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Given a finite group G and an irreducible complex character 
χ of G, the codegree of χ is defined as the integer cod(χ) =
|G : ker(χ)|/χ(1). It was conjectured by G. Qian in [16] that, 
for every element g of G, there exists an irreducible character 
χ of G such that cod(χ) is a multiple of the order of g; the 
conjecture has been verified under the assumption that G is 
solvable ([16]) or almost-simple ([13]). In this paper, we prove 
that Qian’s conjecture is true for every finite group whose 
Fitting subgroup is trivial, and we show that the analysis of 
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the full conjecture can be reduced to groups having a solvable 
socle.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

Introduction

Let G be a finite group, and let Irr(G) denote the set of the irreducible complex 
characters of G; given a character χ in Irr(G), the codegree of χ is defined (following 
[18]) as the integer

cod(χ) = |G : ker(χ)|
χ(1) .

An interesting problem related to character codegrees was introduced by G. Qian in 
[17], and then formulated by the same author as a conjecture in [16]: it is asked whether, 
for every element g of G, there exists χ ∈ Irr(G) such that cod(χ) is divisible by the 
order of g. This conjecture, which also appears as Problem 20.78 in [12] and Problem 8.3 
in [15], is proved to be true in [16] under the assumption that G is solvable.

A “modular version” of the above conjecture is also considered, and proved true for 
finite solvable groups, by X. Chen and G. Navarro in [4]. As for non-solvable groups, 
Qian’s conjecture has been verified by E. Giannelli for finite symmetric and alternating 
groups ([7]); furthermore, S.Y. Madanha proves in [13] that the conjecture is true for 
finite almost-simple groups as well.

The present note is a contribution in this framework. The following main result extends 
the validity of Qian’s conjecture to finite groups whose Fitting subgroup is trivial.

Theorem A. Let G be a finite group whose Fitting subgroup is trivial, and let g be an 
element of G. Then there exists χ ∈ Irr(G) such that cod(χ) is a multiple of the order 
of g.

As a further step towards a possible proof of Qian’s conjecture in full generality, we 
will also see that a minimal counterexample would be a (non-solvable) group whose 
minimal normal subgroups are all abelian (Remark 3.1).

In the following discussion we will freely use basic facts concerning character theory, 
for which we refer to [11]; also, every group will be tacitly assumed to be a finite group.

1. Preliminaries

We start by recalling some standard facts and establishing some notation in Re-
mark 1.1.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Remark 1.1. Let G be a group, and assume that G has a unique minimal normal subgroup 
M ; assume also that M is non-solvable, thus M = S1×· · ·×Sn where the Si are pairwise 
isomorphic non-abelian simple groups.

Let Ω = {S1, . . . , Sn}, N = NG(S1), and let T = {t1 = 1, . . . , tn} be a right transver-
sal for N in G. The (transitive) action of G by conjugation on Ω, i.e. the action of G by 
right multiplication on the set {Nti | i ∈ {1, . . . , n}}, defines a homomorphism g �→ σg

from G to Sym(Ω) ∼= Sym(n); moreover, for g ∈ G and i ∈ {1, . . . , n}, the element 
gi = tigt

−1
σg(i) lies in N .

Considering the factor group N = N/CG(S1) and adopting the bar convention, we 
see that

g �→ (g1, . . . , gn)σg

defines an injective homomorphism from G to the wreath product Γ = Aut(S1) �Sym(n): 
this homomorphism is in fact the composition map of the injective homomorphism g �→
(g1, . . . , gn)σg (see [6, 13.3]) with the natural homomorphism from N � Sym(n) onto 
N � Sym(n) (of course, here we are regarding N as a subgroup of Aut(S1)), and the 
injectivity of this composition map is guaranteed by the fact that the normal core of 
CG(S1) in G is CG(M) = 1.

Identifying G with a subgroup of Γ, if α1 is an irreducible character of S1 (or, more 
generally, of a subgroup X1 of Aut(S1)) we will say that αti

1 is the character of Si (of 
Xti

1 ) corresponding to α1.

Our proof of Theorem A relies on Lemma 1.7, concerning monolithic groups (i.e., 
groups having a unique minimal normal subgroup) with a non-solvable socle; as a relevant 
preliminary ingredient, we gather some properties of characters of non-abelian simple 
groups in Lemma 1.2 and Lemma 1.3.

Lemma 1.2. Let S be a non-abelian simple group, and assume S �∼= PSL2(3f ) for any odd 
positive integer f . Then there exist two distinct non-principal irreducible characters α

and β of S, both having an extension to Aut(S), such that |S|
α(1) · |S|

β(1) is a multiple of 

the exponent of S.

Proof. Suppose that S is an alternating group Alt(n) where n ≥ 7, or a sporadic simple 
group or the Tits group. According to Theorem 3 and Theorem 4 in [3], there exist two 
non-principal irreducible characters α and β of S whose degrees are coprime, and both 

characters extend to Aut(S). Consequently, |S|
α(1) · |S|

β(1) is a multiple of the order of S, 

thus a multiple of the exponent of S.
Consider next the case when S is a simple group of Lie type (thus including Alt(5)

and Alt(6)), and denote by p the characteristic of S. If p > 3, then Theorem B in [8]
guarantees the existence of a non-principal irreducible character α of S whose degree is 
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Table 1
Classical groups of Lie type in characteristic p ∈ {2, 3}.

Isomorphism type order α(1) Exponent of a 
Sylow 
p-subgroup

A1(q) � SL2(q),
q = 22f+1

q(q2 − 1) q − 1 2

A1(q) � PSL2(q),
q = p2f

q(q2 − 1)
(2, q − 1)

q + 1 2, 3

A2(q) � PSL3(q)
q3(q2 − 1)(q3 − 1)

(3, q − 1)
q(q2 + q + 1) 22, 3

An(q) � PSLn+1(q),
n ≥ 3

q
n(n+1)

2
∏n

i=1(q
i+1 − 1)

(n + 1, q − 1)
q(qn − 1)

q − 1
≤ np

2A2(q2) � PSU3(q)
q3(q2 − 1)(q3 + 1)

(3, q + 1)
q(q2 − q + 1) 22, 3

2An(q2) � PSUn+1(q),
n ≥ 3

q
n(n+1)

2
∏n

i=1(q
i+1 − (−1)i+1)

(n + 1, q + 1)
q(qn − (−1)n)

q + 1
≤ np

B2(q) � C2(q) � PSp4(q)
q4(q2 − 1)(q4 − 1)

(2, q − 1)
q(q2 + 1)

2
22, 32

Bn(q) � Ω2n+1(q),
Cn(q) � PSp2n(q),
n ≥ 3

qn
2 ∏n

i=1(q
2i − 1)

(2, q − 1)
q(qn + 1)(qn−1 − 1)

2(q − 1)
≤ (2n − 1)p

Dn(q) � PΩ+
2n(q),

n ≥ 4

qn(n−1)(qn − 1)
∏n−1

i=1 (q2i − 1)
(4, qn − 1)

q(qn−2 + 1)(qn − 1)
q2 − 1

≤ (2n − 3)p

2Dn(q2) � PΩ−
2n(q),

n ≥ 4

qn(n−1)(qn + 1)
∏n−1

i=1 (q2i − 1)
(4, qn + 1)

q(qn−2 − 1)(qn + 1)
q2 − 1

≤ (2n − 3)p

not divisible by p and which extends to Aut(S); as for β, we can choose the Steinberg 
character of S (whose degree is the full p-part of the order of S and which, by [19], has 

as extension to Aut(S) as well). Also in this situation 
|S|
α(1) · |S|

β(1) is clearly a multiple 

of |S|.
To complete the proof, it remains to establish our claim for simple groups of Lie type 

in characteristic p ∈ {2, 3}. Assume first that S is a classical group of Lie type, and 
take β to be the Steinberg character of S: clearly |S|/β(1) is a multiple of the p′-part 
of the order of any element in S. Therefore, our aim is to determine a non-principal 
α ∈ Irr(S) such that α is extendible to Aut(S) and |S|/α(1) is divisible by the exponent 
of a Sylow p-subgroup of S. Such a character α is described for each isomorphism type 
of S in Table 1, which provides the degree of α and a bound for the exponent of a Sylow 
p-subgroup of S; the data of Table 1 are taken from Section 3 of [13], with the further 
remark that all characters listed there are unipotent except for the first two rows, hence 
they have an extension to Aut(S) by Theorem 2.4 and Theorem 2.5 in [14] (for the first 
two rows, see Theorem A and Lemma 5.3(ii) of [20]).
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Table 2
Exceptional groups of Lie type in characteristic p ∈ {2, 3} (part I).

Isomorphism 
type

Order Label of α and β α(1) and β(1)

G2(q) q6Φ2
1Φ

2
2Φ3Φ6

φ2,1
G2[1]

1
6 qΦ

2
2Φ3

1
6 qΦ

2
1Φ6

3D4(q3) q12Φ2
1Φ

2
2Φ

2
3Φ

2
6Φ12

φ1,3′

φ2,1

qΦ12
1
2 q

3Φ2
2Φ

2
6

E6(q) q36Φ6
1Φ

4
2Φ

3
3Φ

2
4Φ5Φ2

6Φ8Φ9Φ12
φ64,4
D4, 1

q4Φ3
2Φ

2
4Φ

2
6Φ8Φ12

1
2 q

3Φ4
1Φ

2
3Φ5Φ9

2E6(q2) q36Φ4
1Φ

6
2Φ

2
3Φ

2
4Φ

3
6Φ8Φ10Φ12Φ18

φ9,6
′

2E6[θ]
q6Φ2

3Φ
3
6Φ12Φ18

1
3 q

2Φ4
1Φ

6
2Φ

2
4Φ8Φ10

E7(q) q63Φ7
1Φ

7
2Φ

3
3Φ

2
4Φ5Φ3

6Φ7·
·Φ8Φ9Φ10Φ12Φ14Φ18

E6[θ], 1
φ27,2

1
3 q

7Φ6
1Φ

6
2Φ

2
4Φ5Φ7Φ8Φ10

Φ14q
2Φ2

3Φ
2
6Φ9Φ12Φ18

E8(q) q120Φ8
1Φ

8
2Φ

4
3Φ

4
4Φ

2
5Φ

4
6Φ7Φ2

8Φ9·
·Φ2

10Φ
2
12Φ14Φ15Φ18Φ20Φ24Φ30

φ8,1
E8[i]

qΦ2
4Φ8Φ12Φ20Φ24

1
4 q

16Φ8
1Φ

8
2Φ

4
3Φ

2
5Φ

4
6Φ7

Φ9Φ2
10Φ14Φ15Φ18Φ30

2F4(q2),
q2 = 22f+1 > 2

q24Φ2
1Φ

2
2Φ

2
4Φ

2
8Φ12Φ24

ε′

cuspidal
q2Φ12Φ24

1
3 q

4Φ2
1Φ

2
2Φ

2
4Φ

2
8

Table 3
Exceptional groups of Lie type in characteristic p ∈ {2, 3} (part II).

Isomorphism type Order Label of α α(1) Exponent of a 
Sylow 
p-subgroup

F4(q) q24Φ4
1Φ

4
2Φ

2
3Φ

2
4Φ

2
6Φ8Φ12 φ4,1

1
2 qΦ

2
2Φ

2
6Φ8 24, 33

2G2(q2),
q2 = 32f+1 > 3

q6Φ1Φ2Φ4Φ12 cuspidal 1√
3 qΦ1Φ2Φ4 32

2B2(q2),
q2 = 22f+1 > 2

q4Φ1Φ2Φ8
2B2[a] 1√

2 qΦ1Φ2 22

In Table 2 some exceptional groups of Lie type are considered. Here, for each group S, 
we list two irreducible characters α and β that satisfy the conclusions of the statement. 
The data of Table 2 can be found in [5, Section 13.9], and the extendability of the relevant 
characters (which are all unipotent) is again ensured by Theorem 2.4 and Theorem 2.5 
in [14].

Finally, we focus on the exceptional groups of Lie type listed in Table 3. Again we 
consider β as the Steinberg character of the relevant group S, and α as the character 

appearing in the table. It is clear that the p′-part of |S| divides |S|
α(1) ·

|S|
β(1) , and we also 

see that the exponent of a Sylow p-subgroup of S divides the p-part of |S|
α(1) ·

|S|
β(1) . The 

data of Table 3 are taken from [5, Section 13.9], [13, Section 4] and, for what concerns 
the exponent of a Sylow p subgroup of F4(q), from [9, Theorem 3.1]; the extendability 
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of the unipotent character α is ensured, as usual, by Theorem 2.4 and Theorem 2.5 in 
[14]. �
Note. We are grateful to the referee for pointing out that the statement of [13, Lemma 3.8]
is not accurately transcribed from the original text [2, Corollary 9]. Upon her/his rec-

ommendation, we take the opportunity to note that the formula n(t) = tn−1 + 3
2 has 

to be corrected in n(t) = pt−1 + 3
2 , and n(t) < t in (i) should be changed to n(t) < n. 

However, this does not affect our results.

Lemma 1.3. Let S be a non-abelian simple group such that S �∼= PSL2(3f ) for any odd 
positive integer f , and let x be an element of S. Then there exists a non-principal irre-
ducible character α of S which has an extension to Aut(S) and such that |S|/α(1) is a 
multiple of the order of x.

Proof. Note first that, by the main theorem of [13], the statement is true whenever 
Out(S) is trivial, thus we may assume Out(S) �= 1.

Let us consider the case when S is a sporadic simple group or the Tits group. According 
to the isomorphism type of S, in Table 1 of [3] it is possible to find two non-principal 
irreducible characters of S that both extend to Aut(S); it can be checked that, unless S is 
isomorphic to Fi22, one of those is suitable to be taken as a character α such that |S|/α(1)
is a multiple of o(x). As for S ∼= Fi22, referring to the notation of [1], an appropriate 
character α can be found in the set {χ2, χ56}.

Now, assume that S is isomorphic to an alternating group Alt(n) for n ≥ 7. In this 
case the desired conclusion can be easily deduced from the proof of [7, Theorem A], 
where Qian’s conjecture is established for symmetric and alternating groups; for the 
convenience of the reader, we sketch next the relevant argument.

Consider the prime factorization

o(x) = 2k · pk1
1 · · · pkt

t

of the order of x, where k ≥ 0 and ki > 0 for every i ∈ {1, . . . , t} (taking into account 
that the set of odd primes {p1, . . . pt} can be empty). The proof of [7, Theorem A]
yields a non-principal irreducible character α of S such that |S|/α(1) is a multiple of 
22k−1 · p2k1−1

1 · · · p2kt−1
t if k �= 0, and of p2k1−1

1 · · · p2kt−1
t if k = 0 (hence, in any case, a 

multiple of o(x)): for our purposes, it is then enough to check whether α has an extension 
to Aut(S) ∼= Sym(n) and, as we will see, this does happen in most cases.

In fact, depending on the prime decomposition of o(x), the character α is chosen as an 
irreducible constituent of χS, where χ ∈ Irr(Sym(n)) is the character associated to one 
of the following partitions: λ = (n −1, 1) or μ = (n −2, 2) if k = 0; ν = (2k +1, 1n−2k−1)
if k �= 0. Observe that λ, μ and ν are not self-associated, hence χS lies in Irr(S) as we 
want, except for ν in the case when (k �= 0 and) n = 2k+1 +1. But in the latter case, still 
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following the argument in the proof of [7, Theorem A], we get pk1
1 + · · · + pkt

t ≤ 2k − 1, 
thus the largest prime power that divides o(x) is 2k; since 2k is smaller than n −1 = 2k+1, 
denoting by χλ ∈ Irr(Sym(n)) the character associated to the partition λ, it turns out 
that |Sym(n)|/χλ(1) = 2|S|/χλ(1) is a multiple of 22k−1 · p2k1−1

1 · · · p2kt−1
t . We deduce 

that |S|/χλ(1) is a multiple of 22k−2 ·p2k1−1
1 · · · p2kt−1

t , which is in turn a multiple of o(x)
unless k = 1: but k = 1 yields n = 5, not our case, and the desired conclusion follows 
taking into account that χλ

S lies in Irr(S).
Finally, let S be a simple group of Lie type (thus including Alt(5) and Alt(6)). In this 

case, our claim is ensured by [13, Theorem 5.1] when S �∼= PSL2(q) for any prime power 
q. If S ∼= PSL2(pf ) for p > 3, taking into account that the order of x is either p or a 
p′-number, we can define α as the character provided by [8, Theorem B] or the Steinberg 
character of S, respectively. As for S ∼= SL2(2f ), or S ∼= PSL2(3f ) with an even f , the 
character α (of degree 2f +(−1)f or 3f +1, respectively) is provided by Theorem A and 
Lemma 5.3(ii) of [20] if o(x) = p, or as the Steinberg character of S otherwise. �
Remark 1.4. Note that any group S ∼= PSL2(3f ), where f ≥ 3 is an odd positive integer, 
is a genuine exception to Lemma 1.2 and Lemma 1.3. In fact, it is well known that the 
degrees of the irreducible characters of S are the integers in the set {1, (3f − 1)/2, 3f −
1, 3f , 3f + 1} (see [20], for instance); recalling that the outer automorphism group of S
has order 2f , and it is generated by a field automorphism φ of order f and a diagonal 
automorphism δ of order 2, by Lemma 4.1, Lemma 4.5 and Lemma 4.6 of [20] the two 
irreducible characters of degree (3f −1)/2 are both invariant under φ (hence they extend 
to S〈φ〉), but they are interchanged by δ. Also, Lemma 5.2(i) and Lemma 5.3(iii) in [20]
show that 〈φ〉 does not stabilize any irreducible character of S whose degree is either 
3f − 1 or 3f +1; as a consequence, the only non-principal irreducible character of S that 
has an extension to Aut(S) is the Steinberg character (of degree 3f ).

Another key ingredient for the proof of Lemma 1.7 will be the information, provided 
by Lemma 1.5 and Lemma 1.6, on the extendability of certain irreducible characters in 
a monolithic group G with non-solvable socle M ∼= S1 × · · · × Sn. For these lemmas 
and for Lemma 1.7, we will assume that an injective homomorphism from G to Γ =
Aut(S1) � Sym(n) as described in Remark 1.1 has been preliminary fixed.

Lemma 1.5. Let G be a group having a unique minimal normal subgroup M , and assume 
M = S1 × · · · × Sn, where the Si are pairwise isomorphic non-abelian simple groups. 
Let α1 be a non-principal irreducible character of S1 which has an extension to Aut(S1)
and, for every i ∈ {1, . . . , n}, let αi be the corresponding character in Irr(Si). Also, for 
a given h ∈ {1, . . . , n}, set M1 = S1 × · · · × Sh and M2 = Sh+1 × · · · × Sn. Then the 
irreducible character λ = (α1 × · · · × αh) × 1M2 of M has an extension to its inertia 
subgroup IG(λ) = NG(M1) = NG(M2).

Proof. For i ∈ {1, . . . , n}, define Ai = Aut(Si) and set B1 = A1 × · · · × Ah, B2 =
Ah+1 × · · · × An, B = B1 × B2. Given an extension α̂1 of α1 to A1, let α̂i be the 
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corresponding character in Irr(Ai) and note that λ̂ = (α̂1×· · ·× α̂h) ×1B2 ∈ Irr(B) is an 
extension of λ. Since B is the base group of the wreath product Γ = Aut(S1) �Sym(n), by 
Lemma 25.5(b) in [10] there exists an extension θ of λ̂ to its inertia subgroup IΓ(λ̂). Now, 
viewing G as a subgroup of Γ, an element g = (g1, . . . , gn)σg ∈ G lies in IG(λ) if and 
only if σg lies in StabSym(n)({1, . . . , h}) = StabSym(n)({h + 1, . . . , n}), which means that 
g lies in NG(M1) = NG(M2). Since IΓ(λ̂) = B StabSym(n)({1, . . . , h}) contains IG(λ), 
we get that θIG(λ) is an extension of λ, as wanted. �

The following variation will take care of the exceptions to Lemma 1.2. After that, we 
will be in a position to prove Lemma 1.7.

Lemma 1.6. Let G be a group having a unique minimal normal subgroup M , and assume 
M = S1×· · ·×Sn, where the Si are all isomorphic to PSL2(3f ) for a suitable odd integer 
f ≥ 3. For every i ∈ {1, . . . , n}, let γi be an irreducible character of degree (3f − 1)/2 of 
Si; also, fixing h ∈ {1, . . . , n}, set M1 = S1 × · · · × Sh and M2 = Sh+1 × · · · × Sn. Then 
the irreducible character λ = (γ1 × · · · × γh) × 1M2 of M has an extension to its inertia 
subgroup IG(λ) ⊆ NG(M1) = NG(M2).

Proof. Note that the characters γi are not assumed to be necessarily G-conjugate. As 
above, for i ∈ {1, . . . , n}, define Ai = Aut(Si) and set B1 = A1 × · · · × Ah, B2 =
Ah+1 × · · · ×An, B = B1 ×B2.

Recalling that we have preliminary fixed a right transversal {t1 = 1, . . . , tn} of NG(S1)
in G, for i ∈ {1, . . . , n} we define Fi = (S1〈φ1〉)ti , where φ1 is a field automorphism of 
S1 having order f : by Remark 1.4, we know that each of the γi has an extension γ̂i to 
Fi. Also, define U = F1 × · · · × Fh ×B2.

Note that λ̂ = (γ̂1 × · · · × γ̂h) × 1B2 ∈ Irr(U) is an extension of λ and, still taking 
into account Remark 1.4, we have IB(λ̂) = IB(λ) = U ; therefore λ̂B is an irreducible 
character of B, and in fact we have λ̂B = (γ̂1

A1×· · ·×γ̂h
Ah) ×1B2 . As above, B being the 

base group of the wreath product Γ = Aut(S1) �Sym(n), [10, Lemma 25.5(b)] ensures that 
there exists an extension θ of λ̂B to the inertia subgroup IΓ(λ̂B). Now, the restriction of 
θ to M is the sum of all the conjugates λb where b runs over a transversal for U in B; 
in particular, recalling that U coincides with IB(λ), every irreducible constituent of θM
appears with multiplicity 1.

Observe that if an element g = (g1, . . . , gn)σg of G ≤ Γ lies in IG(λ), then necessarily 
σg ∈ StabSym(n)({1, . . . , h}). Thus, in particular, we have IG(λ) ⊆ NG(M1) = NG(M2). 
Since IΓ(λ̂B) = B StabSym(n)({1, . . . , h}) = NΓ(M1), we see that IG(λ) is contained in 
IΓ(λ̂B), hence we can consider an irreducible constituent ψ of θIG(λ) lying over λ. Now, 
ψM is a multiple of λ and λ appears as an irreducible constituent of ψM with multiplicity 
1: as a consequence, ψ ∈ Irr(IG(λ)) is an extension of λ, and the proof is complete. �
Lemma 1.7. Let G be a group having a unique minimal normal subgroup M , and assume 
M = S1 × · · · × Sn, where the Si are pairwise isomorphic non-abelian simple groups. 
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Also, let g be an element of G, and let r denote the order of gM ∈ G/M . Then the 
following conclusions hold.

(a) If S1 �∼= PSL2(3f ) for any odd positive integer f , then there exists a non-principal 
character λ ∈ Irr(M) such that λ has an extension to I = IG(λ), g lies in I, and 
|M |/λ(1) is a multiple of o(gr).

(b) If S1 ∼= PSL2(3f ) for some odd positive integer f , then there exist a non-principal 
character λ ∈ Irr(M) and a suitable h ≤ n such that λ has an extension to I = IG(λ)
and g2h ∈ I. Furthermore, |M |/λ(1) is a multiple of 2h o(gr).

Proof. Set Ω = {S1, . . . , Sn} and K =
⋂n

i=1 NG(Si), so that G/K is isomorphic to a 
transitive subgroup of Sym(Ω) ∼= Sym(n): up to renumbering the elements of Ω, there 
exists a suitable positive integer h ≤ n such that the set {S1, S2, . . . , Sh} is an orbit for 
the action of 〈gK〉 on Ω. As usual, define M1 = S1 × · · · ×Sh and M2 = Sh+1 × · · · ×Sn

(where M2 is meant to be trivial if h = n).
We start with an observation that will be useful for proving claim (b), so, let us assume 

S1 ∼= PSL2(3f ) for a suitable odd integer f ≥ 3; in what follows, we will consider the 
wreath product Γ = Aut(S1) � Sym(n) and its subgroups U , B as defined in Lemma 1.6, 
and we recall that an injective homomorphism from G to Γ as in Remark 1.1 is prelimi-
nary fixed. Also, we write 〈g〉 = X × Y , where |X| is an odd number and |Y | is a power 
of 2. Consider the set

Δ = {(γ1 × · · · × γh) × 1M2 ∈ Irr(M) | γi ∈ Irr(Si) and γi(1) = (3f − 1)/2}.

We see that both X (which normalizes M1) and the 2-group B/U act on Δ; moreover, X
acts on B/U , the orders of X and B/U are coprime, the action of B/U on Δ is transitive 
(in fact regular, as |Δ| = 2h = |B/U |) and we have

(ηb)x = (ηx)b
x

for every η ∈ Δ, b ∈ B and x ∈ X. Therefore, Glauberman’s Lemma 13.8 in [11] yields 
that there exists an element λ1 of Δ such that X lies in IG(λ1); this λ1 also has an 
extension to IG(λ1) by Lemma 1.6. If we choose η = (γ1 × · · · × γh) × 1M2 in Δ such 
that the γi are all characters corresponding to γ1, then it is easy to see that IΓ(η) lies 
in NΓ(M1) with |NΓ(M1) : IΓ(η)| = 2h; since there exists b ∈ B ⊆ NΓ(M1) such 
that λ1 = ηb, we clearly get |NΓ(M1) : IΓ(λ1)| = 2h as well. But then, as g lies in 
NΓ(M1), we have |〈g〉 : 〈g〉 ∩ IG(λ1)| ≤ |NΓ(M1) : IΓ(λ1)| = 2h. Taking into account 
that, as we just proved, the Hall 2′-subgroup of 〈g〉 is contained in IG(λ1), it follows that 
|〈g〉 : 〈g〉 ∩ IG(λ1)| is in fact a divisor of 2h and therefore g2h ∈ IG(λ1).

Next, it will also be useful to take into account the following remark, which holds for 
both (a) and (b) under the assumption that the action of 〈gK〉 on Ω is transitive (in 
other words, when h = n and gK is identified with an n-cycle in Sym(n)). Recalling that 
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r denotes the order of gM ∈ G/M , let us write gr = (s1, ..., sn) ∈ M : we note that the 
orders of the si ∈ Si are all the same, for i ∈ {1, . . . , n}. In fact, write g = (g1, . . . , gn)σg

as an element of the wreath product Γ = Aut(S1) � Sym(n). Conjugating gr with g, we 
get (sgnn , sg1

1 , . . . , sgn−1
n−1 ). This is clearly the same as gr, so in particular sj = s

gj−1
j−1 for 

every j ∈ {2, . . . , n} and we get the desired property. As a consequence, the order of gr

is in fact the order of an element of S1.
We can now work toward a proof of (a) and (b), and we first treat the case when the 

action of 〈gK〉 on Ω is not transitive, so that we have 1 ≤ h < n.
If S1 is not isomorphic to PSL2(3f ) for any odd positive integer f , then Lemma 1.2

yields the existence of two distinct non-principal characters α1, β1 ∈ Irr(S1), both having 

an extension to Aut(S1), such that |S1|
α1(1) · |S1|

β1(1) is a multiple of exp(S1). Denoting by 

αi and βi the characters of Si corresponding to α1 and β1 for i ∈ {1, . . . , n}, Lemma 1.5
yields that λ1 = α1×· · ·×αh×1M2 and λ2 = 1M1 ×βh+1×· · ·×βn both extend to their 
inertia subgroup I = NG(M1) = NG(M2). Define now λ = λ1λ2 ∈ Irr(M): the inertia 
subgroup of λ = α1 × · · · × αh × βh+1 × · · · × βn in G is again I (in fact, viewing G as 
a subgroup of Γ, an element y = (y1, . . . , yn)σy ∈ G lies in IG(λ) if and only if σy lies 
in StabSym(n)({1, . . . , h}) = StabSym(n)({h + 1, . . . , n}), which means y ∈ I); moreover, 
I contains the element g and, by [11, Theorem 6.16], λ has an extension to I. Finally, 
we get λ(1) = α1(1)hβ1(1)n−h, therefore |M |/λ(1) is certainly a multiple of exp(S1) and 
claim (a) in the non-transitive case immediately follows.

On the other hand, if S1 ∼= PSL2(3f ) for a suitable odd integer f ≥ 3, then we 
consider a character λ1 ∈ Irr(M) as in the second paragraph of this proof: so, λ1 has an 
extension to IG(λ1) and g2h ∈ IG(λ1). Also, define βi as the Steinberg character of Si, 
set λ2 = 1M1 × βh+1 × · · · × βn and observe that λ2, whose degree is 3f(n−h), extends to 
IG(λ2) = NG(M1) = NG(M2) by Lemma 1.5. Set now λ = λ1λ2; the inertia subgroup 
of λ turns out to be I = IG(λ1), and λ extends to I again by Theorem 6.16 of [11]. 

Recalling that |Si| =
(3f − 1) · 3f · (3f + 1)

2 , we have

|M |
λ(1) = 2h · |S1|

3f − 1 · · · |Sh|
3f − 1 · |Sh+1|

3f · · · |Sn|
3f ,

which is certainly a multiple of 2h ·exp(S1) = 2h · (3
f − 1) · 3 · (3f + 1)

4 and, in particular, 
of 2h o(gr). Claim (b) is thus proved in the non-transitive case.

We move next to the case when the action of 〈gK〉 on Ω is transitive; as previously 
observed, in this case the order of gr is in fact the order of an element of S1.

If S1 �∼= PSL2(3f ) for any odd integer f ≥ 3 then, by Lemma 1.3, there exists an 
irreducible character α1 ∈ Irr(S1) such that |S1|/α1(1) is a multiple of o(gr) and α1

extends to Aut(S1); therefore, by Lemma 1.5, the character λ = α1 × · · · × αn extends 
to IG(λ) = G and clearly satisfies the conclusions of claim (a).
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It remains to consider the case when S ∼= PSL2(3f ) for an odd f ≥ 3 and the action 
of 〈gK〉 on Ω is transitive. Since o(gr) is the order of an element of S1, then it is either 
3 or a number coprime to 3. For the former case we can consider a character λ1 as in 
the second paragraph of this proof (here h = n), whereas in the latter case we define 
λ1 as the direct product of the Steinberg characters of the Si, for i ∈ {1, . . . , n}, which 
extends to I = IG(λ1) by Lemma 1.6 or Lemma 1.5. It can be easily checked that the 
conclusions of claim (b) are satisfied by this λ1, so the proof is complete. �
2. Proof of Theorem A

Note that the conclusion of claim (a) in Lemma 1.7 is stronger than that of claim (b); 
in fact, the former is just the latter with the additional property that h = 0. In other 
words, claim (b) holds for any isomorphism type of S1, and this is what will be relevant 
henceforth.

We are ready to prove Theorem A, that we state again.

Theorem A. Let G be a group whose Fitting subgroup is trivial, and let g be an element 
of G. Then there exists χ ∈ Irr(G) such that cod(χ) is a multiple of the order of g.

Proof. We can clearly assume G �= 1. Since the group G has a trivial Fitting subgroup, 
the generalized Fitting subgroup E of G is the socle of G, thus E = M1×· · ·×Mk where 
the Mj are non-solvable minimal normal subgroups of G. For every j in {1, . . . , k}, Mj

is in turn the direct product of pairwise isomorphic non-abelian simple groups, and we 
denote by nj the composition length of Mj (i.e. the number of simple direct factors 
appearing in this direct decomposition of Mj).

Now, set Cj = CG(Mj) and denote by Vj the product of all the M	 for � ∈ {1, . . . , k} −
{j} (in particular, Vj ⊆ Cj); the factor group Gj = G/Cj has Mj as its unique minimal 
normal subgroup, thus we can apply Lemma 1.7 to Gj with respect to the element gCj , 
and choose a character λj ∈ Irr(Mj) with a corresponding non-negative integer hj ≤ nj

as in Lemma 1.7(b). Note that each λj can be regarded by inflation as a character of 
Mj × Cj whose kernel contains Cj, hence there exists a unique λj ∈ Irr(Mj) such that 
λj = λj × 1Cj

; given that, we define λ = λ1 × · · · × λk ∈ Irr(E).
We know that the character λj extends to IG(λj) = IG(λj), therefore λj × 1Vj

∈
Irr(E) extends to IG(λj) as well. In particular, each λj × 1Vj

has an extension λ̂j to 
I = IG(λ) =

⋂k
s=1 IG(λs), and it is easy to check that the product ψ =

∏k
s=1 λ̂s is an 

extension of λ to I. Furthermore, defining h = h1 + · · · + hk and recalling that we have 
g2hj ∈ IG(λj) for every j ∈ {1, . . . , k}, we get g2h ∈ I.

Finally, set χ = ψG ∈ Irr(G) and note that χ is a faithful character of G, because

ker(χ) ∩E ≤ ker(ψ) ∩ E = ker(ψE) = ker(λ) = 1,

and a normal subgroup of G which intersects E trivially is necessarily trivial.
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We are ready to conclude the proof. We get

cod(χ) = |G|
χ(1) = |G|

|G : I|ψ(1) = |I|
|E| ·

|E|
ψ(1)

and, denoting by r = |〈g〉E/E| the order of gE ∈ G/E,

|I|
|E| = |I|

|〈g〉E| · r = |I : 〈g〉E ∩ I|
|〈g〉E : 〈g〉E ∩ I| · r = |I : 〈g〉E ∩ I|

|〈g〉 : 〈g〉 ∩ I| · r .

In order to prove that cod(χ) is a multiple of o(g), taking into account that |〈g〉 : 〈g〉 ∩ I|
is a divisor of 2h, it will then suffice to show that |E|/ψ(1) is a multiple of 2h o(gr).

In fact, for j ∈ {1, . . . , k}, consider Gj = G/Cj , and denote by rj the order of gMj in 
Gj/Mj . Clearly all the rj are divisors of r; since, for every j ∈ {1, . . . , t}, |Mj |/λj(1) is 
a multiple of 2hj o(grj ) by Lemma 1.7, we see that |Mj |/λj(1) is a multiple of 2hj o(gr)
as well. Now,

|E|
ψ(1) = |E|

λ1(1) · · ·λk(1) = |M1|
λ1(1) · · ·

|Mk|
λk(1)

is a multiple of 2h o(grC1) · · · o(grCk). Recalling that the map x �→ (xC1, . . . , xCk) is an 
injective homomorphism from G to G/C1×· · ·×G/Ck, it follows that the least common 
multiple of o(grC1), . . . , o(grCk) equals o(gr), and the desired conclusion follows. �
3. A reduction

We conclude this note observing that Qian’s conjecture can be reduced to groups with 
a solvable socle.

Remark 3.1. Assume that the group G is a minimal counterexample to the conjecture 
stated in the Introduction; then we claim that G does not have any non-solvable minimal 
normal subgroup.

For a proof by contradiction, denote by M a non-abelian minimal normal subgroup of 
G, set C = CG(M), and observe that the factor group G = G/C is a monolithic group 
whose socle is M ∼= M . Therefore, for a fixed element g of G, we can apply Lemma 1.7
with respect to g = gC and obtain what follows: there exists a non-principal character 
λ ∈ Irr(M) and a non-negative integer h (not exceeding the composition length of M) 
such that λ has an extension to I = IG(λ), g2h = g2h

C lies in I, and |M |/λ(1) is a 
multiple of 2h o(gr) where r is the order of gM in G/M . By inflation, λ can be viewed 
as a character of M ×C and, as such, it is of the form λ × 1C for a suitable λ ∈ Irr(M); 
clearly, we have IG(λ) = IG(λ) = I (hence g2h ∈ I) and |M |/λ(1) = M/λ(1). Observe 
also that, if r denotes the order of gM in G/M , then r is a multiple of r and therefore 
o(gr) is a multiple of o(gr); as the map x �→ x is an isomorphism of M to M , we get 
o(gr) = o(gr) = o(gr).



440 Z. Akhlaghi et al. / Journal of Algebra 644 (2024) 428–441
Now, we know that λ has an extension λ̂ to I such that ker(λ̂) contains C; moreover, 
the minimality of G yields that there exists ξ ∈ Irr(I/M) such that |I/M : ker(ξ)|/ξ(1)
is a multiple of o(g2h

M) = r/gcd(2h, r). Define ψ as λ̂ξ, which is in Irr(I) by Gallagher’s 
Theorem, and χ = ψG: by Clifford Correspondence we have χ ∈ Irr(G), and we claim 
that cod(χ) is a multiple of the order of g. It will follow that G is not a counterexample 
to Qian’s conjecture, so we have a contradiction.

In fact,

cod(χ) = |G : ker(χ)|
χ(1) = 1

|ker(χ)| ·
|I|
ψ(1) = 1

|ker(χ)| ·
|I/M |
ξ(1) · |M |

λ(1) .

Since |I/M : ker(ξ)|/ξ(1) is a multiple of r/gcd(2h, r) and |M |/λ(1) is a multiple of 
2h o(gr), it will be enough to show that ker(χ) is contained in ker(ξ): this can be deduced 
by the fact that ker(χ) is a normal subgroup of G intersecting M trivially, hence ker(χ) ⊆
C ∩ ker(ψ) = ker((λ̂ξ)C) = ker(ξC) (recall that ker(λ̂) contains C) and the argument is 
complete.
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