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Abstract: The characterization of the layered structure is of paramount importance for the study of
maiolica wares (tin-glazed pottery). This paper presents the potentialities of Terahertz Time-Domain
Imaging (THz-TDI) as a tool to perform non-invasive stratigraphic analysis of the maiolica objects
under test. Samples with different types of stratigraphy, as testified by preliminary SEM-EDS analysis,
were investigated by THz-TDI in laboratory conditions. The collected THz data were processed by
means of noise filtering procedures and a time-of-flight-based imaging approach and the achieved
results corroborate the ability to identify glaze layers, whose electromagnetic properties, i.e., the
refraction index and the dielectric permittivity value, were estimated by taking into account both
THz-TDI and SEM-EDS data. However, layers applied over the white glaze (namely, a transparent
overglaze and a luster decoration) were not detected, probably since their thickness is below the
range resolution of the adopted THz-TDI system. Morphological features hidden under the surface
were also identified and they provided information about the manufacturing technique.

Keywords: THz imaging; non-invasive testing; cultural heritage; maiolica; stratigraphic analysis

1. Introduction

Maiolica is the Italian term to describe earthenware artifacts coated with tin glazes.
Tin glazing technology arrived in Italy in the 13th century and reached its most refined
peaks during the Renaissance [1–3]. Over the centuries, the creation of maiolica objects
became an artistic branch, characterized by its own productive and decorative styles [4–7].
Therefore, the maiolica manufacturing process was not a standard but it changed in time
from region to region, and often each atelier used its own recipes.

Since maiolica is a multilayer structure made of several thin layers, the exploitation
of technologies providing information about their layered structure can help in the study
of the productive process, allowing for the identification of distinctive features of single
manufacturers or chronological and geographical trends. Moreover, information about
internal features is crucial to determine the state of conservation of a glazed artifact,
highlighting detachments, inhomogeneities, or other defects under the surface.

The main analytical technique used for the study of maiolica is Scanning Electron
Microscopy coupled with Energy-Dispersive Spectroscopy (SEM-EDS), which provides
information on both the composition and the microstructure of a sample [4–8]. How-
ever, SEM-EDS is micro-destructive, which is performed on polished cross sections made
through the glazes into the ceramic bodies. This is an issue, not only since complete
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objects or particularly precious ones cannot be sampled, but also since a single sample
is not always representative of the whole artifact. Therefore, the possibility of acquiring
stratigraphic information by non-invasive methods is extremely valuable. However, while
there are many non-invasive techniques which provide compositional information (e.g.,
Raman Microscopy, Reflectance Spectroscopy, X-Ray Fluorescence Spectroscopy, Ion Beam
Analysis, etc.) [6–14], the non-invasive characterization of the layer structure of a glazed
earthenware is still challenging. A few attempts have been made in the past by Optical
Coherence Tomography (OCT) [15–17], Macro X-ray Fluorescence Scanning (MA-XRF)
with Monte Carlo simulations [9], and Micro-Computed Tomography (µCT) [18,19].

In this study, we use Terahertz Time-Domain Imaging (THz-TDI) in reflection
mode [20–22] for the non-invasive stratigraphic characterization of maiolica sherds from
the collection of the Museo Nazionale del Bargello in Florence.

THz radiation lies between infrared and microwaves, in the frequency range between
0.1 THz and 10 THz. This range was also known as the ‘THz gap’ between electronics and
optics, i.e., between dielectric relaxation phenomena and vibrational spectroscopy [23,24].
THz radiation is non-ionizing, penetrates most dielectric materials, and interacts with both
intramolecular and intermolecular motions of solid matter [25–27]. In particular, THz waves
can penetrate more in-depth compared to IR radiation and allow for the characterization of
materials transparent to X-rays, thus providing information somehow complementary to IR
multispectral imaging and X-ray tomography [20,21,25]. Moreover, several materials have
characteristic spectroscopic features at THz frequencies; therefore, THz spectroscopy can be
used to identify materials based on their spectral fingerprint as well as on the computation
of their refractive index [25–29].

THz-TDI is a cutting-edge technique, which is finding increasing interest in different
applications [30,31] including, for example, the biomedical context [32,33] and the charac-
terization of composite materials [34,35]. The technique had also important applications
in the field of Cultural Heritage in the last 15 years. The first study was carried out by
Koch et al., on wood dendrochronology [36]. Later, Fukunaga et al. investigated different
types of artworks [20,25,37] and, at present, THz surveys of wall, canvas, and panel paint-
ings are quite common [38–54]. In addition, THz-TDI was exploited to investigate maiolica
tiles and their multilayer structure in [55].

This paper provides a further contribution, assessing the pros and cons of THz-TDI
as a tool to characterize maiolica artworks, and it presents results referred to three sherds.
The investigated sherds were selected by accounting for preliminary SEM-EDS analysis,
which allowed for the classification of the sherds on the basis of the manufacturing and
decorative technique used [56]. Indeed, one sample was decorated with colored glazes,
one with colored glazes and luster, and one with colored glazes covered by a transparent
overglaze (coperta). Accordingly, THz-TDI capability of characterizing white and colored
glazes, the luster decoration and the transparent overglaze is presented and discussed by
considering the information provided by the SEM-EDS surveys. In addition, SEM-EDS
and THz-TDI information are exploited together to estimate the refraction index and the
dielectric permittivity of the glaze.

The paper is organized as follows: The Italian maiolica technique and the investigated
samples are described in Section 2; Section 3 deals with THz data acquisition and processing;
Section 4 summarizes the results, which are discussed in Section 5; conclusions and future
works are provided in Section 6.

2. Materials
2.1. Italian Maiolica Technique

A maiolica can be described as a multi-layered object made of a once-fired earthenware
body, covered by a glaze made white and opaque by tin oxide, and then painted with
inorganic colors [4]. The majority of these colors fuse into the glaze during firing in the
form of metallic ions (Figure 1a), while only a few of them, such as antimony yellow, form
a proper pigment layer on top of the white tin glaze (Figure 1b). Moreover, a transparent
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overglaze (historically called ‘coperta’) is sometimes applied on top of the painted decoration
in order to protect it and enhance its brilliance (Figure 1b).
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Figure 1. Schematic representation of two typical layer structures of Italian maiolica (thickness ranges
taken from [4,5]). (a) Blue glaze and golden luster decoration: the earthenware body is covered by
a white tin glaze; a blue colorant is fused into the glaze on the left side, while a luster decoration
is applied over the white glaze on the right side. (b) Yellow decoration: the earthenware body is
covered by a white tin glaze, a pigment layer, and a transparent overglaze (‘coperta’).

The composition of the overglaze is similar to the one of the white glaze, except for
the absence of the tin-oxide opacifier [4]. After having been glazed, colored and, optionally,
over-glazed, the artifact was fired for a second time.

Typical thicknesses of Italian maiolica tin glazes range between 60 µm and 300 µm, the
great majority being thicker than 150 µm; the transparent overglazes had similar thicknesses
(between c. 60 and 230 µm) [4]. Furthermore, a maiolica could be decorated with lusters,
i.e., thin films (0.2–0.5 µm) containing nanoparticles of metallic silver and copper, which
gave metallic, iridescent reflections to the surfaces (Figure 1b) [5]. Lusterware had to be
fired a third time.

Not only the chemical composition, but also the number and thickness of the applied
layers influence the appearance and quality of the final maiolica ware [4–7].

2.2. Investigated Maiolica Sherds

Three sherds of the maiolica collection of the Museo Nazionale del Bargello in Flo-
rence manufactured between the 15th and 16th centuries in Central Italy are investigated.
Sherd selection was made by taking into account preliminary SEM-EDS analysis, which
provided information about the layer structure (number and thickness of the layers) of
the samples [56].

Fragments for microscopic investigation were sampled and their cross sections were
analyzed by means of Reflected Light Microscopy (RLM) and SEM-EDS. RLM was per-
formed with a Zeiss Axio Scope A1 optical microscope (Carl Zeiss SMT Ltd., Cambridge,
UK), equipped with a camera (resolution 5-megapixel) and a dedicated image analysis
software Zen lite 3.1. SEM-EDS analysis was carried out at the “Centro di Servizi di Mi-
croscopia Elettronica e Microanalisi (M.E.M.A.)” of the University of Florence by using a
Zeiss EVO MA15 Scanning Electron Microscope (Carl Zeiss SMT Ltd., Cambridge, UK)
coupled with an Oxford INCA250 Energy-Dispersive Spectrometer (Carl Zeiss SMT Ltd.,
Cambridge, UK) operating at 15 kV accelerating potential and 700 pA probe current.

Figure 2 shows the macroscopic pictures of the sherds and the microscopic images
(RLM and SEM-EDS) of the analyzed cross sections. Table 1 summarizes the samples
information and their stratigraphy as provided by the SEM-EDS analysis.

The sherd, referred to as Sample B_aut3, is a fragment from the base of a bowl
decorated with small tulips having blue stems and brown flowers; it has a depression in
the region where the tulips depart, and its surface is smooth to the touch.

The sherd named Sample C_aut2 has a flat morphology with the external rim and the
blue decorative lines in relief.
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Figure 2. Left: Pictures of the maiolica sherds analyzed in this study; red circles indicate the area
from which samples were taken for microscopic analysis. Centre: images of the cross sections seen
under the reflected light microscope. Right: SEM-EDS images of the cross sections (backscattered
electrons). Numbers on the cross sections indicate the number of the layer as given in Table 1.

Table 1. List of the analyzed maiolica sherds samples.

Sample Date Place of Production Layer Structure (SEM-EDS)

B_aut3
15th cent.
(2nd half) Florence (area of)

1. ceramic body

2. white tin glaze
} 210 ± 20 µm

3. colored glaze

C_aut2 16th cent. Deruta

1. ceramic body

2. white tin glaze
} 210 ± 20 µm

3. colored glaze/luster

B_aut4 15th cent.
(2nd half) Deruta

1. ceramic body

2. white tin glaze → 150 ± 20 µm

3. yellow pigment layer → 20 ± 10 µm

4. transparent overglaze → 60 ± 20 µm

The sherd named Sample B_aut4 is a fragment of a jar and has a strongly concave
shape. In addition, similar to that of sample B_aut3, its surface is smooth to the touch.

Samples B_aut3 and C_aut2 have a layer structure similar to that represented in the
scheme in Figure 1a. Sample B_aut3 has a single glaze layer over the ceramic bisque
(Figure 2, first row); the white tin glaze is decorated with cobalt blue and manganese
brown and the colorants are embedded in the upper portion of the glaze. Sample C_aut2
is decorated with cobalt blue and with a metallic (silver- and copper-based) yellow luster
(Figure 2, second row). Note that the luster layer is very thin to be detected by SEM-EDS.

Finally, sample B_aut4 has a more complex layered structure, comparable to the one
represented in the scheme in Figure 1b. Indeed, the white ground glaze is decorated with
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green, blue, and orange-yellow colors and a transparent overglaze (coperta) is applied on
the top. For this sample, the THz-TDI analysis was focused on the orange-yellow portion
since the orange-yellow pigment (lead antimonate) has a peculiar behavior, forming a
separate layer between the white ground and the transparent overglaze (Figure 2).

Based on the SEM-EDS measures, the mean thickness of the total glaze layer (white
ground + colorant/pigment layer + overglaze) is 210 ± 20 µm for all samples. In sherd
B_aut4, the thickness of the transparent overglaze is 60 ± 20 µm and that of the orange-
yellow pigment layer is 20 ± 10 µm.

3. Methods
3.1. THz-TD Imaging Working Principle

THz-TD imaging is based on the emission of a picosecond-short pulse, i.e., a THz pulse,
which impinges on the sample under test (e.g., the sherd in Figure 3a) and interacts with
it. Back-reflected pulses, or reflections, produced by the sample surface and each further
inner interface occurring between materials with different refraction indexes are detected
and stored as a function of the time-of-flight (ToF), i.e., the time that the signal employs to
propagate from the emitter to the material interface and to return to the receiver (Figure 3b).
The first reflection occurring in time is due to the interface between the air and the outer
surface of the sample (i.e., the sample side close to the THz probes, which in this case is
the outer glaze); subsequent pulses correspond to inner material interfaces. Therefore, the
THz waveform collected from a single point accounts for the depth profile of the sample in
that point, while a bi-dimensional cross-sectional image (also called B-scan or radargram)
is obtained by collecting data, i.e., THz waveforms along a line (Figure 3c). Finally, the scan
of an area generates a data cube (Figure 3d), from which different representations of the
sample can be extrapolated, such as cross-sectional images along different lines, slices at
different depths, and pseudo color 2D images (more details are provided in Section 3.4).
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Figure 3. Analyzed sample and THz data: (a) RGB image of the sample; the yellow spot, the red
line, and the light blue area are related to the data shown in (b–d), respectively; (b) THz waveform
collected in a single measurement point over the sample (yellow spot in (a)); (c) THz B-scan or
radargram collected from the red dashed line in (a); (d) THz data cube collected from the area in the
light blue rectangle in (a).
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It is worth pointing out that the ToF, T, depends on the distance, d, between the THz
probes and the encountered material interfaces as well as on the electromagnetic velocity, v,
of the wave in the medium where the propagation occurs:

T =
2d
v

(1)

Being v = c/n, where c is the light velocity (c ≈ 3e8 m/s) and n is the refractive index
of the medium where the propagation occurs. From Equation (1), it is possible to estimate
the refractive index n provided that the ToF and the distance d are known.

n =

(
Tc
2d

)
(2)

Moreover, assuming that the material is non-magnetic (i.e., µ = µo, µo being the air
magnetic permeability), isotropic, and lossless, the relative dielectric permittivity, εr, can be
computed as follows:

εr = n2 (3)

3.2. THz-TD Equipment

The maiolica sherds were analyzed by using the Zomega Fiber-Coupled Terahertz
(FiCO) system (Zomega Terahertz Corp., New York, NY, USA) installed at the Institute
of Electromagnetic Sensing of the Environment, National Research Council of Italy. The
system is shown in Figure 4 and described in detail in [55]. FiCO is a Time-Domain System
(TDS) made up of three main components: (a) The 1.5 µm laser source with an average
power higher than 200 mW; (b) the base unit, which splits the source optical signal into the
pump and probe beam used for THz waves generation and detection; (c) the transmitting
and receiving modules, which are coupled with fiber optic and are reconfigurable in
transmission and reflection mode. The laser source and the base unit are mounted on
a movable optical table, optically connected to each other, and covered by means of an
aluminum box, which protects the optical alignment and ensures operator safety with
respect to the laser ray. The system is equipped with an imaging module, which allows
for measurements in normal reflection mode on a planar area, whose maximum size is
150 mm× 150 mm. The transmitting and receiving modules are obtained in a fixed position
and manually moved at the focal distance from the sample. The sample is placed on top of
the automatic planar scanner and it is moved in both spatial directions with a minimum
spatial offset of 0.12 mm.
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The observation time window of the system is Tmax = 100 ps and it is movable along
a range of 1 ns, while the nominal spectral bandwidth is B = 3.0 THz. The work frequency
band is reduced to less than 2 THz when the system works in reflection mode.

It is worth pointing out that the observation time window and the bandwidth constrain
the maximum reachable investigation distance (zmax) and the range or depth resolution
(∆z), which are respectively:

zmax =
Tmax × v

2
∆z =

v
2B

(4)

For the experiment presented in this paper, the usable bandwidth B of the system is
about 1.1 THz [57]. Therefore, the range resolution in air (v = c) is about 140 µm.

The spatial resolutions along the x and y axis are related to the beam width of the
radiated THz pulse, which is about 1.5 mm, and to the scanning offset.

The amplitude of the THz signal is provided in arbitrary units by the THz system.

3.3. Data Processing

The raw THz data were processed by means of filtering procedures devoted to miti-
gating the effects of environmental noise. First, the Fourier Filtering (FFT) procedure, as
in [55], is applied, and then the Singular Value Decomposition (SVD) approach, as in [58],
is used.

The FFT procedure performs a band-pass filter and removes low and high frequency
signal components, which are outside the actual working frequency range of the TDI-THz
system. Let s(t) be the raw measured THz signal at the generic measurement point, the
filtered signal is given by:

ŝ(t) = IFF(Π(FF(s(t)))) (5)

where FF and IFF denote the direct and inverse Fourier’s transforms, respectively, while Π
is band pass filter. Herein, the signal components outside the frequency range from 40 GHz
to 2.40 THz are filtered out.

The SVD approach accounts for a truncated SVD representation of the data. Let Ŝ be
the M×N dimensional Fourier filtered data matrix, where M is the number of measurement
points and N the number of time samples discretizing each collected THz waveform in the
observation time window. Noise components are mitigated by considering the filtered data
matrix given by:

∼
S(t) = ∑P

i=1 σiuivT
i (6)

where the triple {σi, ui, vi}Q
i=1 denotes the SVD of Ŝ, Q ≤ min{M, N} being its rank, and

the threshold P < Q is set in a way that the energy of the filtered signal
∼
S is about the

90%–95% of the energy of Ŝ. It is worth pointing out that
∼
S(t) is made up of M elements,

which are the N dimensional vectors
∼
s m(t) with m = 1, . . . , M, representing the filtered

signals collected in all the measurement points.
Finally, a topography correction procedure was performed by aligning the first re-

flection of each acquired waveform to the time t = 0 ps. The procedure is fully described
in [55,58]. It makes the air−sample interface artificially flat in order to compensate for the
time-delay differences introduced by the surface topography of the sample. This is useful
when not perfectly analyzing the flat samples and simplifies the comparison between both
different samples and different areas of the same sample. However, since this correction
may affect the topography of the inner material interfaces and thus, the depth profile of
the sample, both the aligned and non-aligned data must be considered for interpreting the
results properly, and this was carried out in the present study.

3.4. Representation of Data

There are many ways to represent THz data cubes in more readable 2D plots [21].
Pseudo color images, B-scans (or radargrams), and C-scans at different depths have
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been considered to represent the THz data and gather information on the surveyed
maiolica sherds.

Pseudo color images have been obtained by plotting in each pixel the maximum, the
minimum, or the total value of the amplitude of the filtered signal

∼
s m(t) with m = 1, . . . , M.

The amplitude values are given by the THz system in arbitrary units and are shown in the
pseudo color images below using a gray scale. These images provide 2D visualizations of
the sample related to its reflectivity map; therefore, they allow for the detection of materials
with different refractive indexes. However, they do not account for depth information, and
thus are not suitable to perform a stratigraphic characterization.

B-scans (or radargrams or cross-sectional images) are spatial-time maps obtained by
representing the filtered signals referred to the same measurement line all together (see,
for example, Figure 3c). The spatial axis represents the measurement points, while the
time axis accounts for the time-of-flight, which is related to the propagation depth inside
the sample. The B-scans provide 2D images representing cross-section views of the inner
structure of the sample and provide information on the presence and location of possible
inner layers. Therefore, they allow for stratigraphic analysis.

C-scans at different depths (or depth slices) provide a 3D characterization of the inner

feature of the sample and account for the entire data matrix
∼
S(t). Herein, each C-scan has

been obtained by computing, at each measurement point, the average of the amplitude of
the signal in consecutive intervals of the observation time window, where the useful signal
occurs. The width of these time intervals remains constant and is set by taking into account
the frequency bandwidth of the system. Moving the time range along the observation time
window, different C-scans, representing horizontal cuts of the sample from its surface (i.e.,
the side close to the transmitting/receiving probe) toward its bottom, are obtained. It is
worth pointing out that the time-alignment procedure described in Section 3.3 was applied
in order to plot the C-scans at different depths, thus correcting time misalignments of the
reflection due to the surface topography of the air−sample interface. Moreover, in the
figures given below, the color scale of the first three C-scans ranges from the minimum
detected value (black) to the maximum one (white), while the other C-scans are represented
in a fixed color scale ranging from −10 to +10; this avoids saturation effects and losses of
relevant details.

4. Results
4.1. Sherd B_aut3

As already mentioned, sample Baut3 is a fragment from the base of a bowl; it has a
depression, surrounded by a radial decoration of small tulips with blue stems and brown
flowers. An area of 20 × 20 mm2, with the depression in the bottom left corner, was
scanned by THz-TDI with a spatial offset of 0.15 mm (Figure 5a). Figure 5b–d show the
THz pseudo color images obtained by plotting the maximum amplitude value of the
raw, FFT filtered, and FFT + SVD filtered waveform collected at each measurement point,
respectively. The comparison of the THz images makes clear the effect of the filtering
procedures and corroborates their effectiveness as a tool to improve the readability of the
THz images and to make the extrapolation of useful information easier. Stems and flowers
are, indeed, roughly visible in Figure 5b, become clear in Figure 5c, and are better visualized
in Figure 5d.

THz pseudo color images also show that the painted tulips and stems appear as the
areas with the highest reflectivity, i.e., the areas where the maximum amplitude of the THz
waveform is attained. This suggests that the colored glaze has higher relative permittivity
compared to the white glaze areas. However, it is worth noting that there is no appreciable
variation between brown and blue colored areas.

In addition, a black circle appears in the bottom left corner, i.e., for x in [0–12] mm and
y in [12–20] mm, while a black dot is in the point of coordinates x = 4 mm and y = 4 mm.
The presence of these features with low reflectivity is due to the surface topography of the
sherd. Indeed, they correspond to areas where the surface changes its slope, and thus the
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incident angle is not null. As a consequence, the system does not detect at all or detects
only partially the reflected signal. Moreover, several curved lines are visible around the
central depression and suggest that a potter’s wheel was used to manufacture this ware.

The above features appear clearly in the C-scans at different depths (Figure 6), which
also provide hints about the stratigraphy of the sample. The C-scans have been obtained
by exploiting the alignment procedure, which sets the zero of the time axis of each trace in
correspondence of the first reflection [55,58].
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The C-scans at different depths show that the colored decorations produce an alteration
of the THz signal in the time range [0–3.5] ps. This is coherent with the literature and
the SEM image (Figure 2, first row), which show that manganese and cobalt colorants
fused into the upper part of the glaze by forming a type of layer; therefore, the presence
of an inner interface is expected in the colored areas. Moreover, starting from 4.1 ps, the
C-scans are rather homogeneous (except for the effect of the shaded zone due to the cavity),
suggesting that the signal is coming from the white ground glaze. Finally, from t = 6.5 ps,
the entire image starts to be quite homogeneous suggesting that, from this time instant, the
contributions to the THz waveform are given by the ceramic body.

To corroborate the information about the sample stratigraphy, the B-scans have been
also considered. For the sake of brevity, only a representative B-scan is shown in Figure 7
along with the THz waveforms referred to as white, blue, and brown spots. As stated, the
first strong reflection is due to the interface between the air and the sample surface, and it
is more intense in the colored regions. Further reflections occur at t = 2.7 ps, 3.9 ps, and
6.5 ps. The reflection at t = 3.9 ps is relevant in the waveform referred to the white point,
while that at t = 2.7 ps is distinctively high in the colored areas (both blue and brown ones).
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Finally, the reflection at t = 6.5 ps is attributable to the interface between the glaze and the
ceramic body.
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4.2. Sherd C_aut2

An area of 30 × 40 mm2 was scanned with a spatial offset of 0.15 mm. Figure 8a–c
show the RGB image of the investigated area, the THz pseudo color images achieved
by computing the maximum amplitude value of the filtered THz waveforms, and that
accounting for the minimum value, respectively. In this case, THz pseudo color images
only provide information about the sherd decoration. Specifically, the blue lines are well
discernible in Figure 8c, while the lustered decorations are indistinguishable from the white
areas. This result suggests that the metallic luster does not affect in an appreciable way
the amplitude of the THz signal. This is due both to the fact that the layer is very thin (it
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was not visible even in SEM-EDS images) and the metals typical of the luster (silver and
copper) are present only in the form of nanoparticles [5].
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Figure 9 shows the C-scans at different depths, while Figure 10 shows a representative
B-scan and the waveforms of a white, blue, and lustered spot. The blue decorations appear
in the C-scans from 0.6 ps to 5.9 ps and some details are better visible in some C-scans than
in other ones. It is interesting to note that, for this sherd, the blue decorations appear starting
from the second C-scan of Figure 9 and show a lower reflectivity than the white ones. This
behavior is different with respect to that observed for the previous sample (B_aut3) and it is
ascribable to the fact that now the blue decorations are in relief. Fortunately, the roughness
due to the relief decoration does not introduce defocusing effects, as it is corroborated by
the first C-scan, which shows that an about constant signal amplitude characterizes the
sample surface. After t = 6.5 s, the signal is uniform, suggesting that it is generated by the
ceramic body.
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Moreover, by accounting for the B-scan and the waveforms, some other reflections
appear following the main one due to the air−glaze interface: all the waveforms show a
weak reflection after 1.7 ps whose amplitude changes with the decoration color. In addition,
the waveforms corresponding to white and lustered areas have a further reflection at about
3.5 ps, while this reflection appears shifted at about 4.5 ps in the waveform corresponding
to the blue decorated area. Finally, as for the previous sample, all the waveforms exhibit a
non-negligible reflection at t = 6.5 ps.

4.3. Sherd B_aut4

A narrow area of 30 × 10 mm2 corresponding to the flattest portion of the sherd was
investigated. Orange-yellow and blue decorations are present in the analyzed area, which
was scanned with a spatial offset of 0.15 mm as in the previous samples (Figure 11a).
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Figure 11b shows that the yellow brushstrokes are mapped in the THz pseudo color
image referred to the maximum values and show a higher reflectivity than the white
ground; conversely, the blue lines are not visible.

This result is confirmed by the C-scans at different depths (Figure 12), even if they
are affected by the curvature of the sherd. Specifically, the orange-yellow decorations are
visible in the C-scans at t = 0 ps (representing the interface between the air and the sample)
and at t = 1.2 ps, corresponding to the minimum of the first reflection (see also the right
panel of Figure 13, which shows the waveforms corresponding to orange-yellow, blue, and
white areas). Moreover, the C-scans referred to the other times are quite homogeneous and
reveal the presence of a relative maximum for t belonging to the range [2.4–2.9] ps and
to the range [5.9–6.5] ps. The first range corresponds to the transition from the colored
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glaze to the uniform white glaze, while the second range corresponds to the glaze-ceramic
interface. Note that, although the maximum amplitude of the waveform due to the blue
decoration is higher than that referred to the white glaze (Figure 13, right panel), the
blue decoration does not appear in the pseudo color image as well as in the C-scans.
This unexpected behavior could be due to a combined effect of the blue lines’ thinness
and of the low difference between the maximum values of the signal given by blue and
white areas.
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As a final remark, it is worth pointing out that the behavior of the C-scans, the B-scans,
and the waveform does not allow for the detection of the transparent overglaze layer,
which has a mean thickness of 60 µm according to the SEM-EDS analysis (Figure 2). This is
possibly due to the fact that the reflectivity of the glaze and the overglaze are very similar
to be distinguished and/or the overglaze thickness is below the range resolution of the
adopted THz-TDI system.

5. Discussion

The presented results revealed that THz-TDI is a useful non-invasive technology,
which provides information about the reflective behavior of the white and colored glazes,
as well as about the overall stratigraphy of the maiolica sherds.

Specifically, with reference to the analyzed sherds, THz imaging made it possible to
identify colored and white areas, while it did not distinguish the luster decorations from
the white glaze. This result is suggested by the pseudo color images, which show that the
amplitude of the reflected waveform changes in correspondence of the colored glaze areas
but not of the luster. In addition, it is confirmed by the ToF analysis, i.e., by C-scans at
different depths, B-scans, and waveforms, which showed that THz signals referred to the
luster and the white glaze exhibited the same behavior in time. On the other hand, it was
not possible to identify the transparent overglaze (60 ± 20 µm) present in sherd B_aut4,
probably since the range resolution of the adopted THz-TDI system was not sufficient and
the reflectivity of the glaze and the overglaze are very similar to be distinguished. For this
sherd, THz images did not allow for the identification of the blue decoration, which is
possibly due to the limited amount of color present.

ToF analysis corroborates that the three sherds were produced with the same manufac-
turing technique (i.e., that of the Italian Renaissance maiolica). Specifically, the presented
THz-TDI results reveal that the interface between the glaze and the ceramic body always
occurs at about 6.5 ps after the first reflection (air−sample interface). Moreover, the glaze
itself appears as a two-layer structure. In fact, it is possible to recognize an upper glaze
layer accounting for the decoration fingerprints and located from t = 0 ps up to t = 3–4 ps,
and a lower glaze layer extended up to 6.5 ps which is quite homogeneous. This difference
in the THz response between the upper and lower part of the glaze was seen both in the
colored and in the white areas and may be related to both an inhomogeneous distribution
of the coloring and opacifying agents in the glaze and to the weathering of the surface
during the prolonged burial.

By taking into account that the average total thickness of the glaze estimated by the SEM-
EDS is d = 210 ± 20 µm and that the ToF needed by the THz pulse to cross the glaze layer is
T = 6.5 ps for all the three sherds, it was possible to calculate the average refraction index, nglaze,
and relative permittivity, εglaze, values of the glaze according to Equations (2) and (3):

nglaze =

(
Tc
2d

)
=

(
6.5 e−12 ∗ 3e8

2 ∗210e−6

)
= 4.7± 0.4 (7)

εglaze =
(

nglaze

)2
= 22 ± 4 (8)

The εglaze value was used in Figures 6, 9 and 12 to convert the ToF [ps] in depth [µm].
Let us observe that THz-TDI results in [55], regarding the maiolica made in Naples in
the 19th century, revealed different characteristics for the maiolica glazes. They were,
indeed, thicker (c. 500 µm) than the ones analyzed in the present study and their estimated
average relative permittivity was εglaze = 6. These differences may indicate that different
materials and techniques were adopted in Renaissance Tuscany (this study) and in 19th
century Naples [55].

Finally, it is worth pointing out that in the case of the sherd Baut3, THz-TDI revealed
the presence of features with a circular pattern, which provided information about the
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manufacturing technique by suggesting that the original ware was manufactured on the
potter’s wheel.

6. Conclusions

Maiolica wares are artworks that can be regarded as layered objects, whose structure
depends on the manufacturing process. Therefore, non-invasive technologies allowing for
the stratigraphic characterization of the whole object are now worth consideration since
they may improve knowledge about manufacturing, dating, and place of production.

On the other hand, THz technology is increasingly adopted in the frame of cultural
heritage, especially in the study of paintings and frescos, and it allows for the identification
of layers made from different materials (e.g., the canvas, the preparatory gypsum layer,
and the paint layer), the detection of gold foils, as well as of repainting, hidden details, and
defects due to the aging (e.g., cracks). As a further contribution to the available literature in
assessing the THz ability to investigate layered artifacts, this paper has presented results
referred to three maiolica sherds from the Museo Nazionale del Bargello in Florence. The
surveys have been carried out in laboratory by using a THz-TD system, whose imaging
capabilities have been improved by using a data filtering procedure devoted to reducing
the measurement noise caused by the environmental conditions (specifically humidity
and temperature).

The presented results corroborate advantages and drawbacks of THz-TDI by con-
firming its ability to discern between colored and white areas as well as to characterize the
glaze structure. For the analyzed samples, the glaze appears as made by an upper layer,
possibly affected by the inhomogeneous distribution of the coloring and opacifying agents
as well as by the weathering action on the surface, and a bottom, homogeneous layer. On
the other hand, THz-TDI was not able to recognize layers with thickness of a few tens of
micron (or less), such as the transparent overglaze and the luster decoration. In addition, it
was possible to investigate only almost flat portions of the sherds since the adopted THz
system allows for only the measurement in normal reflection mode. Finally, the combined
use of THz-TDI and SEM-EDS allowed us to estimate the mean relative permittivity
(εr = 22) and refraction index (n = 4.7) of the studied Italian Renaissance maiolica glazes.

Further surveys of other maiolica sherds and other cultural heritage objects with a
layered structure are ongoing, as well as the design of specific data processing procedures
aimed at enhancing the amount of information retrievable by THz-TDI surveys. In addition,
the study of the THz signal in the frequency domain will be considered in order to further
investigate the capability of highlighting differences between different glaze colors.
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