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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and
represents the most common cause of dementia in the elderly population
worldwide. Currently, there is no cure for AD, and the continuous increase in
the number of susceptible individuals poses one of the most significant emerging
threats to public health. However, the molecular pathways involved in the onset
and progression of AD are not fully understood. This information is crucial for
developing less invasive diagnostic instruments and discovering novel potential
therapeutic targets. Metabolomics studies the complete ensemble of endogenous
and exogenous metabolites present in biological specimens and may provide an
interesting approach to identify alterations in multiple biochemical processes
associated with AD onset and evolution. In this mini review, we summarize the
results from metabolomic studies conducted using nuclear magnetic resonance
(NMR) spectroscopy on human biological samples (blood derivatives,
cerebrospinal fluid, urine, saliva, and tissues) from AD patients. We describe the
metabolic alterations identified in AD patients compared to controls and to
patients diagnosed with mild cognitive impairment (MCI). Moreover, we discuss
the challenges and issues associated with the application of NMR-based
metabolomics in the context of AD research.
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1 Introduction

Alzheimer’s disease (AD) represents an irreversible neurodegenerative condition
characterized by a gradual deterioration of memory, cognitive abilities, and eventually the
capacity to perform basic daily tasks. It stands as the predominant neurodegenerative ailment in
the elderly population, impacting approximately 5%–7% of individuals aged 60 and above (Foley
et al., 2017). In the clinical practice, the identification of AD-affected individuals is facilitated by
measuring the levels of cerebrospinal fluid (CSF) core AD biomarkers, namely total tau (t-tau),
threonine-181-phosphorylated-tau (p-tau) proteins, and amyloid beta 1–42 peptide (Aβ42)
(Blennow et al., 2010). The variation in concentration of thesemolecules reflects the key aspects of
disease pathogenesis (i.e., neuronal degeneration, tangles formation, and aggregation and
deposition of amyloid plaques). During the asymptomatic phase of AD, CSF analysis in
affected individuals commonly reveals diminished concentrations of Aβ42, and elevated
levels of t-tau and p-tau proteins (Mattsson et al., 2009). Remarkably, these characteristic
alterations are evident prior to the onset of clinical symptoms. Thus, the identification of AD-
affected individuals is facilitated by the detection of abnormal levels of these CSF core biomarkers,
even in the prodromal phase (Dubois et al., 2014).
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Despite the clinical utility of these biomarkers, the intricate
molecular pathways contributing to the onset and progression of AD
remain incompletely elucidated. The imperative to uncover novel
molecular targets for AD, with applications in early diagnosis,
prognosis, disease trajectory prediction, and therapeutic
interventions, underscores the critical need for comprehensive
insights into the underlying molecular biochemistry of AD
(Paglia et al., 2016).

Metabolomics, a discipline dedicated to the identification,
quantification, and characterization of the entire spectrum of
endogenous and exogenous metabolites in a biological specimen,
emerges as a promising avenue of exploration (Ashrafian et al.,
2021). Metabolites, representing the downstream products of the
genome, transcriptome, and proteome, as well as the upstream
inputs from diverse external factors such as environment,
lifestyle, diet, and drug exposure, encapsulate a holistic view of
the biochemical landscape (Nicholson and Lindon, 2008).

Given these considerations, metabolomics presents itself as a
compelling approach for investigating alterations in multiple
biochemical networks throughout the course of AD. This
approach holds potential not only for enhancing our
understanding of the disease mechanisms but also for paving the
way towards the identification of new, effective, and minimally
invasive targets for early detection, prognosis, and therapeutic
intervention in Alzheimer’s disease.

Mass spectrometry and Nuclear Magnetic Resonance (NMR)
spectroscopy are the two main analytical platforms available to
perform metabolomic analysis. MS overshadows NMR in terms of
sensitivity, having a detection limit in the rage of nano-to picomolar
concentrations, which translates in being able to quantify a number
of compounds of the order of 103. In contrast, NMR struggles to
detect metabolites at concentrations below the micromolar level. On
the other hand, NMR is intrinsically quantitative, high-throughput
and highly reproducible on a wide dynamic range (Vignoli et al.,
2019). To be exhaustive, NMR, performed at an intermediate field
such as a 600 MHz (the metabolomics gold standard) and in
complex samples with crowded spectra such as biofluids, is
limited also by spectral resolution. Considering all the
abovementioned aspects, NMR and MS can be considered
complementary since the weaknesses of one platform can be
compensated by the strengths of the other, and both can
contribute to AD research (González-Domínguez et al., 2017).
Our review is focused on NMR which in the last years has
demonstrated to be a powerful tool for searching novel
biomarkers (Emwas et al., 2019) for disease diagnosis, prognosis,
monitoring patients during therapeutic treatments and finding
novel potential therapeutic targets (Wishart, 2016; Holmes et al.,
2018; McCartney et al., 2019; Vignoli et al., 2020b; Jobard et al., 2021;
Buergel et al., 2022; Vignoli et al., 2022).

In this review we decided to collect the main finding obtained
from metabolomic studies performed using NMR spectroscopy
on human biological samples from AD patients. Providing a
comprehensive and in-depth methodological description of the
use of NMR technique for metabolomic analyses is beyond the
scope of this work. However, we refer interested readers to a
recently published review by our group that specifically addresses
these aspects for both liquid and semi-solid samples (Ghini et al.,
2023).

2 Article selection

2.1 Study inclusion and exclusion criteria

The detailed study selection criteria are presented according to
the Population, Exposure, Comparison, Outcome and Study design
(PECOS) criteria as outlined below:

Inclusion criteria

⁃ P (Participants): Adult patients (>18 years of age) from any
geographic location, any age or gender.

⁃ E (Exposure): Patients with confirmed diagnosis of AD.
⁃ C (Comparison): Difference in concentration of metabolites and
lipoproteins betweenAD and other control/pathological groups.

⁃ O (Outcome): Dysregulation of metabolite/lipoproteins
concentrations between the study groups.

⁃ S (Study Design): Human-based observational studies (case-
control, cohort, or cross-sectional) that performed
metabolomics via NMR to quantify the concentrations of
metabolites and lipoproteins.

Exclusion criteria

⁃ Targeted metabolomic experiments that are used to validate
and translate already identified metabolites from hypothesis
generating studies.

⁃ Animal or cell-based studies.
⁃ Non-Observational study designs such as case reports, conference
proceedings, letters to editor, reviews, and meta-analysis.

⁃ Metabolites quantified using analytical platforms other than
NMR (e.g., mass spectrometry).

FIGURE 1
Flowchart of study identification, eligibility, and inclusion.
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TABLE 1 Detailed characteristics of the included studies.

Author/Year Cohort
allocation

Sample
type

Cases/
Controls

Age
(mean)

Sex (male/
female)

Sample
storage

NMR
(MHz)

Significant
metabolites (AD as

References)

Study
limitations

Botosoa et al.
(2012)

France Tissue
Extracts

AD 8 ALS 11 - - −80°C 500 (s) AD vs. ALS ↑Ala, acetate,
Glu, Gln, GPC ↓lactate,
NAA, creatine, PC, choline,
myo-inositol

- Very limited
numerosity

- Missing
relevant
demographic
information

- Results not
independently
validated

Graham et al.
(2014)

England Tissue
Extracts

CTR 15 AD 15 82 CTR 4/11 AD
9/6

- 400 (s) AD vs. CTR ↑Ala, taurine - Very limited
numerosity

- Missing
information
on storage
conditions

- Statistical
methods
poorly
described

- Results not
independently
validated

- Gender
unbalance

Kim et al. (2017) South Korea Plasma CTR 11 AD 9 78 CTR 2/7 AD
1/10

- 600 (s) AD vs. CTR ↑Glu, Gln, Leu,
oxaloacetate, Asp, Ile, 3-
hydroxyisovalerate

- Very limited
numerosity

- Missing
information
on storage
conditions

- Statistical
methods
poorly
described

- Gender
unbalance

- Results not
independently
validated

- Fasting
status not
reported

Vignoli et al.
(2020a)

Netherlands CSF nonAD
20 MCI-AD
20 AD 20

54 nonAD 14/
6 MCI-AD 12/
8 AD 6/14

−80°C 600 (s) AD vs. nonAD ↓Val,
acetate, 3-
hydroxyisovalerate AD vs.
MCI-AD ↓Val, 3-
hydroxyisovalerate

- Limited
numerosity

Italy CSF nonAD
12 AD 14

60 nonAD 6/
6 AD 6/8

- Gender
unbalance

- Results
reproduced in
2 cohort but
not
independently
validated

(Continued on following page)
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TABLE 1 (Continued) Detailed characteristics of the included studies.

Author/Year Cohort
allocation

Sample
type

Cases/
Controls

Age
(mean)

Sex (male/
female)

Sample
storage

NMR
(MHz)

Significant
metabolites (AD as

References)

Study
limitations

Yilmaz et al. (2017) Michigan Saliva CTR 12 MCI
8 AD 9

83 CTR 4/8 MCI
3/5 AD 3/6

−80°C 600 AD vs. CTR# ↑Propionate,
Acetone AD vs. MCI
↑Creatinine, 5-
aminopentanoate

- Very limited
numerosity

- Statistical
methods
poorly
described

- Results not
independently
validated

Zhang et al. (2019) Georgia Intact
Tissue

CTR 11 AD 11 63 CTR 7/4 AD
6/5

−80°C 600
(HR-
MAS)

AD vs. CTR ↑PC/Creatine,
GPC/Creatine, α&β-Glc/
Creatine ↓NAA/Creatine,
Ace/Creatine, GABA/
Creatine, Asp/Creatine,
Myo-Inositol/Creatine,
Taurine/Creatine

- Very limited
numerosity

- Results not
independently
validated

Yilmaz et al.
(2020a)

Michigan Urine CTR 29 MCI
10 AD 20

79 CTR 13/
16 MCI 5/
5 AD 9/11

−80°C 600 (s) AD vs. CTR - Limited
numerosity

↑2-Hydroxybutyric acid,
Trimethylamine,
Trimethylamine-n-oxide,
Pro ↓2-Hydroxyisovaleric
acid, Alpha-ketoisovaleric
acid, D-Glucose,
Pyridoxine, Glycolic acid

- Results not
independently
validated

AD vs. MCI

↑2-Hydroxybutyric acid, 3-
Hydroxyisovaleric acid, 5-
Aminopentanoic acid,
Cytosine, D-Glucose,
Guanidoacetic acid,
Hippuric acid, Ala, Myo-
inositol

↓2-Hydroxyisovaleric acid,
Alpha-ketoisovaleric acid,
Dimethylsulfone, Mannitol,
Methanol, Trimethylamine,
Tryptophan, Ile, Acetate,
Acetone

Yilmaz et al.
(2020b)

Michigan Plasma CTR 101 MCI
71 AD 77

79 CTR 48/
53 MCI 37/
34 AD 34/43

−80°C 600 (s) AD vs. CTR - Blood
components
were separated
within 24 h

↑Glycerol, Gln, Val - Results not
independently
validatedAD vs. MCI

↑Arg, Creatinine, Sarcosine

↓Acetate, Acetoacetate,
Carnitine, Isopropyl
alcohol, Acetone, Dimethyl
sulfone

Kurbatova et al.
(2020)

Europe Urine CTR
214 stable

MCI
200 dementia

MCI
55 AD 197

77 CTR 103/
111 stable
MCI 99/

101 dementia
MCI 20/

35 AD 101/96

−80°C 600 (s) AD vs. CTR - Results not
independently
validated↑Sucrose

(Continued on following page)
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TABLE 1 (Continued) Detailed characteristics of the included studies.

Author/Year Cohort
allocation

Sample
type

Cases/
Controls

Age
(mean)

Sex (male/
female)

Sample
storage

NMR
(MHz)

Significant
metabolites (AD as

References)

Study
limitations

Di Costanzo et al.
(2020)

Italy Serum CTR 51 SMD
40 MCI
40 AD 40

68 CTR 26/
25 SMD 14/
26 MCI 14/
26 AD 13/27

−80°C 600 (s) AD vs. CTR - Results not
independently
validated↑Gln

↓Acetate, Choline, Ile,
Leu, Val

AD vs. MCI

↑Glucose, Glyceryl lipids,
Lactate

↓Acetate, Choline, Ile,
Leu, Val

AD vs. SMD

↑Acetate, Choline,
Methanol, PC/GPC

↓Ala, Ile, Leu, Val

Weng et al. (2022) Massachusetts Plasma CTR 19 AD 16 69 CTR 9/10 AD
9/7

−80°C 600
(HR-
MAS)

AD vs. CTR - Limited
numerosity

↑3-phosphoglycerate,
fructose-6-phosphate,
glucose-6-phosphate, myo-
inositol, betaine, methyl-
His,
glycerylphosphorylcholine,
ergothioneine, taurine, Gly,
Ser, Trp

- Results not
independently
validated

↓2-oxoglutarate, citrate,
malate, glutathione
disulfide, carnosine,
ornithine, Ala, Gln, Val

Berezhnoy et al.
(2022)

Germany Serum CTR 54 MCI
51 AD 56

70 CTR 25/
29 MCI 34/
17 AD 31/25

−80°C 600 (s) AD vs. CTR - Results not
independently
validated

↑LDL-2 cholesterol, LDL-3
cholesterol

- Samples
collected at
different
fasting
conditions

AD vs. MCI - Statistical
methods
poorly
described

↑VLDL-1 cholesterol,
VLDL-1 triglycerides

Berezhnoy et al.
(2023)

Germany CSF CTR 20 MCI
22 AD 29

68 CTR 13/
7 MCI 16/
6 AD 14/15

−80°C 600 (s) AD vs. CTR - Limited
numerosity

↑Alpha-ketoisovaleric acid,
2-Hydroxy-isovalerate

- Results not
independently
validated

↓2-hydroxybutyrate, 3-
Hydroxy-isobutyrate

- Gender
unbalance

AD vs. MCI - Statistical
methods
poorly
described

↑2-Hydroxy-isovalerate

↓Val, formate

Serum CTR 29 MCI
21 AD 26

69 CTR 15/
14 MCI 15/
6 AD 13/13

AD vs. CTR

↓Glu, ornithine

(Continued on following page)
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⁃ Studies published after October 2023.

2.2 Search and selection strategy

The search was conducted on the Web of Science electronic
database in the title (TI) and in the topic (TS) fields, using a
combination of keywords paired with the Boolean operator
“AND”. The final query was (TI=(alzheimer) AND TS =
((metabolomic* OR metabolite*) AND *NMR*)). The search was
conducted the 16th of November 2023.

Applying the abovementioned inclusion and exclusion criteria,
study selection was carried out screening titles and abstracts of all
publications. Studies that matched the inclusion criteria but had
insufficient details in abstracts were further examined by inspecting
the complete texts.

A total of 75 records were retrieved after the identification phase,
out of which 8 records were excluded because of document type
(review). The remaining 67 records were screened for their title and
abstract (or entire text when required), of which 53 records were
excluded since did not match the inclusion/exclusion criteria.
Figure 1 depicts the flowchart of study selection, summarizing
the process of study identification, eligibility, and inclusion.

3 Study characteristics

The characteristics of the 14 included studies are presented in
Table 1. The selected studies were published in the last 11 years
(2012–2023) and were mainly conducted in Europe and United States

(86%). Of the studies that reported age and sex, the mean age of the
enrolled population ranges from 54 to 82 years, with 47% of them
being male. Most of the research compared metabolomics data
between AD and healthy controls and MCI. The majority of the
studies (7 out of 14) analyzed blood derivatives (plasma or serum),
followed by cerebrospinal fluid (CSF), urine, tissues and saliva. Of the
studies that reported the information, all samples were stored at −80°C
pending NMR analysis as per the best practice for metabolomics, and,
except for two studies, all samples were acquired using a spectrometer
operating at 600 MHz.

4 Metabolomic/lipoproteomic
differences between AD and controls

Although abnormal levels of the CSF core AD biomarkers enable
the accurate identification of patients affected by AD, a full
comprehension of the underlying molecular mechanisms
involved in the onset and progression of this pathology is still
distant. For this reason, most of the published studies aim to
detect and quantify, in different biospecimens, AD-relevant
metabolites and/or lipoproteins in AD patients as compared to
cognitively normal individuals (CTR).

The first metabolomic studies via NMR date back to 2012–2014,
and both examined post-mortem brain tissue extracts (Botosoa et al.,
2012; Graham et al., 2014). Botosoa et al. analyzed frontal cortex
extracts of samples collected post-mortem from AD patients and from
a control group constituted by amyotrophic lateral sclerosis (ALS)
patients. The ADmetabolic signature was characterized by high levels
of alanine, acetate, glutamate, glutamine and glycerophosphocholine

TABLE 1 (Continued) Detailed characteristics of the included studies.

Author/Year Cohort
allocation

Sample
type

Cases/
Controls

Age
(mean)

Sex (male/
female)

Sample
storage

NMR
(MHz)

Significant
metabolites (AD as

References)

Study
limitations

AD vs. MCI

↓Glucose

Botello-Marabotto
et al. (2023)

Spain Serum CTR 50 MCI
27 AD 51

80 CTR 17/
33 MCI 10/
17 AD 9/42

−80°C 600 (s) AD vs. CTR - Results not
independently
validated

↑Acetone, Ala, Creatine,
Gly, Methanol, Lys,
N-acetyled compounds,
N-acetylglucosamine, Phe,
Pyruvate, Thr

- Gender
unbalance

↓Acetylcholine, Choline,
Ethanol, Ile, Glycerol

AD vs. MCI

↑Creatine, Glycine, Lactate,
Lys, N-acetyled
compounds,
N-acetylglucosamine, Phe,
Pyruvate

↓Choline, Ethanol, Glycerol

CSF, cerebrospinal fluid; CTR, non-AD controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; SMD, subjective memory decline; ALS, amyloid lateral sclerosis; (s): in solution

NMR; HR-MAS, high resolution magic angle spinning; GPC, glycerophosphocholine; NAA, N-acetyl aspartate; PC, phosphocholine; sFA, saturated fatty acids; uFA, unsaturated fatty acids;

GABA, γ-aminobutyric acid; α&β-Glc: resonance found at 3.71 ppm.

Frontiers in Molecular Biosciences frontiersin.org06

Vignoli and Tenori 10.3389/fmolb.2023.1308500

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1308500


(GPC), and low levels of lactate, creatine, N-AcetyAspartate (NAA),
phosphocholine (PC), choline and myo-inositol (Table 1). In
particular, NAA is a biomarker of neuronal integrity in the brain
and its reduction reflects deficiency and neuronal dysfunction.
Therefore, this metabolite could play a pivotal role in AD
pathogenesis. Graham et al. analyzed extracts of post-mortem brain
Brodmann 7 region samples. Multivariate statistical analysis shows a
clear distinction between AD and CTR samples, and themost relevant
metabolites in the discrimination were alanine and taurine (Table 1).
In 2019 the first NMR-based metabolomic study conducted on intact
post-mortem tissues obtained from frontal cortex was published
(Zhang et al., 2019). The authors reported that high levels of PC,
GPC and low levels of NAA, acetate, GABA, aspartate, myo-inositol
and taurine are characteristic features of samples of AD patients as
compared to CTR (Table 1).

Going from tissues to biofluids, NMR-basedmetabolomics of blood
derivatives (plasma or serum) has shown the potential to distinguish
patients with AD from CTR with optimal results (Kim et al., 2017;
Yilmaz et al., 2020b; Di Costanzo et al., 2020; Berezhnoy et al., 2022,
Berezhnoy et al., 2023; Weng et al., 2022; Botello-Marabotto et al.,
2023). Among metabolites (which include amino acids, carbohydrates,
lipids, choline-derived metabolites, keto acids, and fatty acids) and
lipoproteins (fraction and subfractions) identified and quantified in the
studies, several metabolites and 2 lipoprotein subfraction of LDL
cholesterol (Table 1) were described as differentially abundant
between AD and CTR. However, there is not a clear consensus on
the directions (up or down) of dysregulation of these metabolic
alterations and on their significance (Table 1). The high
heterogeneity emerged could be ascribed to several factors: the small
sample size of most of the studies, the lack of independent validation
cohorts in the majority of the studies, relevant differences in sample
collection, processing, and analytical method employed (e.g. not all
blood samples were collected pre-prandially), and not adequately
addressing of potential confounding risk factors (e.g. not all studies
enrolled patients and controls age and sex matched). These factors
could significantly impact metabolite concentrations and may be
leading factors for inconsistencies of reported results.

Two studies (Yilmaz et al., 2020a; Kurbatova et al., 2020) investigated
themetabolic phenotype ofAD in urine (Table 1). Both studies proposed
a combined approach using both 1H NMR and mass spectrometry and
showed that the urine phenotype can discriminate AD and CTR with
high discrimination accuracy. Yilmaz et al. reported that 2-
hydroxybutyric acid, trimethylamine, trimethylamine-n-oxide, proline
have higher concentrations in AD patients, whereas 2-hydroxyisovaleric
acid, alpha-ketoisovaleric acid, D-glucose, pyridoxine and glycolic acid
have lower concentrations. In this case, using available information, it
was not possible to distinguish between the metabolites quantified
through NMR and those quantified through mass spectrometry;
whereas Kurbatova et al. clearly differentiated the quantification assay
and the only significant difference emerged by NMR is the increasing of
sucrose. One study searched for diagnostic biomarkers of AD in saliva
samples (Yilmaz et al., 2017) identifying differences in the concentrations
of 22 metabolites in AD and MCI as compared to CTR. Moreover, the
authors built two distinct logistic regression models: one, based on
creatinine and 5-aminopentanoate, able to discriminate AD from MCI
with 0.900 sensitivity and 0.944 specificity, and another, based on
propionate and acetone, which discriminates AD from CTR with
0.909 sensitivity and 0.842 specificity (Table 1).

Since brain directly transfers its metabolites into CSF, the latter
most likely reflects the brain biochemistry, and thus CSF is obviously
the biofluid of choice when it comes to studying neurological disorders.
However, the invasiveness of the sample collection procedure and
associated ethical issues (especially for control/healthy individuals)
have resulted in only one available NMR-based metabolomic study
examining AD and CTR (Table 1). In this study (Berezhnoy et al.,
2023) it is showed that alpha-ketoisovaleric acid and 2-hydroxy-
isovalerate are upregulated in the CSF of AD patients respect to
CTR, whereas 2-hydroxybutyrate and 3-hydroxy-isobutyrate are
downregulated. Moreover, they identified sex-specific metabolite
alterations that underling once more how sex is a relevant
confounding factor when one wants to perform metabolomics
analyses (Vignoli et al., 2018; Bell et al., 2021; Costanzo et al., 2022).

5 Metabolomic/lipoproteomic
differences between AD and MCI

The AD “continuum” starting from cognitively normal subjects,
begins with subjective memory decline, progresses toMild Cognitive
Impairment (MCI) and eventually reaches AD (Jessen et al., 2014).
However, MCI subjects may not evolve into dementia, indeed only
20%–40% of patients progresses to AD (Tahami Monfared et al.,
2022). Understanding the mechanisms underlying this progression
could contribute to addressing the still unsolved question of AD
pathogenesis and evolution.

Two studies (Vignoli et al., 2020a; Berezhnoy et al., 2023)
analyzed cerebrospinal fluid of AD and MCI patients by NMR,
revealing a clear distinction between the two groups. Both studies
consistently found a reduction in valine levels in the CSF of AD
patients (Table 1). Furthermore, Vignoli et al. showed that valine is
reduced even in comparison to MCI-AD patients, and that it
correlates with patient cognitive decline. In addition to valine,
Vignoli et al. also identified in AD patients a reduction in the
levels of acetate and 3-hydroxyisovalerate. Conversely, Berezhnoy
et al. reported higher CSF levels of 2-hydroxy-isovalerate and lower
levels of formate in AD patients.

Focusing the attention from a compartmentalized biofluid such
CSF to systemic biofluids, we were able to find five studies conducted
on blood derivatives and two studies on urine (Table 1). Among the
five studies on plasma/serum, four were focused on metabolite
analysis (Yilmaz et al., 2020b; Di Costanzo et al., 2020; Berezhnoy
et al., 2023; Botello-Marabotto et al., 2023) and reported
25 differentially abundant metabolites between AD and MCI. As
observed in the comparison between AD and CTR, there is some
inconsistency among the results (e.g. glucose, a metabolite which is
very sensitive to sample collection and pre-analytical procedures, is
reported reduced in AD in one study and increased in another study);
however, two out of three studies described a significant reduction
acetate in ADpatients and it has been hypothesized that it could play a
role in the compromission of the neurotransmission activity of
acetylcholine (Di Costanzo et al., 2020).

Berezhnoy et al. focused their analysis on lipoproteins, using a
commercially available quantitative lipoprotein assay based on
600 MHz NMR spectroscopy. They were able to correlate a set of
112 lipoprotein variables with clinical metadata and AD core
biomarkers in CSF. They obtained a deeper insight into the
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pathophysiology of dementia and reported an increase of VLDL-1
cholesterol and VLDL-1 triglycerides in AD patients as compared to
MCI (Berezhnoy et al., 2022). It is known that VLDL-1 cholesterol
levels are correlated with ApoE4, that in turn is a factor that affect
the Aβ levels: when a patient shows altered ApoE4 function, AD-
related risks increase multiple-fold (Kloske and Wilcock, 2020).
Further, the increase in VLDL-1 triglycerides in the AD group may
be correlated with a prediabetic condition. Indeed, individuals with
insulin resistance have a higher production of VLDL particles, which
are responsible for triglyceride transport, reinforcing the idea of a
close interconnection of blood lipoprotein biomarkers of type
2 diabetes and AD: some authors refer to AD as a type
3 diabetes (Accardi et al., 2012, 3). Putting things together, the
authors speculated a strong link between VLDL parameters and
amyloid plaque formation (Berezhnoy et al., 2022). This study
provides a proof of concept that NMR-based lipoprotein analysis,
in conjunction with metabolites analysis, is potentially able to
provide an in-depth investigations of AD. This approach can be
easily extended to further neurological diseases to provide
interesting picture of the complex interplay among metabolites,
lipoproteins, and clinical outcomes.

Among the two studies conducted on urine sample, only one
reported the results of the comparison between AD and MCI (Yilmaz
et al., 2020a), whereas in the other studyMCI patients were enrolled to
compare stable and dementia MCI (Kurbatova et al., 2020). Yilmaz
et al. reported 19 urine metabolites significantly different between AD
and MCI (Table 1). They used the concentrations of a panel of
10 metabolites (glucose, guanidinoacetate, urocanate, hippuric acid,
cytosine, 2- and 3-hydroxyisovalerate, 2-ketoisovalerate, tryptophan,
and malonate) to build a model able to discriminate the two groups
with 78% sensitivity and 80% specificity. Based on these results, the
authors suggests that urine metabolomics may be useful for
developing a non-invasive test capable of diagnosing and
distinguishing AD from MCI patients (Yilmaz et al., 2020a).

6 Conclusion

The NMR-based metabolomic studies presented in this review,
despite their limitations, have demonstrated the existence of
metabolic alterations in AD, albeit not consistent. Differences can
be detected in brain tissue, blood serum/plasma, CSF, urine, and
saliva. Moreover, there is evidence that some metabolic changes
could predict the progression of AD. Therefore, NMR-based
metabolomics could play a role in AD diagnosis and prognosis,
serving as a valuable addition to classical clinical approaches.

NMR, with its ability to provide quantitative and extremely
reproducible results, offers a valuable approach to understand the
multifaceted and intricate metabolic landscape of AD. In particular,
NMR-based metabolomics could play a role in: 1) long-term
monitoring of AD evolution; 2) improving diagnosis and prognosis
of AD on the base of theirmetabolic changes; 3) accelerate the discovery
of metabolic biomarkers associated with AD; 4) characterize the
biochemistry underlying AD with the final aim of identifying
potential novel pharmaceutical targets. While this review is entirely
focused on the NMR technique and its potential in AD research, we
want to make it clear that we are neither implying that this is the sole
analytical approach possible nor suggesting that this approach should

replace others. On the contrary, the integration of NMR and MS in a
multi-omics approach represents a powerful strategy, leveraging the
strengths of both techniques. The synergy between these techniques in
AD research extends beyond conventional boundaries, and holds
promise for dissecting the complexities of the molecular
mechanisms underlying neurodegeneration in AD.

Based on our review we foresee the need for improvement in
enrolling larger and independent cohorts of patients and for a higher
degree of standardization in the recommendations for sample
collection, handling, preparation, acquisition, and data
processing. These improvements would enable future researchers
to obtain more robust, coherent, and interpretable results and
facilitate the development of clinical applications for metabolomics.
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