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Abstract. The outcome of elections is strongly dependent on the districting

choices, making thus possible (and frequent) the gerrymandering phenomenon,

i.e. politicians suitably changing the shape of electoral districts in order to win
the forthcoming elections. While so far the problem has been treated using

continuous analysis tools, it has been recently pointed out that a more reality-

adherent model would use the discrete geometry of graphs or networks. Here
we propose a parameter-dependent discrete model for choosing an “optimal”

districting plan. We analyze several properties of the model and lay foundations
for further analysis on the subject.

1. Introduction. The most ancient reference to the isoperimetric problem is nowa-
days known by the name of Dido’s problem which has a political background. Leg-
end has it that queen Dido of Carthage was given the chance to found a city on
the area she would have been able to enclose with a given ox hide: she cut the
hide in thin strips and proceeded to enclose a very large area. If one were to seize
this opportunity and get the most out of it, what would be the best shape? In
such a context, by best we mean with the greatest area given a length. Nowadays
this problem is more commonly known through its dual formulation, i.e. to find
the least perimeter enclosing a given area. It has been hypothesized for millennia
that the best is given by the circle, yet a formal proof was not available until very
recently. A first step toward the proof was made by Steiner in the 19th century
who showed that if a solution existed, it had to be the circle [26]. It was in the 20th
century that De Giorgi bridged the last gaps proving the full result via the theory
of sets of finite perimeter and BV functions he developed in [11].

Whenever one has to minimize the (some notion of) perimeter with a constraint
on the (some notion of) area, one refers to the problem as an isoperimetric-like.
These problems have a wide number of practical applications ranging from physics
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such as the capillarity phenomenon [17, 18] to crystallography such as the shapes of
equilibrium crystals [9]. In the latest years isoperimetric-like problems were looked
at with interest from social sciences with the explicit aim to recognize gerryman-
dering phenomena in politics [12, 14].

Most of the literature on gerrymandering discusses the current shapes of electoral
districts and assigns to each different scores, all of isoperimetric nature whose goal
is to measure the “compactness” of the shapes, whatever this may mean. The aim is
twofold: compare districts via these scores and rank them from the most gerryman-
dered to the least, see for instance [5]; decide whether a district is gerrymandered
or not, see for instance [4, 15, 16, 21].

In this paper we propose a discrete districting plan and discuss some properties
we would like our model to possess. The underlying idea is that given some region
Ω we want to partition it in N subregions {Ωk}Nk=1 with the same population, i.e.∫

Ωk

f(x) dx =
1

N
‖f‖L1(Ω) (1)

where f denotes the population density over Ω. A general approach to get the
“most compact” shape is to minimize the (relative) perimeter of the partition, thus
we would be led to minimize the functional

1

2

N∑
k=1

P (Ωk; Ω) ,

subject to 1, which is linked to the score proposed in [10]. Though, one might argue
that it would be best to weigh the perimeter as well via the density population in
order to make uneconomical to split highly populated regions. Indeed a high density
might be an indicator of strong political, ethnical, religious, linguistic and so on ties,
thus it would be fair to not split them. Then, the functional to be minimized would
be

1

2

N∑
k=1

∫
Ω∩∂∗Ωk

f(x) dHn−1(x) ,

where ∂∗Ωk denotes the reduced boundary. More general functionals to be mini-
mized can be proposed such as

1

2

N∑
k=1

∫
Ω∩∂∗Ωk

g(x, νΩk
(x)) dHn−1(x) , (2)

where the weight g = g(x, ν) takes into account not only the point but as well the
direction of the boundary at the point. This weight g might represent how big
the flow of people and the exchange of informations at point x in direction ν is.
Isoperimetric-like problems of this fashion have been treated in [23, 25], as well as
the regularity of minimizers in [22].

Continuous descriptions of the gerrymandering phenomenon suffer though from
many issues as highlighted in [12] where the authors propose to make use of tools
from discrete geometry and the theory of graphs to depict the scenario: some models
taking into account a graph structure have been studied for instance in [1] (see
also [24]). Indeed, the situation may be very well described in the setting of discrete
geometry as the total population is finite. The idea is to choose one of the levels
of the census’ units (for instance US: block, block’s group, tract; Italy: comune,
provincia, regione) and assign to each a vertex vi in a graph Γ. We shall then say
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that two vertexes, vi, vj , are adjacent if the corresponding units share (a positive
amount of) boundary and denote their edge by ei,j . This latter hypothesis ensures
that the resulting graph is planar. Then, the weight f denotes the population of
a vertex, while the weight g is a measure of how well two adjacent vertexes are
connected. Hence, the discrete functional equivalent to 2 is∑

C({Γk})

g(e) , (3)

where {Γk} is a N -partition of Γ and the sum is taken over the edges e belonging to
the cut set C({Γk}), i.e. sloppily speaking the edges removed from Γ to obtain the
partition {Γk} (see Definition 2.2 for the formal details of partition and cut set).
Clearly one can not impose a constraint analogous to 1 as in general this would
prevent a solution to exist. Adding a penalization term of the form√√√√ N∑

k=1

(∑
v∈Γk

f(v)−
∑
v∈Γ f(v)

N

)2

, (4)

rather than a mass constraint, ensures the existence of solutions without completely
dropping the request to have (almost) equally populated regions. This term repre-
sents the standard deviation of the populations in each subgraph with respect to
the mean population of the whole graph, and one could use a general p-norm in
place of the 2-norm. The functional we will look at is the convex combination of 3
and 4, i.e.

λ
∑
C({Γk})

g(e) + (1− λ)

√√√√ N∑
k=1

(∑
v∈Γk

f(v)−
∑
v∈Γ f(v)

N

)2

.

Depending on the choice of λ one gives more or less prominence to one of the two
terms. When one looks purely at the perimeter energy 3, i.e. for λ = 1, the problem
is closely related with the one known as minimum-N -cut, where one seeks to split
the graph in at least N components rather than exactly N .

The proposed functional clearly does not only have applications to politics. One
can imagine many different scenarios: for instance the vertexes of the graph might
represent computers with the weight f their powers, while edges represent direct
connections and the weight g how many MB/s of data-flow these links grant. Then
our problem would represent the need to break this computer network in smaller
groups of similar power by cutting the slowest connections. In this latter case
though it is very possible that the starting graph is not planar, possibly adding
more algorithmic complexity. For the sake of completeness, we recall that for fixed
N the minimum-N -cut problem is polynomial time solvable (see [8, 13] and the
references therein).

The paper is organized as follows. In Section 2 we lay the notation and precisely
define the functional. In Section 3 we discuss a series of properties one would like to
have for such a problem. For each desired property we provide either a proof of the
property or show a counterexample disproving it. In Section 4 we briefly discuss
what happens if we consider a more general deviation energy term. In Section 5 we
discuss the open problems we have not settled yet, which would be nice to explore,
and define some further research directions we shall investigate in the future.
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2. The model. Let us consider a graph

Γ =
(
V (Γ);E(Γ)

)
.

The elements {vi}i = V (Γ) represent the vertexes of the graph, while those of E(Γ)
the edges, i.e. the connections eki,j from vertex vi to vertex vj available in the graph.
We shall suppose that

• Γ is finite, i.e. |V (Γ)| < +∞;
• Γ is simple, i.e. there is at most one edge ei,j connecting the vertex vi to vj

and there are no loops ei,i;
• Γ is undirected, i.e. ei,j is identified with ej,i;
• Γ is connected, i.e. given any two vertexes v, w there exists a sequence of

vertexes {vk}nk=1 such that v1 = v, vn = w and ek,k+1 ∈ E(Γ) for all k =
1, . . . , n− 1.

We endow the graph Γ with two different weights, one acting on the vertexes and
one on the edges. Specifically, we set f : V (Γ)→ (0,+∞) and g : E(Γ)→ (0,+∞).
Graphs with weights are occasionally referred to as networks. More details and
basic notions of graphs can be found in the monographs [6, 27]. Given these choices,
one could represent the weighted edges as the symmetric traceless square matrix
A ∈M(|V (Γ)|), where ai,j = g(ei,j) if ei,j ∈ E(Γ) and ai,j = 0 otherwise.

The graph amounts to the region which we want to divide into electoral districts;
the vertex vi represents a town or neighborhood in the region (f(vi) being the
population of vi) and the edge ei,j represents a direct connection between two nearby
towns/neighborhoods. The weight g(ei,j) is a measure of how good the connection
between the two towns is: the greater g(ei,j), the better they are connected, e.g.
g(ei,j) represents the number of people that can go from one town to the other in
a fixed amount of time.

We denote by

M(Γ) =
∑
v∈Γ

f(v)

the total population, or mass, of a graph.

Definition 2.1. Given a graph Γ =
(
V (Γ);E(Γ)

)
, we say that Γk is a subgraph of

Γ if it is a graph such that V (Γk) ⊆ V (Γ) and E(Γk) ⊆ E(Γ). Moreover, we define
its boundary ∂Γk as

∂Γk := {ei,j ∈ E(Γ) : vi ∈ V (Γk) , vj /∈ V (Γk)} .

In our model we are interested in pairwise disjoint and connected partitions of
the graph. For the sake of brevity, in the following we shall only say N -partition,
truly referring to a pairwise disjoint, connected N -partition accordingly to the next
definition.

Definition 2.2. Let 1 ≤ N ≤ |V (Γ)| be an integer. A pairwise disjoint and
connected N -partition of Γ is a family of N connected subgraphs {Γk}Nk=1 such that⋃

k

V (Γk) = V (Γ) , V (Γk) ∩ V (Γh) = ∅ ,∀k 6= h .

We define the cut set of the partition (or boundary of the partition) as

C({Γk}) :=
⋃
k

∂Γk .



A DISCRETE DISTRICTING PLAN 775

Given N , we would like to find a N -partition of Γ such that all subgraphs Γk
have the same total weight of the vertex, i.e. the same mass

M(Γk) =
∑
V (Γk)

f(v) =
1

N
M(Γ) .

In our electoral interpretation this means dividing the region Γ in N electoral dis-
tricts with the same population, while minimizing the total weight of the cut set

P ({Γk}) :=
∑
C({Γk})

g(e) (5)

to ensure that the districts are as “compact” as possible. We shall refer to the above
as to the cut or perimeter energy of the partition. This of course is not possible
since in general the set of N -partitions with all subgraphs with the same weight is
empty. Thus, we want to allow the possibility for the weight of the subgraphs to
differ from the arithmetic mean, at a cost, increasing with the difference from the
mean. More precisely, we add the penalization term

σ({Γk}) :=

√√√√ N∑
k=1

(
M(Γk)− M(Γ)

N

)2

, (6)

which we shall refer to as the deviation energy of the partition.
Given λ ∈ [0, 1], we define the energy functional

Fλ({Γk}) = λP ({Γk}) + (1− λ)σ({Γk}) , (7)

which is a convex combination of the cut energy 5 and of the deviation energy 6.
We are interested in minimizing Fλ among all N -partitions of Γ. Notice that the
minimization problem is invariant under the action of a uniform dilation of the
weights f and g, i.e. taking as weights θf and θg, with θ > 0, in place of f and g
does not change the minimizers. We shall call any partition minimizing 7 a minimal
or optimal N -partition (relative to some λ).

It is worth noticing that for λ = 1 the only energy we consider is the cut energy,
i.e. the problem is similar to the minimal N-cut problem and there is no request on
the mass of the districts to be near to the mean value.

Remark 1. Existence of minimizers is trivial and follows straightforwardly from
the finiteness of the graph Γ. Moreover, notice the following fact. Given Γ̂ =(
V (Γ̂);E(Γ̂)

)
a subgraph belonging to a partition of Γ, one can suppose wlog that

E(Γ̂) = {ei,j ∈ E(Γ) : vi, vj ∈ V (Γ̂)}. This is because the first term of the func-
tional Fλ, i.e. the cut energy, is defined on the cut set C({Γk}) which is contained
but not necessarily equal to E(Γ) \ ∪kE(Γk). Thus, the functional does not detect

any internal changes in a subgraph Γ̂, i.e. considering Γ̂ or Γ̃ = (V (Γ̂), E(Γ̂) \ {e})
is the same, provided that removing e does not disconnect Γ̂. This means that the
energy of a partition {Γk} is actually a function of the partition of the vertexes
{V (Γk)} and does not depend on the edges.

Regarding uniqueness, note that fixed a N -partition its energy Fλ is affine linear
in λ. Hence, it easily follows a uniqueness theorem.

Theorem 2.3. If a N -partition {Γ̃k} minimizes Fλ for two distinct values λ1 < λ2,
then it is a minimal N -partition for all λ ∈ [λ1, λ2]. Moreover,

i) either it is the unique minimizer in (λ1, λ2);
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ii) or there exists another partition {Γ̂k} such that

Fλ({Γ̂k}) = Fλ({Γ̃k}) , ∀λ ∈ [0, 1] .

Proof. Given {Γ̃k} minimal in λ1 and λ2 (λ1 < λ2) we have that

Fλ1
({Γ̃k}) ≤ Fλ1

({Γk}) , Fλ2
({Γ̃k}) ≤ Fλ2

({Γk}) , ∀{Γk} . (8)

Notice now that the energy of any given partition is affine linear in λ and thus
determined by its value in any two given points, or equivalently Fλ is a linear
combination of Fλ1

and Fλ2
. Hence by 8, the energy of any partition {Γk} is

greater than or equal to the energy of {Γ̃k} in [λ1, λ2].

Suppose now there exists a partition {Γ̂k} such that Fλ̄({Γ̃k}) = Fλ̄({Γ̂k}) for
some λ̄ ∈ (λ1, λ2). Since the energy is affine linear, inequalities 8 paired with
this last equality necessarily imply that the two partitions always have the same
energy. The converse is readily achieved by using again the linearity w.r.t. λ and
the hypothesis that at least one of the inequalities in 8 is strict.

Corollary 1. If there are no partitions that have the same energy in any two points,
then Fλ has a unique minimizer up to a finite set of transition values.

3. Discussion of (desirable) properties. We analyze here several properties we
would like our districting model to have. We are interested in:

(i) stability of the division in districts when a new town/neighborhood is built or
abandoned;

(ii) stability of the division in districts when a new road connecting different cities
is built (or an existing connection is destroyed);

(iii) possibility to force certain adjacent cities to be in the same district (up to
suitably modifying the connection between the two);

(iv) possibility to force a city to form a district on its own (up to suitably modifying
the connections between that city and its neighbors);

(v) stability of the model at a multi-layer districting, i.e. does creating “super”-
districts, say N , and then splitting them, say in j “sub”-districts each, yield
the same result as directly creating jN districts?

Our model does not grant properties (i), (ii), (v), as we show by counterexam-
ples. Properties (iii) and (iv) hold true, under suitable conditions. The fact that
properties (i), (ii) and (v) do not hold can be: either a weakness of the model deriv-
ing from the high degree of freedom of weights and may possibly be circumvented
by modifying the form of the deviation energy; or an unavoidable drawback present
in any possible model of districting. The latter is far from being unrealistic and it
is actually something that often happens in social choices, e.g.

• Arrow in [2] proved that, if there are at least 3 choices, no electoral system
satisfies at once Pareto’s property (if all voters prefer X over Y , X is group-
preferred to Y ), independence from irrelevant choices (the group preference
between X and Y only depends on the single preferences between X and
Y ) and there is no dictator (no single voter possesses the power to always
determine the group’s preference).

• Balinski and Young in [3] proved that, if there are at least 3 parties, no
apportionment system simultaneously follows the quota rule (if a party fair
share is between n and n+ 1 it gets assigned either n or n+ 1 seats), avoids
the Alabama paradox (if the total number of seats is increased, no party’s
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2

1

9

9

1

Figure 1. Removing or adding a vertex; numbers correspond to
the weight of the vertexes; all edges are supposed to have weight 1.

number of seats decreases) and avoids the population paradox (if party A gets
more votes and party B gets fewer, no seat will be transferred from A to B).

3.1. Adding or removing a vertex. We here briefly discuss what can happen
whenever a vertex is removed from a graph (resp. added to). In our practical
example of districting this could correspond to a city being abandoned (resp. to a
new city being built).

Example 1. We consider the graph in Figure 1, where the grayed-out vertex is the
new/removed vertex and the dashed edges are the edges connecting it to the other

vertexes, and look at its minimal 2-partitions. We call Γ the whole graph and Γ̂ its
subgraph without the grayed-out vertex and the dashed edges.

We start by analyzing the graph without the grayed-out vertex, Γ̂. Notice that
for λ = 1 the minimal 2-cut can be obtained by cutting edges with a total weight
of 2 (i.e. any two edges), while for λ = 0 there are two partitions with null energy
(cutting either the two horizontal edges, or the two vertical edges). As the partitions
obtained by removing two parallel edges are minimal both for λ = 0 and λ = 1 it
follows from Theorem 2.3 that they are minimal for all values of λ and as well unique
for λ ∈ (0, 1) as no other minimizer has the same energy on both the extrema of
the interval.

As for the graph with the grayed-out vertex, Γ, there are three different partitions
to be considered, up to obvious symmetries:

• D, the partition of least deviation energy, i.e. the one for which one vertex
with weight 9 is in a district with the new vertex: the cut energy is 5, while
the deviation energy is null for which

Fλ(D) = 5λ ;

• C, the partition of least cut energy, i.e. the one for which one vertex with
weight 9 is a district on itself: the cut energy is 3, while the deviation energy
is 2
√

2 for which

Fλ(C) = (3− 2
√

2)λ+ 2
√

2 ;

• M , the one for which one vertex with weight 9 is in a district with a vertex
of weight 1: the cut energy is 4, while the deviation energy is

√
2 for which

Fλ(M) = (4−
√

2)λ+
√

2 .
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Figure 2. Removing or adding an edge; numbers correspond to
the weight of the related vertexes and edges.

The energy of the other possible 2-partitions is strictly controlled from below by one
of the above away from the extremal points, hence they can be a minimal 2-partition
only for λ = 0, 1. Thus the optimal partition is:

• D if 0 ≤ λ < 2−
√

2;
• D, M and C are equivalent if λ = 2−

√
2;

• C if 2−
√

2 < λ ≤ 1.

Hence, whenever 0 ≤ λ < 2 −
√

2 the minimal 2-partitions for Γ and Γ̂ are signifi-
cantly different.

3.2. Adding or removing an edge. We here briefly discuss what can happen
whenever an edge is removed from a graph (resp. added to). In our practical
example of districting this could correspond to a bridge collapsing (resp. to a new
road being built).

Example 2. We consider the graph in Figure 2, where the dashed edge is the
new/removed edge, and look at its minimal 3-partitions. If we call Γ the whole
graph and e the dashed edge, we are then looking, respectively, at Γ and its subgraph
Γ̂ =

(
V (Γ);E(Γ) \ {e}

)
.

We start by analyzing the graph with the dashed edge, Γ. Notice that for λ = 1
the minimal 3-cut can be obtained by cutting edges with a total weight of 4 (the
three right edges, the three left ones or the four horizontal ones), while for λ = 0
there are partitions with zero energy (cutting the 4 horizontal edges, or the left
and center vertical edges and the two horizontal right edges, or the right and center
vertical edges and the two horizontal left edges). As the partition obtained by
removing the 4 horizontal edges is minimal both for λ = 0 and λ = 1 it follows from
Theorem 2.3 that it is minimal for all values of λ and as well unique for λ ∈ (0, 1)
as no other minimizer has the same energy on both the extrema of the interval.
This 3-partition though induces a 4-partition for the subgraph Γ̂ thus it can not be
a minimizer of Fλ on Γ̂ for any λ! In particular the minimal solutions relative to Γ̂
are the following:

• for 0 ≤ λ ≤ 3 −
√

6 it is obtained by cutting the two horizontal left edges
(Fλ = (2−

√
6)λ+

√
6);

• for 3−
√

6 ≤ λ ≤ 1 it is obtained by cutting the center vertical edge and the
two horizontal right edges (Fλ = 4λ).

3.3. Forcing two vertexes in the same component. Let Γ be a graph and
v1, v2 be any two neighboring vertexes. There are obviously graphs where it is
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1 1 2M
ε 1

Figure 3. Splitting two vertexes is not always possible by simply
modifying the weight of their common edge.

impossible to have v1 and v2 in the same district (e.g. if there are N vertexes and
we are looking for a N -partition). Yet, if there are N -partitions where these two
vertexes are in the same district, one can force the minimal partition to be one of
them, by a suitable modification of g on the edge e1,2. More precisely, the following
result holds.

Theorem 3.1. Let Γ be a graph and v1, v2 be two adjacent vertexes via the edge
e1,2 such that there exists a N -partition of Γ for which v1 and v2 belong to the same
subgraph. For any fixed λ 6= 0, one can modify the value of g on the edge e1,2 in such
a manner that v1 and v2 belong to the same subgraph of the N -partition minimizing
Fλ.

Proof. Let us divide the set ΓN of N -partitions of Γ as

ΓN = ΓN,+ ∪ ΓN,− ,

where ΓN,+ is the set of N -partitions putting v1 and v2 in the same district, and
ΓN,− is the set of N -partitions putting v1 and v2 in different districts.

Let us suppose ΓN,− 6= ∅, otherwise the claim is trivial. By hypothesis one has
as well ΓN,+ 6= ∅. The λ-energy of any N -partition of ΓN,+ does not depend on the
value of g(e1,2). As the number of partitions is finite, we can define Kλ to be the
minimum of those energies.

Notice now that the λ-energy of any N -partition {Γk} ∈ ΓN,− can be expressed
as

Fλ({Γk}) = λg(e1,2) +Dλ({Γk}) ,
where Dλ({Γk}) does not depend on the value of g(e1,2). Again in virtue of the
finiteness of the partitions, let Dλ be the minimum of Dλ({Γk}), for {Γk} ∈ ΓN,−.

Thus, by modifying g such that g(e1,2) > λ−1(Kλ−Dλ) one gets that the minimal
partition belongs to ΓN,+.

Notice that the above proof only works for a single pair and there is no clear way
to force multiple pairs to stick together as the functional Fλ displays a non-local
behaviour with respect to the weights.

Remark 2. Conversely, if one were to try to split two adjacent vertexes, provided
that there exists a suitable partition, would find as a condition g(e1,2) < λ−1(Kλ−
Dλ), which is impossible to achieve if the RHS is non positive. There are indeed
very easy cases for which this exact behaviour occurs. Take for instance the graph
Γ in Figure 3, where M > 1. For any λ <

√
2(1 +

√
2)−1 the leftmost vertexes will

stick together no matter how big M is or how small ε is.

3.4. Forcing a vertex to be isolated. By a straightforward application of the
pigeonhole principle we can observe the following fact. Suppose that a graph Γ
has vertex connectivity of 1 about the vertex v̄, i.e., the subgraph Γ̂ obtained by
removing from Γ the vertex v and all related edges is disconnected. If Γ̂ has k = N+l
connected components, l ∈ N, then in any N -partition of Γ at least l + 1 of these
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components belong to the subgraph containing v. In such a situation thus there is
no way to force v to be “isolated” i.e. to form a district on its own.

It is then of interest, assuming the necessary assumption that there exist N -
partitions containing the singleton vertex Γv :=

(
{v}; ∅

)
, to know if one can force

the vertex to be isolated by modifying the weights of the edges in ∂Γv. We are
able to prove that this is possible for values of λ near to 1 limitedly to 2-partitions.
More precisely, the following theorem holds.

Theorem 3.2. Let v ∈ V (Γ) be a vertex, Γv :=
(
{v}; ∅

)
the subgraph consisting of

the singleton vertex and Γcv :=
(
V (Γ)\{v};E(Γ)\∂Γv

)
its complement subgraph. If

{Γv,Γcv} is a 2-partition, there exist ε̄ > 0 and λ̄ ∈ [0, 1) such that if
∑
∂Γv

g(e) ≤ ε̄
then, {Γv,Γcv} is the minimal 2-partition (up to removing edges of Γcv which do not
disconnect it) of Fλ with λ ∈ (λ̄, 1].

Proof. Start noticing that if {Γv,Γcv} is a 2-partition, then it is the unique 2-
partition containing the subgraph Γv (up to removing edges of Γcv which do not
disconnect it as noted in Remark 1). For {Γv,Γcv}, one has

Fλ({Γv,Γcv}) = λ
∑
∂Γv

g(e) + (1− λ)σ({Γv,Γcv}) ,

while for any 2-partition {Γ̃k} not containing Γv one has

Fλ({Γ̃k}) = λ
∑

C({Γ̃k})∩∂Γv

g(e) + λ
∑

C({Γ̃k})\∂Γv

g(e) + (1− λ)σ({Γ̃k}) .

Our claim corresponds to proving that Fλ({Γ̃k}) − Fλ({Γv,Γcv}) ≥ 0 for some λ
near to 1 and for an appropriately small “perimeter” of Γv, i.e.

∑
∂Γv

g(e). We
have

Fλ({Γ̃k})−Fλ({Γv,Γcv}) = O(1− λ) + λ
∑

C({Γ̃k})\∂Γv

g(e)− λ
∑

∂Γv\C({Γ̃k})

g(e)

≥ O(1− λ) + λ
∑

C({Γ̃k})\∂Γv

g(e)− ε .

As for any 2-partition not containing Γv one has that C({Γ̃k}) \ ∂Γv 6= ∅ the claim
follows for λ close to 1 and ε << 1, i.e. the sum of the weights of the edges in
∂Γv.

Remark 3. Theorem 3.2 is in agreement with the idea that assigning a zero weight
to an edge means that the edge is missing. Notice that the hypothesis can be
equivalently reformulated by suitably modifying all weights not in ∂Γv and taking
each one of them greater than some M >> 1.

The result is somewhat weak as it holds only for 2-partitions. It would be de-
sirable to extend it to N -partitions but it is unclear how to do it, as in the en-
ergy expression for a partition containing Γv would appear the additional term
λ
∑
C({Γ̂k})\∂Γv

g(e) on which we have no control.

It is as well unclear if fixed any λ > 0, by suitably modifying the perimeter of
∂Γv, one can force the vertex to be isolated, even in the 2-partition case. Clearly,
one would expect that as λ→ 0, necessarily

∑
∂Γv

g(e)→ 0 as well.
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Figure 4. A graph where the optimal 4-partition is not a 2-
refining of the optimal 2-partition.

3.5. Refining the number of districts. Given j ∈ N, we shall say that a jN -

partition {Γ̂i}jNi=1 is a j-refining of a N -partition {Γk}Nk=1 if, up to relabelling,

{Γ̂i}kji=(k−1)j+1 is a j-partition of Γk. One might wonder if some “refining” property

holds. For instance, it would be desirable that any (or at least one) minimal jN -
partition is a refining of a minimal N -partition.

This is exactly the situation where you have two different kinds of elections (e.g.
Italian and European elections) and one would like to form “super”-districts for one
election just by gluing together some districts of the other election.

Clearly, a necessary condition to allow such a situation is that there exists an
optimal N -partition such that each of its subgraph has at least j vertexes. Even if
this necessary condition is satisfied, this refining property can fail, as the following
example shows.

Example 3. Consider the graph Γ of Figure 4. The unique optimal 2-cut is ob-
tained by removing the two edges with weight 1. This same partition has zero
deviation energy, hence by Theorem 2.3 it is an optimal 2-partition for every λ and
the unique one for λ 6= 1.

Removing the four edges with weights 2 and 4, gives a 4-partition D with zero
deviation energy and cut energy 12λ. Thus, any 4-partition whose cut set contains
an edge of weight 10 cannot be optimal.

Hence, up to symmetries, there is only one possibly optimal 4-partition which is
a 2-refining of the minimal 2-partition: the one in which are cut one weight 2 and
one weight 4 edges. This partition R has λ-energy

Fλ(R) = 8λ+ 2(1− λ) ,

and it is never minimal. Indeed, either D or C, the partition whose cut energy is
6λ, is the optimal one. More precisely,

Fλ(D) = 12λ , Fλ(C) = 6λ+
√

6(1− λ) ,

thus,

• if 0 ≤ λ <
√

6
6+
√

6
, D is the optimal 4-partition;

• if
√

6
6+
√

6
< λ ≤ 1, C is the optimal 4-partition,

with λ̄ =
√

6/(6 +
√

6) being the transition value where they are both minimizers.

Even if we assume that a minimal jN -partition is a j-refining of a minimal N -

partition, then {Γ̂i}kji=(k−1)j+1 may not be a minimal -j-partition of Γk, as shown

by the following example.
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Figure 5. A graph where the optimal 4-partition is a 2-refining
of the optimal 2-partition, but does not induce the optimal 2-
partitions on its components.

Example 4. Consider the graph Γ in Figure 5, and fix1 λ = 1
2 . Let us consider

first the 2-partitions. The optimal 2-cut (λ = 1), C2, is obtained by removing the
two edges of weight 4. It has energy

Fλ(C2) = 8λ+ 6
√

2(1− λ) ,

and for λ = 1
2 , F 1

2
(C2) = 4 + 3

√
2 < 17

2 . Hence, all other 2-partitions whose

cut energy is greater than 17 cannot be an optimal 2-partition (w.r.t. the choice
λ = 1

2 ). This leaves only two possible partitions with cut energy 16. Both of them
have deviation energy greater than that of C2. Hence, C2 is the optimal 2-partition
of Γ w.r.t. the choice λ = 1

2 .
Consider now the 4-partitions. The optimal 4-cut (λ = 1) is obtained by removing

all edges but one with weight 16. Among the 2 possible choices, let C4 be that with
smaller deviation energy, i.e. the case where the 14 and 4 weight vertexes are
grouped together. This 4-partition has energy

Fλ(C4) = 36λ+ 2
√

17(1− λ) ,

and for λ = 1
2 , F 1

2
(C4) = 18+

√
17. There is only another 4-partition with smaller

deviation energy, D4, in which the 10 and 4 weight vertexes form a district. Its
energy is

Fλ(D4) = 40λ+ 6(1− λ) ,

and for λ = 1
2 it is 23, strictly more than that of C4. Hence, C4 is the optimal

4-partition for λ = 1
2 .

Observe that C4 is a 2-refining of C2, yet it does not define minimal 2-partitions
for each of the subgraphs of C2. Consider indeed the district with 3 vertexes of C2.
There are two ways to partition it in 2 subgraphs, one induced by C4, denoted by
Ĉ4, and one induced by D4, denoted by D̂4. Their energies are

Fλ(Ĉ4) = 12λ+ 4
√

2(1− λ) , Fλ(D̂4) = 16λ .

Relatively to λ = 1
2 , one has

F 1
2
(Ĉ4) = 6 + 2

√
2 > 8 = F 1

2
(D̂4) .

1The choice λ = 1
2

has nothing special. For any λ ∈ (0, 1) the weights of the graph Γ can be
suitably chosen to have the same behavior of the shown example: it is sufficient to multiply the
weights on vertexes by 1

2λ
and those on edges by 1

2(1−λ)
and the energy remains the same.
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Thus, even though C4 is a 2-refining of C2 it does not induce minimal-2-partitions
of the subgraphs of C2.

4. Other norms for the deviation term. So far we have considered as penal-
ization term the standard deviation from the mean (i.e. the so called 2-nd central
moment), but one could use any p-th central moment, defining accordingly the p-
deviation energy. In principle, fixed N ∈ N for any N -partition one can think of the

p-deviation energy as the p-norm of the vector x ∈ RN , where xk = M(Γk)− M(Γ)
N ,

and in general any choice of norm of such a vector can be considered; further,
it would be enough to define the penalization term as any function of the vector
x ∈ RN increasing along half-lines from the origin and symmetric for coordinates
swaps and symmetric w.r.t. the origin.

It is immediate to see that for any fixed p or any more general deviation energy,
Theorem 2.3 remains valid, with the very same proof, since it depends only on
linearity of the energy functional on λ. The same holds true for Theorems 3.1
and 3.2.

In the following we briefly discuss some stability w.r.t. the choice of the p-norm
and how to modify the examples to make sure the counterexamples shown above
still work for any choice of p. We shall denote the p-th central moment of {Γk} by
σp({Γk}), which for the sake of completeness we recall to be

σp({Γk}) = p

√√√√ N∑
k=1

∣∣∣∣M(Γk)− M(Γ)

N

∣∣∣∣p ,
for p ∈ [1,∞) and

σ∞({Γk}) = max
k

∣∣∣∣M(Γk)− M(Γ)

N

∣∣∣∣ ,
for p = ∞. Accordingly, we shall denote by Fλ,p the more general functional
depending both on λ ∈ [0, 1] and on p ∈ [1,+∞] given by

Fλ,p({Γk}) = λP ({Γk}) + (1− λ)σp({Γk}) .

4.1. Stability of first transition value w.r.t. p-norms. Notice that for any
given p, the choice of λ = 0 yields as minimizers the configurations whose p-th
central moment is smallest. Among these in virtue of the generalization of Theo-
rem 2.3, we can select one that is a minimizer in the closed interval λ ∈ [0, λF (p,Γ)],
with λF (p,Γ) ∈ (0, 1], while it is not for any λ > λF (p,Γ). We shall call λF (p,Γ)
the first transition value. In general, one would expect that by taking greater values
of p, one would force the penalization term to be more dominant, and this would
correspond to having a greater transition value.

It is easy to see that the exact opposite happens, at least for 2-partitions. Indeed,
for N = 2 a partition is uniquely determined by one of its subgraphs and the two
subgraphs are such that their deviation from the mean, i.e. |M(Γi) −M(Γ)/2|, is
the same. Hence, the vector x ∈ R2 lies in the 1-dimensional subspace generated by
(1,−1) ∈ R2 thus all norms are actually the same up to a multiple on this subspace.
More precisely,

σp({Γk}) =
p
√

2 · σ∞({Γk}) , σq({Γk}) =
q
√

2
p
√

2
· σp({Γk}) . (9)

From the above equalities, it immediately follows that σp is decreasing with respect
to p and the first transition value monotonically decreases as p grows, meaning that
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Figure 6. A graph where the optimal 4-partition is not a 2-
refining of the optimal 2-partition for suitable choices of α = α(p).

the deviation optimal 2-partition is stable for a shorter interval the greater p we
choose.

This does not necessarily happen when N ≥ 3, where we only have the inequali-
ties

σq({Γk}) ≤ σp({Γk}) ≤
p
√
N · σ∞({Γk}) ,

for 1 ≤ p < q ≤ ∞, from which one can not derive a monotonic behaviour of
λF (p,Γ).

4.2. Choosing λ and p. In the previous subsection we introduced the first tran-
sition value; in a completely analogous way one can define the last transition value,
λL(p,Γ) ∈ [0, 1) in such a way that there is a minimal cut configuration which is a
minimizer in the closed interval [λL(p,Γ), 1], while it is not for any λ < λL(p,Γ).
Trivially, unless the minimal cut is as well a minimal deviation, one has the large
inequality λF (p,Γ) ≤ λL(p,Γ). On the one hand, one always wants to consider
a parameter λ ≤ λL(p,Γ) in order to enforce some control on the deviation from
the mean, otherwise one could end up with completely disproportioned (w.r.t. the
mass) subgraphs. It would be desirable to choose p in such a way that the strict
inequality λF (p,Γ) < λL(p,Γ) holds. In such a way: there would be a first interval
[0, λF ] where relaxing the constraint of having as equal as possible masses does not
produce any change in the minimum; there would be another interval (λF , λL) where
the minima are neither minimal cuts nor minimal p-deviations from the mean, i.e.
there is some competition between the two energy terms.

4.3. Generalization of the examples. In view of 9 valid for 2-partitions, Ex-
amples 1 and 2 and Remark 2 in the previous sections remain unchanged, up to
modifying the weights of the vertexes by a factor of p

√
2/
√

2 for p ∈ [1,+∞) or of

1/
√

2 for p = +∞ (see Figures 1 and 2).
In order to generalize Example 3 some more effort is needed. We modify the

graph of Figure 4 by multiplying some of the weights on the edges by a factor
α = α(p) ≥ 1 to be determined later on. The relevant computations are contained
in the following example.

Example 5. Let p ∈ [1,+∞) be fixed. Consider the graph Γ of Figure 6, with
α = α(p) ≥ 1 to be determined later on. The unique optimal 2-cut is obtained
by removing the two edges with weight 1. This same partition has zero deviation
energy. Hence by the generalization of Theorem 2.3 to any p discussed at the
beginning of Section 4, it is an optimal 2-partition for every λ and the unique one
for λ 6= 1.



A DISCRETE DISTRICTING PLAN 785

2 2

4 4

2 22

2

2

2

1

1

4

1

1 1

11

1

Figure 7. A graph where the optimal 4-partition is not a 2-
refining of the optimal 2-partition.

Removing the four edges with weights 2 and 4α gives a 4-partition D with zero
deviation energy and cut energy (4 + 8α). Thus, any 4-partition whose cut set
contains an edge of weight 10α cannot be optimal.

Therefore, up to trivial symmetries, there is only one possibly optimal 4-partition
which is a 2-refining of the minimal 2-partition: the one whose cut set consists of
two edges, one of weight 2 and one of weight 4α. This partition, which we denote
by I, has (λ, p)-energy

Fλ,p(I) = (4 + 4α)λ+
p
√

4(1− λ) .

By choosing α big enough, we can ensure it to be never minimal. Indeed, by calling
C the partition whose cut energy is 6, we have

Fλ,p(D) = (4 + 8α)λ , Fλ,p(C) = 6λ+ p
√

2 + 2p(1− λ) .

Thus,

Fλ,p(D) < Fλ,p(I) , if 0 ≤ λ <
p
√

4

4α+ p
√

4
;

Fλ,p(C) < Fλ,p(I) , if
p
√

2 + 2p − p
√

4

4α− 2 + p
√

2 + 2p − p
√

4
< λ ≤ 1 .

Therefore by selecting α such that

α >
1

2
·

p
√

4

2 p
√

4− p
√

2 + 2p
,

it is immediate to see that the two intervals above overlap and thus I can never be
optimal.

Example 5 does not work for the choice of the ∞-norm, as for p → ∞ the
parameter α explodes. Nonetheless, one can construct counterexamples even when
choosing such a norm as penalization term, as highlighted in the following example.

Example 6. Consider the graph Γ of Figure 7 and fix2 λ = 1/2. Being Γ a path,
symmetric graph it is immediate to see that the 2-partition D2 with zero deviation
is obtained by removing the middle edge, whose weight is 4; thus, F 1

2 ,∞
(D2) = 1

2 ·4.

Since any other 2-partition has energy at least 5
2 , D2 is the optimal one.

On the one hand, the best 2-refining of D2 is the 4-partition D4 with zero de-
viation, obtained by removing two additional edges of weight 1 (the third starting

2As observed in footnote 1 on page 782, it is easy to modify weights and get a counterexample
for any λ ∈ (0, 1).
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from the left and its symmetric); its energy is F 1
2 ,∞

(D4) = 1
2 · 6. On the other

hand, consider the (non-symmetric) partition C4 obtained by removing the second,
fourth and sixth edge starting from the left; this has deviation energy 2 (being the
masses of the subgraphs 4, 4, 8, 8) and cut energy 3, hence F 1

2 ,∞
(C4) = 5

2 . Thus,

the optimal 4-partition is not induced by the optimal 2-partition.

5. Conclusions and future research. The model we propose here is very general
and it lays the foundations for future work. It is truly interesting that as a practical
consequence of Theorem 3.1 and of Theorem 3.2 (specifically with the equivalent
hypothesis highlighted in Remark 3) the best course of action for politicians to
achieve some particular partition would be to improve some connections.

On the other hand, all “desired” properties we checked to fail, do so because the
two components of the energies do not interact. This is because the weights f and
g can be arbitrarily chosen. It is possible that by forcing some constitutive relation
between the edge and the vertex weights these could be ensured.

It would be of great interest studying the behaviour of minimizers when the
number of vertexes grows. In order to do so, it would be desirable to adopt a Γ-
convergence approach towards a limit continuous model, which is a fundamental
tool in the asymptotic behaviour analysis. This approach would provide a bridge
between the discrete-continuous models; there is the need of some definition of
convergence for sequences of graphs with an increasing number of vertexes. In
this direction, a very recent technique has been developed and exploits the so-
called graphons. These objects are functions on [0, 1]2 which somehow represent the
adjacency matrices of the graphs (see [19, 20]) and their convergence can be studied
through a suitable norm, called cut norm. Very recently Γ-convergence of the cut
energy has been studied in these terms, see [7]. We plan to build on these latest
results, by expanding the study of the convergence to our more general functional 7.

5.1. Open problems. There are some open problems we are interested in studying
in the future. Among those

• generalizing the result of Theorem 3.1 trying to force multiple distinct pairs
together;

• generalizing3 the result of Theorem 3.1 trying to force n vertexes together;
• generalizing3 the result of Theorem 3.2 to N -partitions;
• trying to either find a modification of the model for which the properties (i), (ii)

and especially (v) hold or prove a general impossibility result in the spirit of
Arrow [2] and Balinski-Young [3].

• studying the Γ-convergence of 7 as N goes to infinity.

Clearly there are some necessary hypotheses to be made. Moreover we would expect
that forcing multiple vertexes together would require a stringent structure of the
subgraph they form, e.g. to be a cycle or wheel graph. It is very possible that
these properties do not hold for the fully general model, but we do not have any
counterexample to exhibit at the current stage.

Finally, we plan to impose some constraints on the choices of f and g by pairing
them via some suitable equation. This would imply a more rigid structure to the
energy possibly leading to stronger theorems. For instance a possible choice would

3Since the first submission of the present paper, this generalization was achieved as part of a
forthcoming work jointly with Bertolotti.
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be to ask
f(v) :=

∑
∂Γv

g(e) ,

being Γv the subgraph consisting of the lone vertex v. This choice would mean,
in the politics’ application, that each district ensures a flow-in/out of people equal
to the number of its citizens. Once such a choice is made or other choices of
g = g(f), we are set on doing some numerical simulations reflecting real-world
situations occurring in EU states or at the EU level.

Acknowledgments. The authors would like to thank the referee for the valuable
comments and insights.
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