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A B S T R A C T10
11

The use of Attitude and Heading Reference Systems (AHRS) for orientation estimation is now12

common practice in a wide range of applications, e.g., robotics and human motion tracking,13

aerial vehicles and aerospace, gaming and virtual reality, indoor pedestrian navigation and mar-14

itime navigation. The integration of the high-rate measurements can provide very accurate es-15

timates, but these can suffer from errors accumulation due to the sensors drift over longer time16

scales. To overcome this issue, inertial sensors are typically combined with additional sensors17

and techniques. As an example, camera-based solutions have drawn a large attention by the18

community, thanks to their low-costs and easy hardware setup; moreover, impressive results19

have been demonstrated in the context of Deep Learning. This work presents the preliminary re-20

sults obtained by DOES, a supportive Deep Learning method specifically designed for maritime21

navigation, which aims at improving the roll and pitch estimations obtained by common AHRS.22

DOES recovers these estimations through the analysis of the frames acquired by a low-cost cam-23

era pointing the horizon at sea. The training has been performed on the novel ROPIS dataset,24

presented in the context of this work, acquired using the FrameWO application developed for25

the scope. Promising results encourage to test other network backbones and to further expand26

the dataset, improving the accuracy of the results and the range of applications of the method as27

a valid support to visual-based odometry techniques.28
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1. Introduction35

The pose estimation problem consists in estimating the position and orientation of a vehicle, device, human or36

robot with respect to a reference frame, through the use of different kinds of internal or external sensors. The accurate37

measurement of the orientation plays in fact a critical role in a wide range of activities, e.g., robotics and human38

motion tracking, bio-logging for animal behaviour research, aerial vehicles and aerospace, gaming and virtual reality39

applications, medicine and biotechnology, indoor and outdoor pedestrian navigation, maritime and/or autonomous40

navigation. When Global Navigation Satellite Systems (GNSS) are not able to provide correct information about the41

position and attitude of a vehicle, navigation and localization operations are generally performed through the integration42
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of different kind of sensors: inertial, odometry, laser and sonar ranging sensors, underwater positioning systems, etc.43

(Alatise and Hancke, 2017).44

In the last years the use of low-cost technologies is becoming widely spread in numerous applications: this means45

that the accuracy of the pose obtained by these systems can be affected by even more disturbing factors than the46

traditional high-performing methods. In these circumstances, the development of accurate and reliable orientation47

estimation algorithms can still be considered a very challenging task, being at the basis of the localization process48

and of the consequent performances of the device employed for any specific task. This finds particular application in49

the context of the navigation, be it aerial, maritime or pedestrian, underwater/underground or in surface, autonomous,50

remotely operated or traditionally performed. In the specific case of maritime navigation, the information of position51

and orientation of a vessel is of great interest for seafarers in different operations and scenarios (e.g., open sea, congested52

harbours and waterways) as it is strictly related to the safety of the navigation at any level (Del Pizzo et al., 2018). The53

same goes for Unmanned Surface Vehicles (USVs), which are mainly employed in environmental monitoring, safety54

or navigation support and research operations. In this case, a non accurate estimation of the orientation can severely55

compromise the ultimate success of the mission, especially when paired to low-cost sensors and poor GNSS support.56

The Inertial Measurement Unit (IMU) gives the instantaneous speed and position of the vehicle without the need57

for external references by integrating the measures of angular velocity and linear acceleration obtained through its58

three orthogonal rate-gyroscopes and –accelerometers respectively. Unfortunately, several problems are associated59

with these sensors; among the others, measurements are noisy and biased and the errors increase over time due to60

the drift of the sensors. Micro Electro-Mechanical Systems (MEMS) Attitude Heading Reference Systems (AHRS)61

integrate to this configuration a magnetometer which measures the variation of the Earth’s magnetic field: this allows62

to instantly calculate an improved estimation while benefitting from lighter weight, smaller sizes and lower prices. The63

great potential of these devices makes them suitable for several applications exploiting the pure orientation estimation,64

like geomatics, surveys, augmented reality, etc.65

Vision-based methods are also frequently employed for the scope: these techniques allow to understand the sur-66

rounding environment by detecting its visual features through a camera; captured color data with its high resolution67

contains in fact several information, and the sensors are generally low-costs and with an easy hardware setup. In this68

context, the detection of the horizon line is an important attribute for the maritime image processing, as it allows to69

estimate the camera’s orientation with respect to the sea surface other than restricting the object search region when70

detection is performed, thus reducing the processing time and the false detection problem. Several approaches have71

been proposed to solve this task, however the accuracy and the processing time of the horizon line detection on high-72

resolution maritime image still face some issues (Ganbold and Akashi, 2020).73

In the last decade, Visual Odometry (VO) and Visual Simultaneous Localization and Mapping (VSLAM) tech-74
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niques have been successfully developed; however, their application can be challenging too, especially when deployed75

in non-textured environments or poor-light conditions. Visual Inertial Odometry (VIO) systems are proposed to elim-76

inate these limitations, combining IMU and camera to improve motion tracking performance (Huang, 2019). The77

current VIO systems heavily rely on manual interference to analyze failure cases and refine localization results, other78

than requiring careful parameters tuning procedures for the specific environment they have to work in. In recent years,79

Deep Learning (DL) has drawn significant attentions due to its potential in learning capability and its robustness to80

camera parameters and challenging environments. These data-driven methods have successfully learned new features81

representations from images that are used to further improve the motion estimation (Han et al., 2019).82

With the aim of providing further enhancements in the orientation estimation methodologies, this paper presents83

DOES, Deep Orientation (of roll and pitch) Estimation at Sea, a new supportive DL model which can be combined to84

the actual low-cost IMU-based configuration. This approach is not intended to substitute the current systems, but aims85

at improving the robustness of traditional methods when some limitations occur: the unavailability of GPS signals in86

indoor and under-surface environment, the undesirable high drift of inertial sensors in case of extended GPS outages87

and the issues of possible confusion with nearby robots for SONAR & RADAR are some of the limitations associated88

with these navigation systems. Visual-based methods help in this sense, since they constitute a powerful tool to estimate89

the pose of a camera through which the motion information is further recovered. These techniques can be classified as90

geometric or learning based: in the first case the camera geometry is explored to estimate the motion, whereas in the91

latter the model is fed with labeled data and then trained to accomplish the same task. The advantage of the learning-92

based methods is that they do not require the knowledge of the camera parameters and can estimate the orientation93

with correct scale even for monocular cases (Poddar et al., 2018). Moreover, visual methods can be further integrated94

with traditional, IMU-based orientation estimation algorithms to obtain a robust and reliable visual-inertial odometry95

system (Forster et al., 2016). The work presented in this paper develops an affordable visual, learning-based backbone96

which estimates the attitude of a monocular camera which will be mounted on a vehicle.97

The idea behind DOES is in fact to train a DL model able to output the vehicle attitude (in terms of roll and98

pitch angles) by processing the sea horizon view recorded by a low-cost camera. In particular, the latter needs to be99

mounted on the surface of an autonomous robot (or, similarly, on the bridge of traditional ships) with its axis parallel100

to the vehicle longitudinal axis, to correctly frame the horizon line. A similar approach could be further tested on101

Unmanned Aerial Vehicles (UAVs) too. To lay the foundation for this task, preliminary intensive tests have been102

conducted to verify the validity of the approach. Different DL architectures have been tested for the processing of the103

images acquired through an Android smartphone’s camera.104

In this context, the lack of datasets specifically designed for DL-based orientation estimation at sea has been evi-105

denced. While tackling this issue, the need of acquisition methods assuring the synchronism of the measurements for106
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a reliable Ground Truth (GT) has been addressed too. For this reason, this paper presents also the first release of the107

ROll and PItch at Sea (ROPIS) dataset (Fig. 1), which has been created through FrameWO, an Android application108

developed for the scope. The choice of employing low-cost sensors meets the necessity to develop affordable and smart109

tools to enhance the orientation estimation; for this reason, the first deployment of the dataset has been acquired using110

open-source libraries and software. In this preliminary release, the operating user acquires the data in the proximity111

of the seashore trying to simulate the real behaviour of a ship in navigation.112

The main contribution of this work stands in the provision of a supportive low-cost technology aiming at improving113

the accuracy of the attitude estimation results in different approaches, without the need to configure camera models or114

considering related issues; the obtained results are promising and strongly encourage to work for further improvements.115

The paper is organized as follows: Section 2 gives a brief overview on the existing literature on the orientation116

estimation task exploited through different traditional, visual and DL-based methods; Section 3 gives a theoretical117

foundation to the subject, introducing the attitude estimation problem to further describe the DL architectures which118

best fit the task. In Section 4 the ROPIS dataset will be presented, highlighting the issues and solutions encountered119

during the app creation and the data acquisitions. Section 5 details the experiments performed on DOES while the120

obtained results will be presented and discussed in Section 6; final considerations and future objectives will conclude121

the work in Section 7.122

2. Related works123

The accurate measurement of the orientation plays a critical role in a wide range of activities. AHRS sensors (i.e.124

accelerometers, gyroscopes and magnetometers) provide reliable measurements whose integration gives accurate in-125

formation about the pose (position and attitude) of any object they are rigidly attached to. In the last decade, traditional126

methods have seen a huge improvement due to the integration with different kind of sensors, aiming at reducing the127

inertial-related error accumulation and the costs whilst enhancing the robustness of the methodology. As previously128

mentioned, one of the most effective integration is made through visual-based method, leveraging the potential of vi-129

sual features and the low-cost of the devices. The following paragraphs give a concise review of the existing literature130

in the field of orientation estimation.131

2.1. Inertial-based methods132

There exists a large amount of literature on the use of inertial sensors for position and orientation estimation. The133

reason for this is related to their robust algorithms and their accurate solutions which makes them suitable for being134

used in several fields. Interestingly, relatively simple position and orientation estimation algorithms work quite well135

in practice, even if the model choice can sensibly affect the accuracy of the estimates (Kok et al., 2017).136
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There is a large and ever-growing number of application areas for inertial sensors, as for example robotics and137

human motion tracking (Avci et al., 2010; Luinge and Veltink, 2005), bio-logging for animal behavior research (Fourati138

et al., 2010), aerial vehicles and aerospace (Adler et al., 2015; De Marina et al., 2011), gaming, virtual reality and indoor139

pedestrian navigation (Vertzberger and Klein, 2021; Renaudin and Combettes, 2014; Harle, 2013), etc. In fact, the140

use of accurate inertial sensors and magnetic compasses was first introduced in the navigation field, but along with the141

development of MEMS technology, low-cost and small-size inertial and magnetic compass sensors appeared in various142

kinds of consumer electronics, game consoles, virtual reality applications and so on. The orientation representations143

and sensor fusion still remain the challenges to overcome (Phuong et al., 2009). Real-time orientation estimation144

algorithms based on low-cost IMU are analyzed by Kim and Golnaraghi (2004), where the approach is based on the145

relationships between the quaternion representing the platform orientation and the measurements of the sensors and the146

integration is performed through an Extended Kalman Filter (EKF). Baerveldt and Klang (1997) developed a low-cost147

and low-weight attitude estimator for autonomous helicopters based on an inclinometer and a gyroscope, while fusing148

the data coming from the sensors through a classic complementary filter; Gebre-Egziabher et al. (2000) proposed149

a gyro-free, quaternion-based attitude determination system which exploits low cost sensors. Valenti et al. (2015)150

implemented a complementary filter able to infer Micro Aerial Vehicle (MAV) attitude from observations of gravity151

and magnetic field, with the final algorithm able to work with both IMU and MARG sensors. De Marina et al. (2011)152

exploited an AHRS device together with a Unscented Kalman Filter algorithm to perform attitude estimation on UAVs.153

The same filter has been used by Allotta et al. (2016), which developed a novel navigation system for autonomous154

underwater vehicles that works without the presence of a GPS device, not available in underwater scenarios. Li and155

Wang (2013) proposed an Adaptive Kalman Filter which is able to provide pose estimations based on low-cost AHRS156

devices, while Di Ciaccio et al. (2019) and Michel et al. (2017) investigated the use of AHRS in smartphones as cheap157

but reliable devices for angles estimation. A novel error-state Kalman filter is presented by Vitali et al. (2020), which158

yields highly accurate estimates of IMU orientation that are robust to poor measurement updates from fluctuations159

in the local magnetic field and/or highly dynamic movements. An indoor pedestrian navigation method based on160

shoe-mounted MEMS IMU and ultra-wideband is discussed by Wen et al. (2020), which used a quaternion-based161

Kalman Filter to integrate the data and to reduce the complexity of the method. Aligia et al. (2021) presented a new162

orientation estimation strategy for a non-accelerated platform: it is based on a low-cost IMU and the orientation angles163

are obtained through a nonlinear Luenberger observer, while the common magnetometer offsets are calibrated by a164

recursive least-square algorithm. Schnee et al. (2020) utilized common bicycling motions to calibrate the 2D- and165

3D-mounting orientation of a MEMS IMU on an electric bicycle. The method is independent of sensor biases and166

requires only a very low computation expense, so the estimation can be realized in real-time.167
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2.2. Vision-based methods168

The possibility to employ visual data to perform orientation and in general pose estimation has been widely deep-169

ened in the past decades. Many researches have been focused on the horizon line detection, due to its relevance for170

visual geo-localization, port security, etc. However, some special features in real marine environments (e.g., clouds171

clutter, sea glint and weather conditions) frequently result in different kinds of interference in optical images. Wang172

et al. (2016) proposed a Sea-Sky Line (SSL) detection method for USVs based on the computation of the gradient173

saliency, through which the line features of the SSL are effectively enhanced while other disturbances are attenuated.174

The SSL identification is achieved according to regions contrast, line segment length and orientation features, and op-175

timal state estimation of SSL detection is implemented by a cubature Kalman filter. Jeong et al. (2018) presented a fast176

method for detecting the horizon line in maritime scenarios. It combines a multi-scale approach and a region-of-interest177

(ROI) detection, which is an efficient way to reduce the amount of required processing information. The results are178

then combined to produce a single edge map on which the Hough transform and a least-square method are sequentially179

applied to accurately estimate the horizon line. The Hough transform is also used by Yongshou et al. (2018), which180

proposed a sea-sky line detection system based on the local Otsu segmentation; similarly, Sun and Fu (2018) recognize181

the horizon line in maritime images through a two-phase, coarse-fine detection algorithm which increases the overall182

method robustness. Another quick horizon line detection method is proposed by Praczyk (2018), which extracts the183

horizon line in real maritime image with improved reliability and faster execution with respect to other competitors.184

The horizon detection through vision sensors is also frequently exploited to obtain redundant orientation information185

in the field of unmanned aerial navigation. For example, Carrio et al. (2018) proposed two attitude estimation methods:186

the first one searches for the best line fitting the horizon in thermal images, which allows to further estimate the pitch187

and roll angles using an infinite horizon line model. The second method exploits a Convolutional Neural Network188

(CNN) which predicts the angles on the basis of the raw pixel intensities from the same kind of images.189

However, these methods alone cannot be considered totally robust and reliable, since the position and slope of the190

horizon are strictly related to the camera intrinsic (i.e., focal length, optical center, pixel aspect ratio and skew) and191

extrinsic (rotation and translation) parameters and to the model used to parametrize them. Ligorio and Sabatini (2013)192

surveyed a plethora of methods which perform pose estimation by fusing visual, inertial and magnetic measurements,193

integrating them through the use of an EKF. The combined use of IMU and vision information has been explored by194

Alatise and Hancke (2017), which exploits SURF visual features together with accelerometer and gyroscope data to195

retrieve the robot pose in an indoor setting. A comprehensive analysis of the behaviour of these features when used for196

visual odometry can be found in the work of Chien et al. (2016).197

VO, VIO and SLAM algorithms have recently received much attention for their efficient and accurate ego-motion198

estimation in robotics. A VIO algorithm for the estimation of the motional state of UAVs with high accuracy is199
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presented by Hong and Lim (2018). It is based on the fusion of visual data and pre-integrated inertial measurements200

in a joint optimization framework and the on a stable initialization of scale and gravity using relative pose constraints.201

To account for the ambiguity and uncertainty of VIO initialization, a local scale parameter is adopted in the online202

optimization.203

The use of stereo camera sensors for VO is a low-cost and effective way to estimate attitude, but may encounter204

problems in underwater setting due to poor imaging condition and inconsistent motion caused by water flow. Zhang205

et al. (2018) proposed a robust and effective stereo underwater VO system that can overcome the aforementioned206

difficulties and accurately localize the AUV. In the context of underwater robotics, another VO method designed to207

be robust to these visual perturbations is presented by Ferrera et al. (2019): it demonstrated to outperform state-of-208

the-art SLAM methods under many of the most challenging conditions. A novel keyframe-based SLAM system with209

loop-closing and relocalization capabilities targeted for the underwater domain is proposed by Rahman et al. (2019).210

This paper addresses drift and loss of localization by providing a robust initialization method to refine scale using211

depth measurements and a fast preprocessing step to enhance the image quality. Quan et al. (2019) presented a tightly212

coupled monocular VI-SLAM algorithm, which provides accurate and robust motion tracking at high frame rates on a213

standard CPU. A visual-inertial EKF is exploited to track the motion, then a globally consistent map is constructed to214

feed it back to the EKF state vector and reduce the drift. In a parallel thread, a global map is constructed to perform215

a keyframe-based visual-inertial bundle adjustment to optimize the map, together with a correction module to further216

eliminate the accumulated drift. ORB-SLAM3 (Campos et al., 2021) is another worth mentioning method, as it is the217

first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras,218

using pin-hole and fisheye lens models. It uses a feature-based tightly-integrated VI-SLAM system that fully relies219

on Maximum-a-Posteriori estimation, even during the IMU initialization phase, resulting in a system that operates220

robustly in real time, in small and large, indoor and outdoor environments, which is 2 to 5 times more accurate than221

previous approaches.222

The rise of Deep Learning, with powerful architectures able to tackle complex tasks such as classification (Huang223

et al., 2017), detection (He et al., 2017), segmentation (Russo et al., 2019), denoising (Russo et al., 2021), super224

resolution (Wang et al., 2018), has definitely changed the way vision data is exploited for pose estimation. Instead of225

relying on engineered, fixed features (e.g. SIFT (Lowe, 1999), SURF (Bay et al., 2006)), recent algorithms exploit deep226

networks as powerful features extractors or by directly estimating the pose vector in an end-to-end model, from input227

images to the output prediction. For example, in order to estimate camera orientation, Rambach et al. (2016) exploited228

a LSTM deep network together with a linear Kalman Filter to combine IMU and camera data, while in DeepVIO (Han229

et al., 2019) the authors fused 2D optical flow features together with standard inertial data, obtaining state of the art230

results on KITTI (Geiger et al., 2013) and EuRoC (Burri et al., 2016) datasets. The combination of a traditional IMU231
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with a LIDAR laser scan has been proposed by Li et al. (2019), which built a recurrent CNN to perform this aggregation232

on a scan-to-scan basis. (Li et al., 2018) proposed a method to estimate a camera six degrees of freedom and absolute233

scale by exploiting unsupervised data, getting good results in terms of pose accuracy on KITTI benchmark. In the234

more recent work of Almalioglu et al. (2019), the authors developed a generative framework able to exploit a GAN235

(Goodfellow et al., 2014) model on unlabelled RGB images for 6-DoF pose camera motion prediction, demonstrating236

the efficacy of their approach both on KITTI and Cityscapes (Cordts et al., 2016) datasets. The former method has237

been improved by Feng and Gu (2019) with a stack of GAN layers which demonstrated to be effective on ego-motion238

estimation tasks. A comprehensive review of the state of the art deep models for pose estimation can be found in the239

work of Zhao et al. (2020).240

3. Method241

This section aims at providing a theoretical background to fully understand the fundamentals of the proposed work.242

In particular, a general overview on the orientation estimation process is given in subsection 3.1, with some details243

on the sensors embedded in an AHRS and on the coordinate frame to which the smartphone device (and the related244

measures) is referred. Subsection 3.2 presents in a concise but detailed way the deep architecture models analysed and245

tested during the work.246

3.1. Orientation estimation overview247

The orientation of a rigid body is usually expressed by a transformation matrix in which the elements are generally248

parameterized in terms of Euler angles, rotation vectors, rotation matrices, and unit quaternions (Bernal-Polo and Bar-249

berá, 2017). The Euler angles are the most intuitive expression as they allow a simple analysis of the body orientation250

in the 3D space. These angles are defined as follows:251

• 𝜙 represents the rotation around the 𝑥 axis (roll angle);252

• 𝜃 defines the rotation around the 𝑦 axis (pitch angle);253

• 𝜓 is related to the rotation around the 𝑧 axis (yaw angle).254

The integration of high-rate raw data acquired by the IMU sensors or of the more cost-effective AHRS is at the basis of255

the orientation estimation process. The accelerometer measures the acceleration in𝑚∕𝑠2 applied to a device, including256

the force of gravity: velocity is determined if the linear acceleration component is integrated once and position if the257

integration is performed twice. The results can be of poor accuracy due to the extensive noise and accumulated drift258

from which it suffers. The gyroscope measures the device rate of rotation (i.e. the angular velocity) in 𝑟𝑎𝑑∕𝑠, from259

which the rotation angle can be calculated by integration. Gyroscopes run at a high rate, allowing them to track fast260
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and abrupt movements, but they suffer from serious drift problems caused by the accumulation of measurement errors261

over long periods. Therefore, the fusion of both an accelerometer and gyroscope data is suitable to determine the pose262

of an object and to make up for the weakness of one over the other. The magnetometer measures the Earth’s magnetic263

field in 𝜇𝑇 , which is helpful in heading determination; the drawback is that the presence of metallic objects within the264

environment could influence data collected through measurements. The drift introduced by the sensors causes errors265

accumulation: this means that the navigation information provided by the INS can be considered reliable and accurate266

only within short times, while it is still impossible for a pure inertial navigation system to maintain the high-precision267

level throughout a mission. For this reason, the integration of the measurements provided by the three sensors aims268

at reducing the errors accumulation caused by the single one; this is generally made through filtering techniques and269

fusion methods. Moreover, information provided by external devices can considerably improve the accuracy of the270

estimations, especially when low-cost sensors could facilitate the process and make it more practical.271

In this context, the objective of the present work is to provide a supportive mean to improve the attitude estimations272

obtained by common AHRS: DOES is a low-cost DL architecture developed to recover orientation information from273

the view of a camera pointing the horizon at sea, which will be placed on the bow of a navigating vehicle in future274

experiments. The training has been performed on the ROPIS dataset, acquired using an application developed for the275

scope on an Android smartphone which simultaneously collects the frames and calculates the corresponding Ground276

Truth data using the AHRS sensors.277

The IMU-AHRS measurements of the smartphones are generally expressed in a custom body reference frame.278

The Android developer website defines its frame relative to the device’s screen when the device is held in its default279

orientation (see Figure 2, Android). In particular, the frame originates in the center of the device with the horizontal280

𝑥 axis pointing to the right, the vertical 𝑦 axis pointing up and the 𝑧 axis points toward the outside of the screen face,281

so that the the coordinates behind the screen have negative Z values. The related attitude information is then referred282

to the same coordinates.283

During the ROPIS dataset acquisition the smartphone has been kept in landscape mode, recording the horizon284

view. It has to be noticed that the coordinate frame does not change its definition, so in this setting the 𝑧 axis points in285

the user direction, the 𝑦 axis to his/her left and the 𝑥 upwards.286

3.2. Deep Learning architectures287

DOES model is composed of a pre-trained backbone CNN and two additional Fully Connected (FC) layers to288

output the roll and pitch estimates. Several, well established architectures have been tested as backbone for the final289

network, as for example the VGG16-19 (Simonyan and Zisserman, 2014) and ResNet18-50-152 (He et al., 2016); the290

resulting numerical comparison will be reported in Section 6, Tab. 3.291
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The VGG-16 and VGG-19 networks are based on the popular VGG architecture. They are composed of several292

convolutional layers followed by a Rectified Linear Unit (ReLU) activation function and interspersed by max pooling293

layers. Two FC layers are concatenated in order to produce the final features which are fed to a classification layer.294

These two networks differ only by the quantity and dimension of the convolutional layers employed, with a total number295

of parameters equal to 138𝑀 and 144𝑀 respectively. Despite being among the first developed deep architectures, with296

a huge amount of trainable parameters making them prone to overfitting, VGG models are still incredibly widespread,297

thanks to their ease of use for fine-tuning purposes on different tasks (He et al., 2019; Long et al., 2015).298

ResNet is a family of deep models based on the residual architecture. Differently from the VGG, the ResNet is299

made of a series of residual blocks in which the feature maps calculated by the convolutional layers are added to300

the input, so that each residual block calculates an update (hence residual) of the input feature maps. This approach301

makes the network resilient to the vanish gradient problem (Veit et al., 2016), improving convergence speed and the302

final accuracy result. Moreover, all the ResNet models avoid the use of the FC layers after the convolutional blocks,303

reducing the total number of trainable parameters and thus lessening the overfitting effect on training data. Authors304

of ResNet developed three versions with different number of layers (18, 50, 152) and with different number of visual305

features before the classification step (512 for the former, 2048 for the others). The number of free parameters for the306

18, 50 and 152 layers models are 11𝑀 , 23𝑀 and 60𝑀 respectively.307

In the experiments presented in this work, all the networks have been fine-tuned on the proposed ROPIS dataset308

starting from the ImageNet (Deng et al., 2009) pre-trained weights. The ResNet18 has been chosen among the others309

as the default DOES backbone since it produced the best accuracy while keeping at the same time a fast inference310

speed. Figure 3 reports the DOES network with the default ResNet18 backbone.311

Two additional FC layers have been added as additional branches on top of the highest set of visual features in312

the backbone network to separately estimate the roll and pitch angles; for example, in the case of the ResNet models,313

this correspond to the global average pooling layer. Some different estimation procedures have been experimented,314

as the one described in (Ruiz et al., 2018): it proposes to map the float angle value to a set of fixed bins, which then315

undergo a standard classification procedure with a final mapping back to the float value. However, in this work it has316

been experimentally found that this approach adds a layer of complexity without increasing the overall performances;317

this led to the decision to add a FC layer for each angle, which is able to accomplish the regression task with a good318

accuracy. Both the backbone network and the additional FC layers are jointly trained by back-propagation with the319

use of a standard Mean Square Error Loss (squared L2 norm). Two separated losses are calculated for each of the two320

angles, as reported in Eq. 1 for roll (𝐿𝑟𝑜𝑙𝑙) and Eq. 2 for pitch (𝐿𝑝𝑖𝑡𝑐ℎ), where 𝑦 and 𝑦̂ are the GT and predicted values321

respectively. The final loss 𝐿𝑓𝑖𝑛𝑎𝑙 is then obtained as a simple addition of the aforementioned quantities, as shown in322

Eq. 3. The GT roll and pitch values have undergone a prior normalization process, which subtracts to each of them323
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the mean and divides by the variance, both calculated over the entire dataset.324

𝐿𝑟𝑜𝑙𝑙(𝑦𝑟𝑜𝑙𝑙, 𝑦̂𝑟𝑜𝑙𝑙) =
1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑟𝑜𝑙𝑙 − 𝑦̂𝑖𝑟𝑜𝑙𝑙)

2 (1)

𝐿𝑝𝑖𝑡𝑐ℎ(𝑦𝑝𝑖𝑡𝑐ℎ, 𝑦̂𝑝𝑖𝑡𝑐ℎ) =
1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑝𝑖𝑡𝑐ℎ − 𝑦̂𝑖𝑝𝑖𝑡𝑐ℎ)

2 (2)

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑟𝑜𝑙𝑙(𝑦𝑟𝑜𝑙𝑙, 𝑦̂𝑟𝑜𝑙𝑙) + 𝐿𝑝𝑖𝑡𝑐ℎ(𝑦𝑝𝑖𝑡𝑐ℎ, 𝑦̂𝑝𝑖𝑡𝑐ℎ) (3)

4. ROPIS data acquisition process325

The lack of datasets designed for DL-based orientation estimation at sea lead to the necessity of searching for326

methods to acquire a set of data for the scope. In the following section, the development of the Android application327

and the obtained ROPIS dataset will be described in detail.328

4.1. Device internal sensors and characteristics329

In order to train the model, the dataset needs to contain a large amount of images showing the horizon and the330

corresponding GT data in terms of roll and pitch angles. The latter needs to be given with the best possible accuracy,331

as the learning process results will depend on it, which is strictly related to the instrumentation employed for the332

acquisition. With the aim of producing a low-cost and flexible solution, in this work the authors avoided the use333

of costly, high-end IMU devices and developed the FrameWOAndroid application to acquire the dataset through a334

common smartphone. The presented ROPIS dataset in its first release has been totally collected through a OnePlus335

Nord smartphone, equipped with the most common sensors (Table 1) and characterized by an average price.336

The OnePlus Nord mounts a BMI260 IMU, which contains a 16-bit tri-axial gyroscope (G) and accelerometer337

(A) providing fast, precise inertial sensing in smartphones and Human-Machine Interface (HMI) applications (i.e.,338

advanced gesture, activity and context recognition, etc.). The IMU is characterized by a noise density of 160𝜇𝑔∕√𝐻𝑧339

(A) and 0.008𝑑𝑝𝑠∕
√

𝐻𝑧 (G), a Zero-g/Zero-rate offset of ±20𝑚𝑔 (A) and ±0.5𝑑𝑝𝑠 (G) and an output data rate up340

to 1.6𝑘𝐻𝑧 (A) and 6.4𝑘𝐻𝑧 (G). Moreover, it mounts the industry’s first self-calibrating gyroscope with motionless341

Component Re-Trimming (CRT) functionality, which compensates MEMS typical soldering drifts, ensuring post-342

soldering sensitivity errors down to ±0.4% (Bosh).343
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The MMC5603 is a monolithic complete 3-axis Anisotropic Magnetoresistance Effect (AMR) magnetic sensor344

with on-chip signal processing. It has an on-chip automatic degaussing with built-in SET/RESET function, allowing345

to eliminate thermal variation-induced offset error (Null field output) and to clear the residual magnetization resulting346

from strong external fields. It has a true frequency response up to 1𝐾𝐻𝑧 and can measure magnetic fields within the347

full scale range of ±30𝐺𝑎𝑢𝑠𝑠 (G) with 2𝑚𝐺 total Root Mean Square (RMS) noise level, enabling heading accuracy of348

±1𝑑𝑒𝑔 in electronic compass applications (Memsic).349

Table 1
OnePlus Nord smartphone general specifics (OnePlus).

General Main Sensors Rear Camera - Main

OS: OxygenOS Android™ 10 IMU: Bosch BMI260 Megapixels: 48
CPU: Qualcomm® Snapdragon™ 765G Magn: MEMSIC MMC5603 Pixel Size: 0.8 µm/48M; 1.6 µm (4 in 1)/12M

GPU: Adreno 620 Camera: Sony IMX586 Lens Quantity: 6P
RAM: 8GB/12GB LPDDR4X Proximity sensor Aperture: f/1.75

Storage: 256GB UFS2.1 Ambient light sensor OIS, EIS: Yes

The Sony IMX586 stacked CMOS image sensor is mounted as the main camera of the OnePlus Nord, and features350

48 effective megapixels with an ultra-compact pixel size of 0.8𝜇𝑚. The sensor uses the Quad Bayer color filter array,351

where adjacent 2𝑥2 pixels come in the same color, making high-sensitivity shooting possible. During low light shoot-352

ing, the signals from the four adjacent pixels are added, raising the sensitivity to a level equivalent to that of 1.6𝜇𝑚353

pixels (12 megapixels), resulting in bright, low noise images (Sony).354

4.2. FrameWO application development355

The FrameWO app has been developed in a free Open Source environment, the B4X suite (AnywhereSoftware),356

which supports the majority of PC, smartphones and embedding operating systems (e.g., Android, iOS, Windows,357

MacOS, Linux, Arduino, RaspberryPI) and uses a modern version of Visual Basic as programming language. The358

Android version (B4A) allows to wrap existing Java code as an external library and then to reference it from the B4A359

IDE, obtaining in release mode performances similar to those of Java. The size of a simple app is generally around360

100 KB.361

As previously mentioned, the necessary prerequisite for the dataset to meet the scope of this study is to associate362

to each frame the corresponding GT; however, the images size is much more larger than that of the IMU data, thus363

introducing a delay in their storage which affected their simultaneity. For this reason, the app captures the frames in364

YUV format (allowing for a better compression of the image) and converts them in JPEG only at the end of the process;365

this also avoids to run out of memory during the acquisition. A detailed overview on the YUV model can be found366

in (Podpora et al., 2014). Furthermore, several tests have been performed to determine an acquisition frequency value367

suitable for both the high-rate IMU data and the low-rate camera frames: the application offers in fact the possibility368
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to set the camera acquisition frequency in 𝑚𝑠𝑒𝑐 to choose the best option for the needs.369

As regards the GT, the API of Android (Android) has been used to work on the raw measures read by the sensors370

and to obtain the Euler angles of interest. The 𝑔𝑒𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 function takes as input the gravity and geomagnetic371

field in vector form to compute the inclination matrix 𝐼 and the rotation matrix 𝑅, transforming a vector from the372

device coordinate system to the world coordinate system (defined as a direct orthonormal basis). By definition, 𝑅 is373

the identity matrix when the device is aligned with the world coordinate system (i.e., when the device 𝑋 axis points374

toward East, the 𝑌 axis points to the North Pole and the device is facing the sky) and 𝐼 is a simple rotation around the375

𝑋 axis transforming the geomagnetic vector into the same coordinate space as gravity, i.e., the world coordinate space376

(see Eq. 4, where 𝑔 is the magnitude of gravity and 𝑚 is the magnitude of the geomagnetic field).377

[

0 0 𝑔
]

= 𝑅 ∗ 𝑔𝑟𝑎𝑣𝑖𝑡𝑦
[

0 𝑚 0
]

= 𝐼 ∗ 𝑅 ∗ 𝑔𝑒𝑜𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑓 𝑖𝑒𝑙𝑑
(4)

In order to isolate the gravity vector, a discrete-time low-pass filter with a smoothing factor 𝛼 = 0.2 has been378

applied to the accelerometer measurements. The Euler angles are recovered through the 𝑔𝑒𝑡𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 function,379

which calculates them from the elements of the rotation matrix 𝑅 (Android; OpenSourceProject).380

The measurements are updated at the fastest rate provided by the Android API, which is in the order of few millisec-381

onds. The time sampling has been set equal to 100msec, that means that 10 times in a second the device simultaneously382

registers the orientation and the corresponding image. As a final result, the data is saved in a directory named with383

the date and time of the specific acquisition, which is further renamed to specify the scenario characteristics of the384

moment. This directory contains all the frames, saved as n_YYYY-MM-DD_HHMMSS.jpg, and a data.txt file which385

lists the frame name, its index 𝑛, and the related GT.386

4.3. Dataset structure387

The ROPIS dataset in its first release has been mainly acquired in Italy, in the cities of Gaeta (Lazio) and Racale388

(Puglia). It consists of 22173 sRGB TrueColor JPEG images, with resolution set to 2592x1168, for a total dimension389

of 42.3 GB. Six different subsets have been acquired in as many locations, each presenting different characteristics390

in terms of scenarios and meteo-marine conditions; five of them have been chosen for the training set, from which391

a total of 100 frames has been separated for the validation set, and the last acquisition has been used as test set.392

The use of a dedicated test set with images coming from a separate location allows to verify the ability of DOES to393

generalize to new, different scenes with respect to the training and validation set. More in the specific, in each place394

eight different acquisitions have been made trying to simulate the behaviour of a ship in navigation in both static and395
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dynamic conditions: this aims at emulating the induced oscillations which resemble the true motion of the ship. To396

improve the generalization ability of the model, the data has been acquired at different day times and with sunny and397

cloudy sky; Figure 4 shows different samples of the ROPIS dataset. Some aspects of this data need to be highlighted:398

• The point of view of the ROPIS images presents some differences with respect to the acquisitions taken on board399

the ship, since it adds parts of the land in the image foreground, such as sand, rocks, etc. However, this does400

not affect the learning procedure as the DL networks are able to recognize useful and useless image features,401

discarding the latter.402

• A frame representing the real view from a navigating vehicle should depict some elements in the scene, such as403

the bow structures and some part of the bridge floor from a ship, or some of the USV sections. Although these404

specific features do not appear in ROPIS, DOES demonstrated its robustness to similar images cluttering present405

in the frames. Further experiments will be made to precisely assess their impact on the learning process.406

• The data acquisition has been made with the camera at a roughly fixed height of 1.5m with slight oscillations407

around this value: this considers, among the different vehicle movements, also the linear vertical -up/down-408

motion along the 𝑧 axis (heave), corresponding to the smartphone 𝑥 axis. It should be remarked that the pitch409

estimation is strictly related to the horizon height and thus to the the camera axis and view; for this reason, the410

horizon line should be obviously always visible in the frame.411

The ROPIS dataset is intended to be further enhanced. The use of other low-cost cameras (to take into account412

the differences in the camera parameters and lens distortion) and the setting of a range of different camera height413

values aim at considering their impact on the training phase. Moreover, the acquisitions will be made in different414

scenarios, which will include adverse meteo-marine conditions and locations as ships bridge and USV platforms. The415

heterogeneity of the data fed to the network will enhance the model capability to generalize over more complex data416

and realistic settings, making it invariant to these parameters.417

5. Experimental setup418

In this section some details on the training process will be given, together with a brief overview of the evaluation419

metrics used to appraise the performance of DOES. Finally, the problem related to the comparison of DOES with other420

methods will be discussed.421

5.1. Training details422

DOES has been developed in Python programming language using the Pytorch framework; the code is publicly423

available1. DOES has been trained using a standard fine-tuning procedure: the backbone convolutional kernels were424

1https://github.com/fabidicia/does
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pre-trained on ImageNet while the additional FC layers have been initialized with random values drawn upon Pytorch425

default uniform distribution. Both convolutional and FC layers have been trained using the Adam optimizer (Kingma426

and Ba, 2014) and a fixed learning rate set to 0.001. DOES has been trained on the ROPIS training set for a total of427

10 epochs: it has in fact been noticed that a larger number of epochs led to an increase of the overfitting without any428

improvement of the accuracy.429

The images have been squared to a preliminary 2592x2592 resolution by the application of a zero-padding; this430

operation adds black bands to the smallest dimension to obtain a squared input whilst preventing the loss of information.431

The images have then been resized to a final resolution of 224x224; a zero mean-unit variance normalization has been432

applied to both the images and the GT sets, with the corresponding mean and variance calculated over the specific433

training data.434

The data augmentation process consisted of random changes in the colours of the images, using the ColorJitter435

transformation function of Pytorch which allows to set different values of brightness, contrast, saturation and hue: this436

resulted in an increase of the training dataset which further enhanced the generalization abilities of DOES. No random437

cropping nor image flipping have been applied during this process: in fact, the former would have caused the neglecting438

of the relative sea height information given by the images while the latter could have changed the correct roll angle439

perception of the network. The data augmentation procedure has naturally been deactivated during the testing phase,440

while the zero-padding and resize processes have been applied also to the test images; furthermore, the predicted441

roll and pitch values have been de-normalized before calculating the evaluation metrics presented in the following442

paragraph 5.2. The selected data augmentation values (brightness and hue equal to 0.5, contrast and saturation equal443

to 5), as well as all the other training hyper-parameters, have been tuned on the validation set.444

5.2. Evaluation metrics445

DOES has been evaluated on the basis of the regression metrics implemented by the Scikit library in the sklearn.metrics446

module, which contains the most common utility functions to measure the regression performance.447

The Mean Absolute Error (MAE) computes a risk metric corresponding to the expected value of the absolute error448

(Eq. 5); it is the average absolute difference between the predicted and the true value, expressed in the same scale as449

the data being measured. Each error contributes to MAE in proportion to its absolute value.450

𝑀𝐴𝐸(𝑦, 𝑦̂) = 1
𝑛

𝑛−1
∑

𝑖=0
|𝑦𝑖 − 𝑦̂𝑖| (5)

The Root Mean Square Error (RMSE) represents the square root of the second sample moment of the differences451

between predicted values and the observed values (or the quadratic mean of these differences, also called residuals).452
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It is a measure of accuracy and it is sensitive to outliers (Eq. 6). In fact, since the errors are squared before they453

are averaged, the RMSE gives a relatively high weight to large errors, making it more useful when large errors are454

particularly undesirable. RMSE does not necessarily increase with the variance of the errors, growing instead with the455

variance of the frequency distribution of error magnitudes.456

𝑅𝑀𝑆𝐸(𝑦, 𝑦̂) = 1
𝑛

√

√

√

√

𝑛−1
∑

𝑖=0
(𝑦𝑖 − 𝑦̂𝑖)2 (6)

The Standard Deviation (STD) is a measure of the amount of dispersion (or variation) of the samples. A low457

standard deviation indicates that the values tend to be close to the mean 𝜇 (also called the expected value) of the set,458

while a high standard deviation indicates that the values are spread out over a wider range (Eq. 7).459

𝜎(𝑦̂) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝜇)2 (7)

Finally, the Median Absolute Error (MedAE) is calculated by taking the median of all the absolute differences460

between the GT and the prediction (Eq. 8). It is a non-negative floating point with best value of 0.0, robust to outliers461

since the median is not affected by values at the tails.462

𝑀𝑒𝑑𝐴𝐸(𝑦, 𝑦̂) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 − 𝑦̂𝑖|, ..., |𝑦𝑛 − 𝑦̂𝑛| (8)

5.3. Methodology comparison463

The comparison between DOES and other state of the art methods turned out to be a non trivial task for several464

reasons; among the others, the Deep Learning based solutions currently developed for the estimation of roll and pitch465

are either released without source code (as for example in (Carrio et al., 2018)) or employed for very different tasks (e.g.,466

head pose estimation (Ruiz et al., 2018)), thus making the comparison not properly correct or practically impossible.467

Generally speaking, traditional Horizon Line Detection (HLD) algorithms can be used as a proxy for this kind of468

estimations; the roll and pitch angles can in fact be correlated to the slope and position of the horizon line. However,469

as previously mentioned, this would require the correct knowledge of the intrinsic and extrinsic camera parameters470

and of the transformation matrix between the camera and the smartphone reference systems. To address this problem,471

a Linear Least Squares method has been applied to calibrate the HLD algorithms on the basis of the minimization of472
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the squared error calculated between their output predictions and the GT values.473

More in detail, given a set of measurements 𝑀 = [𝑚1, 𝑚2...𝑚𝑛] and the corresponding set of ground truth values474

[𝐺 = 𝑔1, 𝑔2...𝑔𝑛], the aim is to approximate the solution for the over-determined linear system (Eq. 9).475

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔1 = 𝑥2 + 𝑥1 ∗ 𝑚1

𝑔2 = 𝑥2 + 𝑥1 ∗ 𝑚2

.

.

𝑔𝑛 = 𝑥2 + 𝑥1 ∗ 𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

This system can be expressed in matrix form as in Eq. 10, where 𝐴 is the known design matrix defined as 𝐴 =

[𝑀𝑇 , 1𝑇 ], 𝐵 = 𝐺𝑇 is the known target vector and 𝑋 = [𝑥1, 𝑥2] is the solution of the Linear Least Square method. It
represents the linear transformation (Eq. 11) which better minimizes the squared norm (Eq. 12).

𝐴𝑋 − 𝐵 = 0 (10)

𝑔 = 𝑥2 + 𝑥1 ∗ 𝑚 (11)

||𝐴𝑥 − 𝑏||2

2
(12)

Two of the most renowned HLD algorithms by the scientific community have been selected to perform this com-476

parison and are briefly described in the following lines.477

The Otsu method (Otsu, 1979) is a popular technique used to threshold the image between sky and non-sky regions.478

It is a reasonable fast and simple algorithm which performs fairly well on heterogeneous sets of data. The threshold479

value T is automatically computed by the algorithm through the assumption that the grayscale histogram of the image480

pixels intensities is bi-modal; the threshold is set so that the distance between the two histogram peaks is maximized.481

Ettinger et al. (Ettinger et al., 2003) is a computer vision-based HLD algorithm that performs exhaustive search482

in the 2D line parameters space over the whole image looking at the best values which separate sky from terrain.483

However, being a slow algorithm on high resolution images, a modified version has been implemented that uses a two-484
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stage objective: the global one searches for a narrow range of combinations of the pitch and roll horizon line angles485

corresponding to a half-plane that likely subdivides the sky from the rest of the image. The local one aims at searching486

exhaustively through these combinations to find the half-plane that maximizes the difference (in average intensity) of487

the two half-planes in their immediate vicinity. This method assumes that the sky pixels have higher intensity values488

than the ground pixels (higher mean), and that the sky has higher consistency of representation (lower variance).489

6. Results and discussion490

This section contains an assessment of the results provided by DOES. Table 2 shows DOES performances with491

respect to the selected horizon line detection algorithms. DOES is able to achieve sensible better results both on roll492

and pitch angles, with a Mean Absolute Error close to 1.5°, as opposed to the other methods which exhibit worse493

performance on all the indicators.494

Table 2
DOES performances compared to those of the two HLD methods.

DOES Otsu (1979) Ettinger et al. (2003)

𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ
MAE [deg] 1.65 1.84 4.48 3.76 4.04 3.77
RMSE [deg] 2.27 2.45 5.44 4.75 5.01 4.78
STD [deg] 1.55 1.61 3.09 2.90 2.97 2.93

MedAE [deg] 1.14 1.41 4.04 3.19 3.44 3.15

The MAE and the RMSE can be used together to diagnose the variation in the errors in a set of predictions. The495

RMSE is generally higher than the MAE, and the greater is the difference between them, the greater will be the variance496

in the individual errors of the samples; moreover, if the RMSE is close to the MAE, then all the errors are of the same497

magnitude. In the case of the current comparison, the small gap between RMSE and MAE demonstrates the ability of498

DOES to produce fewer outliers than Otsu and Ettinger. In addition, the STD values of the three methods show that499

the results obtained by DOES are significantly more clustered than the others, meaning that they are closer to the mean500

value and as such can be considered more reliable. The good performances of DOES are further confirmed by the501

MedAE value, which is sensibly lower than the counterparts. These findings can be summarized in Figure 5, which502

shows the MAE behaviour analysing the outputs percentage belonging to different MAE intervals (Fig. 5a) together503

with the empirical cumulative distribution (Fig. 5b) for the roll angle. The same evaluation can be made for the pitch504

angle (Fig. 6), which exhibits similar performances to the roll angle. Another important consideration related to this505

comparison regards the inference time of DOES; the average estimation time on a single image is 100-150msec with506

any of the tested backbones, while Otsu and Ettinger inference time is comprised between 100 and 11000 msec, making507

them unsuitable for real-time applications on high-resolution images.508

Table 3 shows a detailed comparison between DOES with its default proposed network and some alternative back-509
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bones: DOES is able to produce good performances with all the residual networks, while both VGG-19 and VGG-19bn510

struggle to produce reasonable results. More in detail, the MAE and RMSE results of ResNet18 are slightly better then511

the 50- and 152-layers versions, with the powerful DenseNet161 model able to produce a similar accuracy only on the512

roll angle. The performing results obtained by the ResNet18, together with the fastest training and inference speed513

(due to the smaller number of trainable parameters TP with respect to the other architectures), make ResNet18 the first514

choice for the deployment of DOES as long as new models specifically developed for the scope will be released. Future515

work will focus on the use of lighter architectures developed for the specific use on low-resources embedded hardware516

(e.g., MobileNet, Howard et al. (2017)); this will lay the foundation for the deployment of the proposed model on517

embedded devices (e.g., Nvidia Jetson, Mittal (2019)) in real-time scenarios, in accordance with the aim of making518

DOES a supportive smart technology to improve the attitude estimations provided by low-cost sensors.519

Furthermore, the ROPIS dataset has been used for an additional test in which a 1.33𝑥 zoom has been applied to520

the frames to simulate different camera parameters. In some cases, this corresponded to a crop in the image which521

removed the horizon line, thus making DOES unable to correctly estimate the angles. This reflects in a slight decrease522

of the performances: the roll MAE is equal to 2.10°, with a RMSE of 2.81°, while the pitch angle exhibits a 2.02°523

MAE and a 2.90° RMSE.524

Table 3
Comparative results on different DOES backbones. TP indicates the number of trainable parameters.

ResNet18 ResNet50 ResNet152 VGG19 VGG19bn DenseNet161
TP = 11M 𝑇𝑃 = 23𝑀 𝑇𝑃 = 58𝑀 𝑇𝑃 = 139𝑀 𝑇𝑃 = 139𝑀 𝑇𝑃 = 26𝑀

𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ
MAE [deg] 1.65 1.84 1.77 1.88 1.82 1.92 4.67 4.11 1.91 1.99 1.63 1.87
RMSE [deg] 2.27 2.45 2.40 2.51 2.44 2.54 5.60 5.18 2.57 2.61 2.23 2.48
STD [deg] 1.55 1.61 1.63 1.66 1.62 1.66 3.09 3.14 1.72 1.69 1.55 1.63

MedAE [deg] 1.14 1.41 1.28 1.46 1.36 1.52 4.26 3.43 1.47 1.56 1.14 1.44

Finally, a separated test (with no prior training or specific tuning) has been made on a set of 191 images presenting525

three main variations with respect to the ROPIS train and test data:526

• The device: a smartphone Huawei P9 (Huawei Device Co., 2021) has been used, with the FrameWO App, to527

collect the data. The mounted dual-lens Leica camera has different characteristics with respect to the OnePlus528

Nord Sony camera: the P9 Leica 12 MP has in fact an aperture size of 𝑓∕2.2, a focal length of 27𝑚𝑚 (wide), a529

sensor size of 1∕2.9′′ and a pixel size of 1.25𝜇m.530

• The location: the acquisition has been made in a different area of the Racale city (LE).531

• The environment setting: the data has been collected rightly after the sunset, in a low-light condition which532

highly reduced the contrast in the frame, resulting in a very challenging scenario.533
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Despite these substantial changes in the sensor and in the overall acquisition, DOES obtained remarkable results,534

performing a 2.17° MAE and a 2.70° RMSE for the roll angle and a 2.22° MAE and a 2.71° RMSE for the pitch535

angle. This demonstrates that DOES can successfully generalize over various conditions and camera parameters,536

confirming its potential for more challenging settings and further employment as inertial systems support and visual-537

based odometry tasks.538

It is worth mentioning that the accuracy of the results is proportioned to the precision of the GT data and thus of539

the systems employed to acquire it. In this case, the overall accuracy is strictly connected to the use of a smartphone540

AHRS which, although being limited to the low-cost sensors mounted on it, is still able to provide reliable and accurate541

measurements. The use of high-end and more expensive devices would in fact ensure a higher grade of GT accuracy542

with consequent improvements in the DOES performances.543

7. Conclusions544

This paper presents a novel Deep Learning-based approach to the attitude estimation problem, which has been545

developed and intensively tested on a new dataset (the ROPIS dataset) specifically built for the scope and released546

in the context of this work. Deep Orientation (of roll and pitch) Estimation at Sea (DOES) is able to predict the547

attitude of the device in terms of roll and pitch angles by analysing the frames recorded by the camera pointing towards548

the sea horizon. DOES has been tested using several known architectures (e.g., ResNet152, ResNet18, VGG19) and549

with different configurations and hyper-parameters, obtaining excellent results. Unlike other visual-based methods,550

DOES is able to produce the output without the explicit knowledge of the camera intrinsic and extrinsic parameters551

or the distortions introduced by the camera lens. There is in fact no necessity to make any assumption on the use of552

specific models to parametrize the camera, since the model training only depends on the dataset given as input; the553

latter generally provides different sampling characteristics, thus making the network able to learn and then estimate554

the attitude regardless of the camera specifics.555

The ROPIS dataset has been created for this particular task and is here presented in its first release; the lack of public556

datasets suitable for DL applications made it necessary to search for a valid alternative for the experiments conduction.557

For this reason, the FrameWO Android application has been developed using the Open Source B4A platform and will558

be made publicly available online. This app allows to simultaneously acquire the frames to be fed to the model as input,559

and the attitude estimations measured through the internal sensors of the smartphone, which will be used as Ground560

Truth in the training/testing phases.561

ROPIS dataset is intended to be further improved by the introduction of more subsets of data collected in different562

scenarios (i.e., during the dusk/dawn, rainy days, etc) and environments (e.g., different cities coastlines, onboard of563

a vessels), using different acquisition devices. This will improve the DOES ability to generalize over heterogeneous564
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data, making it even more invariant to the camera configurations, the acquisition condition and cluttering factors, thus565

providing better results in any kind of situation in which the vehicle will be navigating. In this regard, the authors wish566

to encourage the users to download and test the FrameWO application with the aim of enhancing the ROPIS and its567

usage among the scientific community, to give a concrete contribution to this task.568

The objective of this project is to develop a supportive technology to be integrated to the existing low-cost method-569

ologies employed for the attitude estimation task. In fact, it has to be noticed that this approach has been specifically570

designed using affordable devices and applications and, as such, its results are not intended (at least in its preliminary571

version) to reach the accuracy provided by high-precision modern sensors. Further experiments will be made to test572

other light-weight DL architectures, which could be deployed on low-resources embedded hardware with the aim of573

providing better accuracy results in real-time applications on autonomous vehicles. These enhancements will make574

DOES a robust system to be integrated in visual and visual-inertial odometry methodologies.575

Code availability section576

DOES - Deep Orientation (of roll and pitch) Estimation at Sea577

Contact: fabiana.dicia@gmail.com, +39 328-0935198578

Hardware requirements: Nvidia GPU with CUDA 10+ support579

Program language: Python 3580

Software required: Python environment, CUDA 10+ library581

Program size: 78.5KB (code), 39.3GB (dataset)582

The source codes are available for downloading at the link: https://github.com/fabidicia/does583

The dataset is available for downloading at the link: ROPIS Dataset584
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Figure 1: Illustration of an image from the ROll and PItch at Sea (ROPIS) dataset.
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Figure 2: Device coordinate system used by the Android Sensor API (Android).
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DOES: A Deep Learning-based approach to estimate roll and pitch at sea.

Figure 3: DOES architecture with default ResNet18 backbone network.
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DOES: A Deep Learning-based approach to estimate roll and pitch at sea.

(a) Gaeta_Serapo_sunny subset,
Frame 10_2021-04-20_185520.jpg

(b) Gaeta_Serapo_cloudy subset,
Frame 282_2021-04-26_184257.jpg

(c) Gaeta_Harbour_cloudy subset,
Frame 39_2021-04-26_181529.jpg

(d) Gaeta_City_cloudy subset,
Frame 537_2021-04-26_175240.jpg

(e) Racale_sunset subset,
Frame 80_2021-04-26_181710.jpg

(f) Gaeta_S.Agostino_sunny subset,
Frame 8_2021-05-03_173835.jpg

Figure 4: ROPIS dataset samples. Figures 4a to 4e belong to the training set, Figure 4f to the test set.
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(a) Roll Absolute Error (b) Roll Empirical Cumulative Distribution

Figure 5: Graphical distribution of the errors for the estimation of the Roll angle.
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(a) Pitch Absolute Error (b) Pitch Empirical Cumulative Distribution

Figure 6: Graphical distribution of the errors for the estimation of the pitch angle.
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Figure 7: A frame from the low-light condition separated set.
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