% 93% 68% 79% 10% 3% 91% 93%
Acceptance 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Hospitalisation 17% 3% 1% 18% 21% 4% 1% 0% 1% 2%
Radiology 0% 0% 0% 0% 0% 0% 0% 9% 0% 0%
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Table 9. Results obtained with the first version of the customised model for the “radiology” IU. Each
column refers to one of the test images (31 to 40) and each row shows the labels that were returned
by the model. The row–column intersection shows the success rate in recognising the concept stated
in the row for the image in that column.

Image
31

Image
32

Image
33

Image
34

Image
35

Image
36

Image
37

Image
38

Image
39

Image
40

Surgery 0% 0% 0% 44% 0% 0% 0% 0% 0% 0%
Acceptance 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Hospitalisation 0% 0% 0% 1% 0% 0% 0% 0% 0% 0%
Radiology 39% 68% 13% 1% 8% 16% 16% 96% 51% 7%

Table 10. Results obtained with the second version of the customised model for the “radiology” IU.
Each column refers to one of the test images (31 to 40) and each row shows the labels that were
returned by the model. The row–column intersection shows the success rate in recognising the
concept stated in the row for the image in that column.

Image
31

Image
32

Image
33

Image
34

Image
35

Image
36

Image
37

Image
38

Image
39

Image
40

Surgery 0% 0% 0% 19% 0% 0% 0% 0% 0% 0%
Acceptance 0% 0% 0% 0% 0% 0% 1% 0% 0% 0%

Hospitalisation 0% 0% 1% 1% 0% 0% 0% 0% 0% 0%
Radiology 63% 93% 30% 11% 41% 64% 49% 89% 59% 8%

Table 11. Results obtained with the first version of the customised model for the “hospitalisation”
IU. Each column refers to one of the test images (51 to 60) and each row shows the labels that were
returned by the model. The row–column intersection shows the success rate in recognising the
concept stated in the row for the image in that column.

Image
51

Image
52

Image
53

Image
54

Image
55

Image
56

Image
57

Image
58

Image
59

Image
60

Surgery 0% 0% 1% 0% 0% 0% 0% 0% 5% 1%
Acceptance 0% 0% 0% 0% 0% 2% 0% 0% 0% 0%

Hospitalisation 28% 62% 86% 72% 87% 82% 77% 61% 32% 47%
Radiology 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 12. Results obtained with the second version of the customised model for the “hospitalisation”
IU. Each column refers to one of the test images (51 to 60) and each row shows the labels that were
returned by the model. The row–column intersection shows the success rate in recognising the
concept stated in the row for the image in that column.

Image
51

Image
52

Image
53

Image
54

Image
55

Image
56

Image
57

Image
58

Image
59

Image
60

Surgery 0% 1% 1% 4% 2% 0% 3% 0% 2% 14%
Acceptance 0% 0% 0% 0% 0% 1% 0% 0% 0% 0%

Hospitalisation 31% 74% 90% 68% 90% 56% 65% 61% 58% 64%
Radiology 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 13. Results obtained with the first version of the customised model for the “acceptance” IU.
Each column refers to one of the test images (71 to 80) and each row shows the labels that were
returned by the model. The row–column intersection shows the success rate in recognising the
concept stated in the row for the image in that column.

Image
71

Image
72

Image
73

Image
74

Image
75

Image
76

Image
77

Image
78

Image
79

Image
80

Surgery 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Acceptance 27% 36% 71% 19% 34% 44% 46% 66% 70% 60%

Hospitalisation 1% 0% 0% 0% 1% 2% 0% 0% 0% 0%
Radiology 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 14. Results obtained with the second version of the customised model for the “acceptance”
IU. Each column refers to one of the test images (71 to 80) and each row shows the labels that were
returned by the model. The row–column intersection shows the success rate in recognising the
concept stated in the row for the image in that column.

Image
71

Image
72

Image
73

Image
74

Image
75

Image
76

Image
77

Image
78

Image
79

Image
80

Surgery 0% 1% 0% 0% 14% 0% 0% 0% 0% 0%
Acceptance 52% 85% 71% 91% 52% 47% 94% 73% 85% 67%

Hospitalisation 2% 0% 0% 0% 0% 1% 0% 0% 0% 0%
Radiology 0% 0% 0% 0% 0% 1% 1% 0% 1% 1%

3.3. Results from the Combined Use of Detectron2 and the RF Classification Algorithm

At first, only the results obtained with both versions of the first model, which refers to
only three hospital environments, were compared and analysed. The second model was
considered later.

3.3.1. Performance Obtained with the First Model

Detectron2 has an internal performance evaluator with many metrics for performance
evaluation, the most significant of which are listed and explained in Section 2.4.2. Table 15
shows the values obtained for the different performance metrics (listed in the first row)
when applying the first and second versions of this model.

Table 15. Detectron2 metrics obtained with the first model. Each column refers to a different metric,
as defined in Section 2.4.2. Each row refers to a different version of the model.

Versions AP AP50 AP75 APs APm APl AR Total Loss (×100)
Version 1 (0 AUG) 48.976 69.375 53.721 38.026 36.337 67.599 46.8 14.01
Version 2 (2 AUG) 46.761 74.425 49.907 35.6 38.292 63.738 45.7 17.4

Regarding the RF classifier’s performance, the synthesis results obtained for the two
versions are shown in Table 16, which was built using the scikit-learn functions for the
calculation of the metrics. It should be noted that the algorithm rarely classified the hospital
environment incorrectly. The results for each hospital environment also indicated that
the values were almost optimal for all environments. The ROC curve completely shifted
towards the upper left corner, which represents the condition of optimal results. This was
also confirmed by the AUC, which was maximal for the three hospital environments.
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Table 16. Metrics of the RF classification algorithm obtained with the first model. Each column refers
to a different metric, as defined in Section 2.4.2. Each row refers to a different version of the model.

Versions Accuracy F1 Score Precision Recall

Version 1 (0 AUG) 0.97777 0.97775 0.97916 0.97777
Version 2 (2 AUG) 0.97777 0.97775 0.97916 0.97777

3.3.2. Performance Obtained with the Second Model

Table 17 shows the metrics that were obtained automatically by Detectron2 when
considering the second model. With reference to the performance of the RF classifier,
the results obtained for the second model using the scikit-learn functions are reported in
Table 18.

Table 17. Detectron2 metrics obtained with the second model. Each column refers to a different
metric, as defined in Section 2.4.2. Each row refers to a different version of the model.

Versions AP AP50 AP75 APs APm APl AR Total Loss (×100)
Version 1 (0 AUG) 44.479 65.268 49.875 34.436 42.344 50.831 43.8 19.71
Version 2 (2 AUG) 34.477 66.193 29.352 29.68 31.59 37.886 36.5 39.42

Table 18. Metrics of the RF classification algorithm obtained with the second model. Each column
refers to a different metric, as defined in Section 2.4.2. Each row refers to a different version of
the model.

Versions Accuracy F1 Score Precision Recall
Version 1 (0 AUG) 0.7555 0.75104 0.7645 0.7555
Version 2 (2 AUG) 0.7037 0.7044 0.7194 0.7037

Since the algorithm produced different performances for the different examined hospi-
tal settings, Tables 19 and 20 report the detailed results for each setting for both versions of
the model. The ROC curves, shown in Figure 2, did not drop below 0.87 for the AUC value
in either version of the model.

Table 19. Metrics of the RF classification algorithm obtained with the first version of the second
model. Each column refers to a different metric, as defined in Section 2.4.2. Each row refers to a
different IU.

Rooms Accuracy F1 Score Precision Recall Specifity

Ambulance 0.903703704 0.580645161 0.6 0.5625 0.949579832
Analysis Laboratory 0.948148148 0.740740741 0.666666667 0.833333333 0.959349593

Hospitalisation 0.911111111 0.647058824 0.733333333 0.578947368 0.965517241
Intensive Therapy 0.940740741 0.714285714 0.666666667 0.769230769 0.959016393

Medical Clinic 0.911111111 0.5 0.4 0.666666667 0.928571429
Radiology 0.985185185 0.9375 1 0.882352941 1

Rehabilitation and Physiotherapy 0.933333333 0.742857143 0.866666667 0.65 0.982608696
Surgery 0.985185185 0.928571429 0.866666667 1 0.983606557

Toilet 0.992592593 0.967741935 1 0.9375 1
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Table 20. Metrics of the RF classification algorithm obtained with the second version of the second
model. Each column refers to a different metric, as defined in Section 2.4.2. Each row refers to a
different IU.

Rooms Accuracy F1 Score Precision Recall Specifity

Ambulance 0.896296296 0.461538462 0.4 0.545454545 0.927419355
Analysis Laboratory 0.933333333 0.689655172 0.666666667 0.714285714 0.958677686

Hospitalisation 0.933333333 0.727272727 0.8 0.666666667 0.974358974
Intensive Therapy 0.918518519 0.64516129 0.666666667 0.625 0.957983193

Medical Clinic 0.896296296 0.588235294 0.666666667 0.526315789 0.956896552
Radiology 0.977777778 0.888888889 0.8 1 0.975609756

Rehabilitation and Physiotherapy 0.911111111 0.647058824 0.733333333 0.578947368 0.965517241
Surgery 0.940740741 0.0692307692 0.6 0.818181818 0.951612903

Toilet 1 1 1 1 1

Figure 2. ROC and ROC AUC curves obtained for the second model (first version on the left; second
version on the right).

4. Discussion of Results
4.1. Discussion of Results Obtained with General Models and the Clarifai Custom Model

The tables described in Section 3.1, which are partially shown in Appendix B, allowed
for some comments on the collected data. Starting from the first examined IU, namely
the “surgery” IU, we could conclude that Google Vision API and Clarifai General Model
were able to correctly classify images (except in a single case) because they assigned
labels, such as “operating theatre, “operating room” and “surgery”, with good accuracy
(Google: never less than 55%; Clarifai: never less than 94.2%). Conversely, the same photos
produced very different results when analysed by Microsoft Azure Cognitive Services.
Indeed, the Microsoft model almost always recognised the general scope, namely the
hospital environment by assigning labels such as “hospital” and “hospital room”, but it
only classified an image as “operating theatre” in one case. On the other hand, these results
strictly depended on the training dataset that was used and the labels that were introduced
during the training of the models, as well as the different architecture of the involved
networks. The three tables relating to the “surgery” IU led us to think that the classification
models by Google and Clarifai were trained with a good number of images for this IU.
Conversely, Microsoft likely used a poorer set of images when training its model. This
model rarely proved capable of recognising a specific IU, despite possessing a specific label
for it. With reference to the second IU, namely “diagnostic and therapeutic radiology”,
the results confirmed the performance of the Microsoft model, which was capable of
recognising the general medical–health field but even in this case, did not correctly assign
the IU label. The Google model, on the other hand, maintained a good, but not better,
performance compared to the previous IU. It always assigned labels such as “radiology”
and “radiography” with high levels of confidence (except in one case). On the contrary,
the Clarifai General Model returned inadequate labels and percentages for this second IU.
In fact, it very often recognised “surgery” settings in the analysed images with too much
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confidence and only sometimes assigned the correct labels. This outcome highlighted that
the recognition of a hospital environment was not essential for the proposed classification
task. It was much more important for the task to identify characteristic features of the IU in
order to correctly assign labels that entail the correct classification of the image. Concerning
the “hospitalisation” IU, the collected data were satisfactory compared to the previous
two IUs. Probably, none of the three considered services had a specific label for this IU.
In any case, the models by both Google and Microsoft recognised the general context for
most of the photos (as in the previous IUs), assigning labels such as “hospital” or “medical
equipment”. They were rarely wrong because of using, for instance, using surgery-related
labels. A specific label, “hospital room”, is highlighted in green in Table A3, which refers
to the classification of the “hospitalisation” IU by the Microsoft model. This label was
the closest to the definition of hospitalisation and was sometimes actually assigned by
the API. The Clarifai model maintained the same behaviour of the previous IUs and still
recognised the hospital environment. It often assigned misleading labels (“surgery” and
“emergency”) with very high confidence rates. Finally, it was interesting to note that in the
three cases, some completely wrong labels, such as “bathroom”, “living room”, “classroom”
and several others, were assigned to some images.

Regarding the “acceptance” IU, as expected, the cloud services rarely classified the
image as relating to a hospital (an element that was not fundamental to our purpose, as
already specified). In addition to this, labels such as “waiting room” or “reception”, which
would have led to the correct classification of the image, were rarely assigned.

In conclusion, the obtained results and the consequent observations showed that
the examined models generally produced good performances. These systems were able
to attribute a great and varied number of correct labels to different levels of taxonomy.
Google Vision API, Microsoft Azure Cognitive Services and the Clarifai General Model
were able to identify high-level concepts as “indoors” and most of the mid-level concepts
as “hospital”. However, they behaved differently according to the specific application.
Regarding the specific objective of this study, namely the classification of hospital settings,
the three interfaces showed different and not completely satisfactory outputs overall. In
particular, the obtained results suggested that Google’s Vision API would be the best choice
for directly classifying a hospital room. However, it should be noted that only four IUs
and twenty images for each of model were examined. Therefore, the chosen images could
have favoured one system over another and the systems could have produced completely
different outputs with another test dataset. This study highlighted that these models would
not be the best choice for classifying hospital environments. In fact, the proposed objective
was extremely specific, while the used general models were trained with millions of images
that are different and have many labels. It would be advisable to develop a model that only
returns the outputs of interest, i.e., the IU in this case. Finally, the APIs did not know all of
the labels needed to recognise each IU. For all of these reasons, a customised model was
then developed. The obtained results relating to both versions of the customised model,
as shown in the tables in Section 3.2, highlighted better performances than those of the
Clarifai General Model. In fact, both systems almost always classified the photos according
to the correct IU and attributed the highest percentage of confidence. For both versions, an
image was not classified correctly in only two cases with very low confidence values. In
fact, a major problem with the Clarifai General Model was the overconfidence in assigning
wrong labels. On the other hand, when the results from the first version of our model
were considered, the confidence values attributed to the correct labelling were also quite
low. This was probably due to the very small training sets. In fact, the second version
of our customised model generally produced much higher confidence percentages in an
overwhelming majority of cases. The results were therefore promising. The results relating
to the “surgery” IU were an exception to this positive trend. Indeed, in this specific case,
the general model performed better than the customised model. This was not surprising
since the general model, as illustrated above, associated labels such as “surgery” to many
hospital images with very high confidence values.
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4.2. Discussion of Results Obtained with the Combined Use of Detectron2 and the RF
Classification Algorithm

Model 1: Detectron2 Performance. A very small image dataset was available in this case,
with images that were characterised by very low resolutions. Even though the dataset
was inappropriate for an object detection problem, the results obtained were satisfactory
since both versions of the model achieved greater than 45% for the average precision
metric. A model is considered good when it scores around 70. The difference between the
two versions is worth noting. The first version scored higher than the second version in
almost all metrics. We could justify this unexpected result with the inappropriate structure
of the dataset. The changes introduced to the dataset did not lead to an improvement
in the model’s performance. We also considered the impact of the number of iterations
on the obtained results. For the first version, it was appropriate to increase the number
of iterations to improve the model accuracy. For the second version, the problem was
probably the data augmentation type that was applied because such a small dataset could
not support these changes. It is necessary to report that the algorithm recognised some
objects better than others due to their shape. In fact, the correctness of the recognition also
depended on the reference images with which the training was carried out. A change that
would certainly lead to an improvement in the performance of this model is the expansion
of the starting dataset by selecting images with better resolutions.

Model 1: RF Classifier Performance. The results obtained were excellent for both versions
of the model. Indeed, the algorithm rarely classified the hospital environments incorrectly.
The excellent results were confirmed by the ROC curve. In fact, the curve completely shifted
towards the upper left corner, which represents the condition of optimal results. This was
also confirmed by the AUC, which was maximal for all three hospital environments. This
model thus produced very promising results despite the small dataset size and the low
resolutions of the images. These results prompted us to test the limits of this type of project
by proposing the second model.

Model 2: Dtectron2 Performance. The second model did not perform as well as the first.
In fact, it achieved lower values than the first model in all metrics, including the total loss
metric, which was very high (especially for the second version of this model). This was
only due to the increased number of objects that Detectron2 should have identified. Indeed,
we did not increase the size of the dataset or the number of iterations. For this model, as
for the previous model, the number of iterations also played a fundamental role. The limit
of the number of iterations was relevant as both versions of the second model exhibited an
increasing behaviour, even at Iteration 5000. It could be deduced that for both versions,
but especially the second version, we could increase the number of iterations to improve
the model accuracy. In addition to the number of iterations, the dataset also had a lot of
influence. As mentioned for the first model, we would have gained better results for this
part of the object detection problem by using a larger dataset with higher quality images, if
we had increased the number of iterations.

Model 2: RF Classifier Performance. In this case, we obtained worse results for the
classification than those obtained with the first model. This was due to the greater number
of hospital environments that were examined: increasing this number led the algorithm
to be more prone to making mistakes. Some hospital environments had very similar
characteristics, for example, “hospitalisation” and “intensive therapy” or “ambulance” and
“medical clinic”. The worst results were obtained for critical hospital settings, such as
“medical clinic” and “ambulance”.

As anticipated, many authors have conducted studies that relate to that presented
in this article. The automatic method developed by Brucker et al. [19] for assigning
semantic labels to rooms from RGB-D data reported an average accuracy of around 67%.
Mewada et al. [20] achieved an average room detection accuracy of 85.71% and a room
recognition accuracy of 88% with their algorithm, which is based on shape extraction
and room identification. The system for automatic room detection and room labelling
from architectural floor plans proposed by Ahmed et al. [18] was able to correctly label
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around 80% of the analysed rooms. Sünderhauf et al. [21] obtained an average accuracy
that did not exceed 67.7% with their transferable and expandable place categorisation and
semantic mapping system. The DL model for addressing domain generalisation proposed
by Mancini et al. [22] reached an average accuracy of no more than 56.5%. The five models
proposed by Pal et al. [23] for place categorisation achieved, in the best case, a 70.1%
average accuracy. The regional semantic learning method developed by Li et al., which is
based on CNNs and conditional random fields, was able to obtain an average accuracy of
77.6%. Finally, the feature fusion method for indoor scene classification proposed by Jin et
al. obtained an average accuracy rate of 66%.

A comparison of the results from the literature to those from the present study allows
us to be optimistic. In fact, the room recognition accuracy obtained with the second version
of the model developed with the Clarifai General Model was 95%. This model successfully
classified 38 out of 40 images with various levels of certainty, which increased with the
number of images in the training dataset. The first model that was made with the use
of Detectron2 and an RF classification algorithm also reported an average accuracy of
over 97%. The second model produced a worse performance due to the greater number
of examined hospital facilities. However, we are convinced that a higher number and
quality of images in the dataset could produce equally positive results. Table 21 shows
the comparison between the performances of the models in the literature and those of our
work, in terms of average accuracy.

Table 21. Comparison of model performances in terms of average accuracy.

Model Average Accuracy

Brucker et al. 67%
Mewada et al. 85.71%
Ahmed et al. 80%
Sünderhauf et al. 67.7%
Mancini et al. 56.5%
Pal et al. 70.1%
Li et al. 77.6%
Jin et al. 66%
Second version of our model, developed with the Clarifai General
Model

95%

First version of our model, developed with Detectron2 and the RF
classification algorithm

97.78%

The results discussed above show that a novel approach for the automatic classifi-
cation of hospital spaces based on computer vision is possible. The increasing presence
of autonomous mobile robots (AMRs) in hospitals, which are exploited for many tasks,
from disinfection to telemedicine, and are often provided with cameras [5], is providing
an endless source of updated images of hospital premises. The approach proposed in this
work is a novel complement to these pervasive technologies in order to extract as much
information as possible from these precious sources.

5. Conclusions

This paper presented a project that aimed to implement a system for the automatic clas-
sification of hospital settings using tools based on AI. For this purpose, three alternatives
were proposed: the first was based on the use of general cloud models for image classi-
fication; the second consisted of a customised model, which was implemented through
the personalisation services offered by the same service providers; the last exploited the
combined use of Detectron2, an open-source software system developed by FAIR, and an
RF classification algorithm. In order to evaluate the effectiveness of the first solution, three
cloud services were tested and compared: Google Vision API, the Clarifai General Model
and Microsoft Azure Cognitive Services. The interfaces offered by the service providers
are based on general models that have been trained with many images of different types.
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These models returned labels that were sometimes not suitable for the IU of the analysed
images. In fact, these models offered a general recognition of the image environment and
objects, i.e., they were not specialised for the specific environments of hospital settings.
Google Vision API proved to be the most reliable system in the classification task overall. It
rarely assigned misleading labels and could recognise elements that actually characterised
the IUs. Even though the Clarifai General Model was excellent in the classification of
surgery images, it encountered much more difficulty in the classification of the other IUs,
almost always identifying “surgery” elements both for hospitalisation and radiology rooms.
Finally, the API offered by Microsoft rarely succeeded in labelling rooms according to their
use. We then moved on to the implementation of a custom model using the Clarifai Custom
Model service. It was possible to develop this model with much more specific images
through TL. The model, which was created in a very simple way, almost always labelled
the images correctly. When the number of training images was increased, the confidence
percentage of IU recognition also increased. This suggests that it would be possible to
develop an extremely precise model by using a suitable training dataset. For the third
alternative, two models were proposed: the first was general and the second was more
specific. For the first model, the system correctly classified almost all hospital settings.
The implementation of the second model followed the same steps as the first; however, it
obtained worse results (although still acceptable). The limitation of this model lay in the
construction of the dataset, which consisted of images from Google Images with very low
resolutions. One more limitation was the small size of the dataset, which was very small for
effective object detection and image recognition. To improve this model, it is necessary to
improve the dataset by increasing the size and choosing images of higher quality. Therefore,
it is particularly important to take care of the size and quality of the images in the training
set, both for the second and third alternatives proposed in this project.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AP Average Precision
API Applicant Program Interface
BIM Building Information Modelling
CAFM Computer-Aided Facility Management
CNN Convolutional Neural Network
CSAIL Computer Science and Artificial Intelligence Laboratory
DBMS Database Management System
DL Deep Learning
FAIR Facebook Artificial Intelligence Research
GIS Graphical User Interface
GPU Graphics Processing Unit
IoU Intersection Over Union
IT Information Technology
IU Intended Use
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ML Machine Learning
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OCR Optical Character Recognition
RF Random Forest
ROC Curve Receiver Operating Characteristic Curve
ROC AUC Score Area Under the ROC Curve Score
TL Transfer Learning

Appendix A

The photographs included in Figures A1–A3 show the training and test sets that
were used for the two versions of the model described in Section 2.3. We labelled the
photographs with progressive numbers to facilitate the comparison and description of
the results. The number of images was enough for the first version of the model. The
photographs were distributed as follows:

• Photographs 1–10 in Figure A1: positive examples of the training set used for both
versions of the custom model for the “surgery” IU;

• Photographs 11–20 in Figure A1: test set used for both versions of the custom model
for the “surgery” IU;

• Photographs 21–30 in Figure A1: positive examples of the training set used for both
versions of the custom model for the “diagnostic and therapeutic radiology” IU;

• Photographs 31–40 in Figure A2: test set used for both versions of the custom model
for the “diagnostic and therapeutic radiology” IU;

• Photographs 41–50 in Figure A2: positive examples of the training set used for both
versions of the custom model for the “hospitalisation” IU;

• Photographs 51–60 in Figure A2: test set used for both versions of the custom model
for the “hospitalisation” IU;

• Photographs 61–70 in Figure A3: positive examples of the training set used for both
versions of the custom model for the “acceptance” IU;

• Photographs 71–80 in Figure A3: test set used for both versions of the custom model
for the “acceptance” IU.
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Figure A1. The images used in the training sets (1 to 10) and test sets (11 to 20) of both custom models
for the “surgery” IU and the images used in the training sets (21 to 30) of both custom models for the
“diagnostic and therapeutic radiology” IU (from Google Images).
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Figure A2. The images used in the test sets (31 to 40) of both custom models for the “diagnostic and
therapeutic radiology” IU and the images used in the training sets (41 to 50) and test sets (51 to 60) of
both custom models for the “hospitalisation” IU (from Google Images).
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Figure A3. The images used in the training sets (61 to 70) and test sets (71 to 80) of both custom
models for the “acceptance” IU (from Goole Images).

Appendix B

Here, we show a selection of the tables described in Section 3.1. Specifically, we
selected the table that refers to the best results for each IU:

• Table A1 refers to the “surgery” IU and the results that were obtained with Google
Vision API;

• Table A2 refers to the “radiology” IU and the results that were obtained with the
Clarifai General Model;

• Table A3 refers to the “hospitalisation” IU and the results that were obtained with
Microsoft Azure Cognitive Services;

• Table A4 refers to the “acceptance” IU and the results that were obtained with Google
Vision API.

The tables only show the labels returned by each API that were significant for the
recognition of the hospital setting under consideration. For example, generic labels, such as
“indoor” or “place” (certainly correct for each image provided, but not needed to classify
the environment), are not present in the tables. Furthermore, in this context, the “objects”
in the images that were identified by the systems were not considered. Indeed, in some
cases, they were returned separately (Google); in other cases, they were merged with other
labels (Clarifai and Microsoft). The labels that correctly classified the hospital setting or
contributed to a correct classification are highlighted in green. The labels that led to an
incorrect recognition are highlighted in red.
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Table A1. Percentage of confidence obtained with Google Vision API for the “surgery” IU. Each column corresponds to Image 1 to 20.

Im.
1

Im.
2

Im.
3

Im.
4

Im.
5

Im.
6

Im.
7

Im.
8

Im.
9

Im.
10

Im.
11

Im.
12

Im.
13

Im.
14

Im.
15

Im.
16

Im.
17

Im.
18

Im.
19

Im.
20

Hospital 93% 97% / 98% 79% 95% 94% 95% 96% 97% 97% 97% 97% 91% 89% 96% 92% 92% 86% 96%
Medical Equipment 91% 97% 81% 94% / 97% 96% 98% 92% 98% 97% 97% 98% 95% 94% 96% 96% / 89% 98%

Room 93% 91% 83% 95% 92% 84% 94% 94% 89% 93% 95% 93% 92% 92% 85% 96% 86% 81% 89% 92%
Operating Theater 96% 90% / 96% 79% 63% 98% 98% 87% 96% 77% 78% 88% 57% 70% 98% 55% 83% 89% 90%

Medical 64% 80% / 86% / 92% 85% 94% 76% 96% 88% 90% 95% 59% / 88% 79% 96% 77% 93%

Table A2. Percentage of confidence obtained with the Clarifai General Model for the “radiology” IU. Each column corresponds to Image 21 to 40.

Im.
21

Im.
22

Im.
23

Im.
24

Im.
25

Im.
26

Im.
27

Im.
28

Im.
29

Im.
30

Im.
31

Im.
32

Im.
33

Im.
34

Im.
35

Im.
36

Im.
37

Im.
38

Im.
39

Im.
40

Hospital 99.5% 99.2% 94.3% 97.5% 98.8% 99.4% 93.8% 99.2% 98.7% 97.9% 99.4% 96.3% 99.3% 99.8% 98.4% 98.8% 98.1% 85.8% 99.4% 99.0%
Medicine 99.3% 99.1% 96.6% 98.0% 98.8% 99.4% 97.6% 99.0% 95.7% 98.5% 99.5% 98.0% 99.0% 99.7% 97.5% 98.1% 98.4% 96.7% 99.5% 98.9%

Equipment 98.9% / 93.9% 94.9% 98.4% 97.5% 95.7% 95.0% 89.8% 94.3% 98.5% 97.4% 94.9% 97.7% 90.9% 93.3% / 97.0% 97.1% /
Clinic 98.8% / 85.8% 94.6% 97.0% 99.0% 92.3% 98.1% 96.2% 97.3% 98.4% 93.6% 98.5% 98.3% 94.5% 97.7% / 81.6% 98.7% 96.3%

Surgery 98.2% 98.9% 94.9% 95.9% 98.3% 97.2% / 98.2% 97.4% 93.2% 98.0% 93.4% 95.2% 99.8% 95.3% / 94.4% 86.0% 97.6% 97.0%
Room 96.4% 96.7% / / / 94.5% 95.2% 94.0% 89.6% 96.6% 95.1% / 98.4% 98.0% 99.1% 97.9% 97.7% / 98.1% 98.5%

Scrutiny / 91.3% / 91.8% 92.5% 97.3% / 96.7% 97.0% 95.9% 97.2% / / 97.9% 93.0% / / / 95.7% 94.1%
Radiography / 91.7% / / / 96.5% / / / / 98.9% / / 94.5% / / 91.5% / 95.6% /

Radiology / 90.8% / / / / / / / / / / / / / / / / / /
Diagnosis / 93.7% 91.0% / / / / / / / / / / / / / / / / 85.0%
Treatment / 88.5% 86.0% 91.6% 91.6% / / / / / 95.7% / / / / / / 82.7% / 90.2%
Emergency / / 88.3% / / / / / / / / / / / / / / / / /

Operating Room / / / / / / / / / / / / / 98.8% / / / / / /
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Table A3. Percentage of confidence obtained with Microsoft Azure Cognitive Services for the “hospitalisation” IU. Each column corresponds to Image 41 to 60 and
each row is related to a different label that was returned by the model.
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58

Im.
59

Im.
60

Medical Equipment 96.2% 95.7% / 92.6% 55.5% 97.3% 92.6% 94.6% / / 86.6% 97.8% 92.7% 74.0% 87.2% / 92.7% 84.7% 95.0% 66.1%
Furniture 18.0% 92.4% 92.9% 17.6% 40.7% 33.2% 17.6% 22.4% 91.4% 23.0% 29.1% 35.6% 88.3% 28.3% 41.0% 69.1% 33.8% 97.0% 36.3% 93.8%
Bedroom 64.7% 48.5% / / 58.4% / / / / / 70.6% / 54.3% 47.8% 53.8% 57.5% 39.1% 39.5% / 48.1%

Clinic 51.5% / / / / 63.9% / 54.4% / / / 68.9% 52.4% / / / / / / /
Hospital 79.2% 77.1% / 75.9% / 86.0% 75.9% 82.2% / / 56.3% 88.5% 80.3% / 65.9% / 74.3% 56.2% 70.1% /

Room 76.4% 55.4% / 72.0% 96.2% 76.0% 72.0% 80.4% 73.2% 84.0% 90.3% 43.5% 77.5% 41.0% 92.2% 93.3% 78.7% 53.5% 77.1% 81.8%
Hotel / / / / 76.6% / / / 68.5% / / / 71.8% 82.2% / 95.2% / / / 71.7%

Plumbing Fixture / / / / / / / / / / / / / / / / / / / 72.2%
Bathroom / / / 56.7% / / 56.7% / 54.6% / / / / / / 79.9% / / / 86.3%

House / / / 60.6% 89.4% / 60.6% / / 53.6% / / / 70.9% / 89.6% / / / 75.1%
Hospital Room / / / 77.0% / / 77.0% 60.4% / / / / / / / / 82.1% / / /
Office Building / / / / / / / 66.3% / 76.4% / / / / / / / / 69.7% /

Operating Theatre / / / / / 54.6% / / / / / 61.0% / / / / / / / /

Table A4. Percentage of confidence obtained with Google Vision API for the “acceptance” IU. Each column corresponds to Image 61 to 80 and each row is related to
a different label that was returned by the model.
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Room 80% 92% 74% 71% 93% 92% 89% 89% 81% 79% 80% 66% 94% 80% 83% 92% 79% 80% 88% 74%
Waiting Room 66% / / / 76% / / / / 82% / / 89% 65% / / / / /

Office 56% 87% 89% 61% 71% 59% 88% 92% 92% 51% 60% / 84% 56% / 90% 60% 89% / 88%
Hospital / / 66% / 51% / / / / / 86% 62% / 70% 50% / / / / /

Reception / / / / / / / / / / / / / / / / / / 60% /
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Appendix C

The tables in this appendix describe the datasets that were used in this study:

• Table A5 shows the dataset employed to test the three general models and the images
are those that were used to train and test the two versions of the model described in
Section 2.3;

• Table A6 describes the additional 40 images that were used for the second version of
the model described in Section 2.3;

• Table A7 shows the dataset used for the first version of the Detectron2 model;
• Table A8 shows the dataset used for the second version of the Detectron2 model.

For each table, the first column refers to the IU, the second refers to the name of the
image and the third refers to the size of the photograph (in pixels). The fourth and fifth
columns refer to the horizontal and vertical resolutions of the images (in dpi), respectively,
and the last column reports the bit depth for each image.

Table A5. Dataset employed to test the three general models and to train and test the two versions of
the model described in Section 2.3.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Surgery Image 1 640 × 427 72 72 24
Image 2 275 × 183 96 96 24
Image 3 118 × 510 96 96 24
Image 4 880 × 586 96 96 24
Image 5 258 × 195 96 96 24
Image 6 275 × 183 96 96 24
Image 7 259 × 194 96 96 24
Image 8 487 × 325 72 72 24
Image 9 475 × 316 96 96 24
Image 10 275 × 183 96 96 24
Image 11 225 × 225 96 96 24
Image 12 273 × 185 96 96 24
Image 13 275 × 183 96 96 24
Image 14 225 × 225 96 96 24
Image 15 850 × 510 96 96 24
Image 16 550 × 413 96 96 24
Image 17 275 × 183 96 96 24
Image 18 341 × 148 96 96 24
Image 19 275 × 183 96 96 24
Image 20 304 × 166 96 96 24

Radiology Image 21 275 × 183 96 96 24
Image 22 2254 × 2056 72 72 24
Image 23 800 × 533 96 96 24
Image 24 267 × 189 96 96 24
Image 25 274 × 184 96 96 24
Image 26 270 × 187 96 96 24
Image 27 276 × 183 96 96 24
Image 28 259 × 194 96 96 24
Image 29 243 × 207 96 96 24
Image 30 275 × 183 96 96 24
Image 31 300 × 168 96 96 24
Image 32 281 × 180 96 96 24
Image 33 276 × 183 96 96 24
Image 34 225 × 225 96 96 24
Image 35 275 × 183 96 96 24
Image 36 286 × 176 96 96 24
Image 37 2048 × 1536 300 300 24
Image 38 245 × 206 96 96 24
Image 39 259 × 194 96 96 24
Image 40 870 × 575 96 96 24
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Table A5. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Hospitalisation Image 41 800 × 600 96 96 24
Image 42 700 × 525 72 72 24
Image 43 301 × 167 96 96 24
Image 44 275 × 183 96 96 24
Image 45 275 × 183 96 96 24
Image 46 299 × 168 96 96 24
Image 47 275 × 183 96 96 24
Image 48 275 × 183 96 96 24
Image 49 307 × 164 96 96 24
Image 50 275 × 183 96 96 24

Hospitalisation Image 51 1000 × 667 96 96 24
Image 52 299 × 168 96 96 24
Image 53 275 × 183 96 96 24
Image 54 275 × 183 96 96 24
Image 55 284 × 177 96 96 24
Image 56 270 × 187 96 96 24
Image 57 259 × 232 96 96 24
Image 58 259 × 194 96 96 24
Image 59 217 × 232 96 96 24
Image 60 1200 × 800 96 96 24

Acceptance Image 61 275 × 183 96 96 24
Image 62 259 × 194 96 96 24
Image 63 275 × 183 96 96 24
Image 64 275 × 183 96 96 24
Image 65 275 × 183 96 96 24
Image 66 270 × 187 96 96 24
Image 67 230 × 219 96 96 24
Image 68 274 × 184 96 96 24
Image 69 276 × 182 96 96 24
Image 70 252 × 200 96 96 24
Image 71 259 × 194 96 96 24
Image 72 259 × 194 96 96 24
Image 73 275 × 183 96 96 24
Image 74 512 × 384 96 96 24
Image 75 319 × 158 96 96 24
Image 76 290 × 174 96 96 24
Image 77 300 × 168 96 96 24
Image 78 255 × 197 96 96 24
Image 79 275 × 183 96 96 24
Image 80 275 × 183 96 96 24
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Table A6. Additional 40 images used for the second version of the model described in Section 2.3.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Surgery Image 81 864 × 534 96 96 24
Image 82 1600 × 1077 96 96 24
Image 83 288 × 175 96 96 24
Image 84 299 × 168 96 96 24
Image 85 275 × 183 96 96 24
Image 86 275 × 183 96 96 24
Image 87 289 × 175 96 96 24
Image 88 1800 × 1200 300 300 24
Image 89 261 × 193 96 96 24
Image 90 921 × 617 96 96 24

Radiology Image 91 1024 × 576 72 72 24
Image 92 800 × 450 72 72 24
Image 93 751 × 401 96 96 24
Image 94 1000 × 665 180 180 24
Image 95 259 × 194 96 96 24
Image 96 251 × 201 96 96 24
Image 97 225 × 225 96 96 24
Image 98 275 × 183 96 96 24
Image 99 300 × 168 96 96 24

Image 100 260 × 194 96 96 24

Hospitalisation Image 101 600 × 338 72 72 24
Image 102 986 × 657 96 96 24
Image 103 901 × 568 96 96 24
Image 104 1779 × 1192 300 300 24
Image 105 283 × 178 96 96 24
Image 106 1024 × 768 96 96 24
Image 107 667 × 500 96 96 24
Image 108 840 × 480 96 96 24
Image 109 259 × 194 96 96 24
Image 110 312 × 161 96 96 24

Acceptance Image 111 194 × 259 96 96 24
Image 112 279 × 180 96 96 24
Image 113 275 × 183 96 96 24
Image 114 276 × 183 96 96 24
Image 115 300 × 168 96 96 24
Image 116 374 × 135 96 96 24
Image 117 259 × 194 96 96 24
Image 118 301 × 168 96 96 24
Image 119 260 × 194 96 96 24
Image 120 259 × 194 96 96 24
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Table A7. Dataset used for the first version of the Detectron2 model (3 IUs).

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Hospitalisation Image 1 297 × 170 96 96 24
Image 2 264 × 191 96 96 24
Image 3 270 × 187 96 96 24
Image 4 275 × 183 96 96 24
Image 5 300 × 168 96 96 24
Image 6 276 × 183 96 96 24
Image 7 259 × 194 96 96 24
Image 8 310 × 163 96 96 24
Image 9 300 × 168 96 96 24

Image 10 285 × 177 96 96 24
Image 11 259 × 194 96 96 24
Image 12 275 × 183 96 96 24
Image 13 299 × 168 96 96 24
Image 14 275 × 183 96 96 24
Image 15 340 × 148 96 96 24
Image 16 314 × 160 96 96 24
Image 17 307 × 164 96 96 24
Image 18 194 × 259 96 96 24
Image 19 325 × 155 96 96 24
Image 20 259 × 194 96 96 24
Image 21 275 × 183 96 96 24
Image 22 361 × 140 96 96 24
Image 23 314 × 161 96 96 24
Image 24 275 × 183 96 96 24
Image 25 275 × 183 96 96 24
Image 26 276 × 183 96 96 24
Image 27 275 × 183 96 96 24
Image 28 259 × 194 96 96 24
Image 29 275 × 183 96 96 24
Image 30 275 × 183 96 96 24
Image 31 275 × 183 96 96 24
Image 32 260 × 194 96 96 24
Image 33 261 × 193 96 96 24
Image 34 275 × 183 96 96 24
Image 35 275 × 183 96 96 24
Image 36 274 × 184 96 96 24
Image 37 275 × 183 96 96 24
Image 38 300 × 168 96 96 24
Image 39 275 × 183 96 96 24
Image 40 275 × 183 96 96 24

Radiology Image 1 257 × 196 96 96 24
Image 2 275 × 183 96 96 24
Image 3 261 × 193 96 96 24
Image 4 233 × 216 96 96 24
Image 5 259 × 194 96 96 24
Image 6 300 × 168 96 96 24
Image 7 292 × 173 96 96 24
Image 8 311 × 162 96 96 24
Image 9 299 × 168 96 96 24

Image 10 273 × 185 96 96 24
Image 11 290 × 174 96 96 24
Image 12 275 × 183 96 96 24
Image 13 300 × 168 96 96 24
Image 14 259 × 194 96 96 24
Image 15 301 × 168 96 96 24
Image 16 270 × 187 96 96 24
Image 17 183 × 275 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Radiology Image 18 299 × 168 96 96 24
Image 19 356 × 141 96 96 24
Image 20 270 × 186 96 96 24
Image 21 300 × 168 96 96 24
Image 22 308 × 164 96 96 24
Image 23 304 × 166 96 96 24
Image 24 275 × 183 96 96 24
Image 25 275 × 183 96 96 24
Image 26 300 × 168 96 96 24
Image 27 251 × 201 96 96 24
Image 28 283 × 178 96 96 24
Image 29 259 × 194 96 96 24
Image 30 301 × 168 96 96 24
Image 31 300 × 168 96 96 24
Image 32 299 × 168 96 96 24
Image 33 271 × 186 96 96 24
Image 34 248 × 203 96 96 24
Image 35 244 × 206 96 96 24
Image 36 244 × 206 96 96 24
Image 37 276 × 183 96 96 24
Image 38 299 × 168 96 96 24
Image 39 288 × 175 96 96 24
Image 40 302 × 167 96 96 24

Surgery Image 1 275 × 183 96 96 24
Image 2 275 × 183 96 96 24
Image 3 168 × 188 96 96 24
Image 4 292 × 173 96 96 24
Image 5 240 × 210 96 96 24
Image 6 275 × 183 96 96 24
Image 7 291 × 173 96 96 24
Image 8 275 × 183 96 96 24
Image 9 318 × 159 96 96 24

Image 10 194 × 259 96 96 24
Image 11 259 × 194 96 96 24
Image 12 269 × 187 96 96 24
Image 13 256 × 197 96 96 24
Image 14 300 × 168 96 96 24
Image 15 254 × 198 96 96 24
Image 16 324 × 155 96 96 24
Image 17 259 × 194 96 96 24
Image 18 258 × 195 96 96 24
Image 19 318 × 159 96 96 24
Image 20 259 × 194 96 96 24
Image 21 275 × 183 96 96 24
Image 22 286 × 176 96 96 24
Image 23 275 × 183 96 96 24
Image 24 258 × 195 96 96 24
Image 25 300 × 168 96 96 24
Image 26 264 × 191 96 96 24
Image 27 299 × 168 96 96 24
Image 28 295 × 171 96 96 24
Image 29 259 × 194 96 96 24
Image 31 340 × 148 96 96 24
Image 32 274 × 184 96 96 24
Image 33 275 × 183 96 96 24
Image 34 329 × 153 96 96 24
Image 35 275 × 183 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Surgery Image 36 275 × 183 96 96 24
Image 37 259 × 194 96 96 24
Image 38 259 × 194 96 96 24
Image 39 251 × 201 96 96 24

Ambulance Image 1 275 × 183 96 96 24
Image 2 229 × 220 96 96 24
Image 3 275 × 183 96 96 24
Image 4 276 × 183 96 96 24
Image 5 300 × 168 96 96 24
Image 6 194 × 259 96 96 24
Image 7 244 × 206 96 96 24
Image 8 274 × 184 96 96 24
Image 9 276 × 183 96 96 24

Image 10 259 × 194 96 96 24
Image 11 325 × 155 96 96 24
Image 12 260 × 194 96 96 24
Image 13 274 × 184 96 96 24
Image 14 275 × 183 96 96 24
Image 15 259 × 194 96 96 24
Image 16 260 × 194 96 96 24
Image 17 347 × 145 96 96 24
Image 18 275 × 183 96 96 24
Image 19 275 × 183 96 96 24
Image 20 225 × 225 96 96 24
Image 21 300 × 168 96 96 24
Image 22 268 × 188 96 96 24
Image 23 358 × 141 96 96 24
Image 24 278 × 181 96 96 24
Image 25 290 × 174 96 96 24
Image 26 275 × 183 96 96 24
Image 27 319 × 158 96 96 24
Image 28 275 × 183 96 96 24
Image 29 318 × 159 96 96 24
Image 30 275 × 183 96 96 24
Image 31 276 × 183 96 96 24
Image 32 272 × 185 96 96 24
Image 33 268 × 188 96 96 24
Image 34 259 × 194 96 96 24
Image 35 254 × 198 96 96 24
Image 36 274 × 184 96 96 24
Image 37 225 × 225 96 96 24
Image 38 301 × 168 96 96 24
Image 39 259 × 194 96 96 24
Image 40 356 × 141 96 96 24

Analysis Image 1 250 × 167 96 96 24
Laboratory Image 2 331 × 152 96 96 24

Image 3 318 × 159 96 96 24
Image 4 274 × 184 96 96 24
Image 5 200 × 150 96 96 24
Image 6 267 × 189 96 96 24
Image 7 299 × 168 96 96 24
Image 8 320 × 158 96 96 24
Image 9 275 × 183 96 96 24

Image 10 300 × 168 96 96 24
Image 11 271 × 186 96 96 24
Image 12 240 × 200 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Analysis Image 13 313 × 161 96 96 24
Laboratory Image 14 259 × 194 96 96 24

Image 15 259 × 194 96 96 24
Image 16 268 × 188 96 96 24
Image 17 319 × 158 96 96 24
Image 18 275 × 183 96 96 24
Image 19 276 × 183 96 96 24
Image 20 275 × 183 96 96 24
Image 21 275 × 183 96 96 24
Image 22 264 × 191 96 96 24
Image 23 276 × 183 96 96 24
Image 24 259 × 194 96 96 24
Image 25 305 × 165 96 96 24
Image 26 370 × 136 96 96 24
Image 27 382 × 132 96 96 24
Image 28 321 × 157 96 96 24
Image 29 300 × 168 96 96 24
Image 30 263 × 192 96 96 24
Image 31 330 × 153 96 96 24
Image 32 300 × 168 96 96 24
Image 33 322 × 156 96 96 24
Image 34 250 × 202 96 96 24
Image 35 299 × 169 96 96 24
Image 36 402 × 125 96 96 24
Image 37 262 × 193 96 96 24
Image 38 284 × 177 96 96 24
Image 39 304 × 166 96 96 24
Image 40 259 × 194 96 96 24

Hospitalisation Image 1 297 × 170 96 96 24
Image 2 264 × 191 96 96 24
Image 3 270 × 187 96 96 24
Image 4 275 × 183 96 96 24
Image 5 300 × 168 96 96 24
Image 6 276 × 183 96 96 24
Image 7 259 × 194 96 96 24
Image 8 310 × 163 96 96 24
Image 9 300 × 168 96 96 24

Image 10 285 × 177 96 96 24
Image 11 259 × 194 96 96 24
Image 12 275 × 183 96 96 24
Image 13 299 × 168 96 96 24
Image 14 275 × 183 96 96 24
Image 15 340 × 148 96 96 24
Image 16 314 × 160 96 96 24
Image 17 307 × 164 96 96 24
Image 18 194 × 259 96 96 24
Image 19 325 × 155 96 96 24
Image 20 259 × 194 96 96 24
Image 21 275 × 183 96 96 24
Image 22 361 × 140 96 96 24
Image 23 314 × 161 96 96 24
Image 24 275 × 183 96 96 24
Image 25 275 × 183 96 96 24
Image 26 276 × 183 96 96 24
Image 27 275 × 183 96 96 24
Image 28 259 × 194 96 96 24
Image 29 275 × 183 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Hospitalisation Image 30 275 × 183 96 96 24
Image 31 275 × 183 96 96 24
Image 32 260 × 194 96 96 24
Image 33 261 × 193 96 96 24
Image 34 275 × 183 96 96 24
Image 35 275 × 183 96 96 24
Image 36 274 × 184 96 96 24
Image 37 275 × 183 96 96 24
Image 38 300 × 168 96 96 24
Image 39 275 × 183 96 96 24
Image 40 275 × 183 96 96 24

Intensive Image 1 300 × 168 96 96 24
Therapy Image 2 301 × 168 96 96 24

Image 3 275 × 183 96 96 24
Image 4 263 × 192 96 96 24
Image 5 259 × 194 96 96 24
Image 6 303 × 166 96 96 24
Image 7 275 × 183 96 96 24
Image 8 259 × 194 96 96 24
Image 9 259 × 194 96 96 24

Image 10 259 × 194 96 96 24
Image 11 300 × 168 96 96 24
Image 12 259 × 194 96 96 24
Image 13 299 × 168 96 96 24
Image 14 299 × 168 96 96 24
Image 15 259 × 194 96 96 24
Image 16 275 × 183 96 96 24
Image 17 275 × 183 96 96 24
Image 18 299 × 168 96 96 24
Image 19 276 × 183 96 96 24
Image 20 335 × 150 96 96 24
Image 21 275 × 183 96 96 24
Image 22 300 × 168 96 96 24
Image 23 318 × 159 96 96 24
Image 24 268 × 188 96 96 24
Image 25 299 × 168 96 96 24
Image 26 299 × 168 96 96 24
Image 27 305 × 165 96 96 24
Image 28 275 × 183 96 96 24
Image 29 275 × 183 96 96 24
Image 30 301 × 168 96 96 24
Image 31 275 × 183 96 96 24
Image 32 259 × 194 96 96 24
Image 33 299 × 168 96 96 24
Image 34 259 × 194 96 96 24
Image 35 256 × 197 96 96 24
Image 36 268 × 188 96 96 24
Image 37 278 × 181 96 96 24
Image 38 275 × 183 96 96 24
Image 39 275 × 183 96 96 24
Image 40 300 × 168 96 96 24

Medical Clinic Image 1 286 × 176 96 96 24
Image 2 273 × 185 96 96 24
Image 3 259 × 195 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Medical Clinic Image 4 301 × 167 96 96 24
Image 5 360 × 140 96 96 24
Image 6 275 × 183 96 96 24
Image 7 286 × 176 96 96 24
Image 8 275 × 183 96 96 24
Image 9 277 × 182 96 96 24
Image 10 275 × 183 96 96 24
Image 11 275 × 183 96 96 24
Image 12 275 × 183 96 96 24
Image 13 301 × 167 96 96 24
Image 14 275 × 183 96 96 24
Image 15 383 × 132 96 96 24
Image 16 275 × 183 96 96 24
Image 17 259 × 194 96 96 24
Image 18 275 × 183 96 96 24
Image 19 275 × 183 96 96 24
Image 20 194 × 259 96 96 24
Image 21 259 × 194 96 96 24
Image 22 274 × 184 96 96 24
Image 23 259 × 194 96 96 24
Image 24 275 × 183 96 96 24
Image 25 330 × 153 96 96 24
Image 26 259 × 194 96 96 24
Image 27 306 × 165 96 96 24
Image 28 300 × 168 96 96 24
Image 29 194 × 259 96 96 24
Image 30 259 × 194 96 96 24
Image 31 183 × 276 96 96 24
Image 32 275 × 183 96 96 24
Image 33 259 × 194 96 96 24
Image 34 259 × 194 96 96 24
Image 35 247 × 204 96 96 24
Image 36 275 × 183 96 96 24
Image 37 194 × 259 96 96 24
Image 38 275 × 183 96 96 24
Image 39 273 × 185 96 96 24
Image 40 316 × 160 96 96 24

Radiology Image 1 257 × 196 96 96 24
Image 2 275 × 183 96 96 24
Image 3 261 × 193 96 96 24
Image 4 233 × 216 96 96 24
Image 5 259 × 194 96 96 24
Image 6 300 × 168 96 96 24
Image 7 292 × 173 96 96 24
Image 8 311 × 162 96 96 24
Image 9 299 × 168 96 96 24
Image 10 273 × 185 96 96 24
Image 11 290 × 174 96 96 24
Image 12 275 × 183 96 96 24
Image 13 300 × 168 96 96 24
Image 14 259 × 194 96 96 24
Image 15 301 × 168 96 96 24
Image 16 270 × 187 96 96 24
Image 17 183 × 275 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Radiology Image 18 299 × 168 96 96 24
Image 19 356 × 141 96 96 24
Image 20 270 × 186 96 96 24
Image 21 300 × 168 96 96 24
Image 22 308 × 164 96 96 24
Image 23 304 × 166 96 96 24
Image 24 275 × 183 96 96 24
Image 25 275 × 183 96 96 24
Image 26 300 × 168 96 96 24
Image 27 251 × 201 96 96 24
Image 28 283 × 178 96 96 24
Image 29 259 × 194 96 96 24
Image 30 301 × 168 96 96 24
Image 31 300 × 168 96 96 24
Image 32 299 × 168 96 96 24
Image 33 271 × 186 96 96 24
Image 34 248 × 203 96 96 24
Image 35 244 × 206 96 96 24
Image 36 244 × 206 96 96 24
Image 37 276 × 183 96 96 24
Image 38 299 × 168 96 96 24
Image 39 288 × 175 96 96 24
Image 40 302 × 167 96 96 24

Rehabilitation Image 1 348 × 145 96 96 24
and Image 2 259 × 194 96 96 24

Physiotherapy Image 3 259 × 194 96 96 24
Image 4 275 × 183 96 96 24
Image 5 277 × 182 96 96 24
Image 6 300 × 168 96 96 24
Image 7 259 × 194 96 96 24
Image 8 275 × 183 96 96 24
Image 9 259 × 194 96 96 24

Image 10 275 × 183 96 96 24
Image 11 297 × 170 96 96 24
Image 12 243 × 208 96 96 24
Image 13 259 × 194 96 96 24
Image 14 275 × 183 96 96 24
Image 15 294 × 171 96 96 24
Image 16 300 × 168 96 96 24
Image 17 259 × 194 96 96 24
Image 18 248 × 203 96 96 24
Image 19 275 × 183 96 96 24
Image 20 259 × 194 96 96 24
Image 21 300 × 168 96 96 24
Image 22 329 × 153 96 96 24
Image 23 300 × 168 96 96 24
Image 24 248 × 203 96 96 24
Image 25 259 × 194 96 96 24
Image 26 259 × 194 96 96 24
Image 27 321 × 157 96 96 24
Image 28 194 × 259 96 96 24
Image 29 275 × 183 96 96 24
Image 30 372 × 135 96 96 24
Image 31 259 × 194 96 96 24
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Table A7. Cont.

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Rehabilitation Image 32 259 × 194 96 96 24
and Image 33 259 × 194 96 96 24

Physiotherapy Image 34 316 × 159 96 96 24
Image 35 300 × 168 96 96 24
Image 36 225 × 225 96 96 24
Image 37 259 × 194 96 96 24
Image 38 275 × 183 96 96 24
Image 39 275 × 184 96 96 24
Image 40 275 × 183 96 96 24

Surgery Image 1 275 × 183 96 96 24
Image 2 275 × 183 96 96 24
Image 3 168 × 188 96 96 24
Image 4 292 × 173 96 96 24
Image 5 240 × 210 96 96 24
Image 6 275 × 183 96 96 24
Image 7 291 × 173 96 96 24
Image 8 275 × 183 96 96 24
Image 9 318 × 159 96 96 24

Image 10 194 × 259 96 96 24
Image 11 259 × 194 96 96 24
Image 12 269 × 187 96 96 24
Image 13 256 × 197 96 96 24
Image 14 300 × 168 96 96 24
Image 15 254 × 198 96 96 24
Image 16 324 × 155 96 96 24
Image 17 259 × 194 96 96 24
Image 18 258 × 195 96 96 24
Image 19 318 × 159 96 96 24
Image 20 259 × 194 96 96 24
Image 21 275 × 183 96 96 24
Image 22 286 × 176 96 96 24
Image 23 275 × 183 96 96 24
Image 24 258 × 195 96 96 24
Image 25 300 × 168 96 96 24
Image 26 264 × 191 96 96 24
Image 27 299 × 168 96 96 24
Image 28 295 × 171 96 96 24
Image 29 259 × 194 96 96 24
Image 30 275 × 183 96 96 24
Image 31 340 × 148 96 96 24
Image 32 274 × 184 96 96 24
Image 33 275 × 183 96 96 24
Image 34 329 × 153 96 96 24
Image 35 275 × 183 96 96 24
Image 36 275 × 183 96 96 24
Image 37 259 × 194 96 96 24
Image 38 259 × 194 96 96 24
Image 39 251 × 201 96 96 24
Image 40 343 × 147 96 96 24

Toilet Image 1 194 × 259 96 96 24
Image 2 194 × 259 96 96 24
Image 3 276 × 183 96 96 24
Image 4 194 × 259 96 96 24
Image 5 286 × 176 96 96 24
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Table A8. Dataset used for the second version of the Detectron2 model (9 IUs).

IU Name Size (Pixel) Horizontal Vertical Bit DepthResolution (dpi) Resolution (dpi)

Toilet Image 6 268 × 188 96 96 24
Image 7 286 × 176 96 96 24
Image 8 242 × 208 96 96 24
Image 9 259 × 194 96 96 24

Image 10 259 × 194 96 96 24
Image 11 286 × 176 96 96 24
Image 12 290 × 174 96 96 24
Image 13 194 × 259 96 96 24
Image 14 259 × 194 96 96 24
Image 15 194 × 259 96 96 24
Image 16 225 × 225 96 96 24
Image 17 285 × 177 96 96 24
Image 18 275 × 183 96 96 24
Image 19 300 × 168 96 96 24
Image 20 275 × 183 96 96 24
Image 21 259 × 194 96 96 24
Image 22 259 × 194 96 96 24
Image 23 276 × 183 96 96 24
Image 24 286 × 176 96 96 24
Image 25 275 × 183 96 96 24
Image 26 225 × 224 96 96 24
Image 27 259 × 194 96 96 24
Image 28 183 × 275 96 96 24
Image 29 225 × 225 96 96 24
Image 30 262 × 193 96 96 24
Image 31 183 × 275 96 96 24
Image 32 177 × 284 96 96 24
Image 33 264 × 191 96 96 24
Image 34 194 × 259 96 96 24
Image 35 262 × 192 96 96 24
Image 36 278 × 181 96 96 24
Image 37 259 × 194 96 96 24
Image 38 259 × 194 96 96 24
Image 39 194 × 259 96 96 24
Image 40 300 × 168 96 96 24
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