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Abstract 

Fibrinogen, a blood plasma protein with a key role in hemostasis and thrombosis, is highly susceptible to post-trans-
lational modifications (PTMs), that significantly influence clot formation, structure, and stability. These PTMs, which 
include acetylation, amidation, carbamylation, citrullination, dichlorination, glycation, glycosylation, guanidinylation, 
hydroxylation, homocysteinylation, malonylation, methylation, nitration, oxidation, phosphorylation and sulpha-
tion, can alter fibrinogen biochemical properties and affect its functional behavior in coagulation and fibrinolysis. 
Oxidation and nitration are notably associated with oxidative stress, impacting fibrin fiber formation and promoting 
the development of more compact and resistant fibrin networks. Glycosylation and glycation contribute to altered 
fibrinogen structural properties, often resulting in changes in fibrin clot density and susceptibility to lysis, particularly 
in metabolic disorders like diabetes. Acetylation and phosphorylation, influenced by medications such as aspirin, 
modulate clot architecture by affecting fiber thickness and clot permeability. Citrullination and homocysteinylation, 
although less studied, are linked to autoimmune conditions and cardiovascular diseases, respectively, affecting fibrin 
formation and stability. Understanding these modifications provides insights into the pathophysiology of thrombotic 
disorders and highlights potential therapeutic targets. This review comprehensively examines the current literature 
on fibrinogen PTMs, their specific sites, biochemical pathways, and their consequences on fibrin clot architecture, clot 
formation and clot lysis.
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Introduction
Thrombosis is a leading cause of death worldwide and 
includes arterial events (myocardial infarction and 
ischemic stroke) and venous thromboembolism (VTE), 
that comprises superficial and deep vein thrombo-
sis (SVT and DVT) and pulmonary embolism (PE) [1]. 
Thrombosis can be triggered by diverse factors such as 
trauma, non-traumatic insults, or various clinical disor-
ders. Thrombotic events can occur in the whole vascular 
network, ranging from major arteries to the smallest cap-
illaries, impacting organ and tissue function and struc-
ture. Arterial and venous thrombosis are influenced by 
Virchow’s triad, involving endothelial injury, disturbances 
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in blood flow, and alterations in platelet and plasma con-
stituents favoring thrombosis [2, 3].

Fibrinogen, a large hexameric glycoprotein produced 
primarily in the liver, plays a crucial role in hemostasis, 
serving as the precursor to fibrin, the main protein com-
ponent of blood clots [2, 4–6].

The study of fibrinogen began in the 19th century with 
Rudolf Virchow’s identification of fibrin as a key element 
in blood clots. It wasn’t until 1937 that scientists con-
firmed that proteolytic enzymes could convert fibrino-
gen into fibrin, establishing the role of limited proteolysis 
in clot formation [7]. The culmination of these studies 
came in 1952 when John Ferry proposed that the removal 
of negatively charged peptides from fibrinogen leads 
to spontaneous polymerization, forming protofibrils 
[8]. Subsequent research throughout the 20th century, 
including advances in electron microscopy and crystal-
lography, revealed the trinodular structure of fibrinogen 
and its three polypeptide chains culminating in detailed 
structural and mechanistic insights into how fibrinogen 
transforms into fibrin. These discoveries laid the foun-
dation for understanding blood clotting and the broader 
implications of fibrinogen in health and disease [9].

Fibrinogen molecule comprises two sets of three poly-
peptide chains (Aα, Bβ, and γ) linked by disulfide bonds, 
forming a complex structure essential for its function 
in coagulation. Upon vascular injury, fibrinogen is con-
verted by thrombin into fibrin, which polymerizes to 
form a stable clot, a key step in stopping bleeding [2, 4]. 
Beyond its role in clot formation, fibrinogen interacts 
with cell surface receptors, modulating platelet aggrega-
tion and linking coagulation with inflammatory path-
ways [10, 11]. Its concentration and function are tightly 
regulated, with disorders in fibrinogen levels or struc-
ture being associated with both bleeding and thrombotic 
conditions [12]. Quantitative and qualitative changes in 
fibrinogen, resulting in a fibrinogen “multiplicity”, can 
therefore modify fibrin networks and thrombus architec-
ture, with important functional consequences that may 
underlie the main cardiovascular diseases.

Congenital fibrinogen disorders further illustrate 
the complexity of fibrinogen’s role in hemostasis and 
thrombosis. These disorders, such as afibrinogenemia, 
hypofibrinogenemia, dysfibrinogenemia, and hypodys-
fibrinogenemia, result from various genetic mutations 
in the fibrinogen genes (FGA, FGB, and FGG) that lead 
to altered fibrinogen synthesis, secretion, or function. 
The genetic diversity within these disorders contributes 
to a wide range of clinical presentations, from bleeding 
to thrombotic predispositions, underscoring the signifi-
cant variability in fibrinogen’s function even among indi-
viduals with the same genetic disorder [13, 14]. These 
congenital disorders underscore the critical importance 

of understanding fibrinogen’s structural and functional 
variability, which has profound implications for disease 
pathogenesis and the development of targeted treatment 
strategies. In addition to congenital variations, fibrinogen 
heterogeneity is further enhanced by genetic polymor-
phisms, alternative mRNA splicing, and a wide range of 
post-translational modifications (PTMs).

Fibrinogen PTMs, such as phosphorylation, glyco-
sylation, oxidation, and nitration, further modulate 
its structure and function, influencing clot formation, 
architecture, and stability. These modifications can be 
introduced enzymatically or through interactions with 
reactive species, significantly impacting fibrinogen’s role 
in coagulation and its interaction with other cellular 
components. PTMs have been shown to alter fibrinogen’s 
ability to form clots, affect the mechanical properties of 
fibrin, and influence susceptibility to fibrinolysis, thereby 
playing a critical role in various pathological conditions, 
including cardiovascular diseases, inflammatory states, 
and metabolic disorders [15–18].

Given the extensive implications of PTMs on fibrino-
gen’s function, understanding these modifications is 
crucial for advancing our knowledge of hemostasis and 
developing targeted therapies for coagulation disorders.

Here, we selected articles based on their relevance, 
impact, and contribution to understanding the effects of 
PTMs on fibrinogen and clot formation. Our selection 
process involved a comprehensive search of the litera-
ture using databases such as PubMed, Scopus, and Web 
of Science. We focused on studies that provided novel 
insights into the biochemical mechanisms of PTMs and 
their implications for clot architecture, stability, and lysis. 
Priority was given to recent publications that offered new 
data or interpretations not covered in previous reviews. 
Additionally, we included key foundational studies that 
have been influential in shaping the current understand-
ing of PTMs’ role in coagulation. This narrative review 
synthesizes findings from in  vitro, ex  vivo, and clinical 
studies, highlighting significant advancements and ongo-
ing debates in the impact of PTMs on fibrinogen’s struc-
ture and function, emphasizing their role in coagulation 
and fibrin clot dynamics. It explores the structural and 
functional properties of fibrinogen, highlighting its criti-
cal role in clot formation and stability. The review delves 
into the various PTMs that fibrinogen can undergo, 
detailing the biochemical mechanisms behind these 
modifications and their effects on fibrinogen structure, 
fibrin clot architecture, clot formation and dissolution. It 
underscores the importance of understanding these mod-
ifications as they significantly alter fibrinogen’s biochemi-
cal properties, influence the mechanical characteristics of 
fibrin clots and contribute to fibrinogen’s molecular het-
erogeneity. Furthermore, the review identifies gaps in the 
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current knowledge and suggests future research direc-
tions, emphasizing the need for deeper exploration into 
the diverse roles of PTMs in hemostasis and thrombotic 
disease management to enhance therapeutic strategies 
for coagulation disorders.

Fibrinogen architecture and PTMs
Implications for clot structure and function
Fibrinogen molecule has a dimeric structure composed 
of two sets of three polypeptide chains – Aα, Bβ, and γ – 
consisting of 610, 461 and 411 amino acids, respectively, 
and connecting a central E region to two outer D regions 
via coiled-coil connectors. The central E region com-
prises the N-termini of the polypeptide chains, including 
fibrinopeptide A (FpA) and fibrinopeptide B (FpB). The 
distal D regions include the β- and γ-nodules, each with 
A-, B- and P-domains. A fourth region consists of the αC 
domains, which are connected to the coiled-coils by the 
αC connectors. (Fig. 1. 3GHG, PDB DOI: https:// doi. org/ 
10. 2210/ pdb3G HG/ pdb). Until recently, the full three-
dimensional structure of fibrinogen was elusive, largely 
due to its high flexibility, which poses challenges for crys-
tallographic analysis.

Mature human Aα chain can be divided into fibrin-
opeptide A (16 N-terminal amino acids of the Aα chain), 
that is cleaved out during the conversion of fibrinogen 
to fibrin, and an α fibrin chain, that remains in the fibrin 
hexamer. The N-terminal region of the fibrinogen Aα 
chain is functionally important for fibrin polymerization, 
but the majority of interactions involve the αC region of 
fibrinogen. This region makes up two thirds of the Aα 
chain and contributes approximately to 25% of the mass 
of fibrinogen. The αC region is crucial for fibrin polym-
erization, cross-linking, fibrinolysis and interactions 

with other plasma proteins, that include FXIII, fibrino-
lytic proteins plasminogen and tPA (tissue-type plas-
minogen activator), as well as their inhibitors, α2-AP 
(α2-antiplasmin) and PAI-1 (plasminogen activator 
inhibitor type 1) [19–21]. In addition to binding plasma 
proteins, the fibrinogen Aα chain can also interact with 
integrins on cell surfaces, such as those found on plate-
lets and endothelial cells. The αC-region of fibrinogen 
has been identified as a crucial area for its interaction 
with Glycoprotein VI (GPVI), highlighting how the bind-
ing of fibrinogen and fibrin to the GPVI receptor on the 
surface of platelets influences thrombosis [22–25].

Similarly to the Aα chain, Bβ chain comprises fibrin-
opeptide B (14  N-terminal amino acids), that is cleaved 
out during conversion to fibrin, and the adjacent fibrin β 
chain.

The γ chain contains a number of sites that inter-
act with other fibrin(ogen) molecules, clotting factors, 
growth factors, and integrins. A minor variant of the γ 
chain, called γ′, arises from alternative processing of the 
primary mRNA transcript and amounts to approximately 
8% of the total γ chain population. It consists of 427 resi-
dues and differs from γ chains in that the four C-terminal 
γ residues, AGDV, are replaced by an anionic sequence 
of 20 amino acids that includes two sulfated tyrosines. 
Unlike the main form of fibrinogen, the γ′ chains modu-
late thrombin and FXIII activity, influence clot architec-
ture, and do not bind to the platelet fibrinogen receptor, 
αIIbβ3 [26, 27].

During coagulation, fibrinogen is converted to insolu-
ble fibrin through a sequence of thrombin-catalyzed 
reactions. Thrombin cleaves fibrinopeptides A and B 
from the Aα and Bβ chains of fibrinogen, revealing α- and 
β- “knobs.” These exposed knobs fit into corresponding 

Fig. 1 Structure of fibrinogen based on its crystal structure 3GHG (Kollman, ö.M.; Pandi, L.; Sawaya, M.R.; Riley, M.; Doolittle, R.F. Crystal Structure 
of Human Fibrinogen. Biochemistry 2009, 48, 3877–3886.). Missing parts of the molecule are schematically drawn into the figure. The Aα chain 
is shown in green, the Bβ chain in orange, and the γ chain in grey-violet

https://doi.org/10.2210/pdb3GHG/pdb
https://doi.org/10.2210/pdb3GHG/pdb
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“holes” in the γC and βC regions of the D nodule on 
neighboring fibrin monomers. This interaction pro-
motes the staggered alignment of fibrin monomers into 
linear protofibrils. These protofibrils then undergo lat-
eral aggregation, forming thicker fibrin fibers that weave 
together to create a stable fibrin mesh. This meshwork 
is vital for stabilizing the blood clot at the site of injury. 
Cross-linking of the fibrin fibers by factor XIIIa further 
reinforces the clot, ensuring its resilience to mechanical 
stress while aiding in wound healing and preventing fur-
ther blood loss [28–30].

The architecture of fibrin clots characterized by an 
open porous network, is crucial for their biological 
function in hemostasis, fibrinolysis, and wound heal-
ing, providing distinctive mechanical features. Fibrin 
clots exhibit viscoelastic behavior, combining reversible 
elasticity with irreversible plasticity or viscosity. Under 
challenging conditions like arterial shear, fibrin clots 
exhibit strain stiffening, where their stiffness increases 
with higher strain, aiding in damage resistance. Moreo-
ver, fibrin clots demonstrate exceptional extensibility and 
compressibility, allowing them to withstand substantial 
deformation without breaking [6].

The properties of the fibrin network can be greatly 
modulated by a wide variety of factors, including multiple 
mRNA transcripts (generated by initiation of transcrip-
tion by alternative promoters, differential termination 
of transcription, alternative mRNA splicing, or genetic 
recombination), environmental factors, fibrinogen PTMs 
and pathological conditions [2, 18, 31–35]. These factors 
can influence fibrin susceptibility to plasmin-induced 
lysis, potentially creating a fibrin network that is more 
resistant to lysis and thus increasing the risk of thrombo-
sis. Conversely, they can result in a fibrin clot that is more 
susceptible to lysis, rendering it weak and unstable, and 
thereby increasing the risk of bleeding [12, 36].

Among these factors, PTMs exponentially increase 
the complexity and heterogeneity of fibrinogen and clot 
structure. PTMs are reversible or irreversible chemi-
cal modifications that can be introduced into the pro-
tein structure enzymatically or through bonds between 
amino acid side chains and reactive species such as oxy-
gen, nitrogen, sulfur, carbonyl, selenium, chlorine, or 

bromine free radicals [37, 38]. These reactions can mod-
ify the fibrinogen molecule in numerous ways, such as 
phosphorylation at specific serine and threonine sites, 
hydroxylation of proline, sulfation of tyrosine, deamida-
tion of asparagine or glutamine, formation of N-terminal 
pyroglutamate from glutamine precursors, oxidation of 
methionine, histidine, and tryptophan residues, nitra-
tion of tyrosine, various modifications of cysteine resi-
dues, and the formation of dityrosine and carbonyl 
groups [34, 39, 40].

Physiologically, low levels of PTMs are present in all 
proteins and influence various protein functions such as 
activity, localization or interaction with other molecules 
or cells, as well as key biological processes such as cell 
differentiation and gene regulation. At high concentra-
tions, however, they have been reported in several dis-
eases such as myocardial infarction, arterial and venous 
thrombosis, pulmonary embolism, cancer, infections 
[41–51].

Numerous in  vitro and ex  vivo studies characterized 
and assessed the effects of fibrinogen PTMs. Specifically, 
the extent of PTMs induced in  vitro on the fibrinogen 
molecule depends on the type of reagents, their concen-
tration, and the duration of fibrinogen exposure [52]. 
Ex  vivo, PTMs can occur naturally, in response to cer-
tain drugs or pathophysiological conditions. PTMs can 
involve various sites on the fibrinogen molecule and can 
lead to altered fibrinogen structure/function and fibrin 
clot properties.

While numerous studies have explored the effects of 
fibrinogen PTMs, only a limited number have specifi-
cally investigated site-specific modifications to determine 
their varying impacts on clot structure and properties. 
An overview of the known sites of modifications in the 
fibrinogen chains is provided in Fig. 2a-c.

Weigandt et  al. examined the effect of fibrinogen 
oxidation with hypochlorous acid and found that this 
treatment preferentially oxidizes specific methionine 
residues AαM476, BβM367, γ78 on the α, β, and γ 
chains of molecule [53].

Burney et  al. [54] investigated the molecular-level 
consequences of selective methionine oxidation and 
reported how oxidation of AαM476 and BβM367 leads to 

(See figure on next page.)
Fig. 2 a Known sites of oxidation on the fibrinogen chains. b and c illustrate the specific sites of major post-translational modifications (PTMs) 
on fibrinogen chains. Each letter-number combination indicates the type of amino acid, represented by its one-letter code (e.g., A for Alanine, R 
for Arginine, N for Asparagine, D for Aspartic acid, C for Cysteine, Q for Glutamine, E for Glutamic acid, G for Glycine, H for Histidine, I for Isoleucine, 
L for Leucine, K for Lysine, M for Methionine, F for Phenylalanine, P for Proline, S for Serine, T for Threonine, W for Tryptophan, Y for Tyrosine, V 
for Valine), and its position within the chain. For clarity, PTMs are shown on only one set of the three fibrinogen polypeptide chains. PTMs that have 
been specifically identified in the literature as significantly affecting clot formation, fibrinolysis, and key clot properties are emphasized in bold 
italics. The fibrinogen structure reported is based on NMR model PDB file 3GHG (https:// www. rcsb. org/ 3d- view/ 3ghg)

https://www.rcsb.org/3d-view/3ghg
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Fig. 2 (See legend on previous page.)
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altered fibrin polymerization. Oxidation of AαM476 was 
also studied by Pederson et al. [55] who reported that this 
amino acid is necessary for αC domain dimerization and 
that its oxidation is thought to hinder its ability to polym-
erize, disrupting the lateral aggregation of protofibrils.

Yurina et al. [56] investigated the effects of very low and 
moderately low concentrations of HOCl/OCl on the oxi-
dative modifications of fibrinogen and its structure and 
function. They found that, unlike 25 µM HOCl/OCl, a 
concentration of 10 µM HOCl/OCl did not impact fibrin-
ogen’s functional activity. Their study demonstrated that 
several methionine residues—AαMet476, AαMet517, 
AαMet584, BβMet367, γMet264, and γMet94—identi-
fied in fibrinogen exposed to 10 µM HOCl/OCl using the 
HPLC-MS/MS method, function as reactive oxygen spe-
cies (ROS) scavengers, playing a crucial antioxidant role. 
The irreversible conversion of methionines to methionine 
sulfoxide/sulfone, which occurred in a dose-dependent 
manner with HOCl/OCl, suggests that fibrinogen’s anti-
oxidant capacity can be significantly depleted, potentially 
leading to further chemical modifications of essential 
sites.

To date, oxidative PTMs at various fibrinogen sites 
(AαM91, AαM476, BβH16, BβM190, BβM305, BβM367, 
γM78) and nitration at BβT422 have been described in 
the literature as influencing alterations in clot formation, 
dissolution, and overall clot properties [32, 47, 57–60]. 
Specifically, “selective” oxidation at the above listed sites 
decreases the rate of polymerization and fibrinolysis 
and results in more dense fibrin clots with thinner fibers 
which are less permeable. As for “selective” nitration at 
site BβT422, it increases the rate of clot formation, the 
stiffness and viscosity of clot as well as the diameter of 
fibrin fibers, while fibrinolysis is decreased.

 The findings from all studies on each modification are 
summarized in Table 1, and an overview of the effects of 
the different PTMs is presented in Table 2.

Techniques for studying protein modifications 
and conformational changes
PMTs at different molecule sites can significantly alter 
fibrinogen structure and therefore its functional proper-
ties. Thus, the analysis of fibrinogen structural alterations 
is crucial to give information about possible biological 
effects of PTMs.

Fibrinogen PTMs and structural alterations can be 
investigated by:

• Mass spectrometry (MS) currently represents the 
gold standard method and the most informative 
technique for protein PTMs analysis.

• Circular Dichroism (CD) spectroscopy is used to 
investigate the protein secondary structure. CD 

protein spectra in the far ultraviolet (UV) range 
(180–260  nm) depends on the electronic excita-
tion of the partially delocalized peptide bonds, 
which form the backbone of the polypeptide chain. 
Therefore, this method detects changes in the main 
alpha-helical peptide backbone structure [73]. 
Moreover, the CD spectra in the near ultraviolet 
(UV) range (250–350 nm) is used for the analysis of 
protein tertiary structure.

• Fourier-transform infrared (FTIR) spectroscopy 
provides information about protein secondary 
structure. FTIR spectroscopy functions by exposing 
a sample to infrared radiation to determine which 
wavelengths are absorbed within the infrared spec-
trum. Each compound exhibits a distinctive pat-
tern of absorption bands in its infrared spectrum. 
(Characteristic bands find in the infrared spectra 
of proteins and polypeptides include Amide I and 
Amide II)

• X-ray crystallography and Nuclear Magnetic Reso-
nance (NMR) spectroscopy provide information 
about protein tertiary structure.

• Fluorescence spectroscopy is a powerful technique 
widely employed in the study of protein structure 
due to its sensitivity and versatility. By exciting pro-
teins with ultraviolet or visible light, fluorescence 
spectroscopy can provide valuable insights into their 
structural characteristics and environment. The 
emission spectra generated reveal information about 
the protein tertiary structure, such as the presence 
and accessibility of tryptophan, tyrosine, and phe-
nylalanine residues, which are intrinsic fluorophores 
in proteins. Changes in fluorescence intensity, wave-
length, or polarization can indicate alterations in 
protein conformation or interactions with ligands, 
cofactors, or other proteins. Moreover, fluorescence 
spectroscopy can be employed in both steady-state 
and time-resolved modes, allowing researchers to 
probe dynamics, folding kinetics, and stability of pro-
teins under various conditions.

Fibrinogen oxidation has been extensively studied, 
revealing several significant impacts on its structure 
and function. Numerous observations demonstrate that 
fibrinogen oxidation results in (1) important changes 
in the secondary structure of fibrinogen that are mani-
fested in diminishing the alpha-helical content [42, 68, 
79, 91, 156, 157] (2) chemical transformation of highly 
susceptible methionine residues [53–56, 81] and other 
sulphur containing side chains as well as of cyclical ami-
noacid residues [42, 68, 79, 156, 157]; (3) dose-dependent 
increase in side chain carbonyl group content [42, 79, 
88–90, 157, 158]; (4) dityrosine crosslinks formation by 
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Table 2 Summary of the effects of fibrinogen PTMs on fibrin clot function

Modifications Involved Sites Functional Effects

Acetylation Aα: K191, K208, K224, K429, K457, K523, K539
Bβ: K122, K130, K133, K217, K233, K234, K318, K323, K344
γ: K170, K273

= Rate of polymerization
-  Resistance to fibrinolysis
+ Diameter of fibers
+ Permeability
-  Density

Amidation Aα: Y43
Bβ: Y142, Y152, Y225, Y239, Y285, Y292, Y326
γ: Y96, Y109

Unknown

Carbamylation Unknown sites -  Rate of polymerization
-  Resistance to fibrinolysis
-  Diameter of fibers
+ Density

Citrullination Aα: R16, R19, S22, R50, R65, R95, R104, R110, R116, R141, R159, R162, R167, R197, R199, R244, 
R252, R268, R289, R334, R348, R375, R385, R406, R407, R424, R439, R440, R491, R493, R528, 
R554, Y570
Bβ: R14, R17, R23, R30, R42, R44, R94, R101, R104, R194, R216, R255, R346, R380, R391, R406, 
R415, R455
γ:R5, R14, R34, R45, R108, R197, R256, R391

-  Rate of polymerization
= Resistance to fibrinolysis
-  Diameter of fibers
-  Permeability
+ Density

Dichlorination Aα: unknown sites
Bβ: Y285, P289
γ: Y96, Y109

Unknown

Glycation Aα: K52, K81, R95, R110, R141, R167, R197, R199, K208, R244, R268, K413, K448, R491, R493, 
R528, K539, R554, K562, R572
Bβ: R23, R91, K122, K133, K148, R166, R169, R176, K181, R194, K209, K217, K283, R304, K323, 
R380, R406
γ: K62, K85, K120, K140, K151, K212

+/= Rate of polymerization
+   Resistance to fibrinolysis
-/= Diameter of fibers
+   Density
Structural alterations described

Glycosylation Aα: T320, S351, N453, N686
Bβ: N364, N394
γ: N52, N78, K85, N334

-  Rate of polymerization
-/= Diameter of fibers
Structural alterations described

Guanidinylation Unknown sites -  Diameter of fibers
-  Permeability

Hydroxylation Aα: K508, P546, P565
Bβ: P31
γ: unknown sites

Unknown

Homocysteinylation Aα: K52, K70, K81, H138, K191, K230, K413, K418, K448, K562
Bβ: K181, K217, K298, K344, K396
γ: K85, K95, K170, W266, K273, K373, K385

= Rate of polymerization
+ Resistance to fibrinolysis
+ Density

Malonylation Aα: unknown sites
Bβ: S184, C394, S395
γ: unknown sites

Unknown

Methylation Aα: D56, E179, N277, D477, E520, E578
Bβ: E25, K134, E141, E147, D154, E220, D240, E245, E334, D383, D389
γ: E13, E72, D80, E97, E213

Unknown

Nitration Aα: Y43, Y76, Y258, Y570
Bβ: Y41, Y119, Y142, Y192, Y285, T292, Y345, Y378, Y417, T422, Y445
 γ: T96, Y109, Y114, T262, T274, T348,T349, Y354, T363

Low level of nitration: + Rate 
of polymerization
High level of nitration: - Rate 
of polymerization
+/-   Resistance to fibrinolysis
Structural alterations described

Oxidation Aα: H24, D32, W33, P34, K70, H84, M91, H132, N139, R141, M147, K148, K176, Y178, H201, M207, 
K208, P209, D212, K219, W229, D234, M235, M238, M240, M255, Y258, W276, N287, N288, 
W302, P304, P309, W315, W341, W391, S432, H456, P473, M476, D477, H492, H494, K508, F513, 
F514, P516, M517, E526, R528, H544, H545, P546, Y570, M584, D586, H594, H598
Bβ: H16, Y41, R42, H67, F115, Y117, M118, Y119, K122, K133, Y142, H149, Y152, D154, M190, 
P196, K217, M224, M242, N246, W249, W266, F273, P289, Y292, W293, M305, P307, M314, W317, 
K318, H325, Y338, M367, H370, H371, M373, M376, D381, D383, W385, W402, W403, Y417, 
W419, Y422, W424, M426, H429, W437, M438, W440, K441, W444, Y445, M447, K453, F458
γ: K58, K62, Y68, P70, K75, P76, N77, M78, D80, M89, M94, K95, H103, K120, K125, K140, W208, 
F215, H217, P220, F226, W227, K232, H234, Y244, W253, M264, Y274, F322, H340, H343, N345, 
W372, R375, K380, K381, H400, H401, K406

-  Rate of polymerization
+ Resistance to fibrinolysis
-  Diameter of fibers
-  Stiffness of clot
-  Permeability
+ Density
Structural alterations described
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tyrosine residues oxidation [157, 159, 160]; (5) reduction 
of aliphatic  CH2 and  CH3 moieties [161].

Peroxynitrite  (ONOO−) is an oxidant and a nitrating 
agent capable of oxidizing cysteine and tryptophan resi-
dues. The exposure of fibrinogen to peroxynitrite in vitro 
causes nitrative/oxidative modifications [47, 62, 121, 123, 
162] and  ONOO−-induced modification of fibrinogen 
has been found to result in the formation of 3-nitroty-
rosine, dityrosine crosslinking and carbonylation [163]. 
Parastatidis et al. [125] and Hoffman et al. [164] reported 
elevated levels of 3-nitrotyrosine in fibrinogen from car-
diovascular disease patients, indicating a prothrombotic 
risk factor.

In contrast, Vadseth et al. [44] demonstrated that alter-
ations in the properties of fibrinogen and fibrin clots fol-
lowing treatment with nitrating agents occur without 
dityrosine cross-linking or changes in fibrinogen second-
ary structure, as assessed by CD spectroscopy.

To explore the impact of hyperglycosylation on fibrino-
gen structure, several studies have been conducted. Far-
UV CD spectra of fibrinogen revealed a reduction in the 
α-helix content in fibrinogen originating from patients 
with cirrhosis compared to the healthy controls. Near-
UV CD spectra showed slight differences between the 
two groups, suggesting a possible change in the pro-
tein tertiary structure [97]. Spectrofluorimetric analy-
sis revealed a reduction in the intrinsic fluorescence of 
fibrinogen from the patients, confirming that its tryp-
tophan residues resided in the altered surrounding. All 
these data are in line with those observed for fibrino-
gen oxidation [97]. Also, Hugenholtz et  al. [80] showed 
a significantly increased fibrinogen carbonyl content in 
the same condition. Conversely, in the context of aging, 
which is associated with increased protein oxidation, the 
level of protein carbonyls in healthy older individuals was 
not significantly higher compared to younger individuals, 

although changes in the tertiary structure of fibrinogen 
were observed [96].

Some studies [103, 106, 107, 114] showed that in vitro 
treatment with methylglyoxal (MGO) resulted in 
fibrinogen structural and conformational changes. The 
formation of fibrinogen-advanced glycation end prod-
ucts (AGEs) compromised the functional properties of 
fibrinogen. Fluorescence, FTIR, and CD results indicate 
that glycation impacts both the secondary and tertiary 
structure of fibrinogen [102, 105]. Similar findings were 
reported by Mirmiranpour et  al. [99], where the CD 
spectra showed changes in both the secondary and ter-
tiary structures of fibrinogen after glycation, including a 
reduction in the α-helical content.

In vitro experiments on phosphorylation showed that 
fibrinogen phosphorylated by both protein kinase C 
(PKC) and casein kinase 2 (CK2) underwent a conforma-
tional change in their secondary structure. Conversely, 
phosphorylation by protein kinase A (PKA) or protein 
kinase C(PKC) induced changes in the tertiary structure 
of fibrinogen, particularly around tryptophan residues 
[151].

Fibrinogen PTMs such as amidation, dichlorination, 
hydroxylation, malonylation, methylation and sulphation 
have been described, but the effects on fibrinogen struc-
ture are unknown [47, 57].

PTMs and fibrin clot architecture
Fibrin clot architecture, characterized by fiber diameter 
and pore size within the fibrin network, is critical for its 
biological function in hemostasis, fibrinolysis, and wound 
healing [165]. The impact of PTMs on clot properties can 
be evaluated by measuring fibrin fiber diameter, clot stiff-
ness, clot permeability, clot density and cross-linking, 
which involves covalent cross-links between fibrin α and 
γ chains.

Table 2 (continued)

Modifications Involved Sites Functional Effects

Phosphorylation Aα: S3, S22, S45, S50, S56, S259, T268, S272, W275, S279, S281, S291, S294, S297, S299, S345, 
S364, S365, T393, T412, S436, S441, S451, S485, S486, S489, T505, T522, S523, S524, S542, S546, 
S551, S557, S558, S559, S560, S561, S572, S585, S590, S594, S599
Bβ: S67, S173
γ: S68, Y389, T400, S404, T416, S420

-  Resistance to fibrinolysis
-  Diameter of fibers
Structural alterations described

Sulfation Aα: unknown sites
Bβ: unknown sites
γ: Y418, Y422, Y444, Y448

+ Rate of polymerization

This table lists specific PTMs, the corresponding amino acid sites on fibrinogen chains where these modifications occur, and the resultant functional effects on clot 
formation and degradation. Symbols indicate the type of functional change observed: ’+’ denotes an increase, ’-’ denotes a decrease, and ’=’ indicates no change. Each 
letter-number combination indicates the type of amino acid, represented by its one-letter code (e.g., A for Alanine, R for Arginine, N for Asparagine, D for Aspartic acid, 
C for Cysteine, Q for Glutamine, E for Glutamic acid, G for Glycine, H for Histidine, I for Isoleucine, L for Leucine, K for Lysine, M for Methionine, F for Phenylalanine, P for 
Proline, S for Serine, T for Threonine, W for Tryptophan, Y for Tyrosine, V for Valine), and its position within the chain
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Effects of oxidation
Oxidation represents the most extensively studied fibrin-
ogen PTM. It occurs when ROS are produced excessively 
and not neutralized by antioxidants. External factors like 
radiation, drugs, and pollution can also increase ROS lev-
els, leading to oxidative stress, which damages biological 
macromolecules, including DNA, proteins, and lipids, 
causing mutations, loss of function, and cellular damage 
[18].

In vitro studies using various oxidation protocols (e.g., 
irradiation, photooxidation, ozone, ascorbate/FeCl3, per-
oxynitrite, HOCl, glycolaldehyde) have shown conflicting 
results regarding fibrin fiber diameter, with most studies 
reporting smaller diameters [53, 55, 56, 63, 68–70, 73, 75, 
76, 78, 80, 82, 84–88, 91, 166] while only a few studies 
(one in vitro using ozone as oxidant condition, and two 
ex vivo) report different results [66, 77, 78].

Other characteristics, such as reduced stiffness [53, 55, 
61, 70, 73, 81, 82, 84–86, 166], lower permeability [53, 56, 
72, 75, 76, 78, 80, 83, 85, 88, 91, 166], increased fibrin clots 
density [53, 55, 56, 68–70, 72, 75, 82, 84–86, 88, 90, 91] and 
an enhanced cross-linking [63, 70, 84] have been observed 
with oxidized fibrinogen.

Effects of nitration
Nitration, another significant PTM, primarily affects tyros-
ine and cysteine residues, forming 3-nitrotyrosine and 
3-nitrocysteine. This modification is usually driven by neu-
trophils and monocytes, which produce nitrating agents in 
inflammatory sites and venous thrombi [47, 126].

Fibrinogen nitration has been studied in a few cases, 
producing conflicting results likely due to varying levels 
of nitration. Some studies reported significantly smaller 
fibrin fiber diameter [44, 117], while others found no 
change [125, 127] or even an increase [120]. However, 
other clot properties, such as stiffness and rigidity [44, 
120, 125], density [117, 120, 122], permeability [44], and 
cross-linking [44, 127] were generally consistent with 
expectations: thinner fibers led to denser, less permeable 
clots.

Effects of glycosylation and glycation
Glycosylation, the covalent attachment of carbohydrate 
to protein during biosynthesis via N-glycosidic or O-gly-
cosidic bonds, includes sialylation, where sialic acid is the 
terminal monosaccharide.

Studies evaluating the role of glycosylation and sialyla-
tion showed mixed results: one study [92] found reduced 
fibrin fiber diameter, stiffness, permeability and density, 
while two others [80, 96] observed no changes. Hyper-
sialylation, on the other hand, was found to produce 

clots with thinner fibers, greater stiffness and increased 
density.

Glycation, a non-enzymatic reaction between a lysine 
residue’s ε-amino group and a sugar molecule’s aldehyde 
group, is common in diabetes due to hyperglycaemia. Fol-
lowing glycation, fibrin fiber diameter and clot stiffness 
were either unchanged [109, 111, 112] or decreased [101, 
113], while three out of five studies reported decreased 
permeability [108–111, 113] and generally increased den-
sity [100, 101, 109, 110, 113]. Only one study reported 
no difference in cross-linking between fibrinogen from 
patients with diabetes mellitus and control subjects [111].

Effects of acetylation and phosphorylation
Acetylation of fibrinogen, particularly in the context of 
aspirin treatment, modifies several lysine residues: Aα 
(K191, K208, K224, K429, K457, K523, K539); Bβ (K233), 
and γ (K170, K273), resulting in increased fibrin fibers 
diameter, higher permeability, reduced clot density, and 
lower stiffness [136–139].

The effects of acetylation vary with aspirin dosage: low 
doses enhance fiber mass/length ratio and permeability, 
while higher doses have little impact on fiber thickness 
but slightly increase permeability, especially in type 1 
diabetes patients due to reduced acetylation of glycated 
fibrinogen [167].

Phosphorylation, a reversible process mediated by a 
serine/threonine or tyrosine protein kinase, regulates 
fibrinogen’s clot-forming properties by altering fiber 
diameter: phosphorylation by PKA or PKC reduces fibrin 
fiber diameter [149, 152, 168], while phosphorylation by 
CK2 increases it [152]. Accordingly, experiments involv-
ing dephosphorylation demonstrate an increase in fiber 
diameter [149, 152, 154].

In a study by Martin et  al. [154], increased fibrino-
gen phosphorylation during the acute phase following 
hip-replacement surgery was associated with thicker 
fibrin fibers. These findings suggest that casein kinase 
II may play a significant role in ex  vivo fibrinogen 
phosphorylation.

Effects of homocysteinylation, citrullination, and other 
PTMs
Fibrinogen homocysteinylation, involving the acylation 
of ε-amino group of lysine residues by homocysteine 
thiolactone or the oxidation of cysteine thiol groups, 
occurs with elevated plasma homocysteine levels. Stud-
ies on fibrinogen homocysteinylation [140–145] have 
reported conflicting effects on fibrin fiber diameter, with 
reports of no change [142], increases [140] or decreases 
[141, 145], depending on homocysteine concentrations 
and the experimental conditions (e.g., plasma vs. puri-
fied fibrinogen). Most studies observed increased clot 
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density [140, 141, 145], but permeability and stiffness 
were not widely evaluated.

Citrullination, the enzymatic conversion of arginine 
to citrulline by peptidylarginine deiminase (PAD) [130], 
consistently leads to a reduction in fibrin fibers diameter 
[78, 130, 132–134], decreased permeability [78, 132, 134] 
and denser clots [131–135].

Other fibrinogen PTMs, such as carbamylation, results 
in thinner fibers, increased clot density, and reduced 
cross-linking [147], while guanidinylation [113] produces 
clot with thinner fibers and decreased permeability.

Fibrinogen PTMs such as amidation, dichlorination, 
hydroxylation, malonylation, methylation and sulphation 
have been described, but the effects on fibrin clot archi-
tecture are unknown [47, 57].

PTMs and clot formation
During coagulation, thrombin cleaves fibrinogen, releas-
ing FPA and FPB from the N-termini of the Aα- and 
Bβ-chains, converting fibrinogen to fibrin monomers. 
Insertion of these newly exposed α- and β- “knobs” into 
a- and b- “holes” in the γC and βC regions of the D nod-
ule, respectively, on another fibrin monomer permits 
the half-staggered association of fibrin monomers into 
protofibrils. Subsequent aggregation of protofibrils into 
fibers, through lateral aggregation promoted mainly by 
intermolecular αC: αC interactions and probably also by 
interactions between both α- and γ-chains, yields a fibrin 
network that is essential for blood clot stability [33, 129, 
165, 169, 170].

The effects of PTMs on fibrinogen can significantly 
impact clot formation kinetics, which can be evaluated 
by measuring four key parameters: (i) thrombin-cata-
lyzed fibrin polymerization, which assesses the conver-
sion of fibrinogen to fibrin and determines clotting time 
or aggregation rate; (ii) maximum velocity (V max), indi-
cating the speed of lateral protofibril association; (iii) lag 
phase, indicating the time until fibril aggregation begins; 
and (iv) maximum turbidity or absorbance (MaxAbs) 
of the clot, reflecting the final clot structure in terms of 
fibrin fiber size and protofibril density [85].

Effects of oxidation
Fibrinogen oxidation is a critical post-translational modi-
fication that can significantly alter the process of fibrin 
formation and clot dynamics. Most studies consistently 
report that fibrinogen oxidation significantly reduces its 
conversion to fibrin compared to non-oxidized fibrino-
gen (Table  1). The lag phase is consistently prolonged 
across nearly all experiments [42, 62–64, 66, 75, 79, 82, 
85], while the maximum absorbance and maximum 
velocity, measured in turbidity assays, are consistently 

decreased [42, 56, 58, 62–65, 67, 68, 72, 74, 75, 82, 85, 
87, 91, 166]. However, the effects of oxidation on fibrin 
clot architecture are not uniform across all studies. Vari-
ations in experimental conditions, such as different con-
centrations of oxidizing agents, and differences in patient 
populations contribute to conflicting findings regarding 
polymerization rates and clot characteristics. Torbitz 
et al. [52] and several ex vivo investigations [76–78] have 
shown an increased polymerization rate. The in  vitro 
study by Torbitz et al. used relatively high concentrations 
of HOCl (1, 2, 4 mM), potentially explaining this devia-
tion from other findings [52]. Ex vivo studies examining 
patients with end-stage renal disease on hemodialysis, 
myocardial infarction (MI), and rheumatoid arthritis 
(RA) have yielded conflicting results. For instance, Undas 
et al. [76] observed significant differences in the lag phase 
among hemodialysis patients compared to controls, 
whereas patients on peritoneal dialysis exhibited a higher 
rate of protofibril formation in another study [171], pos-
sibly due to elevated fibrinogen levels in these subjects. 
Similarly, Paton et al. showed [77] higher polymerization 
rate and increased maximum turbidity in oxidized fibrin-
ogen from MI patients. In contrast, Becatti et  al. [42] 
observed a slower rate of thrombin-catalyzed fibrinogen 
polymerization in patients with post-acute MI (6 months 
after the event). This discrepancy could be attributed to 
differences in the patient cohorts enrolled in the studies.

Kwasny-Krochin et al. [78] conducted the first study on 
fibrin clot structure/function in RA patients, revealing 
faster but less permeable and poorly lysable fibrin clots, 
due to elevated acute phase proteins such as fibrino-
gen and C reactive protein (CRP) during active disease 
phases. Salonen and coworkers [172], provided a mecha-
nistic link by showing that CRP binds to fibrinogen and 
fibrin, potentially influencing fibrin clot structure under 
pathological conditions.

In summary, while fibrinogen oxidation generally 
reduces fibrin formation and alters clot characteris-
tics, the specific effects on clot architecture and polym-
erization dynamics vary significantly depending on the 
oxidizing conditions, experimental setups, and patient 
characteristics, underscoring the complexity of fibrino-
gen’s role in different pathological states.

Effects of nitration
Studies on fibrinogen nitration, particularly ex  vivo 
experiments involving patients with coronary artery 
disease, smokers, healthy volunteers taking lipopolysac-
charides and patients with multiple myeloma (MM), 
consistently show higher levels of fibrinogen nitration 
compared to controls. Generally, nitrated fibrinogen 
demonstrates an increased conversion rate to fibrin, 
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which aligns with shorter lag phases and higher maxi-
mum absorbance in turbidity assays, indicating an accel-
erated polymerization process [44, 124–126]. However, 
the effects of nitration on fibrin clot appears to be con-
centration dependent. Low concentrations of perox-
ynitrite (< 10 µM) typically show an enhanced fibrin 
formation [115–117, 122], while higher concentrations 
of nitration agents (> 10 µmol/L peroxynitrite or 100 
µmol/L nitronium fluoroborate) typically reduce polym-
erization rate [62, 118–120]. For instance, Ding et  al. 
[119] observed a decreased polymerization rate when 
using 8.7 µM peroxynitrite in combination with increas-
ing manganese levels, which enhances nitration. Helms 
et  al. found a longer clotting time and decreased initial 
rate of clot formation with 5 µmol/L ProliNONOate, a 
nitric oxide donor, although these results were not statis-
tically significant. Conversely, some studies have reported 
increased polymerization rates despite high peroxynitrite 
concentrations, which could be due to relatively low lev-
els of nitration or the presence of only a few modified 
fibrinogen molecules, as suggested by Gole et al. [115], de 
Vries [32], Rutkowska [122] and Vadseth [44]. This vari-
ability underscores the complexity of nitration effects on 
fibrinogen and the need to consider the specific nitration 
conditions in interpreting the results.

Effects of glycosylation and glycation
As aging is associated with increased fibrinogen glyco-
sylation, but Gligorijević et  al. found no significant dif-
ferences in clotting speed and maximal fibrin clot optical 
density across different age groups [96]. Other stud-
ies found that the extra carbohydrate moiety impairs 
the protofibril lateral association process, resulting in a 
decreased polymerization rate [80, 92, 95]. As for fibrino-
gen sialylation, a reduced conversion into fibrin and an 
increase in lag phase was reported in hepatoma, liver dis-
ease and fibrate therapy patients [93, 173–175].

Nellenbach et  al. [98] demonstrated that hypersyalila-
tion in neonates increases fibrin polymerization rate, but 
these effects disappear when sialic acid was removed.

Moiseiwitsch et  al. [49] showed that COVID-19 
patients have higher sialic acid content in fibrinogen, 
leading to faster polymerization and greater maximum 
turbidity, which is responsible for the altered clot density 
in these patients.

Regarding glycation, most studies showed an increased 
polymerization rate when fibrinogen was incubated with 
glucose [99–101, 109, 111], while only one study reported 
a decreased rate compared to control [104]. This reduc-
tion was attributed to glycation’s effect on fibrinogen 
clotting ability, which involves the formation of strong 
covalent bonds and the influence of elevated glucose 

concentrations during fibrin polymerization, resulting in 
weaker interactions and a reduced maximal velocity of 
fibrin polymerization in diabetic patients.

Effects of acetylation and phosphorylation
Fibrinogen acetylation has significant effects on clot-
ting dynamics and clot structural properties, with older 
in  vitro studies [176–180] showing reduced maximum 
turbidity of fibrin polymerization in the presence of high 
doses of aspirin or acetylating agents. However, more 
recent studies have reported increased or unchanged 
turbidity values [137, 138]. Acetylation generally impairs 
fibrinogen clotting property, making fibrin fibers thicker, 
leading to a looser network in a dose-dependent manner.

In terms of phosphorylation, several protein kinases, 
including PKA, PKC, and CK1 and CK2 [181–184], can 
phosphorylate fibrinogen, altering clot properties. CK2-
dependent fibrinogen phosphorylation increases clot 
turbidity and significantly enhances the rate of blood 
coagulation in  vitro [153, 185], while PKC-depend-
ent fibrinogen phosphorylation reduces clot turbidity 
[148–150, 168]. These effects are further confirmed by 
studies on fibrinogen dephosphorylation with alkaline 
phosphatase [149, 150, 152, 154]. Ex  vivo studies have 
reported that increased fibrinogen phosphorylation fol-
lowing hip surgery or myocardial infarction (MI) leads to 
faster polymerization rates [154, 155].

Effects of homocysteinylation, citrullination, and other 
PTMs
Homocysteinylation, evaluated in  vitro by incubating 
fibrinogen or plasma with different concentrations of 
homocysteine, has shown mixed effects on clotting abil-
ity, with some studies reporting decreased polymeriza-
tion rate, reduced maximum turbidity, and a prolonged 
lag phase, while others reported contradictory findings 
[140, 142, 144, 145].

Citrullination, studied in  vitro with PAD2 and PAD4 
enzymes, inhibits fibrin polymerization by preventing 
thrombin-catalyzed release of fibrinopeptides [128–130]. 
Ex vivo studies [78, 135] in rheumatoid arthritis patients 
demonstrated increased fibrin citrullination in plasma, 
leading to faster polymerization rates compared to 
controls.

Carbamylation, a non-enzymatic PTM resulting from 
the reactions with isocyanic acid [186, 187], is more com-
mon in patients with chronic kidney disease or inflam-
matory conditions and is linked to impaired fibrin clot 
formation [188]. In vitro studies have shown that carba-
mylation reduces fibrinogen conversion to fibrin, lower-
ing maximum turbidity and velocity, while increasing lag 
phase [146, 147].
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Tyrosine sulfation has been suggested to play impor-
tant roles in blood coagulation and it is responsible for 
facilitating key protein–protein interactions. In addi-
tion, it has been described that sulfation of fibrinogen 
enhances binding affinity to thrombin, increasing the rate 
of polymerization [189–192].

Fibrinogen PTMs such as amidation, dichlorination, 
hydroxylation, malonylation and methylation have been 
described, but the effects on fibrin clot formation are 
unknown [47, 57].

PTMs and clot lysis
The fibrinolytic system plays a crucial role in maintaining 
haemostatic balance by breaking down fibrin, the final 
product of blood coagulation, through the action of plas-
min [165, 193].

Fibrinogen PTMs can significantly influence not only 
clot formation but also clot lysis, thereby impacting 
the overall process of fibrinolysis. Various studies have 
explored the effects of different PTMs on fibrin degra-
dation, revealing that can alter clot lysis in diverse ways 
[42, 53, 63, 67, 71, 73, 75, 76, 78, 79, 82–85, 87, 166]. 
These modifications can either decrease fibrinolytic 
activity, as seen with oxidation and phosphorylation, 
or enhance clot degradation, as observed with certain 
carbohydrate modifications and acetylation. The impact 
of these PTMs on fibrinolysis is complex and var-
ies depending on the specific type of modification, the 
conditions under which it occurs, and the presence of 
additional factors such as disease states or therapeutic 
interventions.

Oxidation significantly impacts fibrinogen structural 
integrity and fibrin susceptibility to plasmin-induced 
lysis. Several studies highlight that fibrinogen oxida-
tion led to a decreased fibrinolytic activity. This is evi-
dent from the impaired clot dissolution observed in 
inflammatory conditions such as Bechet’s disease, 
where neutrophil activation promotes fibrinogen oxi-
dation, resulting in resistant thrombus formation [79]. 
Similarly, patients with pulmonary hypertension exhibit 
increased fibrinogen oxidation, which correlates with 
reduced plasmin-mediated fibrin degradation [194]. 
In Giant Cell Arteritis (GCA), a chronic inflamma-
tory disease affecting large and medium-sized arter-
ies, the risk of thrombosis is significantly elevated due 
to a combination of vascular inflammation, endothelial 
dysfunction, and increased oxidative stress. This oxi-
dative stress promotes fibrinogen oxidation, altering 
its structure and function, leading to the formation of 
denser, more resistant fibrin clots [75]. The oxidative 
stress-related structural changes include increased 
dityrosine cross-linking and altered tertiary structure, 
which collectively reduce the fibrin clot susceptibility to 

plasmin-mediated lysis [42]. Moreover, anti-inflamma-
tory interventions, such as IL-6 inhibition with tocili-
zumab, have been shown to restore redox balance and 
partially reverse the oxidation-induced fibrinogen mod-
ifications, thereby enhancing fibrinolytic efficiency in 
affected patients [75]. On the contrary, in the study by 
White et al. [81], fibrin polymerization was found to be 
impaired in trauma patients with increased fibrinogen 
Aα-Met476(SO), leading to decreased clot strength and 
increased fibrinolysis after injury.

Overall, these findings underscore the critical role of 
oxidative stress in modulating fibrinogen function and 
clot lysis, emphasizing the need for targeted therapies to 
mitigate oxidative damage in thrombotic disorders.

Nitration is another PTM that has been studied for 
its impact on fibrin clot degradation, primarily through 
ex  vivo experiments conducted in patients with coro-
nary artery disease (CAD), Multiple Myeloma (MM) and 
smokers. The results have been somewhat mixed, with 
one study showing no significant difference in fibrinoly-
sis respect to control, while two studies demonstrated a 
decrease in fibrinolysis [44, 125, 127].

The modification of fibrinogen by carbohydrates, par-
ticularly through glycation and hypersialylation, has also 
been investigated, albeit in a limited number of studies.

Glycation, commonly occurring in patients with dia-
betes mellitus or those undergoing chronic hemodialy-
sis, has consistently been shown to reduce fibrinolytic 
activity across four different studies [94, 108, 111, 113]. 
Conversely, the effects of hypersialylation on fibrinolysis 
appear more variable. Among three studies examining 
this PTM, two reported a decrease in clot degradation, 
while one observed an increase [49, 98, 195]. Specifically, 
Moiseiwitsch et  al. [49] investigated fibrinogen from 
COVID-19 patients, finding it to have a higher content of 
sialic acid residues compared to controls. The removal of 
these residues led to a significant increase in the rate of 
clot degradation, highlighting the influence of hypersia-
lylation on fibrin stability.

As previously discussed, aspirin-induced fibrinogen 
acetylation is another PTM that alters clot structure and 
function. This modification results in a less compact 
fibrin network, which shortens the lysis time of clots 
formed from aspirin-treated fibrinogen. These findings 
have been supported by both in vitro and ex vivo studies 
[137, 138].

Fibrinogen phosphorylation has been consistently 
associated with a reduction in fibrin degradation, regard-
less of the kinase involved [150, 152, 154, 155]. Interest-
ingly, when fibrinogen is dephosphorylated using alkaline 
phosphatase, clot degradation is not affected, suggest-
ing that phosphorylation specifically contributes to the 
resistance of fibrin to plasmin-induced lysis [150].
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Additional PTMs, such as homocysteinylation, carba-
mylation and guanidinylation have similarly been asso-
ciated with decreased fibrin degradation. However, the 
effects of citrullination on clot degradation are less clear, 
with studies showing conflicting results [78, 113, 130, 
134, 135, 140–144, 147].

Fibrinogen PTMs such as amidation, dichlorination, 
hydroxylation, malonylation, methylation and sulphation 
have been described, but the effects on fibrin clot lysis 
are unknown [47, 57].

Conclusions
An increasing body of research indicates a connection 
between thromboembolic events and distinct prothrom-
botic structural features of fibrin clots. Our review high-
lights that fibrinogen PTMs, such as oxidation, nitration, 
glycosylation, glycation, acetylation, phosphorylation, 
and others, significantly influence the biochemical and 
mechanical properties of fibrin clots. These modifications 
can alter clot architecture by affecting fibrin polymeriza-
tion rates, fiber thickness, clot density, and susceptibility 
to fibrinolytic degradation, ultimately modulating throm-
bus stability and resolution (Fig. 3).

Oxidation and nitration typically lead to denser clots 
with thinner fibers, reducing clot permeability and 
increasing resistance to fibrinolysis, which can exacer-
bate prothrombotic conditions such as cardiovascular 
diseases, chronic inflammatory disorders, and diabetes 
mellitus, especially under high oxidative stress. Con-
versely, modifications like acetylation, often induced 
through aspirin therapy, result in more permeable clots 
with thicker fibers, enhancing fibrinolytic susceptibility. 
This highlights the therapeutic potential of aspirin and 
other antiplatelet drugs in reducing thrombotic risk 
and managing conditions such as coronary artery dis-
ease and stroke.

The effects of other modifications, such as glycation 
and phosphorylation, are particularly relevant in the 
context of metabolic disorders like diabetes, where 
elevated glucose levels lead to increased glycation of 
fibrinogen, further complicating the thrombotic profile 
of these patients. The modulation of these PTMs pre-
sents an opportunity for pharmacological intervention 
aimed at altering clot properties to favor fibrinolysis 
and reduce thrombus formation. Such strategies could 
include antioxidant therapies to reduce oxidative stress, 

Fig. 3 Impact of PTMs on fibrin clot properties The top panel (created with BioRender.com) illustrates the stages of clot formation and clot lysis, 
starting with platelet aggregation and activation of the coagulation cascade, leading to the conversion of fibrinogen into fibrin, and eventually 
the degradation of the clot into fibrin fragments The central panel highlights the role of pro-thrombotic PTMs on the fibrinogen molecule, 
depicting various modifications that alter fibrinogen’s structural properties (Ox (Oxidation), N (Nitration), P (Phosphorylation), G (Glycation), Gu 
(Guanidinylation), Ca (Carbamylation), H (Homocysteinylation), S (Sulfation), Ac (Acetylation), and M (Methylation) The bottom panel displays 
the effects of PTMs on clot formation parameters, such as lag phase, maximum absorbance, and maximum velocity. It also shows how PTMs result 
in clot structure alterations, including thinner fibrin fibers, increased clot density, and reduced permeability, which affect the clot’s susceptibility 
to fibrinolysis leading to thrombosis complications
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which is known to promote fibrinogen oxidation, or the 
use of specific inhibitors that target detrimental PTMs 
without disrupting beneficial ones.

It is important to note that approximately 70% of 
the studies reviewed here were performed in  vitro, 
using varying concentrations of chemicals to induce 
PTMs. While in  vivo studies are limited primarily to 
the major modifications, they generally corroborate 
the effects observed in vitro. However, few studies have 
investigated other modifications, necessitating further 
validation.

Despite the increasing number of studies on fibrino-
gen modifications, few have identified site-specific 
modifications and linked them to molecule function 
and in  vivo effects. Therefore, additional experimen-
tal and clinical investigations are essential to pinpoint 
PTMs sites in vivo. Studies employing human fibrino-
gen, where feasible, will be crucial in understanding 
how these site-specific modifications affect function 
and protein interactions. While significant progress 
has been made in understanding the effects of PTMs 
on fibrinogen structure, clot formation, and fibrin deg-
radation, it is crucial to acknowledge that many limita-
tions and gaps still exist in this area of research. One 
of the primary challenges in studying fibrinogen PTMs 
is the variability in experimental conditions, which can 
lead to discrepancies in results across different studies. 
Moreover, the diversity of PTMs detection methods 
and the absence of standardized protocols complicate 
the direct comparison of findings. Additionally, differ-
ences in patient populations and physiological condi-
tions introduce further variability, making it difficult 
to isolate the specific impact of each PTM. Future 
research should aim to address these challenges by 
developing standardized methodologies and exploring 
the effects of PTMs in more diverse and clinically rel-
evant settings. Expanding our understanding of these 
modifications could provide insights into their broader 
implications in thrombosis and other coagulation dis-
orders, ultimately informing the development of tar-
geted therapeutic strategies.
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