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MINIMIZERS OF THE PRESCRIBED CURVATURE

FUNCTIONAL IN A JORDAN DOMAIN WITH NO NECKS

GIAN PAOLO LEONARDI AND GIORGIO SARACCO

Abstract. We provide a geometric characterization of the minimal and
maximal minimizer of the prescribed curvature functional P (E)− κ|E|
among subsets of a Jordan domain Ω with no necks of radius κ−1, for
values of κ greater than or equal to the Cheeger constant of Ω. As an
application, we describe all minimizers of the isoperimetric profile for
volumes greater than the volume of the minimal Cheeger set, relative to
a Jordan domain Ω which has no necks of radius r, for all r. Finally, we
show that for such sets and volumes the isoperimetric profile is convex.

1. Introduction

The existence and the study of properties of hypersurfaces in Rn, with
mean curvature given by some prescribed function g : Rn → R, are classical
problems in geometric analysis and in Calculus of Variations, see e.g. [20–26,
37,38,49,50] and the references therein. In the setting of oriented boundaries,
the variational approach to the prescribed mean curvature problem is based
on the minimization of the functional

Fg[F ] = P (F )−
∫
F
g dx, (1.1)

where P (F ) = P (F ;Rn) is the total perimeter, intended in the BV frame-
work (see [5, 36]). The function g that shows up in (1.1) plays the role of
a prescribed mean curvature, in the sense that any smooth critical point F
for Fg satisfies HF (x) = g(x) at any x ∈ ∂F , where HF (x) is the mean
curvature of ∂F at x. A nice introduction to the problem in R2 and R3 is
available in [7]. When g ≥ 0, the minimization of the functional (1.1) is tied
to the weighted isoperimetric problem with volume density given by g: any
minimizer E of (1.1) is as well a perimeter minimizer among all sets F that
have the same “weighted volume” of E, i.e.

∫
F g =

∫
E g. Some results in this

setting have been obtained for instance in [2, 3, 41, 42] with in mind appli-
cations such as Hardy–Sobolev inequalities [9,13], capillarity [17,18,22,34],
and even politics [14,44].

In this paper we are interested in studying the structure of minimizers
of (1.1) when g is a positive constant, among subsets of an open, bounded
set Ω ⊂ R2. Specifically, for a given positive constant κ we consider the

2010 Mathematics Subject Classification. Primary: 49Q10. Secondary: 35J93, 49Q20.
Key words and phrases. perimeter minimizer, prescribed mean curvature, Cheeger

constant.
G. P. L. and G. S. have been partially supported by the INdAM–GNAMPA Project

2019 “Problemi isoperimetrici in spazi Euclidei e non” (n. prot. U-UFMBAZ-2019-000473
11-03-2019).

1

https://doi.org/10.1051/cocv/2020030


2 GIAN PAOLO LEONARDI AND GIORGIO SARACCO

minimization of the functional

Fκ[F ] = P (F )− κ|F | (1.2)

among measurable sets F ⊂ Ω, where |·| denotes the 2-dimensional Lebesgue
measure. It is well known that the internal boundary ∂Eκ∩Ω of any nontriv-
ial minimizer Eκ of (1.2) is smooth and made of an at most countable union
of circular arcs with curvature equal to κ. Existence of minimizers of (1.2)
follows from the Direct Method of the Calculus of Variations, see [36, Sec-
tion 12.5], but it may happen that the minimum is achieved by the empty
set. A special value of κ is given by the Cheeger constant of Ω, defined as

hΩ = inf

{
P (F )

|F |
: |F | > 0 , F ⊆ Ω

}
,

and any nontrivial set E attaining the infimum is called Cheeger set of Ω.
The computation of the constant hΩ and the characterization of the Cheeger
sets of Ω are referred to as the Cheeger problem. The existence of Cheeger
sets is well known, see for instance [30, 39, 40, 45]. Clearly, any Cheeger set
E is a nontrivial minimizer of (1.2) for the choice κ = hΩ, i.e. of

FhΩ
[F ] = P (F )− hΩ|F |.

Notice that minFhΩ
= 0 and that minFκ ≤ Fκ[∅] = 0, for all κ > 0. On

the one hand, if κ > hΩ, one has

minFκ ≤ P (E)− κ|E| < P (E)− hΩ|E| = 0,

where E is a Cheeger set of Ω; this shows that Fκ admits nontrivial min-
imizers. On the other hand, if minFκ ≥ 0, then P (F )|F |−1 ≥ κ for all
subset F ⊆ Ω such that |F | > 0, hence by taking the infimum one finds
that κ ≤ hΩ. Therefore, the unique minimizer of (1.2) whenever the strict
inequality κ < hΩ holds is the empty set. In the equality case, both the
empty set and the Cheeger sets of Ω solve (1.2); in this limiting case, we
shall always consider the nontrivial minimizers.

The Cheeger problem has been widely studied in the past, due to its
deep connections with other problems ranging from eigenvalue estimates to
capillarity. Several authors addressed the question about how to characterize
and efficiently compute the value of the Cheeger constant hΩ. The known
results in this direction are essentially limited to the planar setting, as they
heavily rely on the rigid characterization of curves with constant curvature
in the plane. In particular, under the assumption that Ω is convex [27] or a
strip [32] it has been proved that the Cheeger set of Ω is unique and precisely
characterized from the geometric viewpoint. If we denote by Ωr the inner
parallel set at distance r, i.e.

Ωr = {x ∈ Ω : dist(x; ∂Ω) ≥ r } ,

then the unique Cheeger set E of Ω is given by the Minkowski sum Ωr⊕Br,
where r = h−1

Ω . Equivalently, the Cheeger set E agrees with the union of
all balls of radius r contained in Ω. Moreover, the inner Cheeger formula
holds, i.e. the radius r is the unique positive solution of the equation

πρ2 = |Ωρ|.
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This formula and this kind of structure for planar Cheeger sets have been
recently extended in [31] to a class of planar domains that is essentially
the largest possible. Before recalling the statement of the general structure
theorem, we need to introduce the following definition of no necks of radius
r for r ∈ (0, inr(Ω)], where inr(Ω) stands for the inradius of Ω.

Definition 1.1. A set Ω has no necks of radius r, with r ∈ (0, inr(Ω)] if
the following condition holds. If Br(x0) and Br(x1) are two balls of radius r
contained in Ω, then there exists a continuous curve γ : [0, 1]→ Ω such that

γ(0) = x0, γ(1) = x1, Br(γ(t)) ⊂ Ω, ∀t ∈ [0, 1].

We remark that having no necks of radius r1 does not imply the same
property for any radius r2 < r1.

Whenever a set has no necks of radius r = h−1
Ω , then its (maximal)

Cheeger set agrees with the union of all balls of radius r contained in Ω,
analogously to what happens for convex sets and strips. This remarkable
fact was proved in [31], and we recall the theorem below.

Theorem 1.2 (Theorem 1.4 and Remark 5.2 of [31]). Let Ω be a Jordan
domain such that |∂Ω| = 0. If Ω has no necks of radius r = h−1

Ω , then the
maximal Cheeger set E of Ω is given by

E = Ωr ⊕Br ,
i.e. the Minkowski sum of Ωr and Br. Moreover, r is the unique positive
solution of

πρ2 = |Ωρ| . (1.3)

Finally, if Ωr = int(Ωr), then E is the unique Cheeger set of Ω.

We remark that |∂Ω| is the 2-dimensional Lebesgue measure of ∂Ω, thus
sets whose boundary is a plane-filling curve à la Knopp–Osgood (see [43])
are not covered by the theorem. While it is unclear whether the hypothesis
|∂Ω| = 0 is necessary, the other hypothesis of topological flavor, i.e. that Ω
is a Jordan domain, and the assumption of no necks of radius h−1

Ω , must be
required, otherwise one can produce counterexamples (see [31, 35]). While
uniqueness is not always granted in this more general setting, one can speak
of the maximal Cheeger set because the class of Cheeger sets is closed under
countable unions: one can define a maximal Cheeger set (see Definition 2.2)
and prove its uniqueness (see Proposition 3.2).

In this paper we show that an analogous result to Theorem 1.2 holds for
nontrivial minimizers of the prescribed curvature functional Fκ. Specifically,
in Theorem 2.3 we show that if a Jordan domain Ω with |∂Ω| = 0 has no
necks of radius r = κ−1, then the maximal minimizer EMκ of Fκ is given by

EMκ = Ωr ⊕Br. Moreover, thanks to a careful study of the set Ωr \ int(Ωr),
see Proposition 2.1, we are able to give a precise geometric description of
the unique minimal minimizer Emκ of Fκ and therefore to completely char-
acterize the cases when uniqueness is granted (for the definition of minimal
minimizer, we refer the reader to Definition 2.2).

Once these characterizations are proved, we are able to describe all pos-
sible minimizers of Fκ by suitably “interpolating” between Emκ and EMκ ,
and consequently we show that there exists a minimizer Eκ of Fκ such that
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|Eκ| = V , for any prescribed volume V between |Emκ | and |EMκ |. In Theo-
rem 2.4 we apply this fact to the isoperimetric problem in a Jordan domain
Ω with |∂Ω| = 0 that has no necks of radius r, for all r ≤ h−1

Ω . For such an Ω
we can fully describe the isoperimetric sets relative to volumes V ≥ |EmhΩ

|,
and we show that the isoperimetric profile is convex in the volume range
|EmhΩ

| ≤ V ≤ |Ω|.
The paper is structured as follows. In Section 2 we state our main results

and comment them. In Section 3 we state some properties of minimizers
of (1.2) which are well known in the limit case κ = hΩ, and whose extensions
to any κ ≥ hΩ are mostly trivial. In Section 4 we give a characterization
of the set difference Ωr \ int(Ωr), when Ω has no necks of radius r. In
Section 5 we prove the structure of the maximal and minimal minimizers
of (1.2) for κ, whenever Ω has no necks of radius κ−1. In Section 6 we
address the isoperimetric problem in sets Ω with no necks of radius r for all
r ≤ h−1

Ω , proving the structure of minimizers with volume greater than a
certain threshold and the convexity of the isoperimetric profile above such
a threshold.

2. Statement of the main results

Throughout the paper, with a slight abuse of notation, given a curve
γ : [0, 1] → R2, we shall write γ in place of γ([0, 1]). For the sake of com-
pleteness, we recall that a Jordan domain is the region bounded by an in-
jective and continuous map Φ: S1 → R2, which is well defined thanks to the
Jordan–Schoenflies theorem.

The first result we are going to prove is a characterization of the set
difference Ωr \ int(Ωr), whenever Ω is a Jordan domain with no necks of
radius r. This, roughly speaking, says that such a difference consists of two
families of curves Γ1

r and Γ2
r : curves in Γ1

r correspond to the presence of
“tendrils” of width r, while curves in Γ2

r to the presence of “handles” of
width r as shown in Figure 1.

Proposition 2.1. Let Ω be a Jordan domain with no necks of radius r. The
following properties hold:

(a) if Ωr is nonempty but has empty interior, then either it consists of
a single point or there exists an embedding γ : [0, 1] → R2 of class
C1,1, with curvature bounded by r−1, such that γ([0, 1]) = Ωr;

(b) if int(Ωr) 6= ∅, then there exist two (possibly empty) families Γ1
r and

Γ2
r of embedded curves contained in Ωr with the following properties.

For each i = 1, 2 and each γ ∈ Γir,
(i) γ : [0, 1] → Ωr is nonconstant and of class C1,1, with curvature

bounded by r−1;
(ii) if i = 1, then int(Ωr) ∩ γ = {γ(0)};
(iii) if i = 2, then int(Ωr) ∩ γ = {γ(0), γ(1)};
(iv) Γ1

r is finite;
(v) the following set equality holds

Ωr \ int(Ωr) =
⋃
γ∈Γ1

r

γ ((0, 1]) ∪
⋃
γ∈Γ2

r

γ ((0, 1)) .
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γ2γ1

Ω

Ωr

Figure 1. Curves γ2 with both endpoints in int(Ωr) corre-
spond to “handles” and connect disjoint connected compo-
nents of int(Ωr), while curves γ1 with just one endpoint in

int (Ωr) correspond to “tendrils”.

The structure granted by Proposition 2.1 might turn out useful in other
contexts. We recall indeed, e.g. the ∞-Laplacian problem [12] and the irri-
gation problem [8,48], in which the set Ωr plays a role.

Definition 2.2. Let Ω ⊂ R2 and κ > 0 be fixed, and let Eκ be a minimizer
of Fκ. We say that Eκ is a maximal minimizer if for any other minimizer
Fκ one has Fκ ⊂ Eκ; we say that it is a minimal minimizer if for any other
minimizer Fκ one cannot have the strict inclusion Fκ ( Eκ.

The existence of maximal and minimal minimizers is proved in Proposi-
tion 3.2, along with the uniqueness of the maximal minimizer. Concerning
the uniqueness of minimal minimizers, it is verified when κ > hΩ but may
fail in the case κ = hΩ (see again Proposition 3.2 and Remark 3.3). In
what follows we shall denote by EMκ the maximal minimizer and by Emκ the
minimal minimizer in case the latter is unique.

Theorem 2.3. Let Ω be a Jordan domain with |∂Ω| = 0 and let κ ≥ hΩ be
fixed. Assume Ω has no necks of radius r = κ−1. Then, both maximal and
minimal minimizers EMκ and Emκ are uniquely characterized as

EMκ = Ωr ⊕Br, Emκ =

int(Ωr) ∪
⋃
γ∈Γ2

r

γ

⊕Br.
In particular, Fκ has a unique minimizer (i.e., Emκ = EMκ ) as soon as Γ1

r is
empty.

Theorem 2.3 extends Theorem 1.2 on the maximal minimizer for the limit
case κ = hΩ, originally proved in [31, Theorem 1.4 and Remark 5.2]. There
are two immediate consequences to this theorem. Firstly, we show in Corol-
lary 5.6 the nestedness of minimizers for increasing values κ2 > κ1, provided
that Ω has no necks of radii κ−1

1 and κ−1
2 . Secondly, we show that Theo-

rem 1.2 can be “improved”, in the following sense. In order to apply it, one
needs to know a priori the value of the constant hΩ, or at least to ensure
that Ω has no necks of radius r for a range of values such that h−1

Ω falls
within. If this happens, then r is the unique positive solution of πρ2 = |Ωρ|.
In Corollary 5.5, we prove that one can “reverse” these operations. By this,
we mean that one can consider the unique positive solution r to πρ2 = |Ωρ|
and then check if the set has no necks of radius r. If it does, then r is the
inverse of hΩ and the maximal Cheeger set is Ωr ⊕Br.
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We mention that, thanks to the above result, one derives an extension of
a result by Chen (see [11, 22], or [19, 27] for convex sets). Chen’s theorem
provides a criterion for a set Ω to be the unique Cheeger set of itself. This
also follows from a more general criterion related to self-minimizers of the
prescribed curvature functional Fκ, to appear in the forthcoming paper [46].

Finally, notice that any nontrivial minimizer Eκ of Fκ is also a set attain-
ing the minimum of the isoperimetric profile

J (V ) = inf{P (F ) : F ⊂ Ω, |F | = V },
relatively to the volume V = |Eκ|. Thanks to Theorem 2.3 we are in a
position to exhibit the minimizers of J (V ) relatively to volumes V ≥ |EmhΩ

|,
provided that Ω has no necks of radius r, for all r ∈ (0, h−1

Ω ]. Specifically,
the following result holds.

Theorem 2.4. Let Ω be a Jordan domain with |∂Ω| = 0. Assume Ω has
no necks of radius r = κ−1, for all r ∈ (0, h−1

Ω ]. Then, for all volumes
V ≥ |EmhΩ

|, there exists κ ∈ [hΩ,+∞) and a minimizer Eκ of Fκ such that

|Eκ| = V, J (V ) = P (Eκ).

Under the same hypotheses of Theorem 2.4, we show the convexity of the
isoperimetric profile J for V ≥ |EmhΩ

| by observing that it coincides with
the Legendre transform of the convex function G : κ 7→ −minFκ, defined on
[hΩ,+∞), see Proposition 6.2 and Corollary 6.3. This agrees with the results
of [14] relatively to a relaxation of the isoperimetric profile. For the sake
of completeness, we recall that the above theorem was known in the convex
case, see [47, Theorem 3.32]. In the n-dimensional convex case, existence
and uniqueness were discussed in [1, Section 4] (as well as in the Gaussian
convex case [10, Theorem 23]).

3. Properties of minimizers

Most of the proofs of the results presented in this section are not given,
since they are easy adaptations from the limit case κ = hΩ. The interested
reader is referred to the original ones for which we give a precise reference.

We remark that throughout this section the no neck condition is never
enforced. Same goes for the request that Ω is a Jordan domain but for
Section 3.1. The results contained here apply generally to any minimizer in
an open, bounded set Ω ⊂ R2.

First of all, notice that any minimizer Eκ of Fκ enjoys many regular-
ity properties which come from the standard regularity theory of perimeter
minimizers. Among these, the fact that ∂Eκ ∩ Ω has constant (mean) cur-
vature equal to κ, which is the reason why the functional is usually referred
to as the prescribed (mean) curvature functional. We collect these regularity
properties of the boundary in the next proposition.

Proposition 3.1. Let Eκ be a minimizer of Fκ relatively to Ω ⊂ R2. Then,
the following statements hold true:

(i) ∂Eκ ∩Ω is analytic and coincides with a countable union of circular
arcs of curvature κ, with endpoints belonging to ∂Ω;

(ii) the length of any arc in ∂Eκ ∩ Ω cannot exceed πκ−1;
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(a) The maximal Cheeger set
of the balanced dumbell.

(b) A minimal Cheeger set of
the balanced dumbell.

(c) A minimal Cheeger set of
the balanced dumbell.

Figure 2. The above figures show all the nontrivial min-
imizers of the prescribed curvature functional for κ = hΩ,
i.e. the Cheeger sets of Ω, with Ω a balanced dumbell.

(iii) for Ω with locally finite perimeter, if x ∈ ∂Eκ ∩ ∂∗Ω, then x ∈ ∂∗Eκ
and νΩ(x) = νEκ(x).

Point (i) is nowadays standard, and one can refer to [36, Section 17.3].
Point (ii) can be proved as in [32, Lemma 2.11]. Point (iii) is well known
for a Lipschitz Ω, see for instance [24]; see also [34, Theorem 3.5] for a proof
valid for every Ω with locally finite perimeter.

We recall the notion of P-connectedness which in the theory of sets of
finite perimeter replaces the usual notion of connectedness, and from now
onwards whenever we write connected it is understood to be P-connected.
Given a set A of finite perimeter we say that it is decomposable if there
exists a partition (E,F ) of A such that P (A) = P (E) + P (F ) and both
|E| and |F | are strictly positive. We say that it is indecomposable if it is
not decomposable. Given any set of finite perimeter A, there exists a unique
finite or countable family {Ei}i of pairwise disjoint indecomposable sets with
|Ei| > 0 such that P (A) =

∑
i P (Ei), see [4, Theorem 1]. We shall call each

of these sets Ei a P-connected component of A.
In the next proposition we show that there exist both maximal and min-

imal minimizers of Fκ, which we recall we defined in Definition 2.2.

Proposition 3.2. There exists a unique maximal minimizer of Fκ, which
is given by the union of all minimizers. There exist minimal minimizers of
Fκ. Moreover, in the case k > hΩ one has the uniqueness of the minimal
minimizer.

Proof. We start noticing the following fact. If Eκ and Fκ are both mini-
mizers, then Eκ ∩ Fκ and Eκ ∪ Fκ are minimizers as well, i.e. the class of
minimizers is closed under countable unions and intersections. Indeed, by
the well-known inequality (see for instance [36, Lemma 12.22])

P (Eκ ∪ Fκ) + P (Eκ ∩ Fκ) ≤ P (Eκ) + P (Fκ) ,
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Figure 3. The shaded area represents the minimizer of the
prescribed curvature functional for κ close to hΩ, while the
dashed curves are the interior boundary of the maximal
Cheeger set. Each of the connected components Eiκ is such
that Fκ[Eiκ] < 0, hence a component alone is not a minimizer.

we have

P (Eκ) + P (Fκ)− 2 minFκ = κ|Eκ|+ κ|Fκ| = κ|Eκ ∪ Fκ|+ κ|Eκ ∩ Fκ|
≤ P (Eκ ∪ Fκ) + P (Eκ ∩ Fκ)− 2 minFκ ≤ P (Eκ) + P (Fκ)− 2 minFκ

thus all inequalities are equalities. Hence, we get

P (Eκ ∩ Fκ)− κ|Eκ ∩ Fκ| = P (Eκ ∪ Fκ)− κ|Eκ ∪ Fκ| = minFκ . (3.1)

Let now {F iκ}i be a countable family of minimizers. Let Uκ = ∪iF iκ and
Iκ = ∩iF iκ. Then, thanks to (3.1) and the lower semicontinuity of the
perimeter, one readily shows that Uκ and Iκ are minimizers too. Notice
that in the case κ = hΩ, one can have Iκ = ∅, i.e. the trivial minimizer.
However, this can be excluded by requiring ∩i≤jEiκ 6= ∅ for all j. Indeed,
any nontrivial minimizer satisfies a uniform lower bound on the volume,
see Proposition 3.4 below. Finally, observe that if two minimal minimizers
Eκ and Fκ have a nonnegligible intersection, then the intersection is also a
minimal minimizer and therefore Eκ = Fκ. This also shows that two distinct
minimal minimizers must be P-connected components of their union. Hence,
if we assume κ > hΩ we have Fκ[Eκ] < 0 for every minimal minimizer Eκ.
Thus, the existence of another minimal minimizer Fκ 6= Eκ would lead to
Fκ[Eκ ∪ Fκ] = Fκ[Eκ] + Fκ[Fκ] < Fκ[Eκ], against minimality. This shows
that when κ > hΩ the minimal minimizer is unique. �

Remark 3.3. It is rather interesting to notice that there exists a unique,
nontrivial minimal minimizer whenever κ > hΩ, given precisely by the in-
tersection of all minimizers. This is in contrast with the limit case κ = hΩ,
where one can have multiple minimal minimizers, as the dumbell in Figure 2
shows. The reason is that, for κ = hΩ, any connected component of a mini-
mizer is a minimizer itself (see Figures 2(b) and 2(c)), while this is false for
κ > hΩ (for comparison, see Figure 3).

The following lower bound to the volume of any connected component of
a minimizer is readily established.

Proposition 3.4. Let Eκ be a minimizer of Fκ. Then, any of its connected
components Eiκ has volume bounded from below by 4πκ−2.
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Proof. If κ = hΩ this is straightforward from the isoperimetric inequality
and the well-known fact that any connected component of a Cheeger set is a
Cheeger set itself. Suppose now that κ > hΩ and without loss of generality
that Eκ is decomposable, i.e. there exist E1

κ, E
2
κ ⊂ Eκ with |E1

κ| · |E2
κ| > 0

and such that

|Eκ| = |E1
κ|+ |E2

κ|, P (Eκ) = P (E1
κ) + P (E2

κ).

Assume by contradiction that |E1
κ| < 4πκ−2 and denote by BE1

κ
the ball

with same volume of E1
κ. Its radius rE1

κ
is strictly less than 2κ−1. Thus,

Fκ[E1
κ] = P (E1

κ)− κ|E1
κ| ≥ P (BE1

κ
)− κ|BE1

κ
|

= 2πrE1
κ
− κπr2

E1
κ

= πrE1
κ
(2− κrE1

κ
) > 0.

Therefore Fκ[E2
κ] < Fκ[Eκ], against the minimality of Eκ. �

Finally, we recall the rolling ball lemma [32, Lemma 2.12], which was later
refined [31, Lemma 1.7]. This still holds for general κ, and the proof is a
straightforward adaptation of the original lemma.

Lemma 3.5 (Rolling ball). Let κ ≥ hΩ be fixed, and let EMκ be the maximal
minimizer of Fκ. If EMκ contains a ball Br(x0) of radius r = κ−1, then
it contains all balls of same radius that can be reached by rolling Br(x0),
i.e. it contains any ball Br(x1) such that there exists a continuous curve
γ : [0, 1]→ Ω with γ(0) = x0, γ(1) = x1 and Br(γ(t)) ⊂ Ω for all t ∈ [0, 1].

3.1. Additional properties when Ω is a Jordan domain. Here, we
state a few additional properties of minimizers when Ω is a Jordan domain.
Their proofs are omitted as they closely follow the corresponding ones pre-
sented in [31] for the case κ = hΩ.

Proposition 3.6. Suppose Ω ⊂ R2 is a Jordan domain with |∂Ω| = 0, and
let Eκ be a minimizer of Fκ. Then,

(i) the curvature of ∂Eκ is bounded from above by κ in both variational
and viscous senses;

(ii) Eκ is Lebesgue-equivalent to a finite union of simply connected open
sets, hence its measure-theoretic boundary ∂Eκ is a finite union of
pairwise disjoint Jordan curves;

(iii) Eκ contains a ball of radius κ−1.

The definitions of curvature in variational and in viscous senses, notions
that appear in the above proposition, can be found resp. in [6] and [31,
Definition 2.3]. The proof of (i) is obtained by mimicking [31, Lemma 2.2 and
Lemma 2.4]. The proof of (ii) follows by arguing as in [31, Propositions 2.9
and 2.10]. The proof of claim (iii) follows from (i) and (ii) combined with [31,
Theorem 1.6].

4. The set difference Ωr \ int(Ωr)

Here we prove Proposition 2.1, i.e. the structure of the set difference
Ωr\int(Ωr), under the assumption that Ω has no necks of radius r. According
to Definition 1.1, this means that given any two balls Br(x0) and Br(x1)
contained in Ω, there exists a continuous curve γ : [0, 1] → Ωr such that
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γ(0) = x0 and γ(1) = x1. Thanks to [31, Theorem 1.8], we can further
assume γ to be of class C1,1 with curvature bounded by 1/r.

We now lay down some notation we shall use throughout the paper from
now onwards. Given a regular curve γ : [0, 1]→ R2 of class C1,1, we set

γ′(0) = lim
t→0+

γ′(t) , γ′(1) = lim
t→1−

γ′(t).

We denote by ν(t) the renormalization of γ′(t), i.e.

ν(t) =
γ′(t)

|γ′(t)|
.

Owing to the regularity of γ, ν(t) is continuous and defined on the whole
interval [0, 1]. Given r > 0, we define the open half-ball

B+
r (γ(t)) = { z ∈ R2 : |z − γ(t)| < r, (z − γ(t)) · ν(t) > 0 }, (4.1)

and the relatively open half-circle

S+
r (γ(t)) = { z ∈ R2 : |z − γ(t)| = r, (z − γ(t)) · ν(t) > 0 },

that are “oriented in the direction ν(t)” (note that we have dropped the ex-
plicit dependence on ν(t) in the notation). Finally, the endpoints of S+

r (γ(t))
are denoted by

z+
t = γ(t) + rν(t)⊥, z−t = γ(t)− rν(t)⊥. (4.2)

Proof of Proposition 2.1. If Ωr and int(Ωr) agree, there is nothing to prove.

Let us suppose then that there exists x ∈ Ωr \ int(Ωr), and let us denote by
Πx its “projection set”, i.e.

Πx = {y ∈ ∂Ω : |y − x| = r} .
We split the proof in two steps, following points (a) and (b) of the statement.

(a) The case int(Ωr) = ∅. We can distinguish three subcases, according
to the properties of the projection set Πx.

(a1) For all directions ν ∈ S1, there exist two points y1, y2 ∈ Πx such that

ν · (y1 − x) < 0 < ν · (y2 − x).

(a2) There exist a direction ν ∈ S1 and two distinct points y1 , y2 ∈ Πx

such that

ν · (y1 − x) = ν · (y2 − x) = 0, ν · (y − x) ≥ 0, ∀y ∈ Πx.

(a3) There exist a direction ν ∈ S1 and δ > 0 such that

ν · (y − x) ≥ δ, ∀y ∈ Πx.

We start noticing that case (a3) can never happen. Indeed, one could eas-
ily show that x − εν ∈ int(Ωr), for ε sufficiently small which contradicts
int(Ωr) = ∅.

In case (a1), it is immediate to see that x is an isolated point in Ωr.
Then, as Ω has no necks of radius r we infer that Ωr = {x}, i.e. it is a
constant curve. We are then left with case (a2), which implies that Ωr

satisfies a bilateral ball condition of radius r at x, which means there exist
two balls of radius r, B1 and B2, such that B1 ∩ B2 = {x}, and locally
at x, Ωr ∩ (B1 ∪ B2) = ∅. As this holds for any choice of x, and as Ωr is
path-connected, this necessarily means that Ωr = γ, with γ a C1,1 curve
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with curvature bounded by r−1. Further, this curve cannot be a loop: since
Ω is a Jordan domain, this would imply that int(Ωr) 6= ∅. Therefore, Ωr is
diffeomorphic to the closed segment [0, 1].

(b) The case int(Ωr) 6= ∅. We fix y ∈ int(Ωr), which exists since by hy-
pothesis this set is not empty. The assumption of no necks of radius r paired
with [31, Theorem 1.8] yields the existence of a C1,1 curve γ, with curva-
ture bounded by r−1, such that γ(0) = x and γ(1) = y. Let T > 0 be

the first time for which γ(T ) ∈ int(Ωr). Thanks to Zorn’s lemma, we can

extend γ|[0,T ) to a maximal curve γ̃ in Ωr \ int(Ωr). Moreover, by conti-
nuity we can extend γ̃ to a closed interval, and up to a reparametrization
we can assume it to be [0, 1]. Without loss of generality, suppose that
γ̃(0) = γ(T ) ∈ ∂(int(Ωr)). Hence, there are two possible cases: either γ̃(1)

belongs as well to ∂(int(Ωr)); or γ̃(1) belongs to Ωr \ int(Ωr).
By reasoning as in the first step, we notice that x has at least two 2

antipodal projections in Πx. By the bilateral ball condition, which holds at
any x ∈ γ̃, one can show that there exists ε = εx > 0 such that(

Ωr \ int(Ωr)
)
∩Bε(x) = γ̃ ∩Bε(x).

We define Γ1
r as the collection of connected components of Ωr \ int(Ωr)

that are diffeomorphic to the half-closed interval (0, 1], and similarly Γ2
r as

the collection of connected components that are diffeomorphic to the open
interval (0, 1).

We are left with showing that #Γ1
r < ∞. Let us fix any γ ∈ Γ1

r and let
xγ = γ(1). By reasoning as in the first part of the proof, we have that z±1 as
defined in (4.2) belong to Πxγ . We claim that all z ∈ B+

r (xγ) have as unique
projection on Ωr the point xγ , where B+

r (xγ) is defined in (4.1). This proves
that from any curve γ ∈ Γ1

r stems a contribute to the volume of at least π
2 r

2

. The finiteness of |Ω| implies then the finiteness of the family Γ1
r .

To show this we argue by contradiction. Let us suppose that some z ∈
B+
r (xγ) has as unique projection y ∈ Ωr with y 6= xγ . By the no necks

assumption there is a C1,1 curve σ from xγ to y, which lies in Ωr. We claim
that the loop constructed by concatenating σ, the segment [xγ , z] and the
segment [z, y] contains either z+

1 or z−1 giving a contradiction to the simple
connectedness of Ω.

This follows by noticing that both the segment [z, y] and the curve σ
cannot pass across the segment [z−1 , z

+
1 ]. First, assume by contradiction that

[z, y] crosses the open segment [z−1 , z
+
1 ] in w. Trivially, w cannot coincide

with xγ otherwise this contradicts y being the closest point in Ωr to z.
Moreover, as w is in the open segment [z−1 , z

+
1 ] it projects uniquely on xγ ,

therefore |y−w| > |w−xγ |. By triangular inequality it immediately follows
that |xγ − z| < |y − z| which is a contradiction.

Second, on the one hand σ cannot pass through the points lying in the
open segments [xγ , z

+
1 ] and [xγ , z

−
1 ] as all these have distance from the

boundary less than r (since z−1 , z
+
1 ∈ Πxγ ). On the other hand, for some

ε = ε(xγ) << 1 we have Ωr ∩ Bε(xγ) = γ. As γ ∈ Γ1
r and xγ = γ(1) one

has that Ωr ∩B+
ε (xγ) = ∅. Thus, σ ∩B+

ε (xγ) = ∅. This establishes that all
z ∈ B+

r (xγ) have as unique projection on Ωr the point xγ . �
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Remark 4.1. As can be seen from the proof of the above proposition, we
remark that any point x belonging to γ, x = γ(t), with γ in either Γ1

r or Γ2
r ,

has two projections on ∂Ω that are antipodal, given by z±t , defined in (4.2).
This in particular implies that any strip

S(γ) =
{
γ(t)± ρν(t)⊥ : t ∈ [0, 1], ρ ∈ [0, r)

}
(4.3)

is diffeomorphic to the rectangle [0, 1] × (−r, r). Moreover, given any two
curves γ1, γ2 ∈ Γ1

r the strips S(γ1),S(γ2) are pairwise disjoint. Finally,
notice that the “lateral boundart” of S(γ)

∂LS(γ) =
{
z±t = γ(t)± rν(t)⊥ : t ∈ [0, 1]

}
(4.4)

is contained in ∂Ω.

Remark 4.2. Notice the following: if Ω is a Jordan domain with no necks of
radius r for all r ≤ R ≤ inr(Ω), then for every r < R the set Γ2

r is empty.
Argue by contradiction and suppose ∃γ ∈ Γ2

r . The points γ(0) and γ(1)
belong to ∂(int (Ωr)). Therefore, we can find a point z0 ∈ int (Ωr) (resp.
z1) arbitrarily close to γ(0) (resp. γ(1)). Clearly one has r < r̄ where
r̄ = min{dist(z0; ∂Ω); dist(z1; ∂Ω) } and without loss of generality we can
suppose r̄ < R. As Ω has no necks of radius r̄, there exists a curve σ joining
these two points contained in Ωr̄. Being r̄ > r, the curves γ and σ cannot
meet but in the endpoints. Therefore, by concatenating these two curves,
and the segments [γ(i), zi] for i = 0, 1, one reaches a contradiction as in the
proof of Proposition 2.1.

5. Structure of minimizers

In this section we give the proof of Theorem 2.3. The part concerning
the structure of the maximal minimizer closely follows the one of [31, The-
orem 1.4] for the case κ = hΩ, while the one about the minimal minimizer
relies on Proposition 2.1.

We first need to prove that for κ > hΩ, Proposition 2.1 applies, i.e. that
Ωr with r = κ−1 has nonempty interior. We do so in the next lemma.

Lemma 5.1. Let Ω be a Jordan domain and let κ ≥ hΩ. Assume that Ω
has no necks of radius r = κ−1, then int(Ωr) is not empty.

Proof. Take any κ > hΩ, and let EhΩ
be a Cheeger set of Ω. By Proposi-

tion 3.6 (iii) there exists a ball B of radius 1/hΩ such that B ⊂ EhΩ
⊂ Ω.

Hence, for all κ > hΩ, one has that Ω1/κ contains at least a ball of radius
1/hΩ − 1/κ.

We now settle the case κ = hΩ. By the first part we already know that
Ωr 6= ∅, because EhΩ

contains at least a ball of radius r = h−1
Ω . Argue

by contradiction and suppose that int(Ωr) = ∅, i.e. Ω1/hΩ is, by Propo-
sition 2.1 (a), a (possibly constant) C1,1 curve homeomorphic to a closed

segment, thus |Ω1/hΩ | = 0. This contradicts the inner Cheeger formula (1.3)

which states |Ω1/hΩ | = πh−2
Ω . �

Remark 5.2. Notice that in the proof of the above lemma we use that Ω has
no necks of radius κ−1 only in the case κ = hΩ. We believe that this is not
necessary but we do not have an immediate proof of this fact. In any case,
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the assumption that Ω is a Jordan domain cannot be avoided: one needs
it to apply Proposition 3.6 (iii). Moreover, in the case κ = hΩ the claim
surely fails without such a hypothesis: a counterexample is given by annuli,
or more generally by curved annuli [28].

Lemma 5.3. Let Ω be a Jordan domain with no necks of radius r, and
assume that int(Ωr) 6= ∅. Then, the compact sets

Ct = int(Ωr) ∪
⋃
γ∈Γ2

r

γ ∪
⋃
γ∈Γ1

r

γ([0, t]) , t ∈ [0, 1] ,

are such that reach(Ct) ≥ r. Moreover, they are simply connected.

For the sake of completeness we recall the definition of reach for a closed
set A, which was introduced in the seminal paper [15]. The reach of a closed
set A is

reach(A) = sup{r : ∀x ∈ A⊕Br , x has a unique projection onto A}.

Proof. Notice that for t = 1 the claim corresponds to [31, Lemma 5.1]. To
prove the claim we need to show that all the points in

At =

int(Ωr) ∪
⋃
γ∈Γ2

r

γ ∪
⋃
γ∈Γ1

r

γ([0, t])

⊕Br , (5.1)

have a unique projection on Ct, for all t ∈ [0, 1]. Let t̄ > 0 and γ ∈ Γ1
r be

fixed. First, consider any point x in the strip S(γ|(0,t̄)) defined as in (4.3). We

can split its boundary as ∂LS(γ|(0,t̄))∪ [z+
0 , z

−
0 ]∪ [z+

t̄
, z−
t̄

], where ∂LS(γ|(0,t̄))

is defined as in (4.4), z±t as in (4.2), and [p, q] denotes the segment with
endpoints p and q. Argue by contradiction and suppose that x has not a
unique projection on Ct̄. As it has unique projection on C1, say z, one has
z = γ̃(τ) for some γ̃ ∈ Γ1

r and τ > t̄. Clearly all points on the segment [x, z]
project on C1 onto z. If we show that this segment cannot cross ∂S(γ) we
get a contradiction. Trivially, the segment cannot cross the lateral boundary
∂LS(γ), as this is a subset of ∂A1∩∂Ω and those points have distance r from
C1. Furthermore, since the balls Br(z

±
t ) with t = 0, t̄ are disjoint from C1,

the segment [x, z] cannot cross [z+
0 , z

−
0 ] but in γ(0) (equivalently, [z+

t̄
, z−
t̄

]
but in γ(t̄)) which gives a contradiction. We remark as well that the points
γ(t) + ρν(t)⊥ with ρ < r project uniquely onto γ(t), thanks to well-known
properties of the strip (see [32]).

Second, consider x in the open half-ballB+
r (γ(t̄)) defined in (4.1). Arguing

as in the last part of the proof of Proposition 2.1 we find that x projects
uniquely on γ(t̄). Indeed, suppose that x ∈ B+

r (γ(t̄)) has a projection z ∈ Ct̄
with z 6= γ(t̄). As Ω has no necks of radius r we find a simple curve σ that
runs from γ(t̄) to z. We claim that the loop obtained by concatenating σ
and the segments [γ(t̄), x], [x, z] contains either z+

t̄
or z−

t̄
against the simple

connectedness of Ω. This follows again by noticing that σ cannot go across
the open segments [z±

t̄
, γ(t̄)] and cannot intersect any point on γ((t̄, 1]) since

none of these can be connected to z without passing through γ(t̄).
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Third, we are left with showing that the points in

D = A0 \
⋃
γ∈Γ1

r

B+
r (γ(0)),

have unique projection on Ct, for all t. Notice that for all γ ∈ Γ1
r the set

D is pairwise disjoint with: (i) the strip S(γ) defined in (4.3); (ii) the open
half-ball B+

r (γ(1)). Therefore, any x ∈ D cannot be of the form

γ(t)± ρν(t)⊥,

γ(1)± ρν,
t ∈ (0, 1), ρ ∈ [0, r),

ν : ν · ν(1) ≥ 0, ρ ∈ [0, r).
(5.2)

Fix a point x ∈ D. As D ⊂ C1 ⊕ Br, x has a unique projection z on
(C1 ⊕ Br)r = C1, and dist(x;C1) < r. We claim that z ∈ C0 ⊂ C1, which
would imply the uniqueness of the projection of x on Ct, for all t. This
is equivalent to say that z /∈

⋃
Γ1
r
γ((0, 1]). By contradiction suppose that

z = γ(t) for some γ ∈ Γ1
r and t ∈ (0, 1]. Necessarily all points on the segment

[x, γ(t)] project on γ(t). If t < 1, this implies that the segment has direction
ν(t)⊥ by orthogonality. If t = 1, this implies that the segment has direction
ν such that ν · ν(1) ≥ 0. Hence, as dist(x;C1) < r, x is of the form given
in (5.2), against the assumption.

We are left with showing that Ct is simply connected for all t ∈ [0, 1]. As
Ω has no necks of radius r and by the definition of Ct, we infer the path-
connectedness of Ct. The simple connectedness is then a straightforward
consequence of Ω being a Jordan domain, thus simply connected. �

We are now ready to prove our main theorem.

Proof of Theorem 2.3. As the proof of the structure of the maximal mini-
mizer is substantially the same of the case κ = hΩ detailed in [31, Theo-
rem 1.4], we here only sketch it. Let EMκ be the maximal minimizer. By
Proposition 3.6 (iii) EMκ contains a ball of radius r = κ−1. The assump-
tion of no necks of radius r coupled with Lemma 3.5 gives the inclusion
EMκ ⊇ Ωr ⊕Br.

To show the opposite inclusion one argues by contradiction. Yet, this
part is much more technical and requires using tools such as the structure
of the cut-locus and the characterization of focal points. Since these play no
role in this article besides this part of the proof, we do not comment further
and we simply refer the interested reader to the original proof for κ = hΩ

available in [31, Theorem 1.4] which can be followed step by step.
Let us now discuss the structure of the minimal minimizer. We split

the proof in three steps. By Lemma 5.1 and Proposition 2.1, we know
that Ωr \ int(Ωr) consists of the two (possibly empty) families Γ1

r and Γ2
r

satisfying properties (i)–(v) of Proposition 2.1 (b). According to the notation
introduced in Lemma 5.3 we denote by At the set defined in (5.1). Hence,
we aim to prove that A0 is the unique minimal minimizer of Fκ.

Step (i). For each t ∈ [0, 1] the set At is a minimizer. Notice that for

t = 1, A1 = EMκ , thus the minimality is trivially true. According again to
the notation and to the statement of Lemma 5.3, At = Ct ⊕Br and the set
Ct is such that reach(Ct) ≥ r and it is simply connected. Hence, by Steiner’s
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formulas (see [15] and [31, Section 2.3]) we have

|At| = |Ct|+ rMo(Ct) + πr2 , P (At) =Mo(Ct) + 2πr ,

where Mo(F ) is the outer Minkowski content of F , i.e.

Mo(F ) = lim
r→0

|F ⊕Br| − |F |
r

.

As r = κ−1 and |Ct| = |C1| for all t ∈ [0, 1] it is immediate to check that
Fκ[At] = Fκ[EMκ ], for all t ∈ [0, 1] which yields the claim.

Step (ii). Let κ > hΩ. By Proposition 3.2 the minimal minimizer is
unique, thus we necessarily have A0 ⊇ Emκ . Let us suppose that the inclusion

is strict, and let p ∈ A0 \Emκ . By definition of A0 we find y either in int(Ωr)
or in γ for some γ ∈ Γ2

r , such that p ∈ Br(y). By Proposition 3.6 (iii), we
find z ∈ Emκ such that Br(z) ⊂ Emκ . By the assumption of no necks of radius
r, there is a C1,1 curve σ contained in Ωr such that σ(0) = z and σ(1) = y.

Let us denote by t∗ the last time for which Br(σ(t)) ⊂ Emκ for all t ≤ t∗,
which by hypothesis satisfies t∗ < 1. We claim that ∂Emκ ∩ Ω contains the
half-circle S+

r (σ(t∗)) of length πr. To show this, let us fix ε > 0 and take
t ∈ (t∗, 1) sufficiently close to t∗, such that Br(σ(t)) is not contained in
Emκ . Therefore, the set Br(σ(t)) ∩ ∂Emκ is nonempty, hence we can select
xt ∈ Br(σ(t)) ∩ ∂Emκ minimizing the distance from σ(t). Let St be the
connected component of ∂Emκ ∩Ω containing xt, which is actually an arc of
circle of radius r with endpoints on ∂Ω. Since the endpoints of St lie outside
Br(σ(t)) ∪ Br(σ(t∗)), and since the boundaries of these two balls have the
same curvature as St, we conclude that the length of St must be at least
πr− ε, provided t and t∗ are close enough. Since ∂Emκ ∩Ω has finitely many
components of length greater than or equal to πr − ε, we find a sequence
tn converging to t∗ such that S = Stn is constant and intersects every ball
Br(σ(tn)). Since tn converges to t∗, the distance of S from ∂Br(σ(t∗)) is
smaller than any positive constant, hence we conclude that S is a half-circle
contained in ∂Br(σ(t∗)). By construction, we get as well that S = S+

r (σ(t∗)).
Consequently, we have σ(t∗) = γ(τ∗) for some γ ∈ Γ2

r and τ∗ ∈ [0, 1].
It is not restrictive to assume that γ′(τ∗) = λσ′(t∗) for some λ > 0. Pick
a point w arbitrarily close to γ(1) in the connected component of int(Ωr)
whose boundary contains γ(1), and let γ̃ : [0, 1] → R2 be a C1,1 curve con-
tained in Ωr and connecting σ(t∗) to w (its existence is granted by the no
necks assumption). We are now ready to define a one-parameter family
of minimizers, by rolling balls along γ̃, that is, by applying the same con-
struction as in the proof of Lemma 3.5), and by exploiting the fact that
S∗r = S+

r (γ̃(0)) = S+
r (σ(t∗)) is contained in ∂Emκ ∩ Ω.

Let us define for t ∈ [0, 1] the sets

Et =
⋃

s∈[0,t]

S+
r (γ̃(s)),

and

Dt = Emκ ∪ Et.
If Et and Emκ \ S∗r are disjoint, one has (see [32, Section 3])

P (Dt)− P (Emκ ) = 2`t, |Dt \ Emκ | = 2r`t,
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where `t is the length of the curve γ̃ restricted to (0, t). Then, from the above
formulas, Dt is a minimizer as well. Let t̃ be the supremum of t ∈ [0, 1] such
that Et ∩ Emκ \ S∗r = ∅. By the lower semicontinuity of the perimeter, the
set Dt̃ is still a minimizer. If t̃ = 1, a contradiction follows immediately.
Indeed D1 would be a minimizer such that S+

r (γ̃(1)) ⊂ ∂D1 ∩Ω and, at the
same time, ∂Br(γ̃(1)) ∩ ∂Ω = ∅, which would contradict Proposition 3.1(i).
If 0 ≤ t̃ < 1, there exists another connected component Σ of ∂Emκ ∩Ω, such
that its closure tangentially meets the closure of S+

r (γ̃(t̃)) at some point z.
Now there are two possibilities: either z ∈ Ω, or z ∈ ∂Ω. In the first case we
obtain a contradiction with the minimality of Dt̃, again by Proposition 3.1(i)
(indeed, z would represent a non-admissible singularity for ∂Dt̃∩Ω). In the
second case, we can “cut the cusp” formed by the two connected components
at z and obtain a competitor D′ of Dt̃ such that Fκ[D′] < Fκ[Dt̃], which is
again a contradiction. This shows that Emκ = A0.

Step (iii). Let now κ = hΩ; just as before one sees that A0 is a minimal
minimizer, which we shall now denote by Emκ . We need to show that it is
the unique one. Let Fmκ be another minimal minimizer, i.e. Fmκ ∩ Emκ is
empty. By Proposition 3.6 (iii), there exist two balls of radius r = κ−1,
B1 ⊂ Emκ and B2 ⊂ Fmκ . The assumption of no necks of radius r grants
us the existence of a C1,1 curve γ̃ in Ωr from the center of B1 to that of
B2. Arguing as in Step (ii), we could construct a minimizer with a singular
point in the interior boundary, which is again a contradiction. �

Remark 5.4. In Step (i) of the above proof, we show that we have a one-
parameter family of minimizers {At}t which “interpolates” between Emκ and
EMκ . Notice that this is not the only way to “grow” Emκ into EMκ but there
are infinitely many as soon as #Γ1

r > 1. Labelling the curves γ ∈ Γ1
r with

indexes 1, . . . , n, we let θ(t) = (θ1(t), . . . , θn(t)) with θi(t) nondecreasing,
surjective functions of t from [0, 1] in [0, 1]. Then, one can define the multi-
parameter family {Aθ(t)}t for t ∈ [0, 1] as

Aθ(t) =

int(Ωr) ∪
⋃
γ∈Γ2

r

γ ∪
n⋃
i=1

γi([0, θi(t)])

⊕Br,
and check that these are all minimizers, by reasoning as in the proof of
Lemma 5.3 and Step (i) of the proof of Theorem 2.3.

Corollary 5.5. Let Ω be a Jordan domain with |∂Ω| = 0, and let r be the
unique positive solution of πρ2 = |Ωρ|. If Ω has no necks of radius r, then,
hΩ = r−1.

Proof. We start noticing that there is a unique positive r such that the
equality πr2 = |Ωr| holds. This immediately follows from the fact that πρ2

is continuous and strictly increasing, while |Ωρ| is continuous and decreasing.
By hypothesis Ω has no necks of radius r, and therefore Ωr is path-connected.
Moreover, as Ω is simply connected, it is easy to see that Ωr is as well. Recall
that by [31, Lemma 5.1] this implies that Ωr has reach at least r. Therefore,
by Steiner’s formulas we have

P (Ωr ⊕Br) =Mo(Ω
r) + 2πr, |Ωr ⊕Br| = |Ωr|+ rMo(Ω

r) + πr2.
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The hypothesis |Ωr| = πr2, paired with the above equalities, implies that

P (Ωr ⊕Br)−
1

r
|Ωr ⊕Br| = 0. (5.3)

Therefore, the Cheeger constant of Ω is bounded from above by r−1. By The-
orem 2.3, we immediately find that the set Ωr⊕Br minimizes the prescribed
curvature functional Fr−1 . Then, argue by contradiction and suppose that
hΩ < r−1. As minFκ < 0 for κ > hΩ, we get

P (Ωr ⊕Br)−
1

r
|Ωr ⊕Br| < 0,

against (5.3). �

Corollary 5.6. Let Ω be a Jordan domain such that |∂Ω| = 0 and let
κ2 > κ1 ≥ hΩ. If Ω has no necks of radius κ−1

2 and κ−1
1 , then one has

EMκ2
⊇ Emκ2

⊇ EMκ1
⊇ Emκ1

.

Proof. Let ri = κ−1
i for i = 1, 2. Since r2 < r1, the set int(Ωr2) contains

Ωr1 , hence int(Ωr2)⊕Br2 contains Ωr1⊕Br1 . Then the proof directly follows
from Theorem 2.3. �

Remark 5.7. Notice that the set inclusion Emκ2
⊇ EMκ1

is strict as soon as

|Ω| > |EMκ1
|. Indeed, this strict volume bound implies that ∂EMκ1

∩ Ω is not

empty. Assume by contradiction that Emκ2
= EMκ1

. Then, we infer that the

interior boundary ∂EMκ1
∩ Ω = ∂Emκ2

∩ Ω, which is not empty, must have
curvature equal to both κ1 and κ2, which is not possible.

Remark 5.8. If one assumes that Ω is a Jordan domain with |∂Ω| = 0 and
that has no necks of radius r for all r, then the solution of (1.2) is unique
for almost every κ ≥ hΩ, i.e. there are at most countably many κ for which
uniqueness does not hold. For the sake of completeness, we remark that this
is equivalent to say that there are at most countably many r ≤ inr(Ω) such
that Γ1

r is not empty. To see this, let us set

Vκ = |EMκ | − |Emκ | = |EMκ \ Emκ |.

For all κ such that uniqueness does not hold, one has Vκ > 0. At the same
time Corollary 5.6 implies that for κ2 > κ1 the sets EMκ1

\Emκ1
and EMκ2

\Emκ2

are pairwise disjoint. Therefore, there are at most countably many κ such
that Vκ > 0. An example of set admitting countably many values κ such
that uniqueness fails is the “ziggurat” in Figure 4, built as follows. First,
let Q be the square Q = [−2−1, 2−1]× [0, 1] and let f(n) be the sequence

f(1) =
1

2
, f(n) =

1

2
+

n∑
i=2

1

2i−1
, ∀n > 1.

Let then Q+
n and Q−n be the squares

Q+
n = [f(n), f(n+ 1)]× [0, 2−n],

Q−n = [−f(n+ 1),−f(n)]× [0, 2−n].
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Figure 4. A ziggurat: a set with no necks of radius r for
all r such that it has infinitely (uncountably) many solu-
tions to the prescribed curvature equation relative to infin-
itely (countably) many values of κ.

We define the ziggurat as (the interior of)

Q ∪
⋃
n≥1

(Q+
n ∪Q−n ).

The resulting set has no necks of radius r for all r ≤ inr(Ω) and it is such
that Γ1

r 6= ∅ whenever r = 2−n−1 for any n ∈ N. Therefore, uniqueness of
minimizers of Fκ fails whenever κ = 2n+1 ≥ hΩ.

Similar examples are given by suitable fractals, e.g. by a square Koch
snowflake, i.e. the set obtained replacing the sides of a unit square with
suitable quadratic type 1 Koch curves (e.g. by iteratively replacing each
middle n-th part of a segment with a square, with n > 3).

6. Proof of Theorem 2.4

In this section we exploit Theorem 2.3 to describe minimizers of the
isoperimetric profile J , relatively to a Jordan domain Ω, with |∂Ω| = 0
and such that it has no necks of radius r for all r ≤ h−1

Ω . In particular we
shall show that for any volume V greater than or equal to |EmhΩ

|, there exist

a suitable κ and a suitable minimizer Eκ of Fκ such that |Eκ| = V , hence
J (V ) = P (Eκ). As a consequence, we are able to prove that for that class
of Ω the isoperimetric profile is convex for V ≥ |EmhΩ

|, by showing that it is
the Legendre transform of G : κ 7→ −minFκ, defined for κ ≥ hΩ. Trivially,
J (resp. J 2) is concave (resp. convex) for V ≤ |BR|, where R = inr(Ω); it
would be of interest managing to prove that J 2 is convex on the whole range
[0, |Ω|], which up to our knowledge has not been addressed when considering
the total perimeter P (E). For the sake of completeness, we recall that the
square of the relative isoperimetric profile (i.e. of the infimum of the relative
perimeter P (E; Ω) under volume constraint V ) is known to be concave in
convex bodies (see [29] and [33]).

In order to prove such a theorem we need first the following technical
lemma which ensures the semicontinuity of the outer Minkowski content of
Ωr and int(Ωr), whenever Ω has no necks of radius r for all r < R, for a
fixed R > 0.
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Lemma 6.1. Let R > 0 be fixed and let Ω be a Jordan domain with no
necks of radius r for all r < R. Then the functions

m(r) =Mo(Ω
r), µ(r) =Mo(int(Ωr))

are, respectively, upper semicontinuous and lower semicontinuous on (0, R).

Proof. We assume without loss of generality that Ωr is not empty for all
0 < r < R. By [31, Lemma 5.1] we know that reach(Ωr) ≥ r. Moreover, Ωr

is simply connected, hence by Steiner’s formulas we have for all 0 < ε < r

|Ωr ⊕Bε| = |Ωr|+ εm(r) + πε2,

whence

m(r) =
|Ωr ⊕Bε| − |Ωr|

ε
+ πε. (6.1)

Fix now r0 ∈ (0, R) and 0 < ε < r0. Thanks to (6.1), the upper semiconti-
nuity of m(r) at r0 follows as soon as we prove that

lim sup
r→r0

αε(r, r0) + β(r, r0) ≤ 0,

where we have set

αε(r, r0) = |Ωr ⊕Bε| − |Ωr0 ⊕Bε|, β(r, r0) = α0(r, r0) = |Ωr| − |Ωr0 |.
The fact that lim supr→r0 β(r, r0) ≤ 0 immediately follows from the following

simple observations. First, as r → r−0 , we have Ωr ⊃ Ωr0 and |Ωr \Ωr0 | → 0,
so that in particular |Ωr| → |Ωr0 |. Second, as r → r+

0 , we have Ωr ⊂ Ωr0

and thus |Ωr| ≤ |Ωr0 |. We are left with showing lim supr→r0 αε(r, r0) ≤ 0.

We first consider the case of the left upper limit, i.e. when r → r−0 . In this
case we have Ωr0 ⊕Bε ⊂ Ωr ⊕Bε by monotonicity. Moreover,

lim
r↑r0

(Ωr⊕Bε)\(Ωr0⊕Bε) =
⋂
r<r0

(
Ωr⊕Bε

)
\(Ωr0⊕Bε) ⊂ ∂(Ωr0⊕Bε), (6.2)

where to prove the last inclusion one can rely on the fact that Ωr converges to
Ωr0 w.r.t. the Hausdorff distance as r → r−0 . Since ε < r0 the set ∂(Ωr0⊕Bε)
is Lipschitz, thus it has zero Lebesgue measure. Hence by (6.2), we find

lim sup
r→r−0

αε(r, r0) ≤ |∂(Ωr0 ⊕Bε)| = 0.

Concerning the right upper limit, i.e. when r → r+
0 , we simply observe

that αε(r, r0) ≤ 0 whenever r > r0 by monotonicity, hence a fortiori we
obtain the desired lim sup inequality. This completes the proof of the upper
semicontinuity of m(r).

We now set W r = int(Ωr). By Remark 4.2 one has Γ2
r = ∅, thus by

Lemma 5.3 we know that W r is simply connected and reach(W r) ≥ r.
If we denote by ξ : W r ⊕Br/2 → W r the unique projection map onto
W r (which is well defined by the reach property of W r), we infer by [15,
Theorem 4.8] that the restriction of ξ to the boundary of W r ⊕ Br/2 is 2-
Lipschitz and its image is the boundary of W r. This shows that ∂W r is the
Lipschitz image of a smooth curve with finite length (indeed, the boundary
of W r⊕Br/2 is of class C1,1 with bounded curvature). Consequently, we have

that µ(r) = H1(∂W r) = P (W r), where the first equality follows from [16,
Section 3.2.39] and the second from the fact that ∂W r is a continuous curve.
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At the same time, the mapping r 7→ W r is continuous w. r. t. the L1-
topology, which can be proved by observing that W r is Lebesgue equivalent
to both int(Ωr) (a consequence of H1(∂W r) < +∞) and Ωr (a consequence
of Proposition 2.1). We thus conclude that µ(r) is lower semicontinuous on
(0, R). �

We are now ready to prove the result concerning the minimizers of the
isoperimetric profile. Since we know by Theorem 2.3 the structure of Emκ
and of EMκ , it is easy to show that there is a family of minimizers with
volumes spanning the range from |Emκ | to |EMκ |. Actually, this has already
been done in Step (i) of Theorem 2.3, where we proved that the sets

At =

int(Ωr) ∪
⋃
γ∈Γ2

r

γ ∪
⋃
γ∈Γ1

r

γ([0, t])

⊕Br ,
with r = κ−1, are minimizers. It is straightforward that |At| is a continuous
function in t from [0, 1] to [|Emκ |, |EMκ |]. Thus, the proof boils down to show
that there are no volume gaps when increasing the value of κ, and this is
exactly what the previous lemma is needed for.

Proof of Theorem 2.4. We can directly assume that |Ω| > |EmhΩ
|, otherwise

there is nothing to prove. If V equals either |Ω| or |EmhΩ
|, there is nothing

to prove. Then, let |Ω| > V > |EmhΩ
| and set κ∗ and κ∗ as follows

κ∗ = inf{κ : |EMκ | > V }, κ∗ = sup{κ : |Emκ | < V }.

Since the functions κ 7→ |EMκ | and κ 7→ |Emκ | are nondecreasing, and for all
κ one has |EMκ | ≥ |Emκ |, the inequality κ∗ ≥ κ∗ obviously holds. We first
show that these two values agree. Suppose that κ∗ > κ∗. Then, for any
κ ∈ (κ∗, κ

∗) one can consider the minimizers of Fκ. On the one hand, the
lower bound κ > κ∗ implies |Emκ | ≥ V , while the upper bound κ < κ∗ implies
|EMκ | ≤ V . As |EMκ | ≤ |Emκ |, we immediately find that |EMκ | = |Emκ | = V
for all κ ∈ (κ∗, κ

∗). The strict nestedness granted by Corollary 5.6 and
Remark 5.7 immediately yields a contradiction.

Hence, κ∗ = κ∗ = κ̂. Setting r̂ = 1/κ̂, by Steiner’s formulas we have that

|EMκ̂ | = πr̂2 + r̂Mo(Ω
r̂) + |Ωr̂| , |Emκ̂ | = πr̂2 + r̂Mo(int(Ωr̂)) + |int(Ωr̂)| .

Therefore, by Lemma 6.1 we get that

|EMκ̂ | ≥ V ≥ |Emκ̂ | .

If either one of the two inequalities is not strict, we are done. Hence, suppose
that both are strict. This implies that Γ1

r̂ is not empty. The sets At in (5.1)
give a family of minimizers with volume increasing continuously from |Emκ̂ |
up to |EMκ̂ |, thus one finds a suitable t such that |At| = V , as required. �

Proposition 6.2. Let Ω be a Jordan domain such that |∂Ω| = 0. Assume
that Ω has no necks of radius r, for all r ≤ h−1

Ω . Then, the isoperimetric
profile J for V ≥ |EmhΩ

| is the Legendre transform of G : κ 7→ −minFκ
defined for κ ≥ hΩ.
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Proof. First, we prove that the map G is convex. Set κ1, κ2 ≥ hΩ and
consider the convex combination κ̂ = tκ1 + (1 − t)κ2. As usual we denote
by Eκ a minimizer of Fκ. Then, one has

G(tκ1 + (1− t)κ2) = G(κ̂) = −minFκ̂ = −P (Eκ̂) + κ̂|Eκ̂|
= −t(P (Eκ̂)− κ1|Eκ̂|)− (1− t)(P (Eκ̂)− κ2|Eκ̂|)
≤ −tminFκ1 − (1− t) minFκ2

= tG(κ1) + (1− t)G(κ2).

Therefore, one can consider the Legendre transform of G. By definition we
have

G∗(V ) = sup
κ≥hΩ

{κV − G(κ) } = sup
κ≥hΩ

{
κV + min{P (E)− κ|E| }

}
.

By Theorem 2.4 for all V ≥ |EmhΩ
| there exist κ̄ ≥ hΩ and Eκ̄ minimizer of

Fκ̄ with |Eκ̄| = V and such that J (V ) = P (Eκ̄). Hence, on the one hand

G∗(V ) ≥ κ̄V + min{P (E)− κ̄|E| }
= κ̄V + P (Eκ̄)− κ̄|Eκ̄| = P (Eκ̄) = J (V ).

On the other hand, for all κ we have

κV − G(κ) = κV + minFκ ≤ κV + P (Eκ̄)− κ|Eκ̄| = P (Eκ̄).

Thus,

G∗(V ) ≤ sup
κ≥hΩ

{κV + P (Eκ̄)− κ|Eκ̄| }

= sup
κ≥hΩ

{P (Eκ̄) } = P (Eκ̄) = J (V ),

and the claim follows at once. �

Since the Legendre transform maps convex functions in convex functions,
one has the following corollary.

Corollary 6.3. Let Ω be a Jordan domain such that |∂Ω| = 0. If Ω has
no necks of radius r for all r ∈ (0, h−1

Ω ], then the isoperimetric profile J is
convex in [|EmhΩ

|, |Ω|].

Remark 6.4. Notice that whenever Γ1
r 6= ∅, J is linear in the interval of

volumes delimited by |Emr−1 | and |EMr−1 |. There are sets with no necks of
radius r for all r that display such linear growth on countably many intervals
of smaller and smaller size. Think of the ziggurat described in Remark 5.8
and shown in Figure 4. Moreover, Remark 5.4 shows that nestedness of
minimizers of the isoperimetric profile is not ensured — even though a nested
family can always be chosen. This is achieved, for instance, by interpolating
between Emκ and EMκ , always through the family {At}t defined in (5.1).
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