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Abstract

Fibrinogen, a blood plasma protein with a key role in hemostasis and thrombosis, is highly susceptible to post-trans-
lational modifications (PTMs), that significantly influence clot formation, structure, and stability. These PTMs, which
include acetylation, amidation, carbamylation, citrullination, dichlorination, glycation, glycosylation, guanidinylation,
hydroxylation, homocysteinylation, malonylation, methylation, nitration, oxidation, phosphorylation and sulpha-
tion, can alter fibrinogen biochemical properties and affect its functional behavior in coagulation and fibrinolysis.
Oxidation and nitration are notably associated with oxidative stress, impacting fibrin fiber formation and promoting
the development of more compact and resistant fibrin networks. Glycosylation and glycation contribute to altered
fibrinogen structural properties, often resulting in changes in fibrin clot density and susceptibility to lysis, particularly
in metabolic disorders like diabetes. Acetylation and phosphorylation, influenced by medications such as aspirin,
modulate clot architecture by affecting fiber thickness and clot permeability. Citrullination and homocysteinylation,
although less studied, are linked to autoimmune conditions and cardiovascular diseases, respectively, affecting fibrin
formation and stability. Understanding these modifications provides insights into the pathophysiology of thrombotic
disorders and highlights potential therapeutic targets. This review comprehensively examines the current literature
on fibrinogen PTMs, their specific sites, biochemical pathways, and their consequences on fibrin clot architecture, clot
formation and clot lysis.
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Introduction

Thrombosis is a leading cause of death worldwide and
includes arterial events (myocardial infarction and
ischemic stroke) and venous thromboembolism (VTE),
that comprises superficial and deep vein thrombo-
sis (SVT and DVT) and pulmonary embolism (PE) [1].
Thrombosis can be triggered by diverse factors such as
trauma, non-traumatic insults, or various clinical disor-
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in blood flow, and alterations in platelet and plasma con-
stituents favoring thrombosis [2, 3].

Fibrinogen, a large hexameric glycoprotein produced
primarily in the liver, plays a crucial role in hemostasis,
serving as the precursor to fibrin, the main protein com-
ponent of blood clots [2, 4-6].

The study of fibrinogen began in the 19th century with
Rudolf Virchow’s identification of fibrin as a key element
in blood clots. It wasn’t until 1937 that scientists con-
firmed that proteolytic enzymes could convert fibrino-
gen into fibrin, establishing the role of limited proteolysis
in clot formation [7]. The culmination of these studies
came in 1952 when John Ferry proposed that the removal
of negatively charged peptides from fibrinogen leads
to spontaneous polymerization, forming protofibrils
[8]. Subsequent research throughout the 20th century,
including advances in electron microscopy and crystal-
lography, revealed the trinodular structure of fibrinogen
and its three polypeptide chains culminating in detailed
structural and mechanistic insights into how fibrinogen
transforms into fibrin. These discoveries laid the foun-
dation for understanding blood clotting and the broader
implications of fibrinogen in health and disease [9].

Fibrinogen molecule comprises two sets of three poly-
peptide chains (A«, Bf, and y) linked by disulfide bonds,
forming a complex structure essential for its function
in coagulation. Upon vascular injury, fibrinogen is con-
verted by thrombin into fibrin, which polymerizes to
form a stable clot, a key step in stopping bleeding [2, 4].
Beyond its role in clot formation, fibrinogen interacts
with cell surface receptors, modulating platelet aggrega-
tion and linking coagulation with inflammatory path-
ways [10, 11]. Its concentration and function are tightly
regulated, with disorders in fibrinogen levels or struc-
ture being associated with both bleeding and thrombotic
conditions [12]. Quantitative and qualitative changes in
fibrinogen, resulting in a fibrinogen “multiplicity’, can
therefore modify fibrin networks and thrombus architec-
ture, with important functional consequences that may
underlie the main cardiovascular diseases.

Congenital fibrinogen disorders further illustrate
the complexity of fibrinogen’s role in hemostasis and
thrombosis. These disorders, such as afibrinogenemia,
hypofibrinogenemia, dysfibrinogenemia, and hypodys-
fibrinogenemia, result from various genetic mutations
in the fibrinogen genes (FGA, FGB, and FGQG) that lead
to altered fibrinogen synthesis, secretion, or function.
The genetic diversity within these disorders contributes
to a wide range of clinical presentations, from bleeding
to thrombotic predispositions, underscoring the signifi-
cant variability in fibrinogen’s function even among indi-
viduals with the same genetic disorder [13, 14]. These
congenital disorders underscore the critical importance
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of understanding fibrinogen’s structural and functional
variability, which has profound implications for disease
pathogenesis and the development of targeted treatment
strategies. In addition to congenital variations, fibrinogen
heterogeneity is further enhanced by genetic polymor-
phisms, alternative mRNA splicing, and a wide range of
post-translational modifications (PTMs).

Fibrinogen PTMs, such as phosphorylation, glyco-
sylation, oxidation, and nitration, further modulate
its structure and function, influencing clot formation,
architecture, and stability. These modifications can be
introduced enzymatically or through interactions with
reactive species, significantly impacting fibrinogen’s role
in coagulation and its interaction with other cellular
components. PTMs have been shown to alter fibrinogen’s
ability to form clots, affect the mechanical properties of
fibrin, and influence susceptibility to fibrinolysis, thereby
playing a critical role in various pathological conditions,
including cardiovascular diseases, inflammatory states,
and metabolic disorders [15-18].

Given the extensive implications of PTMs on fibrino-
gen’s function, understanding these modifications is
crucial for advancing our knowledge of hemostasis and
developing targeted therapies for coagulation disorders.

Here, we selected articles based on their relevance,
impact, and contribution to understanding the effects of
PTMs on fibrinogen and clot formation. Our selection
process involved a comprehensive search of the litera-
ture using databases such as PubMed, Scopus, and Web
of Science. We focused on studies that provided novel
insights into the biochemical mechanisms of PTMs and
their implications for clot architecture, stability, and lysis.
Priority was given to recent publications that offered new
data or interpretations not covered in previous reviews.
Additionally, we included key foundational studies that
have been influential in shaping the current understand-
ing of PTMs’ role in coagulation. This narrative review
synthesizes findings from in vitro, ex vivo, and clinical
studies, highlighting significant advancements and ongo-
ing debates in the impact of PTMs on fibrinogen’s struc-
ture and function, emphasizing their role in coagulation
and fibrin clot dynamics. It explores the structural and
functional properties of fibrinogen, highlighting its criti-
cal role in clot formation and stability. The review delves
into the various PTMs that fibrinogen can undergo,
detailing the biochemical mechanisms behind these
modifications and their effects on fibrinogen structure,
fibrin clot architecture, clot formation and dissolution. It
underscores the importance of understanding these mod-
ifications as they significantly alter fibrinogen’s biochemi-
cal properties, influence the mechanical characteristics of
fibrin clots and contribute to fibrinogen’s molecular het-
erogeneity. Furthermore, the review identifies gaps in the
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current knowledge and suggests future research direc-
tions, emphasizing the need for deeper exploration into
the diverse roles of PTMs in hemostasis and thrombotic
disease management to enhance therapeutic strategies
for coagulation disorders.

Fibrinogen architecture and PTMs

Implications for clot structure and function

Fibrinogen molecule has a dimeric structure composed
of two sets of three polypeptide chains — Aa, BB, and y —
consisting of 610, 461 and 411 amino acids, respectively,
and connecting a central E region to two outer D regions
via coiled-coil connectors. The central E region com-
prises the N-termini of the polypeptide chains, including
fibrinopeptide A (FpA) and fibrinopeptide B (FpB). The
distal D regions include the - and y-nodules, each with
A-, B- and P-domains. A fourth region consists of the aC
domains, which are connected to the coiled-coils by the
aC connectors. (Fig. 1. 3GHG, PDB DOI: https://doi.org/
10.2210/pdb3GHG/pdb). Until recently, the full three-
dimensional structure of fibrinogen was elusive, largely
due to its high flexibility, which poses challenges for crys-
tallographic analysis.

Mature human Aa chain can be divided into fibrin-
opeptide A (16 N-terminal amino acids of the Aa chain),
that is cleaved out during the conversion of fibrinogen
to fibrin, and an a fibrin chain, that remains in the fibrin
hexamer. The N-terminal region of the fibrinogen Aa
chain is functionally important for fibrin polymerization,
but the majority of interactions involve the aC region of
fibrinogen. This region makes up two thirds of the Aa
chain and contributes approximately to 25% of the mass
of fibrinogen. The aC region is crucial for fibrin polym-
erization, cross-linking, fibrinolysis and interactions

aC domain

aC connector
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with other plasma proteins, that include FXIII, fibrino-
lytic proteins plasminogen and tPA (tissue-type plas-
minogen activator), as well as their inhibitors, a2-AP
(a2-antiplasmin) and PAI-1 (plasminogen activator
inhibitor type 1) [19-21]. In addition to binding plasma
proteins, the fibrinogen Aa chain can also interact with
integrins on cell surfaces, such as those found on plate-
lets and endothelial cells. The aC-region of fibrinogen
has been identified as a crucial area for its interaction
with Glycoprotein VI (GPVI), highlighting how the bind-
ing of fibrinogen and fibrin to the GPVI receptor on the
surface of platelets influences thrombosis [22-25].

Similarly to the Aa chain, Bf chain comprises fibrin-
opeptide B (14 N-terminal amino acids), that is cleaved
out during conversion to fibrin, and the adjacent fibrin
chain.

The y chain contains a number of sites that inter-
act with other fibrin(ogen) molecules, clotting factors,
growth factors, and integrins. A minor variant of the y
chain, called y’, arises from alternative processing of the
primary mRNA transcript and amounts to approximately
8% of the total y chain population. It consists of 427 resi-
dues and differs from y chains in that the four C-terminal
y residues, AGDYV, are replaced by an anionic sequence
of 20 amino acids that includes two sulfated tyrosines.
Unlike the main form of fibrinogen, the y” chains modu-
late thrombin and FXIII activity, influence clot architec-
ture, and do not bind to the platelet fibrinogen receptor,
allbp3 [26, 27].

During coagulation, fibrinogen is converted to insolu-
ble fibrin through a sequence of thrombin-catalyzed
reactions. Thrombin cleaves fibrinopeptides A and B
from the Aa and Bp chains of fibrinogen, revealing a- and
B- “knobs” These exposed knobs fit into corresponding
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Fig. 1 Structure of fibrinogen based on its crystal structure 3GHG (Kollman, 6.M,; Pandi, L; Sawaya, M.R;; Riley, M.; Doolittle, R.F. Crystal Structure
of Human Fibrinogen. Biochemistry 2009, 48, 3877-3886.). Missing parts of the molecule are schematically drawn into the figure. The Aa chain
is shown in green, the BB chain in orange, and the y chain in grey-violet
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“holes” in the yC and BC regions of the D nodule on
neighboring fibrin monomers. This interaction pro-
motes the staggered alignment of fibrin monomers into
linear protofibrils. These protofibrils then undergo lat-
eral aggregation, forming thicker fibrin fibers that weave
together to create a stable fibrin mesh. This meshwork
is vital for stabilizing the blood clot at the site of injury.
Cross-linking of the fibrin fibers by factor XIlIla further
reinforces the clot, ensuring its resilience to mechanical
stress while aiding in wound healing and preventing fur-
ther blood loss [28—30].

The architecture of fibrin clots characterized by an
open porous network, is crucial for their biological
function in hemostasis, fibrinolysis, and wound heal-
ing, providing distinctive mechanical features. Fibrin
clots exhibit viscoelastic behavior, combining reversible
elasticity with irreversible plasticity or viscosity. Under
challenging conditions like arterial shear, fibrin clots
exhibit strain stiffening, where their stiffness increases
with higher strain, aiding in damage resistance. Moreo-
ver, fibrin clots demonstrate exceptional extensibility and
compressibility, allowing them to withstand substantial
deformation without breaking [6].

The properties of the fibrin network can be greatly
modulated by a wide variety of factors, including multiple
mRNA transcripts (generated by initiation of transcrip-
tion by alternative promoters, differential termination
of transcription, alternative mRNA splicing, or genetic
recombination), environmental factors, fibrinogen PTMs
and pathological conditions [2, 18, 31-35]. These factors
can influence fibrin susceptibility to plasmin-induced
lysis, potentially creating a fibrin network that is more
resistant to lysis and thus increasing the risk of thrombo-
sis. Conversely, they can result in a fibrin clot that is more
susceptible to lysis, rendering it weak and unstable, and
thereby increasing the risk of bleeding [12, 36].

Among these factors, PTMs exponentially increase
the complexity and heterogeneity of fibrinogen and clot
structure. PTMs are reversible or irreversible chemi-
cal modifications that can be introduced into the pro-
tein structure enzymatically or through bonds between
amino acid side chains and reactive species such as oxy-
gen, nitrogen, sulfur, carbonyl, selenium, chlorine, or

(See figure on next page.)
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bromine free radicals [37, 38]. These reactions can mod-
ify the fibrinogen molecule in numerous ways, such as
phosphorylation at specific serine and threonine sites,
hydroxylation of proline, sulfation of tyrosine, deamida-
tion of asparagine or glutamine, formation of N-terminal
pyroglutamate from glutamine precursors, oxidation of
methionine, histidine, and tryptophan residues, nitra-
tion of tyrosine, various modifications of cysteine resi-
dues, and the formation of dityrosine and carbonyl
groups [34, 39, 40].

Physiologically, low levels of PTMs are present in all
proteins and influence various protein functions such as
activity, localization or interaction with other molecules
or cells, as well as key biological processes such as cell
differentiation and gene regulation. At high concentra-
tions, however, they have been reported in several dis-
eases such as myocardial infarction, arterial and venous
thrombosis, pulmonary embolism, cancer, infections
[41-51].

Numerous in vitro and ex vivo studies characterized
and assessed the effects of fibrinogen PTMs. Specifically,
the extent of PTMs induced in vitro on the fibrinogen
molecule depends on the type of reagents, their concen-
tration, and the duration of fibrinogen exposure [52].
Ex vivo, PTMs can occur naturally, in response to cer-
tain drugs or pathophysiological conditions. PTMs can
involve various sites on the fibrinogen molecule and can
lead to altered fibrinogen structure/function and fibrin
clot properties.

While numerous studies have explored the effects of
fibrinogen PTMs, only a limited number have specifi-
cally investigated site-specific modifications to determine
their varying impacts on clot structure and properties.
An overview of the known sites of modifications in the
fibrinogen chains is provided in Fig. 2a-c.

Weigandt et al. examined the effect of fibrinogen
oxidation with hypochlorous acid and found that this
treatment preferentially oxidizes specific methionine
residues AaM476, BPM367, y78 on the a, B, and y
chains of molecule [53].

Burney et al. [54] investigated the molecular-level
consequences of selective methionine oxidation and
reported how oxidation of AaM476 and BpM367 leads to

Fig. 2 a Known sites of oxidation on the fibrinogen chains. b and c illustrate the specific sites of major post-translational modifications (PTMs)

on fibrinogen chains. Each letter-number combination indicates the type of amino acid, represented by its one-letter code (e.g., A for Alanine, R
for Arginine, N for Asparagine, D for Aspartic acid, C for Cysteine, Q for Glutamine, E for Glutamic acid, G for Glycine, H for Histidine, | for Isoleucine,
L for Leucine, K for Lysine, M for Methionine, F for Phenylalanine, P for Proline, S for Serine, T for Threonine, W for Tryptophan, Y for Tyrosine, V

for Valine), and its position within the chain. For clarity, PTMs are shown on only one set of the three fibrinogen polypeptide chains. PTMs that have
been specifically identified in the literature as significantly affecting clot formation, fibrinolysis, and key clot properties are emphasized in bold
italics. The fibrinogen structure reported is based on NMR model PDB file 3GHG (https://www.rcsb.org/3d-view/3ghg)


https://www.rcsb.org/3d-view/3ghg

Nencini et al. Molecular Biomedicine (2024) 5:45 Page 5 of 27

432 Ms17
. H456 E526 w276
aC domain Sraares S ot wao P FIHAGCHANA)
Q M6 risea E N288 D234 P FIBB(CHAIN B)
€ D477 H545 B wao2 M235 » FIBG (CHAIN F)
C H492 P546 P304 M238
S rasavsr0 o P309  M240
K217 aC connector O ksos s D wats M2ss
M%ﬁ Q Fs13 D586 W34l Y258 ;gg
F514 H594 w391
N246 M190 F1s P516 H598 5
H132 Y117 P76
147 M1i198

K232 H343
i e
M373 K441
M376 W444 w253
S G
D:
v i
F458

C domain 5 e Kaoo ¥ ACETYLATION
e B G ¥ GLYCATION
gon  Erm V GLYCOSYLATION
€ R244 O R491
g e W NITRATION
© 1320 O Rs28
@ s L ¥ AMIDATION

V METHYLATION

[E)g83
Y285
D389 yi92 Y292

vs70 aC connector
D477
T522
ES578

T292
Y345 E220 T348 Y354
Y378 D240 T349 Y363

aC domain

. Y417 E245
aC domain va22
Y445
T393 $557-S561
(] s Siso Sot ¥ PHOSPHORYLATION
, ] sorh Bt ¥V MALONYLATION
geomals ez £ s s ¥ DICHLORINATION
@ S279 © s486 P511
£ s281 g S489 P546 V¥ SULFATION
8sm  Srmm W HYDROXYLATION
aC connector osw Qs V CITRULLINATION
L] w9, ¥ N-HOMOCYSTEINYLATION
200 yals 8164 $364 $542
Ta00  va22 C394 5365 546
5404 Y444 5395 Y109 5551 R101 K85 i1o K95
J
5 BI04 pigg K138 K181R159

VIR s R141 R162

%‘#‘&% .. K170

K70

K81 R197
$56 $67 R199K191
R406
R407
- Ra24 aC connector
iy R439
gl £ a0
® R268 o
€ Roso E R491 K508
] S R493 P546
S e O Rs28 P565
o R375 O RS54 2
S Rass o Y aC domain

K418
K448
K562

Fig. 2 (Seelegend on previous page.)



Nencini et al. Molecular Biomedicine (2024) 5:45

altered fibrin polymerization. Oxidation of AaM476 was
also studied by Pederson et al. [55] who reported that this
amino acid is necessary for aC domain dimerization and
that its oxidation is thought to hinder its ability to polym-
erize, disrupting the lateral aggregation of protofibrils.

Yurina et al. [56] investigated the effects of very low and
moderately low concentrations of HOCI/OCI on the oxi-
dative modifications of fibrinogen and its structure and
function. They found that, unlike 25 uM HOCI/OC], a
concentration of 10 uM HOCI/OCI did not impact fibrin-
ogen’s functional activity. Their study demonstrated that
several methionine residues—AaMet476, AoaMet517,
AaMet584, BBMet367, yMet264, and yMet94—identi-
fied in fibrinogen exposed to 10 pM HOCI1/OCI using the
HPLC-MS/MS method, function as reactive oxygen spe-
cies (ROS) scavengers, playing a crucial antioxidant role.
The irreversible conversion of methionines to methionine
sulfoxide/sulfone, which occurred in a dose-dependent
manner with HOCI/OCI, suggests that fibrinogen’s anti-
oxidant capacity can be significantly depleted, potentially
leading to further chemical modifications of essential
sites.

To date, oxidative PTMs at various fibrinogen sites
(AaM91, AaM476, BRH16, BBM190, BEM305, BEM367,
yM78) and nitration at BpT422 have been described in
the literature as influencing alterations in clot formation,
dissolution, and overall clot properties [32, 47, 57-60].
Specifically, “selective” oxidation at the above listed sites
decreases the rate of polymerization and fibrinolysis
and results in more dense fibrin clots with thinner fibers
which are less permeable. As for “selective” nitration at
site BpT422, it increases the rate of clot formation, the
stiffness and viscosity of clot as well as the diameter of
fibrin fibers, while fibrinolysis is decreased.

The findings from all studies on each modification are
summarized in Table 1, and an overview of the effects of
the different PTMs is presented in Table 2.

Techniques for studying protein modifications
and conformational changes
PMTs at different molecule sites can significantly alter
fibrinogen structure and therefore its functional proper-
ties. Thus, the analysis of fibrinogen structural alterations
is crucial to give information about possible biological
effects of PTMs.

Fibrinogen PTMs and structural alterations can be
investigated by:

+ Mass spectrometry (MS) currently represents the
gold standard method and the most informative
technique for protein PTMs analysis.

+ Circular Dichroism (CD) spectroscopy is used to
investigate the protein secondary structure. CD
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protein spectra in the far ultraviolet (UV) range
(180-260 nm) depends on the electronic excita-
tion of the partially delocalized peptide bonds,
which form the backbone of the polypeptide chain.
Therefore, this method detects changes in the main
alpha-helical peptide backbone structure [73].
Moreover, the CD spectra in the near ultraviolet
(UV) range (250-350 nm) is used for the analysis of
protein tertiary structure.

+ Fourier-transform infrared (FTIR) spectroscopy
provides information about protein secondary
structure. FTIR spectroscopy functions by exposing
a sample to infrared radiation to determine which
wavelengths are absorbed within the infrared spec-
trum. Each compound exhibits a distinctive pat-
tern of absorption bands in its infrared spectrum.
(Characteristic bands find in the infrared spectra
of proteins and polypeptides include Amide I and
Amide II)

+ X-ray crystallography and Nuclear Magnetic Reso-
nance (NMR) spectroscopy provide information
about protein tertiary structure.

+ Fluorescence spectroscopy is a powerful technique
widely employed in the study of protein structure
due to its sensitivity and versatility. By exciting pro-
teins with ultraviolet or visible light, fluorescence
spectroscopy can provide valuable insights into their
structural characteristics and environment. The
emission spectra generated reveal information about
the protein tertiary structure, such as the presence
and accessibility of tryptophan, tyrosine, and phe-
nylalanine residues, which are intrinsic fluorophores
in proteins. Changes in fluorescence intensity, wave-
length, or polarization can indicate alterations in
protein conformation or interactions with ligands,
cofactors, or other proteins. Moreover, fluorescence
spectroscopy can be employed in both steady-state
and time-resolved modes, allowing researchers to
probe dynamics, folding kinetics, and stability of pro-
teins under various conditions.

Fibrinogen oxidation has been extensively studied,
revealing several significant impacts on its structure
and function. Numerous observations demonstrate that
fibrinogen oxidation results in (1) important changes
in the secondary structure of fibrinogen that are mani-
fested in diminishing the alpha-helical content [42, 68,
79, 91, 156, 157] (2) chemical transformation of highly
susceptible methionine residues [53-56, 81] and other
sulphur containing side chains as well as of cyclical ami-
noacid residues [42, 68, 79, 156, 157]; (3) dose-dependent
increase in side chain carbonyl group content [42, 79,
88-90, 157, 158]; (4) dityrosine crosslinks formation by
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Table 2 Summary of the effects of fibrinogen PTMs on fibrin clot function

Page 15 of 27

Modifications

Involved Sites

Functional Effects

Acetylation

Amidation

Carbamylation

Citrullination

Dichlorination

Glycation

Glycosylation

Guanidinylation

Hydroxylation

Homocysteinylation

Malonylation

Methylation

Nitration

Oxidation

Aa: K191, K208, K224, K429, K457, K523, K539
BB: K122, K130, K133, K217, K233, K234, K318, K323, K344

v:K170, K273

Aa: Y43

BB:Y142,Y152,Y225,Y239,Y285,Y292,Y326

y: Y96, Y109
Unknown sites

Aa: R16,R19, 522, R50, R65, R95, R104, R110, R116, R141, R159, R162, R167, R197, R199, R244,
R252, R268, R289, R334, R348, R375, R385, R406, R407, R424, R439, R440, R491, R493, R528,

R554,Y570

BB: R14, R17, R23, R30, R42, R44, R94, R101, R104, R194, R216, R255, R346, R380, R391, R406,

R415, R455

Y:R5, R14, R34, R45, R108, R197, R256, R391

Aa: unknown sites
BB: Y285, P289
y: Y96, Y109

Aa: K52, K81, R95,R110, R141, R167, R197, R199, K208, R244, R268, K413, K448, R491, R493,

R528, K539, R554, K562, R572

BB: R23, R91, K122, K133, K148, R166, R169, R176, K181, R194, K209, K217, K283, R304, K323,

R380, R406

y: K62, K85, K120, K140, K151, K212

Aa: T320, S351, N453, N686
BB: N364, N394
y: N52, N78, K85, N334

Unknown sites

Aa: K508, P546, P565
BR: P31
y: unknown sites

Aa: K52, K70, K81, H138, K191, K230, K413, K418, K448, K562

BB: K181, K217, K298, K344, K396

y: K85, K95, K170, W266, K273, K373, K385

Aa: unknown sites
BB: S184, C394, S395
y: unknown sites

Aa: D56, E179,N277,D477, E520, E578
BB: E25, K134, E141, E147, D154, E220, D240, E245, E334, D383, D389

y: E13,E72, D80, E97, E213
Aa: Y43,Y76,Y258,Y570

BB:Y41,Y119,Y142,Y192,Y285,T292,Y345,Y378,Y417,T422, Y445
v:T96,Y109,Y114,T262,T274,T348,T349, Y354, T363

Aa: H24, D32, W33, P34, K70, H84, M91, H132, N139, R141, M147, K148, K176, Y178, H201, M207,
K208, P209, D212, K219, W229, D234, M235, M238, M240, M255, Y258, W276, N287, N288,
W302, P304, P309, W315, W341, W391, S432, H456, P473, M476, D477, H492, H494, K508, F513,
F514,P516, M517, E526, R528, H544, H545, P546, Y570, M584, D586, H594, H598

BB: H16,Y41,R42,H67, F115,Y117,M118,Y119,K122,K133,Y142,H149, Y152, D154, M190,
P196, K217, M224, M242, N246, W249, W266, F273, P289, Y292, W293, M305, P307, M314, W317,
K318, H325,Y338, M367, H370, H371, M373, M376, D381, D383, W385, W402, W403, Y417,
W419,Y422,W424, M426, H429, W437, M438, W440, K441, W444, Y445, M447, K453, F458

y: K58, K62, Y68, P70, K75, P76, N77, M78, D80, M89, M94, K95, H103, K120, K125, K140, W208,
F215,H217,P220, F226, W227, K232, H234,Y244, W253, M264, Y274, F322, H340, H343, N345,
W372,R375, K380, K381, H400, H401, K406

= Rate of polymerization
- Resistance to fibrinolysis
+ Diameter of fibers

+ Permeability

- Density

Unknown

- Rate of polymerization

- Resistance to fibrinolysis
- Diameter of fibers

+ Density

- Rate of polymerization
= Resistance to fibrinolysis
- Diameter of fibers

- Permeability

+ Density

Unknown

+/= Rate of polymerization

+ Resistance to fibrinolysis
-/=Diameter of fibers

+ Density

Structural alterations described

- Rate of polymerization
-/= Diameter of fibers
Structural alterations described

- Diameter of fibers
- Permeability

Unknown

= Rate of polymerization
+ Resistance to fibrinolysis
+ Density

Unknown

Unknown

Low level of nitration: + Rate
of polymerization

High level of nitration: - Rate
of polymerization

+/- Resistance to fibrinolysis
Structural alterations described

- Rate of polymerization

+ Resistance to fibrinolysis

- Diameter of fibers

- Stiffness of clot

- Permeability

+ Density

Structural alterations described
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Table 2 (continued)

Page 16 of 27

Modifications Involved Sites

Functional Effects

Phosphorylation

BR:567,5173
y: S68, Y389, T400, S404, T416, S420
Aa: unknown sites

BB: unknown sites
Y: Y418,Y422,Y444,Y448

Sulfation

Aa: S3, 522, 545, S50, 556, 5259, T268, 5272, W275, 5279, 5281, 5291, 5294, 5297, 5299, S345,
5364, 5365,T393,T412, 5436, 5441, S451, 5485, 5486, 5489, T505, T522, S523, 5524, 5542, 5546,
S551, 5557, 5558, 5559, 5560, S561, $572, 5585, $590, 5594, S599

- Resistance to fibrinolysis
- Diameter of fibers
Structural alterations described

+ Rate of polymerization

This table lists specific PTMs, the corresponding amino acid sites on fibrinogen chains where these modifications occur, and the resultant functional effects on clot
formation and degradation. Symbols indicate the type of functional change observed: '+’ denotes an increase, -’ denotes a decrease, and '="indicates no change. Each
letter-number combination indicates the type of amino acid, represented by its one-letter code (e.g., A for Alanine, R for Arginine, N for Asparagine, D for Aspartic acid,
C for Cysteine, Q for Glutamine, E for Glutamic acid, G for Glycine, H for Histidine, / for Isoleucine, L for Leucine, K for Lysine, M for Methionine, F for Phenylalanine, P for
Proline, S for Serine, T for Threonine, W for Tryptophan, Y for Tyrosine, V for Valine), and its position within the chain

tyrosine residues oxidation [157, 159, 160]; (5) reduction
of aliphatic CH, and CH; moieties [161].

Peroxynitrite (ONOQO™) is an oxidant and a nitrating
agent capable of oxidizing cysteine and tryptophan resi-
dues. The exposure of fibrinogen to peroxynitrite in vitro
causes nitrative/oxidative modifications [47, 62, 121, 123,
162] and ONOO™-induced modification of fibrinogen
has been found to result in the formation of 3-nitroty-
rosine, dityrosine crosslinking and carbonylation [163].
Parastatidis et al. [125] and Hoffman et al. [164] reported
elevated levels of 3-nitrotyrosine in fibrinogen from car-
diovascular disease patients, indicating a prothrombotic
risk factor.

In contrast, Vadseth et al. [44] demonstrated that alter-
ations in the properties of fibrinogen and fibrin clots fol-
lowing treatment with nitrating agents occur without
dityrosine cross-linking or changes in fibrinogen second-
ary structure, as assessed by CD spectroscopy.

To explore the impact of hyperglycosylation on fibrino-
gen structure, several studies have been conducted. Far-
UV CD spectra of fibrinogen revealed a reduction in the
a-helix content in fibrinogen originating from patients
with cirrhosis compared to the healthy controls. Near-
UV CD spectra showed slight differences between the
two groups, suggesting a possible change in the pro-
tein tertiary structure [97]. Spectrofluorimetric analy-
sis revealed a reduction in the intrinsic fluorescence of
fibrinogen from the patients, confirming that its tryp-
tophan residues resided in the altered surrounding. All
these data are in line with those observed for fibrino-
gen oxidation [97]. Also, Hugenholtz et al. [80] showed
a significantly increased fibrinogen carbonyl content in
the same condition. Conversely, in the context of aging,
which is associated with increased protein oxidation, the
level of protein carbonyls in healthy older individuals was
not significantly higher compared to younger individuals,

although changes in the tertiary structure of fibrinogen
were observed [96].

Some studies [103, 106, 107, 114] showed that in vitro
treatment with methylglyoxal (MGO) resulted in
fibrinogen structural and conformational changes. The
formation of fibrinogen-advanced glycation end prod-
ucts (AGEs) compromised the functional properties of
fibrinogen. Fluorescence, FTIR, and CD results indicate
that glycation impacts both the secondary and tertiary
structure of fibrinogen [102, 105]. Similar findings were
reported by Mirmiranpour et al. [99], where the CD
spectra showed changes in both the secondary and ter-
tiary structures of fibrinogen after glycation, including a
reduction in the a-helical content.

In vitro experiments on phosphorylation showed that
fibrinogen phosphorylated by both protein kinase C
(PKC) and casein kinase 2 (CK2) underwent a conforma-
tional change in their secondary structure. Conversely,
phosphorylation by protein kinase A (PKA) or protein
kinase C(PKC) induced changes in the tertiary structure
of fibrinogen, particularly around tryptophan residues
[151].

Fibrinogen PTMs such as amidation, dichlorination,
hydroxylation, malonylation, methylation and sulphation
have been described, but the effects on fibrinogen struc-
ture are unknown [47, 57].

PTMs and fibrin clot architecture

Fibrin clot architecture, characterized by fiber diameter
and pore size within the fibrin network, is critical for its
biological function in hemostasis, fibrinolysis, and wound
healing [165]. The impact of PTMs on clot properties can
be evaluated by measuring fibrin fiber diameter, clot stiff-
ness, clot permeability, clot density and cross-linking,
which involves covalent cross-links between fibrin o and
y chains.
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Effects of oxidation

Oxidation represents the most extensively studied fibrin-
ogen PTM. It occurs when ROS are produced excessively
and not neutralized by antioxidants. External factors like
radiation, drugs, and pollution can also increase ROS lev-
els, leading to oxidative stress, which damages biological
macromolecules, including DNA, proteins, and lipids,
causing mutations, loss of function, and cellular damage
[18].

In vitro studies using various oxidation protocols (e.g.,
irradiation, photooxidation, ozone, ascorbate/FeCls, per-
oxynitrite, HOCI, glycolaldehyde) have shown conflicting
results regarding fibrin fiber diameter, with most studies
reporting smaller diameters [53, 55, 56, 63, 68-70, 73, 75,
76, 78, 80, 82, 84—88, 91, 166] while only a few studies
(one in vitro using ozone as oxidant condition, and two
ex vivo) report different results [66, 77, 78].

Other characteristics, such as reduced stiffness [53, 55,
61, 70, 73, 81, 82, 84—86, 166], lower permeability [53, 56,
72,75, 76,78, 80, 83, 85, 88, 91, 166], increased fibrin clots
density [53, 55, 56, 68-70, 72, 75, 82, 84—86, 88, 90, 91] and
an enhanced cross-linking [63, 70, 84] have been observed
with oxidized fibrinogen.

Effects of nitration
Nitration, another significant PTM, primarily affects tyros-
ine and cysteine residues, forming 3-nitrotyrosine and
3-nitrocysteine. This modification is usually driven by neu-
trophils and monocytes, which produce nitrating agents in
inflammatory sites and venous thrombi [47, 126].
Fibrinogen nitration has been studied in a few cases,
producing conflicting results likely due to varying levels
of nitration. Some studies reported significantly smaller
fibrin fiber diameter [44, 117], while others found no
change [125, 127] or even an increase [120]. However,
other clot properties, such as stiffness and rigidity [44,
120, 125], density [117, 120, 122], permeability [44], and
cross-linking [44, 127] were generally consistent with
expectations: thinner fibers led to denser, less permeable
clots.

Effects of glycosylation and glycation

Glycosylation, the covalent attachment of carbohydrate
to protein during biosynthesis via N-glycosidic or O-gly-
cosidic bonds, includes sialylation, where sialic acid is the
terminal monosaccharide.

Studies evaluating the role of glycosylation and sialyla-
tion showed mixed results: one study [92] found reduced
fibrin fiber diameter, stiffness, permeability and density,
while two others [80, 96] observed no changes. Hyper-
sialylation, on the other hand, was found to produce
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clots with thinner fibers, greater stiffness and increased
density.

Glycation, a non-enzymatic reaction between a lysine
residue’s e-amino group and a sugar molecule’s aldehyde
group, is common in diabetes due to hyperglycaemia. Fol-
lowing glycation, fibrin fiber diameter and clot stiffness
were either unchanged [109, 111, 112] or decreased [101,
113], while three out of five studies reported decreased
permeability [108-111, 113] and generally increased den-
sity [100, 101, 109, 110, 113]. Only one study reported
no difference in cross-linking between fibrinogen from
patients with diabetes mellitus and control subjects [111].

Effects of acetylation and phosphorylation

Acetylation of fibrinogen, particularly in the context of
aspirin treatment, modifies several lysine residues: Aa
(K191, K208, K224, K429, K457, K523, K539); BB (K233),
and y (K170, K273), resulting in increased fibrin fibers
diameter, higher permeability, reduced clot density, and
lower stiffness [136—139].

The effects of acetylation vary with aspirin dosage: low
doses enhance fiber mass/length ratio and permeability,
while higher doses have little impact on fiber thickness
but slightly increase permeability, especially in type 1
diabetes patients due to reduced acetylation of glycated
fibrinogen [167].

Phosphorylation, a reversible process mediated by a
serine/threonine or tyrosine protein kinase, regulates
fibrinogen’s clot-forming properties by altering fiber
diameter: phosphorylation by PKA or PKC reduces fibrin
fiber diameter [149, 152, 168], while phosphorylation by
CK2 increases it [152]. Accordingly, experiments involv-
ing dephosphorylation demonstrate an increase in fiber
diameter [149, 152, 154].

In a study by Martin et al. [154], increased fibrino-
gen phosphorylation during the acute phase following
hip-replacement surgery was associated with thicker
fibrin fibers. These findings suggest that casein kinase
II may play a significant role in ex vivo fibrinogen
phosphorylation.

Effects of homocysteinylation, citrullination, and other
PTMs

Fibrinogen homocysteinylation, involving the acylation
of e-amino group of lysine residues by homocysteine
thiolactone or the oxidation of cysteine thiol groups,
occurs with elevated plasma homocysteine levels. Stud-
ies on fibrinogen homocysteinylation [140-145] have
reported conflicting effects on fibrin fiber diameter, with
reports of no change [142], increases [140] or decreases
[141, 145], depending on homocysteine concentrations
and the experimental conditions (e.g., plasma vs. puri-
fied fibrinogen). Most studies observed increased clot
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density [140, 141, 145], but permeability and stiffness
were not widely evaluated.

Citrullination, the enzymatic conversion of arginine
to citrulline by peptidylarginine deiminase (PAD) [130],
consistently leads to a reduction in fibrin fibers diameter
[78, 130, 132-134], decreased permeability [78, 132, 134]
and denser clots [131-135].

Other fibrinogen PTMs, such as carbamylation, results
in thinner fibers, increased clot density, and reduced
cross-linking [147], while guanidinylation [113] produces
clot with thinner fibers and decreased permeability.

Fibrinogen PTMs such as amidation, dichlorination,
hydroxylation, malonylation, methylation and sulphation
have been described, but the effects on fibrin clot archi-
tecture are unknown [47, 57].

PTMs and clot formation

During coagulation, thrombin cleaves fibrinogen, releas-
ing FPA and FPB from the N-termini of the Aa- and
Bp-chains, converting fibrinogen to fibrin monomers.
Insertion of these newly exposed a- and p- “knobs” into
a- and b- “holes” in the yC and BC regions of the D nod-
ule, respectively, on another fibrin monomer permits
the half-staggered association of fibrin monomers into
protofibrils. Subsequent aggregation of protofibrils into
fibers, through lateral aggregation promoted mainly by
intermolecular oC: aC interactions and probably also by
interactions between both a- and y-chains, yields a fibrin
network that is essential for blood clot stability [33, 129,
165, 169, 170].

The effects of PTMs on fibrinogen can significantly
impact clot formation kinetics, which can be evaluated
by measuring four key parameters: (i) thrombin-cata-
lyzed fibrin polymerization, which assesses the conver-
sion of fibrinogen to fibrin and determines clotting time
or aggregation rate; (ii) maximum velocity (V max), indi-
cating the speed of lateral protofibril association; (iii) lag
phase, indicating the time until fibril aggregation begins;
and (iv) maximum turbidity or absorbance (MaxAbs)
of the clot, reflecting the final clot structure in terms of
fibrin fiber size and protofibril density [85].

Effects of oxidation

Fibrinogen oxidation is a critical post-translational modi-
fication that can significantly alter the process of fibrin
formation and clot dynamics. Most studies consistently
report that fibrinogen oxidation significantly reduces its
conversion to fibrin compared to non-oxidized fibrino-
gen (Table 1). The lag phase is consistently prolonged
across nearly all experiments [42, 62-64, 66, 75, 79, 82,
85], while the maximum absorbance and maximum
velocity, measured in turbidity assays, are consistently
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decreased [42, 56, 58, 62-65, 67, 68, 72, 74, 75, 82, 85,
87, 91, 166]. However, the effects of oxidation on fibrin
clot architecture are not uniform across all studies. Vari-
ations in experimental conditions, such as different con-
centrations of oxidizing agents, and differences in patient
populations contribute to conflicting findings regarding
polymerization rates and clot characteristics. Torbitz
et al. [52] and several ex vivo investigations [76—78] have
shown an increased polymerization rate. The in vitro
study by Torbitz et al. used relatively high concentrations
of HOCI (1, 2, 4 mM), potentially explaining this devia-
tion from other findings [52]. Ex vivo studies examining
patients with end-stage renal disease on hemodialysis,
myocardial infarction (MI), and rheumatoid arthritis
(RA) have yielded conflicting results. For instance, Undas
et al. [76] observed significant differences in the lag phase
among hemodialysis patients compared to controls,
whereas patients on peritoneal dialysis exhibited a higher
rate of protofibril formation in another study [171], pos-
sibly due to elevated fibrinogen levels in these subjects.
Similarly, Paton et al. showed [77] higher polymerization
rate and increased maximum turbidity in oxidized fibrin-
ogen from MI patients. In contrast, Becatti et al. [42]
observed a slower rate of thrombin-catalyzed fibrinogen
polymerization in patients with post-acute MI (6 months
after the event). This discrepancy could be attributed to
differences in the patient cohorts enrolled in the studies.

Kwasny-Krochin et al. [78] conducted the first study on
fibrin clot structure/function in RA patients, revealing
faster but less permeable and poorly lysable fibrin clots,
due to elevated acute phase proteins such as fibrino-
gen and C reactive protein (CRP) during active disease
phases. Salonen and coworkers [172], provided a mecha-
nistic link by showing that CRP binds to fibrinogen and
fibrin, potentially influencing fibrin clot structure under
pathological conditions.

In summary, while fibrinogen oxidation generally
reduces fibrin formation and alters clot characteris-
tics, the specific effects on clot architecture and polym-
erization dynamics vary significantly depending on the
oxidizing conditions, experimental setups, and patient
characteristics, underscoring the complexity of fibrino-
gen’s role in different pathological states.

Effects of nitration

Studies on fibrinogen nitration, particularly ex vivo
experiments involving patients with coronary artery
disease, smokers, healthy volunteers taking lipopolysac-
charides and patients with multiple myeloma (MM),
consistently show higher levels of fibrinogen nitration
compared to controls. Generally, nitrated fibrinogen
demonstrates an increased conversion rate to fibrin,
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which aligns with shorter lag phases and higher maxi-
mum absorbance in turbidity assays, indicating an accel-
erated polymerization process [44, 124—-126]. However,
the effects of nitration on fibrin clot appears to be con-
centration dependent. Low concentrations of perox-
ynitrite (<10 uM) typically show an enhanced fibrin
formation [115-117, 122], while higher concentrations
of nitration agents (>10 pmol/L peroxynitrite or 100
pumol/L nitronium fluoroborate) typically reduce polym-
erization rate [62, 118-120]. For instance, Ding et al.
[119] observed a decreased polymerization rate when
using 8.7 uM peroxynitrite in combination with increas-
ing manganese levels, which enhances nitration. Helms
et al. found a longer clotting time and decreased initial
rate of clot formation with 5 umol/L ProliNONOate, a
nitric oxide donor, although these results were not statis-
tically significant. Conversely, some studies have reported
increased polymerization rates despite high peroxynitrite
concentrations, which could be due to relatively low lev-
els of nitration or the presence of only a few modified
fibrinogen molecules, as suggested by Gole et al. [115], de
Vries [32], Rutkowska [122] and Vadseth [44]. This vari-
ability underscores the complexity of nitration effects on
fibrinogen and the need to consider the specific nitration
conditions in interpreting the results.

Effects of glycosylation and glycation

As aging is associated with increased fibrinogen glyco-
sylation, but Gligorijevi¢ et al. found no significant dif-
ferences in clotting speed and maximal fibrin clot optical
density across different age groups [96]. Other stud-
ies found that the extra carbohydrate moiety impairs
the protofibril lateral association process, resulting in a
decreased polymerization rate [80, 92, 95]. As for fibrino-
gen sialylation, a reduced conversion into fibrin and an
increase in lag phase was reported in hepatoma, liver dis-
ease and fibrate therapy patients [93, 173-175].

Nellenbach et al. [98] demonstrated that hypersyalila-
tion in neonates increases fibrin polymerization rate, but
these effects disappear when sialic acid was removed.

Moiseiwitsch et al. [49] showed that COVID-19
patients have higher sialic acid content in fibrinogen,
leading to faster polymerization and greater maximum
turbidity, which is responsible for the altered clot density
in these patients.

Regarding glycation, most studies showed an increased
polymerization rate when fibrinogen was incubated with
glucose [99-101, 109, 111], while only one study reported
a decreased rate compared to control [104]. This reduc-
tion was attributed to glycation’s effect on fibrinogen
clotting ability, which involves the formation of strong
covalent bonds and the influence of elevated glucose
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concentrations during fibrin polymerization, resulting in
weaker interactions and a reduced maximal velocity of
fibrin polymerization in diabetic patients.

Effects of acetylation and phosphorylation
Fibrinogen acetylation has significant effects on clot-
ting dynamics and clot structural properties, with older
in vitro studies [176-180] showing reduced maximum
turbidity of fibrin polymerization in the presence of high
doses of aspirin or acetylating agents. However, more
recent studies have reported increased or unchanged
turbidity values [137, 138]. Acetylation generally impairs
fibrinogen clotting property, making fibrin fibers thicker,
leading to a looser network in a dose-dependent manner.
In terms of phosphorylation, several protein kinases,
including PKA, PKC, and CK1 and CK2 [181-184], can
phosphorylate fibrinogen, altering clot properties. CK2-
dependent fibrinogen phosphorylation increases clot
turbidity and significantly enhances the rate of blood
coagulation in vitro [153, 185], while PKC-depend-
ent fibrinogen phosphorylation reduces clot turbidity
[148-150, 168]. These effects are further confirmed by
studies on fibrinogen dephosphorylation with alkaline
phosphatase [149, 150, 152, 154]. Ex vivo studies have
reported that increased fibrinogen phosphorylation fol-
lowing hip surgery or myocardial infarction (MI) leads to
faster polymerization rates [154, 155].

Effects of homocysteinylation, citrullination, and other
PTMs

Homocysteinylation, evaluated in vitro by incubating
fibrinogen or plasma with different concentrations of
homocysteine, has shown mixed effects on clotting abil-
ity, with some studies reporting decreased polymeriza-
tion rate, reduced maximum turbidity, and a prolonged
lag phase, while others reported contradictory findings
[140, 142, 144, 145].

Citrullination, studied in vitro with PAD2 and PAD4
enzymes, inhibits fibrin polymerization by preventing
thrombin-catalyzed release of fibrinopeptides [128—130].
Ex vivo studies [78, 135] in rheumatoid arthritis patients
demonstrated increased fibrin citrullination in plasma,
leading to faster polymerization rates compared to
controls.

Carbamylation, a non-enzymatic PTM resulting from
the reactions with isocyanic acid [186, 187], is more com-
mon in patients with chronic kidney disease or inflam-
matory conditions and is linked to impaired fibrin clot
formation [188]. In vitro studies have shown that carba-
mylation reduces fibrinogen conversion to fibrin, lower-
ing maximum turbidity and velocity, while increasing lag
phase [146, 147].
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Tyrosine sulfation has been suggested to play impor-
tant roles in blood coagulation and it is responsible for
facilitating key protein—protein interactions. In addi-
tion, it has been described that sulfation of fibrinogen
enhances binding affinity to thrombin, increasing the rate
of polymerization [189-192].

Fibrinogen PTMs such as amidation, dichlorination,
hydroxylation, malonylation and methylation have been
described, but the effects on fibrin clot formation are
unknown [47, 57].

PTMs and clot lysis

The fibrinolytic system plays a crucial role in maintaining
haemostatic balance by breaking down fibrin, the final
product of blood coagulation, through the action of plas-
min [165, 193].

Fibrinogen PTMs can significantly influence not only
clot formation but also clot lysis, thereby impacting
the overall process of fibrinolysis. Various studies have
explored the effects of different PTMs on fibrin degra-
dation, revealing that can alter clot lysis in diverse ways
[42, 53, 63, 67, 71, 73, 75, 76, 78, 79, 82-85, 87, 166].
These modifications can either decrease fibrinolytic
activity, as seen with oxidation and phosphorylation,
or enhance clot degradation, as observed with certain
carbohydrate modifications and acetylation. The impact
of these PTMs on fibrinolysis is complex and var-
ies depending on the specific type of modification, the
conditions under which it occurs, and the presence of
additional factors such as disease states or therapeutic
interventions.

Oxidation significantly impacts fibrinogen structural
integrity and fibrin susceptibility to plasmin-induced
lysis. Several studies highlight that fibrinogen oxida-
tion led to a decreased fibrinolytic activity. This is evi-
dent from the impaired clot dissolution observed in
inflammatory conditions such as Bechet’s disease,
where neutrophil activation promotes fibrinogen oxi-
dation, resulting in resistant thrombus formation [79].
Similarly, patients with pulmonary hypertension exhibit
increased fibrinogen oxidation, which correlates with
reduced plasmin-mediated fibrin degradation [194].
In Giant Cell Arteritis (GCA), a chronic inflamma-
tory disease affecting large and medium-sized arter-
ies, the risk of thrombosis is significantly elevated due
to a combination of vascular inflammation, endothelial
dysfunction, and increased oxidative stress. This oxi-
dative stress promotes fibrinogen oxidation, altering
its structure and function, leading to the formation of
denser, more resistant fibrin clots [75]. The oxidative
stress-related structural changes include increased
dityrosine cross-linking and altered tertiary structure,
which collectively reduce the fibrin clot susceptibility to
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plasmin-mediated lysis [42]. Moreover, anti-inflamma-
tory interventions, such as IL-6 inhibition with tocili-
zumab, have been shown to restore redox balance and
partially reverse the oxidation-induced fibrinogen mod-
ifications, thereby enhancing fibrinolytic efficiency in
affected patients [75]. On the contrary, in the study by
White et al. [81], fibrin polymerization was found to be
impaired in trauma patients with increased fibrinogen
Aa-Met476(SO), leading to decreased clot strength and
increased fibrinolysis after injury.

Overall, these findings underscore the critical role of
oxidative stress in modulating fibrinogen function and
clot lysis, emphasizing the need for targeted therapies to
mitigate oxidative damage in thrombotic disorders.

Nitration is another PTM that has been studied for
its impact on fibrin clot degradation, primarily through
ex vivo experiments conducted in patients with coro-
nary artery disease (CAD), Multiple Myeloma (MM) and
smokers. The results have been somewhat mixed, with
one study showing no significant difference in fibrinoly-
sis respect to control, while two studies demonstrated a
decrease in fibrinolysis [44, 125, 127].

The modification of fibrinogen by carbohydrates, par-
ticularly through glycation and hypersialylation, has also
been investigated, albeit in a limited number of studies.

Glycation, commonly occurring in patients with dia-
betes mellitus or those undergoing chronic hemodialy-
sis, has consistently been shown to reduce fibrinolytic
activity across four different studies [94, 108, 111, 113].
Conversely, the effects of hypersialylation on fibrinolysis
appear more variable. Among three studies examining
this PTM, two reported a decrease in clot degradation,
while one observed an increase [49, 98, 195]. Specifically,
Moiseiwitsch et al. [49] investigated fibrinogen from
COVID-109 patients, finding it to have a higher content of
sialic acid residues compared to controls. The removal of
these residues led to a significant increase in the rate of
clot degradation, highlighting the influence of hypersia-
lylation on fibrin stability.

As previously discussed, aspirin-induced fibrinogen
acetylation is another PTM that alters clot structure and
function. This modification results in a less compact
fibrin network, which shortens the lysis time of clots
formed from aspirin-treated fibrinogen. These findings
have been supported by both in vitro and ex vivo studies
[137, 138].

Fibrinogen phosphorylation has been consistently
associated with a reduction in fibrin degradation, regard-
less of the kinase involved [150, 152, 154, 155]. Interest-
ingly, when fibrinogen is dephosphorylated using alkaline
phosphatase, clot degradation is not affected, suggest-
ing that phosphorylation specifically contributes to the
resistance of fibrin to plasmin-induced lysis [150].
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Additional PTMs, such as homocysteinylation, carba-
mylation and guanidinylation have similarly been asso-
ciated with decreased fibrin degradation. However, the
effects of citrullination on clot degradation are less clear,
with studies showing conflicting results [78, 113, 130,
134, 135, 140-144, 147].

Fibrinogen PTMs such as amidation, dichlorination,
hydroxylation, malonylation, methylation and sulphation
have been described, but the effects on fibrin clot lysis
are unknown [47, 57].

Conclusions

An increasing body of research indicates a connection
between thromboembolic events and distinct prothrom-
botic structural features of fibrin clots. Our review high-
lights that fibrinogen PTMs, such as oxidation, nitration,
glycosylation, glycation, acetylation, phosphorylation,
and others, significantly influence the biochemical and
mechanical properties of fibrin clots. These modifications
can alter clot architecture by affecting fibrin polymeriza-
tion rates, fiber thickness, clot density, and susceptibility
to fibrinolytic degradation, ultimately modulating throm-
bus stability and resolution (Fig. 3).

Clot formation
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Oxidation and nitration typically lead to denser clots
with thinner fibers, reducing clot permeability and
increasing resistance to fibrinolysis, which can exacer-
bate prothrombotic conditions such as cardiovascular
diseases, chronic inflammatory disorders, and diabetes
mellitus, especially under high oxidative stress. Con-
versely, modifications like acetylation, often induced
through aspirin therapy, result in more permeable clots
with thicker fibers, enhancing fibrinolytic susceptibility.
This highlights the therapeutic potential of aspirin and
other antiplatelet drugs in reducing thrombotic risk
and managing conditions such as coronary artery dis-
ease and stroke.

The effects of other modifications, such as glycation
and phosphorylation, are particularly relevant in the
context of metabolic disorders like diabetes, where
elevated glucose levels lead to increased glycation of
fibrinogen, further complicating the thrombotic profile
of these patients. The modulation of these PTMs pre-
sents an opportunity for pharmacological intervention
aimed at altering clot properties to favor fibrinolysis
and reduce thrombus formation. Such strategies could
include antioxidant therapies to reduce oxidative stress,

Clot lysis

(\—_/'@ yomd e \/\/\ﬁ/ /\/

Activation of
coagulation

.

Thrombin

% - )
\A
Platelet

aggregation

Retraction ‘

o R
7\ g*ﬁ.p

P

Fibrin fragments

e,

0.20 Effects on clot formation

ABS MAX |
0.154

0.10—

Absorbance

E'Rate_of i
polimerization

0.05

T Density

T T
01 50 100 150 200

e Time (min)

Clot structure alterations

NS 4
« o BNy
9 LR

Thin fibers

l Permeability

less resistance
to fibrinolysis [ p-Dimer tO fibrinolysis

/ (= pp  Mmoreresistance
k { -

/
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in clot structure alterations, including thinner fibrin fibers, increased clot density, and reduced permeability, which affect the clot’s susceptibility

to fibrinolysis leading to thrombosis complications
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which is known to promote fibrinogen oxidation, or the
use of specific inhibitors that target detrimental PTMs
without disrupting beneficial ones.

It is important to note that approximately 70% of
the studies reviewed here were performed in vitro,
using varying concentrations of chemicals to induce
PTMs. While in vivo studies are limited primarily to
the major modifications, they generally corroborate
the effects observed in vitro. However, few studies have
investigated other modifications, necessitating further
validation.

Despite the increasing number of studies on fibrino-
gen modifications, few have identified site-specific
modifications and linked them to molecule function
and in vivo effects. Therefore, additional experimen-
tal and clinical investigations are essential to pinpoint
PTMs sites in vivo. Studies employing human fibrino-
gen, where feasible, will be crucial in understanding
how these site-specific modifications affect function
and protein interactions. While significant progress
has been made in understanding the effects of PTMs
on fibrinogen structure, clot formation, and fibrin deg-
radation, it is crucial to acknowledge that many limita-
tions and gaps still exist in this area of research. One
of the primary challenges in studying fibrinogen PTMs
is the variability in experimental conditions, which can
lead to discrepancies in results across different studies.
Moreover, the diversity of PTMs detection methods
and the absence of standardized protocols complicate
the direct comparison of findings. Additionally, differ-
ences in patient populations and physiological condi-
tions introduce further variability, making it difficult
to isolate the specific impact of each PTM. Future
research should aim to address these challenges by
developing standardized methodologies and exploring
the effects of PTMs in more diverse and clinically rel-
evant settings. Expanding our understanding of these
modifications could provide insights into their broader
implications in thrombosis and other coagulation dis-
orders, ultimately informing the development of tar-
geted therapeutic strategies.

Abbreviations

CK Casein Kinase

cD Circular Dichroism

FPA Fibrinopeptide A

FPB Fibrinopeptide B

FTIR Fourier-Transform Infrared (Spectroscopy)
M Myocardial Infarction

MM Multiple Myeloma

PAD Peptidylarginine Deiminase

PK Protein Kinase

PTMs  Post-Translational Modifications
RA Rheumatoid Arthritis

ROS Reactive Oxygen Species
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