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Abstract

Clinical trials often allow patients in the control arm to switch to the
treatment arm if their physical conditions are worse than certain tolerance
levels. For instance, treatment switching arises in the Concorde clinical
trial, which aims to assess causal effects on the time-to-disease progression
or death of immediate versus deferred treatment with zidovudine among
patients with asymptomatic HIV infection. The Intention-To-Treat anal-
ysis does not measure the effect of the actual receipt of the treatment and
ignores the information on treatment switching. Other existing methods
reconstruct the outcome a patient would have had if they had not switched
under strong assumptions. Departing from the literature, we re-define
the problem of treatment switching using principal stratification and fo-
cus on causal effects for patients belonging to subpopulations defined by
the switching behavior under control. We use a Bayesian approach to
inference, taking into account that (i) switching happens in continuous
time; (ii) switching time is not defined for patients who never switch in
a particular experiment; and (iii) survival time and switching time are
subject to censoring. We apply this framework to analyze synthetic data
based on the Concorde study. Our data analysis reveals that immediate
treatment with zidovudine increases survival time for never switcher and
that treatment effects are highly heterogeneous across different types of
patients defined by the switching behavior.
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1 Introduction

Treatment switching is a post-randomization event that commonly occurs in
clinical trials designed to assess the effect of a treatment on the incidence of a
disease. There exist various types of treatment switching. During the follow-up
period, the treatment may cause unwanted side effects for some patients, pre-
venting them from continuing the treatment; such a kind of treatment switching
is known as “treatment discontinuation”. For instance, in clinical trials where
the control group is the standard of care, patients may be allowed to switch
from the active to the control treatment if unbearable toxicity occurs under
treatment. In clinical trials aiming to assess the causal effects of an active
versus a placebo treatment plus the existing standard of care, patients may
be allowed to discontinue both treatments while remaining on the standard of
care. In other cases, a sudden disease worsening for some weaker patients forces
physicians to allow them to switch to the treatment arm or take a non-trial
treatment. In this work, we focus on clinical trials where patients in the treat-
ment arm never switch to the control arm, but patients in the control arm can
switch to the treatment arm if their physical conditions are worse than cer-
tain tolerance levels. This type of switching often happens in clinical trials for
patients suffering from AIDS-related illnesses or particularly painful cancers in
advanced stages (see, e.g., Robins and Tsiatis, 1991; Robins, 1994; White et al.,
1997, 1999; Zeng et al., 2011; Chen et al., 2013). Such a type of switching also
occurs in the Concorde Trial (Concorde Coordinating Committee, 1994), which
we will use as a running example to illustrate the methodological framework
we propose to deal with the problem of treatment switching. An additional
example of treatment switching is the BREAK-3 Trial (Hauschild et al., 2012).
The BREAK-3 Trial and the CheckMate 067 phase III trial, which is an exam-
ple of treatment discontinuation (Larkin et al., 2015), will serve as additional
case studies to describe our methodology at work, even though no data will be
analyzed (see details in Section 6).

The Concorde Study is a randomized clinical trial that aims to assess the
causal effects of immediate versus deferred treatment with an antiretroviral med-
ication (zidovudine) on time-to-disease progression or death among symptom-
free individuals infected with HIV. According to the trial protocol, patients
assigned to the control group should not receive the active treatment until they
progress to AIDS-related complex (ARC) or AIDS. However, physicians may
judge it unethical to keep patients in the control arm if their physical con-
ditions worsen considerably, e.g., if they experience persistently low CD4 cell
counts even before the onset of ARC or symptoms of HIV.

Intention-to-treat (ITT) analysis compares groups formed by randomization
regardless of the treatment actually received, ignoring the information on treat-
ment switching in the control group. It is valid for measuring the effect of assign-
ment but does not estimate the effect of the actual receipt of the treatment. In
the Concorde study, an ITT analysis compares outcomes by the assignment to
immediate versus deferred treatment with zidovudine, ignoring whether control
patients stay on the control arm for the entire follow-up period (or, according
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to the protocol, up to the onset of ARC or AIDS). However, we cannot ignore
treatment switching if the focus is on assessing the effects of the treatment itself,
that is, of receiving zidovudine immediately versus subsequently after the onset
of ARC or AIDS.

Unfortunately, we cannot adjust for treatment switching by simply condi-
tioning on its observed value because treatment switching is a non-randomized
post-assignment variable. Imagine that immediate treatment with zidovudine
increases every individual’s survival, but weaker patients, who are most at risk
of death, would switch very early if assigned to control. A naive analysis that
compares observed immediate versus observed deferred treatment with zidovu-
dine may unfairly conclude that the first has no or little effect on survival. Web
Appendix A reviews various existing methods to evaluate the effect of a treat-
ment accounting for treatment switching. They focus on causal effects for the
whole population under the assumption that each individual has an outcome
that would have happened under assignment to treatment and an outcome that
would have happened under assignment to control if that individual had not
switched. The recent release of an Addendum to the E9 guideline on ‘Statisti-
cal principles in clinical trials’ by the ICH (ICH E9(R1) addendum) refers to this
approach as a “hypothetical strategy” for dealing with inference on treatment
effects in the presence of intercurrent events, such as treatment switching (ICH,
2019). In Web Appendix B, we also describe and discuss a semi-competing
risks approach to the analysis of randomized studies with survival outcomes
suffering from treatment switching. In the classical competing risks literature,
controlled direct effects and total effects are usually the targets of inference.
Controlled direct effects are hypothetical estimands as those usually considered
in the treatment switching literature, comparing the time to the primary event
(e.g., disease progression or death) under assignment to treatment versus control
after somehow eliminating the competing event (e.g., switching). Total effects
are also causal effects for the whole population. They are a type of ITT effect,
namely the contrasts of the probabilities of experiencing the primary event be-
fore a time t. As total effects, they do not account for the mechanisms by which
the treatment affects the occurrence of the primary event, e.g., through other
(secondary) events like tolerance implying treatment switching.

We propose to re-define the problem of treatment switching using princi-
pal stratification (Frangakis and Rubin, 2002), which is also recognized in the
ICH E9(R1) addendum (ICH, 2019) as a strategy to deal with intercurrent
events. The novel causal estimands are the principal causal effects (PCEs) for
subpopulations defined by the switching behavior under control. The key in-
sight underlying our approach is that treatment switching can be viewed as a
general form of noncompliance. Principal stratification plays an important role
in the analysis of randomized studies with all-or-none noncompliance, where it
classifies units into groups defined by compliance status. These studies usu-
ally focus on the causal effects for the principal stratum of compliers (Angrist
et al., 1996). In clinical trials with treatment switching, classifying patients into
subpopulations defined by the switching behavior is an extension of classifying
units based on the compliance status (see Web Appendix C for details on the
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connection to the noncompliance literature). To the best of our knowledge, no
published studies before our study first published on ArXiv (Mattei et al., 2020)
used principal stratification to deal with the problem of treatment switching.
Principal stratification has been recently used to define the causal effects of
treatment with semi-competing risks (Comment et al., 2019; Xu et al., 2022),
and strong connections exist between our study and the existing studies. Never-
theless, some distinguishing features make our contribution unique. Comment
et al. (2019) and Xu et al. (2022) focus on assessing the causal effects of treat-
ment on non-terminal time-to-event outcomes and use principal stratification
to account for the fact that the non-terminal endpoints are subject to trunca-
tion by death, that is, they are not well-defined after death. Specifically, their
causal estimands are time-varying survivor causal effects for the principal strata
of patients who would survive regardless of treatment assignment. Our causal
estimands are PCEs on a terminal time-to-event outcome (i.e., time-to-disease
progression or death), with principal strata defined by the switching behavior
considering that the occurrence of the primary terminal endpoint precludes any
future non-terminal switching event. Because switching is a non-terminal event
that does not truncate death, here the causal effects are well-defined for each
principal stratum. See Web Appendix B for an in-depth discussion of the sim-
ilarities and differences between our framework and the existing frameworks in
the presence of semi-competing risks.

The PCEs are local causal effects for patients who are homogeneous with
respect to the switching behavior. Therefore, the PCEs provide information on
treatment effect heterogeneity with respect to the switching behavior. In the
Concorde trial, the principal stratum of non-switchers will be of particular inter-
est. Non-switchers are patients who would never switch to the active treatment
if assigned to the control. They take the treatment and control according to the
protocol and thus can provide evidence on the causal effect of treatment versus
control.

Treatment switching complicates causal inference. First, the switching of
patients under control either never happens or happens in continuous time. Sec-
ond, assumptions such as exclusion restrictions (Angrist et al., 1996), typically
invoked in the noncompliance setting, are untenable in studies with treatment
switching. Section 3 will discuss these issues in detail. We deal with inferential
issues in the analysis of the Concorde trial using a flexible model-based Bayesian
approach, which allows us to take into account that (i) switching happens in
continuous time, generating a continuum of principal strata, (ii) switching time
is not defined for patients who never switch in a particular experiment, and (iii)
survival time and switching time are subject to censoring.

2 The Concorde trial

The Concorde trial is a double-blind, randomized clinical trial aimed to evaluate
the effect of immediate/active versus deferred/control treatment with zidovu-
dine in symptom-free individuals infected with HIV (Concorde Coordinating
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Committee, 1994). Due to privacy constraints, we use a synthetic dataset pro-
duced by White et al. (2002), which closely mimics the Concorde trial. The
data comprise n = 1000 patients with asymptomatic HIV infection. Half the
patients are randomized to immediate zidovudine, and the other half to deferred
zidovudine. In principle, patients in the deferred arm should not receive zidovu-
dine until they progress to AIDS-related complex (ARC) or AIDS. Nevertheless,
some patients in the deferred arm are allowed to switch to the active treatment
arm, starting zidovudine before the onset of ARC or symptoms of HIV on the
basis of persistently low CD4 cell counts. The outcome is time-to-disease pro-
gression or all causes of death. The survival time and the switching time are
subject to censoring. The trial lasts 3 years, with staggered entry over the first
1.5 years; therefore, the censoring time ranges from 1.5 to 3 years. The data do
not include any pretreatment covariates.

For each patient i, let Zi denote the treatment assignment: Zi = 1 for imme-
diate zidovudine and Zi = 0 for deferred zidovudine. Let Y obs

i and Sobs
i denote

the survival time and switching time under the actual treatment assignment
without censoring. Let Ci be the censoring time. Let Ỹ obs

i = min{Y obs
i , Ci}

denote the censored time-to-disease progression or death. Because patients can-
not switch from the treatment to control, for patients assigned to immediate
zidovudine, we set the switching time to be S̃obs

i = Sobs
i = S, where the sym-

bol “S” is a non-real value. Under control, patients could either experience
the event of interest (disease progression or death) without switching or switch
before progressing or dying; they can switch from the control to the treatment
arm only before their time-to-disease progression or death under control. There-
fore, for patients assigned to deferred treatment with zidovudine, we observe the
censored switching time:

S̃obs
i =


Sobs
i if Sobs

i ∈ R+ and Sobs
i ≤ Ci,

Ci if Sobs
i ∈ R+ and Sobs

i > Ci,

Ci if Sobs
i = S,

where we set Sobs
i = S for control patients who progress the disease/die without

switching.
Table 1 presents some summary statistics. The upper panel in Table 1 pro-

vides some insights that immediate treatment with zidovudine increases survival
time. However, this simple comparison between survival times under treatment
and control cannot even be interpreted as the average causal effect of the as-
signment due to censoring. Figure 1 shows the Kaplan–Meier estimates of the
survival functions. The one under treatment dominates the one under control.
This suggests that being assigned to immediate treatment with zidovudine is
beneficial, although the difference between the two survival curves is quite small,
and the 95% confidence intervals overlap. The comparison between the survival
curves provides a non-parametric estimate of the ITT effect. Nevertheless, to
assess the effect of immediate versus deferred treatment with zidovudine, we
cannot ignore information on the switching status.
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Table 1: Synthetic Concorde data: Descriptive statistics

Variable All Zi = 0 Zi = 1
(n = 1000) (n = 500) (n = 500)

Treatment assignment (Zi) 0.5 0 1

Indicator for the switching time being censored − 0.62 −
or taking on a non-real value
(I{

(
Sobs
i ∈ R+ and Sobs

i > Ci

)
or Sobs

i = S})
Censored switching time (S̃obs

i ) − 1.55 −
Censoring indicator for the survival time 0.69 0.66 0.71
(I{Y obs

i > Ci})
Censored survival time (Ỹ obs

i ) 1.93 1.89 1.97

Zi = 0

Y obs
i ≤ Ci Ỹ obs = Ci

Variable S̃obs
i = Ci Sobs

i ≤ Ci S̃obs = Ci

(n = 119) (n = 189) (n = 192)

Indicator for the switching time 1 0 −
taking on a non-real value (I{Sobs

i = S})
Indicator for the switching time being censored 1 0 1
or taking on a non-real value
(I{

(
Sobs
i ∈ R+ and Sobs

i > Ci

)
or Sobs

i = S})
Censored switching time (S̃obs

i ) − 1.24 2.11∗

Censoring indicator for the survival time 0 0.74 1
(I{Y obs

i > Ci})
Censored survival time (Ỹ obs

i ) 1.16 2.14 2.11∗
∗Average censoring time
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Figure 1: ITT analysis: Kaplan–Meier estimates of the survival functions with
95% confidence intervals. The solid line corresponds to the control, and the
dashed line corresponds to the treatment.

3 Treatment switching with censoring

3.1 Potential outcomes

The objective is to assess the causal effects of immediate versus deferred treat-
ment with zidovudine on the time-to-event outcome, Y (e.g., survival time or
time-to-disease progression). We use the potential outcomes to define causal
effects and make the stable unit treatment value assumption. Let Yi(z) ≥ 0 and
Ci(z) ≥ 0 be the potential survival time and censoring time for patient i under
treatment assignment z (z = 0, 1). The survival time is subject to censoring.
The trial starts and ends at specific calendar times, which determine a fixed
duration of the study, c = 3 years. Therefore, the censoring time depends on
patients’ entry, which is staggered over time. Thus, Ci(z) ≤ c represents the
duration till the end of the study for patient i given treatment assignment z.
Because the censoring time is determined by the date of entrance in the study
(which varies with i) and the date the study ended (which is determined a priori
and is the same for all i), we assume Ci(0) = Ci(1) = Ci for all i = 1 . . . , n.

As the trial goes on, keeping the patients in the control arm is unethical if
their physical conditions are worse than certain tolerance levels. Therefore, some
patients might switch to the treatment arm even if they had been assigned to the
control. Some trials permit patients in the treatment arm to switch to control
if, e.g., they experience an adverse reaction to the treatment. Here, we focus on
one-sided switching, as in the Concorde trial, where only patients in the control
arm can switch to the treatment. Let Si(z) be the potential switching time
of patient i under treatment assignment z. The value of Si(z) needs careful
discussion. First, in the presence of one-sided switching behavior, patient i’s
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switching time is the potential switching time under control Si(0). Because
patients in the treatment arm cannot switch, we define Si(1) = S. Second, a
patient i may not switch from the control to treatment no matter how long the
follow-up is, implying Si(0) = S. Third, a patient i can switch to the treatment
arm only before their survival time, implying a natural constraint Si(0) < Yi(0).
The natural constraint implies that for patients who would die under control
without switching to the active treatment, the switching time, Si(0), is censored
by death, with the censoring event (death/survival time) defined by the potential
outcome under control for the primary endpoint, Yi(0). For this type of patients,
the switching time is not only not observed but also undefined; thus, Si(0) = S.
Fourth, the switching time is also subject to censoring.

3.2 Causal estimands

Causal effects are comparisons of the treatment and control potential outcomes
for a common set of units. The average causal effect of treatment assignment
equals

ACE = E {Yi(1)} − E {Yi(0)} . (1)

When assessing whether the treatment can prolong the survival of patients, we
are also interested in the distributional causal effect:

DCE(y) = P {Yi(1) > y} − P {Yi(0) > y} , (y ∈ R+). (2)

Ju and Geng (2010) noted that ACE =
∫ +∞
0

DCE(y) dy. Although the average
causal effect in (1) and the distributional effect in (2) measure well-defined ITT
causal effects, they ignore the information on treatment switching in the control
group.

We adopt principal stratification (Frangakis and Rubin, 2002) to define
causal estimands adjusted for the treatment switching behavior. A principal
stratification with respect to the switching behavior classifies patients into la-
tent groups named principal strata, defined by the joint potential values of the
switching time under control and under treatment, (Si(0), Si(1)). In the pres-
ence of one-sided switching from the control to the treatment arm, Si(1) = S
for all patients; thus, principal strata are defined by the potential outcome of
the treatment switching time under control, Si(0), only. Frangakis and Rubin
(2002) pointed out that Si(0) acts as a pretreatment covariate unaffected by the
treatment assignment. The variable S(0) is semi-continuous because switching
either does not happen or happens in continuous time. Therefore, the basic prin-
cipal stratification with respect to the treatment switching behavior consists of
a continuum of principal strata. Each principal stratum comprises patients with
the same value of the switching time: {i : Si(0) = s}, s ∈ {S}∪R+. Throughout
the paper, we refer to patients with Si(0) = S as non-switchers, and to patients
with a positive real value Si(0) = s, s ∈ R+, as switchers. Non-switchers are
patients who experience disease progression or death without switching if as-
signed to control. Switchers belong to ∪s∈R+

{i : Si(0) = s}, the union of the
basic principal strata {i : Si(0) = s}, s ∈ R+. Hereafter we also refer to Si(0)
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as the “switching status” of patient i: “non-switcher” is the switching status
of a patient i with Si(0) = S, and “switcher (at some point in time)” is the
switching status of a patient i with Si(0) = s, s ∈ R+.

The causal effects within principal strata are called principal causal effects
(PCEs). For instance,

ACE(s) = E {Yi(1) | Si(0) = s} − E {Yi(0) | Si(0) = s} (3)

is the principal average causal effect for s ∈ {S} ∪ R+, and

DCE(y | s) = P {Yi(1) > y | Si(0) = s} − P {Yi(0) > y | Si(0) = s} (4)

is the principal distributional causal effect, for y ∈ R+ and s ∈ {S} ∪ R+.
Because non-switchers would not switch to treatment if assigned to con-

trol, for them, the treatment received coincides with the treatment assigned.
Thus, the PCEs for non-switchers are attributable to treatment received, that
is, ACE(S) and DCE(y | S) can be interpreted as the effects of the treatment.
They provide information on the causal effects of immediate versus deferred
treatment with zidovudine for the subpopulation of patients who would never
start zidovudine before the onset of ARC or AIDS if assigned to deferred zi-
dovudine.

The estimands ACE(y | s) and DCE(y | s) for s ∈ R+ measure the average
causal effect and the distributional causal effect for patients who would switch
to the treatment arm at time s had they been assigned to the control arm. For
y ∈ R+ and s ∈ R+, DCE(y | s) defines a two-dimensional surface on R+ ×R+.
The natural constraint Si(0) < Yi(0) implies that P {Yi(0) > y | Si(0) = s} = 1
for y < s, and thus the principal distributional causal effect reduces to DCE(y |
s) = P {Yi(1) > y | Si(0) = s}− 1 for y < s. If we further assume monotonicity
of survival time with respect to treatment assignment: Yi(1) ≥ Yi(0), then
Yi(1) > Si(0) and the principal distributional causal effect reduces to DCE(y |
s) = 0 for y < s. In this case, for a fixed value of Si(0) = s, s ∈ R+, the
principal distributional causal effect curve is non-negative within the interval
[s, c] as depicted by Figure 2.

Monotonicity states that the treatment does not shorten survival compared
to the control. In the Concorde trial, monotonicity amounts to assuming that
immediate zidovudine does not shorten time-to-disease progression or death
compared to deferred zidovudine. This assumption cannot be directly validated
and can be suspicious. Without monotonicity, the principal distributional causal
effect DCE(y | s) is negative (or at most zero) by construction for y < s. A
structural negative effect may lead to a misleading interpretation of the effec-
tiveness of the treatment. Therefore, it is sensible to consider the conditional
principal distributional causal effect for the subpopulation with Yi(1) > Si(0):

cDCE(y | s) (5)

= P {Yi(1) > y | Yi(1) > Si(0), Si(0) = s} − P {Yi(0) > y | Yi(1) > Si(0), Si(0) = s}
= P {Yi(1) > y | Yi(1) > s, Si(0) = s} − P {Yi(0) > y | Yi(1) > s, Si(0) = s} ,
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Figure 2: Examples of principal distributional causal effects under monotonicity
(c = 3)

for y, s ∈ R+. For y ≤ s, cDCE(y | s) = 1− 1 = 0. The estimand cDCE(y | s),
s ∈ R+ measures the distributional causal effect on the residual survival time
from the switching time for patients who would switch to the treatment arm at
time s had they been assigned to the control.

The principal causal effects in (3)–(5) are causal effects for groups of patients
defined by the detailed value of Si(0), and thus they are basic PCEs (Frangakis
and Rubin, 2002). Furthermore, we can define coarsened PCEs

ACE(A) = E {Yi(1) | Si(0) ∈ A} − E {Yi(0) | Si(0) ∈ A} , (6)

DCE(y | A) = P {Yi(1) > y | Si(0) ∈ A} − P {Yi(0) > y | Si(0) ∈ A} ,(7)
cDCE(y | A) = P {Yi(1) > y | Yi(1) > Si(0), Si(0) ∈ A} (8)

−P {Yi(0) > y | Yi(1) > Si(0), Si(0) ∈ A} ,

where A is a subset of R+. The simplest example is A = R+, which implies that
the causal effects in (6)–(8) are the causal effects for the coarsened stratum of
all switchers. They are the causal effects for patients who would switch earlier
than or at and later than time s if assigned to control for A = [0, s] and for
A = (s,+∞), respectively. Explicit formulae for these examples are shown in
Web Appendix D.

In general, we can discretize the switching time into several disjoint intervals
R+ = A1 ∪ · · · ∪ AK , and define ACE(Ak), DCE(y | Ak) and cDCE(y | Ak) for
k = 1, . . . ,K. When K = 2, A1 = [0, s] and A2 = (s,+∞), these coarsened
PCEs reduce to causal effects for patients who would switch earlier and later
than time s for k = 1 and for k = 2, respectively. However, patients switching at
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different times have different characteristics, and the basic PCEs conditioning
on the potential switching time give detailed information on treatment effect
heterogeneity.

Randomized clinical trials on survival outcomes with treatment switching
have a similar structure to survival studies with semi-competing risks if we
view the switching time and the time-to-disease progression or death as semi-
competing events. The switching time for patients who would switch is a non-
terminal competing event to the event of interest, and the event of interest (i.e.,
disease progression or death) is a terminal truncating event for the switching
time. Our principal stratification approach offers an innovative approach to
deal with semi-competing risks, with distinguishing features that make it cru-
cially different from existing approaches, including the classical approach based
on competing risks models. The classical semi-competing risks literature fo-
cuses on the causal effects for the whole population, namely, on total effects or
(controlled) direct effects (Young et al., 2020). Recently, Stensrud and Dukes
(2022) proposed to target separable effects in the presence of semi-competing
risks (see Section 1 and Web-Appendix B). Our principal stratification analysis
does not target causal effects for the whole population; it is a type of “sub-
group” analysis with a focus on the PCEs, which are local causal effects for
latent subpopulations of units defined by the switching behavior. The focus
on local causal effects offers methodological and substantive advantages. The
PCEs are defined without envisaging any hypothetical scenarios or hypothetical
decomposition of the treatment. The PCEs may be of great interest because
they naturally provide information on the heterogeneity of the treatment effect
with respect to the switching behavior and on the effect of the treatment for
the subpopulation of non-switchers.

3.3 Observed data

The potential outcome for the switching status under control, Si(0), and the
potential outcomes for survival, Yi(0) and Yi(1), are well-defined and a-priori
observable for all patients in the sense that they could be observed if the patients
were assigned to the corresponding treatment level (at least in the absence of
censoring). A-posteriori, once the treatment has been assigned, for each patient,
only the potential outcome corresponding to the treatment actually assigned is
observed; the other potential outcome is missing. Specifically, for each patient
i, we observe: Ỹ obs

i = min{Y obs
i , Ci}, where Y obs

i = ZiYi(1)+(1−Zi)Yi(0); and
S̃obs
i = Sobs

i = Si(1) = S under treatment and

S̃obs
i =


Sobs
i = Si(0) if Sobs

i = Si(0) ∈ R+ and Sobs
i = Si(0) ≤ Ci,

Ci if Sobs
i = Si(0) ∈ R+ and Sobs

i = Si(0) > Ci,

Ci if Sobs
i = Si(0) = S

under control.
In general, we do not observe the principal stratum of a patient for different

reasons in the treatment and control arms. In the treatment arm, we observe
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no treatment switching, and the potential outcome Si(0) is missing. Therefore,
a patient in the treatment arm may belong to any principal stratum defined by
Si(0), and the treatment group results in an infinite mixture of principal strata.
In the control arm, both the survival time and switching time are subject to
censoring. We have the following cases.

(a) The patient dies at time Y obs
i ≤ Ci and does not switch to zidovudine

before the onset of ARC or AIDS, i.e., S̃obs
i = Ci and Ỹ obs

i = Y obs
i .

The natural constraint implies Sobs
i = Si(0) = S. Since we observe the

time-to-disease progression or death without switching and the switching
time is not well-defined after disease progression/death, this patient is a
non-switcher belonging to the stratum {i : Si(0) = S}.

(b) The patient switches to the treatment arm, starting zidovudine before the
onset of ARC or AIDS, at time Sobs

i and dies at time Y obs
i with Sobs

i <
Y obs
i ≤ Ci, i.e., S̃

obs
i = Sobs

i = Si(0) = s ∈ R+, and Ỹ obs
i = Y obs

i = Yi(0).
This patient is a switcher belonging to the stratum {i : Si(0) = s}.

(c) The patient switches to the treatment arm, starting zidovudine before the
onset of ARC or AIDS, at time Sobs

i ≤ Ci but does not die before the end
of the study, i.e., S̃obs

i = Sobs
i = Si(0) = s ∈ R+, and Ỹ obs

i = Ci < Y obs
i .

This patient is a switcher belonging to the stratum {i : Si(0) = s}.

(d) The patient neither switches to zidovudine before the onset of ARC or
AIDS nor dies before the end of the study (with Sobs

i ∈ {S} ∪ (Ci,+∞)
and Y obs

i > Ci), i.e., S̃
obs
i = Ỹ obs

i = Ci. This patient may be a switcher
with Ci < Sobs

i = Si(0) < Y obs
i = Yi(0), or a non-switcher with Sobs

i =
Si(0) = S and Y obs

i = Yi(0) > Ci. This patient belongs to either the
stratum {i : Si(0) = S} or the union of strata ∪s>Ci

{i : Si(0) = s}.

Cases (a)–(c) have clear values of the switching time and survival time, at
least hypothetically, so we directly observe the principal strata for these types
of patients. Case (d) is less clear due to censoring because the principal stratum
membership for patients with S̃obs

i = Ỹ obs
i = Ci is missing. Table 2 shows the

data pattern and latent principal strata associated with each observed group.

3.4 Identification issues under randomization

Although the synthetic data of the Concorde trial do not have any covariates, we
discuss a general case with a K-dimensional vector of pretreatment variables Xi

for each patient. We consider a completely randomized trial where the following
assumption holds by design:

Assumption 1. P {Zi | Si(0), Yi(0), Yi(1), Ci, Xi} = P {Zi} .

We assume that the censoring mechanism is independent of both the survival
time and the switching time.

Assumption 2. P {Ci | Si(0), Yi(0), Yi(1), Xi} = P {Ci} .
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Table 2: Observed data pattern and possible latent principal strata

Zi S̃obs
i Ỹ obs

i Principal strata Principal stratum label

0 Ci Y obs
i ∈ [0, Ci] {i : Si(0) = S} Non-switchers

0 Sobs
i ≤ Ci Y obs

i ∈ (Sobs
i , Ci] {i : Si(0) = Sobs

i } Switchers at time
(Sobs

i ∈ R+) Sobs
i ∈ R+

0 Sobs
i ≤ Ci Ci {i : Si(0) = Sobs

i } Switchers at time
(Sobs

i ∈ R+) Sobs
i ∈ R+

0 Ci Ci

{
i : Si(0) = S

}
or Non-switchers or

{i : Si(0) = s ∈ (Ci,+∞)} Switchers at
some time s > Ci

1 S Y obs
i ∈ [0, Ci]

{
i : Si(0) = S

}
or Non-switchers or

{Si(0) ∈ R+} Switchers

1 S Ci

{
i : Si(0) = S

}
or Non-switchers or

{Si(0) ∈ R+} Switchers

Assumption 2 implies that the distribution of the censoring times contains
no information about the distributions of the potential survival and switching
time. We can also extend the discussion under unconfounded treatment as-
signment P{Zi | Si(0), Yi(0), Yi(1), Ci, Xi} = P {Zi | Xi} , and ignorability of
the censoring mechanism conditional on observed pretreatment variables Xi,
P {Ci | Si(0), Yi(0), Yi(1), Xi} = P {Ci | Xi}. The following discussion would
be applicable within cells defined by Xi.

Randomization helps inference. It implies that the distribution of the switch-
ing behavior, Si(0), is the same in the treatment and control arms. Moreover, it
allows us to express the distributional causal effects of the treatment assignment
on the survival time in (2) by the distribution of the observed data:

DCE(y) = P
{
Y obs
i > y | Zi = 1

}
− P

{
Y obs
i > y | Zi = 0

}
.

Under ignorability of the censoring mechanism, we can estimate the survival
functions P

{
Y obs
i > y | Zi = z

}
for y ∈ [0, c] by the empirical survival functions

under treatment z, z = 0, 1. Without imposing further assumptions, the data
provide no information about the survival functions for y ∈ (c,+∞). Therefore,
the identification of the average causal effect must rely on further (parametric)

assumptions on Y because ACE =
∫ c

0
DCE(y)dy +

∫ +∞
c

DCE(y)dy depends on
the distributional causal effect within both the intervals [0, c] and (c,+∞).

Identifying the principal average and distributional causal effects is even
more challenging. For instance, the distributional effect for the non-switchers,
DCE(y | S), is, in general, different from the prima facie distributional effect,

FDCE(y | S) = P
{
Y obs
i > y | Zi = 1

}
− P

{
Y obs
i > y | Zi = 0, Sobs

i = S
}
,

13



i.e., the naive comparison between the patients that do not switch under treat-
ment and control. The prima facie effect would differ from DCE(y | S), even if
no censored cases existed. Without censoring, randomization implies

P
{
Yi(0) > y | Si(0) = S

}
= P

{
Y obs
i > y | Zi = 0, Sobs

i = S
}
,

and if we assume that switchers are less healthy people than non-switchers, then
FDCE(y | S) is a lower bound for DCE(y | S). More precisely, if P

{
Yi(1) > y | Si(0) = S

}
≥

P {Yi(1) > y | Si(0) ∈ R+}, then

P
{
Y obs
i > y | Zi = 1

}
= P

{
Yi(1) > y |Si(0) = S

}
P
{
Si(0) = S

}
+P {Yi(1) > y |Si(0) ∈ R+}P {Si(0) ∈ R+}

≤ P
{
Yi(1) > y | Si(0) = S

}
,

which implies that FDCE(y | S) ≤ DCE(y | S).

4 Bayesian Inference

In the Concorde trial, inference on the PCEs is particularly challenging due
to the nature of the intermediate variable, which is a time-to-event outcome
subject to censoring. Since we generally do not observe the principal stratum
membership, we have to deal with a large amount of missing data, and the
PCEs of interest are either not or only partially identified. We propose to use a
flexible Bayesian parametric approach, which is often adopted in principal strat-
ification analysis where inference involves techniques for incomplete data (see,
e.g., Mattei and Mealli, 2007; Jin and Rubin, 2008, 2009; Zigler and Belin, 2012;
Schwartz et al., 2011; Kim et al., 2017). Conceptually, the Bayesian approach
does not require full identification. Bayesian inference is based on the posterior
distribution of the parameters of interest, which is derived by updating a prior
distribution via a likelihood, irrespective of whether the parameters are fully or
partially identified, and it is always proper if the prior distribution is proper
(e.g., Lindley, 1972; Ding and Li, 2018). Nevertheless, in finite samples, pos-
terior distributions of partially identified parameters may be weak identifiable
in the sense that they may have a substantial region of flatness (e.g., Imbens
and Rubin, 1997; Gustafson, 2010; Schwartz et al., 2011). Another appealing
feature of the Bayesian approach is that it allows us to deal with all compli-
cations – missing data, truncation by death, and censoring – simultaneously
in a natural way. Moreover, in Bayesian analysis, inferences are directly inter-
pretable in probabilistic terms. The following subsections introduce and discuss
a specific parametric model, and Web Appendix E details the description of
our Bayesian principal stratification approach. Nevertheless, it is worth noting
that alternative model specifications, possibly with a different parameterization,
can be used, also depending on the specific substantive setting. The principal
stratification method we propose is general and does not rely on any particular
model.
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4.1 Parametric assumptions

We adopt flexible parametric models for the switching status and survival times.
We use the Weibull distribution to model the potential switching time and the
potential survival times. The Weibull model has appealing features: its hazard
and survival functions have a simple form, and it is flexible and easy to interpret.
We can similarly consider alternative survival models, such as Burr models
(e.g., Mealli and Pudney, 2003) or Bayesian semi-parametric or non-parametric
models (e.g. Ibrahim et al., 2001; Schwartz et al., 2011; Kim et al., 2017). The
Weibull model has two positive parameters α and ξ. The parameter α allows
for different shapes of the hazard function. The hazard function monotonically
decreases if α < 1, is constant if α = 1, and monotonically increases if α > 1.
We write the Weibull model in terms of the parameterization (α, log(ξ)).

First, we model Si(0). We assume that the binary indicator I{Si(0) = S}
follows a Bernoulli distribution with probability of success

π(xi) =
exp(η0 + x′

iη)

1 + exp(η0 + x′
iη)

, (η0,η) ∈ RK+1.

Conditionally on Si(0) taking on real values, we assume that it follows a Weibull
distribution: Si(0) | Si(0) ∈ R+, Xi ∼ Weibull (αS , log(ξS) = βS +X ′

iηS),
αS > 0, βS ∈ R, ηS ∈ RK .

Second, we model Yi(0) | Si(0), Xi. Conditionally on Si(0) = S, we model
Yi(0) | Si(0) = S, Xi as aWeibull distribution with parameters

(
ᾱY , log(ξ̄0) = β̄Y +X ′

iη̄Y

)
,

ᾱY > 0, β̄Y ∈ R and η̄Y ∈ RK . Conditionally on Si(0) = s ∈ R+, we model
Yi(0) as a location shifted Weibull distribution:

Yi(0) | Si(0) = s,Xi ∼ s+Weibull (αY , log(ξ0) = βY + λ0 log(s) +X ′
iηY )

with αY > 0, βY , λ0 ∈ R, ηY ∈ RK . This location shift parameterization
reflects the constraint Yi(0) > Si(0) for switchers.

Third, we model Yi(1) | Si(0), Yi(0), Xi. Conditionally on Si(0) = S, we
model Yi(1) for non-switchers as a location shifted Weibull distribution:

Yi(1)− κYi(0) | Si(0) = S, Yi(0), Xi ∼ Weibull
(
ν̄Y , log(ξ̄1) = γ̄Y +X ′

iζ̄
)
,

with κ ∈ [0, 1], ν̄Y > 0, γ̄Y ∈ R, ζ̄ ∈ RK . Conditionally on Si(0) = s ∈ R+, we
model Yi(1) as a location shifted Weibull distribution:

Yi(1)−κYi(0) | Si(0) = s, Yi(0), Xi ∼ Weibull (νY , log(ξ1) = γY + λ1 log(s) +X ′
iζ)

with κ ∈ [0, 1], νY > 0, γY , λ1 ∈ R, ζ ∈ RK .
In Web Appendix F, we explicitly show the probability density functions, the

survivor functions, and the hazard functions corresponding to these model as-
sumptions. The entire parameter vector is θ =

[
(η0,η), (αS , βS ,ηS),

(
ᾱY , β̄Y , η̄Y

)
,

(αY , βY , λ0,ηY ),
(
ν̄Y , γ̄Y , ζ̄Y

)
, (νY , γY , λ1, ζY ), κ

]
.
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4.2 Identification of some model parameters

The parameters λ1 and κ deserve some discussion. The parameter κ character-
izes the dependence between Yi(1) and Yi(0) given {Si(0), Xi}. The observed
data provide little information on κ because we can observe only one of the po-
tential survival times for each patient. We can view κ as a sensitivity parameter:
when κ = 0, the potential survival times, Yi(1) and Yi(0) are conditionally inde-
pendent; when κ = 1, monotonicity Yi(1) ≥ Yi(0) holds, which describes a type
of perfect dependence structure. In practice, we suggest conducting sensitivity
analysis by varying κ within the range [0, 1].

The parameter λ1 describes the association between Yi(1) and Si(0) given
Yi(0) for switchers. Because Si(0) is never observed for treated patients, the
observed data provide no direct information about the partial association be-
tween Yi(1) and Si(0) given Yi(0). This lack of information may affect the causal
analysis, leading to imprecise inference on the causal estimands of interest.

We propose to deal with this identifiability issue by introducing parametric
assumptions that allow us to leverage better the information we have in the
observed data, borrowing information on λ1 from other parameters and the
modeling structure. We assume equality of the association parameters λ0 and
λ1: λ ≡ λ0 = λ1, so that a common parameter, λ, is used to describe the
association between Yi(1) and Si(0) given Yi(0) and between Yi(0) and Si(0).
Because Yi(0) and Si(0) are jointly observed for some control patients, we have
some direct information on the association between Yi(0) and Si(0), and thus
on the parameter λ. It is worth further highlighting that Bayesian principal
stratification analysis does not require the assumption of equality of the asso-
ciation parameters λ0 and λ1. Nevertheless, this parametric assumption may
help sharpen inference, leading to more informative and firm causal conclusions,
unless results are to some extent sensitive to it.

Under the parametric assumption that λ ≡ λ0 = λ1 the entire parameter
vector is θ =

[
(η0,η), (αS , βS ,ηS),

(
ᾱY , β̄Y , η̄Y

)
, (αY , βY ,ηY ),

(
ν̄Y , γ̄Y , ζ̄Y

)
,

(νY , γY , ζY ), λ, κ
]
.

It is worth noting that some values of the parameters (λ, κ) correspond to
invoking specific structural assumptions. For instance, under our model specifi-
cation, if κ = 1 and λ < 0, then Yi(1) ≈ Yi(0) for each patient i with Si(0) ∈ R+

and Si(0) ≈ 0. In fact, if κ = 1 and λ < 0, then

lim
s→0

GY (1)(y | s, y0, xi) = lim
s→0

P{Yi(1)−y0 > y | Si(0) = s, Yi(0) = y0, Xi = xi} = 0

for each y, y0 ∈ R+, and thus Yi(1) ≈ Yi(0) with probability one. This is a type
of “exclusion restriction,” which assumes that the assignment has no or little
effect on the survival outcome for switchers if they would immediately switch
to the treatment arm had they been assigned to the control arm.

The association between Yi(1) and Si(0) given Yi(0) for switchers and the
dependence between Yi(1) and Yi(0) given Si(0), conditional on covariates, are
not identifiable nonparametrically. The little information contained in the data
on these associations affects inference on the parameters (λ, κ). Under our para-
metric assumptions, (λ, κ) enter the observed data likelihood and thus enter the
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Bayesian posterior inference. Therefore, they are at least partially identified
and could be parametrically identified depending on the modeling assumptions
(Gustafson, 2010). Information on these parameters is implicitly embedded
in the model for the joint potential outcomes Yi(0) and Yi(1) conditional on
{Si(0), Xi}. Such a model provides the structure to recover the relationship be-
tween the observed and missing potential outcomes. We factorize the joint con-
ditional distribution of P{Yi(0), Yi(1) | Si(0), Xi} into the product of P{Yi(0) |
Si(0), Xi} and P{Yi(1) | Yi(0), Si(0), Xi}. The model for P{Yi(0) | Si(0), Xi}
characterizes the relationship between the survival outcome and the switching
status under control. The model for P{Yi(1) | Yi(0), Si(0), Xi} provides the
structure to recover the relationship among the potential survival outcomes and
the switching status under control. The data-augmentation algorithm, detailed
in Web Appendix H for the Concorde study, further provides intuition about
how the observed data and model specification together allow for drawing in-
formation on the missing potential outcomes and thus on the parameters (λ, κ).
We draw the missing switching status for control patients from a distribution
that depends on S̃obs

i through the distribution of Ỹ obs
i . Then, we draw the

missing switching status and the missing survival time under control for treated
patients from a joint distribution that depends on the distribution of Ỹ obs

i .
Given the possible sensitivity of the prior specifications for (λ, κ), we will

conduct various sensitivity checks in the data analysis.

4.3 Prior distribution, posterior distribution and sensitiv-
ity checks

We assume that the parameters are a priori independent. We propose to use
Normal prior distributions for the parameters of the logistic regression model
for the mixing probability, π(Xi), Gamma prior distributions for the shape
parameters of the Weibull distributions, and Normal prior distributions for the
other parameters of the Weibull distributions. Finally, we use a Dirac delta
prior for the sensitivity parameter κ concentrated at a pre-fixed value κ0 ∈ [0, 1],
which is essentially the same as fixing κ at κ0 a priori. See Web Appendix G
for details.

The observed-data likelihood has a complex form involving infinite mixtures
because we do not observe the switching status under treatment and only par-
tially observe the switching status under control due to censoring. Therefore, it
is extremely complicated to infer the causal estimands of interest based on the
observed-data likelihood directly. We use the data augmentation algorithm to
derive the complete-data posterior, which is easy to deal with because it does
not involve any mixture distributions. We can compute the causal estimands as
byproducts, and therefore, we can simulate their posterior distributions.

We investigate the sensitivity of the results with respect to the prior spec-
ification for λ using both more informative priors (e.g., Normal priors with a
smaller variance) as well as a less informative prior (e.g., a uniform prior dis-
tribution). We also investigate the sensitivity of the results with respect to the
parametric assumption of equality of the association parameters λ0 and λ1.
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We conduct the main analysis fixing κ = 0, that is, assuming that Yi(1) and
Yi(0) are conditionally independent given Si(0). We then assess the sensitivity
of the conclusions to different assumptions on κ by examining how the posterior
distributions of the causal estimands change with respect to different κ0 within
the range [0, 1].

5 Bayesian causal inference in the Concorde Trial

5.1 Bayesian ITT analysis

We first conduct a Bayesian model-based ITT analysis, which compares survival
times by assignment, ignoring the switching status (see the estimands in (1) and
(2)). This analysis aims to further highlight our substantive contribution to the
analysis of clinical trials suffering from treatment switching.

We assume that Yi(0) and Yi(1) marginally follow Weibull distributions,
with parameters (αY , βY ), and (νY , γY ), respectively, where αY , νy > 0, and
βY , γY ∈ R. We conduct Bayesian inference using Gamma prior distributions
with shape parameter 0.01 and scale parameter 100, and thus with mean 1 and
variance 100, for αY and νY , and Normal prior distributions with zero mean
and variance 10 000 for βY and γY . The posterior median of the average causal
effect is approximately 0.42, with a relatively wide 95% posterior credible inter-
val, (−0.51, 1.42), which covers zero. Although the posterior probability that
this effect is positive is relatively high (approximately 0.83), there is little ev-
idence that being assigned to immediate treatment with zidovudine increases
the average survival time. Similarly, the estimated distributional causal effects
are positive and increase monotonically over time. Still, there is little difference
between survival curves, with the 95% posterior credible intervals always cov-
ering zero except for durations between 1.65 and 2.10, where the lower bound
of the point-wise credible intervals is very close to zero though. See Figure 3
showing the posterior medians and 95% posterior credible intervals of the distri-
butional causal effects. Thus, there is evidence that immediate treatment with
zidovudine extends life in individuals infected with HIV, but the estimated ef-
fects are small and statistically negligible. Nevertheless, it is sensible to expect
that the causal effects are heterogeneous across non-switchers and switchers or,
more generally, across principal strata, making the ITT analysis an inadequate
summary of the evidence in the data for the efficacy of the treatment.

To overcome the limitations of the ITT analysis, we conduct Bayesian infer-
ence on the PCEs using the framework and the parametric assumptions intro-
duced in Section 4.

5.2 Bayesian principal stratification analysis

As a starting point, we assume κ = 0, i.e., Yi(0) and Yi(1) are independent given
Si(0). We simulate the posterior distributions of the causal estimands of interest
using three independent chains from different starting values. We run each chain

18



DCE(y) = P {Y (1) > y} − P {Y (0) > y}
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Figure 3: Bayesian ITT analysis using Weibull models. The solid line corre-
sponds to the posterior median, and the dashed lines correspond to the 95%
posterior credible interval.

for 125 000 iterations, discarding the first 25 000 iterations and saving every 20th
iteration. The Markov chains mix well. We combine the three chains and use
the remaining 15 000 iterations to draw inferences. See Web Appendices H and
I for details on the model and prior specification, the posterior distribution of
the model parameters, the MCMC algorithm, and convergence checks.

Based on the posterior medians, on average, immediate treatment with zi-
dovudine increases survival time for non-switchers by 2.66 years, from 2.05 un-
der deferred treatment with zidovudine to 4.76 years under immediate treatment
with zidovudine. The 95% posterior credible interval (0.71, 7.73) only comprises
positive values. In Figure 4, the posterior medians of the distributional causal
effects for non-switchers, DCE(y | S), are positive and increase over time from 0
to 0.33 (approximately 4 months). The posterior credible intervals include only
positive values except for survival times less than y = 0.60 (about 7 months),
where the lower bound is very close to zero though. Thus, there is evidence that
immediate versus deferred treatment with zidovudine increases survival time for
non-switchers.

The interpretation of the results for switchers deserves some care. For switch-
ers, Yi(1) is the survival value if they were assigned and actually exposed to the
active treatment. The potential outcome under assignment to control, Yi(0), is
the value of survival if switchers were initially assigned to the control treatment,
exposed to the control treatment up to the time of switching, e.g., s, s ∈ R+,
and then exposed to the active treatment from the time of switching, s, onward.
Therefore, the PCEs for switchers at time s compare the potential outcome that
would have happened if they had been initially assigned to treatment and the
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DCE(y | S)
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Figure 4: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of the distributional causal effects
for non-switchers

potential outcome that would have happened if they had been initially assigned
to control and received control treatment up to time s, and active treatment
from s onward.

The average causal effects for switchers are very small and statistically neg-
ligible, irrespective of the time to switching. See Figure 5(a). Therefore, the
assignment to immediate treatment with zidovudine does not affect the average
survival time of patients who would have switched to zidovudine before the on-
set of ARC or symptoms of HIV had they been assigned to deferred treatment
with zidovudine. We can interpret these results as evidence that for switchers
starting to take the active treatment before the onset of ARC or symptoms of
HIV is beneficial, in the sense that their survival is the same as if they had
received the active treatment from the time of assignment.

We focus on the conditional distributional causal effects for switchers and
relegate the results on the (unconditional) distributional causal effects to Web
Appendix I. Figure 5(b) shows that the conditional distributional causal effects
are always positive and show a trend increase throughout the years irrespective
of the time to switching. Nevertheless, the longer the time to switching, the
smaller the effects. Therefore, the distributional causal effects for switchers are
highly heterogeneous with respect to the switching time. This seems plausible
scientifically. For example, patients switch later because their CD4 cell counts
remain sufficiently high for longer. Therefore, early switchers comprise sicklier
patients, and spending even a short time under control may harm them. Un-
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(a) ACE(s), s ∈ R+ (b) cDCE(y | s)
with 95% credible interval for s = 0.25, 0.50, . . . , 2.50, 2.75

Figure 5: Posterior medians of the PCEs for switchers

der this mechanism, the benefits of immediate versus deferred treatment with
zidovudine will be bigger for early switchers, i.e., the conditional distributional
causal effects for early switchers will be larger than those for late switchers.
Most of the posterior credible intervals for the conditional distributional causal
effects only include positive values, except for patients who would switch later
than 2.75 years had they been assigned to deferred treatment with zidovudine.
Thus, taking the active treatment from the beginning rather than later increases
the survival time for switchers. The posterior credible intervals for the condi-
tional distributional causal effects are not shown to make Figure 5(b) easy to
read.

5.3 Sensitivity Analyses and Model Checking

Previous results are obtained by fixing κ = 0 and using a weakly informative
prior distribution for λ, namely, N(0, 104). We assess the sensitivity of the results
to κ, the partial association between Yi(1) and Yi(0) given the switching status,
Si(0), and to the prior specification for λ, by investigating how the posterior
distributions of causal estimands change under different κ values and different
prior specifications for λ. Results appear robust to prior specifications for λ;
different prior distributions for λ change the posterior distribution of the causal
estimands only slightly. We find some sensitivity of inferences on the causal
estimands to κ, especially for switchers.

We also investigate the robustness of the results with respect to the para-
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metric assumption imposing prior equality of the association parameters λ0 and
λ1. Relaxing the parametric assumption λ0 = λ1 only slightly changes the
results for switchers by leading to posterior distributions of the causal effects
for switchers with a larger posterior variability. The increased uncertainty in
the causal estimands for switchers makes it more difficult to draw firm causal
conclusions for them, especially for early switchers.

Our analysis is based on parametric modeling assumptions and weakly in-
formative priors. It is important to conduct model checking. We use posterior
predictive p-values to evaluate parametric assumptions. We find no evidence
against the model. We relegate details on sensitivity analyses and model checks
to Web Appendix I for brevity.

6 Principal stratum strategy at work

We have used the Concorde trial as an illustrative case study to introduce, de-
scribe, and discuss our methodology’s key concepts and provide useful insights
into the interpretation of the results. However, the principal stratification ap-
proach we propose is general, defining an innovative methodological framework
for the analysis of randomized clinical trials with time-to-event primary out-
comes suffering from problems of treatment switching or treatment discontinua-
tion, which may lead to important contributions from a substantial perspective.
To better convey the great power of our methodology in answering substantial
questions, in this Section, we briefly revisit two randomized controlled oncol-
ogy trials involving patients with metastatic melanoma: the BREAK-3 Trial
(Hauschild et al., 2012; Latimer et al., 2015) and the CheckMate 067 phase III
trial (Larkin et al., 2015).

The BREAK-3 Trial is a multicenter, open-label, phase 3 randomized con-
trolled clinical trial conducted between December 23, 2010, and September 1,
2011, where patients with previously untreated metastatic melanoma (BRAF
V600E mutation-positive melanoma) are randomly assigned to receive either
dabrafenib, a selective BRAF inhibitor, or dacarbazine, a chemotherapy med-
ication (Hauschild et al., 2012). The primary endpoint is progression-free sur-
vival. In the BREAK-3 study, the trial protocol allows patients to switch from
dacarbazine to dabrafenib at disease progression. Patients who permanently
stop taking dacarbazine for any reason other than the progression of the disease
are not eligible for crossover. The BREAK-3 Trial has been previously analyzed
using an intention-to-treat approach (Hauschild et al., 2012) and a hypothet-
ical approach (Latimer et al., 2015). Our principal stratum strategy offers an
appealing alternative to assess the efficacy of the treatment accounting for the
problem of treatment switching. The BREAK-3 Trial presents features very
similar to the Concorde Trial. Both studies are randomized controlled trials
with one-sided treatment switching, where patients are allowed to switch from
the control to the active treatment during the follow-up period if their physical
conditions worsen above certain tolerance levels. In both studies, the outcome
of interest is a time-to-event outcome, and the time to switch is censored by

22



death, with the censoring event defined by the potential outcome under control
for the primary endpoint. Therefore, the methodological setup we have intro-
duced for the Concorde Trial can be used for the BREAK-3 Trial, with the
principal causal effects defined as local causal effects for the subpopulation of
non-switchers, patients who would not switch from dacarbazine to dabrafenib
if assigned to dacarbazine, and for the subpopulations of switchers, patients
who would switch from dacarbazine to dabrafenib if assigned to dacarbazine
at some time point (before death). The average and distributional causal ef-
fects for non-switchers provide information on the efficacy of dabrafenib versus
dacarbazine. The average and distributional causal effects for switchers provide
information on the heterogeneity of treatment effects with respect to the switch-
ing time. Physicians may also be interested in investigating the heterogeneity
of the treatment effects across non-switchers and switchers by comparing the
principal causal effects for non-switchers and switchers.

The CheckMate 067 phase III trial is a multicenter, double-blinded, ran-
domized trial where patients with metastatic melanoma are randomly assigned
to receive a combination of nivolumab and ipilimumab, ipilimumab monother-
apy, or nivolumab monotherapy. Patients randomized to the combination ther-
apy receive ipilimumab combined with nivolumab once every 3 weeks for four
doses, followed by nivolumab alone every 2 weeks. Patients randomized to the
monotherapy receive either ipilimumab or nivolumab combined with placebo
once every 3 weeks for four doses, followed by placebo alone every 2 weeks.
An outcome of interest is progression-free survival, defined as the time between
the date of randomization and the first date of documented progression, as
determined by the Investigator, or death due to any cause, whichever occurs
first. Per protocol, patients are treated until progression or unacceptable tox-
icity and are allowed to discontinue the assigned treatment in the presence of
Adverse Events (AEs). Although patients participating in the CheckMate 067
study may discontinue both the combination therapy and the monotherapy due
to AEs, discontinuation of the combination therapy is particularly interesting
(Schadendorf et al., 2017). Thus, we revisit the CheckMate 067 study focusing
on one-sided discontinuation of the combination therapy. We can deal with the
problem of treatment discontinuation using the proposed principal stratification
framework. Let Si(z) denote the discontinuation time under treatment assign-
ment z, with z = 1 for the combination therapy and z = 0 for the monotherapy.
Under one-sided discontinuation of the combination therapy, the discontinua-
tion time under monotherapy, Si(0), is not defined, so we set it to the non-real
value S, and define principal strata by the discontinuation behavior under the
active treatment (the combination therapy), Si(1). Specifically, we can cross-
classify patients into the following principal strata: (i) the principal stratum
of patients who would never discontinue the combination therapy if assigned to
it; and (ii) the principal strata of patients who would discontinue the combi-
nation therapy at some point in time if assigned to it. For the former type of
patients, the discontinuation time under treatment is not defined: Si(1) = S;
for the latter, Si(1) ∈ R+. Similar to the Concorde Trial and the BREAK-3
Trial, which suffer from one-sided treatment switching, the key features of the

23



CheckMate 067 phase III trial with one-sided treatment discontinuation are as
follows: (a) Since discontinuation never happens or happens in continuous time,
there is a continuum of principal strata with patients who would discontinue the
combination therapy; (b) time-to-discontinuation is censored by death, with the
censoring event defined by the potential outcome under the combination therapy
for the primary endpoint, time-to-disease progression or death; (c) both time to
discontinuation under treatment and time-to-disease progression or death are
subject to censoring due to the end of follow-up. Patients who would discon-
tinue the combination therapy if assigned to it probably have prognosis factors
good enough to experience the progression-free survival event not immediately
but are at the same time fragile from suffering treatment discontinuation due
to adverse events before disease progression. Our principal stratification frame-
work may provide useful information to physicians. The principal causal effects
for patients who would discontinue the combination therapy if assigned to it
can be interpreted as evidence of whether patients who would discontinue the
combination therapy due to AE still benefit from it; the principal causal effects
for patients who would not discontinue the combination therapy can be inter-
preted as the “pure effect” of the combination therapy versus the monotherapy
because these patients are essentially compliers who would take the treatment
assigned and would not discontinue. Moreover, comparing the principal causal
effects provides information on the heterogeneity of the treatment effects with
respect to the discontinuation behavior. We can investigate the heterogeneity
of the treatment effects between patients who would not discontinue the com-
bination therapy and patients who would discontinue the combination therapy.
We can also study the differences in treatment effects across subsets of patients
who would discontinue the combination therapy.

In some clinical trials, especially oncology trials, the sample size may be
relatively small, and thus, the number of patients who switch/discontinue may
be minimal. The Bayesian principal stratification approach we propose, not
relying on asymptotic approximations, is a natural mode of inference in small
samples by conveying and correctly quantifying uncertainty due to small sample
sizes and a large amount of missingness. For instance, in clinical trials suffering
from treatment switching and involving a small number of patients, a small
proportion of switchers will increase uncertainty in the PCEs for switchers, but
inference on the PCEs for the never-switchers will be more precise, and because
never-switchers will represent a larger portion of the population, the PCE for
them will be even more meaningful and easier to generalize.

7 Discussion

In this work, we have proposed to use principal stratification to assess the causal
effects in the Concorde trial with one-sided treatment switching. The princi-
pal causal effects (PCEs) allow for treatment comparisons with proper adjust-
ment for the post-treatment switching behavior. The PCEs provide valuable
information on treatment effect heterogeneity across different types of patients:
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non-switchers and switchers, and switchers at different time points. In particu-
lar, the PCEs for non-switchers provide information on the “pure effect” of the
treatment because they are essentially compliers who would take the treatment
assigned and would not switch.

Although we focus on a specific setting – clinical trials with one-sided switch-
ing from the control arm to the treatment arm – we can extend our approach
to general cases. For example, we can extend our principal stratification frame-
work to analyze: (a) multi-arm clinical trials where patients in one treatment
group may switch to another active treatment group; (b) clinical trials where
the control group is standard of care and patients are allowed to switch from the
active treatment to the control treatment if unbearable toxicity occurs (a type
of treatment discontinuation; see, e.g., Lipkovich et al., 2020); (c) clinical trials
where treatment switching or treatment discontinuation is two-sided so patients
can switch or discontinue both treatments. Regarding point (c), consider, for
instance, a clinical trial aiming to assess the causal effects of an active versus
a placebo oncological treatment on time-to-disease progression or death. Sup-
pose all patients are exposed to the existing standard of care and are allowed to
discontinue both treatments while remaining on the standard of care; the study
suffers from two-sided treatment discontinuation. Let Si(z) denote the poten-
tial outcome for the discontinuation behavior under assignment to treatment z;
z = 0 for placebo or control, and z = 1 for treatment. The joint potential dis-
continuation behavior under control and under treatment defines the principal
stratum to which a patient belongs. Specifically, patients can be cross-classified
into the following principal strata: (i) the principal stratum of patients who
would discontinue neither the placebo nor the active treatment, irrespective
of their assignment. For this type of patients, the time to discontinuation is
not defined under either treatment status. Using the notation we introduce
in Section 3, we can set the discontinuation time for patients who would not
discontinue either treatment to the non-real value S, so Si(0) = Si(1) = S for
the principal stratum of patients who would discontinue neither the placebo nor
the active treatment, irrespective of their assignment; (ii) the principal strata
of patients who would discontinue the placebo treatment but would not discon-
tinue the active treatment. For this type of patients Si(0) = S and Si(1) ∈ R+;
(iii) the principal strata of patients who would discontinue the active treatment
but would not discontinue the placebo treatment. For this type of patients
Si(0) ∈ R+ and Si(1) = S; (iv) the principal strata of patients who would
discontinue both the placebo and the active treatment, irrespective of their as-
signment. For this type of patients, Si(0) ∈ R+ and Si(1) ∈ R+. The principal
average and distributional causal effects can be defined as causal effects for the
subpopulations of patients with the same discontinuation behavior under treat-
ment and under control (the principal strata), as we have defined the principal
average and distributional causal effects for non-switchers and switchers. The
data structure is similar to that in the Concorde trial. For patients assigned
to treatment z who do not discontinue before experiencing either disease pro-
gression or death, the discontinuation time under treatment z is undefined; the
discontinuation time under treatment z is censored by death with the censoring
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event defined by the potential outcome under treatment z for the primary end-
point. Moreover, both the survival and the discontinuation times are subject to
censoring due to the end of follow-up.

Background covariate information is valuable in various ways. First, if pre-
treatment variables enter the treatment assignment mechanism, such as in strat-
ified randomized experiments, analyses must be conditional on them. Second,
in completely randomized experiments, although pretreatment covariates do not
enter the treatment assignment mechanism, they can make parametric assump-
tions more plausible. Moreover, they can improve the prediction of the missing
potential outcomes, leading to more precise inferences. Third, relevant informa-
tion could also be obtained in the principal stratification analysis by looking at
the distribution of baseline characteristics within each principal stratum. Char-
acterizing the latent subgroups of patients in terms of their background charac-
teristics can provide insights into the type of patients for which the treatment
is more effective. Therefore, covariates might help explain the heterogeneity of
the effects across principal strata defined by the switching status.

In clinical trials involving duration outcomes, censoring may be due to other
events such as dropout and loss to follow-up. We have assumed the ignorabil-
ity of the censoring mechanism, which implies that the censoring mechanism
is independent of the survival potential outcomes and the switching time. A
valuable topic for future research is to relax the assumption of an ignorable
censoring mechanism addressing the problem of treatment switching with non-
ignorable random censoring. An appealing approach to deal with non-ignorable
random censoring is to extend the principal stratification analysis we present
here to multiple intermediate variables, the switching status and the censoring
time, considering alternative sets of assumptions on the censoring mechanism
and investigating the sensibility of the results with respect to them.
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Web appendix for

“Assessing causal effects in the presence of

treatment switching through principal

stratification”

A Methods for treatment switching: A review

In causal inference, various methods have been proposed to evaluate the effect
of a treatment accounting for treatment switching. To the best of our knowl-
edge, all the existing methods generally focus on causal effects for the whole
population, which are defined under the assumption that, for each individual,
both the outcome that would have happened under assignment to treatment
and the outcome that would have happened under assignment to control exist,
if that individual had not switched. Unfortunately, for switchers, the outcome
that would have happened if they had not switched does not exist conceptually
in the data; it is an a-priori counterfactual (Frangakis and Rubin, 2002). The
data contain no or little information on these a-priori counterfactual outcomes
for switchers; thus, assumptions that allow one to extrapolate from the observed
data information on them are required.

It is worth noting that the problem of introducing assumptions that allow
one to extrapolate from the observed data information on quantities that do
not exist in the data for some units also arises in randomized experiments with
non-compliance when the focus is on causal effects for the whole population.
In these experiments, the Instrumental Variable (IV) assumptions (exogeneity
of the instrument, existence of an association between the instrument and the
treatment, exclusion restrictions, and monotonicity) are sufficient to identify
average causal effects for the subpopulation of compliers. Still, they are not
sufficient to identify the average effect of the treatment for the whole population;
in addition to the IV assumptions (with or without monotonicity), we need to
introduce additional assumptions that allow one to infer the overall average
effect, i.e., assumptions on a-priori counterfactual outcomes for never-takers
and always-takers. In the literature, alternative sets of assumptions have been
considered, including the relatively strong assumption of identical treatment
effect for all units and the weaker homogeneity assumption of no additive effect
modification across levels of the instrument within the treated and the untreated
(Robins, 1989; Hernán and Robins, 2006).

In the treatment switching literature, naive methods include excluding pa-
tients who switch, censoring patients who switch, and using the treatment as a
time-varying covariate in a regression model. See Morden et al. (2011) for a re-
view. Excluding switchers results in a comparison of all patients who receive the
treatment to patients who are assigned to the control and do not switch. This
analysis compares groups that are not formed by randomization and, therefore,
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it may produce heavily biased results unless the switching behavior is completely
at random. Censoring the survival time at the switch relies on the assumption
that the switching status is ignorable, i.e., the prognosis of patients who switch
is equal to that of patients who do not switch. This assumption is unten-
able in studies with non-ignorable switching behavior. An alternative approach
considers the treatment as a time-varying covariate and includes a time-varying
indicator for the treatment received in a (Cox proportional hazards) model. It is
difficult to interpret the regression coefficients in these models (Fisher and Lin,
1999), especially their relationships with causal effects of interest. Moreover,
this model-based approach compares groups that are not formed by treatment
assignment, and thus it loses the benefits of randomization and can bias the
estimates.

More sophisticated approaches address treatment switching by reconstruct-
ing the outcome a patient would have had if they had not switched. These
are inverse probability of censoring weighting (IPCW) methods, marginal struc-
tural models, and rank-preserving structural failure time (RPSFT) models. The
IPCW approach censors the switchers at the time point of switching and weights
the subjects inversely proportional to their probability to switch (Robins and
Finkelstein, 2000). Marginal structural models impose structure on potential
outcomes that would have been observed under different treatment histories
(Hernan et al., 2000). A key assumption underlying these approaches is that
the switching status is independent of the switch-free outcomes conditional on
the observed covariates. The plausibility of this assumption rests on the infor-
mation contained in the covariates. It is worth noting that the IPCW approach
is generally not applicable if no pretreatment variable is available, as in our
synthetic study. Moreover, when the covariates are strong predictors of the
switching behavior, the estimated switching probability will be close to zero or
one for some patients, and the weights can be large. As a result, in such settings,
IPCW estimators can be sensitive to minor changes in the specification of the
model for the probability of switching.

The RPSFT model relates the observed survival time for each individual
to the time-to-event that would have been observed for that individual if s/he
had never received the treatment. The RPSFT model is rank preserving in
the sense that, given any two patients, i and i′, if patient i survives longer
than patient i′ under a treatment regime, then i survives longer than i′ under
another treatment regime. This approach, initially proposed by Robins and
Tsiatis (1991) and further developed by White et al. (1999), explicitly assumes
that the time-varying treatment received status is the actual intervention and
the random treatment assignment acts as an instrumental variable. Since the
instrumental variable is binary, Robins and Tsiatis (1991) and White et al.
(1999) require a model linking the potential outcome and the observed outcome
by a scalar parameter. This scalar parameter is a real value by which the
treatment would extend each patient’s baseline lifetime, regardless of when the
patient eventually switches. Therefore, the scalar parameter is the causal effect
of interest, which is assumed to be the same for all patients regardless of the
switching time. The assumption that the treatment effect is constant allows one
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to extrapolate treatment effects across different subpopulations of patients (i.e.,
from non-switchers to switchers, irrespective of their switching time). Along
this line, Walker et al. (2004) and Zhang and Chen (2016) further imposed
additional parametric assumptions.

Other researchers have focused on modeling the observed data using para-
metric or semiparametric approaches (Zeng et al., 2011; Chen et al., 2013). How-
ever, they usually rely on strong assumptions, like that there exists no relation
between a patient’s prognosis and switching behavior. Clearly, the switching
status of the patients in the control group contains important post-treatment
information, which is useful to characterize treatment effect heterogeneity. Shao
et al. (2005) realize this problem and propose a model incorporating the “switch-
ing effect.” However, as pointed by White (2006), in their likelihood-based in-
ference, Shao et al. (2005) again assume independence of the switching time and
the survival time.

B Competing risks models, Survivor PCEs and
PCEs with respect to treatment switching: A
comparison

Randomized clinical trials on survival outcomes with treatment switching have
a similar structure to survival studies with semi-competing risks, where typi-
cally two (or multiple) events happen over time, and at least one of the events
is an absorbing/terminal event, that is, it prevents from observing the other
event(s). Therefore, it is worthwhile to clarify similarities and differences be-
tween the principal stratification approach we propose and both approaches
based on classical semi-competing risks models and other methods based on
principal stratification analysis with semi-competing risks.

We first summarize the distinguishing features of the principal stratifica-
tion framework we propose (see the main text for details). In our setting, the
outcome of primary interest is time-to-disease progression or death, and the
switching status is an intercurrent event. Two distinguishing features char-
acterize our setting: (i) it is biologically possible that a patient could either
progress/die without switching or switch before progressing/dying and (ii) pa-
tients can switch from the control to the treatment arm if assigned to control
only before their time-to-disease progression or death under control. Therefore
the switching status and the time-to-disease progression or death can be viewed
as semi-competing events: the switching time for patients who would switch is
a non-terminal competing event to the event of interest; the event of interest
(i.e., disease progression or death) is instead a terminal truncating event for the
switching time. Since the time to switching is not well defined after disease pro-
gression or death, the switching time is “censored by death” with the censoring
event defined by the primary endpoint. Thus, assessing the effect of treatment
on a terminal event, such as time-to-disease progression or death, in the pres-
ence of treatment switching requires accounting for the fact that switching is a
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non-terminal semi-competing event that is not well-defined after progression or
death.

We focus on describing and addressing these complications in our study
using a Bayesian approach with the principal stratification framework. We
first introduce principal causal effects (PCEs) for subpopulations of patients
defined by their switching behavior under the control treatment, that is, for non-
switchers and switchers. It is worth noting that, in our setting, causal effects of
treatment on time-to-disease progression or death are well-defined for all types of
patients defined by the switching status (non-switchers and switchers at some
point in time); only causal effects for non-switchers are interpretable as the
“pure” effects of the treatment though. Then, we adopt a Bayesian parametric
approach to inference, specifying parametric models for the switching status, the
switching time for switchers, and the joint distribution of the potential outcomes
for the time-to-event primary endpoint conditional on the switching status.

Principal stratification versus semi-competing risks approaches

Two key aspects make the principal stratification framework we propose cru-
cially different from classical approaches based on competing risks models: (i)
the target causal estimands, and (ii) the use of the observed data to draw in-
ferences on the causal effects of interest.

The causal estimands we focus on, namely PCEs for non-switchers and
switchers by time to switching, are particular to our principal stratification
approach.

The classical semi-competing risks literature focuses on statistical estimands
generally defined as contrasts of risks, without using a formal framework for
characterizing causal effects and their identifying conditions. Recently, Young
et al. (2020) clarified that total effects or (controlled) direct effects (Robins
and Greenland, 1992; Pearl, 2001) of the treatment on the event of interest
are usually the targets in the classical competing risks literature. Generally,
controlled direct effects are related to the marginal cumulative incidence or net
risk, and total effects are related to the concept of sub-distribution function,
cause-specific cumulative incidence function, or crude risk (Geskus, 2016).

(Controlled) direct effects measure treatment effects on the event of interest
not mediated through the competing event. They are causal effects for the whole
population, defined under the assumption that there exists, for each individual,
the outcome that would have happened under assignment to a treatment if
the competing events had been somehow eliminated, assuming the existence of
a-priori counterfactuals. In clinical trials with one-sided treatment switching,
controlled direct effects compare the outcome that would have happened under
assignment to the active treatment and the outcome that would have happened
under assignment to control if that individual had not switched. Controlled
direct effects are the hypothetical estimands usually targeted by the literature on
treatment switching, where the focus is on causal effects for the whole population
in the hypothetical scenario that the competing event (i.e., switching) can be
somehow eliminated for all patients (see Web-Appendix A for a review of the
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literature on methods for treatment switching).
Total effects of the treatment on the event of interest are defined as a com-

parison of the joint distribution of the time to the event of interest (e.g., disease
progression or death) and the time to the competing event (e.g., switching time)
under treatment versus control. Therefore they are a type of ITT effect; thus,
they do not account for the mechanisms by which the treatment affects the
occurrence of the primary event, e.g., through other (secondary) events like
tolerance implying treatment switching.

Recently, Stensrud and Dukes (2022) proposed to target separable effects
in the presence of semi-competing risks, under the assumption that the treat-
ment can be, at least conceptually, separated into components such that each
component affects a different competing event.

In a principal stratification analysis, potential outcomes are defined as a
function of the initial treatment assignment only, and no a-priori counterfactual
is required. In principle, a principal stratification analysis is like a “sub-group”
analysis, where groups are defined by a latent variable (the principal stratum
membership). The focus is not on the causal effects for the whole population
but on the principal causal effects, which are local causal effects for the principal
strata. Although we cannot observe the principal stratum membership for any
patient, principal strata exist in the data; we know that each patient belongs to
a principal stratum, which can be viewed as an intrinsic latent characteristic of
each patient. Principal causal effects are sensible and may be of great interest in
randomized clinical trials with treatment switching. They provide information
on the heterogeneity of the treatment effect across principal strata, that is, with
respect to the switching behavior, and on the ‘pure’ effect of the treatment for
the subpopulation of non-switchers. In the principal stratification framework,
we can also naturally deal with the problem that the switching time under
control is not well-defined for patients who would experience disease progression
or death under control without switching from the control to the treatment arm.

Another critical difference between a principal stratification analysis and
an analysis based on models for semi-competing risks concerns the use of the
observed data to draw inferences on the causal effects of interest.

Suppose that the censoring mechanism is ignorable. In principal strati-
fication analysis, the observed-data likelihood involves infinite mixtures (see
Web-Appendix E). Models typically used in the classical competing risk litera-
ture for analyzing semi-competing data can be divided into two broad classes:
models for the distribution of the observable data, which usually target total
effects, and models for the distribution of latent failure times, which usually
target controlled direct effects (see Varadhan et al., 2014, for a review). Models
for the distribution of the observable data, which include cause-specific mod-
els and sub-distribution functions, only consider the time and type of the first
event that occurs to an individual, ignoring the information available after the
non-terminal event. Models for latent failure times attempt to model the joint
distribution of the time to the non-terminal event and the time to the termi-
nal event or the marginal distributions of the time to the non-terminal event
and the time to the terminal event under the assumption that the time to the
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non-terminal event without the terminal event is well defined for all subjects.

Principal stratification with semi-competing risks

Principal stratification analysis has been previously proposed for evaluating
causal effects of treatment with semi-competing risks (Comment et al., 2019;
Xu et al., 2022), and there exist strong connections between our study and the
existing studies, although distinguishing features make our contribution unique.

Comment et al. (2019) and Xu et al. (2022) focus on assessing the causal
effects of treatment on non-terminal time-to-event outcomes – hospital readmis-
sion and disease progression, respectively – accounting for the fact that read-
mission and disease progression are subject to truncation by death; since pa-
tients could die without experiencing hospital readmission/disease progression,
assessing the effect on hospital readmission/disease progression requires to take
into account that readmission and disease progression are not well defined af-
ter death. In these types of studies, death is not the primary endpoint, but it
is a terminal event that precludes the occurrence of the primary non-terminal
time-to-event outcome.

Comment et al. (2019) and Xu et al. (2022) propose to handle the problem of
truncation by death with principal stratification, defining principal strata by the
pair of potential death times, to account for the fact that causal effects on the
primary outcome are well defined only for principal strata of patients who would
not die regardless of treatment assignment. They introduce new survivor causal
effects for patients who would survive regardless of treatment assignment that
explicitly account for the time-to-event nature of the non-terminal outcome. A
nice methodological contribution of these papers is that survivor causal effects
are defined over time rather than at a single point in time so that they can
also investigate how the proportion of patients who would survive regardless
of treatment assignment evolves. Recently, Nevo and Gorfine (2022) used the
potential outcome approach with principal stratification in time-to-event studies
with two semi-competing risks, where the focus is on assessing causal effects on
both event times. Their key insight is to define principal stratification with
respect to the order of the two events under both treatment and control.

In principal stratification analysis, inference is usually conducted by factor-
izing the joint distribution of all the potential outcomes for the intercurrent
outcome and the primary outcome into the product of the marginal distribu-
tion of the principal stratum membership (the joint distribution of the potential
outcomes for the intercurrent outcome) and the conditional distribution of the
potential outcomes for the primary outcome given the principal stratum mem-
bership. We use this approach in our study. Xu et al. (2022) also use this
approach, developing a Bayesian non-parametric model under a principal ignor-
ability assumption (Jo and Stuart, 2009; Ding and Lu, 2017; Feller et al., 2016;
Mattei et al., 2023). Comment et al. (2019) propose an alternative factoriza-
tion of the joint distribution of all the potential outcomes. This is factorized
into the product of the two joint distributions of potential intercurrent outcome
and potential main outcome under treatment and under control. Inference is
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then conducted using a Bayesian parametric approach under a conditional inde-
pendence assumption between potential outcomes under treatment and under
control, given covariates and an individual-level latent trait. A similar frailty-
based approach with parametric assumptions is proposed by Nevo and Gorfine
(2022).

C Connection to the noncompliance literature

Treatment switching is a general form of the noncompliance problem. Consider
the case where the switching of the patients under the control arm either occurs
within a short period or never happens, i.e., Si(0) ∈ {S} ∪ [0, ϵ], with ϵ > 0
being a number smaller than any survival or censoring time. Some patients
immediately switch to the treatment arm after the treatment assignment. In this
case, treatment switching is equivalent to the so-called “all-or-none compliance
problem” (Angrist et al., 1996; Frangakis and Rubin, 1999). Non-switchers,
i.e., those units such that Si(0) = S, and switchers, for whom Si(0) ∈ [0, ϵ],
correspond to compliers and an always-takers, respectively. Therefore, DCE(y |
S) is the distributional effect for non-switchers or compliers, and DCE(y | [0, ϵ])
is the distributional effect for switchers or always-takers.

Since ϵ is small, it is reasonable to assume that the treatment assignment
affects only the outcomes of compliers but not those of always-takers. This is
the exclusion restriction assumption (Angrist et al., 1996), meaning DCE(y |
[0, ϵ]) = 0 for all y. Therefore, the compliers’ distributional effect can be iden-
tified by

DCE(y | S) =
P
{
Y obs
i > y | Zi = 1

}
− P

{
Y obs
i > y | Zi = 0

}
P
{
Sobs
i = S | Zi = 0

} ,

i.e., the ratio of the distributional effect on the outcome divided by the propor-
tion of non-switchers.

Connection to partial noncompliance and dose-response re-
lationship

The switching status is a semi-continuous post-treatment variable, with a bi-
nary component that classifies patients into non-switchers and switchers, and a
non-negative continuous component that classifies switchers according to their
switching time. In this subsection, we focus on the switchers, a coarsened prin-
cipal stratum defined by the union of uncountable sets.

Recently, assessing principal causal effects in the presence of continuous in-
termediate variables and infinitely many principal strata have received increas-
ing attention (Jin and Rubin, 2008; Bartolucci and Grilli, 2011; Ma et al., 2011;
Schwartz et al., 2011; Zigler and Belin, 2012; Kim et al., 2017). Interest may
lie either in principal causal effects for specific unions of principal strata (such
as the average and distributional principal causal effects in (6)–(8) in the main
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text) or in entire dose-response functions or surfaces describing how the causal
effect on the outcome varies as a function of the basic principal strata mem-
bership. In our setting, the dose is the time to switching for switchers. In
the main text, the average principal causal effect in (3) defines a dose-response
function, and the distributional causal effects in (4) and (5) define dose-response
surfaces. They describe how causal effects on survival time vary as functions of
the dose. They are similar to the “causal effect predictiveness surfaces” in the
literature on surrogate endpoints (e.g., Gilbert and Hudgens, 2008; Zigler and
Belin, 2012).

Our setting is related to randomized experiments with partial compliance
(Jin and Rubin, 2008; Ma et al., 2011). In particular, a monotonicity assump-
tion holds by design because no patient in the treatment group can switch to
control. The switching status, Si(0), can be viewed as the level (time) of control
received by patient i if assigned to control, and (3), (4), and (5) in the main
text are causal effects on survival time for patients who would comply with the
assignment to the control arm for a specific amount of time, s, had they been
assigned to the control arm. Similarly, the coarsened principal causal effects in
(6)–(8) in the main text can be interpreted as causal effects in specific compli-
ance regions (Ma et al., 2011). The principal causal effects are generally not
identifiable with continuous intermediate variables. Flexible parametric (e.g.,
Jin and Rubin, 2008, 2009; Ma et al., 2011; Zigler and Belin, 2012) and semi-
parametric models (e.g., Schwartz et al., 2011; Bartolucci and Grilli, 2011; Kim
et al., 2017), possibly coupled with structural assumptions, have been developed
to face the identification and estimation issues.

D Coarsened principal causal effects

We define coarsened principal causal effects compared to Equations (6), (7), and
(8) in the main text.

The simplest example is A = R+ and the causal effects for all switchers are

ACE(R+) = E [Yi(1) | Si(0) ∈ R+]− E [Yi(0) | Si(0) ∈ R+] ,

DCE(y | R+) = P {Yi(1) > y | Si(0) ∈ R+} − P {Yi(0) > y | Si(0) ∈ R+} ,
cDCE(y | R+) = P {Yi(1) > y | Yi(1) > Si(0), Si(0) ∈ R+}

−P {Yi(0) > y | Yi(1) > Si(0), Si(0) ∈ R+} .

If A = [0, s], then the causal effects for units that switch earlier than or at time
s are

ACE([0, s]) = E [Yi(1) | Si(0) ≤ s]− E [Yi(0) | Si(0) ≤ s] ,

DCE(y | [0, s]) = P {Yi(1) > y | Si(0) ≤ s} − P {Yi(0) > y | Si(0) ≤ s} ,
cDCE(y | [0, s]) = P {Yi(1) > y | Yi(1) > Si(0), Si(0) ≤ s}

−P {Yi(0) > y | Yi(1) > Si(0), Si(0) ≤ s} .
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If A = (s,+∞), then the causal effects for units that switch later than time s
are

ACE((s,+∞)) = E [Yi(1) | Si(0) > s]− E [Yi(0) | Si(0) > s] ,

DCE(y | (s,+∞)) = P {Yi(1) > y | Si(0) > s} − P {Yi(0) > y | Si(0) > s} ,
cDCE(y | (s,+∞)) = P {Yi(1) > y | Yi(1) > Si(0), Si(0) > s}

−P {Yi(0) > y | Yi(1) > Si(0), Si(0) > s} .

E Bayesian Inference

Let Z, C, S(0), Y (0), and Y (1) be n-vectors with ith elements equal to Zi,
Ci, Si(0), Yi(0), and Yi(1), respectively. Let X be a n × K matrix with i-th
row equal to Xi. Under Assumption 1, the joint probability (density) function
of these random variables is

P {Z,C,S(0),Y (0),Y (1),X} = P {C,S(0),Y (0),Y (1),X}P {Z} .

This allows us to ignore the model of P {Z}.
We assume that P {C,S(0),Y (0),Y (1),X} is unit-exchangeable. By ap-

pealing to de Finetti’s theorem (De Finetti, 1937), there exists an unknown
parameter vector θ with prior distribution P (θ) such that

P {C,S(0),Y (0),Y (1),X}

=

∫ n∏
i=1

P {Ci, Si(0), Yi(0), Yi(1), Xi | θ}P (θ)dθ

=

∫ n∏
i=1

P {Xi | θ}P {Si(0) | Xi;θ}P {Yi(0) | Si(0), Xi;θ}

P {Yi(1) | Yi(0), Si(0), Xi;θ}P {Ci | Si(0), Yi(0), Yi(1), Xi;θ}P (θ)dθ.

We condition on the observed distribution of covariates and assume that the
parameters of the distribution of covariates are a priori independent of the other
parameters. Then we do not need to model P {Xi | θ}. Under Assumption 2,

P {Ci | Si(0), Yi(0), Yi(1), Xi;θ} = P {Ci | θ}

Assuming that the parameters of the censoring mechanism are a priori indepen-
dent of the other parameters, we can then ignore the model of P {Ci | Si(0), Yi(0), Yi(1), Xi;θ}.
Therefore, Bayesian inference for principal stratification involves two sets of
models: one for the principal strata defined by the switching status, Si(0),
given the covariates, Xi, and the other for the distribution of potential survival
times Yi(0) and Yi(1) conditional on the switching status and covariates, Xi.

First, we postulate a two-part model for Si(0). Let π(xi) = P
{
Si(0) = S | Xi = xi;θ

}
be the probability of being a non-switcher, and let fS(0) (· | xi) = fS(0)(· |
Si(0) ∈ R+, Xi = xi;θ) andGS(0)(· | xi) = P {Si(0) > · | Si(0) ∈ R+, Xi = xi;θ}
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denote the probability density function and the survival function of the switch-
ing time for switchers (that is, given that Si(0) does not take on value S).
Since we focus on time-to-event variables, it is helpful to introduce the nota-
tion for hazard functions. Let hS(0) (· | xi) = hS(0)(· | Si(0) ∈ R+, Xi = xi;θ)
be the hazard function of Si(0) for switchers, which satisfies fS(0) (· | xi) =
hS(0) (· | xi) × GS(0)(· | xi). Second, we specify a model for the joint condi-
tional distribution of Yi(0) and Yi(1) given Si(0) and Xi by factorizing it as
the product of the conditional distribution of Yi(0) given Si(0) and Xi, and the
conditional distribution of Yi(1) given Yi(0), Si(0) and Xi. Table A.1 shows
the notation for the probability density functions, hazard functions, and the
survival functions of the potential survival times Yi(0) and Yi(1).

Let Dobs =
[
Z,C, S̃obs, I{Sobs ≤ C}, Ỹ obs, I{Yobs ≤ C}

]
be an n × 6 ma-

trix, with ith row equal to Dobs
i = [Zi, Ci S̃

obs
i , I{Sobs

i ≤ Ci}, Ỹ obs
i , I{Y obs

i ≤
Ci}]. The complete-data contain the observed data X and Dobs, as well as
the vector of switching statuses S∗(0) with the ith element S∗

i (0) = (1 −
Zi)[S̃

obs
i I{Si(0) ∈ R+} + S I{Si(0) = S}] + ZiSi(0) and the vector of survival

times under control Y ∗(0) with the ith element Y ∗
i (0) = (1−Zi)Ỹ

obs
i +ZiYi(0).

We can then write the observed data likelihood function in terms of the observed
data as:

L
{
θ | X,Dobs

}
=

∏
i:Zi=0,I{Sobs

i ≤Ci}=0,I{Y obs
i ≤Ci}=1

π(Xi) f
S
Y (0)

(
Y obs
i | Xi

)
×

∏
i:Zi=0,I{Sobs

i ≤Ci}=1,I{Y obs
i ≤Ci}=0

[1− π(Xi)] fS(0)

(
Sobs
i | Xi

)
·GY (0)

(
Ci | Sobs

i , Xi

)
×

∏
i:Zi=0,I{Sobs

i ≤Ci}=1,I{Y obs
i ≤Ci}=1

[1− π(Xi)] fS(0)

(
Sobs
i | Xi

)
fY (0)

(
Y obs
i | Sobs

i , Xi

)
×

∏
i:Zi=0,I{Sobs

i ≤Ci}=0,I{Y obs
i ≤Ci}=0

π(Xi)G
S
Y (0) (Ci | Xi) + [1− π(Xi)] GS(0) (Ci | Xi) · 1

×
∏

i:Zi=1,I{Y obs
i ≤Ci}=1

[
π(Xi)

∫
R+

fS
Y (1)

(
Y obs
i | Yi(0) = y0, Xi

)
fS
Y (0) (y0 | Xi) dy0+

[1− π(Xi)]

∫
R+

∫ +∞

s

fY (1)

(
Y obs
i | Si(0) = s, Yi(0) = y0, Xi

)
fY (0) (y0 | Si(0) = s,Xi) fS(0) (s | Xi) dy0 ds

]

×
∏

i:Zi=1,I{Y obs
i ≤Ci}=0

[
π(Xi)

∫
R+

GS
Y (1) (Ci | Yi(0) = y0, Xi) f

S
Y (0) (y0 | Xi) dy0+

[1− π(Xi)]

∫
R+

∫ +∞

s

GY (1) (Ci | Si(0) = s, Yi(0) = y0, Xi) fY (0) (y0 | Si(0) = s,Xi) fS(0) (s | Xi) dy0 ds

]
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Table A.1: Probability density functions, hazard functions, and survival func-
tions of the potential survival times conditional on the switching status under
non-informative type one censoring.

Variable
Probability density function, hazard function and survival function

Si(0) | Si(0) ∈ R+, Xi = xi

fS(0) (· | xi) = fS(0)(· | Si(0) ∈ R+, Xi = xi;θ)

hS(0) (· | xi) = hS(0)(· | Si(0) ∈ R+, Xi = xi;θ)

GS(0)(· | xi) = P {Si(0) > · | Si(0) ∈ R+, Xi = xi;θ}

Yi(0) | Si(0) = S, Xi = xi

fS
Y (0) (· | xi) = fY (0)(· | Si(0) = S, Xi = xi;θ)

hS
Y (0) (· | xi) = hY (0)(· | Si(0) = S, Xi = xi;θ)

GS
Y (0)(· | xi) = P

{
Yi(0) > · | Si(0) = S, Xi = xi;θ

}
Yi(0) | Si(0) = s,Xi = xi (s ∈ R+)

fY (0) (· | s, xi) = fY (0)(· | Si(0) = s,Xi = xi;θ)

hY (0) (· | s, xi) = hY (0)(· | Si(0) = s,Xi = xi;θ)

GY (0)(· | s, xi) = P {Yi(0) > · | Si(0) = s,Xi = xi;θ}

Yi(1) | Si(0) = S, Yi(0) = y0, Xi = xi

fS
Y (1) (· | y0, xi) = fY (1)(· | Si(0) = S, Yi(0) = y0, Xi = xi;θ)

hS
Y (1) (· | y0, xi) = hY (1)(· | Si(0) = S, Yi(0) = y0, Xi = xi;θ)

GS
Y (1)(· | y0, xi) = P

{
Yi(1) > · | Si(0) = S, Yi(0) = y0, Xi = xi;θ

}
Yi(1) | Si(0) = s, Yi(0) = y0, Xi = xi (s ∈ R+)

fY (1) (· | s, y0, xi) = fY (1)(· | Si(0) = s, Yi(0) = y0, Xi = xi;θ)

hY (1) (· | s, y0, xi) = hY (1)(· | Si(0) = s, Yi(0) = y0, Xi = xi;θ)

GY (1)(· | s, y0, xi) = P {Yi(1) > · | Si(0) = s, Yi(0) = y0, Xi = xi;θ}
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The posterior distribution of θ based on the complete data is

P
{
θ | X,Dobs,S∗(0),Y ∗(0)

}
∝ P (θ)

×
∏

i:Zi=0,S∗
i (0)=S

π(Xi) f
S
Y (0)

(
Y obs
i | Xi

)I{Y obs
i ≤Ci}

GS
Y (0) (Ci | Xi)

I{Y obs
i >Ci}

×
∏

i:Zi=0,S∗
i (0)∈R+

[1− π(Xi)] GS(0) (Ci | Xi)
I{Sobs

i >Ci}

[
fS(0)

(
Sobs
i | Xi

)
fY (0)

(
Y obs
i | Sobs

i , Xi

)I{Y obs
i ≤Ci}

GY (0)

(
Ci | Sobs

i , Xi

)I{Y obs
i >Ci}

]I{Sobs
i ≤Ci}

×
∏

i:Zi=1,S∗
i (0)=S

π(Xi) f
S
Y (0) (Y

∗
i (0) | Xi) f

S
Y (1)

(
Y obs
i | Y ∗

i (0), Xi

)I{Y obs
i ≤Ci}

GS
Y (1) (Ci | Y ∗

i (0), Xi)
I{Y obs

i >Ci}

×
∏

i:Zi=1,S∗
i (0)∈R+

[1− π(Xi)] fS(0) (S
∗
i (0) | Xi) fY (0) (Y

∗
i (0) | S∗

i (0), Xi)

fY (1)

(
Y obs
i | S∗

i (0), Y
∗
i (0), Xi

)I{Y obs
i ≤Ci}

GY (1) (Ci | S∗
i (0), Y

∗
i (0), Xi)

I{Y obs
i >Ci} .

F Parametric assumptions

Weibull distribution

A Weibull random variable T with parameters (α, η) has pdf

fT (t) =

{
αηtα−1 exp{−ηtα} for t > 0, α > 0, η > 0,

0 otherwise.

The survivor function, the hazard function, and the cumulative hazard func-
tion of T are

GT (t) = exp{−ηtα}, hT (t) = αηtα−1, HT (t) =

∫ t

0

h(u) du = ηtα.

Under the parameterization β = log(η), we have

fT (t) = αtα−1 exp{β − eβtα},
GT (t) = exp{−eβtα}, hT (t;α, β) = αtα−1eβ HT (t) = eβtα.

Sub-model for I{Si(0) = S}
I{Si(0) = S} ∼ Bernoulli(π(xi)) with

π(xi) =
exp(η0 + x′

iη)

1 + exp(η0 + x′
iη)

, (η0,η) ∈ RK+1.
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Sub-model for Si(0) for switchers

Si(0) | Si(0) ∈ R+, Xi ∼ Weibull (αS , βS +X ′
iηS), αS > 0, βS ∈ R, ηS ∈ RK :

fS(0)(s | xi) = αSs
αS−1 exp{[βS + x′

iηS ]− eβS+x′
iηSsαS},

hS(0)(s | xi) = αSs
αS−1 exp{βS + x′

iηS}, GS(0)(s | xi) = exp{−eβS+x′
iηSsαS}.

Sub-model for Yi(0) for non-switchers

Yi(0) | Si(0) = S, Xi ∼ Weibull
(
ᾱY , β̄Y +X ′

iη̄Y

)
, ᾱY > 0, β̄Y ∈ R and η̄Y ∈

RK :

fS
Y (0)(y | xi) = ᾱY y

ᾱY −1 exp{[β̄Y + x′
iη̄Y ]− eβ̄Y +x′

iη̄Y yᾱY },
hS
Y (0)(y | xi) = ᾱY y

ᾱY −1 exp{β̄Y + x′
iη̄Y }, GS

Y (0)(y | xi) = exp{−eβ̄Y +x′
iη̄Y yᾱY }.

Sub-model for Yi(0) for switchers

Yi(0) | Si(0) = s, s ∈ R+, Xi ∼ s +Weibull (αY , βY + λ0 log(s) +X ′
iηY ), αY >

0, βY , λ0 ∈ R, ηY ∈ RK :

fY (0)(y |s, xi)=αY (y − s)αY −1 exp{[βY +λ0 log(s) + x′
iηY ]−eβY +λ0 log(s)+x′

iηY (y − s)αY },
hY (0)(y | s, xi) = αY (y − s)αY −1eβY +λ0 log(s)+x′

iηY ,

GY (0)(y | s, xi) = exp{−eβY +λ0 log(s)+x′
iηY (y − s)αY }.

Sub-model for Yi(1) for non-switchers

Yi(1) | Si(0) = S, Yi(0), Xi ∼ κYi(0) +Weibull
(
ν̄Y , γ̄Y +X ′

iζ̄
)
, κ ∈ [0, 1], ν̄Y >

0, γ̄Y ∈ R, ζ̄ ∈ RK :

fS
Y (1)(y | y0, xi) = ν̄Y (y − κy0)

ν̄Y −1 exp{[γ̄Y + x′
iζ̄]− eγ̄Y +x′

iζ̄(y − κy0)
ν̄Y },

hS
Y (1)(y | y0, xi) = ν̄Y (y − κy0)

ν̄Y −1eγ̄Y +x′
iζ̄ ,

GS
Y (1)(y | y0, xi) = exp{−eγ̄Y +x′

iζ̄(y − κy0)
ν̄Y }.

Sub-model for Yi(1) for switchers

Yi(1) | Si(0) = s, s ∈ R+, Yi(0), Xi ∼ κYi(0)+Weibull (νY , γY + λ log(s) +X ′
iζ),

κ ∈ [0, 1], νY > 0, γY , λ1 ∈ R, ζ ∈ RK :

fY (1)(y |s, y0, xi)=νY (y−κy0)
νY −1 exp{[γY +λ1 log(s)+x′

iζ]−eγY +λ1 log(s)+x′
iζ(y − κy0)

νY },
hY (1)(y | s, y0, xi) = νY (y − κy0)

νY −1eγY +λ1 log(s)+x′
iζ ,

GY (1)(y | s, y0, xi) = exp{−eγY +λ1 log(s)+x′
iζ(y − κy0)

νY }.
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G Prior distributions

Under the model specification introduced in the previous Section, we propose to
use Normal prior distributions for the parameters of the logistic regression model
for the mixing probability π(Xi): (η0,η) ∼ N(µη, σ

2
η IK+1), where Ir is the r×r

identity matrix. We use Gamma prior distributions for the shape parameters of
the Weibull distributions: αS ∼ Gamma(aS , bS), ᾱY ∼ Gamma(āY , b̄Y ), αY ∼
Gamma(aY , bY ), ν̄Y ∼ Gamma(d̄Y , s̄Y ), and νY ∼ Gamma(dY , sY ). Finally,
we use Normal prior distributions for the other parameters of the Weibull dis-
tributions: βS ∼ N(µβS

, σ2
βS

), ηS ∼ N(µηS
, σ2

ηS
IK); β̄Y ∼ N(µβ̄Y

, σ2
β̄Y

), η̄Y ∼
N(µη̄Y

, σ2
η̄Y

IK); βY ∼ N(µβY
, σ2

βY
), ηY ∼ N(µηY

, σ2
ηY

IK); γ̄Y ∼ N(µγ̄Y
, σ2

γ̄Y
),

ζ̄Y ∼ N(µζ̄Y , σ
2
ζ̄Y

IK); γY ∼ N(µγY
, σ2

γY
), ζY ∼ N(µζY , σ

2
ζY

IK); and λ ∼
N(µλ, σ

2
λ).

H Application: Model and Computational De-
tails

Parametric Assumptions

Sub-model for the Switching Behavior.

π = E[I{Si(0) = S}] = P
(
Si(0) = S

)
and Si(0) | Si(0) ∈ R+ ∼ Weibull (αS , βS),

αS > 0, βS ∈ R:

fS(0)(s) = αSs
αS−1 exp{βS − eβSsαS}

hS(0)(s) = αSs
αS−1eβS GS(0)(s) = exp{−eβSsαS}

Sub-model for Yi(0) | Si(0).

Yi(0) | Si(0) = S ∼ Weibull
(
ᾱY , β̄Y

)
, ᾱY > 0, β̄Y ∈ R:

fS
Y (0)(y) = ᾱY y

ᾱY −1 exp{β̄Y − eβ̄Y yᾱY }

hS
Y (0)(y) = ᾱY y

ᾱY −1eβ̄Y GS
Y (0)(y) = exp{−eβ̄Y yᾱY }

and Yi(0) | Si(0) = s, s ∈ R+ ∼ s + Weibull (αY , βY + λ log(s)), αY > 0,
βY ∈ R, λ ∈ R:

fY (0)(y | s) = αY (y − s)αY −1 exp{[βY + λ log(s)]− eβY +λ log(s)(y − s)αY }

hY (0)(y|s) = αY (y − s)αY −1eβY +λ log(s) GY (0)(y|s) = exp{−eβY +λ log(s)(y − s)αY
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Sub-model for Yi(1) | Yi(0), Si(0).

Yi(1) | Yi(0), Si(0) = S ∼ κYi(0) +Weibull (ν̄Y , γ̄Y ) ν̄Y > 0, γ̄Y ∈ R:

fS
Y (1)(y | y0) = ν̄Y (y − κy0)

ν̄Y −1 exp{γ̄Y − eγ̄Y (y − κy0)
ν̄Y }

hS
Y (1)(y | y0) = ν̄Y (y − κy0)

ν̄Y −1eγ̄Y GS
Y (1)(y | y0) = exp{−eγ̄Y (y − κy0)

ν̄Y }

and Yi(1) | Yi(0), Si(0) = s, s ∈ R+ ∼ κYi(0) + Weibull (νY , γY + λ log(s)),
νY > 0, γY ∈ R, λ ∈ R:

fY (1)(y | s, y0) = νY (y−κy0)
νY −1 exp{[γY +λ log(s)]− eγY +λ log(s)(y−κy0)

νY }

hY (1)(y|s, y0) = νY (y − κy0)
νY −1eγY +λ log(s) GY (1)(y|s, y0) = exp{−eγY +λ log(s)(y − κy0)

νY }

Therefore, the entire parameter vector is θ =
[
π, (αS , βS) ,

(
ᾱY , β̄Y

)
, (αY , βY ) , (ν̄Y , γ̄Y ) ,

(νY , γY ) , λ, κ
]
.

Prior distributions

Parameters are assumed to be a priori independent, with the following prior dis-
tributions. We use a conjugate Beta prior distribution for the mixing probability
π ∼ Beta(a, b):

π ∼ Beta(a, b) : p(π) =
Γ(a)Γ(b)

Γ(a+ b)
πa−1(1− π)b−1

with a = b = 1. Therefore the full conditional distribution of π is Beta with
parameters a+

∑n
i=1 I{Si(0) = S} and b+

∑n
i=1 I{Si(0) ∈ R+}.

We use Gamma priors for the shape parameters of the Weibull distributions,
αS , ᾱY , αY , ν̄Y and νY ,

αS ∼ Gamma(aS , bS) : p(αS) =
1

(bS)aSΓ(aS)
αaS−1
S e−αS/bS

with aS = 0.1 and bS = 10,

ᾱY ∼ Gamma(āY , b̄Y ) αY ∼ Gamma(aY , bY )

ν̄Y ∼ Gamma(d̄Y , s̄Y ) νY ∼ Gamma(dY , sY )

with āY = aY = 0.1, b̄Y = bY = 10, and d̄Y = dY = 100, s̄Y = sY = 0.01.
We use Normal priors for βS , β̄Y , βY , γ̄Y , γY and λY :

βS ∼ N(µS , σ
2
S) : p(βS) =

1√
2πσ2

S

exp

{
− 1

2σ2
S

(βS − µS)
2

}
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β̄Y ∼ N(µ̄Y , σ̄
2
Y ) βY ∼ N(µY , σ

2
Y ) γ̄Y ∼ N(m̄Y , τ̄

2
Y ) γY ∼ N(mY , τ

2
Y )

λ ∼ N(µλ, σ
2
λ)

with µS = µ̄Y = µY = m̄Y = mY = µλ = 0 and σ2
S = σ̄2

Y = σ2
Y = σ2

λ = 104,
and τ̄2Y = τ2Y = 0.25.

It is worth noting that we use more informative prior distributions for the
parameters νY , γY , νY and γY to deal with the difficulty of untying the mixture
of switchers and non-switchers under treatment. Since we never observe the
switching behavior for units assigned to the active treatment, there is no unique
way to disentangle the mixture of switchers and non-switchers under treatment,
and thus we can end up with unrealistic draws for those parameters. The
availability of covariates might, at least partially, address this issue, helping to
better disentangle the mixture.

Complete data posterior distribution

Let Dobs
i =

[
Zi, Ci, S̃

obs
i , I{Sobs

i ≤ Ci}, Ỹ obs
i , I{Y obs

i ≤ Ci}
]
denote the observed

data for unit i and let Dobs =
[
Z,C, S̃obs, I{Sobs ≤ C}, Ỹ obs, I{Yobs ≤ C}

]
be

the matrix stacking observations for all units. For κ = κ0, with κ0 ∈ (0, 1], the
complete data (w.r.t. the switching status and the survival time under control)
posterior distribution for the parameter vector θ =

[
π, (αS , βS) ,

(
ᾱY , β̄Y

)
,

(αY , βY ) , (ν̄Y , γ̄Y ) , (νY , γY ) , λ, κ = κ0], is
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P
{
θ | Dobs,S∗(0),Y ∗(0)

}
∝

P{π}P{αS}P{βS}P{ᾱY }P{β̄Y }P{αY }P{βY }P{ν̄Y }P{γ̄Y }P{νY }P{γY }P{λ}δκ0(κ)

×
∏

i:Zi=0,S∗
i (0)=S

π
[
ᾱY (Y obs

i )ᾱY−1 exp{β̄Y −eβ̄Y (Y obs
i )ᾱY }

]I{Y obs
i ≤Ci}

exp{−eβ̄Y CᾱY
i }1−I{Y obs

i ≤Ci}

×
∏

i:Zi=0,S∗
i (0)∈R+

(1− π)

{
αS(S

obs
i )αS−1 exp{βS − eβS (Sobs

i )αS}

[
αY (Y obs

i −Sobs
i )αY−1 exp{[βY +λ log(Sobs

i )]− eβY+λ log(Sobs
i )(Y obs

i −Sobs
i )αY }

]I{Y obs
i ≤Ci}

[
exp{−eβY +λ log(Sobs

i )(Ci − Sobs
i )αY }

]1−I{Y obs
i ≤Ci}

}I{Sobs
i ≤Ci}{

exp{−eβS (Ci)
αS}

}1−I{Sobs
i ≤Ci}

×
∏

i:Zi=1,S∗
i (0)=S

π ᾱY (Y ∗
i (0))ᾱY−1 exp{β̄Y −eβ̄Y (Y ∗

i (0))ᾱY }

[
ν̄Y (Y obs

i − κY ∗
i (0))ν̄Y−1 exp{γ̄Y −eγ̄Y (Y obs

i − κY ∗
i (0))ν̄Y }

]I{Y obs
i ≤Ci}

exp{−eγ̄Y (Ci − κY ∗
i (0))ν̄Y }(1−I{Y obs

i ≤Ci})I{Y ∗
i (0)≤Ci/κ}1(1−I{Y obs

i ≤Ci})I{Y ∗
i (0)>Ci/κ}

×
∏

i:Zi=1,Si(0)∈R+

(1− π)αSS
∗
i (0)

αS−1 exp{βS−eβSS∗
i (0)

αS}

αY (Y ∗
i (0)−S∗

i (0))
αY−1 exp{[βY +λ log(S∗

i (0))]− eβY+λ log(S∗
i (0))(Y ∗

i (0)−S∗
i (0))

αY }[
exp{−eγY +λ log(S∗

i (0))(Ci − κY ∗
i (0))νY }

](1−I{Y obs
i ≤Ci})I{Y ∗

i (0)≤Ci/κ}
1(1−I{Y obs

i ≤Ci})I{Y ∗
i (0)>Ci/κ}

[
νY (Y obs

i − κY ∗
i (0))νY −1 exp{[γY + λ log(S∗

i (0))]− eγY +λ log(S∗
i (0))(Y obs

i − κY ∗
i (0))νY }

]I{Y obs
i ≤Ci}

For κ = 0, the complete (switching status) data posterior distribution for the
parameter vector θ =

[
π, (αS , βS) ,

(
ᾱY , β̄Y

)
, (αY , βY ) , (ν̄Y , γ̄Y ) , (νY , γY ) , λ],

is
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P
{
θ | Dobs,S∗(0),Y ∗(0)

}
∝

P{π}P{αS}P{βS}P{ᾱY }P{β̄Y }P{αY }P{βY }P{ν̄Y }P{γ̄Y }P{νY }P{γY }P{λ}δκ0(κ)

×
∏

i:Zi=0,S∗
i (0)=S

π
[
ᾱY (Y obs

i )ᾱY−1 exp{β̄Y −eβ̄Y (Y obs
i )ᾱY }

]I{Y obs
i ≤Ci}

exp{−eβ̄Y CᾱY
i }1−I{Y obs

i ≤Ci}

×
∏

i:Zi=0,S∗
i (0)∈R+

(1− π)

{
αS(S

obs
i )αS−1 exp{βS − eβS (Sobs

i )αS}

[
αY (Y obs

i −Sobs
i )αY−1 exp{[βY +λ log(Sobs

i )]− eβY+λ log(Sobs
i )(Y obs

i −Sobs
i )αY }

]I{Y obs
i ≤Ci}

[
exp{−eβY +λ log(Sobs

i )(Ci − Sobs
i )αY }

]1−I{Y obs
i ≤Ci}

}I{Sobs
i ≤Ci}{

exp{−eβS (Ci)
αS}

}1−I{Sobs
i ≤Ci}

×
∏

i:Zi=1,S∗
i (0)=S

π
[
ν̄Y (Y obs

i )ν̄Y−1 exp{γ̄Y −eγ̄Y (Y obs
i )ν̄Y }

]I{Y obs
i ≤Ci}

exp{−eγ̄Y (Ci)
ν̄Y }(1−I{Y obs

i ≤Ci})

×
∏

i:Zi=1,Si(0)∈R+

(1− π)αSS
∗
i (0)

αS−1 exp{βS−eβSS∗
i (0)

αS}

[
exp{−eγY +λ log(S∗

i (0))(Ci)
νY }

](1−I{Y obs
i ≤Ci})

[
νY (Y obs

i )νY −1 exp{[γY + λ log(S∗
i (0))]− eγY +λ log(S∗

i (0))(Y obs
i )νY }

]I{Y obs
i ≤Ci}

Details of Calculations

Note that if κ = 0, we only need to impute the missing switching status by
drawing from its conditional distribution given (Dobs,θ); we do not need to
impute Yi(0) for treated units.

The random variables S∗
i (0) and Y ∗

i (0) are independent across units i =
1, . . . , n given (Dobs,θ); therefore, sampling from the distributions of (S∗(0) |
Dobs,θ) (for κ = 0) and (S∗(0),Y ∗(0) | Dobs,θ) (for κ ∈ (0, 1]) for data
augmentation only involves independent drawing from (S∗

i (0) | Dobs
i ,θ) and

(S∗
i (0), Y

∗
i (0) | Dobs

i ,θ).

Details of Calculations: κ = 0.

Let (θ,S∗(0)) denote the current state of the chain, with

θ =
[
π, (αS , βS) ,

(
ᾱY , β̄Y

)
, (αY , βY ) , (ν̄Y , γ̄Y ) , (νY , γY ) , λ, κ = 0

]
.

1. Given the parameter θ and observed data, Dobs, draw the missing data
S∗
i (0)

− For control patients, we have

S∗
i (0) = Si(0) =

{
S if Zi = 0, I{Sobs

i ≤ Ci} = 0, I{Y obs
i ≤ Ci} = 1

S̃obs
i = Sobs

i if Zi = 0, I{Sobs
i ≤ Ci} = 1, I{Y obs

i ≤ Ci} ∈ {0, 1},
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For control patients with I{Sobs
i ≤ Ci} = 0 and I{Y obs

i ≤ Ci} = 0,
we have

πNS ≡

P
(
S∗
i (0) = S | θ, Zi = 0, Ci, S̃

obs
i , I{Sobs

i ≤ Ci} = 0, Ỹ obs
i , I{Y obs

i ≤ Ci} = 0
)
=

πGS
Y (0)(Ci)

πGS
Y (0)(Ci) + (1− π)GSi(0)(Ci) · 1

Therefore, control patients with I{Sobs
i ≤ Ci} = 0 and I{Y obs

i ≤
Ci} = 0 are classified as non-switchers (S∗

i (0) = S) with probability
πNS and as switchers with censored switching time (S∗

i (0) = S̃obs
i =

Ci) with probability 1− πNS .

− For treated patients, we never observe Si(0). We use Metropolis-
Hasting steps to draw Si(0) according to P

(
Si(0) | θ, Dobs

i

)
. We

draw candidate values Scand
i (0) from a semi-continuous distribution:

We first draw n1 values from a Bernoulli distribution with probability
π setting Scand

i (0) = S for treated units for which we obtain a success
(a positive value). For treated units for which we obtain a failure, a
missing value of Scand

i (0) is then drawn from the Weibull distribution
with parameters αS and βS : Weibull (αS , βS). For each i with Zi =
1, we accept Scand

i (0), setting S∗
i (0) = Scand

i (0), with probability
pi = min{pSi(0), 1}, with

pSi(0) =



ri if S∗
i (0) = S, Scand

i (0) = S

ri ·
π

(1− π)fS(0)(S
cand
i (0))

if S∗
i (0) = S, Scand

i (0) ∈ R+

ri ·
(1− π)fS(0)(S

∗
i (0))

π
if S∗

i (0) ∈ R+, S
cand
i (0) = S

ri ·
fS(0)(S

∗
i (0))

fS(0)(S
cand
i (0))

if S∗
i (0) ∈ R+, S

cand
i (0) ∈ R+

where fS(0)(·) is the density of the proposal Weibull distribution,
Weibull (αS , βS), and

ri =
P
{
Scand
i (0) | θ, Dobs

i

}
P
{
S∗
i (0) | θ, Dobs

i

} .

2. Given the imputed complete data,

D =
[
Z,C, S̃obs, I{Sobs ≤ C}, Ỹ obs, I{Yobs ≤ C},S∗(0)

]
,
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we then draw the following sub-vectors of θ in sequence, conditional on
all others: π, αS , βS , ᾱY , β̄Y , αY , βY , ν̄Y , γ̄Y , νY , γY , λ. We draw
π directly from its full conditional distribution, a Beta distribution with
parameters a +

∑n
i=1 I{S∗

i (0) = S} and b +
∑n

i=1 I{S∗
i (0) ∈ R+}. We

cannot draw directly from the appropriate conditional distributions for the
other model parameters, but we use Metropolis–Hasting steps for drawing
from their full-conditional distributions. For instance, to draw αS , we
draw a candidate value αcand

S from a density g(αS | θ). The candidate
draw is accepted with probability

pαS
= min

{
P
{
[θ \ αS ], α

cand
S | D

}
P {[θ \ αS ], αS | D}

g(αS | [θ \ αS ], α
cand
S )

g(αcand
S | [θ \ αS ], αS)

, 1

}

For the candidate densities, we use Gamma densities for the parameters
αS , ᾱY , αY , ν̄Y , and νY , and Normal densities for the parameters βS , β̄Y ,
βY , γ̄Y , γY , and λ, centered at the current values of the parameters. The
scaling factors were chosen based on preliminary runs of the chains.

Details of Calculations: κ ∈ (0, 1].

Let (θ,S∗(0),Y ∗(0)) denote the current state of the chain, with

θ =
[
π, (αS , βS) ,

(
ᾱY , β̄Y

)
, (αY , βY ) , (ν̄Y , γ̄Y ) , (νY , γY ) , λ, κ = κ0

]
κ0 ∈ (0, 1].

1. Given the parameter θ, observed data, Dobs, and S∗(0), draw the missing
data Y ∗

i (0)

− For control patients, we set Y ∗
i (0) = Ỹ obs

i

− For treated patients, we never observe Yi(0). We use Metropolis-
Hasting steps to draw Yi(0) according to P

(
Yi(0) | θ, Si(0), D

obs
i

)
.

We draw candidate values Y cand
i (0) from Weibull distributions: (a)

For treated patients with S∗
i (0) = S, we draw Y cand

i (0) from aWeibull
distribution with parameters

(
ᾱY , β̄Y

)
; and (b) for treated patients

with S∗
i (0) ∈ R+, we draw Y cand

i (0) from the following location
shifted Weibull distribution: S∗

i (0)+Weibull (αY , βY + λ log(S∗
i (0))).

For each i with Zi = 1, we accept Y cand
i (0), setting Y ∗

i (0) = Y cand
i (0),
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with probability pi = min{pYi(0), 1}, with

pYi(0) =



ri ·
fS
Y (0)(Y

∗
i (0))

fS
Y (0)(Y

cand
i (0))

if S∗
i (0) = S, I{Y obs

i ≤ Ci} = 0

ri ·
fS
Y (0)(Y

∗
i (0))

fS
Y (0)(Y

cand
i (0))

if S∗
i (0) = S, I{Y obs

i ≤ Ci} = 1, Y cand
i (0) ≤ Y obs

i /κ

ri ·
fY (0)(Yi(0))

fY (0)(Y
cand
i (0))

if S∗
i (0) ∈ R+, I{Y obs

i ≤ Ci} = 0

ri ·
fY (0)(Y

∗
i (0))

fY (0)(Y
cand
i (0))

if S∗
i (0) ∈ R+, I{Y obs

i ≤ Ci} = 1, Y cand
i (0) ≤ Y obs

i /κ

0 if I{Y obs
i ≤ Ci} = 1, Y cand

i (0) > Y obs
i /κ

where fS
Y (0)(·) and fY (0)(·) are the densities of the proposal Weibull

distributions, and

ri =
P
{
Y cand
i (0) | θ, Dobs

i , S∗
i (0)

}
P
{
Y ∗
i (0) | θ, Dobs

i , S∗
i (0)

} .

Note that we do not set pYi(0) = 0 for I{Y obs
i ≤ Ci} = 0 and

Y cand
i (0) > Ci/κ, because, in principle, the survival outcome un-

der control, Yi(0), can be greater than Ci/κ: For some units, we can
have Yi(1)/κ ≥ Yi(0) > Ci/κ. For this type of units, the probability
that Yi(1) > Ci is one.

2. Given the parameter θ, the observed data, Dobs, and Y ∗(0) draw, the
missing data S∗

i (0).

− For control patients, we have

S∗
i (0) = Si(0) =

{
S if Zi = 0, I{Sobs

i ≤ Ci} = 0, I{Y obs
i ≤ Ci} = 1

S̃obs
i = Sobs

i if Zi = 0, I{Sobs
i ≤ Ci} = 1, I{Y obs

i ≤ Ci} ∈ {0, 1}.

For control patients with I{Sobs
i ≤ Ci} = 0 and I{Y obs

i ≤ Ci} = 0,
we have

πNS ≡ P
(
S∗
i (0) = S | θ, Zi = 0, Ci, S̃

obs
i , I{Sobs

i ≤ Ci} = 0, Ỹ obs
i , I{Y obs

i ≤ Ci} = 0
)
=

πGS
Y (0)(Ci)

πGS
Y (0)(Ci) + (1− π)GSi(0)(Ci) · 1
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Therefore, control patients with I{Sobs
i ≤ Ci} = 0 and I{Y obs

i ≤
Ci} = 0 are classified as non-switchers (S∗

i (0) = S) with probability
πNS and as switchers with censored switching time (S∗

i (0) = S̃obs
i =

Ci) with probability 1− πNS .

− For treated patients, we never observe S∗
i (0) = Si(0). We use Metropolis-

Hasting steps to draw Si(0) according to P
(
Si(0) | θ, Dobs

i

)
. We

draw candidate values Scand
i (0) from a semi-continuous distribution:

We first draw n1 values from a Bernoulli distribution with probabil-
ity π setting Scand

i (0) = S for treated units for which we obtain a
success (a positive value). For treated units for which we obtain a
failure, a missing value of Scand

i (0) is then drawn from the Weibull
distribution with parameters αS and βS : Weibull (αS , βS). For each
i with Zi = 1, we accept Scand

i (0), setting S∗
i (0) = Scand

i (0), with
probability pi = min{pSi(0), 1}, with

pSi(0) =



ri if S∗
i (0) = S, Scand

i (0) = S

ri ·
π

(1− π)fS(0)(S
cand
i (0))

if S∗
i (0) = S, Scand

i (0) ∈ R+, S
cand
i (0) ≤ Y ∗

i (0)

ri ·
(1− π)fS(0)(S

∗
i (0))

π
if S∗

i (0) ∈ R+, S
cand
i (0) = S

ri ·
fS(0)(S

∗
i (0))

fS(0)(S
cand
i (0))

if S∗
i (0) ∈ R+, S

cand
i (0) ∈ R+, S

cand
i (0) ≤ Y ∗

i (0)

0 if Scand
i (0) ∈ R+, S

cand
i (0) > Y ∗

i (0)

where fS(0)(·) is the density of the proposal Weibull distribution,
Weibull (αS , βS), and

ri =
P
{
Scand
i (0), | θ, Dobs

i , Y ∗
i (0)

}
P
{
S∗
i (0), | θ, Dobs

i , Y ∗
i (0)

} .

3. Given the imputed complete data,

D =
[
Z,C, S̃obs, I{Sobs ≤ C}, Ỹ obs, I{Yobs ≤ C},S∗(0),Y ∗(0)

]
,

we then draw for the following sub-vectors of θ in sequence, conditional
on all others: π, αS , βS , ᾱY , β̄Y , αY , βY , ν̄Y , γ̄Y , νY , γY , λ, using the
procedure described in step 2. in Section “Details of Calculations: κ = 0.”
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Table A.2: Summary statistics of the posterior distributions

Percentiles

Parameter Mean sd 2.5% 25% 50% 75% 97.5% R̂
π 0.38 0.06 0.28 0.34 0.38 0.42 0.50 1.000
αY 1.56 0.11 1.35 1.48 1.55 1.63 1.79 1.000
βS −1.28 0.15 −1.55 −1.38 −1.28 −1.18 −0.98 1.001
αY 1.37 0.13 1.13 1.28 1.37 1.46 1.64 1.000

βY −1.09 0.21 −1.50 −1.24 −1.09 −0.95 −0.69 1.001
αY 0.93 0.12 0.71 0.85 0.93 1.01 1.18 1.000
βY −1.21 0.15 −1.51 −1.30 −1.20 −1.10 −0.93 1.000
νY 1.12 0.10 0.92 1.05 1.12 1.19 1.33 1.000
γY −1.79 0.27 −2.33 −1.97 −1.79 −1.61 −1.29 1.000
νY 1.16 0.09 0.97 1.09 1.16 1.22 1.35 1.000
γY −2.10 0.21 −2.54 −2.24 −2.09 −1.95 −1.70 1.000
λ 0.10 0.17 −0.21 −0.01 0.10 0.21 0.43 1.001

I Application: Additional Results

Convergence Checks

We use the potential scale-reduction statistic (Gelman and Rubin, 1992) to as-
sess convergence of the MCMC algorithm; the potential scale reduction statistic
takes on values around 1 for all the model parameters, showing no evidence
against convergence (see Table A.2). Figure A.1 shows the trace plots, which
exhibit up-and-down variation with no long-term trends or drift, showing fur-
ther evidence that convergence has been reached. Finally, Figure A.2 shows
the posterior distributions of the model parameters, which are generally well-
shaped.

Distributional Causal Effects for Switchers

Figure A.3 shows the posterior median of the distributional causal effects for
switchers. The distributional causal effects are almost always positive, with an
increasing trend over time for switchers who would switch to zidovudine early
after the assignment. For switchers who would switch to zidovudine between
0.25 and 1.25 years after the assignment, the distributional causal effects are
negative for early durations greater than the switching time, and become posi-
tive for later durations. The later the switching time, the longer the durations
until which the distributional causal effects are negative. For instance, the dis-
tributional causal effects for patients who would switch to zidovudine 0.25 years
after the assignment are negative, ranging between −0.021 and −0.009, for few
durations longer than 0.25 years (between 0.25 and about 0.3 years). The dis-
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Figure A.1: Trace plots of the model parameters
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Figure A.2: Posterior density of the model parameters
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Figure A.3: Principal stratification analysis: Posterior median of the distribu-
tional causal effects for switchers, DCE(y | s), for s = 0.25, 0.50, . . . , 2.50, 2.75

tributional causal effects for patients who would switch to zidovudine 1.25 years
after the assignment are negative, ranging between −0.151 and −0.001, for du-
rations between 1.25 and about 2.37 years. These results are, at least partially,
driven by the natural constraint Si(0) < Yi(0). Therefore, we need to interpret
distributional causal effects for patients who would switch at a given time s,
bearing in mind how such effects are defined. Indeed, a DCE is a comparison
between the probability under assignment to immediate treatment with zidovu-
dine that switchers at time s will survive beyond any specified time, y, and
the probability under assignment to deferred treatment with zidovudine that
those switchers will survive beyond y, given that they have survived beyond the
time-to-switching, s. It is then sensible that some distributional causal effects
are negative also for y ≥ s, especially for long switching durations; in fact, im-
mediate versus deferred treatment with zidovudine should have a very strong
effect for making these distributional effects positive.

Sensitivity Analysis to κ

We conduct a sensitivity analysis to κ, the partial association between Yi(1) and
Yi(0) given the switching status, Si(0). We derive the posterior distribution of
the causal estimands for κ = 0, 0.25, 0.5, 0.75, 1, using the same priors for other
parameters as in Section 5.2 (see Web-Appendix H for details). Table A.3 and
Figures A.5-A.7 present the results. Results display some sensitivity to κ.

In Table A.3 and Figure A.4, the posterior distributions of the average causal
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effects and the distributional causal effects for non-switchers suggest that the ev-
idence in favor of beneficial effects of immediate versus deferred treatment with
zidovudine on survival time for never-switchers weakens when the assumption
of independence between the potential survival outcomes, Yi(0) and Yi(1) (i.e.,
κ = 0) is relaxed allowing for values of κ greater than zero. For κ = 1 (which
implies monotonicity, i.e., Yi(1) ≥ Yi(0)), we still find evidence that immedi-
ate versus deferred treatment with zidovudine increases survival time for non-
switchers, both on average and over time. However, the posterior distributions
of the average causal effect and the distributional causal effects for non-switchers
are centered on smaller values and have smaller posterior variances than those
obtained for κ = 0, leading to tighter 95% posterior credible intervals. It is
also worth noting that the distributional causal effects, DCE(y | S), show a
different time trend for κ = 1 than for κ = 0: For κ = 1 they increase over
time from 0 to 0.109 up to y = 1.25 years and then start to decrease, although
they are always positive with rather tight 95% posterior credible intervals in-
cluding only positive values. For κ = 0.25, the posterior distributions of the
average causal effect and the distributional causal effects for non-switchers are
still centered on positive values. Still, they have a rather large posterior vari-
ability, leading to 95% posterior credible intervals that cover zero except for the
95% posterior credible intervals for distributional causal effects, DCE(y | S)
for y ≤ 1.25. For κ = 0.5, 0.75, the posterior medians of the average causal
effects for non-switchers are very close to zero, and the 95% posterior credible
intervals cover zero. Therefore, there is no evidence that immediate versus de-
ferred treatment with zidovudine increases survival time for non-switchers on
average. For non-switchers, we find positive and statistically significant, even
if small, distributional causal effects for times to event y ≤ 0.95 and y ≤ 1.15,
respectively, for κ = 0.5 and κ = 0.75. Then, distributional causal effects start
to decrease, also reaching negative values for y ≥ 2.30 (κ = 0.5) and y ≥ 2.40
(κ = 0.75); however, they are statistically negligible with 95% posterior credible
intervals always covering zero.

Figure A.5 shows that the estimates of the average causal effects for switchers
are statistically negligible as those we obtained for κ = 0 for κ = 0.25, 0.5, 0.75.
Instead, we find evidence that immediate versus deferred treatment with zidovu-
dine increases the average survival time for switchers irrespective of the time to
switching for κ = 1, under which monotonicity Yi(1) ≥ Yi(0) holds.

Figure A.6 compares the posterior medians of cDCE(y | s) for s = 0.25, 0.50, . . . ,
2.50, 2.75. From Figure A.6, the posterior medians of cDCE(y | s) show a tread
increase throughout the years at κ = 0, but have an asymmetrical inverted U-
shape skewed to the right at κ ∈ {0.25, 0.5, 0.75, 1}, at least for switchers who
would switch relatively soon.

Figure A.7 compares the posterior medians of DCE(y | s) fors = 0.25, 0.50, . . . , 2.50,
2.75. Note that at κ = 1, DCE(y | s) = cDCE(y | s). Two major patterns
appear in the posterior medians of DCE(y | s). First, the posterior medi-
ans are negative for some durations greater than the switching time both at
κ = 0 and κ ∈ {0.25, 0.5, 0.75}, but the posterior medians of DCE(y | s) at
κ ∈ {0.25, 0.5, 0.75} turn to be positive at earlier durations. Second, the pos-
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Figure A.4: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of distributional causal effects for
never switchers, DCE(y | S), for different values of κ
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Figure A.5: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of average causal effects for switch-
ers, ACE(s), s ∈ R+ for different values of κ
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κ = 0
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Figure A.6: Principal stratification analysis: Posterior median of condi-
tional distributional causal effects for switchers, cDCE(y | s), at time s =
0.25, 0.50, . . . , 2.50, 2.75 for different values of κ
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Table A.3: Principal stratification analysis: Posterior median and 95% posterior
credible interval for causal estimands for non-switchers for different values of κ

κ E[Yi(0) | Si(0) = S] E[Yi(1) | Si(0) = S] ACE(S)

κ = 0 2.05 (1.44; 2.99) 4.76 (2.80; 9.80) 2.66 (0.71; 7.73)
κ = 0.25 1.87 (1.38; 2.88) 2.78 (1.87; 4.58) 0.86 (−0.09; 2.49)
κ = 0.50 1.91 (1.37; 3.09) 1.98 (1.46; 2.78) 0.02 (−0.70; 0.72)
κ = 0.75 2.10 (1.48; 3.15) 2.11 (1.59; 2.94) −0.01 (−0.36; 0.40)
κ = 1 2.06 (1.47; 2.96) 2.43 (1.81; 3.35) 0.36 (0.19; 0.59)

terior medians for switchers who would switch to zidovudine early after the
assignment show an increasing trend over time at κ = 0, whereas those derived
at κ ∈ {0.25, 0.5, 0.75, 1} follow an asymmetrical inverted U-shape skewed to
the right.

Sensitivity Analysis to the Prior Distribution for λ

Previous results are obtained using a weakly informative prior distribution for
λ, namely, N(0, 104). We assess the sensitivity of the results to the prior spec-
ification for λ by specifying three alternative priors. We consider two normal
priors with smaller variances, N(0, 1) and N(0, 10), and an improper prior uni-
formly over the whole real line. The hyperparameters of the prior distributions
for the other model parameters are set to the same values as in Section H. We
focus on the scenario with κ = 0. Table A.4 and Figures A.8-A.11 present the
results, showing that inference is robust with respect to the prior specification
for λ. We see that the posterior distribution of the causal estimands changes
only slightly using different prior distributions for λ. Moreover, the posterior
distribution of λ is robust to different prior specifications. The posterior mean
of λ remains approximately 0.10, with a standard deviation of 0.17, irrespective
of the prior specification. Although the 95% posterior credible intervals cover 0,
the posterior probability that the parameter λ is positive ranges between 71.5%
and 72.7% using different priors. Thus, there appears to be some evidence that
the death hazard increases as the time of switching increases, suggesting that
the residual lifetime after switching is shorter for patients who would switch
later than for patients who would switch earlier.

Sensitivity Analysis to the Parametric Assumption λ1 = λ0

We assess the sensitivity of the results to the parametric assumption λ1 = λ0

by deriving the posterior distributions of the causal estimands of interest when
we relax it.
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Figure A.7: Principal stratification analysis: Posterior median of distributional
causal effects for switchers, DCE(y | s), at time s = 0.25, 0.50, . . . , 2.50, 2.75 for
different values of κ
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λ ∼ N(0, 1) λ ∼ N(0, 10)
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λ ∼ N(0, 10 000) λ ∼ Uniform(R)
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Figure A.8: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of distributional causal effects for
never switchers, DCE(y | S), for different prior distributions for λ with κ = 0
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λ ∼ N(0, 1) λ ∼ N(0, 10)
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λ ∼ N(0, 10 000) λ ∼ Uniform(R)
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Figure A.9: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of average causal effects for switch-
ers, ACE(s), s ∈ R+, for different prior distributions for λ with κ = 0
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λ ∼ N(0, 1) λ ∼ N(0, 10)
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λ ∼ N(0, 10 000) λ ∼ Uniform(R)
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Figure A.10: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of conditional distributional causal
effects for switchers at time s = 0.25, 0.50, . . . , 2.50, 2.75, cDCE(y | s), for dif-
ferent prior distributions for λ with κ = 0
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Table A.4: Principal stratification analysis: Summaries of posterior distribu-
tions of causal estimands for non-switchers for different prior distributions for
λ (κ = 0)

λ ∼ N(0, 1) λ ∼ N(0, 10)

95% PCI 95% PCI
Estimand 0.50 0.025 0.975 0.50 0.025 0.975

E[Yi(0) | Si(0) = S] 2.06 1.45 3.01 2.04 1.43 2.98
E[Yi(1) | Si(0) = S] 4.78 2.83 9.92 4.76 2.81 10.12
ACE(S) 2.68 0.72 7.79 2.66 0.72 8.02

λ ∼ N(0, 10 000) λ ∼ Uniform(R)
95% PCI 95% PCI

Estimand 0.50 0.025 0.975 0.50 0.025 0.975

E[Yi(0) | Si(0) = S] 2.05 1.44 2.99 2.04 1.44 3.00
E[Yi(1) | Si(0) = S] 4.76 2.80 9.80 4.75 2.81 9.80
ACE(S) 2.66 0.71 7.73 2.65 0.71 7.74

Table A.5 and Figure A.12 show the results for never-switchers and Fig-
ures A.13 and A.14 show the results for switchers.

Relaxing the parametric assumption λ0 = λ1 does not affect the results
for never-switchers (see Table A.5 and Figure A.12) and slightly changes the
results for switchers, by leading to posterior distributions of the causal effects
for switchers with a larger posterior variability (see Figures A.13 and A.14).
The increased uncertainty in the causal estimands for switchers makes it more
difficult to draw firm causal conclusions for them, especially for early switchers.
For instance, for early switchers who would switch earlier than 1 year, we find
positive and statistically significant distributional causal effects under the model
with λ0 = λ1 and statistically negligible distributional causal effects under the
model with λ0 ̸= λ1 (see the graphs in the first row of Figure A.14).

Posterior Predictive Checks

We evaluate the influence of the parametric assumptions using posterior pre-
dictive checks (e.g., Guttman, 1967; Rubin, 1984), by computing a Bayesian
posterior predictive p-value (PPPV ) for various discrepancy measures (Meng,
1994; Gelman et al., 1996; Forastiere et al., 2018). A discrepancy measure is a
known, real-valued function of the nuisance parameters, the imputed switching
status, and the observed data. The corresponding Bayesian PPPV is defined as
the integral average over the joint posterior distribution of the missing switching
statuses and model parameters of the probability that the discrepancy measure
calculated for replicated data is more extreme than the value for observed data.
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λ ∼ N(0, 1) λ ∼ N(0, 10)
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Figure A.11: Principal stratification analysis: Posterior median of the dis-
tributional causal effects for switchers, at time s = 0.25, 0.50, . . . , 2.50, 2.75,
DCE(y | s), for different prior distributions for λ (κ = 0)

Replicated data are drawn from the posterior predictive distribution of the hy-
pothesized model. A PPPV is a measure of model misfit, with the model
including both the prior distribution and the likelihood. Extreme values (close
to 0 or 1) of a PPPV would indicate that the model cannot adequately preserve
features of the data reflected in the discrepancy measure.

We conduct model checking under conditionally independent potential sur-
vival outcomes with κ = 0. Let r be the study type indicator: r = obs for the
observed study and r = rep for a replicated study. We generate the replicated
data using the observed value of the assignment variable, entry, and censoring
time, that is, we set Zrep

i = Zobs
i = Zi and Crep

i = Ci for all i = 1, . . . , n.
We measure the goodness-of-fit of the posited model using three types of

posterior predictive discrepancy measures:

1. BIC posterior predictive discrepancy measure.

BICr = −2 (L {θ | κ = 0,Dr}+ ♯{θ \ κ} · log(n)) ,
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Table A.5: Principal stratification analysis: Summaries of posterior distribu-
tions of causal estimands for non-switchers under the model with λ0 = λ1 and
under the model with λ0 ̸= λ1

Under the model with
λ0 = λ1 λ0 ̸= λ1

95% PCI 95% PCI
Estimand 0.50 0.025 0.975 0.50 0.025 0.975

E[Yi(0) | Si(0) = S] 2.05 1.44 2.99 1.95 1.41 2.91
E[Yi(1) | Si(0) = S] 4.76 2.80 9.80 4.39 2.63 9.18
ACE(S) 2.66 0.71 7.73 2.39 0.63 7.08

DCE(y | S)
Under the model with λ0 = λ1 Under the model with λ0 ̸= λ1
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Figure A.12: Principal stratification analysis: Posterior median (solid line) and
95% posterior credible interval (dashed lines) of the distributional causal effects
for non-switchers under the model with λ0 = λ1 (left) and under the model with
λ0 ̸= λ1 (right)
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ACE(s), s ∈ R+

Under the model with λ0 = λ1 Under the model with λ0 ̸= λ1
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Figure A.13: Principal stratification analysis: Posterior medians (solid lines)
and 95% posterior credible intervals (dashed lines) of average causal effects
for switchers, under the model with λ0 = λ1 (left) and under the model with
λ0 ̸= λ1 (right)

where Dr = [Z,C, S̃r, I{Sr ≤ C}, Ỹ r, I{Yr ≤ C},S∗,r(0)] is the n × 7
matrix of the complete switching status data, L {θ | κ = 0,Dr} is the
complete switching status-data likelihood function for κ = 0, and ♯{θ \κ}
is the number of parameters excluding κ (♯{θ \ κ} = 12 in our study).

2. Deviance posterior predictive discrepancy. The deviance is defined as the
sum of the deviance residuals for the Weibull model. We calculate the
deviance posterior predictive discrepancy measure separately for the sur-
vival time and the switching time under control for switchers. For r =
obs, rep,

DeviancerY (D,θ) =

−2
∑

i:Zi=0,1


∑

i:Zi=z,S
∗,r
i (0)=S

[
MS

Y (z)(Ỹ
r
i ) + I{Y r

i ≤ Ci} log
(
I{Y r

i ≤ Ci} −MS
Y (z)(Ỹ

r
i )

)]
+

∑
i:Zi=z,S

∗,r
i (0)∈R+

[
MY (z)(Ỹ

r
i | S∗,r

i (0)) + I{Y r
i ≤ Ci} log

(
I{Y r

i ≤ Ci} −MY (z)(Ỹ
r
i | S∗,r

i (0))
)] ,

where MS
Y (z)(·) and MY (z)(· | Si(0)) are the martingale residuals for

non-switchers and switchers, respectively: MS
Y (z)(Ỹ

r
i ) = I{Y r

i ≤ Ci} −
ΛS
Y (z)(Ỹ

r
i ) if Si(0) = S, and MY (z)(Ỹ

r
i | Si(0)) = I{Y r

i ≤ Ci}−ΛY (z)(Ỹ
r
i |

Si(0)) if Si(0) ∈ R+, with ΛS
Y (z)(·) and ΛY (z)(· | Si(0)) denoting the cu-

mulative hazards for the Weibull model (Therneau et al., 1990). Similarly,

70



cDCE(y | s) for s = 0.25, 0.5, . . . , 2.5, 2.75
Under the model with λ0 = λ1 Under the model with λ0 ̸= λ1
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Figure A.14: Principal stratification analysis: Posterior medians (solid lines)
and 95% posterior credible intervals (dashed lines) of the conditional distribu-
tional causal effects for switchers under the model with λ0 = λ1 (first column)
and under the model with λ0 ̸= λ1 (second column).
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we define

DeviancerS(D,θ) =

−2
∑

i:Zi=0,S
∗,r
i (0)∈R+

MS(0)(S̃
r
i ) + I{S∗,r

i (0) ≤ Ci} log
(
I{S∗,r

i (0) ≤ Ci} −MS(0)(S̃
r
i )
)
.

3. Kaplan–Meier posterior predictive discrepancy. We calculate Kaplan–
Meier estimates of the survival curves for the time-to-death/disease pro-
gression, separately for non-switchers and switchers, and for the time-to-
switching under control for switchers.

For data from study type r, r = obs, rep, for each time-point t, let drY (t |
S∗,r
i (0) ∈ A) be the number of events (deaths or disease progressions) at

time t among patients with S∗,r
i (0) ∈ A, A = {S} (non-switchers) and

A = R+ (switchers), and let drS(t | Zi = 0, S∗,r
i (0) ∈ R+) be the number

of switchers assigned to the control treatment who switch at time t. Let
Rr

Y (t | S∗,r
i (0) ∈ A) denote the number of subjects with S∗,r

i (0) ∈ A,
A = {S},R+, at risk of death or disease progression at time t, and let
Rr

S(t | Zi = 0, S∗,r
i (0) ∈ R+) denote the number of switchers assigned to

the control treatment at risk of switching at time t. We define

KMr
A(t;D,θ) =

∏
i:S∗,r

i (0)∈A

[
1− drY (t | S

∗,r
i (0) ∈ A)

Rr
Y (t | S

∗,r
i (0) ∈ A)

]
A = {S},R+;

and

KMr(t;D,θ) =
∏

i:Zi=0,S∗,r
i (0)∈R+

[
1− drS(t | Zi = 0, S∗,r

i (0) ∈ R+)

Rr
S(t | Zi = 0, S∗,r

i (0) ∈ R+)

]
.

Following Barnard et al. (2003), we then consider posterior predictive dis-
crepancy measures aimed to assess the ability of the model to preserve features
in the outcome distributions of non-switchers and switchers that we think can
be very influential in estimating the average and distributional causal effects.

Define the following subsets of units in the study of type r (r = obs, rep):

Ir
A,z = {i : I{Y r

i ≤ Ci}I{S∗,r
i (0) ∈ A}I{Zi = z} = 1}

for A = {S} and A = R+, and z = 0, 1; and

Ir = {i : I{S∗,r
i (0) ≤ Ci}I{S∗,r

i (0) ∈ R+}I{Zi = 0} = 1}

Let Y
r

A,z and s2,rY,A,z be the mean and the variance of the survival outcome,
Yi, for units belonging to Ir

A,z, for which we observe Yi(z) in study r. Similarly,

let S
r
and s2,rS the mean and the variance of the switching time, S∗

i (0), for units
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Table A.6: Bayesian Posterior Predictive p−values

Variable Deviance Signal Noise Signal to noise
Survival time 0.917
Non-Switchers 0.258 0.595 0.251
Switchers 0.621 0.773 0.542

Switching time 0.485 0.378 0.343 0.549

PPPV for BIC : 0.497

belonging to Ir, for which S∗
i (0) is observed in study r. Then,

SignalrA(D,θ) =
∣∣∣Y r

A,1 − Y
r

A,0

∣∣∣ Signalr(D,θ) = S
r

NoiserA(D,θ) =

√
s2,rY,A,0

♯Ir
A,0

+
s2,rY,A,1

♯Ir
A,1

Noiser(D,θ) =

√
s2,rS

♯Ir

RatiorA(D,θ) =
SignalrA(D,θ)

NoiserA(D,θ)
Ratior(D,θ) =

Signalr(D,θ)

Noiser(D,θ)

where ♯Ir
A,z =

∑n
i=1 I{i ∈ Ir

A,z} and ♯Ir =
∑n

i=1 I{i ∈ Ir} are the number of
units in the r data belonging to the Ir

A,z and Ir group, respectively.
It is worth noting that these measures are not treatment effects, but they

provide information on whether the model can preserve broad features of sig-
nal, noise, and signal-to-noise ratio in the survival time distributions for non-
switchers and switchers and in the switching time distribution for switchers
assigned to the control arm.

Table A.6 shows the Bayesian PPPV s. The PPPV for the BIC is 0.497,
and the PPPV s for the deviance posterior predictive discrepancy measures
are 0.485 for the switching time and 0.917 for the survival time, suggesting
that our model fits the data pretty well. The PPPV s for the Kaplan-Meier
posterior predictive discrepancy measures are also sufficiently far away from 0
and 1 for all time points t; the only exceptions are the Kaplan-Meier posterior
predictive discrepancy for the time-to-switching under control for switchers for
times shorter than 0.06 (approximately 22 days) and times between 0.17 and
0.54 (approximately between 2 and 6.5 months) for the time-to-death/disease
progression for switchers.

It is worth noting that, in the observed data, no patient assigned to the
control treatment is observed to switch to the active treatment within 22 days,
and only 28 patients are observed to either die or experience a progression of
the disease between 2 and 6.5 months. Results provide no special evidence for
specific influences of the model too. The estimated Bayesian PPPV s for the
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Figure A.15: Bayesian posterior predictive p−values for Kaplan-Meier posterior
predictive discrepancy measures (t = 0.01, 0.02, . . . , 2.00, 3.00)

signal, noise, and signal-to-noise ratio posterior predictive discrepancy measures
range between 0.251 and 0.773, suggesting that our model successfully replicates
the corresponding measure of location, dispersion, and their relative magnitude.
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