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Abstract: The research provides an innovative contribution to the interpretation of three-point and
four-point bending tests on mortars by employing a bi-modulus material model, which assumes an
asymmetric constitutive law, i.e., different elastic moduli in tension and in compression. To this aim,
Euler–Bernoulli and Timoshenko bi-modulus beam models are defined, and the related displacement
fields are reported for three-point loading, and provided for the first time for the four-point bending
layout. A wide experimental campaign, including uni-axial tensile and compressive tests, three-point
and four-point bending tests, and on notched specimens three-point tests for mode-I fracture energy,
has been carried out on lime mortar specimens exploiting traditional contact (CE-DT) and contactless
(DIC) measurement systems. Experimental results provided the values of tensile and compressive
mechanical characteristics, which are employed to validate estimations of the analytical model. The
tension-to-compression moduli ratio experimentally observed is on average 0.52. Experimental
outcomes of the DIC analysis proved the bi-modulus behaviour during the four-point bending tests
showing visible shifting of the neutral axis. The bi-modulus analytical model provides closer results
to the experimental ones for the slender specimens subjected to four-point bending.

Keywords: lime mortar; direct and compressive tensile test; bending tests; DIC; bi-modulus model;
Timoshenko beam

1. Introduction

Characterisation of tensile properties of brittle construction materials constitutes
a challenging task for the difficulties of implementing testing procedures that provide
a sufficiently long-lasting uni-axial tensile stress state. Furthermore, since the tensile
properties of brittle materials are related to micro-damage processes and fracture energy
properties, specimen dimensions and loading rate might affect test results.

To estimate materials’ properties in tension, three-point bending tests [1] are often
employed. In three-point bending tests, the stocky shape of the specimen and the con-
centrated loading condition might prevent a straightforward application of the classical
beam theory, as highlighted in early experimental campaigns by Stokes [2] and reported by
Love [3]. Nonetheless, the simplicity of the three-point bending test implementation moti-
vates its broad application providing flexural strength according to the Bernoulli–Navier
beam theory. The test pivots on the assumption of the same modulus in compression and
in tension.

Experimental evidence confirms that the asymmetry of the tension-compression con-
stitutive law is common to different materials, such as concrete [4], ceramics [5], rammed
earth [6–9], graphite and composite materials [10,11], and biological materials [12,13],
showing tension to compression moduli ratio ranging from values below the unit to or-
ders of magnitude. No-tension and no-compression materials can also be analysed in the
framework of bi-modulus theory, as shown in [14], where the tools of convex analysis
are employed.
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Bi-modulus materials have been already addressed by de Saint-Venant [15] considering
the case of materials not following a linear constitutive law, for which it is assumed that
stress distribution in a rectangular cross-section subject to pure bending can be described
through to a polynomial law asymmetric with respect to the cross-section height. By
further developing the same problem, Timoshenko [16] provides the shifted position
of the neutral axis depending on the tension and compression Young’s moduli. In [17],
the expression of a unique apparent Young’s modulus, depending on the compression
and tension Young’s moduli and employed for the deflection estimation of a three-point
bent beam is provided. In [18], this investigation is extended to the case of the four-
point bending test. With Ambartsumyan [19] the bi-modulus material model is applied to
isotropic plates and shells starting from the sign of principal stresses, imposing symmetry
of the compliance matrix, νt/Et = νc/Ec, and introducing a stress-sign-dependant shear
modulus, which however does not ensure symmetry of the compliance matrix for all the
directions. In [20], two weighting factors that preserve symmetry under rotation of the
compliance, which changes according to the direction and magnitude of the principal stress
state, are introduced.

In [21], endeavouring to fasten convergence problems in FE investigations, the authors
define a shear modulus which preserves symmetry, can satisfy regression from principal to
general reference system, is consistent with classical theory and depends on the magnitude,
direction and sign of principal stresses. The latter approach is similarly employed by other
authors [22,23]. In [24], two different exponential expressions representing the grade func-
tions of tensile and compressive moduli of elasticity are assumed with a sign-independent
Poisson’s ratio, so preserving the symmetry of the compliance. Some studies [6–8], apply
the approach proposed in [21] to a micro-mechanical FE homogenization analysis for the
definition of the critical surface of adobe brick masonry, assuming bi-modulus behaviour
for mortar and blocks. Variational principles, which make use of internal variables to
characterise the tension/compression state, have been defined as well in [4,25].

A constitutive bi-modulus model based on the definition of different stiffness matrices
according to strain sign is provided in [11,26] with the aim of describing multi-layer
composite laminates. In particular, one layer of a bi-modulus material shows the same
bending-stretching coupling similar to a cross-ply laminate made of two layers [27]. Very
few problems can be solved in a closed form if the asymmetry in the constitutive law is
set, therefore, in order to solve 2D problems for bi-modulus materials, dedicated iterative
algorithms must be calibrated, as thoroughly addressed in the review [28].

Concerning the bi-modulus beam model, in [29,30], the expression of the position of the
neutral axis and then the displacement field for columns subject to compression and shear-
free bending, and lateral force bending, are defined. In [31], the model proposed in [30] is
employed to interpret test results of a wide experimental campaign on adobe bricks.

In this study, differently from [9], where the focus is modelling bi-modulus material
beam subjected to three-point bending tests to study earth material behaviour, the problem
at hand includes for the first time also the four-point layout assuming Euler–Bernoulli
and Timoshenko beam models. Furthermore, in this study, an extensive experimental
campaign for the mechanical characterisation of a lime mortar, including uni-axial tests,
both in tension and in compression, as well as bending tests, provides significant data to
validate the analytical model.

The adopted model considers the beam as constituted by two layers with different
stiffnesses, separated from the neutral plane, which is shifted with respect to that of
the mono-modulus beam. The integration of the differential problem, with the further
unknown defined by the neutral plane position, leads to the closed-form solution of the
displacement field, not yet available in the literature for the four-point layout.

The paper is organised as follows. In Section 2, assuming a bi-modulus material,
a beam subjected to three-point and four-point concentrated loading is analysed to provide
the complete displacement field. In Section 3, the experimental campaign is reported.
The mechanical characterisation encompasses uni-axial compression and tension tests,
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three- and four-point bending tests, and on notched specimens three-point tests for mode-I
fracture energy. For the interpretation of a series of four-point bending tests, deflection
control has been carried out employing traditional contact measurement systems, i.e.,
displacement transducers and extensometers, and exploiting Digital Image Correlation
(DIC) techniques. Discussion on test results is at the end of the section. Validation of
the bi-modulus model for the interpretation of all the bending tests can be found in the
following Section 4. The conclusions are at the end of the paper.

2. Bi-Modulus Beam under Three and Four-Point Bending
2.1. Statement and Solution of the Equilibrium Problem

In this section, the solution, in terms of displacements, for a pin-pin beam under
one and two point-forces is evaluated. The beam’s material is assumed isotropic with
different longitudinal elasticity modulus in compression, Ec, and tension, Et. The tension
to compression moduli ratio is expressed by the coefficient n = Et/Ec. Accordingly, shear
moduli and Poisson’s ratio are also different, Gc = Ec/2(1 + νc) and Gt = Et/2(1 + νt).
Provided the symmetry of the compliance stress tensor: νt/Et = νc/Ec, it follows that
n = νt/νc.

Starting from the displacement field associated with the models of Euler–Bernoulli
(EBM) and Timoshenko (TM) beam, strain–displacement compatibility conditions and
constitutive relations of the bi-modulus material are recalled to define the differential equi-
librium problem. Differently from previous investigations, here, the solution in terms of dis-
placement equations is retrieved for the pin-pin beam loaded by one and two point-forces.

For the reference system shown in Figure 1, EBM includes displacement components
in x- and z- directions, U(x, z) and W(x, z) respectively. For TM, the displacements compo-
nents in x- and z- directions, Ũ(x, z) and W̃(x, z), and rotation of the cross-section, ψ̃(x),
are included:

U(x, z) = u(x) + z w′(x)

W(x, z) = w(x)

Ũ(x, z) = ũ(x) + z ψ̃(x)

W̃(x, z) = w̃(x)

(1)

where u and w, are the x- and z- direction displacements, respectively, of the mid-line
axis; superscript ·̃ is employed for displacement functions and any other variable denotes
reference to TM and superscript ()′ denotes x-derivative. Strain–displacement equations
follow directly:

εx(x, z) = u′(x) + z w′′(x) = ε0(x) + z ε1(x)

γxz(x, z) = 0

ε̃x(x, z) = ũ′(x) + z ψ̃′(x) = ε̃0(x) + z ε̃1(x)

γ̃xz(x, z) = w̃′(x) + ψ̃(x) = γ̃0(x)

(2)

where ε0 or ε̃0, ε1 or ε̃1, and γ̃0 are strains due to stretching, bending and shear, respectively.
In this framework [27], the stress resultant and stress moments can be expressed, for the
EBM and the TM, respectively, as:
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N(x) =
∫ h
−h σx(x, z) dz = A ε0(x) + B ε1(x)

M(x) =
∫ h
−h σx(x, z) z dz = B ε0(x) + D ε1(x)

Q(x) = −M′(x)

Ñ(x) =
∫ h
−h σ̃x(x, z) dz = A ε̃0(x) + B ε̃1(x)

M̃(x) =
∫ h
−h σ̃x(x, z) z dz = B ε̃0(x) + D ε̃1(x)

Q̃(x) =
∫ h
−h τ̃xz(x, z) dz = S γ̃0(x)

(3)

where A, B, D and S are extensional, flexural–extensional coupling, flexural, and shear
stiffnesses, respectively, defined as:

A =
∫ zc
−h Ec dz +

∫ h
zc

Et dz = Ec(h + zc) + Et(h− zc)

B =
∫ zc
−h Eczdz +

∫ h
zc

Et z dz = − 1
2 (Ec − Et)(h2 − z2

c )

D =
∫ zc
−h Ec z2 dz +

∫ h
zc

Et z2 dz = 1
3 (Ec(h3 + z3

c ) + Et(h3 − z3
c ))

S = K2
∫ zc
−h Gc dz +

∫ h
zc

Gt dz = 5
6 (Gc(h + zc) + Gt(h− zc))

(4)

where K2 is the shear correction factor, having assumed a compact cross-section, zc, or z̃c in
its place if the TM is referred, is the oriented distance of neutral axis, i.e., evaluated from
z = 0 towards the upper part of the cross-section, see Figure 1b, where the case of zc < 0
and compressed upper part are shown.

Figure 1. Scheme of the beam under three and four-point bending assuming a bi-modulus mate-
rial (Ec > Et): (a) reference systems, dimensions and load cases, (b) beam cross-section showing
asymmetrical strains and stress through the height.

Then, employing Equation (3) in view of Equation (2), yields the differential equations
of equilibrium:

N′(x) = A u′′(x) + B w′′′(x) = 0

M′′(x) = B u′′′(x) + D wiv(x) = 0

Ñ′(x) = A ũ′′(x) + B ψ̃′′(x) = 0

M̃′(x)− Q̃(x) = B ũ′′(x) + D ψ̃′′(x)− S(w̃′(x) + ψ̃(x)) = 0

Q̃′(x) = S
(
w̃′′(x) + ψ̃′(x)) = 0

(5)

2.2. Three-Point Loading

Exploiting symmetry of loading and geometry, for the three-point bending condition
of the EBM beam, to solve the system of Equation (5), the following seven boundary
conditions (BC) must be satisfied:
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w(0) = u(L/2) = w′(L/2) = 0

N(L/2) = M(0) = 0

Q(0) = P/2

M(L/2) = PL/4

(6)

For the TM beam, to solve the system of Equation (5), the following six boundary conditions
(BC) must be satisfied:

w̃(0) = ũ(L/2) = ψ̃(L/2) = 0

Ñ(L/2) = M̃(0) = 0

Q̃(0) = P/2

(7)

The systems of differential equations and related boundary conditions provide, for the
EBM and the TM, respectively, the following displacement functions:

U(x, z) =
P
(

L2 − 4x2)(Az− B)
16(B2 − AD)

(8)

W(x) =
AP(3L2 − 4x2)x

48(B2 − AD)
(9)

Ũ(x, z) =
P
(

L2 − 4x2)(Az− B)
16(B2 − AD)

(10)

W̃(x) =
AP(3L2 − 4x2)x

48(B2 − AD)
− Px

2S
(11)

Displacements in the direction of the longitudinal axis, i.e, U(x, z) and Ũ(x, z) Equations (8)
and (10), respectively, must be the same. Transverse displacements, i.e., W(x) and W̃(x),
Equations (9) and (11), respectively, differ for the part related to coefficient S. Neutral axis
depth can be retrieved imposing that, for z = zc or z = z̃c, longitudinal strains, Equation (2)
for the EBM and TM respectively, are zero. This yields, for both EBM and TM beams:

zc = h
(

1− 2
1 +
√

n

)
(12)

in agreement with [16,29,31].

2.3. Four-Point Loading

For the four-point bending layout and exploiting the symmetry of loading and ge-
ometry, the piece-wise continuity of stress resultant and stress moments is encountered,
Figure 1. Therefore, the system of ODE (Equation (5)), must be defined on the first (i.e.,
u1(x), w1(x), ũ1(x), w̃1(x), ψ̃1(x)) and on the second branch (u2(x), w2(x), ũ2(x), w̃2(x),
ψ̃2(x)). Boundary conditions must comply with constraints disposition, stress resultant
values and continuity conditions on displacements among the two branches. For the EBM
and TM, respectively, boundary conditions of the four-point bending layout are:
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w1(0) = u2(L/2) = w′2(L/2) = 0

Q2(L/2) = M1(0) = N1(L) = N2(L/2) = 0

Q1(0) = P

M1(L) = M2(0) = M2(L/2) = PL

u1(L) = u2(0)

w1(L) = w2(0)

w′1(L) = w′2(0)

w̃1(0) = ũ2(L/2) = ψ̃2(L/2) = 0

Ñ1(L) = Ñ2(L/2) = 0

Q̃1(0) = P

Q̃2(L/2) = M̃1(0) = 0

M̃2(L/2) = PL

ũ1(L) = ũ2(0)

w̃1(L) = w̃2(0)

ψ̃1(L) = ψ̃2(0)

(13)

Employing Equations (5) and (13) on the corresponding sub-domains (i.e., x1 and x2)
provides the following set of displacement fields for the EBM and TM, respectively:

U1(x, z) =
P
(
2x2 − L2)(B− Az)

2(B2 − AD)
(14)

W1(x) =
APx(x2 − 6L2)

6(B2 − AD)
(15)

U2(x, z) =
LP(2x− L)(B− Az)

2(B2 − AD)
(16)

W2(x) =
ALP(3x2 − 3Lx− 5L2)

6(B2 − AD)
(17)

Ũ1(x, z) =
P
(
2x2 − L2)(B− Az)

2(B2 − AD)
(18)

W̃1(x) =
APx(x2 − 6L2)

6(B2 − AD)
+

Px
S

(19)

Ũ2(x, z) =
LP(2x− L)(B− Az)

2(B2 − AD)
(20)

W̃2(x) =
ALP(3x2 − 3Lx− 5L2)

6(B2 − AD)
+

PL
S

(21)

Neutral axis depth has the same expression of Equation (12).

2.4. Sensitivity Analysis for Variation of Coefficient n

In order to highlight the effect of the variation of coefficient n on the vertical displace-
ments of beams, Figure 2 reports the displacements normalised with respect to the half
of the total free length, i.e., L/2 for three-point bending and 3/2 L for four-point bending
(as depicted in Figure 1), along the x axis. Since Ec > Et, in the admissibility domain
for n, 0 < n < 1, the cases n = 0.03; 0.05; 0.1; 0.5 were assumed, in addition to n = 1, the
mono-modulus beam, for comparison.
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Figure 2. Normalised deflections with respect to the half of the total free length of the beams, i.e.,
L/2 = 50 mm for three-point bending and 3/2 L = 90 mm for four-point bending, along x axis, varying
values of n. The fixed value of the load is 2000 N, while the assumed n values are, from top to bottom,
respectively n = 0.03; 0.05; 0.1; 0.5 and 1 (which is the mono-modulus beam).

The diagrams of Figure 2 allow observing that the lower the n value, the higher the
estimated displacement. Moreover, the difference between the Euler–Bernoulli and the
Timoshenko models, for which higher deflections are obtained, increases as the n decreases.
This is especially true for the three-point bending, which is more affected by the shear effect.

3. Materials and Methods
3.1. Specimens and Tests

The commercially available premixed dry mortar, Kerakoll GeoCalce®F (class M15
according to [32]) employed in the experimental campaign contains pure NHL 3.5 certified
natural lime, natural river-washed fine (0.1–0.5 mm) and medium-grained (0.1–1 mm)
siliceous sand, dolomitic limestone (0–1.4 mm), white Carrara marble (0–0.2 mm) and
mineral geo-binder. The water-to-mortar ratio used is 1:5.5, indications provided in the
data sheet [33], were followed during slurry preparation. The following samples were
considered in the experimental campaign:

• SP—short prisms (dim. 40 × 40 × 160 mm3), 9 specimens, using standard moulds
• LP—long prisms (dim. 40 × 40 × 240 mm3), 9 specimens, using specifically fabricated

plexiglass moulds
• C—cubic prisms (dim. 40 × 40 × 40 mm3), 11 specimens, using standard moulds
• SPN—short prisms with a notch (dim. 40 × 40 × 160 mm3), 3 specimens, using

standard moulds and a specifically designed device to create, on the middle of three
of the longest faces, a 3 mm thick and 10 mm high notch with a sharp edge, which
ensures the trigger for a stable vertical crack plane and avoids possible damages to
the specimens connected to cutting operations after the curing phase.

After the specimens had been removed from the moulds they were left drying for at
least 28 days in a controlled environment (20◦ and 60% R.H.). All the tests were carried out
employing an Instron Satec (InS) with 600 KN capacity or a Zwick Roell-Z100 (ZR) with
100 KN capacity test press employing a parallel Keniuko compression load cell with 20 KN
(C2) capacity or a Keniuko Tension load cell with 5 KN (T5) capacity; the tests carried out
and the related setups are:

• TM—Uniaxial tensile test for the determination of Young’s modulus in tension on
part of the LP sample (3 specimens) carried out on the ZR-T5 test press and assigning
monotonic loading with a speed of 3× 10−4 MPa/s up to 160 N (pre-load phase)
and then with a constant monotonic speed of 0.01 MPa/s up to the rupture of the
specimen. Specimens were fixed to the doubly hinged test apparatus employing the
Sikadur 31CF bi-component epoxy adhesive. Specimens were instrumented with two
CE-DT on the head of the tightening apparatus, one 50 mm and two 100 mm omega
extensometers which were removed before the end of the test.
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• CM—Uniaxial compression test for the determination of Young’s modulus in compres-
sion on part of the SP sample (6 specimens) carried out on the ZR-C2 press according
to Method 2 of [34]; in particular, for the three pre-loading cycles 0.5 MPa and 5 MPa
were set as stress bounds at 0.4 MPa/s (which corresponds to 640 N/s), the same
speed was kept for the loading up rupture. Two Cantilever Displacement Transducers
(CE-DT) were placed on the upper loading plate separated from the test press head by
a steel sphere. To record strains in the central part of the specimen two 50 mm omega
extensometers were installed, and removed before the end of the tests.

• CS—Uniaxial compression test for the determination of the compressive strength
(6 specimens obtained from 3PB-SP specimens stumps), according to [1] employing a
50 N/s load speed on the InS test press

• 3PB—Three-point bending test for the determination of deflection on part of the SP
sample (3 specimens) carried out according to [1] on the ZR-C2 test press choosing a
load application speed of 40 N/s. Specimens were instrumented with two Cantilever
Displacement Transducers (CE-DT) at the loading point.

• IF—Mode-I Fracture energy three-point bending test on the SPN sample carried out on
the ZR-C2 test press at a load speed of 5× 10−5 mm/s. Specimens were instrumented
with two Cantilever Displacement Transducers (CE-DT) at the loading point free to
rotate through a steel sphere, and two clip gauges inserted in the notch to monitor the
Crack Mouth Opening Displacement (CMOD).

• 4PB—Four-point bending test for the determination of deflection on part of the LP
sample (3 specimens) carried out on InS test press setting a constant spacing among
steel cylinders equal to 60 mm and leaving 30 mm free from the edges. Tests were
carried out in displacement control with 40 N/s speed. Specimens were instrumented
with two CE-DT placed on the steel plate transferring the load to the upper cylinders.

• 4PB-DIC—Four-point bending test using Digital Image Correlation for the determina-
tion of deflection on part of the LP sample (3 specimens) carried out on the ZR-C2 test
press, the same test layout of 4PB (60 mm spacing and 30 mm from the edges) was
considered. Tests were carried out in displacement control with 4 N/s speed to enable
to shoot a sufficient number of images during the tests. The speckled area is the central
part of the specimen (80 × 40 mm2), circular speckles were created randomly and did
not exceed 0.05 mm in diameter. Images were acquired every 20 s through a Canon
EOS550D and a SIGMA DC 17–70 mm placed at 500 mm distance from the specimen,
focused at 44 mm with f/9 exposure for 1/6 s. The specimen was enlightened with a
4000-lumen halogen bulb.

For each type of test, sources of uncertainty were identified. In particular, with
regard to specimens, a source of uncertainty concerns the use of a calliper with a tol-
erance of 0.02 mm for measuring the dimensions; for the test system the sources con-
sist of the alignment system, force measurement accuracy (cell sensitivity 2 mV/V), and
extensometer accuracy (omega-shaped extensometer 2130 × 10−6/mm in tension and
2150 × 10−6/mm in compression; cantilever displacement transducers 592 × 10−6/mm,
clip gauges 676 × 10−6/mm); as for the environment, the ambient temperature and the hu-
midity are considered; finally with regard to test procedure, in addition, to load balancing
(zeroing), the speed of load application was considered (Figure 3).
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Figure 3. Test set ups: (a) uniaxial tensile for the determination of Young’s modulus in tension,
(b) compression for the determination of Young’s modulus in compression, (c) compression for
the determination of compressive strength, (d) three-point bending, (e) three-point bending with a
notched specimen, (f) four-point bending, (g) four-point bending with measurement DIC system

3.2. Test Results and Discussion
3.2.1. TM-LP

The stress–strain diagrams recorded by omega extensometers, hence, up to 1 MPa,
and the results of uniaxial tensile tests are reported respectively in Figure 4 and Table 1.
The value of tension Young’s modulus of each specimen was evaluated as the average of
the values obtained by the three omega extensometers used to instrument the samples, as
the tangent modulus between the lower and upper-stress thresholds. The mean value is
Et = 7422 MPa with a CV of 21%. The average peak load is P = 3557 N with a CV of 11%.
The stress reached at the peak load is on average σt = 2.22 MPa.

0

0.2

0.4

0.6

0.8

1

1.2

0 2×10-5 4×10-5 6×10-5 8×10-5 1×10-4 1.2×10-4 1.4×10-4 1.6×10-4

St
re

ss
 [

M
P

a]

Strain[-]

TM-LP-01 TM-LP-02 TM-LP-03

Figure 4. Stress–strain diagrams for uniaxial tensile tests (TM-LP). The last part of the diagram
of specimen TM- LP-03 is dashed due to a recording error, and it has not been considered for the
evaluation of the elasticity modulus.
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Table 1. Results of uniaxial tensile tests (TM-LP) for the determination of Young’s Modulus in tension,
Et. P is the maximum force and σt is the maximum tension stress.

Et [MPa] P [N] σt [MPa]

TM-LP_01 6341 3765 2.35
TM-LP_02 8772 3100 1.94
TM-LP_03 7692 3805 2.38

Av 7422 3557 2.22
CV 21% 11% 11%

3.2.2. CM-SP

The stress–strain diagrams recorded by omega extensometers and the results of uniax-
ial compression tests for the determination of Young’s modulus are reported respectively in
Figure 5 and Table 2. The average value of the modulus, evaluated, as the tangent modulus
between the lower and upper-stress thresholds, according to [34], is Ec = 14,384 MPa with
a low variation (CV = 7%). The mean value of the peak stress is σc = 18.66 MPa with a
CV = 7%.

Figure 5. Stress–strain diagrams for uniaxial compression tests (CM-SP) for the determination of
Young’s modulus in compression.

Table 2. Results of uniaxial compression tests (CM-SP) for the determination of Young’s Modulus in
compression, Ec. P is the maximum force and σc is the maximum compressive stress.

Ec [MPa] P [N] σc [MPa]

CM-SP_01 13,395 28,090 17.56
CM-SP_02 14,290 29,875 18.67
CM-SP_03 12,963 28,135 17.58
CM-SP_04 15,219 28,415 17.76
CM-SP_05 15,091 33,437 20.90
CM-SP_06 15,343 31,142 19.46

Av 14,384 29,849 18.66
CV 7% 7% 7%
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3.2.3. CS-C

The stress–strain diagram and the results of uniaxial compression tests are reported
respectively in Figure 6 and Table 3. The average peak load is P = 26,554 N and the
maximum compression strength is σc = 16.60 MPa with very low variation, CV = 4%.

Although stocky specimens reach greater strength compared to more slender ones,
the different speed load applied to the CS-C (50 N/s) and CM-SP (640 N/s) tests has to
lead to lower values, about 10%, for CS-C compared to CM-SP. From experimental results,
as reported in [35], the compressive strength increases as the load rate increases. This
could be explained by the fact that, at high-speed loading, cracks propagate along greater
resistance paths because they do not have sufficient time to search the path of minimum
resistance [35].

Figure 6. Stress–strain diagrams for uniaxial compression tests (CS-C).

Table 3. Results of uniaxial compression tests (CS-C) in terms of maximum load P and maximum
compression stress σc.

P [N] σc [MPa]

CS-C_01 26,096 16.31
CS-C_02 24,861 15.54
CS-C_03 26,678 16.67
CS-C_04 28,072 17.55
CS-C_05 26,251 16.41
CS-C_06 27,364 17.10

Av 26,554 16.60
CV 4% 4%

3.2.4. 3PB-SP

The load–displacement diagram and the results of three-point bending tests are re-
ported respectively in Figure 7 and Table 4. The average peak load is P = 1994 N and the
associated average peak stress is σf = 4.67 MPa, with a CV = 8%. The flexural stress here
reported was evaluated using Navier’s formulation. The average vertical displacement
under the loading point is η = 0.1068 mm with a CV = 26%. The high value of the coefficient
of variation is due to the fact that the deflection under the loading point of specimen
3PB-SP_01 is almost two times the deflections of the others.
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Figure 7. Load–displacement diagrams for three-point bending tests (3PB-SP).

Table 4. Results of three-point bending tests (3PB-SP) in terms of maximum load P and corresponding
vertical displacement η and flexural stress σf according to the classical mono-modulus beam model.

P [N] σ f [MPa] η [mm]

3PB-SP_01 1893 4.44 0.1626
3PB-SP_02 2014 4.72 0.0869
3PB-SP_03 2194 5.14 0.0900
3PB-SP_04 2148 5.03 0.0984
3PB-SP_05 1777 4.16 0.1080
3PB-SP_06 1937 4.54 0.0952

Av 1994 4.67 0.1068
CV 8% 8% 26%

3.2.5. IF-SPN

The load-crack mouth opening displacement diagram and the results of mode-I frac-
ture energy three-point bending tests are reported respectively in Figure 8 and Table 5.
The peak load is P = 234 N and the average peak stress is σf = 1.17 MPa, with a CV = 7%.
The load is much lower than the one obtained in the 3PB-SP tests, due to the presence of
the notch that makes the SPN samples more slender than the SP and forces specimens to
fracture at the edge. Moreover, the lower loading rate employed, more than two orders of
magnitude lower than that employed for the 3PB-SP, also affect the peak load recorded,
as reported, e.g., in [35,36]. The average value of the fracture energy, calculated as the
area under the stress versus crack opening displacement curve from peak stress up to
displacement corresponding to 1% of the peak stress, is GF = 7.50 N/m with a CV of
24%. This value is coherent with the experimental results obtained on hydraulic mortars
in [37,38].
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Figure 8. Load-crack mouth opening displacement response for mode- I fracture energy three-point
bending tests (IF-SPN).

Table 5. Results of mode-I fracture energy three-point bending tests (IF-SPN) in terms of maximum
peak load P, corresponding flexural stress σf according to the classical mono-modulus beam model,
corresponding vertical displacement η, fracture energy GF and crack mouth opening displacement,
CMOD.

P [N] σ f [MPa] GF [N/m] CMOD [mm] η [mm]

IF-SPN_01 218 1.11 6.40 0.033 0.0215
IF-SPN_02 233 1.13 9.61 0.028 0.0258
IF-SPN_03 252 1.26 6.48 0.044 0.0348

Av 234 1.17 7.50 0.035 0.0274
CV 7% 7% 24% 22% 25%

3.2.6. 4PB-LP

The load–displacement diagram and the results of four-point bending tests are re-
ported respectively in Figure 9 and Table 6. The average peak load is P = 1369 N and the
average peak stress is σf = 3.85 MPa, with a CV = 12%. The flexural stress here reported
was evaluated using Navier’s formulation. The average deflection at the loading points is
η = 0.0820 mm with a CV = 20%.

Figure 9. Load–displacement diagram for four-point bending tests (4PB-LP).
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Table 6. Results of four-point bending tests (4PB-LP) in terms of maximum load P and corresponding
vertical displacement η and flexural stress σf according to the classical mono-modulus beam model.

P [N] σ f [MPa] η [mm]

4PB-LP_01 1289 3.63 0.0636
4PB-LP_02 1596 4.49 0.0930
4PB-LP_03 1393 3.92 0.0986
4PB-LP_04 1198 3.37 0.0729

Av 1369 3.85 0.0820
CV 12% 12% 20%

3.2.7. 4PB-DIC-LP

The load–displacement diagram and the results of four-point bending tests car-
ried out exploiting contactless measurement systems (DIC), are reported respectively
in Figure 10 and Table 7. The average peak load is P = 952 N and the average peak stress is
σf = 2.68 MPa, with a CV = 11%. The reported flexural stress was evaluated using Navier’s
formulation. The deflection values of each specimen reported in Table 7 are the average
of the vertical displacements recorded under the two loading points. In particular, the
average values of ηDIC were taken as the mean of those recorded in a 4.5 mm square area
under the cylinders. CE-DT and DIC provide different mean values with different CV:
ηCE = 0.1435 mm with a CV of 36% and ηDIC = 0.1240 mm with a CV of 15%. In Table 7 it can
be seen that the deflections under the two loading points of the specimen 4PB-DIC-LP_02
and 4PB-LP-DIC_03 obtained from DIC and CE-DT are similar (CV = 0.1–0.5%), while
specimens of the first sample are more distant with a CV of 23%. The higher value read
by transducers can be explained by the fact that they were placed on the steel plate that
transfers the load to the upper cylinders, therefore some additional displacement could
be read.

The complete displacement fields, both vertical and horizontal, provided by DIC and
obtained by the bi-modulus model through the displacement functions (Equations (14)–(21)),
are reported for the specimen 4PB-DIC-LP_02 respectively in Figures 11b and 12b. As
can be seen in Figure 11b, the sample has shown a 15% higher deflection under the right
cylinder. For this reason, the bands of colour, representing the same vertical displacement
values, are not vertical nor specular to the centre of the specimen, as supposed to be
(Figure 11a). The difference between the deflections under the two loading points also
leads to a visible shifting of the vertical symmetry axis in the horizontal displacements
(Figure 12b), which usually corresponds to the middle of the specimen (Figure 12a), towards
the right. Nevertheless, the displacement distribution along the surface is clearly visible:
since the upper part is compressed, there is a movement towards the centre of the specimen,
while in the lower one, which is in tension, there is a movement towards the sides.

The 4PB-DIC-LP tests have reached a lower peak load (−28%) but higher deflection
(+92% read by transducers and +56% read by DIC) than 4PB-LP, which were carried out
with a speed 10 times faster. As reported in [39], from experimental results, the peak load
decreases as the loading rate decreases, while the displacement increases.
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Figure 10. Load–displacement diagrams for four-point bending tests (4PB-DIC-LP).

Table 7. Results of four-point bending tests (4PB-DIC-LP) in terms of force and deflection under
the loading points (recorded by both cantilever transducer, ηCE, and DIC, ηDIC) at peak load P and
flexural stress σf according to the classical mono-modulus beam model.

P [N] σ f [MPa] ηCE [mm] ηDIC [mm] Av η

(CV)

4PB-DIC-LP_01 1066 3.00 0.2033 0.1457 0.1745
(23%)

4PB-DIC-LP_02 914 2.57 0.1107 0.1105 0.1106
(0.1%)

4PB-DIC-LP_03 875 2.46 0.1166 0.1158 0.1162
(0.5%)

Av 952 2.68 0.1435 0.1240
CV 11% 11% 36% 15%

Figure 11. Vertical displacements contour of 4PB-DIC-LP_02 sample: (a) prevision obtained by the
bi-modulus model (b) results obtained by DIC analysis.
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Figure 12. Contour of horizontal displacements of 4PB-DIC-LP_02 sample: (a) prevision obtained by
the bi-modulus model (b) results obtained by DIC analysis.

4. Validation of the Analytical Model to the Experimental Results
4.1. Overview of Model Validation

The analytical bi-modulus models described in Section 2 are applied to the beam
experimental specimens subjected to bending tests. In particular, assuming X-X-YY as
notation, with X-X the sample specification and YY the beam model specification, EB for
Euler–Bernoulli and TM for Timoshenko, the following evaluations were carried out on:

• four beam models of three-point bending tests:

– 3PB-SP-EB and 3PB-SP-TM, with free span-to-height ratio 2.5;
– IF-SPN-EB and IF-SPN-TM with free span-to-height ratio 3.3.

• two beam models of four-point bending tests, 4PB-LP-EB and 4PB-LP-TM with the
ratio free span–height 4.5.

The elastic modulus in tension and compression determined experimentally with the
uniaxial tests, TM and CM, respectively, were employed in order to provide n = Et/Ec.
For each beam model, Table 8 shows estimations of the maximum values of the tensile
and compressive stress, the position of the neutral axis and the vertical displacement
of the external load application point, assuming the maximum average load obtained
experimentally for 3PB-SP and 4PB-LP, and assuming the average load at the end of the
linear phase (P = 157 N) for IF-SPN. The relative errors between estimations of the mono-
(MM) or bi-modulus (EM, TM) models and the recorded experimental displacement are
also reported to highlight the ability of analytical models to interpret the experimental
behaviour in bending. In Table 8, the results relating to the mono-modulus beam model
are also reported with the aim of comparison with the bi-modulus ones, using, for the
displacement estimation, the experimental compressive modulus as usually assumed.

The analytical bi-modulus models described in Section 2 are applied to the beam
experimental specimens subjected to bending test also in an indirect way to estimate the
elastic modulus in tension, having assumed the modulus in compression, and by exploiting
experimental load and displacement data (Table 9). The bi-modulus interpretation of the
bending test could in this way provide an estimation of the elastic modulus in tension,
allowing to avoid uniaxial tensile tests which, as known, in addition to anchoring problems
to the test apparatus, exhibit difficulties in implementing testing procedures that provide
sufficiently long-lasting uni-axial tensile stress. Therefore, for each bending test, the
experimental values of displacement and load allow the calibration of the analytical model
by the displacement functions (Equations (8)–(11) and (14)–(21)), assuming the compressive
Young’s Modulus determined experimentally.

Moreover, inputting experimental tension and compression moduli into linear FEM
environment provides consistent data with respect to uniaxial tests in tension and in
compression, respectively.
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4.2. Estimation of the Displacements and the Stress State

Table 8 collects the results of the analyses carried out on the analytical models, using
n = Et/Ec = 7422/14, 384 = 0.52, determined by uniaxial tests. Each analytical model was
calibrated with the corresponding experimental average load P and provided displacements
and stress state. The error in estimating the average experimental displacement, δBM, was
then calculated for each model as [(ηexp − ηBM)/ηexp], where ηexp is the experimental
displacement and ηBM is the bi-modulus displacement. That error has been also compared
with the one obtained from the estimate of the displacement calculated with the classical
mono-modulus beam model, δMM, based on the unique compressive Young’s Modulus.

Table 8. Results of the mono-modulus (MM) and bi-modulus model (EB for Euler–Bernoulli and TM
for Timoshenko beam model) applied to three-point (3PB-SP and IF-SPN) and four-point (4PB-LP)
bending tests using n = Et/Ec = 0.52. The flexural stress value σf , vertical displacement of the load
application point ηexp, the vertical displacement retrieved by bi-modulus models ηBM, the percentage
difference between the displacements δBM, the vertical displacement retrieved by mono-modulus
model ηMM, the percentage difference between the displacements δMM, the maximum values of the
tensile and compressive stress σt σc and the position of the neutral axis h-zc are reported for each
bending test.

σ f ηexp ηBM δBM ηMM δMM σt σc h-zc
(CV)

[MPa] [mm] [mm] [%] [mm] [%] [MPa] [MPa] [mm]

3PB-SP-MM 4.67 0.1068 0.0139 87%
(26%)

3PB-SP-EB 0.0190 82% 4.01 5.59 23.28
3PB-SP-TM 0.0199 81% 4.01 5.59 23.28

4PB-LP-MM 3.85 0.0820 0.0412 50%
(20%)

4PB-LP-EB 0.0570 31% 3.31 4.60 23.28
4PB-LP-TM 0.0590 28% 3.31 4.60 23.28

IF-SPN-MM 0.78 0.0137 0.0025 82%
(31%)

IF-SPN-EB 0.0047 66% 0.67 0.94 15.95
IF-SPN-TM 0.0053 61% 0.67 0.94 15.95

As regards the comparison between the experimental and analytical displacements,
Table 8 shows that, in general, the TM models offer, as expected, a better estimate than
EB models, considering also the shear deformability. Among the TM models, the 4PB-LP
model produced a better estimate of the displacement with an error of 28%. On the contrary,
the 3PB-SP-TM showed an error of 81%. The results of the IF-SPN-TM models provide
an intermediate error (61%) between the other two models, suggesting a link between
the results obtained and the free span–height ratio of the samples. As known, the beam
behaviour implies a free span–height ratio greater than or equal to 4 and the samples
3PB-SP and IF-SPN have a geometric shape ratio of 2.5 and 3.3, respectively. For this reason,
the experimental behaviour of 3PB-SP and IF-SPN deviated further from the ideal one,
differently from the model 4PB-LP with a free span–height ratio of 4.4.

As regards the relative errors of the vertical displacements evaluated with the clas-
sical mono-modulus beam theory, δMM, it is possible to observe, also in this case, that
they increase with the decrease of the beam free span–height ratio. The errors, δMM, are
respectively 50% for 4PB-LP, 82% for IF-SPN and 87% for 3PB-SP.

As shown in Table 8, the bi-modulus models offer a better estimation of the vertical
displacement than the mono-modulus theory. In fact, the bi-modulus relative errors, δBM,
are lower than the mono-modulus ones, δMM. In particular, the Timoshenko models show
values 7% lower for 3PB-SP, 44% lower for 4PB-LP and 26% lower for IF-SPN.
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Concerning the stress state, the different stress values in tension and in compression
induced by the different moduli (Ec > Et) cause a shifting of the neutral axis towards the
compressed area and a different distribution of stress, which becomes neither equal nor
symmetric with respect to the neutral axis. Tensile stress estimated by means of the bi-
modulus models shows lower values than their single-modulus counterparts. In particular,
the mono-modulus model provides tensile stress 16% higher than the values obtained by
the bi-modulus models, which compared to the strength value obtained in the uniaxial
tensile tests are respectively: 110% higher for 3PB-SP model, 75% higher for 4PB-LP model
and 65% lower for IF-SPN model. Instead, the bi-modulus models provide closer values to
the tensile strength value obtained in the uniaxial tests. Indeed they are respectively 80%
higher for 3PB-SP model, 49% higher for 4PB-LP model and 70% lower for IF-SPN model.

4.3. Estimation of the Elastic Modulus in Tension

Table 9 collects the results of the analyses applied to the three- and four-point bend-
ing tests using the indirect way, and the flexural elastic modulus E f evaluated by the
classical mono-modulus beam model. Each analytical model was calibrated with the
experimental average peak load P and the corresponding vertical displacement ηexp, as-
suming the experimental value of the modulus in compression Ec = 14,384 MPa. In this
way, the elastic modulus in tension can be determined. The error in estimating the exper-
imental elastic modulus in tension (Etexp = 7422 MPa) was calculated for each model as
δEt = [(Etexp − Et)/Etexp ], where Et is the elastic modulus in tension analytically estimated.

Table 9. Results of the mono-modulus (MM) and bi-modulus model (EB for Euler–Bernoulli and
TM for Timoshenko beam model) applied to three-point (3PB-SP and IF-SPN) and four-point (4PB-
LP) bending tests employing the average values of the vertical displacements ηexp of each bending
test. The flexural stress value σf , the flexural elastic modulus E f , the moduli ratio coefficient n, the
maximum values of the tensile and compressive stress σt σc, the position of the neutral axis h-zc,
the elastic modulus in tension Et and the percentage difference between the evaluated Et and the
experimental value of modulus in tension (7422 MPa) δEt are reported for each bending test.

σ f E f n σt σc h-zc Et δEt

(CV) (CV)
[MPa] [MPa] [MPa] [MPa] [mm] [MPa] [%]

3PB-SP-MM 4.67 1918
(8%) (24%)

3PB-SP-EB 0.052 2.87 12.84 32.65 751 90%
3PB-SP-TM 0.063 2.92 11.91 32.06 910 88%

4PB-LP-MM 3.85 7172
(12%) (15%)

4PB-LP-EB 0.314 3.00 5.42 25.72 4518 39%
4PB-LP-TM 0.348 3.05 5.25 25.25 5002 32%

IF-SPN-MM 0.78 3861
(7%) (28%)

IF-SPN-EB 0.122 0.52 1.57 20.43 1702 77%
IF-SPN-TM 0.139 0.53 1.49 20.03 1953 74%

The results related to the bi-modulus models for the estimation of the elastic modulus
in tension confirm the trend of those obtained in the first application (Section 4.2): the best
results are obtained with the TM models and the error decreases as the beam shape ratio
increases. In particular, the closest value to the experimental result is that of the 4PB-LP-TM
model, which is 32% lower than Etexp = 7422 MPa. On the contrary, the 3PB-SP-TM model
shows the highest error (88%), while the IF-SPN-TM model provides an intermediate value
with an error of 74%. As can be seen in Table 9, the lower the elastic modulus in tension,
the higher the shifting of the neutral axis towards the compressed area. The shifting of
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the neutral axis of approximately 4 mm obtained from the DIC analysis can be seen in
Figure 13b, providing a depth of the stretched height of the section equal to 24 mm.

Figure 13. Longitudinal strain contour of 4PB-DIC-LP_02 sample: (a) prevision obtained by the
bi-modulus model (b) results obtained by DIC analysis, the black line represents the position of the
neutral axis.

5. Conclusions

In this article, a bi-modulus beam model has been defined and implemented to provide
a proper interpretation of three- and four-point bending tests on mortars. The model
has been applied to standard three- and four-point bending tests, and mode-I fracture
energy tests (three-point bending on notched specimens), all being part of the experimental
campaign reported here and carried out on lime mortar. The experimental campaign, which
also included uni-axial tension and compression tests, has enabled the evaluation of the
mechanical characteristics of the material.

Assuming both Euler–Bernoulli and Timoshenko beam models, the proposed bi-
modulus model considers the beam as constituted by two layers with different stiffnesses.
Because of this assumption, the neutral plane between these layers is shifted with respect to
that of the mono-modulus beam. The closed form of the displacement field is determined
by the integration of the differential problem, with the further unknown defined by the
neutral plane position. The closed form of the displacement field for the four-point loaded
bi-modulus beam is presented here for the first time.

To interpret experimental bending test results by the bi-modulus model, two appli-
cations are carried out. In the first application, the coefficient n relating the tension to
compression elasticity modulus was assumed exploiting the experimental values obtained
with uniaxial tests. The estimated displacements were compared with those experimentally
recorded in the bending tests. Comparisons were also made on the bi-modulus stress state
with the mono-modulus one and the tensile strength obtained from the uniaxial test. In the
second application, the experimental displacements of the bending tests were employed to
calibrate the analytical models and obtain the estimate of the elastic modulus in tension,
assuming the modulus in compression.

The difference between the elastic moduli, with Ec > Et, as shown experimentally,
induces a shift of the neutral axis towards the compressed area and an asymmetric distri-
bution of the stresses with respect to the neutral axis. The shifting of the neutral axis has
been directly observed through the DIC analysis of images taken during three four-point
bending tests carried out at a loading rate enabling a sufficient number of pictures to
be shot.

Compared to the tensile strength determined experimentally, the bi-modulus mod-
els estimate closer values than those evaluated with the standard formula. It is worth
highlighting that the error between analytical and experimental results changes with the
test considered. The bi-modulus interpretation of tests that provides results closer to the
experimental values, both in terms of elastic moduli and strength values, is related to
the four-point bending layout. In fact, the four-point bending specimen shows higher
slenderness compared to the three-point layout. Furthermore, the effect of the concentrated
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load is attenuated along the central part of the specimen subject to the four-point layout,
differently from what occurs in the three-point layout.

The comparison with the experimental results allows affirming that the bi-modulus
interpretation of the bending test could allow the use of the bending test for the estimation
of the elastic modulus in tension. In so doing, the uniaxial tensile tests could be avoided,
simplifying experimentation since, as known, the tensile test shows difficulties in imple-
menting testing procedures that provide sufficiently long-lasting uni-axial tensile stress
and specimen anchoring to the test apparatus.
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