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Abstract 
Introduction and aim NfL and GFAP are promising blood-based biomarkers for Alzheimer's disease. However, few studies 
have explored plasma GFAP in the prodromal and preclinical stages of AD. In our cross-sectional study, our aim is to 
investigate the role of these biomarkers in the earliest stages of AD.
Materials and methods We enrolled 40 patients (11 SCD, 21 MCI, 8 AD dementia). All patients underwent neurological 
and neuropsychological examinations, analysis of CSF biomarkers (Aβ42, Aβ42/Aβ40, p-tau, t-tau), Apolipoprotein E (APOE) 
genotype analysis and measurement of plasma GFAP and NfL concentrations. Patients were categorized according to the 
ATN system as follows: normal AD biomarkers (NB), carriers of non-Alzheimer's pathology (non-AD), prodromal AD, or 
AD with dementia (AD-D).
Results GFAP was lower in NB compared to prodromal AD (p = 0.003, d = 1.463) and AD-D (p = 0.002, d = 1.695). NfL was 
lower in NB patients than in AD-D (p = 0.011, d = 1.474). NfL demonstrated fair accuracy (AUC = 0.718) in differentiating 
between NB and prodromal AD, with a cut-off value of 11.65 pg/mL. GFAP showed excellent accuracy in differentiating 
NB from prodromal AD (AUC = 0.901) with a cut-off level of 198.13 pg/mL.
Conclusions GFAP exhibited excellent accuracy in distinguishing patients with normal CSF biomarkers from those with 
prodromal AD. Our results support the use of this peripheral biomarker for detecting AD in patients with subjective and 
objective cognitive decline.

Keywords Glial fibrillary acidic protein · Neurofilament light chain · Alzheimer’s disease · Mild cognitive impairment · 
Subjective cognitive decline · Biomarkers

Introduction 

Research and clinical practice on Alzheimer's disease (AD) 
are at a turning point. The Food and Drug Administration 
(FDA) has provisionally approved two anti-amyloid 
monoclonal antibodies for the treatment of patients with 
mild cognitive impairment (MCI) due to AD and mild 
AD dementia [1]. This represents a significant milestone 
as these are the first disease-modifying therapies for AD. 
Consequently, neurologists, researchers, and health services 
will face increasing demands for diagnostic assessments of 
patients with cognitive disorders, as well as the need to 
diagnose AD at its earliest stages to halt the pathological 
process before neurodegeneration begins [2]. Currently 
used disease biomarkers, such as cerebrospinal fluid (CSF) 
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biomarkers [3, 4], PET neuroimaging, and brain MRI [5–7], 
are highly accurate in detecting AD pathology. However, 
their application on large populations is severely limited due 
to cost, limited accessibility, and invasiveness.

Blood-based biomarkers are considered promising 
tools that could overcome these limitations and enable 
biomarker assessments even at the primary care level, 
where most individuals with cognitive symptoms present 
[8]. Among the peripheral biomarkers, Neurofilament light 
chain (NfL) and Glial fibrillary acidic protein (GFAP) are 
emerging as reliable biomarkers of AD, being associated 
with CSF biomarkers [9–11]. NfL is a component of the 
neuronal cytoskeleton and is released into the cerebrospinal 
fluid and blood following neuronal damage [12]. GFAP 
is a marker of reactive astrogliosis [13], associated with 
morphological, molecular, and functional remodeling of 
astrocytes surrounding Aβ plaques [14]. Elevated levels of 
NfL and GFAP have been observed in subjective cognitive 
decline (SCD), MCI and AD dementia [15–17]. However, 
the accuracy of plasma NfL and GFAP in predicting 
underlying AD pathology in patients with SCD and MCI 
has been poorly explored so far [10, 18–20]. Therefore, our 
aim is to assess the accuracy of plasma NfL and GFAP in 
predicting AD pathology in SCD and MCI patients.

Materials and Methods

Study design, patients, and assessments

This is a cross-sectional analysis involving 40 consecu-
tive patients (11 patients with SCD, 21 patients with MCI, 
and 8 patients with AD dementia) referred to the Cen-
tre for Alzheimer’s Disease and Adult Cognitive Disor-
ders of Careggi Hospital in Florence for assessment of 
cognitive decline, since July 2018 to November 2022. 
We included patients that met the following criteria: (1) 
clinical diagnosis of AD dementia [21], (2) clinical diag-
nosis of MCI [22], (3) clinical diagnosis of SCD [23]. 
Exclusion criteria were: history of head injury, current 
systemic and/or neurological disease other than AD, major 
depression, or substance use disorder. All patients under-
went: comprehensive clinical assessment, neurological 
examination; extensive neuropsychological investigation 
and brain MRI or CT scan; 18F-Fluorodeoxyglucose-PET 
brain scan (18F-FDG-PET); blood collection for Apolipo-
protein E (APOE) genotype analysis and measurement of 
plasma NfL and GFAP concentration; CSF collection for 
Aβ42, Aβ42/Aβ40, total-tau (t-tau) and phosphorylated-tau 
(p-tau) measurement. We defined age at baseline as the age 
at the time of plasma collection, disease duration as the 
time from the onset of symptoms to baseline examination, 
and positive family history of dementia if one or more 

first-degree relatives were reported to have documented 
cognitive decline. We defined disease duration as the time-
frame from the onset of symptoms to baseline examination 
and family positive history of dementia if one or more 
first-degree relatives were reported to have documented 
cognitive decline.

Neuropsychological assessment

All  subjects  were evaluated by an extensive 
neuropsychological battery including: global cognition 
measure (MMSE) [24], tasks exploring verbal and 
spatial short- working and long-term memory (Digit 
and Visuo-spatial Span forward and backward [25], Rey 
Auditory Verbal Learning Test – RAVLT [26], Short 
Story Immediate and Delayed Recall [27], Rey-Osterrieth 
complex figure recall [28]), attention (Trail Making Test 
A, attentional matrices [29]), language (Category Fluency 
Task [30] and Phonemic Fluency Task [26]), constructional 
praxis (Rey-Osterrieth complex figure copy) and executive 
function (Trail Making Test B [31], Stroop Test [32]). 
In SCD patients, cognitive complaints were explored at 
baseline using a survey based on the Memory Assessment 
Clinics-Questionnaire [33].

Plasma GFAP and NfL analysis

Blood was collected by venipuncture into standard poly-
propylene EDTA test tubes (Sarstedt, Nümbrecht, Ger-
many) and centrifuged within two hours at 1300 rcf at 
room temperature for 10 min. Plasma was isolated and 
stored at -80 °C until testing. Plasma biomarkers analy-
sis was performed with Simoa NF-Light SR-X kit (cat. No 
103400) and with Simoa GFAP SR-X kit (cat. No 102336) 
for human samples provided by Quanterix Corporation 
(Lexington, MA, USA) on the automatized Simoa SR-X 
platform (GBIO, Hangzhou, China), following the manufac-
turer’s instructions [34]. The Lower Limit of Quantification 
(LLOQ) and the Limit of Detection (LOD) provided by the 
NF-Light kit were 0.316 pg/mL and 0.0552 pg/mL, respec-
tively. The LLOQ and the LOD of GFAP kit were 1.37 pg/
mL and 0.26 pg/mL, respectively. Plasma NfL and GFAP 
concentrations of all samples were detected in a single run 
basis. Quality controls (low NfL concentration = 5.08 pg/
mL and high NfL concentration = 169 pg/mL; low GFAP 
concentration = 48.0 pg/mL and high GFAP concentra-
tion = 1063 pg/mL) were included in the array and tested 
with samples. A calibration curve was determined from 
measurements of serially diluted calibrators provided by 
Quanterix. Plasma samples and controls were diluted at a 
1:4 ratio and measured in duplicate with calibrators.
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APOE ε4 genotyping

A standard automated method (QIAcube, QIAGEN) 
was used to isolate DNA from peripheral blood samples. 
APOE genotypes were investigated by high-resolution 
melting analysis (HRMA)[35]. Two sets of PCR primers 
were designed to amplify the regions encompassing rs7412 
[NC_000019.9:g[M13] [GG14] 0.45412079C > T] and 
rs429358 (NC_000019.9:g.45411941 T > C). The samples 
with known APOE genotypes, which had been validated by 
DNA sequencing, were used as standard references.

CSF Collection and biomarkers analysis

CSF was collected at 8.00 a.m. by lumbar puncture, imme-
diately centrifuged and stored at -80 °C until performing 
the analysis. Aβ42, Aβ42/ Aβ40 ratio, t-tau, and p-tau were 
measured using a chemiluminescent enzyme immunoassay 
(CLEIA) analyzer LUMIPULSE G600 (Fujirebio). Cut-offs 
for normal values were: for Aβ42 > 670 pg/ml, Aβ42/Aβ40 
ratio > 0.062, t-tau < 400 pg/ml and p-tau < 60 pg/ml [36].

Brain 18F‑FDG‑PET acquisition and rating

18F-FDG-PET scans were acquired following the EANM 
procedure guidelines [37], using an advanced hybrid PET-
CT scanner in 3D list mode. PET data were reconstructed 
using 3D iterative algorithm, corrected for attenuation, 
random and scatter using the manufacturer’s software. A 
trained nuclear medicine physician visually rated all scans as 
positive or negative, according to the European Association 
of Nuclear Medicine and European Academy of Neurology 
recommendations [38], as described in a previous work [39].

Classification of patients according to the ATN 
classification

Based on biomarker results, patients were classified accord-
ing to the NIA-AA Research Framework [40]: patients were 
rated as A + if at least one of the amyloid biomarkers (Aβ42 
or Aβ42/ Aβ40 ratio) revealed the presence of Aβ pathology, 
and as A- if none of the biomarkers revealed the presence of 
Aβ pathology. Patients were classified as T + or T- if CSF 
p-tau concentrations were higher or lower than the cut-off 
value, respectively. Patients were classified as N + if at least 
one neurodegeneration biomarker was positive (CSF t-tau 
higher than the cut-off value or positive 18F-FDG-PET). In 
the case of discordant results between CSF and 18F-FDG-
PET, we considered only the pathologic result. Based on this 
first classification, considering our sample size and to avoid 
creating excessively small groups, we classified patients 
as follows: i) carriers of normal biomarkers (NB) if all the 
biomarkers were negative (A-/T-/N-); ii) non Alzheimer’s 

pathologic change (non-AD) if they had positive p-tau and/
or t-tau (A-/T + /N-, A-/T + /N-, A-/T + /N +); iii) prodromal 
AD (SCD and MCI) or AD-dementia (AD) if they had posi-
tive amyloid biomarkers and positive p-tau; we included in 
this group also patients with isolated Aβ pathology (A + /T-/
N-, A + /T + /N-, A + /T + /N +).

Statistical analysis

All statistical analyses were performed via IBM SPSS Statis-
tics Software Version 25 (SPSS Inc., Chicago, USA) and the 
computing environment R 4.2.3 (R Foundation for Statisti-
cal Computing, Vienna, 2013). Figures were created using R 
4.2.3 and Adobe Illustrator (Adobe Inc., San Jose, California). 
Statistical significance received Bonferroni adjustment for 
multiple comparisons being accepted at p < 0.005. Distribu-
tions of all variables were assessed through the Shapiro–Wilk 
test. As NfL and GFAP were not normally distributed, we 
applied a log10 transformation. This transformation resulted 
in normally distributed data that met the assumptions of par-
ametric statistical tests that were necessary to evaluate our 
hypotheses. We conducted descriptive statistics to examine 
the central tendency and variability of our data using means 
and standard deviations (SD) for continuous variables and 
frequencies or percentages and 95% confidence interval (95% 
CI) for categorical variables, respectively. We used t-test for 
comparison between two groups, one-way analysis of vari-
ance (ANOVA) with Bonferroni post-hoc test for comparison 
between three or more groups, Pearson’s correlation coeffi-
cient to evaluate correlations between groups’ numeric meas-
ures and chi-square test to compare categorical data. To adjust 
for possible confounding factors, we used analysis of covari-
ance (ANCOVA). We calculated the size effect by Cohen’s d 
for normally distributed numeric measures, η2 for ANOVA 
and Cramer’s V for categorical data. We constructed receiver 
operating characteristic (ROC) curves and calculated the area 
under the curve (AUC) to evaluate the performance of plasma 
NfL and GFAP to predict AD. We used the maximize metric 
method to determine the optimal cut-off value for NfL and 
GFAP and calculated accuracy, sensitivity, and specificity.

Results

Description of the groups

Sixteen patients (40.00%, 8 SCD and 8 MCI) were classified 
as NB, four patients (10.00%, 1 SCD and 3 MCI) were rated 
as non-AD, 12 patients (30.00%, 2 SCD and 10 MCI) were 
rated as prodromal AD, including three A + /T-/N-. All eight 
patients with clinical diagnosis of AD showed biomarkers 
consistent with AD (6 A + /T + /N + and 2 A + /T-/N +) and 
were defined as AD-dementia. Thirteen patients (32.50%) 
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had positive 18F-FDG-PET, including five patients with 
prodromal AD (1 SCD and 4 MCI) and all the eight AD-
dementia patients. Negative 18F-FDG-PET scans showed 
normal brain metabolism and were not suggestive for any 
other neurological conditions. A detailed description of dis-
tributions of A/T/N subtypes among groups (SCD, MCI and 
AD-dementia) is reported in Table 1.

Patients in the NB group were younger than non-AD 
(p = 0.001, d = 2.448) and had higher MMSE compared 
to prodromal AD (p = 0.002, d = 1.576) and AD-dementia 

(p < 0.001, d = 2.042). There were no differences in gender, 
years of education or APOE frequencies between NB, non-
AD, prodromal AD and AD-dementia (Table 2).

Comparisons of CSF and blood biomarkers 
between groups

CSF and blood biomarkers levels were different between 
groups: Aβ42 (F [3, 36] = 20.7, p < 0.001, η2 = 0.633), Aβ42/Aβ40 
(F [3, 36] = 20.7, p < 0.001, η2 = 0.740), p-tau (F [3, 36] = 8.63, 
p < 0.001, η2 = 0.418), t-tau (F [3, 36] = 8.87, p < 0.001, 
η2 = 0.425) and LogGFAP (F [3, 36] = 7.65, p < 0.001, 
η2 = 0.389). As expected, post-hoc analysis showed that Aβ42 
concentration and Aβ42/Aβ40 ratio were higher in NB compared 
to prodromal AD (p < 0.001, d = 1.901; p < 0.001, d = 3.330, 
respectively) and AD with dementia (p < 0.001, d = 2.39; 
p < 0.001, d = 3.269, respectively) as well as in non-AD 
compared to prodromal AD (p < 0.001, d = 3.193; p < 0.001, 
d = 2.706, respectively) and AD with dementia (p < 0.001, 
d = 3.684; p < 0.001, d = 2.645, respectively). On the opposite, 
p-tau and t-tau were lower in NB compared to prodromal AD 
(p < 0.001, d = 1.689; p < 0.001, d = 1.658, respectively) and 
AD with dementia (p = 0.002, d 0 1.731; p < 0.001, d = 1.812, 
respectively). There were no differences in p-tau and t-tau 
between non-AD, prodromal AD and AD dementia. LogGFAP 
was lower in NB compared to prodromal AD (p = 0.003, 
d = 1.463) and AD with dementia (p = 0.002, d = 1.695). 
LogNfL was lower in NB patients than in AD-dementia 
(p = 0.004, d = 1.474) (Fig. 1). There were no differences in 

Table 1  Distributions of A/T/N subgroups among diagnosis groups 

Patients were rated as:
A + if at least one of the amyloid biomarkers (Aβ42 or Aβ42/ Aβ40 
ratio) revealed the presence of Aβ pathology, or A- if none of the bio-
markers revealed the presence of Aβ pathology;
T + or T- if CSF p-tau concentrations were higher or lower than the 
cut-off value, respectively;
N + if at least one neurodegeneration biomarker was positive (CSF 
t-tau higher than the cut-off value or positive 18F-FDG-PET) or N- 
if none of the biomarkers revealed neurodegeneration. In the case of 
discordant results between CSF and 18F-FDG-PET, we considered 
only the pathologic result.

SCD MCI AD dementia

NB 8 A-/T-/N- 8 A-/T-/N- 0
non-AD 1 A-/T + /N + 1 A-/T-/N + 

2 A-/T + /N + 
0

prodromal AD/
AD-dementia

2 A + /T + /N + 2 A + /T-/N-
8 A + /T + /N + 

2 A + /T-/N + 
6 A + /T + /N + 

Table 2  Comparisons between 
groups

Values quoted in the table are mean (SD) for continuous variables and frequencies (percentages) for dicho-
tomic variables. Between-groups comparisons: ANOVA with Bonferroni post-hoc. Categorical data com-
parisons: χ2 test. Size effect: Cohen’s d for continuous measures, Cramer’s V for categorical data. Statisti-
cal significance received adjustment for multiple comparisons being accepted at p < 0.005
a  p = 0.001, d = 2.448; b p = 0.002, d = 1.576; c p < 0.001, d = 2.829; d p < 0.001, d = 1.901; e p < 0.001, 
d = 2.39;f p < 0.001, d = 3.193; g p < 0.001, d = 3.684; h p < 0.001, d = 3.330; i p < 0.001, d = 3.269;j 
p < 0.001, d = 2.706; k p < 0.001, d = 2.645; l p < 0.001, d = 1.689; m p = 0.002, d 0 1.731; n p < 0.001, 
d = 1.658; o p < 0.001, d = 1.812; p = 0.011, d = 1.474; p p = 0.004, d = 1.474; q p = 0.003, d = 1.463; r 
p = 0.002, d = 1.695

NB non-AD prodromal AD AD-dementia

N 16 4 12 8
Age, years 62.51(8.33) a 78.64 (4.11) a 70.94 (5.65) 71.64 (3.51)
Years of education 12.40 (3.64) 10.75 (6.07) 13.25 (3.41) 12.83 (4.26)
MMSE 27.09 (2.14) b,c 27.12 (1.64) 23.39 (2.96) b 22.26 (2.20) c

Gender, female 11 (68.75%) 3 (75.00%) 6/6 (50.00%) 4 (50.00%)
APOE ε4+ 6 (40.00%) 1 (25.00%) 5 (45.00%) 2 (29.00%)
Aβ42 (pg/mL) 1075.62 (245.24) d,e 1408.00 (625.81)f, g 568.66 (138.17)d, f 460.37 (116.78)e, g

Aβ42/Aβ40, 0.097 (0.01) h,i 0.082 (0.021)j, k 0.049 (0.016)h, j 0.050 (0.01) i, k

p-tau (pg/mL) 31.12 (13.11) l, m 73.90 (20.73) 105.56 (70.39)l 107.37 (37.05)m

t-tau (pg/mL) 250.31 (94.37) n, o 537.00 (104.57) 646.48 (390.37)n 683.50 (175.57)o

LogNfL (pg/mL) 0.99 (0.14) p 1.23 (0.06) 1.15 (0.20) 1.28 (0.28)p

LogGFAP (pg/mL) 2.05 (0.21) q, r 2.37 (0.26) 2.38 (0.20) q 2.43 (0.24) r
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CSF and plasma biomarkers among non-AD, prodromal AD 
and AD-dementia. There were no differences in plasma NfL 
and GFAP concentration between males and females (p = 0.737, 
η2 = 0.003; p = 0.64, η2 = 0.006, respectively) or between APOE 
ε4 + and APOE ε4- (p = 0.908, η2 < 0.001; p = 0.376, η2 = 0.023, 
respectively) (Table 2).

Accuracy of plasma NfL and GFAP in predicting AD

We aimed to estimate the performances of plasma NfL and 
GFAP in differentiating patients with SCD and MCI who 
were carriers of positive AD biomarkers from patients who 
were not. Therefore, for this analysis we considered patients 
in the NB group and prodromal AD patients. We did not 
consider non-AD, due to the small number of patients, 
or AD-dementia patients, as we were not interested in 
differentiating patients with full-blown dementia from 
patients with SCD or MCI. NfL showed a fair accuracy 
(AUC = 0.718, accuracy = 70.37% [95% C.I. = 53.46: 
87.28],  sensit ivity = 75.00% [95% C.I.  = 58.96: 
91.04]), specificity = 66.67 [95% C.I. = 49.21: 84.13], 
PPV = 61.54% [95% C.I. = 42.84: 80.24], NPV = 76.92 
[95% C.I. = 60.73: 93.12]) in differentiating between NB 
and prodromal AD, with a cut-off value of 11.65 pg/mL. 
GFAP showed an excellent accuracy in differentiating NB 
from prodromal AD (AUC = 0.901, accuracy = 85.71% 
[95% C.I. = 72.75: 98.67], sensitivity = 66.67 [95% 
C.I. = 49.21: 84.13], specificity = 100%, PPV = 100%, 
NPV = 80.00 [95% C.I. = 65.18: 94.82]) with a cut-off level 
of 198.13 pg/mL (Fig. 2).

Discussion

Plasma GFAP was highly accurate in predicting AD in 
patients with subjective symptoms or objective signs of 
cognitive decline, in line with the emerging literature [17]. 
The mean plasma GFAP concentration in our sample was 
consistent with previous reports on larger samples, but 
higher compared to Cicognola et al. [41]. Cicognola et al. 
also suggested a lower cut-off value (44 pg/mL) than the 

1.0

1.5

2.0

Lo
gN

FL

NB non-AD prodromal AD AD-dementia
1.6

2.0

2.4

2.8

NB non-AD prodromal AD AD-dementia

Lo
gG

FA
P

**
****A B

Fig. 1  Plasma NFL and GFAP across groups. Values quoted in the 
y-axis indicate LogNfL and LogGFAP levels. Horizontal bars at 
the top indicate significant differences between groups. Horizon-

tal bars superimposed on the violin plots indicate mean and SD. A. 
NB vs. AD-dementia (p = 0.004, d = 1.474). B. NB vs prodromal AD 
(p = 0.003, d = 1. 463); NB vs. AD-dementia (p = 0.002, d = 1.695) 

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
specificity

se
ns

iti
vi
ty

GFAP NfL

Fig. 2  ROC curves for accuracy of NfL and GFAP in distinguishing 
NB and prodromal AD



1036 Neurological Sciences (2024) 45:1031–1039

1 3

one we identified, despite using the same analysis methods 
for plasma NfL and GFAP. On the other hand, our cut-off 
value is slightly lower than the one identified by Oeckl et al. 
[42] (245 pg/mL) to differentiate patients with AD from 
healthy controls. This discrepancy may be explained by the 
fact that we considered patients with subjective cognitive 
decline (SCD) and mild cognitive impairment (MCI), while 
we did not include patients with AD dementia in the accu-
racy analysis.

Plasma NfL showed fair accuracy in discriminating 
between patients with normal biomarkers and patients with 
prodromal AD. These results are consistent with previous 
studies that indicated blood GFAP as more accurate than 
blood NfL. Nevertheless, in a previous study [43], we 
demonstrated that plasma NfL concentration was higher 
in patients with AD pathology (defined as A + /T + /N + or 
A + /T + /N- according to Jack et al. [2]) compared to patients 
with normal AD biomarkers and isolated Aβ pathology. We 
also showed that NfL concentrations were similar between 
patients with normal AD biomarkers and patients with iso-
lated Aβ pathology. Therefore, based on our results, we can 
speculate that GFAP and NfL provide different information 
regarding the Alzheimer's continuum. GFAP seems to pre-
dict the presence of Aβ pathology regardless of tauopathy 
and neurodegeneration, while NfL might be more accurate 
in discriminating patients who also developed tauopathy, 
as supported by other authors [44]. This might also reflect 
previous findings showing that reactive astrocytosis is a very 
early process associated with Alzheimer’s pathology, pre-
ceding both amyloid plaque deposition and neurodegenera-
tion [45, 46]. Consequently, we might suggest different roles 
for GFAP and NfL, with GFAP being more informative in 
the earlies stages of the disease and NfL being more useful 
in monitoring the progression of Alzheimer's pathological 
changes to Alzheimer's disease.

The main limitation of our study is the small sample size, 
particularly when we split the sample according to the ATN 
classification. Another limitation is that we did not include 
a sample of healthy control individuals. Additionally, being 
a single-center study, there may be biases related to assess-
ment and diagnosis procedures. However, we would like to 
highlight some novelties of our work that may provide useful 
evidence for both clinical practice and AD research. While 
many studies have demonstrated the potential of NfL and 
GFAP, most of them have focused on predicting progres-
sion from MCI to dementia [19, 47, 48], whereas only a few 
studies have investigated the pathologic substrate of MCI 
defined according to AD biomarkers [19, 42, 44]. As the 
definition of AD has shifted from a purely clinical entity 
to a clinic-biological construct based on biomarker pro-
files, understanding the relationship between blood-based 
biomarkers and CSF biomarker profiles can have signifi-
cant clinical implications for early AD diagnosis. Thus, we 

considered the presence of AD pathology as the outcome, 
biologically defined through CSF biomarkers, which is a 
strength of our study. Additionally, unlike previous larger 
studies that classified patients based on Aβ pathology [18, 
19, 44, 47], we also considered tau pathology and neurode-
generation biomarkers, providing a comprehensive evalu-
ation of plasma NfL and GFAP concentrations associated 
with different biomarker profiles. This is relevant as each 
biomarker profile has been associated with a different risk 
of progression to dementia. Moreover, only a few studies 
have included patients with SCD in their investigations of 
NfL, and we are aware of only one other study that assessed 
GFAP in SCD patients. SCD represents a clearly defined 
clinical entity with a higher risk of AD and progression 
to dementia compared to cognitively healthy individuals 
[49–52]. Based on this evidence, the National Institute of 
Aging-Alzheimer’s Association (NIA-AA) included SCD as 
the first manifestation of the symptomatic stages of AD pre-
ceding MCI. This distinction is relevant for the future appli-
cation of blood-based biomarkers in clinical practice, par-
ticularly as disease-modifying treatments become available. 
It is widely understood that DMTs should be administered 
at the earliest stages of the disease to halt the pathological 
process before neurodegeneration begins [53]. However, 
general population screening may lead to an unacceptable 
number of false positive results and subsequent costs. In this 
perspective, patients with SCD represent an optimal selected 
population to be screened for prodromal AD. Our results 
provide one of the first pieces of evidence regarding plasma 
GFAP in this group of patients.

In conclusion, our work offers further insights into the 
utility of blood-based biomarkers in the prodromal phase 
of AD. Specifically, our results support the use of blood-
based biomarkers in predicting Alzheimer’s pathology in 
patients with SCD and MCI, which represents a promising 
tool for biomarker assessment. This tool can also be applied 
at the primary care level to assist clinicians in determining 
the most appropriate and personalized assessment pathway 
for each patient.
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