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Abstract

Vision is not just the biological ability to detect light; it is an essential part
of the capability of animals, humans, and future machines to interpret, under-
stand and act in the environment. If a 2-year-old child encounters their very first
tractor while hearing its name, the child from that point forward will recognize
all variety of tractors, without confusing them with cars or trucks. To date, this
surprising talent in visual learning, acquired with such a limited supervision
from external agents, is something not easily reproducible in computer vision.
Inspired by the quest of achieving similar learning schemes, in this work we
study several aspects of computer vision, proposing innovative neural network
training techniques.

The first part of the thesis introduces the concept of input tuning for smooth
learning paths, which involves dynamic transformations of inputs during train-
ing, inspired by the gradual visual skill acquisition observed in infants. We
present a method that breaks down complex learning tasks into a series of incre-
mentally challenging sub-tasks. This is achieved through input transformations
that match the learner’s skill level, enhancing model performance and deepen-
ing our understanding of the learning process. Then, we use the notion of in-
put tuning in a different scenario, where a learner faces diverse tasks without
a meaningful order, risking catastrophic forgetting. A novel training method
keeps the learner’s core static while using learnable transformations in the input
space for environment adaptation, mitigating forgetting in realistic situations.

The second part of the thesis shifts from the supervised learning focus of the
first part, aiming to create autonomous visual agents that learn directly from
their surroundings without human intervention. These agents forgo large la-
belled data collections, observing continuous video streams and learning on-
line, electing motion as the primary source of information. As such, we start by
investigating optical flow estimation in dynamic environments, using a purely
online unsupervised approach. We then present two self-supervised learning
techniques. The first employs an attention trajectory, simulating human visual
attention and allowing agents to establish semantic connections among pixels.
The second is motion-based, resulting from a layered autonomous development
process. Results indicate significant progress in the quest for autonomous vi-
sual skill development, with intriguing open directions.

Benefits obtained from controlling the learning pace through input tuning
naturally open to future research directions, aimed at improving the robustness
of visual agents that learn online without supervision.



Contents

Contents

1

IT

Introduction

1.1 Motivations and openissues . . . . .. ... ... ... .. L.
1.2 Contributions . . . . ... ... . ...
1.3 Structureofthethesis . . . . . . .. .. .. ... ... .. .. .. ...

Background: A developmental approach to learning

2.1 Human and Machine Developmental Learning . . . . . ... ... ..
2.2 Continual and Lifelong Machine Learning . . . . . .. ... ... ...
2.3 Visual Representation Learning . . . . . .. ... ... .. .......

Progressively learning in the input space

Input tuning for Friendly Training

3.1 Introduction . .. .. ... ... ... . ... ..
3.2 Relation with existingworks . . . . .. ... ... .. ... ... ...
3.3 Friendly Training: implementations . . . . . ... ... ... ......
34 Experiments . ... ... ... ... oo oo oL
35 Discussion . . ... ... 0 oo oL

Input tuning for Continual Learning

41 Introduction . . .. ... ... ...
4.2 Relation withexistingworks . . . . ... ........ .. ... ... ..
4.3 Continually tuning a pre-trained model . . . ... ... ... .. ...
44 Experiments . . ... ... ... .. ...
45 Discussion . . . ... ... e

Growing visual agents from video streams

Optical flow estimation with online learning

1

O 0 U1 W

26
27
29
31
38
43

47
47
49
51
55
61

65

68



CONTENTS

5.1 Introduction

5.2 Relation with existingworks . . . . ... ..... ... ... ..

5.3 Continual learning of optical flow estimation
5.4 Experiments
5.5 Discussion

6 Self-supervised online learning for autonomous visual agents
6.1 Introduction

6.2 Relation with existingworks . . . . .. ........... ..
6.3 Learning and evaluationsetting . . . . ... .. ... ... ..

6.4 COAT: attention-based model
6.5 CMOSFET: motion-based model

6.6 Experiments and discussion . . . . .. ... .. ... ... ..

7 Conclusions and future works

A Experimental details on optical flow estimation

B Experimental details on attention-based agents (COAT)

C Experimental details on motion-based agents (CMOSFET)
D Publications

Bibliography

119

124

130

134

139

141



Chapter 1

Introduction

We hope to be able to build a program that can
learn, as a child does... instead of being spoon-fed
the tremendous information necessary.

— R. C. Schank, 1972

The total act [...] may seem to be a functionally
coherent unit of behavior; but it is constructed by a
continual process from undifferentiated behavior,
just as the sculptor shapes his figure from a lump of
clay.

— B.F. Skinner, 1953

The frog does not seem to see ot, at any rate, is not
concerned with the detail of stationary parts of the
world around him. He will starve to death
surrounded by food if it is not moving.

—J.Y. Lettvin et al., 1959

In the realm of artificial intelligence, a remarkable transformation has occurred,
transitioning from a theoretical pursuit in academia to a practical, everyday applica-
tion. In the year 2023, this evolution was underscored by the widespread adoption of
powerful models, enabling sophisticated chatbots and innovative multimedia gener-
ation models among the others. These groundbreaking achievements have fostered
a palpable sense of optimism pervading both research and industry sectors. No-
tably, market experts predict a robust growth rate exceeding 30% year-over-year in
Al markets until at least 2030 (Grand ViewResearch, 2022; NextMSC, 2023). The his-
tory of artificial intelligence, however, has been marked by a fluctuating narrative of
optimism and skepticism, driven by an audacious yet ambiguously defined objec-
tive: creating computer programs capable of emulating innate human abilities such
as language and vision (Parisi et al., 2019).

3



4 Introduction

Actually, the research work discussed in this thesis concerns computer vision,
that stands out as a cornerstone of research and industry applications in AIl. Com-
puter vision aims to empower computer systems to perceive and comprehend the
visual world akin to human perception. In the 1960s, Al was a full-fledged academic
discipline, sparking considerable optimism on computer vision as well. During this
era, Seymour Papert, a professor at MIT’s Al lab, initiated the Summer Vision Project
(Papert, 1966), aiming to solve the machine vision problem in a matter of months
with the cooperation of a small group of MIT students. Their mission was to develop
a platform capable of automatically segmenting background from foreground and
extracting distinct objects from real-world images. However, as the reader can likely
guess, the students did not meet the deadline. More than fifty years later, computer
vision remains a formidable challenge. Nevertheless, many consider the Summer
Vision Project as the official birth of computer vision as a scientific field.

Over the years, the computer vision research community gradually began to di-
verge from the broader field of Al This shift was driven by an increasing emphasis
on highly specialized algorithms and meticulous feature engineering. One of the ini-
tial milestones in computer vision’s journey was the development of the Viola-Jones
object detection algorithm (Viola and Jones, 2001). This breakthrough not only saw
widespread adoption in commercial products, such as its use in facial detection for
digital cameras, but also continues to find applications in low-power devices to this
day.

A pivotal development in computer vision and Al was the pursuit of represen-
tation learning, a paradigm where systems acquire knowledge autonomously by
extracting data patterns instead of relying on pre-defined rules. This approach rev-
olutionized the field, rendering traditional symbolic Al less popular while elevat-
ing machine learning, particularly through neural networks, as the predominant
methodology for all kind of problems, even more so in computer vision. In this
landscape, the focus shifted towards obtaining rich input representations, showcas-
ing the monumental impact of representation learning on problem-solving within
machine learning.

Significant breakthroughs, including seminal work by Lecun et al. (1998) and
Krizhevsky et al. (2012), led to the establishment of deep convolutional neural net-
works (CNNs) as the preferred architecture for complex computer vision tasks.
CNNs, distinguished by their convolutional layers that detect local spatial features
in images, mimic certain processes in human vision (Lindsay, 2021). However, these
advancements were largely facilitated by the unprecedented availability of data,
exemplified by datasets like ImageNet (Russakovsky et al., 2015), which popular-
ized the idea of massive data collection to advance machine learning performance.
Recent experimental findings (Tolstikhin et al., 2021) suggest that, given copious
amounts of data, non-convolutional architectures might excel in vision benchmarks,
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highlighting the paramount role that data abundance has had and is having on the
research efforts.

1.1 Motivations and open issues

Machine Learning methods have backed impressive results in Computer Vision, as
well in many other domains, such as Natural Language Processing and Robotics.
In spite of this incontrovertible fact, we will now briefly present some general is-
sues affecting the common paradigm, along with an alternative vision of intelligent
machines that inspired most of the research work presented in this thesis.

In the broader domain of Artificial Intelligence (AI), the trajectory of develop-
ment has witnessed a striking divergence between two paradigms. Symbolic Al,
characterized by its elegant and compact logic formalism, has traditionally oper-
ated in a collectionless manner, emphasizing the manipulation of symbolic knowl-
edge without the need for amassing vast data collections. Conversely, Sub-symbolic
Al notably exemplified by the recent surge in Machine Learning (ML), has under-
gone a transformation fueled by the availability of extensive data repositories and
the computational power to harness them, enabling the proliferation of deep neural
architectures backed by statistical premises.

Intriguingly, as Machine Learning thrived on the influx of large-scale data collec-
tions (cfr. the historical example of ImageNet, Russakovsky et al. (2015)), it raised
a fundamental question: Is the accumulation of copious data a necessity for Al sys-
tems, or is there an alternative path? Along these lines we might want to challenge
the conventional wisdom that the path to Al progress inevitably leads to the stor-
age and analysis of extensive data collections (Betti et al., 2021b; Gori and Melacci,
2023). Modern Machine Learning requires the storage of patterns, that apparently
leads to the inevitable direction of accumulating big data collections. However, in
the natural world, animals of all species navigate their environments and acquire
knowledge without resorting to such massive data accumulation.

The concept of "Collectionless ML" (Gori and Melacci, 2023) identifies methods
that operate on the data as they flow in and emphasizes the development of dynamic
models capable of adapting over time. The process is not isolated; it hinges on en-
vironmental interactions, incorporating information from humans and potentially
agent-to-agent communication. Moreover, it envisions Al systems that can be man-
aged by edge computing devices, reducing the reliance on cloud computing and
commercial entities.

There is the possibility that the need for vast data collections in machine learning
stems from formulating the learning problem in a more complicated perspective
than how natural learning occurs. When we consider the case of vision, there is
a clear sequence in which images are processed, given by the natural evolution of
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time and expressed by motion. Unlike machines, humans and animals do not learn
by going through vast and randomly shuffled sets of images. Instead, they learn
continuously, as they experience the world around them, without needing to store
and label every piece of information they come across.

In this research, we argue that machines too can potentially adopt this natural
way of learning. We believe that nature’s way of learning has its foundations in
how information is processed and used to adapt to environments. We propose a
new approach for machines: let them learn continuously from their surroundings,
just as living creatures do, without depending on large pre-existing datasets. This
would involve, for example, machines processing visual information as it comes in
and occasionally interacting with humans for guidance.

We acknowledge that proposing machines adopt a natural way of learning is
an audacious objective, necessitating a profound paradigm shift. While the end
goal may seem distant, this thesis seeks inspiration from this overarching vision.
Through our research, we endeavor to take preliminary but significant strides in
this direction, laying the groundwork for future exploration. In the following, we
identify three specific limitations in the prevailing machine learning literature that
have influenced our perspective. These shortcomings have inspired us to craft solu-
tions that are in harmony with the philosophy outlined above.

A Traditional supervised learning in neural networks is predominantly viewed
as a static process, a perspective that stands in stark contrast to the dynamism
inherent in human cognitive development. Present-day neural networks are
exposed to a diverse range of examples, spanning from simple to complex,
right from inception. This approach is somewhat counter-intuitive when jux-
taposed with human learning trajectories. Consider the pedagogical journey
of a child: they aren’t introduced to differential equations on their first day of
school. Instead, they navigate through a meticulously structured path, start-
ing with basic arithmetic and gradually advancing over the years.

Drawing a parallel in the realm of visual cognition, a newborn doesn’t instantly
possess the visual acuity of an adult (Braddick and Atkinson, 2011). On the
contrary, infants need several months—and the progressive unlocking of dif-
ferent types of visual experiences(Smith and Slone, 2017)—to attain matured
visual capabilities. It’s plausible to surmise that this phased progression in
visual acuity is a strategic biological adaptation, facilitating the step-by-step
acquisition of strong visual competencies.

This leads to the following question:

Can we design neural networks that emulate these natural, gradual learning processes?
Is it feasible to enhance the performance and reliability of neural networks by institut-
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ing a systematic learning schedule, mirroring the developmental stages observed in
nature?

B The conventional understanding of "learning as a static process" in neural net-
works is grounded in situations where all training data is immediately avail-
able and sampled from a static distribution in an independent manner (i.i.d.).
This paradigm holds up under such conditions, but becomes problematic in
dynamic settings. Specifically, when data streams over time and is derived
from evolving, non-stationary distributions, neural networks face challenges:
a huge performance drop on old data is typically noticed when adapting pa-
rameters on novel data. This decline, known as catastrophic forgetting, is not
a new challenge. It dates back to the initial phases of connectionist research
and has remained an unresolved issue. A widely adopted mitigation strategy
has been to buffer and periodically reuse a portion of old inputs during the
learning process. While this can somewhat curb the effects of forgetting, con-
tinuous data retention ushers in a new set of complications, including storage
challenges and privacy concerns.

This directs our attention to the following inquiry:

Is it possible to deal with the continuous learning problem in a truly online and lifelong
perspective without storing all the data?

C Historically, supervised task-specific models have been the landmark of pro-
gression in visual recognition systems. More recently, the landscape has been
changed by the advent of unsupervised models for vision tasks. These mod-
els have been used as general-purpose feature extractors, bridging the perfor-
mance gap with their supervised counterparts.

However, a critical bottleneck remains and it is given by their heavy reliance
on vast collections of generic images, leading to what can be termed the "accu-
mulation problem’. This dependence on enormous datasets poses questions
about efficiency and scalability. In this context, one wonders if there’s a more
organic source of data that these models can exploit. Video streams, teeming
with temporal information, especially motion, present a compelling answer.
Interestingly, Spelke (1990) showed that motion considerably augments the
capability of biological perceptual systems to distinguish and segregate visual
patterns into distinct entities.

This prompts us to ask:

Given the rich, sequential data that can be extracted from video streams, can we lever-
age temporal evolution and motion to train our visual agents? Can we envision a
paradigm where these agents learn predominantly by observing video streams, thereby
significantly reducing the need for supervised guidance?
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1.2 Contributions

This thesis endeavors to answer the questions posed earlier in Sec. 1.1, grounding
its investigations in a nature-inspired approach to prevalent machine learning chal-
lenges.

In the first part, we center our attention on ideas concerning the gradual fulfill-
ment of learning objectives in vision tasks. We propose methods tailored for su-
pervised learning in both stationary and non-stationary environments, providing a
comprehensive overview of the varying challenges and solutions across these set-
tings. The methods that we propose involve what we call input tuning, i.e., dynamic
transformations of inputs over time, albeit evolved in diverse directions depending
on the learning context.

o Friendly Training: We introduce a new method within the realm of curriculum
learning. Applicable to any stationary supervised learning setting, this tech-
nique offers a more gradual human-like learning path for neural networks by
transforming input samples, resulting in improved accuracy compared to stan-
dard training practices. Based on (Marullo et al., 2021, 2022b).

o Continual Input Tuning: We introduce a method for vision tasks within su-
pervised continual learning contexts. By freezing a pretrained backbone and
learning simple transformations in the input space, it provides a solution to
mitigate forgetting without the need for data retention. Based on (Marullo et al.,
2023b).

In the second part, our exploration pivots towards the autonomous cultivation of
general-purpose visual abilities, conquered through the observation of unlabeled
video streams. Our approach hinges on the harnessing of temporal information,
linking consecutive frames via motion. This is why we start that discussion by inves-
tigating the feasibility of motion extraction in a online learning setting.

e Optical Flow Estimation: We undertake a comprehensive study of optical flow
estimation in online continual learning. Our results suggest that the challenge
of catastrophic forgetting is less pronounced for optical flow with respect to
often investigated supervised tasks. We also offer straightforward strategies

that enhance performance in common applications. Based on (Marullo et al.,
2022a).

o Self-Supervised Visual Feature Development: We propose two methods aimed at
developing robust visual features without supervision, solely by processing
a video stream in real-time. The first approach is anchored on the principle
of consistency across attention paths, while the second method more directly
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exploits motion. Our results indicate that these features can be effectively used
for downstream tasks like semantic segmentation. Based on (Tiezzi et al., 2022;
Marullo et al., 2023a).

1.3 Structure of the thesis

This thesis is structured as follows:

e In Chapter 2, we briefly introduce the readers to the concepts of Curriculum
Learning, Continual Learning, Visual Representation Learning.

e In Chapter 3, we describe a procedure, named Friendly Training, to transform
a static learning problem into a sequence of small learning subtasks. We dis-
cuss two very different implementations, one is based on direct optimization,
while the other features an auxiliary neural model. Both of them are based on
transformations of the input, anticipating the notion of input tuning (Chapter
4) but in a different context. We compare the implementations and show the
remarkable impact on several supervised learning benchmarks.

e In Chapter 4, we explore the idea of input tuning in the context of continual
learning. We introduce a method to mitigate forgetting without buffering sam-
ples. We experimentally investigate two kinds of input transformation and we
extend the method for large domain shifts. We outperform regularization-
based competitors on several continual learning benchmarks.

e In Chapter 5, we investigate potential issues related to learning optical flow
estimation in an online setting, exposed to non-stationary video streams. We
present synthetic video streams of growing complexity and we discuss quali-
tative and quantitative results on a very-long realistic video stream. We evalu-
ate forgetting issues and we suggest simple techniques to overcome common
caveats.

e In Chapter 6, we present a technique for self-supervised learning based on the
notion of human-like attention trajectory. Subsequently, we present a more
involved technique, centered on the idea of joint learning of layered motion
estimation and feature extraction. We evaluate the techniques on synthetic
streams from 3D environments and real-world videos, showing that the meth-
ods are competitive with respect to large pretrained models.

e In Chapter 7, we reach conclusions regarding the work we have presented in
this thesis, raising additional questions and proposing hypotheses for poten-
tial future research directions, along with a unifying perspective.



Chapter 2

Background: A developmental
approach to learning

In this chapter we will provide the reader with further background, that we find
useful to understand the spirit behind the contributions of the thesis and better con-
textualize the proposals with respect to the concerned research areas. We will begin
with a developmental perspective on human learning and related machine learn-
ing research. Then we will briefly introduce to continual learning (also called life-
long learning) in the machine learning paradigm. Finally, contrastive representation
learning will be presented.

2.1 Human and Machine Developmental Learning

Learning can be defined as "adaptive, intelligent change in response to experience"
(Smith and Slone, 2017) and is one of the most striking property of human intelli-
gence. The human brain is a complex system that drastically changes in response
to the activations evoked by sensory input over its developmental trajectory. Re-
searchers in Artificial Intelligence always tried to emulate this fundamental capa-
bility in machine algorithms. One of the overlooked facets of human learning is the
fact that the brain helps create the experiences from which we learn, for instance by
directing the actions of the body. In so doing, the learner directly affects the prop-
erties of the raw material of learning with different effects at different maturational
stages. This also means that learning in humans is not an uncontrolled process ran-
domly consuming indiscriminate input stimuli until convergence, but rather seems
to follow a meaningful schedule that leads to strong cognitive skills. We will use the
adjective developmental to indicate the emphasis on the features of this non-stationary
learning process over the temporal dimension.

The case of vision is particularly compelling because it can be readily explored in
humans using cognitive psychology and neurophysiology tools, unveiling intrigu-

10
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Figure 2.1: The selectivity of the ego-centric view in infants greatly shapes the con-
tent of visual data subject to the learning process. Unless they turn their head, el-
ements like the cat or the clock remain hidden from view. The personal evolution
in the way the observer stands, their movements, interests, and social interactions
all influence the gradual acquisition of visual skills. Image courtesy of (Smith and
Slone, 2017).

ing findings about natural learning environments. For instance, it has been known
for a long time (Braddick and Atkinson, 2011) that the visual acuity of newborns
drastically improves over the first six months of life. Apart from the curious post-
natal evolution of the spatial resolution of the stimuli, the structure and patterns
observed in such stimuli give rise to interesting observations. Such data are nothing
like the training sets in cutting-edge computer vision since an individual’s perspec-
tive of the visual environment is highly selective (Fig. 2.1), influenced by a variety
of factors (Smith et al., 2014). These factors—ranging from posture to personal in-
terests—evolve over time, directing the individual towards specific types of visual
experiences as they grow. Notably, in the initial two years of life, each sensory-
motor milestone paves the way for novel visual experiences. Therefore, it can be
sensibly stated that the human visual system does not just rely on batch learning
of the world; it matures via a systematically structured visual experience curricu-
lum, which is shaped by the infant’s sensory-motor progression. In contrast, typical
machine vision (machine learning) does not experience anything akin to learning
that shifts the very nature of learning. The notions that we summarized in this section
have been highly inspirational for this thesis. The most directly related outcome is
presented in Ch. 3, where we describe Friendly Training.

As a partial digression, the parallel with human development of visual skills let
us draw more connections with the topics covered in this thesis. Indeed, acknowl-
edging the multistage nature of visual learning allows to gain specific insights from
the different stages. Visual learning in toddlers seems to exploit distinct character-
istics of the sensory data that are useful to break down complexity. Firstly, toddlers,
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when handling objects, produce visual scenes that are simpler than those observed
in adults (Tamis-LeMonda and Masek, 2023). With their short arms, toddlers tend
to lean in, examining objects up close, often resulting in a scene dominated by a
single object. This setup inherently addresses several fundamental problems, in-
cluding segmentation and competition. Secondly, they see multiple perspectives of
the same item, linked by tactile connection (manipulation) and temporal proxim-
ity (motion). A logical conclusion would be that smart exploitation of the inherent
structure of visual data predominantly addresses many of the complex challenges
in visual object recognition. We will employ this intuition in Ch. 6, where we will
devise a self-supervised development stage that makes use of attention and motion
to conquer basic visual skills, postponing to a later maturational stage the ability of
identifying entities with names.

Curriculum Learning in Machine Learning

A lot of attention has been paid in the last decade, marked by the explosion of deep
learning methodologies, to architectural aspects of learning. Comparably less atten-
tion has been paid to improving the training process and its material.

Nonetheless, the idea of training neural networks with a learning methodology
that “gradually” changes the learning environment (which was proved to be real-
istic not only in humans but also in animals (Peterson, 2004)) traces back to almost
three decades ago (Elman, 1993) and has been known for long as Curriculum Learn-
ing (CL) (Bengio et al., 2009) within Machine Learning. Taking inspiration from
the common experience of learning in humans, CL aimed at designing an optimal
learning plan in which the learning agent is exposed to simple, easily-discernible ex-
amples at first, and later to gradually harder examples, also progressively increasing
the size of the training set.

Using the definition by Mitchell (1997), a model M is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P, if its per-
formance at tasks in T, as measured by P, improves with experience E. According to
the formulation proposed by Bengio et al. (2009), curriculum learning corresponds
with increasing the complexity of the data samples over the training process. With
respect to the aforementioned definition, this means that the complexity of E grows
over time. However, curriculum techniques have been investigated on other com-
ponents of the learning interplay, for instance by increasing the model capacity M
(Sinha et al., 2020; Morerio et al., 2017). In any case, Bengio et al. (2009) interest-
ingly notices that curriculum learning can be generally interpreted as instances of
continuation methods (Allgower and Georg, 2003), well known in non-convex op-
timization. Continuation methods start with a relatively simple and smooth objec-
tive function that is easy to optimize. Over time, this objective function is gradually
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transformed into more complex and less smooth versions until it finally matches the
original, non-convex objective function.

Coming to training in machine learning, when we use straightforward data sam-
ples at the beginning we naturally expect our model to quickly achieve good perfor-
mance levels. This is justified by the fact that the objective function, associated to
measure P, is smoother and easier to work with (Bengio et al., 2009). As we intro-
duce more challenging data samples, the objective function becomes more difficult
to deal with. A similar argument applies for curriculum applied to our model M
or the tasks T. Drawing a connection between curriculum learning and continua-
tion methods helps us see that the ultimate goal is to make the optimization process
smoother in the initial training phases.

Wu et al. (2021) focused on curriculum methods applied to experience E, identi-
fying three main components. The crucial one is the scoring function s(x), mapping
every example to a numerical score reflecting the concept of difficulty. The pac-
ing function, denoted as g(t) governs the size of the training dataset used at each
training step. Generally, an ordering scheme can be specified: curriculum (ordering
examples from lowest score to highest score), anti-curriculum (ordering examples
from highest score to lowest score), or random (standard training).

In the broader realm of Curriculum Learning, we mention Self-Paced Learning
(SPL), which emphasizes the fact that the order of examples is not initially known
but is dynamically computed based on the model’s evolving performance. For in-
stance, in the work by Kumar et al. (2010), they leverage the likelihood of predictions
to determine the ranking of samples.

Along this lines, Smith and Slone (2017) compared ideas behind curriculum
learning and current notions in developmental learning. They criticize plain cur-
riculum learning because visual data in infants are not just ordered over develop-
mental time, but they are also dynamically structured by the current state of the
learner, adapting as the learner’s internal system evolves. From what we understand
of human cognitive development, the information presented at any given moment
is likely the most suitable for the current stage of learning, ensuring that the right
information is delivered precisely when needed. This is exactly the goal that we
seek to achieve in Ch. 3 with Friendly Training.

2.2 Continual and Lifelong Machine Learning

Humans continually adapt their knowledge, learning concepts sequentially. Al-
though they might occasionally revisit old concepts, they usually retain this knowl-
edge without needing constant reinforcement. Conversely, artificial neural networks
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tend to forget previously learned concepts as they acquire new ones (French, 1999).
It looks like the impressive accomplishments of Machine Learning stem from static
models that do not adapt over time. To accommodate new data, retraining is typ-
ically necessary, raising theoretical and practical issues (including storage and pri-
vacy concerns).

Historically, artificial neural network research has emphasized static tasks, shuf-
fling data to achieve i.i.d. conditions, and improving performance by revisiting
training data. Continual Learning, also known as lifelong (Chen and Liu, 2018),
sequential (McCloskey and Cohen, 1989), or incremental learning (Gepperth and
Karaoguz, 2016), addresses the challenge of learning from an endless data stream.
The primary goal is to extend knowledge over time without significant performance
degradation on older tasks as new tasks emerge. This issue stems from the broader
stability-plasticity dilemma in neural networks (Grossberg, 2012), balancing the in-
tegration of new knowledge and the retention of existing knowledge.

Traditionally, the ambition of continual learning has been initially developed un-
der the term lifelong learning (LL), introduced by Thrun and Mitchell (1995). Initial
works were in field of information systems, since in that case continual learning was
very intuitively implemented with mechanisms to grow the knowledge base over
time. NELL (Never-Ending Language Learner) is a prominent example of lifelong
learning in such field (Carlson et al., 2010; Mitchell et al., 2015). NELL has come to
life with a small ontology plus a collection of 500 million web pages. With access to
the remainder of the web through search engines, it has run 24 hours per day from
2010 to 2018, extracting new instances of categories and relations. Simultaneously,
NELL performed retraining of belief extraction methods, using the growing knowl-
edge base as a self-supervised collection of training examples. Moreover, periodic
review sessions have been organized, with human operators providing corrections
and introducing new tasks.

In recent years, the landscape of lifelong learning has undergone a significant
transformation, largely attributed to the widespread adoption of deep learning. This
shift has given rise to a thriving community dedicated to similar ambitions, under
the umbrella of continual learning. Within the realm of deep learning, researchers
have delved into the complex challenge of continually acquiring expertise in a se-
quence of tasks (Parisi et al., 2019).

The primary motivation behind continual learning in the context of deep learn-
ing stems from the need to address the issue of catastrophic forgetting that can occur
when sequentially acquiring knowledge in a series of tasks. The central focus has
been on the incremental acquisition of each new task within the same neural net-
work framework, all while ensuring that the neural network retains the previously
acquired knowledge for past tasks. This approach stands in contrast to traditional
lifelong learning literature, which often emphasized explicit techniques for leverag-
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Figure 2.2: Traditional machine learning models are trained once using available
data and then remain static when deployed. This rigidity is problematic in our
dynamic world, especially since such static models can’t leverage continuous data
streams (e.g., IoI'). Continual Learning designs techniques for models that adapt to
data, continuously and flexibly. Image courtesy of Leuven.AlL

ing prior knowledge to aid in the acquisition of new skills.

Literature about Continual Learning has rapidly grown with a moltitude of dif-
terent approach and little consensus on settings, learning protocols and method-
ologies, leading to the need of creating taxonomies. It is important to emphasize
that while the majority of studies focused on supervised learning, unsupervised
settings received comparatively minimal attention (Madaan et al., 2022; Rao et al.,
2019; Tiezzi et al., 2020; Betti et al., 2022a). One of the most popular categorization
is the tree structure proposed by De Lange et al. (2021). We report here the main
categories, since we will use these concepts to contextualize our proposals, as it will
be more clear in Chapters 4, 6.

e Replay methods. This line of research involves the preservation of samples
with buffers and specifically designed policies. Rehearsal methods (Rebuftfi
et al., 2017; Rolnick et al., 2019) involve explicit retraining on a limited subset
of the stored samples while concurrently training on samples from new tasks.
Inspired by knowledge distillation, Buzzega et al. (2020) proposed to store in
the buffer not only the ground-truth labels, but also the logits acquired during
the optimization trajectory. Noteworthy, traditional rehearsal methods are of
course bounded by joint training (on previous and current tasks). As a conse-
quence, more sophisticated methods emerged (Lopez-Paz and Ranzato, 2017;
Chaudhry etal., 2019), based on constrained optimization, which should allow
for greater flexibility in the transfer of knowledge. The fundamental concept is
to ensure that updates made for the new task do not adversely affect (i.e., re-
duce the performance of) previously acquired task knowledge. While replay
methods are the most popular category in CL, in Chapters 4, 6 we consider
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scenarios where large availability of past samples is out of the picture, and we
propose methods where replay is absent or marginal.

e Parameter isolation methods. In this approach, distinct sets of model param-
eters are allocated to individual tasks to prevent any potential interference or
forgetting. In cases where architectural constraints are not a concern, new
branches can be introduced for each new task while keeping the parameters
of previous tasks frozen (Rusu et al., 2022; Masana et al., 2022), or even by
dedicating a separate model copy to each task (Aljundi et al., 2017). It is im-
portant to note that these approaches typically require to know or estimate
task-specific information, often referred to as a "task oracle," to activate the
corresponding branches during prediction. In Chapter 4, we will present an
heuristic-based method of this category, in the context of continually tuning
pretrained backbones.

e Regularization methods. This line of works is united by the idea of adding
regularization term within the loss function, with the broad aim of consoli-
dating prior knowledge when learning from new data. Methods of this cate-
gory have typically lower storage requirements and emphasize privacy preser-
vation. They can be categorized into two groups: data-focused and prior-
focused.

Data-focused methods primarily rely on knowledge distillation from a previ-
ously trained model (on a prior task) to the model undergoing training on new
data. This concept, popularized in (Li and Hoiem, 2017), combats forgetting
by employing the previous model’s output as soft labels for earlier tasks. In
contrast, prior-focused methods concentrate on estimating a distribution over
the model parameters, which serves as a prior when learning from new data.
Typically, the importance of all parameters is assessed and changes to impor-
tant ones are penalized (Kirkpatrick et al., 2017; Zenke et al., 2017). In Chapter
4 we will adopt competitors of this category for experimental comparison. In
Chapter 6 we will propose methods for online unsupervised learning of visual
teatures. While they are not properly represented in the dichotomy between
data-focused and prior-focused, we argue that they still fall under the umbrella
of regularization methods for continual learning, although in a very specific
context, as it will be clear later.

Alternative taxonomies

Apart from this traditional categorization of continual learning, other taxonomies
(Wang et al., 2023; van de Ven et al., 2022) have been proposed, taking into account
more recent efforts in the research community. We will briefly mention a few direc-
tions, since they are useful to contextualize the works discussed in this thesis.
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Representation-based methods. Some approaches harness representations for
continual learning by integrating self-supervised learning (SSL) (Madaan et al.,
2022) and large-scale pre-training (Mehta et al., 2023). These two strategies of-
ten intersect, given that modern pretraining of large models substantially identi-
ties with SSL on abundant, unlabeled data. An interesting niche combines self-
supervised learning with traditional supervised loss, often employing the comple-
mentary learning system paradigm (Pham et al., 2021). Techniques for large-scale
pre-training focus on adapting a fixed backbone, involving extra neural modules
(Ermis et al., 2022) or enriched input prompts (Wang et al., 2022b,a). We exploit
SSL in Chapter 6.

Template-based methods. In the context of classification tasks, prevalent in con-
tinual learning, template-based classification (Rebutftfi et al., 2017; Hayes and Kanan,
2020) is common. Each class is represented by a template (as in Ch. 6), typically de-
tined as the mean vector in an embedding space. At inference time, samples are as-
signed to the class with the closest prototype. In class-incremental learning, where
the embedding network remains fixed, a single prototype per class suffices. How-
ever, when the embedding network evolves, methods store examples for each class
(De Lange and Tuytelaars, 2021), ensuring prototypes adapt without drifting.

Task-free methods. The vast majority of methods for continual deep learning
work within a task-based sequential learning framework. Boundaries between tasks
are always available during training, while sometimes task identity is obscured at
inference time. However, this task-based structure is seldom seen in real-world ap-
plications. On the contrary, Aljundi et al. (2019) praiseworthily introduced the case
of systems continuously learning in a streaming/online manner, where data distri-
butions evolve over time without distinct task demarcations (as in Chapters 5, 6).
While this direction is extremely interesting, it did not receive much attention apart
from a few exceptions (Ye and Bors, 2022; Lassig et al., 2023). Sometimes these
methods involve heuristics for detection of data shifts, hence they can be described
as applying generic CL methods on pseudotasks.

Undoubtedly, the principal trajectory in Continual Learning maintains a strong
connection with the traditional Machine Learning paradigm, underpinned by sta-
tistical principles related to supervised modelling of some training distribution. For
instance, these approaches aim to adapt incrementally to new tasks while still learn-
ing from shuffled and isolated samples. A small minority of works (Mai et al., 2022)
correctly highlights the fact that most of the proposed algorithms are tested with
models being trained in an offline manner, with repeated shuffle for multiple epochs
on the individual tasks. However, this setting requires storing all data from the cur-
rent task for training, which may not be feasible due to privacy issues or resource
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limitations. Following this remark, in Chapters 5, 6 we will explicitly consider the
issue when presenting our proposals in the continual learning domain.

This traditional connection represents a notable limitation in the field, as it tends
to overlook the critical imperative of designing continual learning solutions that can
effectively operate in dynamic and unstructured environments. In the field of vi-
sual recognition, the prevalent approach tends to overlook the temporal dimension
present in human visual experiences. Instead, it supposedly simplifies the problem
by focusing on static images, neglecting the patterns and regularities found in tem-
poral data sequences. This choice may introduce unnecessary complexity compared
to the more natural learning process seen in biological systems. We will deepen this
discussion in Chapter 6.

2.3 Visual Representation Learning

From an intuitive standpoint, it’s impractical to equip an artificial agent with all
the prerequisite knowledge needed to function efficiently in real-world scenarios
(Thrun and Mitchell, 1995). Therefore, when viewed from a developmental per-
spective, artificial agents should possess learning capabilities that allow them to in-
terpret environmental cues, at least to some extent, autonomously. On the other
hand, we know that deep convolutional neural networks (Krizhevsky et al., 2012)
have revolutionized visual tasks thanks to effective exploitation of large annotated
visual collections. Summarizing a large part of computer vision advancements of
the last two decades, standardized image datasets have driven progress together
with data augmentation, optimization techniques, and improved training methods.

The substantial reliance on labelled visual collections rises practical issues, apart
from methodological ones. For instance, not all problems offer ample labeled train-
ing data, and this is demonstrated by the rise of transfer learning (Tan et al., 2018)
as a popular solution. While effective, exploiting features extracted from models
trained on larger collections comes with limitations and unexpected brittleness (Jain
etal., 2023).

Historically, limitations of transfer learning and plateauing of supervised learn-
ing models on common visual benchmarks boosted the attention for unsupervised
learning and, more precisely, self-supervised learning. The main idea behind self-
supervised learning is rather simple and consists in designing learning environ-
ments where the supervision signal is already available and does not need to be
collected with human intervention. A basic example drawn from language is the
task of learning to complete a sentence in a plausible way, exploiting text collections
from the Web.

Efforts in self-supervised learning for natural language processing (NLP) over-
came the supervised counterpart earlier (Devlin et al., 2019), due to abundant un-
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labeled text data, other than a different problem structure that is easier to frame in
the SSL paradigm. However, self-supervised learning in computer vision emerged
(Oord et al., 2018; He et al., 2020).

Self-supervised learning methods can be categorized into two main types: gen-
erative and discriminative. Generative self-supervision, including auto-encoders
(Kingma and Welling, 2013) and generative adversarial networks (Goodfellow etal.,
2020), focuses on constructing distributions over data, typically in pixel space. How-
ever, it has faced criticism for being computationally expensive, and possibly super-
fluous (Chen et al., 2020a) for the purpose of representation learning.

In this thesis (see Chapter 6), we will use notions from discriminative self-super-
vision, which aims to learn effective data representations for specific pretext tasks
without relying on human annotations. This approach loosely resembles supervised
learning, as it often involves an objective function that evaluates the discriminative
capabilities of learned representations.

Popular concepts in Contrastive Representation Learning

In traditional supervised learning, the training process involves simultaneously op-
timizing both the feature extractor (e.g., convolutional layers) and the predictor
(e.g., linear layers responsible for mapping features to class labels). However, self-
supervised learning (SSL) sharply separates the two phases in time. Once SSL train-
ing concludes, the trained backbone is kept and the additional module, responsible
for the accomplishment of the downstream task, is trained.

Coming to actual SSL training, such methods acquire meaningful representa-
tions through pretext auxiliary tasks. Within auxiliary pretext methods, the model
autonomously garners supervisory signals directly from the data, sidestepping the
need for manual annotation.

Creating a suitable pretext task necessitates domain-specific expertise, constitut-
ing a pivotal aspect of SSL. The beauty of this approach lies in its versatility, as pre-
text tasks can be tailored to diverse data types, encompassing audio, text, images,
and videos (Jaiswal et al., 2021). Historically, one of first pretext tasks to be investi-
gated in the visual domain was image colorization (Charpiat et al., 2008), even be-
fore the advent of deep networks. Clearly, turning a grayscale image into a plausible
colorized one requires understanding what is depicted, and this involves obtaining
meaningful representations of the input. Once we have a collection of color images,
we can easily setup the learning task without any human-provided annotation. Sim-
ilarly, the spectrum of pretext tasks includes predicting missing pixel values (Pathak
et al., 2016), jigsaw puzzles (Noroozi and Favaro, 2016), among others. However,
these handcrafted methodologies have been generally overcome by an even sim-
pler idea, known as instance discrimination. Such technique involves the recognition
of variously augmented views (referred to as instances) originating from a single



20 Background: A developmental approach to learning

image. The goal is to correctly identify these views as originating from the same
image while distinguishing them from any views of a different image source (Wu
et al., 2018)-see Fig. 2.3. This approach differs from the pretext tasks discussed

Original | . .
rginalimage Contrastive Learning

I

(make similar) (make dissimilar)

Augmented Negative
Positive Image Image

Figure 2.3: At the heart of the instance discrimination task in the contrastive learning
paradigm: draw representations of original and augmented images closer in the
latent space, while pushing the original away from negative images. Image courtesy
of (Jaiswal et al., 2021).

earlier, which indirectly achieve representation learning while optimizing for other
objectives. Differently, instance discrimination directly optimizes for representation
learning by aligning or constrasting representations. Instance discrimination has
been so influential in self-supervised learning that the resulting family of methods,
contrastive methods, are often considered (Ozbulak et al., 2023) the most represen-
tative ones in the self-supervised field.

Positive and negative samples: contrastive losses

In this context, images that are contrasted against the similar ones are termed nega-
tive samples. The core concept underpinning representation matching between sim-
ilar images (positive samples) and differentiation from dissimilar ones (negative
samples) is to facilitate the training of deep neural networks to learn representations
that remain consistent even in the face of common image transformations. In fact,
most of these transformations do not alter the underlying visual semantics (Misra
and van der Maaten, 2020) and they can be considered a reasonable approximation
of visual variability observed in the real world.

In popular contrastive self-supervised learning frameworks, a variety of loss
functions have been proposed for effective training. While these functions are of-
ten framework-specific, we will briefly review some of the most commonly used
terms, which will also be employed in this thesis.
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Among similarity measures, cosine similarity has a long history. This metric
quantifies the similarity between two non-zero vectors in a high-dimensional space,
calculated as the dot product between ¢»-normalized vectors r; and r;.

. r-r
R = g e
Cosine similarity is frequently used to quantify representation similarity, often in
conjunction with noise-contrastive estimation (NCE) in contrastive learning.
Among contrastive losses, InfoNCE (Oord et al., 2018) has been a crucial loss
function in image-based SSL, derived from NCE (Gutmann and Hyvdarinen, 2010).
The main idea is to use categorical cross-entropy loss to identify the positive sam-
ple amongst a set of unrelated noise samples. Using the formulation popularized by
Chenetal. (2020a), InfoNCE —also termed by the authors as "normalized temperature-
scaled cross entropy loss" — can be implemented at batch level using two augmenta-
tion functions 77, 77. Such functions are used to produce two augmented views for
each sample in a batch x, so that

x = (Ti(x1), T2(x2), -, Ti(xn), T2(xu)

resulting in a batch of 2n samples. If (i, j) is a positive pair, i.e., the two augmented
views of the same original sample, InfoNCE is computed as

exp (sim(r;, rj))
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with r, the features extracted by the neural model with the input x,. In order to
compute the loss value for the batch, the computation is repeated for each positive
pair.

Siamese networks and learning dynamics

Siamese networks, a computational model consisting of two identical neural net-
works sharing the same weights, have been introduced way earlier than modern con-
trastive learning. Initially proposed for pattern verification and other specific tasks
(Bromley et al., 1993), they are widely used in self-supervised learning (SSL) meth-
ods, where they are employed to ensure consistency between representations. In
this context, the Siamese network is just an abstraction to represent the fact that two
inputs, derived from some original sample, are processed by the same neural net-
work. Then the loss is computed and then backpropagation is performed through
both the "virtual branches". Very often, however, the two branches are not identi-
cal, so that the term dual-backbone architecture should be preferred, meaning that
the two branches are actual physical branches with non-overlapping set of param-
eters. The term "stop-grad" denotes the practice of halting the gradient flow from
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one branch of a dual-backbone network while allowing it to update the weights of
the other branch, introducing a strong asymmetry in the learning dynamics (Chen
and He, 2021).

Now, consider a Siamese-like dual-backbone network where one branch is re-
ferred to as the teacher, and the other as the student. Unlike the traditional Siamese
architecture, these models do not share weights. In this setup, delayed-weight up-
dates involve the idea of backpropagating errors through only one branch and up-
dating the trainable parameters of the other branch using a specifically predeter-
mined rule. Common implementations are Mean Teacher (Tarvainen and Valpola,
2017) and momentum encoding (He et al., 2020).

We have introduced a few popular concepts in modern Self-Supervised Learn-
ing, although used in a quite different spirit with respect to what we do in this thesis.
In fact, we elect motion as the primary source of information for visual learning. In
the design of self-supervised online-learning visual agents in Chapter 6, we will
draw inspiration from dual-backbone networks, as well as stop-grad asymmetry
and delayed weight update mechanisms. Moreover, we will design an InfoNCE-
like loss that does not compare image global representations but rather pixel-wise
local representations, according to a motion-based criterion.
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Progressively learning
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Progressively learning in the input space

In this part of the thesis, we delve into novel training techniques for neural networks
that involve dynamic transformations of inputs over time. Throughout this explo-
ration, we will use the term input tuning to refer to such an idea. The investigation
unfolds in two chapters, each addressing a distinct facet of the learning landscape.
As we discussed in Introduction and in Chapter 2, our exploration of shaping data
in the input space is also partially inspired by the intriguing process observed in in-
fants. At birth, visual information in newborns is throttled, and its structure follows
a clear progression that results in infants gradually acquiring visual skills over time.

In Chapter 3, we draw inspiration from Curriculum Learning, navigating the
motivations behind this approach to craft smooth learning trajectories. Here, the
core idea lies in breaking down a single, complex learning problem into a series of
smaller subtasks, each incrementally more challenging than the last. We achieve
this by implementing a learning schedule through input transformations, tailoring
the cognitive complexity to match the learner’s current skill level. This methodol-
ogy not only enhances the model’s performance but also fosters a more nuanced
understanding of the learning process.

Chapter 4 addresses a distinct but closely related challenge. In fact, both Curricu-
lum and Continual Learning fundamentally consider a learning process that unfolds
over time, where each stage significantly impacts the final outcome of the entire pro-
cess. Here, we consider a scenario where the learner, already equipped with certain
cognitive skills, encounters a non-stationary environment presenting various tasks
of differing complexities and spanning diverse regions of semantic and perceptual
spaces. Unlike the controlled subtasks of Ch. 3, these tasks are externally given and
lack a cognitively meaningful order. This dynamic setting raises concerns about
catastrophic forgetting issues if learning proceeds naively. To mitigate this, we pro-
pose a novel training method. In this approach, we freeze the learner’s core while
delegating environment adaptation to learnable transformations applied in the in-
put space. This technique, inspired by the dynamic input manipulations of Ch. 3,
provides an effective shield against forgetting.

In this part of thesis, we delve into a novel approach within the domain of neural
network training procedures. Unlike conventional methods that primarily concen-
trate on enhancing learner models through ad-hoc components and specialized loss
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functions, we advocate for a shift in focus. We redirect the designer’s attention from
the learner model to the input space. Central to our investigation is the necessity for
models to evolve and adapt over time.

Our work emphasizes the pivotal role of preprocessing samples through learn-
able transformations, thereby enabling neural networks to learn gradually in evolv-
ing, non-stationary environments. We argue that shaping data in the input space
is a promising direction towards increasing efficiency, resilience, and accuracy of
machine learning systems in dynamic, real-world scenarios.



Chapter 3

Input tuning for Friendly Training

In the last decade, motivated by the success of Deep Learning, the scientific commu-
nity proposed several approaches to make the learning procedure of Neural Net-
works more effective. When focusing on the way in which the training data are
provided to the learning machine, we can distinguish between the classic random
sampling of stochastic gradient-based optimization and more involved techniques
that devise curricula to organize data, and progressively increase the complexity of
the training set. In this chapter, we propose a novel training methodology named
Friendly Training that, differently from the aforementioned approaches, involves al-
tering the training examples in order to help the model to better fulfil its learning
criterion. The model is allowed to “simplify” those examples that are too hard at
a certain stage of the training procedure, creating an instance of what we call input
tuning for curriculum learning. The data transformation is controlled by a devel-
opmental plan that progressively reduces its impact during training, until it com-
pletely vanishes. In a sense, this is the opposite of what is commonly done when
incorporating adversarial examples in training data, i.e., Adversarial Training. In
order to actually produce the transformed examples, two procedures are proposed,
one is directly based on an optimization scheme, while the other involves the us-
age of an auxiliary neural model. Although our primary concern is for visual data,
experiments on multiple datasets are provided, including some non-visual tasks.
We show that Friendly Training yields improvements with respect to informed data
sub-selection routines and random selection, especially in deep convolutional archi-
tectures aided by the auxiliary model. Results suggest that adapting the input data
is a feasible way to stabilize learning and improve the generalization skills of the
network.

26
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3.1 Introduction

In the last decade, the scientific research in neural networks studied different aspects
of the training procedure, leading to deep neural models of significantly increased
quality (Ioffe and Szegedy, 2015; Kingma and Ba, 2015; Srivastava et al., 2014; Ben-
gio et al., 2009; Li and Gong, 2017; Zhang et al., 2020a). Amongst a large variety
of approaches, this chapter considers those that are mostly oriented in performing
specific actions on the available training data in order to improve the quality of the
trained neural classifier. For example, Curriculum Learning (CL) pursues the idea
of presenting the training data in a more efficient manner (Bengio et al., 2009; Wu
et al., 2021; Sinha et al., 2020), exposing the network to simple, easily-discernible
examples at first, and to gradually harder examples later, progressively increasing
the size of the training set (see Sec. 2.1 for an introduction). Self-Paced Learning
(SPL) (Kumar et al., 2010) is another related research area, in which some exam-
ples are either excluded from the training set or their impact in the risk function is
downplayed if some conditions are met (Li and Gong, 2017).

A common property of CL and SPL is that they essentially sub-select or re-order
the training examples, without altering the material of the learning process. On the
contrary, in this section we will introduce Friendly Training (FT), a novel approach
characterized by transformations on the inputs during the tuning of the learner’s
parameters, facilitating the early fulfilment of the learning criterion. Basically, data
are modified to better accommodate the development of the classifier. Such trans-
formations (also referred to as “simplifications”) are controlled and embedded into
a precise developmental plan in which the training procedure is progressively con-
strained to reduce their extent, until data are left in their original version. A key
property of FT is that data are altered according to the state of the classifier at the
considered stage of the training procedure. This concept is coherent with the de-
velopmental mechanisms of human brain (Sec. 2.1), where the visual input at any
moment depends on the current state of the learner, providing just the right infor-
mation at the right time. We will discuss a first implementation, Optimization-based
Friendly Training (OFT), where each example is perturbed by a specific offset, ob-
tained by an inner iterative optimization procedure that is started from scratch for
each input.

In this chapter we will also extend the simple idea of FT in another direction,
introducing an auxiliary neural model. Therefore, we will refer to this second ap-
proach with the acronym NFT (Neural Friendly Training). The intuition is that the
data simplification process of FT might include regularities that are shared among
different training examples, and that there is an intrinsic coherence in the way data
are altered in consecutive training iterations, i.e., similar simplifications might be
fine in nearby stages of the training procedure. These considerations are not ex-
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Figure 3.1: Left-to-right, top-to-bottom: evolution of the decision boundary devel-
oped by a single hidden layer classifier (5 neurons) in the 2-moon dataset, in Neural
Friendly Training. Each plot is about a different training iteration (<y); in the last plot
data are not transformed anymore.

ploited by OFT, which applies an independent perturbation to each example, es-
timated from scratch at each training step. We propose to introduce an auxiliary
multi-layer network, that is responsible of altering data belonging to the input space
of the classifier. The auxiliary network is trained jointly with the neural classifier,
and it learns how to transform the data to improve the learning process of the clas-
sifier itself. The weights of the auxiliary net represent the state of the alteration
model, that is progressively updated by the training procedure, thus letting the
model evolve as long as time passes. From an architectural perspective, the aux-
iliary network extends the classifier by adding a new set of initial layers, thus in-
creasing the “depth” of the model. The effect of the auxiliary network is progres-
sively reduced until the end of training, when it is fully dropped and the classifier
is deployed for applications. Fig. 3.1 illustrates the behaviour of NFT in a toy 2D
classification problem.

The contributions of this chapter are: (1) we propose a novel training strategy,
named Friendly Training, that allows the machine to partially simplify the data by
automatically determining how to alter it; (2) we propose a first implementation,
Optimization-based Friendly Training (OFT), together with a developmental plan
that creates a smooth transition from simplified data to the original one; (3) we
propose another implementation (Neural Friendly Training, NFT) that allows the
machine to simplify the training data by means of an auxiliary network that progres-
sively fades out; (4) we experimentally compare OFT and NFT, using convolutional
and fully-connected neural architectures. Our results confirm that NFT outperforms
OFT, proving that NFT is a feasible and effective way to improve the generalization
skills of the network and to efficiently deal with noisy training data.
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3.2 Relation with existing works

Curriculum Learning (CL)

The idea of training neural networks with a learning methodology that “gradu-
ally” changes the learning environment traces back to almost three decades ago
(see Sec. 2.1). The concrete effect of CL! has been recently surveyed by Wu et al.
(2021), showing that it is particularly evident in noisy learning settings or large-data
regimes with limited training time. Even though CL has not been widely adopted
in the machine learning community, there is strong evidence about the dramatic
impact of the learning evironment in the early stages of deep network training, af-
fecting the network behavior at steady state (Jastrzebski et al., 2019). For instance,
Achille et al. (2018) showed that inflicting visual impairments to deep CNNs in the
tirst epochs leads to lesser visual skills despite conceding recovery time.

The purpose of Friendly Training, on the opposite, is to downplay difficult, con-
fusing and outlier examples at the beginning, while letting them contribute to the
generalization capability when the learner has already acquired basic skills. With
respect to CL, Friendly Training does not alter the size of the dataset as a function
of the number of training iterations, nor the relative ordering in which examples are
presented to the network. Moreover it does not assume any predefined complex-
ity criteria. Conversely, Friendly Training alters every single example in an adaptive
way, and afterwards the examples are used to update the network weights. In so do-
ing, the network is exposed, at every training step, to a data population with quite
large variability, although their distribution has been slightly adapted, in order to
decrease the occurrence of abrupt weight changes.

Self-Paced Learning

Self-Paced Learning (SPL) (Kumar et al., 2010) is a technique inspired by CL, orig-
inally designed for Structural Support Vector Machines (SSVMs) with latent vari-
ables. Self-paced stands for the fact that the curriculum is determined by the pupil’s
abilities (the classifier’s behaviour) rather than by a teacher’s plan. Since this direc-
tion proved to be effective when compared with standard algorithms (latent vari-
able models correspond to hard optimization problems), researchers adapted this
formulation to CNNs (Li and Gong, 2017). The basic idea consists of searching for
suitable example-specific weighting coefficients in the loss computation. In contrast
to this approach, what we propose is not about weighting the importance of training
examples, but rather temporarily altering them. However, we do embrace the idea
that the state of the classifier is what can be used to determine how to deal with a

!Notice that the acronym CL is used in this chapter for Curriculum Learning, while in the rest of
the thesis it is used for Continual Learning.



30 Input tuning for Friendly Training

particular input/target pair, gradually exposing the learner to more and more diffi-
cult examples, with an explicit temporal dynamics.

Friendly Adversarial Training

Another technique that is somehow related to Friendly Training is the so-called Ad-
versarial Training (AT) (Goodfellow et al., 2015; Madry et al., 2018), which may
be seen as the inverse learning technique of FT. Developed as an empirical defense
strategy for adversarial attacks, which seriously affect neural networks operating
on high-dimensional spaces (Goodfellow et al., 2015), AT incorporates adversarial
data into the training process. Most AT techniques rely on a minimax optimization
problem (Madry et al., 2018), since the goal is to generate adversarial examples that
strongly fool the classifier. Each generated example is an artificial element, lying
very close to an original training datapoint of a certain class, but that is misclassi-
fied (i.e., classified incoherently with respect to the label attached to such original
datapoint). Interestingly, in AT the system basically alters examples as in Eq. 3.2,
even though the perturbation is computed with a different criterion and typically
with no temporal dynamics.

Friendly Adversarial Training (FAT) (Zhang et al., 2020a) builds up on the ideas
of both CL and AT. Tsipras et al. (2019) noticed that the adversarial formulation
sometimes hurts generalization capabilities (Raghunathan et al., 2019). The FAT
strategy provides a more gentle learning problem, in which the generation of adver-
sarial data is early-stopped as soon as the datapoint is misclassified. The resulting
learning dynamics is such that, as learning progresses (together with accuracy and
robustness), more and more iterations are needed to generate (harder) adversarial
data. Our OFT algorithm (see Sec. 3.3) shares many intuitions with the FAT algo-
rithm (e.g., early-stopping), even though the direction of the iterative process which
generates input data has a different goal. Moreover, FAT does not include explicit
temporal dynamics.

Auxiliary neural models to alter data samples

Neural models to alter data samples have been proficiently exploited by the Ad-
versarial Machine Learning community (Qiu et al., 2020; Xiao et al., 2018) with the
goal of fooling a classifier. Once trained, such generators can be used to generate ad-
versarial perturbations efficiently, so as to potentially accelerate empyrical defenses
like adversarial training. When considering how to improve a classifier exploit-
ing another network, a connection can be traced with Knowledge Distillation (KD)
(Hinton et al., 2014; Phuong and Lampert, 2019), although in KD the main network
is supplied with output probability distributions obtained from a pretrained large
model. On the other hand, the auxiliary network of NFT (Sec. 3.3) learns to trans-
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form the input data, closer to what is done by Spatial Transformer Networks (Jader-
berg et al., 2015). Authors decided to focus on image data only and well-defined
geometric transformations, proposing a differentiable learnable module that can be
inserted into existing convolutional architectures. The main idea is to use a localiza-
tion network to estimate the parameters of a spatial transformation (chosen from a
pre-defined family) that helps the network to achieve correct predictions, obtaining
some robustness to scale, rotation and distortion. While it clearly shows the concept
of an auxiliary network that simplifies input data, Spatial Transformers deal only
with predefined geometric transformation without a developmental perspective.

3.3 Friendly Training: implementations

We consider a generic classification problem in which we are given a training set
X composed of n supervised pairs, X = {(xx,yx), k = 1,...,n}, being x; € RY a
training example labeled with ;.2 Given some input data x, we denote with f (x, w)
the function computed by a neural network-based classifier with all its weights and
biases stored into vector w. When optimizing the model exploiting a mini-batch
based stochastic gradient descent procedure, at each step of the training routine
the following empirical risk L measures the mismatch between predictions and the

ground truths,
|B|

L (B,w) |B| 26 f(xi,w),y;), (3.1)

where B C X is a mini-batch of data of size |B| > 1, (x;,y;) € B, and / is the loss
function. Notice that, while we are aggregating the contributes of ¢ by averaging
over the mini-batch data, every other normalization is fully compatible with what
we propose. In the most common case of stochastic gradient optimization, a set of
non-overlapping mini-batches is randomly sampled at each training epoch, in order
to cover the whole set X'. We will refer to what we described so far as Classic Training
(CT).

3.3.1 OFT: direct-optimization model

CT provides data to the machine independently on the state of the network and
on the information carried by the examples in each 5. However, data in X might
include heterogeneous examples with different properties. For instance, their distri-
bution could be multi-modal, it might include outliers or it could span over several
disjoint manifolds, and so on and so forth. Existing results in the context of CL (Ben-
gio etal., 2009; Wu et al., 2021) and SPL (Li and Gong, 2017) (Section 4.1) show that

2We consider the case of classification mostly for the sake of simplicity. The proposed approach
actually goes beyond classification problems.
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it might be useful to provide the network with examples whose level of complexity
progressively increases as long as learning proceeds. However, it is very unlikely to
have information on the difficulty of the training examples and, more importantly, if
the complexity is determined by humans it might not match the intrinsic difficulty
that the machine will face in processing such examples. Alternatively, the value ¢
could be used as an indicator to estimate the difficulty of the data, to exclude the
examples with largest loss values or to reduce their contribution in Eq. 3.1, more
closely related to SPL (Kumar et al., 2010; Li and Gong, 2017).

Differently from the aforementioned approach, Friendly Training transforms the
training examples according to the state of the learner, with the aim of discarding the
parts of information that are too complex to be handled by the network with the cur-
rent weights, while preserving what sounds more coherent with the expectations of
the current classifier.> OFT consists in alternating two distinct optimization phases,
that are iterated multiple times. In the first phase, the training data are transformed
in order to make them more easily manageable by the current network. The training
procedure must determine how data should be simplified according to the way the
current network behaves. In the second phase, the network is updated as in CT, but
exploiting the simplified data instead of the original ones. The whole procedure is
framed in the context of a developmental plan in which the amount of the alteration
is progressively reduced as long as time passes, until it completely vanishes. This
is inspired by the basic principle of strongly simplifying the data during the early
stages of life of the classifier, in order to favour its development, while the extent of
transformation is reduced when the classifier improves its skills. Clearly, to deploy
a trained classifier that does not rely on altered data, the impact of the simplifica-
tion must vanish during the training process, exposing the classifier to the original
training data after a certain number of steps. Formally, OFT perturbs the training
data by estimating the variation ¢;,

X =x;+ 6, (3.2)

for each example x;. Given a mini-batch B, we indicate with A the matrix that col-
lects the perturbations associated to the mini-batch examples. In detail, the i-th row
of A is the perturbation J; associated with the i-th example in B. For convenience in
the notation, we avoid mentioning training epochs in what follows, and we describe
the training procedure as the iterative processing of mini-batches of data, updating
w after each of them. Let us denote with ¢ > 1 the iteration index. We re-define the
aggregated loss L of Eq. 3.1 by providing the network with ¥ instead of x, introduc-

3This is significantly different from deciding whether or not to keep a training example, to weigh
its contribute in Eq. (3.1), or to re-order the examples. Interestingly, Friendly Training is compatible
with (and not necessarily an alternative to) such existing strategies.
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ing the dependency on A, and by adding the iteration index 7,

87|
L(BY,A7,w7) |B”Y| ZE f&,w7),y:), (3.3)

where %; is defined as in Eq. 3.2, (x;,y;) € BY (i.e., B7 is the mini-batch at iteration
) and ¢; is the i-th row of A7. Jointly optimizing Eq. 3.3 with respect to A7 and w”
allows the network not only to adapt its weights and biases in order to better cope
with the learning criterion, but also to alter the data in B7 by translating them in
those space regions that can be more easily classified. However, the loss of Eq. 3.3
does not introduce any constraints on each ¢;. Hence, the network is free to change
the training data without any guarantees that the simplification amount will reduce
while learning proceeds. Moreover, differently from w7, the set A" is specifically
associated with the data in B7 (i.e, each training example is associated with its own
perturbation), meaning that the number of variables of the optimization problem
becomes a function of the size of the training data.

We frame Eq. 3.3 in the context of a developmental plan that solves both these is-
sues. First, the system is enforced to reduce the perturbations as long as the number
of training iterations increases. If 7y is the maximum number of allowed itera-
tions, we ensure that after v,5x_simp < Ymax steps the data are not perturbed any-
more. Secondly, we remove the dependence of A" from <, introducing an Alternate
Optimization scheme in which we decouple the optimization of perturbations and
weights. In detail, we consider a single matrix A for a mini-batch (the total number
of rows in A is equal to the size of a single mini-batch). At the beginning of each
training iteration, we keep w” fixed, we initialize A to zeros and then we estimate
the appropriate perturbations for the current data in B7 by gradient descent over the
variable A (second argument of Eq. 3.3). We indicate with 77 the number of iterative
steps of such inner optimization. The value of T7 controls the amount of alteration
on the data. For small values of 77 the network will only marginally simplify the
data, while for a larger 77 the data alteration will be more aggressive. Nonethe-
less, it is important to remark that while the degree of the alteration is controlled by
77, the appearance of the simplification and its spatial distribution can substantially
change over time (see Fig. 3.2), reflecting the evolving skills of the learner. The ini-
tial value T! > 1 is a fixed hyper-parameter, while we considered a quadratic law to

progressively reduce T in function of v,
Tr)/

2
_ 1 =l
=1l [1 - 7—] . (3.4)

r)’max_simp

Y

Ymax_simp
being [a]; the positive part of a and v € [1, Ymax|. Afterwards, we update the val-
ues of w?, given the output A at the end of the just described inner optimization.
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This developmental plan allows the system to adapt the data in order to make the
learning procedure less disruptive, especially during the early stages of learning,
introducing a smooth optimization path driven by the evolution of T7.

Figure 3.2: OFT, randomly selected perturbations (J), taken from different stages
of the first epoch when using CNN-A (samples from MmnisT-BG dataset). Left: per-
turbations generated close to the beginning of training. Moving toward the right:
perturbations generated closer to the end of the epoch. As the system evolves, §
mostly involves the portions of image covered by the digits.

The detailed training procedure is formally reported in Alg. 1, and in the fol-

Algorithm 1 Optimization-based Friendly Training.

Input: Training set X, initial weights and biases w!, batch size b, max learning steps
Ymax, Max simplification steps Ymax_simpr ! >1, learning ratesa > O and # > 0,
shared matrix A with b rows and d columns.

Output: The final wYmex+1,

1: for v =1 to Yy do

Sample B? of size b from X

Compute 77 following Eq. 3.4.

Set all the entries of A to 0

fort=1tot7 do LB Dt

Compute Agpy = %
A=A—1- Agraﬂl
end for
Compute w

,see Eg. 3.3
‘D_A 1

¥ _ OL(BY,Av)

erad = 5 , see Eq. 3.3

v=w"

. Y+l oy a oY
10:  w =W — 0w,
11: end for
12: return w7Vmextl

lowing lines we provide some further details. Notice that while the weight update
equation (line 10) can include any existing adaptive learning rate estimation pro-
cedure, in our current implementation A is updated by a fixed small learning rate
(line 7). While Alg. 1 formally returns the weights after having completed the last
training iteration, as usual, the best configuration of the classifier can be selected by
measuring the performance on a validation set, when available. Another important
fact to mention is that when the prediction on examples perfectly matches target,
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line 6 will return zero gradient, hence no simplifications are performed. In our im-
plementation we slightly relaxed this condition by zeroing the rows of Ag44 (line
6) associated to those examples that are classified with a large confidence above a
given threshold (see Sec. 3.4), that implements a selective early-stopping condition
on the inner optimization.

3.3.2 NFT: neural-based model

Despite the novel view introduced by Friendly Training, the instance of OFT is mostly
inspired by the basic tools used in the context of Adversarial Training (Zhang et al.,
2020a), with a perturbation model that requires a per-example independent opti-
mization procedure. Here we propose to instantiate Friendly Training in a different
manner, by considering that there might be some regularities in the way data sam-
ples are simplified. This leads to the introduction of a more structured transforma-
tion function that is shared by all the examples. This intuition is also motivated by
recent studies in Adversarial Machine Learning that exploited perturbation models
based on generative networks (Qiu et al., 2020; Xiao et al., 2018), although with the
goal of fooling a classifier. Formally, a training sample x; € R¥ is transformed into
%; € R by means of the function s(x;, 8),

fi = s(xi,()), (3'5)

being 0 a set of learnable parameters, shared by all the examples. We consider the
case in which s is implemented with an additional neural network, also referred to
as auxiliary network, whose weights and biases are collected in 6, and we talk about
Neural Friendly Training (NFT). For convenience in the notation, we keep the defi-
nition of ¢; inherited from Eq. 3.2, i.e., §; = %; — x;. The term main network refers to
the network that implements f, i.e., the classifier, and we report in Fig. 3.3 a sketch
of the proposed model.

In order to setup a valid developmental plan, we introduce an augmented crite-
rion by re-defining the risk L of Eq. 3.1,

18|
L(B,w,0) = %' ;(E(f(s(xi,e),w),yi) +

X

1| s(xi,0) — x; H2>, (3.6)
Ji

where (x;,y;) € B,and > 0is the weight of the squared Euclidean norm of the per-
turbation é;. We indicate with v > 1 the NFT iteration index, where each iteration
consists of the two aforementioned phases. In the first phase, the auxiliary network
is updated by minimizing Eq. 3.6 with respect to 6, keeping the main network fixed.
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| Friendly Training lterations >

(a) (b)
Figure 3.3: (a) Classic deep network. (b) Neural Friendly Training (NFT): main
deep network (top) and auxiliary network (bottom). The auxiliary network learns
how to simplify the data x, while the main network learns the classification task
exploiting the simplified data ¥. As long as training proceeds, the effect of the aux-
iliary network is progressively reduced, until it vanishes (and it is removed).

In the second phase, the auxiliary network has the sole role of transforming the data,
while the main network is updated by minimizing Eq. 3.6 with respect to w. If all the
training data is used in this phase, then 7y boils down to the epoch index (that is the
case we considered in the experiments). If 4y is the maximum number of NFT
iterations, we ensure that after 7,5y simp < Ymax steps the data are not perturbed
anymore. In order to progressively reduce the perturbation level, we increase the
value of 77 in Eq. 3.6. It is significant to point out that 77 in NFT plays a similar role as
77 in OFT (Eq. 3.4), but it has a complementary evolution over time. For a large 7,
NFT will strongly penalize the norm of §;, becoming the dominant term in the op-
timization process of the auxiliary network, enforcing the net to keep J; small. We
indicate with 77,4, the maximum possible value of #, and at each step <y of the de-
velopmental process we compute 77 using the following law, being [a] 1 the positive
part of g,

2 o

-1

1= max |1—|1— S - (3.7)
Ymax_simp — 1 I

¥

1ax_simp

where v € [1, Yimax|- At Yiax_simp iterations, the penalty on [|4; |? will reach its maxi-
mum weighting. While this encourages the function s(-,6) to get closer to the iden-
tity function, we have no formal guarantee that optimization will effectively push the
perturbation to zero. For this reason, after ;,x_simp iterations we drop the auxiliary
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network, exposing the system to the original training data. The developmental plan
on 77 favours a smooth transition between the setting in which the auxiliary network
is used and when it is removed.

The training procedure is detailed in Alg. 2, and in the following lines we provide

Algorithm 2 Neural Friendly Training.

Input: Training set X, initial weights and biases w, batch size b, max FT steps yax,
max simplification steps Vax_simp, fmax > 0, learning rates « > 0 and g > 0.
Output: The final w.
1: for v = 1to Ymax do

2:  Compute 5 following Eq. 3.7
3. ify>1and v < Ypax_simp then
4: s < auxiliary_net(-,6) =
5: Sample a set of minibatches B = {8;} from X =
6: for each mini-batch B, € B do =
7: Compute Vg = W‘ , see Eq. 3.6 §
8: 0=0—-pB-Vy = E
9: end for g
10:  else 2
11: s« I(+) <
12:  end if =
13:  Sample a set of minibatches B = {B,} from X v
14:  for each mini-batch B, € B do "§_
_ 9dL(B;,h,0) s
15: Compute Vy, = ——57~~ , see Eq. 3.6 i
16: w=w—a Vy ¢ é
17:  end for 2
18: end for &

19: return w

some further details. The auxiliary network is not updated during the first iteration
(7 = 1), since the main network is still in its initial/random state. After v,ax_simp
iterations, the auxiliary network is replaced by the identity function I(-) (line 10).
Notice that the weight update equations (line 8 and line 16) can include any existing
adaptive learning rate estimation procedures. In our current implementation we are
using the Adam optimizer with learning rates « and 8 (Kingma and Ba, 2015), unless
differently stated. While Alg. 2 formally returns the weights after having completed
the last training iteration, as usual, the best configuration of the classifier can be
selected by measuring the performance on a validation set (bypassing the auxiliary
net at inference time).

We qualitatively show the behavior of the proposed training strategy in the toy
example of Fig. 6.6. A very simple network with one hidden layer (5 neurons with
hyperbolic tangent activation function) is trained on the popular two-moon dataset
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(two classes, 300 examples), optimized by Adam with mini-batch of size 64. The
auxiliary network alters the training data in order to make them almost linearly sep-
arable during the early iterations. Then, the data distribution progressively moves
toward the original configuration, and the decision boundary of the main classifier
smoothly follows the data. In the last plot, the auxiliary network has been dropped
and examples are located at their original positions in final stages of developmental
plan.

Of course, NFT increases the complexity of each training step, due to the extra
projection computed by the auxiliary network in the forward stage of the classifier
and due to the first phase of Alg. 2. The actual additional computational burden
of NFT with respect to CT depends on the architecture of the auxiliary network
and on the number of sampled mini-batches in the first phase. Moreover, instead
of Eq. 3.7, different developmental plans could be selected to more quickly reduce
the simplification and eventually drop the auxiliary network before the end of train-
ing. When comparing NFT and OFT we can see that, from the storage point of view,
NFT needs to memorize a new network and the associated intermediate variables
for optimization purposes, while OFT only requires a new set of variables to store
the delta terms. However, from the computational point of view, for each example
x;, OFT performs T > 1 iterations to update the perturbation J;, that implies T infer-
ence steps on the main network (see Alg. 1). Differently, NFT does not require any
inner example-wise iterative procedures, since it exploits the outcome of first phase
in Alg. 2. The inference time in the auxiliary network determines the concrete vari-
ations in terms of computational times with respect to OFT. In our experience, on
average, training with NFT took similar times to the ones of OFT, since T (in OFT)
gets reduced as time passes and we early stopped the inner OFT iterations.

3.4 Experiments

We carried out a detailed experimental activity aimed at evaluating how NFT be-
haves when compared to OFT. We considered the same experimental setting for
the two methods, mostly focusing on visual data (digit and shape recognition, gen-
eral image classification), with some results on textual data (sentiment analysis) to
prove that in principle our method can be used for non-vision tasks. We also per-
formed an in-depth analysis on NFT (Sec. 3.5).

We considered four neural classifiers,* that consist in two feed-forward Fully-
Connected multi-layer perceptrons, referred to as FC-A and FC-B, two Convolu-
tional Neural Networks, named CNN-A and CNN-B, and we also tested a ResNet18
(He etal., 2016) in one of the following experiences, motivated by related work (Wu

4Code available at https://sailab.diism.unisi.it/friendly.
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etal., 2021). FC-A is a simple one-hidden-layer network with hyperbolic tangent ac-
tivations (10 hidden neurons), while FC-B is deeper and larger model, with 5 hid-
den layers (2500-2000-1500-1000-500 neurons), batch normalization and ReLU acti-
vations. CNN-A consists of 2 convolutional layers, max pooling, dropout and 2 fully
connected layers, while CNN-B is deeper (4 convolutional layers). Both of them ex-
ploit ReLU activation functions on the convolutional feature maps (32-64 filters in
CNN-A, 32-48-64-64 filters in CNN-B) and on the fully connected layers (9216-128
neurons for CNN-A, 5184-128 neurons for CNN-B). Unless differently stated, learn-
ing of weights and biases is driven by the minimization of the cross-entropy loss,
exploiting the Adam optimizer (Kingma and Ba, 2015) with mini-batches of size 32.

The auxiliary network was selected depending on the type of data that it is ex-
pected to simplify. The output layer has the same size of the input one and linear
activation. In the case of image data, the auxiliary network is inspired by U-Net
(Ronneberger et al., 2015). U-Net progressively down-samples the image, encoding
the context information into the convolutional feature maps, and then it up-samples
and transforms the data until it matches the input size, also exploiting skip connec-
tions.” In the case of 1-dim data, we used a fully-connected auxiliary net with 256
hidden neurons.

In all the experiments, networks were randomly initialized, providing the exact
same initialization to both OFT/NFT and CT, and we report results averaged over
3 runs, corresponding to 3 different instances of the initialization process. For each
OFT/NFT iteration, we sampled non-overlapping mini-batches until all the training
data were considered, so that <y is also the epoch index. We selected a large number
of epochs 7,4 which we found to be sufficient to obtain a stable configuration of the
weights in preliminary experiences (detailed below), and the reported metrics are
about the model with the lowest validation error obtained during training. The error
rate was selected as the main metric, since it is one of the most common and simple
measure in classification problems. We performed some preliminary experiments
to determine the optimal Adam learning rate in the case of CT. Then, we tuned the
OFT/NFT hyper-parameters by grid search (detailed below).

In order to have a more extensive experimental validation of the proposed ap-
proaches, we include an additional baseline: Easy-Examples First (EEF). When us-
ing this training method, mini-batch examples are sorted by loss value in ascending
order and only the first k of them are used to calculate the gradients. At the begin-
ning, k = 1, so that only 1 example per mini-batch is kept, then k grows with the
training iterations following the same dynamics of OFT. The criterion implemented

°Code: https://github.com/milesial/Pytorch-UNet. In the down-sampling part, 2 initial
conv. layers encode the image into 1 feature maps. Then, v down-sampling blocks (each of them
composed of maxpooling and 2 conv. layers) are followed by v up-sampling blocks (each of them
composed of bilinear upscaling and 2 conv. layers). We considered v € {1,2},and ny € {64,96,128}.
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by EEF can be identified as a basic instance of CL, closely related to OFT (i.e., itis has
the same temporal dynamics, but examples are not altered and only sub-selected).

3.4.1 Advanced digit and shape recognition

The collection of datasets presented in (Larochelle et al., 2007) is about 10-class
digit recognition problems and shape-based binary classification tasks (28 x 28,
grayscale). In detail, mnisT-roOT consists of MNIST digits rotated by a random an-
gle, while Mn1sT-BG features non-uniform backgrounds extracted by some random
images, and MNIST-ROT-BG combines the factors of variations of the first two datasets.
In RECTANGLES-BG We find representations of rectangles, that might be wide or tall,
with the inner and outer regions eventually filled with patches taken from other
images, while convEx is about convex or non-convex white regions on a black back-
ground. Datasets (~ 60k samples) are already divided into training, validation and
test set. We compared the test error rates of the FC-A/B and CNN-A/B models
in CT, OFT/NFT, and also using the CL-inspired data sorting policy EEF, with the
same temporal dynamics of OFT. Experiments are executed for 7y, = 200 epochs,
and we selected the model with the lowest validation error considering #.x €
{500, 1000, 2000}, Ymax_simp € {0.25,0.5,0.85} - Ymax, p € {107°,1074,5- 104}

Tab. 3.1 reports the test error rate of the different models, where other baseline re-
sults (overcame by OFT/NFT), exploiting different types of classifier, can be found
in (Marullo etal., 2021). Our analysis starts by confirming that the family of Friendly
Training algorithms (being them neural or not) very frequently shows better results
than CT and EEF. Moreover, the proposed NFT almost always improves the results
of OFT, supporting the idea of using an auxiliary network to capture regularities in
the simplification process. In the case of CNN-A and CNN-B, the error rate of NFT is
lower than in OFT, with the exception of REcTANGLEs-BG, even though NFT reported
a pretty large standard deviation. In fully-connected architectures FC-A and FC-
B, we still observe a positive impact of NFT, that usually beats OFT. However, the
improvement over CT can be appreciated in a less evident or more sparse manner.
As a matter of fact, these architectures are less appropriate than CNNs to handle
image data. However, it is still interesting to see how FC-B benefits from the auxil-
iary network introduced in NFT, where the latter is indeed a convolutional model.
Overall, results show that using an auxiliary network is better than independently
estimating the perturbation offsets of each example, confirming the capability of the
network to learn shared facets of the simplification process.

3.4.2 Sentiment analysis

We investigate how OFT/NFT behave in Natural Language Processing consider-
ing the task of Sentiment Analysis (positive/negative polarity). We selected two
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MNIST-BG  MNIST-ROT-BG MNIST-ROT RECTANGLES-BG CONVEX

CT |28.34+0.09 64.06+0.31 43.16+051 24.31+021 33.91+044
< EEF |28.18+047 64.27+0.19 43.91+0.73 24 .48+0.11 33.17+0.93
Eu) OFT|28.66-0.06 64.14+036 43.24+043 24.64+0.37 34.38+0.22

NFT|28.15+0.04 64.5540.14 42.96+0.58 24.57+0.19 34.25+1.03

CT |21.06+039 51.71+0.79 10.13+0.27 25.10+0.20 27.24+0.05
A EEF |21.38+0.18 52.95+0.63 10.04+0.17 24.8440232 28.21+0.96
Eu) OFT |21.74+026 51.02+0.07 11.19+037 24.14+053 27.49+0.07
NFT|20.91+0.52 50.20+0.16 10.09+0.32 25.09-:0.09 26.81+0.15

< CT | 7.25+016 29.05+045 7.48+0.14 9.86+0.32 8.24+0.09
7 EEF | 7.02+0.08 29.12+0.34 7.61+0.22 12.82+0.70 8.72+0.74
%OFT 6.80+0.19 28.74+0.29 7.36-0.06 9.72+0.20 8.59+1.44

NFT| 6.59+0.09 28.67+0.35 7.17+017 10.99+1.89 8.03+0.23

- CT | 5.15+015 23.05+0.21 6.58+0.06 8.10+1.90 3.01+0.41
7 EEF | 4.82+0.19 22.89+049 7.02+0.28 8.35+1.01 3.75+058
%OFT 5.03+0.11 22.81+0.36 6.95+0.12 7.32+131 2.87+042

NFT| 4.96+0.34 22.2240.62 6.48+025 6.27+0.62 2.78+034

Table 3.1: Comparison of different classifiers (FC-A, FC-B, CNN-A, CNN-B) and
learning algorithms (CT, EEF, OFT and NFT). Test error and standard deviation
over 3 runs are reported. For each architecture, those results that improve the CT
case are in bold.

datasets and considered different representations of the examples. The first dataset
is mpB (Maas et al., 2011), also known as Large Movie Review Dataset, that is a
collection of 50k highly-polar reviews from the IMDB database. We considered a
vocabulary of the most frequent 20k words and TF-IDF (Jones, 1972) representa-
tion of each review. The second dataset, wings (Thoutt, 2017), collects 130k wine
reviews scored in [80, 100], that we divided into two classes, i.e., [80,90) vs. [90, 100].
In this case, in order to get more general findings, we chose a different text repre-
sentation, exploiting a pretrained Transformer-based architecture. We preprocessed
the input samples with a pretrained DistilRoBERTa (Reimers and Gurevych, 2019)
model, applying average pooling to compute dense representations of size 768 for
each review.

We trained the deeper fully-connected architecture, FC-B, for 30 epochs. NFT
hyper-parameters 6 were selected in max € {10,100,500,1000,2000}, Ymax_simp €
{0.05,0.1,0.25,0.85,0.5} - Yyax, B € {107°,107%,5-1074}.

As reported in Tab. 3.2 (top), the performance of CT is consistently improved
by NFT, achieving lower error rates in both the datasets (and representations). The
sentence classification task appears to be slightly more difficult in wines. This is

®Concerning OFT, the hyper-parameter grids are available in supplementary material, published
athttps://sailab.diism.unisi.it/friendly.
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probably due to the fact that wine reviews are less polarized, being them all highly
scored. Concerning mps, the superiority of NFT over CT and also OFT is evident.
Overall, these results confirm the versatility of NFT.

IMDB WINES
FC-BCT 13.27 +019  FC-BCT 17.38 +o0.15
FC-B OFT 13.66 +060  FC-B OFT 17.07 +o11
FC-B NFT 11.93 +009 FC-B NFT 17.15 +o.12

CIFAR-10 CIFAR-10-N10

CNN-BCT 29.75 1037  ResNet CT 9.30 +0.16

CNN-B OFT | 30.19 +053  ResNet OFT 8.92 1023

CNN-B NFT | 29.00 +03s ResNet NFT 8.10 +o0.19

Table 3.2: Comparison of classifiers with different architectures and learning algo-
rithms (CT, OFT, NFT) — data for Sentiment Analysis (top) and Image Classification
(bottom). Mean test error is reported with standard deviation. Results improving
CT are in bold.

3.4.3 Image classification

CIFAR-10 (Krizhevsky, 2009) is a popular Image Classification dataset, consisting of
60k 32 x 32 color images from 10 different classes. We divided the original training
data into training and validation sets (10k examples used as validation set), and we
initially evaluated NFT using the previously described generic CNN-B architecture.
Tab. 3.2 (bottom-left) shows that while we are not able to improve the results of CT
using OFT, NFT slightly improves the quality of the network, reducing the error rate
and further confirming its benefits.
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Figure 3.4: ResNet18 on CIFAR-10 dataset for different amounts of noisy labels. Er-
ror bars include standard dev.

However, state-of-the art convolutional networks specifically designed /tuned for
CIFAR-10 usually achieve lower error rates, so that we decided to perform a more
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specific experimental activity. In particular, we considered ResNet18 (He et al.,
2016), inheriting all the carefully selected optimization parameters and tricks that
yield state-of-the-art results in CIFAR-10.” Since OFT/NFT bring marginal bene-
tits over CT, we designed a more challenging condition following the setup of re-
cently published CL activity (Wu et al., 2021). We introduced some noise by ran-
domly permuting 10% of the target labels, generating what we will refer to as cirar-
10-N10. We trained the network for 250 epochs, and reported results in Tab. 3.2
(bottom-right). NFT hyper-parameters were selected in #,,,x € {500,1000,2000},
Ymax_simp € {0.25,0.5,0.7} - Ymax, B € {107%,5-107*}. The learning rate sched-
uler is applied starting from 7,ax_simp With an initial learning rate which is 0.1 - «.
We observe that NFT effectively helps also when dealing with this type of network.
While OFT also carries a small improvement, it is far from the one obtained by NFT.
We further investigated this result by varying the amount of noise injected into the
training labels. Fig. 3.4 compares CT and NFT for different noise levels, up to 80%.
Interestingly, the impact of NFT becomes more and more evident, gaining ~ 8%
in strongly noisy environments, suggesting that data simplification helps the main
network to better discard misleading and noisy information.

3.5 Discussion

We qualitatively compared NFT and OFT in the mnist-BG dataset of Section 3.4.1, in
which the important information is known (the digits), since the background is un-
correlated with the target. We mostly considered the CNN-A model, for which NFT
led to the most significant improvements with respect to CT (Tab. 3.1). In Fig. 3.5 we
show how examples are affected when using an auxiliary network (bottom - NFT)
or when independent transformations are estimated for each example through a
gradient-based procedure (top - OFT). Modelling the transformation function with
aneural model leads to qualitatively different behavior. We observe that OFT yields
structured perturbations only when paired with CNN-A, emphasizing the digit ar-
eas. Differently NFT shows more natural perturbation patterns, removing distract-
ing cues (background). Basically, the convolutional auxiliary net leads to transfor-
mations with much more detailed awareness of the visual structures.

In Fig. 3.6, we report the evolution of test error rate during the training epochs
(mn1sT-BG, CNN-A), comparing NFT and CT. The developmental plan reduces the
impact of the perturbation until epoch 175 (afterwards, data are not altered any-
more). The small bump right before such epoch is due to the final transition from
altered to original data. The test error of NFT is higher than the one of CT when

7Stochastic Gradient Descent (learning rate 0.1 with cosine annealing learning rate scheduler)
with momentum (0.9) and weight decay (5 - 10’4), mini-batches of size 128, data augmentation —
see https://github.com/kuangliu/pytorch-cifar.
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FC-A CNN-A
Figure 3.5: mnist-BG. Original data x , perturbation 6 (normalized) and resulting
“simplified” images % for FC-A and CNN-A at the end of the 1st epoch. At first

glance, some simplified images are hardly distinguishable from the original sam-
ples. Top: OFT. Bottom: NFT.

data are altered, as expected, while it becomes lower when the auxiliary network is
dropped. On the other hand, fitting training data is easier during the early epochs
in NFT, due to the simplification process.

We also evaluated the sensitivity of the system to some hyper-parameters of NFT,
keeping the main network fixed. In Fig. 3.7, we report the test error of CNN-A, MN1sT-
BACK-IMAGE dataset, for different configurations of #;,4x, W, ng, B. In particular,
after having selected a sample run that is pretty representative of the general trend
we observed in the experiments, we changed one of the aforementioned parameters
and computed the error rate. Large values of 7,,,x reduce the freedom of auxiliary

network in learning the transformation function.

Similarly, a short developmental plan with a small M does not allow the
main network to benefit from the progressively simplified data. In general, we did
not experience a very significant sensitivity to the variations of 7y, and 64 features
turned out to be fine in most of the experiments, with some cases in which moving
to 96 was slightly preferable, as in the one we are showing in Fig. 3.7. Although in
a fine-grained grid of values, we found that larger B helped the auxiliary network
to more quickly develop meaningful transformations. As a side note, we report that
NFT was ~ 1.5x slower than CT, on average-see comments in related part of Sec. 3.3,
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Figure 3.6: Training and test error rates for NFT and CT on a single run — MNisT
BACK-IMAGE, CNN-A (best viewed in colors). The auxiliary network is dropped at
epoch 175. The training error of NFT is initially lower than in the case of CT since
the auxiliary network simplifies the data. Differently, the test error is initially larger,
since the test set is not simplified. As training proceeds, the simplification vanishes
and the test data become aligned with the training ones.
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Figure 3.7: Test error under different configuration of the NFT hyper-parameters,
CNN-A architecture.
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3.5.1 Remarks

To summarize, in this chapter we presented a novel approach to Curriculum Learn-
ing, according to which training data are altered in order to improve the learn-
ing procedure of a neural network-based classifier. Thanks to a progressive devel-
opmental plan, the classifier implicitly learns from examples that better match its
current expectations, reducing the impact of difficult examples or noisy data dur-
ing early training. We showed that NFT (the neural-based implementation, see
Sec. 3.3.2) systematically outperforms OFT (the initial direct-optimization imple-
mentation, see Sec. 3.3.1). The auxiliary neural network is dropped at the end of the
training process, so that the computational cost at inference time is unvaried. An
extensive experimental evaluation showed the benefits of Neural Friendly Training,
with improved generalization skills with respect to standard training.



Chapter 4

Input tuning for Continual Learning

The intrinsic difficulty in adapting deep learning models to non-stationary environ-
ments limits the applicability of neural networks to real-world tasks. This issue is
critical in practical supervised continual learning settings, such as the ones in which
a pre-trained model computes projections toward a latent space where different task
predictors are sequentially learned over time. As a matter of fact, incrementally fine-
tuning the whole model to better adapt to new tasks usually results in catastrophic
forgetting, with decreasing performance over the past experiences and loss of valu-
able knowledge from the pre-training stage. In this chapter, we propose a novel
strategy to make the fine-tuning procedure more effective, by avoiding to update
the pre-trained part of the network and learning—apart from the usual classification
head-also a set of newly-introduced learnable parameters that are responsible for
transforming the input data. We term this method as Continual Input Tuning (CIT),
to propose an alternative to conventional fine-tuning but also to underscore that we
preprocess the samples in the input space through a trainable transformation that
is tuned over time with reduced forgetting. This concept is inspired by the dynamic
input manipulations of Ch. 3, but here the learner is already equipped with some
knowledge and faces an uncontrolled sequence of tasks. This process allows the
network to effectively leverage the pre-training knowledge and find a good trade-off
between plasticity and stability with modest computational efforts, thus especially
suitable for on-the-edge settings. Our experiments on four image classification prob-
lems in a continual learning setting confirm the quality of the proposed approach
when compared to several fine-tuning procedures and to popular Continual Learn-
ing methods.

41 Introduction

The outstanding performance achieved by Machine Learning solutions in a vast va-
riety of fields (Brown et al., 2020) and well-defined tasks (Russakovsky et al., 2015)

47
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is usually restricted to a very specific setting, where it’s assumed that all training
data is available from the start and sampled from a static distribution in an inde-
pendent manner (i.i.d.). This scenario does not contemplate the case in which neu-
ral models are progressively adapted to novel data that are sampled over time from
non-stationary distributions. In such cases, a huge performance drop on old data
is typically noticed when adapting weights (French, 1999). Recently, these limita-
tions have gained wider attention and novel models that are designed to learn over

time have started to emerge (see Sec. 2.2 for an introduction to Continual Learning—
henceforth, CL).

At the same time, intelligent edge devices, including sensors, actuators, robotic
platforms, etc., with modest computational resources, are becoming ubiquitous and
there is a growing need of Machine Learning-driven processing capabilities for per-
ception, understanding and personalization in the Internet of Things. Indeed, such
devices are capable of acquiring continuous data streams (Murshed et al., 2021),
that could be processed with CL-based solutions running on the edge devices them-
selves. Several challenges must be faced when deploying CL methods to edge de-
vices. First of all, typical state-of-the-art neural architectures with many encoding
layers (Vaswani et al., 2017) might be of limited applicability due to scarcity of mem-
ory and computational capabilities. While offloading to the cloud might be a simple
workaround, it raises privacy concerns and complexity issues. Moreover, most of
the state-of-the-art CL methods involve rehearsal procedures (De Lange et al., 2021),
i.e., re-visiting some exemplars of past concepts in order to “refresh” the knowledge
of the model. This opens to new issues concerning storage capacity and, again, pri-
vacy (Pellegrini et al., 2020), given that it introduces the need of long-term storage
of training data. Methods based on latent replay (rather than input replay) achieve
better compression and obfuscate potentially private data, but storage issues are not
solved and privacy preservation may be totally unreliable (Mahendran and Vedaldi,
2015). Another issue with the current CL research concerns the limited efforts spent
in evaluating the performance of CL methods in realistic applications.

In the context of edge devices with limited computational capabilities, it seems
reasonable to start from networks pre-trained on large data collections, since they
are powerful tools to compute informed latent representations and they allow to re-
duce training efforts. However, their embedded knowledge might be significantly
lost when progressively fine-tuning the network to novel domains in a CL fashion,
unless rehearsal is performed (Ostapenko et al., 2022). An alternative to fine-tuning
has recently become popular in the Machine Learning community, i.e., learning
parameters that affect the model input with the goal of conditioning the network
rather than changing its internal weights. These Prompt Tuning models (Li and
Liang, 2021; Lester et al., 2021; Jia et al., 2022) were conceived to foster the exploita-
tion of very-large-scale networks, in order to effectively leverage their capabilities
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in specific downstream tasks. However, most of the work in this line focuses on
large Transformer models and the connection with CL is not deeply investigated
(Wang et al., 2022b). Motivated by these considerations, we propose and investi-
gate the appropriateness of different non-replay tuning options when facing a CL
problem based on a pre-trained network, frequently referred to as backbone, focusing
on methods that require lower computational efforts and no-rehearsal, well suited
for edge devices. In particular, we propose Continual Input Tuning (CIT), based on
an alternative form of Prompt Tuning, in order to efficiently adapt the model to new
data and achieve a good trade-off between plasticity and stability. According to the
taxonomies introduced in Sec. 2.2 for Continual Learning methods, CIT can be con-
sidered a representation-based method, since it relies on the exploitation of frozen
pretrained models, but also an architecture-based method since it adds special pa-
rameters to the computational model. We provide an experimental analysis con-
ducted on different datasets available in the related literature, comparing several
fine-tuning procedures and well-known continual learning methods. The contribu-
tions of this chapter are the following ones: (1) we propose the adoption of Con-
tinual Input Tuning procedures to better leverage pre-trained backbones in CL; (2)
we experimentally evaluate the impact of fine-tuning on common CL benchmarks,
providing reference results; (3) we investigate and show the benefits of Continual
Input Tuning in a classic continual setting, with edge-friendly neural architectures,
both for small and large domain shifts.

4.2 Relation with existing works

The wide availability of pre-trained models offers several opportunities to transfer
their knowledge to specific downstream tasks. The simplest approach consists in
fine-tuning the models on the novel task data. This is typically demanding in terms
of resources, especially in the case of large-scale models, due to the memory occu-
pation (gradients as well as activations) and the operations in the weight update
routine. The generic notion of pre-training has been shown to implicitly make some
CL problems easier (Mehta et al., 2023), following the intuition that it is more likely
to end up in good suboptimal minima compared to randomly-initialized models,
due to the skills learned in the pre-training stage. Of course, an inappropriate fine-
tuning procedure might yield a model strongly focused on the novel task, losing
the advantage from the previously learned knowledge. However, while the limits
of transferring pre-trained models to downstream tasks have been recently studied
(Abnar et al., 2022), when it comes to specifically studying or evaluating the con-
crete impact of adapting pre-trained models to a CL context, the scientific literature
is relatively scarce (Ostapenko et al., 2022). Ramasesh et al. (2022) have pointed
out that resistance to forgetting consistently scales with the network size when em-
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ploying pre-trained models. Still, several questions remain unanswered, especially
concerning smaller-scale models in computationally-restricted environments, as the
ones we study in this chapter. Another line of work (Hu et al., 2022; Cossu et al,,
2022) replaces the pre-training step with a continual procedure, especially in the
self-supervised setting. While this approach paves the way for the exploitation of
decentralized and streaming data in a variety of contexts, it is not focused on the
practical scenario in which downstream tasks are learnt in an incremental fashion.

Prompt Tuning methodologies (Li and Liang, 2021; Lester et al., 2021; An et al.,
2022), that were originally conceived in Natural Language Processing (NLP), open
a new perspective on how to adapt a pre-trained model to a novel environment,
with respect to the one of the pre-training stage. Prompt Tuning consists in learning
parameters that are actually part of the input stage, in order to discover the proper
way to condition the model, rather than changing the values of its internal weights
or learning additional internal parameters, as in the case of Adapters (Pfeiffer et al.,
2020). Such technique has been mostly applied to Transformer models (Vaswani
et al.,, 2017), both for language tasks and vision tasks. In this chapter we focus on
a specific type of tuning that is not restricted to Transformer models, and that we
study in the context of CL.

Tweaking the input space (input tuning) to alter the behavior of neural networks
has already been investigated for a variety of purposes. For instance, with this strat-
egy, Elsayed et al. (2019) successfully managed to re-program a trained model to
perform on a very different task. It is now important to draw a connection with
what we discussed in Ch. 3, where we presented a curriculum-learning inspired
methodology to effectively learn from a continuous set of learning problems with
gradually increasing complexity. Recently, the effectiveness of learning simple trans-
formations in the input space has been studied in the context of transfer learning for
image classification (Jia et al., 2022), and it has been shown that learning parameters
to transform the input data is a competitive approach to deal with large pre-trained
models, especially Transformer-based ones. Researchers are starting to apply this
intuition to the CL perspective (Wang et al., 2022b), but they are mostly focused
on rather large ViT (Dosovitskiy et al., 2021) models. Moreover, they heavily rely
on the capability of the considered model to extract global semantically-rich rep-
resentations to guide the input transformation, while they lack investigation of the
non-Transformer case. We are going to study how altering the input data by means
of newly introduced learnable parameters can yield efficient and computationally
affordable CL, starting from a pre-trained backbone.
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Figure 4.1: Sketch of the proposed input tuning procedure used in CIT. Two vari-
ants (IT-Pap, IT-App) of the transformation function g(-, - ), showing examples of the
newly introduced learnable parameters 6, and of the resulting transformed input .

4.3 Continually tuning a pre-trained model

We advocate for parsimonious approaches to the continual learning problem. As
such, we consider a specific setting in which learning is performed by an edge de-
vice with limited computational resources, shipped with a neural network that was
pre-trained on an initial task (usually exploiting large-scale data). Without any loss
of generality, we focus on image classification problems, so that the input of the net-
work isaw x h RGBimage. As usual, the network can be considered to be composed
by a feature extractor m that extracts higher-level features, and a classification head
c that returns the predicted confidence y on a set of classes,

y =c(m(x,0n),0),

where 0,, and 6, are the parameters (weights and biases) of the feature extractor and
the classification head, respectively, and y is a vector with a number of components
equal to the number of classes. For simplicity, we consider the classification head
to be composed only of the last linear-projection and non-linearity. The embedded
knowledge can be transferred to other somewhat related tasks by removing ¢ and
replacing it with a task-specific head ¢, with its own new 0;. The original m acts
as a backbone, and 6, can be fine-tuned on the new task, together with learning
from scratch the new 6. In this chapter, we indicate with FT! such a fine-tuning

IFT stands for Fine-Tuning, and it is not related to Friendly Training of Ch. 3.
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approach, that can be possibly restricted to §; and a subset of 0,,. We refer to that
setting as FT-Partial. We further distinguish these cases from a more lightweight
option called Bias Tuning (BT), which targets what is known to be a particularly
small and expressive subset of model parameters (Cai et al., 2020), i.e., the biases of
the neurons of the whole network, together with the usual 6;.

We focus on the popular CL setting in which learning consists of a certain num-
ber T > 1 of separated training sessions, S;, j = 1,..., T, where T could be poten-
tially infinite (lifelong learning). Each session comes with data D}, and there is no
overlap between data batches of different sessions, D]- NDy, =D, V(j,h). In each S]-
the learner is presented with a task and after the end of the session the task data
are no more available for further training. Before starting the CL process, we plug
a novel classification head ¢ on top of the pre-trained m, using a large number of
output neurons (at least equal to the expected total number of classes at the end of
the whole learning process), and randomly initializing its parameters. Of course,
we assume that the pre-training dataset is sufficiently generic to be helpful for tack-
ling a variety of downstream learning problems. The final goal is to effectively tune
the model in a progressive real-time manner, using data coming from the stream of

(/)

tasks, without buffering past information. We indicate with 6./’ the values of the
parameters after session S;, where x is a placeholder for all the different aforemen-
tioned subsets of parameters. We expect the overall model at the end of the sequence

of tasks,
y==¢ (m (x,@,g)> ,GCET)> ,

to have high average accuracy on all the tasks, keeping the average forgetting of
knowledge at minimum.

We will mostly focus on the class-incremental setting with some insights on the
domain-incremental one, in both cases in a fully supervised scenario. In the class-
incremental setting we are given data partitioned into a large number of classes and
we implement the continual learning setting by limiting each session §; to a specific
subset of them (disjoint subsets). At training time, during session S, the classifier
outputs confidence scores y limited to the session-related classes, thus exploiting a
portion of the head ¢, referred to as 6]-.2 Gradients are only computed for the pa-
rameters that involve the output neurons in ¢;, whose values are indicated with ;.
This is an instance of the so-called “label trick” (Zeno et al., 2021), a rather simple
technique that has a very effective role in preventing interference and, as such, it
is considered as a stable part of all the models. In the domain-incremental case the
learner is presented with new data labelled over the same set of classes through the
sessions, but originating from a different data population, thus the label trick does
not apply. In fact, for each S; the classifier outputs the full set of confidence scores

2In case of softmax activation on the output units, our notation y refers to the non-normalized
logits (and not to the softmax output).
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using the whole ¢, and gradients are always computed with respect to all the 6;.
In all the CL experiments of this chapter we always assume that the task identity
is not known at test time, since it is more challenging and more realistic. It is im-
portant to remark the difference of what we have described so far from the more
common transfer learning process in which all the data (U].Tlej) is simultaneously
available to tune the model, that we refer to as Joint Learning (JL) setting, since all
the new "tasks" are jointly processed. As a matter of fact, learning in a CL setting is
significantly more challenging than in JL, given that we expect the model to keep a
reasonable performance on past tasks while learning the new ones in a sequential
manner, without buffering data across tasks.

4.3.1 Proposed approach

We propose to consider a generic input tuning (IT) procedure, in which the original
input image x is transformed into ¥ by some function g before being fed to the frozen
backbone (Fig. 4.1),

¥ = g(x,0)

y = é(m(xl em)reé)/

where 0, are newly introduced learnable parameters involved in the transformation
function only. The purpose of the optimization carried out during the learning pro-
cess is to jointly train the parameters 0; of the classifier ¢ together with the novel
input tuning parameters 6. The first input tuning approach we consider, which we
refer to as IT-Pap, consists in framing the input image with a border (referred to as
Frame) of learnable “pixels”, described by 6,. Another simple alternative, hence-
forth denoted as IT-App, consists in transforming the input by adding to x a learn-
able tensor 0, (termed as Perturbation) of the same shape as the input image, shared
by all the possible inputs. Fig. 4.1 shows a visual sketch of these transformations,
including an example taken from the experiments (Sec. 4.4).

In principle, this IT tuning method can be used both in Joint Learning (standard
supervised learning setting) and in Continual Learning, the setting of our primary
interest here. In order to provide a glimpse on the outcome of Continual Input Tun-
ing, we report in Tab. 4.1 the change in accuracy we get when comparing a non-
tuned baseline model (i.e., a model in which only 6; are trained while the whole
backbone is kept fixed) with the previously introduced fine-tuning or input tuning
procedures, both when performing transfer learning using all the data (JL, third
column), and when performing sequential CL (fourth column).

Sequential CL is the focus of this chapter and is the setting that will be thor-
oughly discussed in the following. It is evident that what works very well in the JL
setting is not necessarily well-suited for the CL case, confirming the importance of
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investigating alternative ways of exploiting pre-trained backbones in CL. Interest-
ingly, the IT instances (IT-Pap and IT-App) are the ones that better perform in CL,
even if they learn a relatively small set of parameters. From now on, whenever we
apply Input Tuning transformation in a CL context, we will use the acronym CIT
(Continual Input Tuning).

Tuning | Learnt Parameters | Joint | Continual
None | 6; | 66.12 | 44.49

BT ; and Biases of m (~ 1k) | +4.44 | -2.77
FT-Partiall | 6; and 6/, (4.7M) +1.69 | -30.47
FT-Partial2 | 6; and 6, (8.4M) -2.16 | -32.20
IT-Pap 0, and Frame (0.1M) +1.86 | +7.09
IT-App 0; and Perturbation (0.15M) | -0.56 | +0.32

Table 4.1: Preview of the impact of different tuning approaches on CIFAR100 in the
Joint (accuracy) and Continual (average task accuracy measured at the end of the
learning sequence) Learning settings. The first row reports the absolute results of
the baseline. The differences with respect to them are reported in the other rows.
Bias Tuning (BT) is very effective when all the examples are simultaneously avail-
able for training. On the other hand, IT is a competitive approach in the CL setting,
henceforth indicated with Continual Input Tuning (CIT). In that context, partial
fine-tuning (FT-Partial) badly fails. 6}, and 6, are two different subsets of the back-
bone parameters — see Sec. 4.4 for more details. From now on, whenever we apply
Input Tuning transformation in a CL context, we will use the acronym CIT (Contin-
ual Input Tuning).

In the case of a continual learning problems spanning clearly heterogeneous dis-
tributions (for example in the case of data collected from multiple sources), we can
argue that sharing the exact same transformation g(-,0,) for all the tasks (referred
to as standard approach, depicted in Fig. 4.2a) may not be optimal. For this reason,
we propose to learn a different input transformation for each training session, by
learning independent 6¢’s. We will indicate with 6, the transformation parame-
ters learnt in session §;, that are about the j-th task. In the challenging setting we
consider, the task identity is not known at test time, and we are going to solve the
task identification task with a heuristic approach. After the training session &;, we
transform a test sample x according all the known transformations g (-, 6;?) . Then,
we compute representations through the frozen backbone m(-,6,,) and the classi-
fication heads. Finally, we aggregate the partial output vectors with concatenation
or element-wise maximum if the learning problem is class-incremental or domain-
incremental, respectively—see the inference algorithm (Alg. 3 - 4, lines 3 and 5).
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Figure 4.2: Sketch of Continual Input Tuning computational pipeline for the class-
incremental and domain-incremental cases, going from input x to class-confidence

scores i (logits in the case of softmax) at inference time: (a) standard approach,
(b) the parallel classifier variant.

Since all these operations can be run in parallel over the different transformations
(up to the final y;’s), we refer to such classification procedure with the term parallel
classifier (see Fig. 4.2b).

4.4 Experiments

We describe our experimental investigation by introducing the considered datasets,
competitors, neural architectures and experimental setup. Subsequently, we will
present a quantitative comparison and analyze the results.
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Algorithm 3 CIT parallel classifier in class-incremental settings.

Input: Sample x, transformations 9(8), cer, Hg), classification heads 6

Output: Classification vector y.
: forj=1,...,tdo

% = g(x,09))

G

A
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2

4: end for

5y = concat({y;,j=1,...,t})
6

: return y

Algorithm 4 CIT parallel classifier in domain-incremental settings.

(1) (t)

Input: Sample x, transformations 0o/, 0/, classification head 0
Output: Classification vector y.
1: forj=1,...,tdo
2 %= g(x,0))

R - t
3 Y= c(m(x]-, Gm),(?é ))
4: end for
5
6

()

¢

. y = elementwise_max({y;,j =1,...,t})
: return y

4.4.1 Datasets

In order to assess the performance of the proposed learning algorithm, we exploit
multiple datasets available in the literature. CIFAR100 (Krizhevsky, 2009) is a pop-
ular Image Classification dataset, consisting of 60k 32 x 32 color images from 100
different classes (500 training images per class). RESISC45 dataset (Cheng et al.,
2017) is a benchmark for Remote Sensing Image Scene Classification (RESISC). This
dataset contains 32k color images, covering 45 scene classes (560 training images for
class). FIVEDS (Ebrahimi et al., 2020) is the concatenation of five classic image clas-
sification datasets: CIFAR-10 (Krizhevsky, 2009), MNIST (LeCun, 1998), Fashion-
MNIST (Xiaoetal.,2017), SVHN (Netzer et al., 2011) and notMNIST (Bulatov, 2011).
Although each single benchmark is individually fairly easy when using pretrained
models, FIVEDS is challenging because of the forgetting arising from very different
distributions in the input space. DomainNet (Peng et al., 2019) is a collection of im-
ages labelled over 345 classes with multiple drastic domain shifts. In this chapter,
we exploit 4 subsets (sketch, real, painting, clipart), totalling 250k training samples
and 110k test samples.

We define four different CL problems using the just described four datasets:
(i.) CIFAR100/T10, where CIFAR100 is randomly split into 10 tasks (each task con-
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tains 10 classes) (ii.) RESISC45/T9 with 9 tasks (each task contains 5 classes); (iii.)
FIVEDS/T5, where each task consists of the 10 classes available in each of the sub-
datasets populating FIVEDS, and (iv.) DOMAINNET/T4, where each task contains
new examples of the same set of classes but from a different domain. While (i, ii.,
ifi.) are class-incremental, (iv.) is domain-incremental. Moreover, (i., ii.) are Single
Source Data, while (iii., iv.) are Multiple Source Data, in the sense introduced in
Sec. 4.3 (i.e., continual learning problems spanning strongly heterogeneous distri-
butions).

4.4.2 Competitors

We compare the proposed CIT-Pap and CIT-App with a baseline model that trains
only the classification head (parameters 6;). Other competitors are BT and FT-
Partial (see Sec. 4.3). In CIT-Pap, CIT-App and the baseline model, the learning
process is driven by a standard supervised loss that involves the data available in
each session, i.e., Dj. Differently, in the case of FI-Partial, the loss is augmented
with CL regularizers from state-of-the art approaches.> Our goal is to investigate
whether CIT is a competitive strategy without changing the loss function and with-
out introducing extra modules. As a matter of fact, a variety of different specific CL
techniques have been developed in the last decade (see Sec. 2.2 for a categorization).
In this section, we focus on regularization-based methods, since we stated in our
requirements that buffering exemplars is excluded, hence automatically ruling out
replay methods. In particular, data-based regularization techniques are mostly in-
spired by knowledge distillation (Hinton et al., 2014). Learning without Forgetting
(LwF) (Li and Hoiem, 2017) is the simplest instance and it basically performs dis-
tillation on output logits computed on the currently available data, from the model
obtained at the end of session S;_; to the current model in S;. Clearly, distillation is
restricted to the units of the classes learnt up to time &; and is performed to avoid
excessive model drift. Alternatively, Learning without Memorizing (LwM) (Dhar
et al., 2019) is geared towards attention. Specifically, it consists of an additional
loss used to preserve attention maps over different sessions (Masana et al., 2022).
Finally, we also consider prior-based regularization approaches that directly target
the weights, such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017).
The importance of the weights is estimated through an approximation of the Fisher
Information Matrix, and EWC enforces regularity on the learnable parameters be-
tween 9,?‘” and Git) according to such estimated importance. Zenke et al. (2017)
proposed an even simpler instance of EWC, since they show that the importance of
each parameter to the fulfilment of a learning task can be estimated by accumulat-

3 As we will show in Sec. 4.5, fine-tuning without any CL regularizers is impractical due to strong
forgetting.
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ing individual weight changes; such method is called Path Integral in the following
(also known as Synaptic Intelligence).

4.4.3 Experimental setup

We focus on a specific class of convolutional networks for image classification, the
widely popular ResNets (He et al., 2016), following our edge-oriented scenario in
which the computational budget is indeed limited. In particular, we will consider
the rather small ResNet-18 (11M parameters), pretrained on ImageNet (Russakovsky
et al., 2015). Differently from a Transformer-based architecture, it requires smaller
memory and it is less computationally demanding, also when compared to relatively
lightweight Transformer - such as ViT-B/16, 84M parameters. In the following we
consider two different partial finetuning settings, FI-Partiall and FI-Partial2, focus-
ing on the last module of the considered architecture, which is made of the two last
BasicBlocks* and represents a remarkable fraction (70% of the total parameters) of
the whole architecture. In FT-Partiall we restrict the tuning operations to the param-
eters contained in the last BasicBlock (4.7M), and we refer to these parameters with
6,,. In FT-Partial2 we also include the ones in the penultimate BasicBlock (+3.7M),
indicating with 6, the union of these parameters.

In general, we use cross-entropy as classification loss function, and the Adam
optimizer is exploited for all the learnable parameters unless otherwise specified; a
smaller batch size B is employed for the smaller datasets (B = 16 for CIFAR100, RE-
SISC45; B = 64 for FIVEDS, DOMAINNET). In all the experiments, non-backbone
parameters are randomly initialized, using the same seed for the different com-
petitors, and we report results averaged over 3 runs with different initializations.
Following Buzzega et al. (2020), training for multiple epochs decouples the effects
of forgetting and underfitting. As such, unless otherwise stated, we select a suf-
ticient number of epochs to obtain a stable configuration of the parameters at the
end of each task. Since we assume to have a limited computational budget, hyper-
parameters are shared across the different learning problems (i.e., not tuned specif-
ically for the dataset at hand). In all the CIT-Pap experiments we learn a 32-pixel
thick border. Concerning CL strategies °, we adopt parameters suggested by the re-
spective authors and further investigated by Masana et al. (2022): for LWF we set
the temperature to 2; for EWC the fusion of the old and new importance weights is
done with a = 0.5; for LwM we set § = 7 = 1.0; for Path Integral we fix the damping
parameter to 0.1 as proposed in the original work (see references for further details).

We measure the average accuracy and average forgetting at the end of the learn-
ing sequence (i.e.,t = T). The average accuracy ar at the end of the considered task

“Please refer to the PyTorch implementation of the ResNet architecture, https://pytorch.org/
vision/0.8/_modules/torchvision/models/resnet.html for further details.
>Refer to the original papers for details on the role of these parameters.


https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html
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sequence is selected as the main metric, as in most of the continual learning litera-
ture. Let be T the task/session index, 4;, is the accuracy computed on the test set of
task 7, with the model obtained after training on task ¢ (i.e., with parameters Git)).
Average forgetting fr is also helpful to evaluate the average magnitude of accuracy
drops over the sequence. Formally,
1t B 1 t=1
ar = - T; e, fr =177 Lo max (A —arz).

In all the following results, the terms accuracy and forgetting refer to the aforemen-
tioned average values computed with t = T (final).

44.4 Results

The results of our experimental activities are reported in Tab. 4.2 and Tab. 4.3, ana-
lyzed in the following.

In the case of CIFAR100/T10 (Single Source Data, Tab. 4.2) the domain shift from
one task to another one in the sequence is relatively small and qualitatively all the
data share similar visual features (Parisi et al., 2019). The first noteworthy remark
is that the baseline, which only learns the classifier ¢ with the label trick, works sur-
prisingly well with respect to fine-tuning paired with well-known CL regularizers.
Interestingly enough, bias tuning (BT) shows no practical improvement over the
baseline, given the forgetting due to the incremental nature of the learning problem.
The same trend can be observed for the partial fine-tuning options (FI-Partiall, FT-
Partial2). On the contrary, both the CIT approaches have at least the same accuracy
as the baseline, showing that they are an appropriate way to strive for better perfor-
mance, with slight additional complexity on top of the label trick baseline. While
the improvement provided by CIT-App is marginal, CIT-Pap significantly improves
the test accuracy without being particularly exposed to forgetting compared to the
other options. As expected (Sec. 4.3), the parallel classifier approach does not help
here, due to relative data homogeneity of different tasks (Single Source Data).

In RESISC45/T9 (Single Source Data, Tab. 4.2), one may wonder whether a rel-
atively high semantic affinity between the pre-training domain (ImageNet) and the
target tasks is crucial in order to get improvements with respect to the baseline. In
fact, RESISC45 is a publicly available dataset of satellite imagery, which features a
quite large semantic and perceptual shift with respect to the pre-training domain.
Similarly to the previous case, the regularization-based CL strategies are struggling
in achieving and maintaining a good performance throughout the task sequence,
dropping to accuracy levels that are lower than the baseline. On the other hand,
CIT-Pap is again the best performing option and provides an appreciable accuracy
increase, while being less affected by forgetting than the other tuning options (ex-
cluding FT-Partiall-LwF, characterized by a consistently lower accuracy though).
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Tuning Learnt Parameters CIFAR100/T10 RESISC45/T9
Accuracy 1 Forgetting | | Accuracy 1 Forgetting |

None | 6 | 4449 +022 13.92 4149 | 57.14 4050 22.51 +1.15
BT | 6 and Biases of m (~1k) | 41.72+030 29.91+081 | 46.79 +2.06 35.24 +1.19
FT-Partiall-LwF 6 and 6, (4.7M) 39.18 £0.83 24.62 +0.65 | 54.46 +1.15 12.07 +1.41
FT-Partiall-LwM 6; and 6, (4.7M) 38.26 +0.72 2219 +0.81 | 52.51 £1.06 25.92 +£1.49
FT-Partiall-EWC ¢ and 0, (4.7M) 39.62 +0.48 22.85+0.73 | 54.17 +0.45 25.75 +1.46
FT-Partiall-PathInt | 6z and 6}, (4.7M) 37.46 £122 2349 +097 | 5295 +1.64 24.47 +1.35
FT-Partial2-LwF s and 0, (8.4M) 43.03 +0.49 28.61 +022 | 53.78 £045 29.27 +£2.05
FT-Partial2-LwM 6 and 0!}, (8.4M) 42.06 +£0.63 28.57 +1.04 | 53.94 +0.88 28.94 +2.60
FT-Partial2-EWC 6 and 0}, (8.4M) 4191 +0.81 26.76 +0.64 | 56.03 £1.39 27.17 +0.41
FT-Partial2-PathInt | 6z and 6),, (8.4M) 42.11 +£1.08 27.27 +1.01 | 54.98 +£1.86 26.02 +£0.80
CIT-Pap (Standard) | 6; and Frame (0.1M) 51.58 +1.78 19.31 +146 | 61.06 £0.99 16.99 +0.94
CIT-App (Standard) | 6; and Perturbation (0.15M) 44.81 +0.83 21.01 +0.85 | 57.18 £1.63 19.43 +0.64
CIT-Pap (Parallel) 0e and Frame (0.1M/task) 46.54 +0.82 12.88 +227 | 55.84 £159 19.68 +1.81
CIT-App (Parallel) 0: and Perturb. (0.15M/task) | 41.82 £1.23 13.05 £1.14 | 52.47 +2.83 18.29 +2.51

Table 4.2: Average accuracy (1, higher is better) and forgetting (], lower is better)
measured at the end of the learning sequence on Single Source Data datasets. In
the second column we report the set of parameters subject to optimization: we al-
ways learn the classification head; we tune network weights in the BT, FT-Partial
approaches and we learn transformation parameters (Perturbation or Frame) in the
CIT approaches. We report the number of such learnt parameters in brackets.

In FIVEDS/T5 (Multiple Source Data, Tab. 4.3) we experiment with data coming
from multiple sources, possibly distant in the semantic and perceptual spaces. In-
terestingly enough, in this case LwF provides the highest performance. Given that it
has been originally proposed as a task-incremental strategy it is not surprising that it
performs well on a sequence of very distinct tasks (both in the semantic and in the
perceptual spaces). At the same time, we can see that CIT-Pap and CIT-App pro-
vide valuable improvement when implemented in the parallel classifier. Moreover,
compared to LwWF and Path Integral, the amount of learnt parameters (and the com-
putational burden) is smaller, there is no need to store tensors of the same size as the
weights (importance weights for PathInt, model snapshot for LwF) and forgetting
is lower.

The case of DOMAINNET/T4 (Multiple Source Data, Tab. 4.3) departs from the
previous ones, being it a domain-incremental setting. The semantic space is shared
by all the tasks, which feature remarkably different visual styles and perceptual fea-
tures (color, texture, etc.). Although the obtained accuracy may seem a bit low, it is
important to remark that it is a very challenging learning problem, with many exam-
ples that are hard even for humans and especially for convolutional networks, that
are known to heavily rely on texture (Geirhos et al., 2019). We did not apply LwF
and LwM, that do not fit well the domain-incremental setting. In fact, the knowl-
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Tuning Learnt Parameters FIVEDS/T5 DOMAINNET/T4
Accuracy T Forgetting | | Accuracy 1 Forgetting |
None | 6 | 44204279 17.78 +130 | 3593 +0.13 18.98 +0.32
BT | 6 and Biases of m (~ 1k) | 20.36 +2.86 56.92 +2.11 | 38.85 4193 23.28 +231
FT-Partiall-LwF 0; and 6, (4.7M) 52.72 £1.15 28.85 £1.70 n.a. na.
FT-Partiall-LwM 0; and 6, (4.7M) 29.34 +0.85 67.02 +£4.05 n.a. na.
FT-Partiall-EWC 0; and 6, (4.7M) 38.45 +2.02 55.18 +0.76 | 19.05 +1.77 9.72 +0.71
FT-Partial1l-PathInt | 6, and 6}, (4.7M) 51.38 +1.3¢ 25.12 +052 | 38.55 +148 5.7 +1.86
FT-Partial2-LwF 0; and 6, (8.4M) 61.45 +3.02 28.68 +0.23 n.a. n.a.
FT-Partial2-LwM 0 and 0}, (8.4M) 40.98 +0.87 35.71 +2.45 n.a. n.a.
FT-Partial2-EWC 0z and 0), (8.4M) 46.25 +0.88 53.11 +1.05 | 29.59 +1.31 11.21 +1.42
FT-Partial2-PathInt | 6, and 6}, (8.4M) 60.24 £2.05 29.09 +2.62 | 39.41 +1.65 16.17 +3.68
CIT-Pap (Standard) | 6; and Frame (0.1M) 44.65 £123 31.86 +0.89 | 38.74 £0.44 18.85 +1.39
CIT-Abp (Standard) | 6; and Perturbation (0.15M) 36.09 £1.85 44.29 £097 | 33.67 £0.30 22.45 £0.34
CIT-Pap (Parallel) 0z and Frame (0.1M/task) 53.36 £0.55 19.97 +1.40 | 43.93 £1.22 16.12 +0.91
CIT-App (Parallel) 0s and Perturb. (0.15M/task) 56.32 £043 17.75+037 | 41.18 +0.83 17.34 +1.61

Table 4.3: Average accuracy (1, higher is better) and forgetting (], lower is better)
measured at the end of the learning sequence on Multiple Source Data datasets.
Notice that some CL strategies are not well-suited for the domain-incremental set-
ting (see the main text; invalid configurations are then marked with “n.a.”). In
the second column we report the set of parameters subject to optimization: we al-
ways learn the classification head; we tune network weights in the BT, FI-Partial
approaches and we learn transformation parameters (Perturbation or Frame) in the
CIT approaches. We report the number of such learnt parameters in brackets.

edge distillation term would call for the network output with new data to (a) fit the
classification loss and (b) be similar to the output of the model learnt at the previous
task, which is not expected to help in effectively learning with low forgetting. Also,
it should be noted that in this case the baseline itself cannot exploit the label trick,
given that each task contains data for the entire class set. As such, several methods
offer improvements over the baseline, including the quite simple bias tuning (BT).
Moreover, Path Integral gives also a similar improvement, although necessitating
to compute and store parameter-specific importance weights. On the other hand,
it can be clearly appreciated that the proposed CIT-Pap implemented with parallel
classifier features the highest accuracy, confirming the importance of learning inde-
pendent transformations in Multiple Source Data.

4.5 Discussion

From what emerged in Sec. 4.4.4, CIT has a positive effect on the average accuracy, es-
pecially for CIT-Pap that always increases the accuracy with respect to the baseline,
both in class-incremental and domain-incremental settings. In the case of Multiple
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Source Data, we can get consistently better performance with the parallel variant. We
perform additional experiments aimed at gaining more insights on the previously
analyzed results, focusing on the CIFAR100/T10 learning problem.

In Fig. 4.3 we report the accuracy obtained in a comparative experiment with 5
different variants of the CIT-Pap scheme. (i.) CIT-Pap-Online is the setting in which
training is performed with a single pass on the training data. This speeds up learn-
ing but it greatly reduces the extent of the improvement at the end of training (com-
pared to Tab. 4.2). (ii.) CIT-Pap-Fix refers to the setting in which we kept fixed the
Frame (the learnable padding) after the first task. Results show that learning the
additional pixels is really beneficial only if they are allowed to adapt to the slight
variations of the different tasks. (iii.) CIT-Pap-Small is obtained reducing by a fac-
tor of 4 the thickness of the frame border, decreasing the total amount of additional
parameters by a factor of 5; it is interesting to notice that the accuracy is 4% higher
than the Baseline (first row of Tab. 4.2) also in that setting. (iv.) CIT-Pap-Latent is
about applying the padding operation in a latent space (right after the first two con-
volutional layers) and benefits of a comparable improvement with a similar amount
of additional learnable parameters (< 0.1M). On the other hand, (v.) combining the
most promising IT approach with BT (CIT-Pab +Bias), completely vanishes any im-
provement, coherently with observations in (Jia et al., 2022). This analysis confirms
the value of the simple-but-effective vanilla CIT-Pap scheme.

Baseline
CIT-PAD-ONLINE —
CIT-PAD-F1x
CIT-PAD-SMALL
CIT-PAD-LATENT
CIT-PaD
CIT-PAaD+Bias

40.0 42.5 45.0 47.5 50.0 52.5
Accuracy (in %)

Figure 4.3: Average test accuracy measured at the end of the learning sequence, for
variants of CIT-Pap in CIFAR100/T10. Performing the transformation in some latent
space (instead of the input) is under-performing and adding bias tuning seems to
be counterproductive.

In Tab. 4.4, we further investigate the online setting, showing the test accuracy
for the different methods. In general, the gap between the CIT-Pap approach and
all the competitors is even wider with respect to the multi-epoch setting, given that
fine-tuning a large portion of the network would require a larger amount of update
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steps in order to obtain a stable configuration of the weights, conflicting with the
single-epoch constraint.

Tuning | Learnt Parameters | Accuracy 1 | Forgetting |
None ‘ 0¢ ‘ 41.38 +0.56 ‘ 14.11 +188
BT | 6; and Biases (~1k) | 43.94 +231 | 24.87 1318
FT-Partiall (LwF) s and 6/, (4.7M) 26.07 +0.41 20.19 +092
FT-Partiall (LwM) | 6; and 6/, (4.7M) 26.09 064 | 20.08 +0.68
FT-Partiall (EWC) 0 and 6, (4.7M) 25.88 +0.83 23.11 =077
FT-Partiall (PathInt) | 6; and 6/, (4.7M) 26.06 +1.98 20.84 +1.41
FT-Partial2 (LwF) ; and 6 (8.4M) 29.13 +o71 22.48 +0.86
FT-Partial2 (LwM) s and 6, (8.4M) 22.84 +055 31.83 +1.29
FT-Partial2 (EWC) s and 6 (8.4M) 23.14 +o032 21.32 +o058
FT-Partial2 (PathInt) | 6; and 0!, (8.4M) 26.69 +1.72 24.85 +1.95
CIT-Pap (Standard) | 6 and Frame (0.1M) 45.65 +1.20 17.89 +1.92
CIT-App (Standard) | 6 and Perturb. (0.15M) | 42.48 +134 14.87 +os2

Table 4.4: Results on CIFAR100/T10 in the online setting: average accuracy and for-
getting are measured at the end of the learning sequence. Gap between CIT-Pap
and the competitors is even wider than the one detected in the multi-epoch setting
(Tab. 4.2).

In Fig. 4.4 we provide some insights on the test accuracy, measured during the
learning sequence and at the end of it, respectively. In Fig. 4.4 (left), we show that
the CIT-Pap approach typically has the highest average accuracy throughout the
learning sequence, while using FI-Partial without any CL regularizer is not a viable
option. In Fig. 4.4 (right) we can see that the task accuracy of CIT-Pap is pretty
uniform over the entire set (with no drastic forgetting on the old tasks) and generally
the highest among the considered approaches.

4,51 Remarks

To summarize, in this chapter we presented Continual Input Tuning, a novel tun-
ing procedure for the exploitation of pre-trained models in the context of continual
learning by tweaking the input data (input tuning). We empirically showed that
the proposed method is simple but effective in consistently improving the final av-
erage accuracy on multiple learning problems—especially when inserting a frame
of learnable pixels (CIT-Pap). We also showed that Continual Input Tuning can
be promptly extended to the Multiple Source Data case, where multiple learnable
transformations increase the adaptation of the model to very heterogeneous data
distributions.
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Figure 4.4: CIFAR100/T10, models from Tab. 4.2. Left: Average accuracy during
the entire learning sequence. The blue curve (FT-Partial2, with no CL regularizers)
highlights the fact that naively fine-tuning is not a practical option. CIT-Pap (green)
shows the best behavior throughout all the learning sequence. Right: Task-specific
accuracy, at the end of the learning sequence. Fine-tuning without CL regulariz-
ers (FT-Partial2, blue) has extremely low accuracy, excluding the very last task. BT
(grey) and FT-Partial2 (LwF, orange) best-performing tasks are concentrated in the
last part of the sequence (task id > 6). CIT-Pap consistently beats the baseline and
is the best for most of the tasks.
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Growing visual agents from video streams

In this section of the thesis, we depart from the traditional supervised learning per-
spective of the first part; our objective now is to develop autonomous visual agents
that can learn from their environment. We face this longstanding goal of Al with
neural models exposed to continuous observation of video streams, without hu-
man intervention. We also emphasize the importance of learning online, thereby
eliminating the need to store large volumes of visual data, and addressing concerns
related to privacy and data centralization as commented in the Introduction.

In Chapter 5, we explore the feasibility of learning optical flow in dynamic envi-
ronments without the necessity of storing visual data, adhering to a purely unsuper-
vised online learning approach. Remarkably, we find that optical flow exhibits re-
silience against forgetting, and we implement straightforward strategies to enhance
performance in particularly challenging scenarios. This assessment is preliminary
to practical exploitation of motion in Chapter 6.

Chapter 6 introduces two distinct self-supervised learning techniques, driven by
a common motivation yet founded upon distinct approaches.

The first initial approach is based on the concept of attention trajectory, inspired
by human visual attention in the context of free visual exploration. We employ an
attention simulation mechanism which enables the agent to establish semantic con-
nections among pixels traversed by the attention trajectory. These connections stim-
ulate feature development through similarity objectives. Additionally, optical flow
is used to distinguish moving objects from the background, providing the ground
for more similarity /dissimilarity objectives.

The second approach is more directly based on motion, which is the outcome of
a progressive and autonomous learning process, occurring at various levels of the
feature hierarchy. Multiple motion flows are estimated with neural networks and
characterized by different levels of abstractions, spanning from traditional optical
flow to other latent signals originating from higher-level features, hence referred
to as higher-level motions. Continuously learning to develop consistent multi-level
flows and representations is prone to trivial solutions, which we counteract by in-
troducing a self-supervised contrastive loss, based on flow-induced similarity.

In evaluating the performance of our methods, we operate within an open-set
class-incremental setting, a challenging scenario where the classifier must compute
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membership scores for newly encountered classes upon receiving supervision for
the first time. Our visual agent learns to discern and classify objects in real-time.
We assess our model on photorealistic synthetic streams and real-worlds videos,
comparing to pre-trained state-of-the art feature extractors and to recent unsuper-
vised learning models. Quantitative evaluations confirm substantial performance
improvements compared to our earlier approach, representing significant progress
in the quest for autonomous visual skill development.



Chapter 5

Optical flow estimation with online
learning

In the last few years there has been a growing interest in approaches that allow neu-
ral networks to learn how to predict optical flow, both in a supervised and, more re-
cently, unsupervised manner. While this clearly opens up the possibility of learning
to estimate optical flow in a truly lifelong setting, by processing a potentially endless
video stream, existing techniques assume to have access to large datasets and they
perform stochastic mini-batch-based gradient optimization, paired with further ad-
hoc components. We present an extensive study on how neural networks can learn
to estimate optical flow in a continual manner while observing a long video stream
and reacting online to the streamed information without any further data buffer-
ing. Our analysis considers important model selection issues that might be easily
overlooked at a first glance, comparing different neural architectures and also state-
of-the-art models pretrained in an offline manner. To this end, we rely on photo-
realistic video streams that we specifically created using 3D virtual environments, as
well as on a real-world movie. Our results not only show the feasibility of continual
unsupervised learning in optical flow estimation, but also indicate that the learned
models, in several situations, are comparable to state-of-the-art offline-pretrained
networks. Moreover, we show how common issues in continual learning, such as
catastrophic forgetting, do not affect the proposed models in a disruptive manner,
given the specific properties of the task at hand. This thorough assessment is pre-
liminary to practical exploitation of motion in Chapter 6, where it will work as the
main signal for self-supervised feature extraction.

5.1 Introduction

Vision offers a natural playground for investigating learning models that continu-
ously evolve over time, especially when considering data streamed from a single
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visual source. Dynamical environments (camera movements, objects appearing in
the scene, changes in lightning, etc.) require algorithms that adapt to the newly
available information without losing the capability of making good predictions on
the already processed one. Amongst a large set of interesting vision tasks, in the
last few years there has been a growing interest in learning how to predict the op-
tical flow in a visual scene, i.e., the apparent motion! of individual pixels on the
image plane (Horn and Schunck, 1981). A reliable estimation of the optical flow
enables the exploitation of semantic correspondences between frames, and it can be
used as precious information for several computer vision-related applications (Betti
et al., 2021a). Besides a variety of classic techniques to estimate optical flow (Horn
and Schunck, 1981; Lucas and Kanade, 1981; Brox et al., 2004), it has been shown
that neural networks can be effectively trained to this end with outstanding results
(Dosovitskiy et al., 2015). More recently, the machine learning community moved
from supervised approaches (Dosovitskiy et al., 2015; Teed and Deng, 2020) to un-
supervised training (Stone et al., 2021).

However, to the best of our knowledge, the optical flow problem has not been in-
vestigated in the Continual Learning perspective (see Sec. 2.2 for an introduction),
since common training pipelines leverage large datasets processed in an offline man-
ner via randomly shuffling samples in mini-batches. Stochastic gradient descent is
commonly exploited, packing randomly selected mini-batches of data samples and
generally iterating for multiple epochs, in which the same data are exploited over
and over. When data are streamed over time, or whenever we want to build a ma-
chine learning system that progressively learns from newly available data without
forgetting acquired skills, learning becomes more challenging, but the overall set-
ting sounds more natural and interesting (Betti et al.,2021b). Researchers in the field
of Lifelong/Continual Learning (CL) recently proposed a variety of approaches to
try to deal with such a setting. However, while a lot of emphasis has been devoted
to supervised classification problems, little has been done in the context of Unsu-
pervised Continual Learning (UCL), that is even more intriguing and realistic, due
to the intrinsic cost in providing supervisions (Madaan et al., 2022). Apart from
a few ad-hoc designed benchmarks (Lomonaco and Maltoni, 2017), evaluating CL
algorithms is generally done by adapting well-known classic datasets for machine
learning (De Lange et al., 2021).

In this chapter we propose to frame the problem of learning to estimate optical
flow with neural networks in the context of UCL, considering temporally-correlated
data continuously streamed from a single source and performing single-pass online
learning. We study and evaluate how neural networks behave in this online con-

In this chapter we will use the terms flow and motion interchangeably, with the notion of mo-
tion that exclusively refers to the apparent displacement of pixels in the visual field, rather than its
physical kinematic counterpart.
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text, without buffering the video (with the exception of the previous frame only,
that is an input of any optical flow estimation method) and without using any ad-
hoc CL-based architectures, somewhat representing the most challenging setting of
UCL. We rely on modern 3D virtual environments to generate streams in controlled
conditions. In detail, the contributions of this chapter are the following. (i) We
face a novel problem in the context of UCL, evaluating whether neural networks
can learn to predict motion while “observing” a long video stream. We consider
different streams in which we inject specific biases to evaluate the behaviour of the
networks in critical conditions, proposing proper tricks of the trade to overcome
evident issues. (ii) We define an experimental procedure based on 3D virtual envi-
ronments to generate continuous streams in controlled conditions (different levels
of complexity). We include practical considerations on the validation of the model
hyper-parameters, that is a frequently overlooked issue. (iii) We also consider the
case of a full-length real-world movie and the case of an artificial stream obtained
by concatenating the other ones described so far, thus analyzing how the networks
adapt to significantly different data and if they forget about the properties of the
older streams. (iv) Even though there are no attempts to set a new state-of-the art
in the field, we compare with existing state-of-the-art models trained in an offline
manner, using large collections of data samples.

5.2 Relation with existing works

Research contained in this chapter can be framed in the context of online UCL, and
it is inspired by works concerning optical flow estimation with neural networks. To
our best knowledge, this is the first study that evaluates the feasibility of learning
to predict motion in online UCL settings. In the following, we describe some in-
teresting works in CL/UCL and optical flow estimation (without and with neural
networks).

Unsupervised Continual Learning. In the CL (see Sec. 2.2) scientific commu-
nity, there is still little research on continual exploitation of new data in the lack of
turther supervision, and more in general, in unsupervised tasks. In the field of self-
supervised learning for visual features, we mention the recent work of Madaan et al.
(2022), that adopts standard classification benchmarks for evaluation. A different
line in neural networks emphasizes the importance of time when developing agents
without supervision. Inspired by the principle of least action in physics, Betti et al.
(2020a) proposed a framework that deals in a principled way with all the cases in
which data become available over time, that was then evaluated in the maximiza-
tion of the mutual information on a video stream paired with a human-like atten-
tion model (Tiezzi et al., 2020). The problem studied in this chapter is an instance
of UCL, and it could be easily framed in such a theory, since it is approached with
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an online learning strategy.

Optical Flow. Horn and Schunck (1981) were the first to formalize the problem
of optical flow estimation as the minimization of a functional, considering bright-
ness invariance and regularization. However, such a method has a number of weak-
nesses, including those that are due to changes in illumination, occlusions and large
displacements. Another popular approach is the one of Lucas and Kanade (1981),
who proposed a least-square technique to estimate a locally uniform velocity field,
with neighboring pixels that feature the same velocity within small patches. The
output is sparse but more robust to outliers. Several authors have extended the
initial algorithm (Horn and Schunck, 1981) in the attempt of dealing with its weak-
nesses, such as Brox et al. (2004), who devised a variational algorithm which fea-
tures robustness to additive illumination changes and better handling of large dis-
placements thanks to a coarse-to-fine strategy. Experimental comparison with Horn
and Schunck’s algorithm is provided in Sec. 5.5.

Optical Flow Estimation with Neural Networks. Dosovitskiy et al. (2015) orig-
inally demonstrated that neural networks with a specific architecture (FlowNet)
can be effectively trained to predict motion in a supervised manner. Besides be-
ing more accurate than classical methods, learned models can be faster at inference
because all optimization occurs during training and coomon hardware can be ef-
ticiently exploited (e.g., GPUs). Supervision typically comes from synthetic data
(real-world labeled data are scarce). Teed and Deng (2020) proposed RAFT, which
includes recurrent computations on the so-called cost volume, taking into account
all the pairs of pixels of the frame. They emulate the steps of a first-order optimiza-
tion procedure to compute a single high-resolution flow field, which differs from
the prevailing coarse-to-fine design. Recently, unsupervised learning was applied
to train neural networks to predict optical flow (Jonschkowski et al., 2020). Unsu-
pervised methods are very attractive since they can leverage abundant collections
of videos. Most methods work with the warping paradigm, where the estimated
flow field is used to warp back a frame into the previous one, and the network is
optimized to reduce the photometric distance loss between the real frame and the
reconstructed one. A smoothness penalty, computed on the predicted flow, is typ-
ically proposed as regularization. Stone et al. (2021) recently adapted the current
best performing supervised model (RAFT) to the unsupervised setting. They pro-
posed SMURF, embracing the self-supervision student-teacher paradigm, trained
with extensive data augmentation and occlusion handling. Our work differs from
these approaches since, to the best of our knowledge, we are the first to study the
optical flow problem in a UCL perspective.
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5.3 Continual learning of optical flow estimation

Amongst a variety of specific formulations, the problem of estimating optical flow is
based on the so-called brightness constancy assumption paired with a spatial regu-
larizer to enforce smoothness in the solution (Brox et al., 2004). In detail, the scalar
flow fields U* = {u},, Vx,Vy} (horizontal direction) and V* = {05, Vx, Vy} (ver-
tical direction) between the image at time f — § and the one at time ¢, for a small 6,
are given by

argmin L(U, V, ) —argmm//p (X 4 thxy, Y + Oxy, t) — I(x,y, £ = 5))

u,v (5.1)

+ A(IIVuxyIIZ + ||vay||2)dXd]/f

being x, iy spatial coordinates and I(x, y, t) the intensity of a pixel, while p is a penalty
function, such as p(a) = a®. The scalar A > 0 weighs a spatial regularizer, while V
is the spatial gradient operator. Computing I(x + uyy, y + vxy, t) for all (x,y)’s basi-
cally consists in warping the image at time t according to displacements collected in
U and V. The formulation of Horn and Schunck (1981) is based on the minimiza-
tion of a functional that is analogous to the one of Eq. 5.1, although we used the
linearized version of the constancy assumption (Brox et al., 2004).

Suppose we are given a video stream defined on the time interval [0, T), where
T could be potentially infinite. The previous functional naturally extends to

arg min / L, v, (52)
uy 0

where U = {U;, Vt} and V = {V;, Vt}, § = dt, and where we assumed t — J to be
equal to 0 if negative. We consider the case in which U; and V; are predicted by a
neural network f with parameters in 6;. Recent literature (Dosovitskiy et al., 2015;
Teed and Deng, 2020; Stone et al., 2021) explored the possibility of predicting the dis-
placement field by observing a pair of consecutive images, thus U; = fi;(I;, I;_s, 6¢),
Vi = fy(I, I;—s,0t), where we used the subscripts U and V to distinguish among
the two portions of the output of network f and where we used the shorthand I;
to indicate a c-channel image yielded by the stream at time ¢, slightly overloading
the previously introduced notation I, for simplicity. The problem of Eq. 5.2 can be
rewritten as a minimization over parameters 6 = {0;, Vt}, thus replacing L(U;, Vi, t)
with E(Qt, t) defined as £(9t, t) = L(fu(lt, Itfg, Qt),fv(lt, It,(g, 91}), t).

Let us suppose that we cast the problem in the discrete case, considering a video
stream with frame rate v and 6 = v~!. At each discrete time instant ¢ (multiple of
1/_1) the stream yields frame I;, and we assume to have access to the previous frame
I;_s as well. In this chapter we explore the classic online learning setting in which
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the network parameters 6;, s depend on the ones at ¢, and are obtained by updating
the current estimate 0; exploiting the pair of frames available at time ¢. This ends up
in defining the learning step as

9L (0,1)

_— , 5.3
U a0  lo=g, (53)

Orro =0 —
being v > 0 the selected step size. The learning problem is fully unsupervised. We
take inspiration from related work, selecting p to be the generalized Charbonnier
photometric distance (Sun et al., 2010), which proved to be suitable for optical flow
learning since it downplays the importance of small deviations, i.e., p(a) = (a* +€)*.
While many other components could be inherited from related literature to aug-
ment Eq. 5.1 (e.g., edge-aware smoothness, occlusion-oriented terms, etc.—see Jon-
schkowski et al. (2020) ), we specifically aim at evaluating a minimalist implementa-
tion that can be eventually enriched in many ways. We remark that we are propos-
ing an always-learning approach, where we perform inference and a learning step
at each time instant, nicely adapting to time-variant dynamical domains. As a con-
sequence, it is relevant to evaluate the quality of the model while learning is still
taking place.

5.3.1 Update policies

When dealing with potentially lifelong horizons, it sounds pretty natural to consider
the possibility of not updating the model parameters at each and every timestep ¢.
This not only reduces the computational burden of the backward stage, but also
avoids the network to be affected from redundant information that is likely to be
present in frames that are close in time. Moreover, applying the vanilla update rule
of Eq. 5.3 at each t is likely to bias the network capabilities towards the information
contained in the very recent frames, “forgetting” the oldest ones (Parisi et al., 2019).
In this context, the notion of “forgetting” might imply the lack of capability of esti-
mating the movements of an object that has not been seen for a long time. It might
also be due to inadvertent incorporation of lower-level biases that affects motion es-
timation (for example, long periods in which there is almost no motion or motion
always in the same direction). We propose to decrease the correlation between con-
secutive updates with four simple policies, as alternatives to updating the weights
on every new frame (Arways policy):

e DecmvatioN (DEc): update the model every n frames, n > 1. This simple rule
is basically a way to skip frames in a somewhat uninformed manner, given the
unknown properties of the input stream.

e Dirr (Dr1rr): update the model only if the scene is not static, i.e., if the average
L, distance over the pixel intensities between the frames I; and I;_; is greater
than g, with g > 0.
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e FLowDiverGence (D1v): after a warmup stage of w frames, to let the model de-
velop early prediction skills, update the model only when the predicted mo-
tion is significantly changing over time. This avoids the model develop direc-
tion biases, discarding redundant information coming from objects that move
along the same direction for a long time. If 7i1; = [il;, 3] is the vector that col-
lects the average of U; and the one of V;, respectively, we update the model
only if H"Tr Z’T‘lez > [, with | > 0, being z the time when the last model update
was performed.

e FLowMaGNITUDE (MAG): after a warmup stage of w frames, update the model
only if a significant portion of the frame is predicted to be moving. At least a
fraction r of the frame pixels must be predicted to have a displacement vector
larger than 4 to trigger a model update.

Smart update policies can be crucial in general when considering real-world
video stream sources. Of course, while Dec and Div are pretty generic, Dirr and
Mag are appropriate at mitigating the negative impact of almost static video seg-
ments.

5.3.2 [Evaluation measures and ground truth

Existing work on optical flow estimation typically rely on supervised benchmarks
in order to evaluate the trained models (Dosovitskiy et al., 2015; Teed and Deng,
2020), that is not practical in the case of real-world unsupervised data. In fact, the
most accessible measures are the ones based on the photometric similarity, in which
the previous frame is compared with the reconstructed frame (i.e., the current one,
warped by the predicted U and V'). We define our notion of RECONSTRUCTION AcCU-
RACY as

Face(U, V, 1) Z I I(x + txy, ¥ + 0xy, t) — I, y,t —0) ||l < T],  (54)
xy

where we considered the resolution W x H, and where [-] is 1 if the condition in
brackets is true, otherwise it is 0 (Iverson bracket). The co-norm has been used to
take into account images with ¢ > 1 channels (it vanishes in case of ¢ = 1). Such
measure can be affected by occlusions, but we deem that negligible if the spatio-
temporal sampling rates are sufficiently high.

Whenever modern 3D environments for machine learning (see Sec. 5.2) are used
to generate video streams, motion-related facilities might be available (Meloni et al.,
2021; Gan et al., 2021). The motion field returned by 3D engines is built from full
physical knowledge of the environment. Such information is not fully recoverable
just by observing projected 2D views, thus excessively relying on the motion field
may be tricky when learning and evaluating optical flow. Moreover, the way pixel
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velocities are encoded might depend on internal timings of the 3D engine, making
it hard to recover displacements for precise comparisons and frame reconstruction.

Although some of the considered streams are from virtual environments (with
motion ground truth), for the sake of generality we propose an unsupervised eval-
uation criterion that applies to any possible stream. Evaluation focuses on consis-
tency, measured by the (i) REconsTRUCTION AccURACY Of Eq. 5.4. Moreover, in the case
of fixed-camera streams with ground-truth available, we also consider motion detec-
tion, where the latter is evaluated by computing what we refer to as (ii) MOTION-F1,
that is the F1 score in the 2-class problem of predicting whether a pixel is moving or
not, starting from flow predictions and comparing with ground-truth from virtual
environment. The last ingredient we consider for model selection purposes is the
(iii) SPATIAL REGULARITY given by the second term of Eq. 5.1 (the lower the better).
In fact, the optical flow problem typically admits spurious solutions that are very
irregular and sparse, although with possibly high reconstruction accuracy. Locally-
smooth solutions are much more likely to be useful for downstream applications,
and they are associated with low values of the sPATIAL REGULARITY term.

5.3.3 Model selection

As performance measure we considered the RECONSTRUCTION ACCURACY (74 ), paired
with the SPATIAL REGULARITY (sy¢) of the predictions, that can be computed in every
stream without requiring any ground truth. In particular, given a pool P of models,
we identify the best model as the one with the largest s;.;, among those whose 7.
is greater than c - maxjcp racc(f), being ¢ € (0,1), i.e., preferring those models that
are a bit less accurate but more regular. Fig. 5.1 shows a qualitative example of the
predictions of a model selected with the proposed criterion, comparing it with a
model selected according to 7, (not considering s at all).

}

Figure 5.1: From left to right: frame, ground truth, predictions of a model selected
with a reconstruction-accuracy-only selection, predictions of a model selected with
the proposed criterion. Motion is given by camera rotation, so that accurate solu-
tions should be smooth. Right: Color coding of optical flow vectors. According to
this encoding, downward movements will be depicted in yellow and leftward move-
ments in cyan. Static regions will be white.



76 Optical flow estimation with online learning

5.4 Experiments

Our experiments have been performed on five different visual streams, referred to as
A, B,C,M, and ABCM. The first three ones have been created by ourselves, the fourth
one is a real-world movie, while the last one is the concatenation of all the streams.
These streams are longer than the ones in popular optical flow benchmarks, and they
are designed with increasing level of complexity. We recall that we are not looking
for shuffled collections of frame pairs, but for data that naturally evolves over time.
We created A, B, C using ThreeDWorld (TDW) (v1.9.1) (Ganetal., 2021), a platform
for physical simulation in virtual worlds based on Unity (popular game engine).
Manipulating the objects dynamics, we created three photo-realistic living-room-
like scenes in which objects move and bounce, and that can provide potentially-
endless streams of visual data with dynamics that are not determined by an artificial
loop. In detail:

e StreaMm A: the simplest one, it features translation and rotation of a single object
that never leaves the view, similar to FlyingChairs (Dosovitskiy et al., 2015) but
with pseudo-realistic rendering.

e STREAM B: it features four different objects randomly moving in a realistic sce-
nario.

e Stream C: similar to B, even if the camera is now moving. This stream is much
more complex, since it features both very slow movements of objects far from
the camera and fast motion patterns from close objects/surfaces.

e StrEaM M: “1917”,a 2019 British war film directed and produced by Sam Mendes.
The film has a duration of 119 minutes (approx. 103 without credits) and it
appears as a single long continuous take, without artificial cuts.

e StrEaM ABCM: the concatenation of all the above streams.

In the case of A, B, and C,2 we rendered frames at the resolution of 256 x 256 for
1 hour (at 25fps, 90k frames), while M consists of ~ 150k frames, downsampled at
resolution 320 x 128. See Fig. 5.2 for a showcase of the streams.

Figure 5.2: Stream A, B, C, M considered in this experience. We created from scratch
the first three ones, where A and B have fixed camera. Stream M is ©Universal
Pictures, DreamWorks Pictures.

’Pre-rendered streams and code are available at https://sailab.diism.unisi.it/
continual-unsupervised-learning-for-optical-flow-estimation/
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5.4.1 Neural architectures and training

The aim of our experience is to show that reasonable optical flow estimation can be
obtained with common neural models through online learning. For this reason, we
have evaluated standard convolutional networks, sometimes inheriting their struc-
ture from related work (please, refer to the shared code for all the internal details).

The ResUNer network?® is a U-Net-like architecture (Ronneberger et al., 2015).
The contractive backbone is composed by the popular ResNet18 (notice that we re-
moved the Batch Normalization layers). Skip connections are leveraged, repeatedly
concatenating current feature maps with lower-level feature maps and applying up-
sampling combined with convolution.

The FLowNETS architecture was proposed by Dosovitskiy et al. (2015), who was
the first to demonstrate that standard convolutional networks are capable of solv-
ing the optical flow estimation problem as a supervised learning task, relying on
large randomly generated synthetic datasets of 3D moving objects. The network
consists of two parts: the prediction layers and the refinement layers. Two different
approaches were presented. In the first one (FLowNETS), they stack the two frames
as network input. Basically, the prediction part is a convolutional contractive path
(where contraction is given by stride), while the refinement module is responsible of
upscaling the flow. We stick with this architecture since the other one (FLowNETC)
is more involved and was shown to provide marginal benefits.

NpConv is a standard convolutional network composed by 8 layers (each one
equipped with 5x5 filters) that maintains the same image-resolution throughout
the whole architecture, without any downsamplings/poolings. The layers are com-
posed by 32,64,64,128,128,64, 64 filters banks, respectively, and ReLU activation
functions.

D1iLNpConv is very similar to the latter model, apart from a dilation factor of 2
on the last four layers (see the provided code repository for further details).

All the models take as input the concatenation of the frames (I;_1, I;) along the
channel dimension. We adopted typical parameters for the Charbonnier distance
(¢ = 0.5, =0.001), as in (Stone et al., 2021). Concerning model selection, we con-
sider a warmup phase up to T,,;; < T. Then, starting from t = T,,;, we measure
performance on two consecutive windows, each of them of length B. In the first win-
dow the networks are updated, while in the second one they are kept frozen. The
idea is to look for a model that maximizes the performance in both the windows,
thus able to learn by adapting to the dynamical features of the stream (first win-
dow), but also durably embedding meaningful knowledge in the network weights
(second window). To rank the models, we use the criterion described in Sec. 5.3,
taking into account RECONSTRUCTION ACCURACY and SPATIAL REGULARITY. Assuming

3Implemen’ca’fion available at https://github.com/usuyama/pytorch-unet/.
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Tyar = 14 minutes (21k frames) and f = 1 minute, we picked ¢ = 0.95, and
we tuned A (Eq. 5.1) and the optimization parameters, considering learning rate
v and also adding a weight decay term controlled by ¢. Concerning optimizers,
we used Adam, AdamW in PyTorch implementations. We selected the best model
among: A € {0.01,0.05,0.1,0.5,0.5,1.0,5.0}, v € {5-107%,107>,5-107°,107%},
¢ € {0,0.01}. Concerning update policies, we set w = 15 minutes = 22.5k frames
and we compare Dirr with 4 = 0.001, Mac with r = 0.02 and & = 0.2, Div with
I =0.05.

Networks are randomly initialized and they learn over the whole stream, accu-
mulating running averages of the metrics of interest. This is what we refer to as
“learning” setting, different from the one in which we expose the networks to an-
other repetition of the stream keeping “frozen” the model parameters obtained at
the end of the “learning” stage. Results on RECONSTRUCTION ACCURACY are based on
T = 0.025 (i.e., 2.5% of the [0,1] range), while for motION - F1 a pixel is marked as
static if its flow has L norm < 0.5 (see Sec. 5.3.2). We avoid reporting standard
deviations over multiple runs, since they are very small (we report them in the Ap-
pendix A).

We also compared the proposed solution with results obtained from offline pre-
trained baselines; we used ‘MPI-Sintel” (Butler et al., 2012) training weights when
available, since that dataset is quite visually similar to streams A, B, C. We used
‘Flying Chairs” (Dosovitskiy et al., 2015) weights in the case of FLowNETS.

Table 5.1: RECONSTRUCTION ACCURACY (%) on the considered streams/settings. We re-
port the best result between the model that always updates its parameters (Arways)
and the one that uses Div update policy (adding a * when results from D1v is re-
ported). Best results among the models considered in the proposed experience are
in bold. For the sake of readability, Frozen values of RerereNce models are reported
also under LEarRNING (such models are pretrained and kept frozen).

LEARNING Frozen
A B C M ABCM A B C M ABCM

ResUner  86.7 76.8 923 85.6 874 84.0 78.6* 90.0* 86.1 88.4
NpConv 874 763 929 873 875 86.0 77.5 91.2 87.9 87.7
DNpConv  86.0 763* 93.0 864 869 86.2 77.3* 911 86.5* 87.3
FrowNEerS 83.7 734* 931 827 843 81.7* 693* 918 833 84.3

Nur 65.2 65.9 90.5 746 74.1 65.2 65.9 90.5 74.6 74.1
FLowNerS 762 69.3 914 795 79.2 76.2 69.3 91.4 79.5 79.2
Rarr-Smarr 839 739 946 863 849 83.9 739 946 863 84.9
SMURF 87.6 798 958 90.1 88.6 87.6 79.8 95.8 90.1 88.6
RaFT 859 772 954 88.0 869 85.9 772 954  88.0 86.9

Model

REFERENCE
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5.4.2 Results

In Tab. 5.1 we report results from both our online-trained models (top rows) and,
as a bare reference, from popular state-of-the-art offline-pretrained models (bottom
rows) for optical flow estimation. For comparison, we also show a dummy predictor
(Nutr) which always predicts zero flow. It is evident that online-trained models are
able to learn to predict optical flow in a satisfactory way, well overcoming the refer-
ence NuLL predictor and, surprisingly, also some state-of-the-art offline-pretrained
models. Pretrained FLowNETS (Dosovitskiy et al., 2015) works significantly worse
than our models, since it is designed and trained mostly on large-displacement
flows, while we considered pretty smooth streams. On the other hand, we acknowl-
edge that other offline-pretrained models such as Rarr (Teed and Deng, 2020) and
SMuRF (Stone et al., 2021) often achieve higher performance. Of course, our models
(top rows) start learning from scratch, thus the outcome of the “learning” setting
is negatively biased by the inevitably low performance in the early stages of life.*
Moreover, the reference state-of-the-art exploits several tricks to improve their qual-
ity (edge awareness, occlusion detection, etc.), while our models are working in a
plain minimalistic setting. Nonetheless, it is interesting to notice that RAF-SmaLL
(Teed and Deng, 2020) does not perform largely better. More importantly, Tab. 5.1
shows that the distance between our models and the offline-pretrained ones is fur-
ther reduced, and sometimes overturned, if we employ a longer stream (ABCM),
confirming the capability of improving over longer horizons. When considering the
“frozen” setting, we can clearly see that the performance of our models are equiva-
lent or even slightly better than while learning, indicating that the networks are not
just adapting on-the-fly to the last seen frames. Overall, NoConv behaved pretty
well in all the considered streams. All the policies of Sec. 5.3.1 were evaluated, with
only Div that allowed to improve the always-update case. For this reason, in Tab. 5.1
we marked those cases in which we found such an improvement. Fig. 5.3 reports a
qualitative visualization of the motion predicted on a frame from stream M.

The results of Tab. 5.1, “frozen” setting, seem to suggest that no evident catas-
trophic forgetting is taking place. Differently from many other vision tasks, both se-
mantic ones (like image classification (De Lange et al., 2021)) and perceptual ones
(like depth estimation (Zhang et al., 2020b)), in optical flow there is a big chance
that new frames can be effectively handled leveraging previously acquired skills, so
that interference is reduced and no special methodology is needed.

“We remark that our models benefit from longer exposure to the data, further reducing the gap
with offline-trained state-of-the-art (see Appendix, Tab. A.7, where we repeated each stream twice).
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(b) SMURF (c) ResUNET

(d) FLowNETS (e) NpConv (f) DNpConv

Figure 5.3: Qualitative comparison of different models on a scene from Stream M,
where two soldiers are talking while slightly moving their bodies. Smurr (offline
pre-trained) output is pretty clear but it suppresses small movements (near the can-
non two soldiers are moving, one towards the right, the other one is lowering on his
knees, only partially detected) and sometimes oversimplifying. The online-trained
models are more sensitive to small changes. The output of NoConv and DNpConv
is quite similar to ResUner, while FLowNETS overemphasizes the slight motion of
the man in the foreground and results to be very blurry due to its architecture. See
caption of Fig. 5.1 for details on the visualization.

5.5 Discussion

However, we are left with the open question on whether the reported averaged mea-
surement is actually the outcome of very unstable predictions over time. In Fig. 5.4,
we report the evolution of the RECONSTRUCTION AccURACY, measured on time win-
dows of 1-minute length, when re-watching (frozen setting) the streams after hav-
ing learnt on them. Predictions are quite stable in A, B, C, and more variable in M,
as expected, since the movie includes significantly larger variability with respect to
the other streams. Overall, we do not observe serious performance deterioration in
the earliest time windows, the further from the last updates to model weights—see
also Tables A.3, A.4in the Appendix. The positive impact of Div criterion is more
evident when measuring MoTiON-F1 in those streams where the camera is fixed (in
the other streams almost everything is moving, so we will not discuss such metric),
as shown in Tab. 5.2. D1v helps in increasing the discriminative capability in motion
detection, especially in the “frozen” setting. The different neural models seem to
have similar performance in the given task, apart from FLowNETS. Stream B is more
challenging, with multiple and smaller moving objects, so there might be larger pre-
diction errors. We further inspected this result in Fig. 5.5, where we compared the
MOTION-F1 (frozen) computed on the last minute of each stream (on which we ex-
pect less forgetting, since it is near to the moment we froze the weights, i.e. the
end of learning) and on the first minute of the stream (oldest data, susceptible to
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Figure 5.4: RECONSTRUCTION ACCURACY over the whole stream of model ResUNEer,
computed in small windows of 1-minute length (dashed). The continuous line
is a moving average (10-minute interval) of the window-oriented results. Model
weights are in the “frozen” setting.

forgetting). The Div strategy can reduce the gap between metrics measured at dif-
ferent time instants (this suggests that the learnt solution is a bit more general). We
also show that a simple Dec policy decreases the model performance, at least on
medium-length streams as the ones we tested. Overall, some slight forms of perfor-
mance reduction/forgetting are observed (whenever below the dashed diagonal®),
but they cannot be classified as catastrophic.

ot 4/ Marker: Update Policy

0.82 * ? ’ . LWAYS
Table 5.2: MotioN-F1 in fixed-camera - Tx STy D o0
streams. The * symbol has the same -2 O
meaning as in Tab. 5.1. . * IR — e
° 00 0 * s
Model LEarRNING Frozen 07%.82 084 08 088 020 0.40 0.60
A B A B Figure 5.5: MotioN-F1 on recen’; (x) and
Ider data n stream A (left) and B
ResUner  0.829 0.661* 0.834*0712* ¢ (y) on stre: (left) ar
NbpConv 0.840 0.667 0.818 * 0.738 * (rlght) Div pohcy (Wlth | = 005) y1e1ds
DNbConv  0.836 0.682* 0.827 0.701* improvements in most of the cases. Some
FLowNEerS 0.771*0.623* 0.784*0425*  Jow-performance configurations are out

of the scope of the plot.

We conducted a further experience in order to evaluate the sensitivity of the net-
works in presence of motion-related data biases. We simulated the case in which the
scene stands still for a significant amount of time before letting objects move again.
This is actually a very likely setting of several real-world scenarios (e.g., surveillance
systems, public cameras, etc.). We tested the criteria presented in Sec. 5.3.1 in all our
streams, adding 5 minutes of pause after every 5 minutes of playback. Of course,
we focused on Dirr and Mag that are specifically designed to handle static shots,
and we kept also Div due to its promising behaviour in the previous experiments,

5The diagonal, under the assumption of equal difficulty of the first and last minute of the stream,
corresponds to the ideal model (no forgetting). From a visual inspection, they appear to be quite
similar in terms of difficulty.
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together with the vanilla case with no special policies (ALways). Fig. 5.6 reports the
results in stream A with two networks (similar results are obtained with the other
architectures and streams, see the Appendix, Tab. A.5, Tab. A.6). While in the “learn-
ing” case networks are able to learn and predict in an appropriate way (eventually
recovering from biases), moving to the “frozen” setting we get a huge performance
drop in ALways and, partially, in Div, suggesting that the networks have completely
embedded the artificially-induced bias. Differently, the Dirr and Mag criteria sig-
nificantly help. This experience, when paired with the previous ones, remarks the
importance of both Dirr (or MaG) and Div criteria, to cope with static shots and to
filter out other redundant portions of the stream.

RESUNET DNbpCoNv RESUNET DNbpCoONV
0.95 0.95

0.8

).
0.90 0.90
N | earning 0.6 0.6
Frozen
0.85 0.85
0.4 0.4
0.80 0.80 0.2 0.2
0.75 0.7 0.0 0.0

.75
Dirr MAG  Div ALWAYS DirF MAG DIV ALWAYS Dirr MAG  Div ALWAYS Dirr MAG  Div ALWAYS

Figure 5.6: REcONSTRUCTION AcCURACY (left) and moTiON-F1 (right) with two sample
architectures (stream A, with injected static shots). Sequence-filtering criteria sig-
nificantly improve the quality of the solutions (frozen weights).

In the spirit of evaluating even longer continual learning settings, we deepen our
analysis in stream ABCM (see Tab. A.8, Appendix, for more results). The plots of
Fig. 5.7 start in “learning” mode, while the rightmost part, after the vertical dotted
line, is about the “frozen” mode. Together with the already discussed Driv criterion,
we also considered the not-yet promising Dec, as well as a reference criterion that
Resets the network weights at the beginning of each sub-stream and learns with
the Arways policy. The informed Driv strategy (I = 0.05) confirms its versatility,
and Dec (n = 150) also reduces the gap with the other criteria on the very long
run, even though the former is still preferable. There is an evident margin between
Reser and the best competitors, showing that starting to process a new sub-stream
from an already settled configuration (although obtained on different streams) is
beneficial-e.g., see sub-stream C. Again, we observe no evident forgetting due to
tuning on data from other sub-streams, and the networks benefit from learning on
a larger variety of data.

In order to better grasp the benefits of using a neural network to predict optical
flow compared to a classic iterative algorithm such as the one of Horn & Shunck
(HS), we evaluated our GPU-based implementations of HS (30 or 200 iterations,
smoothness coefficient A validated with the procedure previously described), re-
porting the Morion-F1 results in Tab. 5.3 (see Appendix A for more results). Com-
parison is against our neural models, after having learnt from long streams, achiev-
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Figure 5.7: Left: RECONSTRUCTION ACCURACY in the concatenated stream ABCM. Right:
Mortion-F1 in ABCM, focusing on the time range of sub-streams A and B (where the
said metric is well-defined); moving average (10-minute interval). Being exposed
to other streams improves the performance, both in “learning” (leftmost part of each
plot, before the vertical dotted line) and “frozen” settings (rightmost part).

ing higher-quality flow with respect to the classic HS algorithm. This consideration
also holds when a warm start is used in HS (i.e., initializing the flow estimation
with flow prediction from the previous time instant). Concerning computational
demands, Fig. 5.8 shows that, for example, the ResUneT model is much faster than
HS (200 iter.) when predicting the optical flow, while it is of comparable speed when
accounting for the learning (backward) phase too. The already discussed benefits
of the update policies, such as Div, indicate that the backward step is not always
needed, thus saving a significant amount of time and making the neural network-
based solutions more attractive.

Table 5.3: Motion-F1, comparing Horn & Shunck (HS) flow, with (w.s.) and with-
out warm start, and our neural models, streams A and B. Results of neural models
(bottom rows) are from Tab. 5.2.

HS (30 iter.) M ] Pred?ct
Model LEARNING FROZEN 1S (200 ) Predict + Learn
A B A B RESUNET |
HS 30 0.574 0.369 0.574 0.369 [ ]

NpConv
HS30 (ws.) 0649 0489 0.649 0.489

HS 200 0462 0322 0462 0.322
HS200 (w.s.) 0.683 0.462 0.683 0.462 FrowNers B

]
DNbpConv

ResUner  0.829 0.661 0.834 0.712 ’ " o cmy ”

Execution Time (ms

DNpConv. 0836 0.682 0.827 0.701 mentations (prediction time and pre-

FLowNETS 0771 0.623 0.784 0.425
diction+learning/backward time).

5.5.1 Remarks

We described a novel experience in the context of Unsupervised Continual Learn-
ing, focusing on the problem of learning to predict optical flow by letting a neural
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network “watch” a potentially life-long video stream. Results on streams (both from
virtual environments and realistic footage) are not far from the ones yielded by ad-
vanced state-of-the-art models pre-trained offline. We proposed simple criteria to
tilter the input data, and we focused on a model selection procedure that copes well
with the optical flow prediction problem. In Sec. 6.5, we will leverage this intro-
ductory experience as a foundation for crafting a methodology that is based on the
concurrent estimation of motion and pixel-level visual representations.



Chapter 6

Self-supervised online learning for
autonomous visual agents

Devising intelligent agents able to live in an environment and learn by observing
the surroundings is a longstanding goal of Artificial Intelligence. From a bare Ma-
chine Learning perspective, challenges arise when the agent is prevented from lever-
aging large fully-annotated dataset, and rather the interactions with supervisory
signals are sparsely distributed over space and time. In this chapter, we propose
two novel neural-network-based approaches to progressively and autonomously de-
velop pixel-wise representations in a video stream. Such approaches extract infor-
mation from motion, whether directly or indirectly, whose estimation in a continual
learning setting has been investigated in Ch. 5.

The first method, COAT, is based on a human-like attention mechanism that
allows the agent to learn by observing what is moving in the attended locations.
Spatio-temporal coherence along the attention trajectory, paired with a contrastive
term, leads to an unsupervised learning criterion that naturally copes with the con-
sidered setting. The second method, CMOSFET, exploits multiple motion-induced
constraints, obtaining motion-conjugated feature representations. Differently from exist-
ing approaches, motion is the outcome of a progressive and autonomous learning
process. Multiple motion flows are estimated with neural networks and charac-
terized by different levels of abstractions, spanning from traditional optical flow to
other latent signals originating from higher-level features. Continuously learning
to develop consistent multi-order flows and representations is prone to trivial solu-
tions, which we counteract by introducing a self-supervised contrastive loss, based
on flow-induced similarity.

Differently from most existing works, representations from COAT and CMOS-
FET are used in open-set class-incremental classification of each frame pixel, relying
on few supervisions. Our experiments leverage modern 3D virtual environments
and real-worlds videos. We show that the proposed agents can learn to distinguish

85
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objects just by observing the video stream. Moreover, features from state-of-the art
models are not as powerful as one might expect, often outperformed by our meth-
ods.

6.1 Introduction

In the context of Artificial Intelligence, the idea of designing agents that exist in an
environment and perceive and act (Russell and Norvig, 2009)! is a longstanding goal
that introduces a number of challenges.

For instance, it is not trivial to incorporate neural models designed for traditional
vision tasks (e.g., image classification) to design a visual agent that learns while
watching a video stream, especially when the agent is expected to parsimoniously
interact with humans to get information on what it sees. Pretrained models might
not always help in capturing properties of entities that belong to the particular en-
vironment in which the agent lives (Kornblith et al., 2019), and they are subject to
inductive biases. Moreover, the agent should be able to learn synchronously with
the continuous video stream, and the target classes are not known in advance. This
setting also implies strong correlation in visual information over time, since data
cannot be shuffled as commonly done when using stochastic gradient descent.

In order to develop the aforementioned visual agents, the temporal dimension
is of utmost importance. Recently, a lot of emphasis has been put on neural models
able to learn over time (see Sec. 2.2 for an introduction to continual learning) in the
attempt of overcoming the conventional i.i.d. assumption and offline learning (i.e.,
all training data are instantly available and sampled from a static distribution in an
independent manner). Most of the attention has been focused on continual super-
vised learning, with few notable unsupervised exceptions (Madaan et al., 2022; Rao
et al., 2019; Tiezzi et al., 2020; Betti et al., 2022a). Despite the large variety of pro-
posals, learning over time in a continual manner is still a very challenging learning
setting, especially when not relying on large buffers of past experiences. Regular-
ization techniques are indeed very powerful, and here we embrace the intuition that
motion seems to offer a natural way of regularizing over time.

We advocate for the opportunity of substantially relying on motion to design
natural contrastive frameworks (see Sec. 2.3 for an introduction to contrastive learn-
ing) for agents that progressively learn from a visual stream. As we introduced in
Ch. 1, foundational studies in vision and perception (Spelke, 1990) have shown that
the presence of motion significantly enhances the ability of biological perceptual

!n this chapter, we will use this notion to indicate a visual agent, that is a model equipped with
tunable parameters and a learning mechanism. The agency is then restricted to self-evolution, al-
though in principle could be extended to navigate the environment and produce permanent changes
in it (robotics).
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systems to identify and segment visual patterns into specific entities. Empirical evi-
dence (Ostrovsky et al., 2009) supports the idea that the capability of parsing static
visual scene is systematically achieved way later than the one of parsing dynamic
scenes. As a matter of fact, the Gestalt Principles of common fate (Wertheimer,
1938) hypothesized the role of motion as a fundamental cue for visual perception
in the early 20th century. Recently, researchers have applied this concept to the do-
main of Machine Learning for computer vision, leveraging motion-based principles
to develop the visual skills of artificial agents. Such intuition has been exploited for
designing simple pretext tasks in the context of unsupervised learning (Mahendran
et al., 2019), aligning the similarity between pairs of feature vectors to the similarity
between the corresponding flow vectors. Pathak et al. (2017) used segments from
low-level motion-based grouping to train convolutional networks, yielding easily
transferable representations.

We also propose to consider the importance of the notion of focus of attention,
which guides agents in wild visual scenes and can be used to attribute precise loca-
tions in the human-machine interaction. For example, consider an agent that asks
for or receives a specific supervision in a crowded scene, or whenever there is a lin-
guistic interface to exchange information with the human. Without contextualizing
the dialogue to what is being precisely observed, the interaction is hardly meaning-
tul: this is where human-machine shared attention can radically improve interaction
(see Fig. 6.1). In this context, we are referring to the simulation of human-like visual
attention trajectories (Zanca et al., 2020), which is different from popular neural at-
tention models (Chaudhari et al., 2019), that are task-oriented and part of the neural
computational scheme. In our framework, we assume that supervisions are in the
form of a class/instance label about what is being observed, without a precise indi-
cation on the boundaries of what is supervised, differently from several Computer
Vision tasks (Long et al., 2015).

In this chapter, we consider the case in which the human intervention is rare, and
each supervision is about the coordinates of a single pixel with its class/instance
label, thus not a signal that can strongly drive the features development. Target
classes are not known in advance, and our model includes an open-set approach to
abstain from making predictions about unknown entities.

This chapter is organized as follows. Sec. 6.2 briefly points at research areas con-
nected with our proposals. In Sec. 6.3 we describe the learning environment and
how we are going to evaluate the outcome of the self-supervised learning process.
In Sec. 6.4 we present COAT, the attention-based model, while Sec. 6.5 is dedicated
to CMOSFET, the motion-based model. Experiments and results, leveraging virtual
environments and real-world videos, are discussed in Sec. 6.6, comparing our results
with large offline-trained models.
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Agent:
Human: Pixels predicted
moving “That's a cat!” as class k (“cat”)

Figure 6.1: Visual stream with static and moving entities. The focus of attention (red
circle) disambiguates the subject of the human-machine interaction, making vague
supervisions well contextualized (2nd pic). The agent performs self-supervised
learning to obtain robust pixel-wise representations in the background, but thanks
to this parsimonious supervision procedure, it becomes capable of attaching seman-
tic labels to visual entities.

6.2 Relation with existing works

Online, continual, open-setlearning. An online learning agent progressively learns
from a stream of data, continuously adapting to every new processed input in-
stance (Hoi et al., 2018). In the specific case of continual learning (also known as
life-long, continuous or incremental learning-Sec. 2.2), the goal of the agent is not
fixed a priori but changes over time. In this chapter, the goal is to learn to predict
class labels for pixels in a video stream. Such goal is not fully defined in advance,
since the agent becomes aware of classes as the human supervisor tells him, and it
does not go through a sequence of distinct tasks with clear boundaries-being close
to task-free scenario (Aljundi et al., 2019). Open-set classifiers (Scheirer et al., 2012)
can distinguish between examples belonging to different training classes but they
can also detect whether data do not belong to any known class, that is the case of
what we propose. Our work is also class-incremental (Geng et al., 2020), due to the
progressive inclusion of new classes after human intervention?. With reference to
categories in Sec. 2.2, our methods are representation-based (since everything relies
on self-supervision) and features are evaluated with template-based classification.

Self-supervised learning. In the context of self-supervised learning (Sec. 2.3),
contrastive methods are based on the idea of similarity (dissimilarity) between se-
mantically equivalent (distant) inputs, respectively. The vast majority of the meth-
ods can be considered global contrastive learning, since they are explicitly designed
to obtain discriminative features for global tasks (e.g., image classification). Under-

2However, it differs from the protocol of the open-world scenario, that goes beyond what we
describe in this chapter (Geng et al., 2020). One/few shot supervised models (Min et al., 2021) also
learn new classes from few examples, exploiting prior knowledge.
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standably, this means that such features are not effective for tasks that require local
details (e.g., semantic segmentation); however, this issue is underinvestigated in the
literature. Wang et al. (2021) presented a contrastive criterion at pixel level, imple-
mented by correspondence matching (which is, however, fostered by image-level
contrastive learning). In this chapter, image-level semantic information is not avail-
able, so we will propose pixel-wise criteria that are based on motion. Recently, Xiong
etal. (2021) investigated the idea of exploiting optical flow in self-supervised learn-
ing, however it is based on offline training (large batches of framepairs with lot of
visual variability). In our work, we also exploit optical flow, albeit in a more sophisti-
cated manner. Interestingly, Fini et al. (2022) have used intuitions from knowledge
distillation in a self-supervised continual setting, by adding a network that maps
the current state of the representations (global) to their past state. As a final note,
while self-supervised learning applied to videos typically focuses on global video
representation learning (Qian et al., 2021), we, on the contrary, extract pixel-wise
representations from individual frames.

Focus of attention. Several attempts to model human-like focus of attention mech-
anisms have been presented (Borji, 2019), not only differing in the way they are
implemented, but also in the nature of the predicted attention (i.e., a temporal tra-
jectory, saliency maps, etc.). In the deep learning era, many neural models (Cornia
et al., 2016; Palazzi et al., 2019) have surpassed classic methods (Itti et al., 1998).
Recently, an unsupervised dynamical model (Zanca et al., 2020) has been proposed
for attention trajectory. It can be applied both to static images and videos and has
been studied in the context of online learning in deep networks (Tiezzi et al., 2020).
Without any loss of generality, this is the model we consider in this chapter.

Learning motion-invariant features. According to Feldman and Tremoulet (2006),
humans identify objects based on the consistency of a subset of their associated fea-
tures during movement. Some brain-inspired neural networks disentangle what fea-
tures (identity and semantics) and where features (motion and location), each of
them separately encoding informative and uninformative factors of variation (Burt
etal., 2021). Then, in the same sense, we can think of developing what visual features
that are invariant with respect to the apparent movements of a given object. We de-
velop a framework where attention trajectory (Sec. 6.4) and motion flow (Sec. 6.5)
implicitly constrain the agent to learn such invariances, resulting in features that
keep constant across time and space. This idea is linked to recent studies about
learning invariance to motion in unsupervised learning over time (Betti et al., 2020b).

Semantic segmentation. Semantic segmentation in computer vision aims at asso-
ciating each pixel of a given image with a class label. Deep architectures for this
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task usually rely on supervised learning from offline data, including fully convo-
lutional networks (Long et al., 2015), models based on transposed convolutions,
dilated convolutions, upsampling and/or unpooling (U/V-net architectures (Ron-
neberger et al., 2015) ), transformers (Ranftl et al., 2021). We will make comparisons
with these models. However, for our task, we’ll use the term pixel-wise classification
instead of semantic segmentation. This is because our final goal is not to describe
every pixel in the agent’s visual universe, obtained through exhaustive labelling of
the environment. Instead, we aim to precisely identify pixels that belong to specific
object classes, which are progressively defined over time through supervision.

6.3 Learning and evaluation setting

Let us assume the availability of an endless collection of subsequent frames from a
visual source, {I;|t > 0}, originating a video stream ) at the resolution of w x I,
with Z¢ := {1,...,w} x {1,...,h} the set of valid pixel coordinates for any frame.
Each spatial location x € Z° of I; can be associated with a feature vector, carrying
information about what is present in such a location and its neighborhood. We talk
about pixel-wise feature maps when referring to the collection of such feature vectors.
We focus on the challenge of progressively developing a robust feature extractor
F leveraging the information in V, working in a continual online manner, without
storing buffers of past data, and without any supervisions. The learnt features can
then be used to preprocess visual stimuli in the context of different downstream
tasks. It is important to remark that frames are continuously streamed at a constant
frame rate, without any temporal limits (¢ could be potentially co) and their content
smoothly changes over time, thus they are not independent. Under these conditions,
effective learning of useful features over time is not trivial.

6.3.1 Feature evaluation: pixel-wise classification

In this chapter, we assume that there is a visual agent, consuming the video stream
V), and a human supervisor, occasionally interacting to provide supervision. In or-
der to simplify interaction, both the supervisor and the agent have access to some
attention trajectory, i.e., for each frame, the coordinates a; of the attention marker.
The human supervisor occasionally provides a supervision at coordinates a;, assert-
ing the membership of the corresponding pixel in a certain class y;.>

Let us define an open-set classifier c(-, ¢, {) that predicts the class-membership
scores from a pixel-wise feature vector, over a certain number of classes. The main
parameters of the classifier are collected in ¢, and when all the membership scores

3Notice that only one pixel gets a supervision a at time ¢, thus it is different from few-shot semantic
segmentation (Min et al., 2021).
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Figure 6.2: Pixel-wise classification. Pixels of frame I; are encoded into new repre-
sentations by the feature extractor F. Inference happens independently on all the
coordinates, and the classifier ¢ can predict one or more classes or nothing (open-
set). Classes are not known in advance. Development of features does not depend
on supervisions.

x)

are below threshold ¢ the classifier assumes to be in front on an unknown visual
element and it does not provide a decision (open-set)—see Fig. 6.2.

Whenever a supervision on a never-seen-before class is received, the classifier
becomes capable of computing the membership score of such class for all the fol-
lowing time steps (class-incremental). We consider the case in which supervisions
are extremely rare, not offering a suitable basis for gradient-based learning of the
classifier nor the feature extractor. Clearly, some other learning process has to oc-
cur, in order to learn compact representations that can be easily classified by the
aforementioned classifier.

The most straightforward way to implement the open-set classifier c is with a
distance-based model, storing the feature vectors associated to the supervised pixels
as templates.? This allows the model to abstain from prediction when the minimum
distance from all the templates is greater than a certain threshold (related to ¢). We
indicate with (k¢, y;) a supervised pair where k; is the feature vector extracted at
coordinates a; from frame I;. In principle, if the agent is allowed to continue its au-
tonomous development, templates may become outdated due to the evolution of the
system, leading to potentially wrong predictions. However, we are assuming that
supervision is extremely scarce (i.e., a few pixels per entity). This means that the
agent can easily store the frames containing the supervisions for periodical refresh
of the templates, implementing in this case a simple instance of rehearsal strategies
in continual learning (Sec. 2.2).

“We tested the squared Euclidean distance and cosine similarity.
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6.3.2 Comparison

We compared the obtained features against those produced by massively pretrained
state-of-the-art models. We considered the Dense Prediction Transformer (DPT)
(Ranftl et al., 2021) and DeepLaBV3 (Chen et al., 2017) with ResNet101 backbone,
testing both the features produced by the penultimate layer in the classification
heads (-C suffix) and the ones obtained by the backbones (i.e., upsampling the rep-
resentations if needed, -B suffix). In this way, we investigate both lower-level fea-
tures based on backbones pretrained on millions of images (ImageNet), and task-
specialized higher-level features for semantic segmentation (COCO (Lin et al., 2014)
and ADE20k (Zhou et al., 2019) datasets—the latter explicitly includes the cate-
gories of the considered textured objects). We also considered the features from
the pre-trained backbones of recent self-supervised approaches, including MoCo
v1, v2, v3 (He et al., 2020; Chen et al., 2020b, 2021) and PixPro (Xie et al., 2021).
We upsampled the features picked at one of the last three residual stages (testing
all of them) and reported the best-performing configuration. More details are avail-
able in Appendix C.1. As BaseLINE model we considered the case in which the pixel
representations are left untouched (i.e., pixel color/brightness).

6.3.3 Video streams

LivingRoom

Figure 6.3: Sample frames from the three 3D scenes (objects rotate and scale while
moving) and from real-world videos.

We used photo-realistic 3D Virtual Environments within the SAILenv platform
(Meloni et al., 2021), that provides pixel-wise semantic labeling and motion flows
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of potentially endless streams. We created three 3D scenes to emphasize different
and challenging aspects on which we measure the skills of the agents.” The agent
observes the scene from a fixed location, and some objects of interest move, one at
the time, along pre-designed smooth trajectories while rotating and getting closer
to/farther from the camera. We denote with the term lap a complete route traveled
by each object to its starting location.

We designed three different scenes. (i) EMpTYSpaCE: four photo-realistic textured
objects from the SAILenv library (chair, laptop, pillow, ewer) move over a uniform
background. The goal is to distinguish them in a non-ambiguous setting. (ii) Sovip:
a gray-scale environment with three white solids (cube, cylinder, sphere) is consid-
ered. Due to the lack of color-related features, the agent must necessarily develop
the capability of encoding information from larger contexts around each pixel. (iii)
LivincRoom: the objects from EmprySpack are placed in a photo-realistic living room
composed by other non-target objects (i.e., an heterogeneous background with a
couch, tables, staircase, door, floor), and multiple static instances of the objects of
interest. Samples are shown in Fig. 6.3 (top). We created three pre-rendered 2D
visual streams by observing the dynamic scenes (256 x 256 pixels, with ~ 51k, 12k
and 20k frames, respectively, corresponding to 31 completed laps for each object),
both in grayscale (BW) and color (RGB)—SoLip is BW only.

Notably, we also discuss experiments run with natural video streams. We con-
sider two long real-world videos, Rat (256 x 128) and Horsk (256 x 192), proposed
by Liang et al. (2020), that recorded the behaviour of a rat and a horse (actually
horse-+jockey), respectively. These videos® are used to assess the capability of the
proposed methods to generalize to real-world scenarios, with rich visual textures,
realistic illumination and non-fixed camera.

6.4 COAT: attention-based model

In this section we describe COAT (Consistency Over Attention Trajectory), a novel
approach to online learning from a video stream. COAT is built around the idea of
using a scanpath-based focus of attention mechanism (Zanca et al., 2020) to explore
the video and to drive the learning dynamics in conjunction with motion informa-
tion. Human-like attention trajectories has been recently proved to efficiently select
the most salient information of the video stream when learning with deep archi-
tectures (Tiezzi et al., 2020). We propose to learn representations that remain con-
sistent over the slow movements of the simulated attention gaze (Sec. 6.4.2), since
those movements are likely to cover visual patterns with the same semantics (Rucci
and Poletti, 2015; Rucci et al., 2016). Attention is paired with information coming

°Code, data and selected hyper-parameters can be downloaded as described in Appendix B, C.
®https://www.kaggle.com/datasets/gvclsu/long-videos
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Figure 6.4: A rectangle rotates toward the right, attracting the attention a; (red
nodes) that explores it. Then, a triangle enters the scene, and the simulated gaze
quickly moves on it (saccade). The red path links nodes on which we enforce tem-
poral consistency (not across saccades). For each t, some coordinates (yellow) are
sampled in the moving region that includes a;, while other points (orange) are sam-
pled outside of it. Solid lines (positive edges) link spatially coherent samples; dashed
lines (negative edges) are about the contrastive term.

from motion (Sec. 6.4.3), that intrinsically suggests the spatial bounds (Sec. 6.4.4)
of the attended area. This leads to a spatio-temporal unsupervised criterion that
promotes coherence in the representations learned while observing what is moving
(Fig. 6.4). In order to avoid trivial solutions, we augment the criterion with a con-
trastive term (Sec. 6.4.5) that favours the development of distinct representations
of pixels that are inside the moving area compared to those of pixels that are right
outside of it. Thanks to a graph-based formalization of this approach, we define a
stochastic procedure (Sec. 6.4.6) that introduces variability in the information pro-
vided to the learning algorithm and leads to faster processing, also mitigating the
effects of noisy motion information.

6.4.1 The model

Being X the set R“*"*¢, the feature extractor F is simply a neural network model
that implements the function f(-,0): X — F, with F = R»*h>d where 6 indicates
the weights and biases of the network. Assuch, f(I;, 0) is an encoded representation
of the frame where, for each pixel, we have a vector with d components (Fig. 6.2).
The network evolves over time and 6; are the weights and biases at time ¢. In the
following, we will use the shortcut f; := f(I;,6;) to denote the features extracted
at time t. For the sake of simplicity, f;(x) is the feature vector picked for the pixel
at 2D coordinates x € Z°. In online learning from a video stream V), the network
weights 0,1 are obtained updating the previous 6;, using a law that depends on
the gradient of a suitable loss function L with respect to parameters 6. Such loss
function L implements temporal and spatial consistency constraints to encourage pixel
representations to be consistent in time and space, with respect to locations virtually
connected by the attention trajectory and by motion, respectively.
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6.4.2 Human-like attention

The first pillar of our model is a function ¢ — a(t), yielding an explicit estimate of
the 2D coordinates where humans would focus the attention” at each time . Among
the various attention models yielding temporal trajectories (Borji and Itti, 2012), the
recent unsupervised model by Zanca et al. (2020) achieved state-of-the art results
in simulating human-like attention. The authors showed that visual cues, such as
texture and motion, can act as gravitational masses. The equation of the potential of
the gravitational field, ¢(x, ) := —(2m) ! J71og ||x — z||pu(z, t) dz, is at the basis of
the attention model, where Z is the continuous set of frame coordinates and p(x, f) is
the total mass at (x, t). In particular, the magnitude of the brightness and an optical-
flow-based measure of motion activity are modeled as masses, and their impact is
controlled by two positive scalars a;, and &, respectively. The focus of attention is
modeled as a point-like particle subject to the above potential (including inhibition
of return), and its trajectory a(f) is determined integrating the following equation

with initial conditions a(0) = a° and 4(0) = a!,

i(t) + pa(t) +Ve(a(t),t) =0 >0, (6.1)

where the dissipation is controlled by 1 > 0 and V¢ is the spatial gradient of the
potential. Patterns in human-like attention have been extensively studied (Kowler,
2009): we introduce here a few notions that will be exploited in the following. It is
known that the gaze performs fixations in locations of interest, with relatively low
speed movements. Smooth pursuit consists of slow tracking movements performed
to follow a considered stimulus. Differently, saccades are fast movements to relocate
the attention toward a new target. The first two categories of patterns can be ap-
proximately separated from the latter exploiting a thresholding procedure on gaze
velocity, based on some v > 0.

6.4.3 Temporal consistency

During fixations, the attention spans a certain part of an object, with limited dis-
placements of the gaze. Similarly, during smooth-pursuit the attended moving area
has uniform semantic properties. Differently, during saccades, the attention switches
the local context, shifting toward something that might or might not belong to the
same object (Rucci et al., 2016). Assuming the validity of these notions in case of
artificially generated scanpaths, we implement temporal consistency by defining the

7In this chapter, we will only consider free-viewing exploration, i.e., the viewer is not driven
by any specific task but simply exposed to a novel environment. In such conditions, experimental
evidence shows that the attention trajectory adheres to broadly consistent and predictable patterns
(Zanca and Gori, 2017).
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loss function® Lt; such loss function (i.) restricts learning to the attention trajectory,
filtering out the information in the visual scene (Tiezzi et al., 2020) and (ii.) avoids
abrupt changes in the feature representation during fixations and smooth pursuit,

Lr(fi fr-1) o= e || fe(ar) — feo1(ae) 1%, (6.2)

where || - || is the Euclidean norm?, and 7; is equal to 0 in case of saccades, other-
wise it is 1. This loss will be paired with other penalties described in the following,
thus avoiding trivial solutions.

6.4.4 Spatial consistency

Temporal consistency is not enough to capture the spatial extension of visual stim-
uli, since it is only limited to the attention trajectory. Motion naturally provides such
spatial information, and we follow this intuition designing agents that learn by ob-
serving moving attended regions.!? As a matter of fact, motion plays a twofold role,
being crucial in defining the attention masses and as a mean to extend the notion of
consistency to a frame region, i.e., spatial consistency. Formally, for each fixed t € N,
we indicate with S; C Z° the set of frame coordinates that belong to the region of
connected moving pixels that includes a;.!! We introduce what we refer to as spatial
attention graph at t, Gy, with a node for each pixel of the frame (Vx € Z°) and with
two types of edges, referred to as positive and negative edges. Positive edges link
pairs of nodes whose coordinates belong to S;, while negative edges link nodes of
St with nodes outside the moving region. The positive edges of the attention graph
allow us to introduce a spatial consistency loss Lg,

1 2
Ls(f) =5 X fix) = fi(2)I, (6.3)
X,2E84,x#z
that encourages the agent to develop similar representations inside the attended
moving area S;. The notion of learning driven by the fulfilment of spatio-temporal
consistency over the attention trajectory (Ls and Lt of Eq. 6.2 and Eq. 6.3) is the
second pillar on which our model is built.

6.4.5 Contrastive loss

In order to prevent the development of trivial uniform solutions, which fulfill the
spatio-temporal consistency, we add a contrastive loss Lc that works the opposite

8For the sake of readability, we will always omit the dependency of the loss function on param-
eters 6 of the neural model.
9We also consider the case of feature vectors with unitary Euclidean norm—see Appendix B.
19n the case of egomotion (i.e., camera moves over time), filtering out camera motion with hard-
ware or software techniques is appropriate.
'Moving pixels are detected as detailed in Appendix B.
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way Lg does. In particular, Lc exploits negative edges of G to foster distinct repre-
sentations of pixels inside the moving area compared to the ones of pixels outside
of it,

~1
Le(fe) = ( ). ||ft(x)—ft(z)||2+e> , (6.4)

X€S4,z€04

where O; = Z°\ S; is composed of frame coordinates not in S; and € > 0 avoids
divisions by zero. We notice that this contrastive loss has a different structure from
InfoNCE losses (see Sec. 2.3 and Sec. 6.5).

6.4.6 Stochastic spatio-temporal consistency

These spatial and contrastive losses are plagued by two major issues. First, the num-
ber of pairs in the summations of Eq. 6.3 and Eq. 6.4 is large, being it (1/2)[S¢|(|S¢| —
1) and |S¢|(wh — |S¢|), respectively, making the computation of the loss terms pretty
cumbersome. Secondly, whenever an exact copy of a moving object appears in a
static part of the scene, there will be pixels of the first instance that are fostered
to develop different representations with respect to pixels of the second one, what
we refer to as collision. However, this clashes with the idea of developing a com-
mon representation of the object pixels. Hence, we replace G; with the subgraph
Gy, that is the stochastic spatial attention graph at time ¢, composed by nodes that are
the outcome of a stochastic sub-sampling of those belonging to G;. In particular,
the node set of G; is the union of S; C S; and O; C O;, where a4; is guaranteed to
belong to the former. Edges of G; are the positive and negative edges of G; con-
necting the subsampled nodes. The key property of the stochastic graph is that the
number of positive and negative edges is a chosen e > 0.The set S; is populated by
uniformly sampling nodes in S;, ensuring that a; is always present, while O; is pop-
ulated by sampling from a Gaussian distribution centered in 4; and with variance
o, discarding samples ¢ O;.!? Large ¢’s lead to sampling data also far away from
the focus of attention, while small ¢’s will generate samples close to the boundary
of the moving region. In the example of Fig. 6.4 we emphasized how the attention
bridges multiple instances of G; over time, yielding a stochastic attention graph. Such
a graph reduces the probability of collisions, both due to the random sampling and
to the control on the sampled area by means of ¢, and it introduces variability in the
loss functions also when computed on consecutive frames. Moreover, the impact of
imperfect segmentation of the moving region is reduced, since only some pixels are
actually exploited, re-sampled at every frame. Since the number of pairs is bounded,
the stochastic graph makes the formulation suitable for real-time processing. Vary-

12We selected ¢ to be & +/|S| by means of an integer spread factor § > 1. We repeat the Gaussian
sampling until we collect the target number of points in Oy, up to a max number of iterations.
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e=1k p=1 e=20kp=1  e=20kp=5

Figure 6.5: Samples of stochastic spatial graphs in EmpTYSPACE, varying related
hyper-parameters (same color patterns of Fig. 6.4).

ing the above introduced parameters e and 8, we can model stochastic consistency
graphs with different properties, as showed in Fig. 6.5.

6.4.7 Cumulative loss

We define L as the cumulative loss at a certain time instant {, where the contributions
of Eq. 6.2, Eq. 6.3, Eq. 6.4 are weighted by the positive scalars A, As and A,

L(ft, fi-1) == ArL1(fi, fi-1) + AsLs(ft) + AcLe(fy)- (6.5)

The losses Lg and L are the stochastic counterparts of Lg and L, respectively, in
which the sets S; and Oy are used in place of Sy and O;. We define VL to be the
gradient of the loss with respect to neural network parameters 0;, that drives the
online learning process, ;11 = 0; — aVL(ft, fi—1), with « > 0 (learning rate) and
8 some random initialization of the parameters of the network.

6.5 CMOSFET: motion-based model

Motivated by the considerations about the paramount role of motion in learning vi-
sual skills mentioned in Sec. 6.1, we propose to move a step forward. Here we face
the feature learning problem with a neural architecture designed to jointly learn to
estimate motion and extract motion-conjugated features (Betti et al., 2022b). This
idea is also inspired by recent studies (Milner, 2017) about brain functioning, sug-
gesting that neural pathways for identifying objects and understanding their spatial
interactions might be much more intertwined (continuous cross-talk) than what
previously thought (Cloutman, 2013). In our method, the learning process happens
in a continual manner, so that we refer to our method as Continual MOtion-based
Self-supervised Feature ExTractor (CMOSFET).

Noteworthy, CMOSFET also learns motion estimation in a continual unsuper-
vised setting, inheriting the experience described in Ch. 5. COAT model, proposed
in Sec. 6.4, is very related to the idea that we are going to describe, since it learns
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COAT CMOSFET

Self-Supervision signal Attention and motion Motion
External components Attention None
Learning principle Spatio-temporal consistency Motion-feature conjugation
Contrastive mechanism Inside vs outside of attended Things that move in different di-

moving blob rections
Contrastive loss Custom InfoNCE-like
Computational structure Plain Multi-level
Learning dynamics Online Online with fast/slow learners
Sampling Centered on focus of attention Based on motion and features

Table 6.1: Informal summary of the differences between the two proposed methods,
COAT and CMOSFET.

online from a video stream. However, CMOSFET has a more complex structure and
does not rely on external components (the attention trajectory). In order to easily
grasp the difference between COAT and CMOSFET, the reader can refer to Tab. 6.1.

Following the deep and compositional nature of modern neural architectures for
computer vision, we assume that processing the stream ) with model F '3 results
in extracting pixel-wise features at multiple (N > 1) levels of abstraction, indexed
by ¢ € [1,N]. In CMOSFET, a key role is played by the way in which we use op-
tical flow. In Ch. 5 we introduced optical flow and showed that networks for flow
extraction can be trained in a continual online fashion, without replay buffers or spe-
cific continual learning methodologies. However, in the proposed framework, not
only optical flow is estimated in a continual learning fashion, as in Ch. 5, but also
higher-level flows (generalization of optical flow, tracking higher-level features) are
continuously estimated.

Our approach processes frames in an online manner with a two-branch neural
architecture, continuously-and-jointly learning to extract pixel-wise motion fields
and pixel-wise visual features, in a self-supervised manner. Our contrastive crite-
rion (Sec. 6.5.3) revisits the definition of positive and negative pairs, establishing
spatio-temporal correspondences/contrasts among pixels belonging to consecutive
frames. Similarly to what we have done in Sec. 6.4, we make learning affordable by
restricting the contrastive loss to a group of stochastically selected pixels.

Motion consistency (Sec. 6.5.2) naturally regularizes feature learning over time,
and we gain further stability and reduce catastrophic forgetting by introducing a fast
learner / slow learner implementation (Sec. 6.5.4), where the fast learner is driven

13Due to the more articulated structure of the approach described in this section, we use the no-
tation f for the elementary feature extractor and F for the overall feature-extraction model.
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by gradient steps while the slow learner model smoothly adapts to the video stream
via a momentum-based update scheme.

Notably, motion is the only driving signal for the development of the visual fea-
ture extractor, which conquers invariance properties naturally induced by the mo-
tion fields.

6.5.1 Multi-level feature flows

We indicate with f* the feature extractor of the ¢-th level, consuming the output of
1 as input, see Fig. 6.6 (green boxes). The notation f(x) indicates the feature

|:| Neural Nets ] Frame
I:' (multiple layers)
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Figure 6.6: The architecture of CMOSFET. Given a pair of consecutive frames I;_1
and I, pixel-wise features ( ffl , f{) and motion flow &} are extracted at multiple lev-
els, indexed by /.

vector of length d’ from level ¢ at the 2D spatial coordinates x and timestep ¢, while
Fi=H ff, ¢ =1,...L} is the collection of all the output features, with ¢ = 0 being
the degenerate case (f? = I;). We now introduce the generic notion of feature flow as
a generalization of optical flow when associated to arbitrary visual features f/, in-
cluding I; and more abstract features, motivated by the theoretical insights of Betti
etal. (2022b). The notation &' is used to indicate the function that extracts the ¢-th-
level feature flow, being Jf (x) the flow vector at location x and timestep ¢. Here and
in the rest of the section, for the purpose of conciseness, the aforementioned sym-
bols f and J will be overloaded depending on the specific context in which they are
exploited, using them to denote functions or to represent their respective outputs,
without any ambiguities.

It is convenient to represent motion in terms of displacement vectors between
two consecutive frames, so that the feature flow J; establishes a point-wise corre-
spondence between some features at f;_; and f;, and it allows the approximate re-



6.5 CMOSFET: motion-based model 101

construction of f; 1 given f; (or vice-versa).!* Formally, neglecting the superscript
¢ and introducing the warping operator W:

fi—1(x) = W(ft,0t)(x) == fi(x + 5 (x)) (6.6)

The flow J; can be computed by a neural network § that processes the representa-
tions of a pair of frames, at time t — 1 and t, following Ch. 5. We cast this principle
into the N-levels architecture described so far, so that J} is the feature flow at level
¢, and it depends (see Fig. 6.6, red boxes) on the frame representations produced
at the level below'?, f*~1. Along with the feature extractors in F, we use the no-
tation D to indicate the collection of all the neural networks §'’s, dedicated to the
computation of flows.

The classic optical flow has a clear meaning related to apparent motion of ob-
jects with respect to the camera. However, it is largely known that this correspon-
dence looses its strict physical interpretation when considering non-ideal conditions
(e.g., strong occlusions, non-textured objects, changes of lightning, etc.) (Horn and
Schunck, 1981). This consideration becomes very precious when interpreting the
feature flows &/ with £ > 1. In deep architectures, higher-level features typically
correspond to increasingly abstract representations that emerge from the learning
process. As a result, it is challenging to explicitly define expectations for 5f. Ad-
ditionally, higher-level features tend to encode information from a larger neighbor-
hood around a given location in I; (see receptive fields in convolutional networks),
causing local changes in I; to potentially affect feature vectors associated with dis-
tant locations. Consequently, our multi-level flows are not accompanied by prede-
termined interpretation but rather serve as latent signals that facilitate the transfer
of information among motion-connected locations, as we will delve into shortly.

6.5.2 Flow-conjugated representations

Several studies have investigated the idea of acquiring features that align with mo-
tion (Bregler, 1997; Xiong et al., 2021; Pathak et al., 2017). Recently, Betti et al.
(2022b) introduced the notion of feature fields which are “conjugate fields with re-
spect to motion”. This concept is characterized by constraints that specify the con-
nections between a collection of arbitrary pixel-wise characteristics and the motion
signal. Following such a work, we consider the bidirectional conjugation between
features and their respective flows of Eq. 6.6 as an essential desirable property for
learning purposes. On one hand, fulfillment of the approximation in Eq. 6.6 can
be interpreted as the constraint that enforces flows to be consistent with respect to

14We removed the layer index on purpose, since this description is generic. As it will become clear
shortly, multiple feature levels can be associated to the same flow.
15Notice that we defined f0(x) := I.(x) for any timestep, i.e., the original pixel representations.
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some “given features”, as in classic optical flow, where the features are brightness
levels or colors. On the other hand, it stimulates “learnable features” on consecu-
tive frames to be consistent with some estimated flow, that is the dual of plain optical
flow, where features are given (visual input I;). Formally, we define the following
consistency penalty L. for the constraint of Eq. 6.6,

Lo frafi) = - Tp(fia() = W(f ) (), (67)

being p a differentiable penalty function, that we selected to be the generalized Char-
bonnier photometric distance, p(a) = (||a||*> + €)¢ (Sun et al., 2010), with ¢ = 0.001
and = 0.5, as in Ch. 5.

Conjugation Loss The consistency penalty of Eq. 6.7 represents a generic loss that
could be straightforwardly exploited for learning purposes, using the features and
flows yielded at each level. However, such implementation would not introduce any
explicit cross-layer relation between the two branches (apart from the one arising
from the cascaded feature computation). We propose to exploit three instances of
the penalty in Eq. 6.7 to setup a loss function!® that shapes the way features and
flows are developed across the model,

Lfonj = ,R’(éf)
+ Le(8F, L1 ) e (i)

+Le(6F, fia ) e (i)
+ L0 f Y, e i)

(6.8)

where R (/) is the usual regularization term of optical flow, proportional to the
sum of squares of the spatial gradient of the flow, V¢, and required for the well-
position of the flow extraction problem (Horn and Schunck, 1981). The role of the
other three operands in the sum of Eq. 6.8 is illustrated in Fig. 6.7, and described in
the following: (i.) is the consistency between features and flow computed at layer
¢, as expected; (ii.) is the consistency of the features of layer £ and motion from the
first level, encouraging f* to be compatible with the displacement yielded by clas-
sic optical flow—i.e., learning promotes the preservation of a connection between
higher-level features and the lowest-level motion, which is more directly associated
with the fine details of the original image; (iii.) is the consistency between flow es-
timated in level ¢ with the features of the previous level, to encourage higher-level
motion flows to be compatible with less abstract features. We notice that the term
iii. is the usual loss for optical flow estimation, applied at the different levels of the

16For the sake of readability, we omit the scaling factors in front of each term in the summation.
Also, we will always omit the dependency of the loss functions on parameters of the neural model.
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Figure 6.7: Illustration of the three L. terms (i., ii., iii.) in Eq. 6.8. Each of the
three sub-pictures include portions of the architecture of Fig. 6.6, while connections
indicate the dependency introduced by the £, term. Case i. is about a single level,
while 7i. and iii. introduce cross-level dependencies.

feature hierarchy. It is interesting to analyze the meaning of the conjugation loss
in the case of £ = 1, the lowest-level flow. Intuitively, 5} flow is closely related to
classic optical flow, since keeping only iii. in Eq. 6.8 makes it equivalent to the usual
loss for optical flow estimation (recall that f° is I.). Moreover, terms i. and ii. de-
generate to the same term. To enforce this analogy and supported by preliminary
experiments, we stop gradients to propagate to § through the i. and ii. losses, that
allows our model to guarantee that &} is coherent with the classic optical flow, that
also properly drives the development of f{ ; and f/ for all the levels of the network.

6.5.3 Self-supervised contrastive learning

Despite these feature-flow constraints, the objective of Eq. 6.8 can be easily min-
imized by trivial solutions (e.g., spatially uniform features with arbitrary flow),
similarly to what happens in COAT. Then, we propose to introduce a flow-driven
contrastive loss that aligns with the core principles of this section and encourages
the emergence of meaningful features. Unlike popular contrastive approaches that
are aimed at image-level global features (see Sec. 2.3), here we focus on the case
of pixel-wise representations, thus we reconsider the role of positive and negative
examples. Our idea consists in following the well-known Gestalt principle which
sensibly states that things that move together often carries similar semantic informa-
tion. Furthermore, our objective is to extend this concept to the scenario of learning
from a visual stream, where the goal is to establish relationships not only between
representations extracted at a single time instant but also across consecutive frames.
In order to formally present our contrastive loss, we need to introduce three further
ingredients, that are a similarity function s, a way to identify positive and negative
pairs, a sampling strategy to make learning affordable. We will avoid specifying the
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Figure 6.8: Self-supervised loss, considering a pair of consecutive frames ( I;_1,
e];), at the first level of the feature hierarchy (¢ = 1, notice that it holds for any
(). The objective L}, f (Eq. 6.11) is the sum of two contrastive penalties com-

puted through L+. The first contribution (left) encourages the development of fea-
tures by comparing features extracted on the same frame (I;_1), while the second
term (right) encourages alignment between features extracted in a pair of frames
(It—1, It), thanks to flow matching (warping coordinates of items on one side of
(dis)similarity relationships, e.g. A — A’, B — B/, C — C’). Green (red) links
connect pixels whose features are encouraged to be similar (different) according to
our motion-based criterion.

layer index £ unless needed.

Similarity Function

The similarity function s is responsible of comparing features for a generic pair
of pixel coordinates (x;, xx). Such features are obtained by extractors that we will
generically indicate with ¢ and / for the first and second element of the pair, respec-
tively. The reason we introduce two different extractors will be made clear in the
following and is related to the learning dynamics. In fact, we will consider the case
in which x; and x; belong to the same frame, hence ¢ = h, and the case in which
they belong to consecutive frames at t — 1 and t (¢ # h). In the former case, no
warping of the pixel coordinates will be involved, that is equivalent to consider a
degenerate instance of the warping function with null displacement for all its in-
puts. In the latter case, x; is warped by motion J(x;) before the feature extraction,
i.e., we retrieve the location of the warped pixel x; according to the estimated flow
J, before extracting features. Formally,

s(xi, Xk, 6,8, 1) := T 'sim(g(x;), B(W(xx, 6(xx))))

that is the T-scaled cosine similarity with sim(a,b) := a-b/(]|a||||b||) and || - || the
Euclidean norm.
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Soft assignment of positive and negative pairs

Gestalt assumption (Wertheimer, 1938) is exploited to identify positive and nega-
tive pairs, considering as positive those pairs of pixels that move coherently, and as
negative those pairs that move in a different manner. Of course, this is not expected
to be strictly holding in practical scenarios, so we adopt a soft-assignment strategy
to mark pairs depending on both distance and flow. Given a pixel at x, all the spatial
coordinates of a given frame are evaluated in order to identify positive and negative
examples. As a result, a pair that is composed of x and one of the nearby pixels with
similar motion is a positive pair, while a negative pair is composed of x and one of the
distant pixels with different motion. While this is a sensible learning signal, we need
to mitigate the effect of the natural violations of the assumption (for example, a non-
rigid object will have different motion patterns in different parts of its surface, there
could be static clones of a moving instance, etc.). We indicate with p;(x;, x;) the con-
fidence score of (x;, x;) being a positive pair, while 75 (x;, x;) is the confidence score
of (x;, x;) being a negative pair, each of them in [0, 1]. Scores 15 and ps are computed

as
i — x|

ok 69)

. i — x| '
psl ) = [sim(0(x),0()) > ] (1= L] )
where [-] is 1 if the condition in brackets is true, otherwise it is 0 (Iverson bracket).
Thresholds 1y, T, € [—1, 1] are selected to filter out pairs with uncertain similarities,
with the condition 7, > 17;, which ensures that p and n are non-zero in a mutually-
exclusive manner. The rightmost operands of the products in Eq. 6.9 are the distance
between x; and x; scaled in [0, 1] and the complement of such a distance, respec-
tively. Noticeably, motion direction is not significant for static points (motion vector
is smaller than a fixed threshold 7;;,): a moving point and a static point are marked as
dissimilar with maximum confidence score, independently on their distance, while
a pair of static points is neither similar nor dissimilar. See also the illustration in
Fig. 6.8, where positive pairs are connected by green lines, while red lines link neg-
ative pairs.

ns(xi, xx) = [sim(d(x;),6(xx)) < T

Sampling

The number of positive and negative pairs might easily become large, since it is
quadratic in the number of pixels, making the evaluation of the contrastive criterion
computationally costly. For this reason, we introduce a motion-driven sampling pro-
cedure to make learning affordable, loosely inspired by Sec. 6.4. Here, we propose a
selection criterion based on motion and representations, following the spirit of the
section. The output of this procedure is a set of 17 coordinates X; C Z°, for each ¢,



106 Self-supervised online learning for autonomous visual agents

1
e Y
qﬁ]!'
]
'; -
- . . .
. . s
- - - - -
. - -
. LA * . o . 25 R
. v, " . *o' o5 e .
. » . . 3 .: ot . .
. 2. I . S . - . -
P .’ . & eyt . .t v .
. * * * - - * -
. - . b . - Py .
- PR T S bt ) . . B .
- * -
» - . e . *
e "0 N . * S o Y
- » - . ]
- - .' - . .“' "' » ‘
. 4
. . - " .
L . ” » . . . ® .
-
L

Figure 6.9: Illustration of different sampling strategies (¢ = 1). Orange dots (bottom
row) are points sampled from a visual stream (top row) in which a chair is moving
in a static background that includes three smaller objects (pillow, laptop, teapot).
First row: frame, estimated flow (different colors are about different directions),
winning feature component (different colors are about different winning compo-
nent). Second row, left-to-right: plain uniform sampling, motion-biased sampling,
and the proposed sampling driven by both motion and winning components. In the
last case, the sampled coordinates cover both the moving chair and other details of
the image in a balanced manner, while the first and second case give more emphasis
to the uniform region (first, second) or the moving object (second).

on which the contrastive loss will be evaluated. In detail, with the purpose of in-
jecting priors into the sampling procedure, for any given pair of frames of V from
which we compute features and flows, we model an ad-hoc distribution over the
pixel coordinates. Each pixel x at time ¢ has probability P;(x) of being sampled,
with ) c70 Pi(x) = 1. We define {P(x),x € Z°} ensuring that (i.) the probabil-
ity of sampling a point in moving areas is the same as sampling in static areas, and
that (ii.) the probability of sampling in areas where the j-th feature component has
the strongest activation (absolute value) is the same for all j’s. The rationale behind
this idea is that (i.) we want to ensure that in shots with limited motion the sam-
pling process is still biased toward moving areas (the informative ones), and (ii.)
we want to ensure that different visual patterns are represented in a balanced way
by the sampling procedure.

Formally, M is the set of coordinates of moving pixels and M are the coordinates
of the static pixels. We compute Sj,j =1,...,d, where set S]- collects the coordinates
of the pixels for which the j-th component of the learned representation is the largest
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one, ie., ;= {xz: argmax |f;_1(x;)| = i}, where arg maxa is intended to return
the index of vector a associated to the largest component. It is trivial to see that each
pixel coordinate x ends up in belonging to one of the following 2d possible sets,

{.A]'ZSJ'OM, AszSjﬂ./\;l,jZL...,d}.

If welet P;(x) be1/(2d - card(A;)), being A, the set to which x belongs and card(.A;)
its cardinality,'®, we get a balanced distribution of the probabilities across the sets,
Yaed PH(xX) = ..o = Yrea, P(x) = ﬁ. Given P(x), we sample 1 > 1 pixel co-
ordinates for each ¢, collecting their coordinates into &}, that is smaller than Z°. In
Fig. 6.9, we show an example of our sampling strategy, comparing uniform sampling
with motion-driven sampling and, finally, our motion-and-feature-driven sampling.
The picture shows how the proposed sampling procedure yields points on moving
objects (chair), while also representing portions of the frame with different visual
patterns. Differently, a uniform sampling ends up in giving a lot of emphasis to the
empty regions of the image. In Fig. 6.8, the elements of X; are marked with white
circles (toy example).

Contrastive loss

We are now ready to setup a InfoNCE-like contrastive loss in the usual log-exponential
form (see Sec. 2.3), giving more importance to positive pairs with large ps; and to
negative pairs with large n,

E-[—(g,h,5,P5,n§) =

j i s(xirx'rérgrh)
_Z ps(xi, xj) log——— e\ Xir%j I (6.10)
Xi,x]E)E Z es(x”x]' & )_{_Z},l&(xi, xz)es(x,,xz, ,gh)

X, EX

being Z = Y., ps(x,y) the normalization factor. The outer summation is re-
stricted to positive pairs, weighted by their degree of positiveness ps. The first el-
ement of each positive pair, x;, acts as an anchor, so that the similarity of the pos-
itive pair is contrasted by all the negative pairs involving x; (weighted by n;), as
can be appreciated by the denominator of the log-argument. Notice that the sums
of Eq. 6.10 are restricted to the sampled coordinates, belonging to A;. Finally, our
self-supervised objective L, 5 is obtained by instantiating Eq. 6.10 twice, relating

features from the same frame (at t — 1)!° and across two consecutive frames (t — 1

17We use f;_1 to be consistent with the coordinate frame of 6;, and |a| is the element-wise absolute
value of vector a.

18The overall number of sets (2d) can be smaller in the case of one or more empty intersections
(the normalization factor would be the number of non-empty sets instead of 2d).

9This is due to the fact that motion predictors output displacement vectors in the reference frame
att— 1.
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and t), respectively,

Loty = L4 (fi1, f{-1,0, ps,n5) + La(fi_1, fi 161, ps o). (6.11)

leading to an in-frame contrastive objective and a cross-temporal contrastive objec-
tive, respectively. Notice that, in the first term of the summation, the flow is set to 0,
since no warping is performed, as already discussed.

6.5.4 Learning over time

Pairs of consecutive frames are processed in an online fashion, with a single-pass
approach for each pair, and without any inputs from auxiliary memory buffers.

At each time step t, a new frame I; is provided by V and the previous one, I;_,
is kept in cache. Learning consists in performing a single update of the model pa-
rameters in the whole network (F and D) given frames I;_; and I;, with the goal of
minimizing the total loss L that considers both Eq. 6.8 and Eq. 6.11,

L= Y (Loonj L A0 s £, 81, 00)
7 (6.12)
+ Lfezf(ff—vffrfsf))r

where, for completeness, we also made explicit the list of arguments of Lfon i and

Lf el Such a loss function L is naturally regularized over time, due to the L’ ; terms
in the representation learning criteria, making it a natural instance of regularization-
based approaches to continual learning. Moreover, the spatio-temporal bridge intro-
duced on the sampled points by our contrastive loss (second term of the summation
in Eq. 6.11), introduces further regularity over time. It is natural to wonder whether
such regularity over time is enough to guarantee a good compromise between plas-
ticity and stability of the networks, hence mitigating catastrophic forgetting, in both
the motion estimators D and the feature extractors F.

We showed in Ch. 5 that, in general, the (regularized) criterion of Eq. 6.7 is
enough to learn to estimate pixel displacements ¢ over time by online gradient de-
scent on neural parameters y. Moreover, forgetting issues are not particularly ev-
ident due to the locality of the motion estimation process, resulting in negligible
interference even in case of long streams with significant variability. On the oppo-
site, our initial experimental findings indicated that learning over time poses signifi-
cant challenges for the feature extractors F, as we observed notable forgetting when
approaching the problem using the naive approach. Then, we borrow an intuition
from both contrastive learning (see Sec. 2.3) and continual learning, where there are
two instances of the same model and some weights are updated by a momentum-
based moving average. Despite being conceptualized in different configurations
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(Tarvainen and Valpola, 2017; He et al., 2020; Arani et al., 2022), these approaches
share the idea of using an Exponential Moving Average (EMA) scheme to update
the parameters of a (teacher) network, while another network (student), which is
continuously updated by gradient descent, is enforced to be consistent with it, pre-
venting rapid changes in the parameter space. The EMA-updated network acts as
a slowly progressing encoder, with parameters that evolve smoothly, and it can be
employed both to stabilize learning of the student network and to better preserve
information from the past.

Since our model is designed to extract and relate representations from a pair of
frames (I;_1, I;), we propose to extract features from the old frame using a feature
extractor whose weights, referred to as GtGRA (GRAdient-updated), are updated by
online gradient, while the current frame is processed by an EMA-updated network

(slow learner) with the same architecture and weights 6FM4,

A
fla = FUEL O

fio= fL e,

where, for the sake of clarity, we overloaded the notation, making explicit the weight
argument. Fig. 6.10 summarizes the structure of whole model, emphasizing the two
instances of the feature extractors (GRA and EMA). Such two networks are naturally
bridged by the Ly, s (Eq. 6.11) component of the loss function L, that promotes co-
herence between them in the motion-driven manner proposed in this section. While
the GRA network is updated by the gradient of L with respect to its weights and us-
ing learning rate ay > 0, the other network is updated by EMA with coefficient
¢e[o1),
thrRlA = QGRA - “fveL(-Ft—lr Fi, Dy)

or = gorM + (1 - 0)orf,

where VgL is the gradient with respect to the weights in F (the feature extractors),
with 6; some random initialization of the neural parameters. Notice that F; indi-
cates that features F; are treated here as a constant value (they come from the EMA
instances). The learning procedure is detailed in Alg. 5.

6.6 Experiments and discussion

Setup. To compare COAT and CMOSFET, we use the same experimental setup.
The agent learns by watching the first 25 laps per object and, only in the subse-
quent laps, receives a total of 3 supervisions (k¢, y;) per object, spaced out by at least
100 frames. Learning stops when all the objects complete 30 laps and, finally, per-
formances are measured in the last lap, considering the F1 score (averaged over the
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Figure 6.10: Learning over time with CMOSFET. Exponential Moving Average
(EMA) networks and gradient-updated networks (GRA) extract features from I;
and I;_1, respectively. White-dotted parts of the model are in addition to the ones
of Fig. 6.6, and the diagonal bars (//) indicate that no gradients are propagated on
that path. The loss function L of Eq. 6.12 drives the learning process of the motion
predictors and of the feature extractors, encouraging GRA to be coherent with EMA
and instantiating the motion-induced contrastive criterion.

categories) associated with predictions of the open-set classifier?. Parameters of the
attention model were adapted according to a preliminary run of the model (a,, ap,
). For each video stream, we searched for the model hyper-parameters that maxi-
mize the F1 along the attention trajectory (1 pixel per frame), measured during the
30-th laps. To evaluate the performance of our approaches on the considered real-
world videos, we adopted a very similar methodology. In this case, ground truth for
evaluation comes from manual labelling, provided by Liang et al. (2020) on selected
frames. The grids of parameter values that we considered and the optimal values
are reported in Appendix B and C, together with further details.

COAT: neural architectures We evaluated the proposed approach considering two
different families of deep convolutional architectures yielding d output features, re-
ferred to as ResUNer (UNet-like architecture, Ronneberger et al. (2015), based on
ResNet) and FCN-ND (6-layer Fully-Convolutional without any downsamplings —
Sherrah (2016)), respectively (see Appendix B for details). In this case, optical flow

2n the case of CMOSFET, features from all the levels {f(x)|¢ = 1,..., N} are considered and
independently normalized for each ¢, in order to account for large differences in magnitude between
the extractors.
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Algorithm 5 CMOSFET learning procedure. For each frame from stream V, features
are extracted, motion is estimated, and the proposed self-supervised loss L drives
the learning processes. The GRA and EMA network instances are initialized to the
same weight values.

Require: Stream V of length T, potentially infinite; neural nets D and F with initial
parameters set to 1 and 6. Learning rates an, ay > 0and ¢ € [0, 1).
1t 1, OFRA g, oEMA L ¢,
2 fo=h f=h

3:

4. whilet < T do

5: Iy < next_frame(V)

6:

7. /* Cascade computation of flows and features */

8 for/{=1,...,/ = Ndo

9: of = o' (fFIL, fIoL 4D {> motion extraction on lower features}
10: L= fY ff:ll, 9? RAL {> GRA instance is used}
11: FL= LT, gEMAL {> EMA instance is used}
12:  end for

13:

14 Dy« {6{|t=1,2,...,N}

15 Frq < {ff¢=12,...,N}
16:  Fr+ {ff[¢t=1,2,...,N}

17:

18:  /* Weight update equations */

190 Y41 < e — am Vo L(Fi—1, Ft, Dy) {> grad. motion estimator update}
20: (-)tGJrRlA — OtGRA — fVQL(]:t,l,]-"t, D) {> grad. feature extractor update}
21: 93_\’11’4 — COFMA 1 (1 — C)GtGJFRlA {> EMA feature extractor update}
22:

23: F<—t+1
24: end while

is already available, since it is provided by the virtual environment (apart from the
real-world videos, for which we used RAFT (Teed and Deng, 2020)). Learning to
estimate the flow with a neural model (as we did in COAT) would just result in
increased computational efforts, without adding anything to the comparison about
the quality of the features?!.

CMOSFET: neural architectures. In this case we have feature extractors F and
flow estimators D. Each f* and each §° consists of a ResUNEr architecture (similar
to the one used by COAT), which is a variant of the U-Net network (Ronneberger

21 Differently, in the case of CMOSFET, we have learnt optical flow estimation since it is crucial in
the overall learning scheme.
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Table 6.2: F1 scores over 10 runs (mean =+ std), in seven different video streams
(EmpTYSPACE, SoLip, LivingRooMm, Rat and Horse with some -BW variants). The bot-
tom part of the table is about the main competitors of the proposed model, including
the raw-image (degenerate) baseline. The top part of the table collects reference re-
sults obtained with large-offline-pre-trained models, publicly available (references
in Sec. 6.3).

4 Paramms EMPTYSPACE SoLip  LivingGRoom RAT HORSE
BW RGB BW BW RGB RGB RGB
DPT-C 121M |0.66 0.67 0.64 0.35 0.39 0.59 0.83
gDPT—B 120M |0.71 0.69 0.68 0.39 0.39 0.58 0.87
3 DeepLaB-C 58.6M |0.49 0.61 0.57 0.31 0.34 0.56 0.86
& DeerLaB-B 42.5M(0.70 0.65 0.66 0.34 0.44 0.57 0.81
£ MoCo v1 8.5M [0.73 0.73 0.74 0.33 0.35 0.70 0.66
% MoCo v2 8.5M |0.75 0.76 0.74 0.41 0.43 0.59 0.79
5 MoCo v3 8.5M [0.76 0.76 0.76 0.41 0.44 0.58 0.64
PixPro 8.5M |0.31 0.46 0.41 0.30 0.22 0.59 0.70
_, Raw Imace - 10.50 0.45 0.18 0.10 0.23 0.67 0.66
; COAT (ResUner) 17.8M [0.55+0.03 0.71+0.03 0.50+0.01 0.31+0.04 0.25+0.07 0.59+0.04 0.71+0.07
E COAT (FCN-ND) 0.1M [0.60+0.05 0.51+0.07 0.48+0.03 0.24+0.01 0.28+0.03 0.42+0.05 0.50+0.08
& CMOSFET-Single 1.1M |0.60-+0.06 0.78+0.06 0.62+0.02 0.330.03 0.34=0.05 0.61+0.07 0.750.06
CMOSFET 2.3M [0.64+0.06 0.82+0.02 0.64+0.05 0.38+0.04 0.36-+£0.05 0.74+0.09 0.84+0.01

etal., 2015). We reduced the number of convolutional filters in each layer by a factor
of 4, while the number of per-pixel outputs is 32 for f* and 2 for 6 (horizontal
and vertical flow components). We considered two implementations of this model:
CMOSFET-Single, with a single level of feature and flow extractors (i.e., N = 1),
and CMOSEFET, with two levels, developing lower and higher-level motions (i.e.,
N = 2). For more details refer to Appendix C.1.

We apply a simple learning schedule to warm-up the motion estimators, avoid-
ing premature training of the neural feature extractors. During the first T, laps
we only learn the flow estimator at level 1. Then, if N > 1, we start learning the
teature extractor on the same level, and we wait further T, laps before applying
the same schedule on the following level. The procedure is repeated, progressively
activating learning on the whole network (see Apprendix C.2 for details).

6.6.1 Quantitative results

Table 6.2 reports the evaluation results of our proposed methods, considering the
F1 scores over the entire frame. Specifically, we focus on the related continual self-
supervised competitors (bottom part of the table), observing that CMOSFET out-
performs COAT in all video streams (see Fig. 6.12 and Appendix C.3 for qualitative
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comparison). The smaller variant CMOSFET-Single is already slightly superior to
the competitors, except for EMpTYSpACE-BW, where it is on par with the best com-
petitor. Although the superiority of the CMOSFET model is evident, we show in
Fig. 6.12 (right) that COAT achieves higher F1 scores along the attention trajectory.
We argue that the reason is its learning mechanism being biased towards the areas
that tend to attract the human-like attention. Concerning COAT, we can see in the
table that FCN-ND is often much less accurate, mostly due to the lack of spatial
aggregation in its convolutional architecture (with respect to ResUNET).

Notably, the largest gap between CMOSFET-Single and CMOSEFET is observed
in real-world videos (Rat, HorsE) that confirms the importance of higher-level mo-
tion. We remark that here the flow estimation is learned online from scratch, in con-
trast to COAT, that relies on a flawless motion signal from the virtual environment.
Moreover, CMOSFET models do not rely on explicit segmentation procedures for
learning, yet they effectively exploits the relationships between flows and learned
features. Comparing EmMpPTYSPACE-BW and EmMPTYSPACE-RGB, we notice a significant
gap in F1, suggesting that even though the Raw scores of grayscale and color rep-
resentations are similar, both COAT and CMOSFET efficiently exploits the intrinsi-
cally richer information encoded in RGB. Additionally, we observe that CMOSFET
encodes pixels in a reduced number of output features compared to competitors
(32 -2 vs. up-to-128), and has significantly fewer learnable parameters, with only
2M parameters (compared to 18M of COAT-ResUNEer, Tab. 6.2). This confirms the
capability of our method to develop informed but compact representations. Sur-
prisingly, our approach achieves interesting performance even when compared to
offline-pre-trained large architectures with 10-100M parameters (upper part of the
table). It is important to note that our goal is not to overcome large-scale massively
offline-trained models, since we learn from scratch in an online manner, specializ-
ing in the target environment. Nonetheless, CMOSFET beats these competitors in
EmPTYSPACE-RGB and Rat-rGB. We highlight the performance on the other real-world
video stream, Horse-rgB, where CMOSFET overcomes most of the offline-trained
models (all of the self-supervised ones) and it is only slightly behind the best one.
These results affirm the adaptability of our approach to the properties of the envi-
ronment at hand, with a fraction of the learnable parameters and processed data.

6.6.2 Qualitative results

Fig. 6.11 presents a qualitative analysis of the outputs of our models on three sample
frames, with similar trends observed across all video streams. Specifically, the sec-
ond and third columns depict the extracted flows from CMOSFET's first and second
levels, respectively. The features produced by CMOSFET allow the classification
procedure (recall that such procedure do not affect the feature learning process)
to completely discriminate all the different target objects (fourth column, predic-
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Figure 6.11: Three frames sampled from EmprYSrace, Rat and Horse

streams (first column). CMOSFET flows (first-level and higher-level

in second and third columns, respectively) are plotted according to istion Directions
the optical flow conventional color mapping-see the color wheel on

the right (Baker et al., 2007). Predictions in the fourth column show

a pretty satisfying adherence to the borders of the objects (target ob-

jects are highlighted with colors; the background class is present in all

the streams, reported with a light gray overlay).

tions). As it can be seen, the borders of the CMOSFET-based predictions appear
slightly thicker compared to the ground-truth object borders. Indeed, contrastive
learning is affected by noisy flow (recall that it is learned from scratch, jointly with
the features), which can easily result in false positive pairs, with one pixel belonging
to an object and the other just outside of it. Noticeably, the estimated optical flow
(second column) is very crisp in the case of EMPTYSPACE where the camera is fixed,
while it captures the effects of the moving-camera in real-world streams (second
and third row). Also, optical flow estimation is known to be inherently challenging
in nearly texture-free surfaces. Interestingly, comparing the two flow estimators of
distinct levels (second and third column), we notice how they appear to focus on
different parts of the frames, with flows that are somewhat related but clearly not
overlapping. This confirms that the network develop a latent higher-level motion,
challenging to interpret, but well suited to the learning process. It is worth noting
that, consistently with Ch. 5, we did not use any specific trick (Zhai et al., 2021) to
improve the flow extraction, such as spatial pyramids or occlusion handling, for the
sake of simplicity.

We investigated our results, showing in Fig. 6.12 (left) examples of pixel-wise
classification, highlighting some failures of Transformer-based DPT-B compared to
COAT and CMOSFET. Interestingly, using features from the considered state-of-the-
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Figure 6.12: Left: pixel-wise classification in two sample frames, comparing COAT
(ResUner) and CMOSFET with DPT-B (Transformers) on EmprYSpacE stream. Dif-
ferent colors indicate different class predictions. Right: comparison between F1
measured on the whole frame and F1 measured on the focus of attention (FOA).
While in Tab. 6.2 it is evident that CMOSFET attains higher performance in general,
in this barplot we can appreciate that COAT (ResUNET) achieves better F1 along the
attention trajectory.

art models can result in troubles in recognizing closer objects and also in discrimi-
nating objects from the background, due to the fact that their pixel representations
are typically strongly affected by a large context (i.e., such features do not transfer
well to our task). When presenting objects in unusual orientations, likely differ-
ent from what observed during the fully supervised training, they tend to perform
badly. Differently, our models—especially CMOSFET-adapt to the video stream,
learning coherent representations, that are useful when the object transforms its
appearance. Concerning COAT, the attention model focuses the learning process
on what is more important, and, although just a tiny number of supervisions are
provided, our model can roughly distinguish object, sometimes better than large
offline-trained competitors.

6.6.3 COAT: ablation studies

In order to evaluate the sensitivity of COAT approach to the key elements of the con-
sidered setup, we selected the ResUNET model of Table 6.2 and evaluated the F1 on
the focus of attention (the most significant one for this approach, as we remarked
in Sec. 6.6.1), under different conditions. Fig. 6.13 reports results of experiments
in which we changed the number of supervisions per object (Sec. 6.3), the number
of edges e (per type) in the stochastic graph (Sec. 6.4.6), we disabled the tempo-
ral coherence (Sec. 6.4.3), and we changed the length of the streams (discarding
Sorm in which differences were less appreciable). Even with a single supervision,
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Figure 6.13: First 4 plots (left-to-right, top-to-bottom): in-depth COAT experiments
on EMpTYSPACE (E) and LivingRoowm (L) RGB streams (F1 FOA-on focus of attention
trajectory). Last plot: timings (3 runs) for stochastic sampling (¢ = 10k) and no
subsampling at all, varying d.

the model is able to distinguish the target objects in EMPTYSPACE, while in the more
cluttered LivincgRoowm it benefits from multiple supervisions, as expected. Our pro-
posal is better than using a non-stochastic criterion (LivincRoom), and works well
even with a limited number ¢ of edges. Moreover, the agent benefits from relatively
longer streams (going from 15 to 30 laps), that allow it to develop more consistent
representations, and temporal coherence has an important role in the overall results.
For completeness, we highlighted in Fig. 6.13 (last) the computational benefits, in
terms of processing time (one lap per object, ~ 1.5k frames, i/o time is included),
brought by the stochastic subsampling, showing that they are more evident-with
respect to the total computational burden—for large d.

6.6.4 CMOSFET: ablation studies

In order to better understand the impact of key design choices, we perform abla-
tion experiments concerning some of the main components of CMOSFET, reporting
our findings in Fig. 6.14, that we describe from left to right, top to bottom. The
motion-feature conjugation term L,,; from the loss function (Eq. 6.8) provides im-
provements in all the streams (1st barplot), when compared to the case in which
feature extractors are only driven by the contrastive loss (i.e., Eq. 6.8 is composed of
iii. only), more evidently in real-world streams. It also improves stability among the
different runs, resulting in reduced standard deviation—apart from Rat, where the
lack of full conjugation leads to collapse to a very suboptimal solution with min-
imal variance. The adoption of a specific sampling strategy (2nd barplot) for the
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Figure 6.14: Ablation of CMOSFET components on four visually-rich streams (L
stands for LivingRoom, Hor for Horse). F1 is computed over the whole frame.
From left to right, top to bottom: the impact of the features-motion conjugation term
Lconj as presented in Eq. 6.8 (Full) compared to the case in which features are not
driven by the conjugation loss (i.e., when Eq. 6.8 is composed of iii. only-Flow only);
the role of different sampling strategies (Plain, Motion—-Mot., Motion and Features—
M.E.); EMA network (without or with); number of sampled points 77. See Sec. 6.5
for details.

contrastive term, guided by both Motion and Features (M.F. in Fig. 6.14), also had a
considerable influence on the results, sometimes dramatic as in the case of Rar. In
general, we notice that different sampling strategy (Sec. 6.5.3) might be optimal in
different streams, in relation with the kind of motion that is present in the respective
environments. Motion-only-guided sampling (Mot.) can yield slight improvements
with respect to vanilla uniform sampling strategy (Plain), due to the fact that it helps
focusing on the rather small moving areas. Learning without the stabilizing effect of
the EMA network (Sec. 6.5.4) generally leads to lower performance (3rd barplot), in
agreement with literature in both contrastive learning and continual learning. The
learning process is however still effective (apart from the challenging Rart), thanks
to regularization effects introduced by the spatio-temporal loss terms, although less
stable than when using the EMA scheme. We also separately evaluated the impact
of the number of sampled locations # in the contrastive objective (Sec. 6.5.3). It turns
out (4th barplot) that models developed in real-world streams consistently benefit
from a larger number of locations (7 = 200). Conversely, this trend is not evident in
synthetic streams, that have large static/uniform areas, where more dense sampling
does not yield more information.
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6.6.5 Remarks

In this chapter, we faced the challenge of developing an agent that learns to predict
pixel-wise identity information in a fully unsupervised continual manner (open-
set class-incremental setting). We presented novel approaches, leveraging focus of
attention, spatio-temporal consistency, and motion-based contrastive objectives.

Concerning our most promising method, CMOSFET, we considered multi-level
teatures and multi-level motion flows as conjugated one to each other, mutually con-
straining their development. CMOSFET is implemented by means of neural mod-
els trained to extract features and flows from scratch, driven by multi-level spatio-
temporal feature-motion constraints paired with a self-supervised contrastive loss
that promotes the emergence of meaningful features. We performed experiments
on video streams from virtual environments and real-world videos, showing how
CMOSEFET benefits from learning multi-level flows, significantly overcoming COAT.
Notably, CMOSFET performance are comparable to those of state-of-the art larger
models, obtained with large-scale offline training.



Chapter 7

Conclusions and future works

In this chapter, we summarize findings of the work presented in this thesis and we
highlight open issues for future research.

Progressively learning in the input space

In the first part of this thesis we suggested techniques to improve the training of
neural models, based on the idea of emulating natural gradual learning processes
by altering visual stimuli in the input space (input tuning).

Friendly Training is a technique to automatically break down a single, complex
learning problem into a sequence of small subtasks, each incrementally more chal-
lenging than the last. This learning schedule is actually implemented through input
transformations (simplifications), tuning the cognitive complexity of each step to
match the learner’s current skill level. We proposed two implementations differ-
ing in the way the tuned input is obtained, one based on direct-optimization and
the other involving an auxiliary neural model. Assessing the performance improve-
ment on a variety of benchmarks, we showed that the neural-based implementation
is largely preferable. This methodology not only enhances the model’s performance
but also fosters a more nuanced understanding of the learning process.

After a neural network has been trained on some well-defined task associated
with a certain data collection, it is often required to adapt on novel data, sometimes
incurring in non-stationary learning environments. Continual Input Tuning is de-
signed exactly for this scenario, plagued by the well-known catastrophic forgetting
problem. In this approach, we froze the model’s backbone and we exploited learn-
able transformations in the input space for environmental adaptation. The proposed
method is simple but effective in consistently improving the quality of the outcome
on multiple benchmarks.

119
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Learning plans and robustness. In both implementations of Friendly Training, a
set of parameters plays a pivotal role in governing the degree of simplification, in-
directly controlling the distance between the original sample and the transformed
counterpart. We have opted for quadratic laws to describe the evolution of these
parameters, meaning that the learning schedule is intense at the beginning, avoid-
ing prolonged engagement with overly simplified data, with barely no information.
Subsequently, the learning pace is more gradual, to allow for effective learning of
all the non-trivial complex details that should be captured in the input data. While
our results demonstrate notable performance enhancements, it remains plausible
that alternative learning strategies may yield higher levels of accuracy. We think
that an interesting direction for feature works lies in a proper investigation of dif-
terent learning plans, leading to different trajectories in the weight space. Also, we
conjecture that the proposed methodology can help in increasing the robustness to
adversarial attacks and forgetting, since it can discourage the discovery of spurious
correlations, but exhaustive experiments are needed.

Theoretical understanding of forgetting. Continual Input Tuning allows the net-
work to effectively leverage the pre-training knowledge and find a good trade-off
between plasticity and stability with modest computational efforts. However, the
reason for this success is not entirely clear. While the improvements can be intu-
itively connected with findings about the prevalence of forgetting in the last layers
of the network (Lesort et al., 2021; Ramasesh et al., 2021), it is of utmost importance
to gain deeper insights into learning dynamics of neural networks when exposed to
non-stationary environments. For this reason, we plan to get deeper insights into
the evolution of our learnable transformations over time.

Furthermore, Continual Input Tuning has been devised as a proposal for the
challenges posed by traditional continual learning benchmarks. Nonetheless, we
think that it would be interesting to explore the adaptation of this strategy in con-
texts where the learning sequence is defined by a meaningful temporal evolution.
We contend that, in such scenarios, incorporating concepts from Friendly Training
could yield an even more compelling analogy and potentially enhance the efficacy
of the approach.

Growing visual agents from video streams

In the second part of this thesis we proposed two methods (COAT and CMOSFET)
for self-supervised online learning on video streams, designed with the broad aim of
contributing to the development of autonomous visual agents. We proved that the
proposed methods lead to features that are useful in distinguishing objects, with the
more recent method (CMOSFET) exhibiting significantly better performance. For
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evaluation, we adopt an open-set class-incremental setting, exploiting 3D Virtual
Environments, as well as real-world video streams. Results are, on average, compa-
rable or better than the ones obtained using state-of-the art models, pretrained on
large visual collections, confirming the interest of these proposals for the research
community.

Improving stability. Recent works highlighted the inherent unstable nature of self-
supervised contrastive criteria (Zhang et al.,2021). CMOSFET is a pixel-wise motion-
based contrastive criterion, proposed in the context of a completely online learn-
ing procedure, and as such there are some stability issues, confirmed by the non-
negligible standard deviation of our results over multiple different initializations.
Another intrinsic source of instability stands on the sensitivity to the effects of the
tirst learning steps, where the flow estimators are obviously far from being able
to produce reasonable flows, thereby negatively affecting the feature development.
We would like to investigate whether introducing a developmental plan along the
lines of Friendly Training (Ch. 3) can help in increasing the stability. This would
involve gradually increasing the perceptual complexity of the video stream (resolu-
tion, texture, scene composition, etc.) or gradually increasing the complexity of the
contrastive objective.

Dealing with moving cameras. COAT and CMOSFET are designed to learn in en-
vironments where background areas are characterized by motion patterns that are
different from the ones of objects to which semantics are expected to be attached (or
that are almost static). Our results show that small (or relatively slow) camera mo-
tion, as the one of the selected real-world videos, can be easily handled or filtered
out, as we did in our implementation. However, we would like to develop specific
countermeasures to deal with strongly moving cameras. This would involve the de-
velopment of techniques for camera motion estimation and compensation, possibly
learnt together with the other neural modules in a fully end-to-end model.

Continual strategies. Concerning the continual aspect of the learning problem, we
have chosen a minimalistic online approach. However, we do not have extensive
evidence concerning performance with extremely long streams (e.g., more than 24
hours) and large number of object categories (e.g., hundreds of categories). We ar-
gue that more advanced continual learning strategies could be useful in mitigating
forgetting issues in such challenging situations. For instance, it could be useful to
heuristically detect steady states in the overall evolution of the system, in order to
take model snapshots and enforce consistency on extremely long timescales. An-
other direction would be the investigation of neural networks with architectures es-
pecially suited for continual learning problems (cfr. ongoing work—(Tiezzi et al.,
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2023a)—-in our research group, concerning the introduction of memory-augmented
neurons).

Improving perception and interaction. = We introduced the idea of simulating
the trajectory of human-like attention, both for efficiently referencing pixel-wise su-
pervisions and for learning objectives (COAT, in particular). It would be interest-
ing to consequently change the perception model of the visual agent, by means of
foveated neural models (see our recent work, not included in this thesis—(Tiezzi
et al., 2023b)). Foveated computation allows location-dependent convolutions, i.e.,
fine-grained processing in a given-focused area and coarser processing in the pe-
ripheral regions. This would enable shifting the understanding of visual scenes from
static frame processing to dynamic scene parsing along the trajectory of the focus of
attention, fostering self-discovery of objects and more natural linguistic interaction
with the human supervisor.

Unifying perspective

In the Introduction of this thesis we proposed a visionary goal for research in Ma-
chine Learning and Computer Vision. We advocate for a new paradigm, where ma-
chines are free to learn continuously from their surroundings, reducing their re-
liance on extensive pre-existing datasets and seeking occasional human guidance.
Drawing an analogy to human development, we noticed that both fundamental
skills (such as visual scene understanding) and more abstract cognitive skills (such
as the ones obtained through education) are not instantly transferred to newborns
but undergo smooth development through time. While the complete realization of
this paradigm shift is undoubtedly ambitious, these general arguments led to the
development of specific input tuning techniques, presented in the first part of this
thesis. These techniques are grounded in the context of traditional supervised ma-
chine learning, but they were conceived around the idea of modulating the infor-
mation flow by altering visual stimuli in the original input space.

In the second part of the thesis, we pursued the broader objective of unsuper-
vised visual representation learning, albeit within a controlled framework. As we
posited several times, the need for extensive data collections in machine learning
may arise from an unnecessarily complex problem formulation, that deviates from
the natural learning process. To address this, we introduced two methods that au-
tonomously extract semantic information from exposure to video streams with mov-
ing objects—an essential skill for realizing our long-term goal of autonomous visual
agents.

It is important to note that further research is required to attain a satisfying level
of robustness for real-world applications, which represents a longer-term endeavor.
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We believe that the insights gleaned from our experience with input tuning tech-
niques, particularly in controlling the learning pace, can significantly contribute to
achieving greater stability and robustness in self-supervised learning methods for
autonomous visual agents.

From a broader perspective, agents that continuously learn can have an extremely
profound technological impact. However, the concept of continuously evolving au-
tonomous systems can elicit concerns among the general public due to misconcep-
tions and misunderstandings. We assert that the work discussed in this thesis, along
with potential future developments, poses no inherent risk of negative societal con-
sequences. Moreover, in the long run, our approach has the potential to address
privacy and security concerns, since agents can excel in their tasks without relying
on models from uncontrolled sources, operating in private target environments.



Appendix A

Experimental details on optical flow
estimation

This supplemental section includes more details about some aspects of continual
learning of optical flow estimation, presented in Ch. 5. Code, instructions, hyperpa-
rameters and 3D scenes! are publicly available?.

A.1 Detailed Results

A.1.1 Standard deviations

Throughout Ch. 5 we always reported average numerical results over three runs
with different seeds. For the sake of completeness, in Tab. A.1, A.2 we report the
complete results shown in Tab. 5.1, 5.2 enriched with the standard deviations over
the three runs. We chose to neglect this information in the main discussion, since it
is always quite small and not very informative.

Table A.1: RECONSTRUCTION ACCURACY (%) on the considered streams/settings. We
report the best model between the one that always updates its parameters (ALwAys)
and Div update policy (adding a * when D1v is reported). Best results among the
models considered in the proposed experience are in bold.

LEARNING Frozen
A B C M A B C M

ResUner 86.7 0.4 76802 923+0.185.6+£02840+04 78.609%*90.0L£0.8*86.1=+0.0
NpConv 87.4+£03763+0.2 929+0.187.3+0.086.0+02 775+0.1 91.2+04 87.9+0.1
DNpConv 86.0 0.2 76.3 £0.6* 93.0+0.1 86.4 £0.0 86.2+0.2 77.3+£0.2*91.1£0.1 86.5+0.1*

FrowNEetS 83.7 0.1 73.4+0.3* 93.1 4+ 0.0 82.7£0.1 81.74+0.1* 693+ 3.0*91.8 £ 0.2 83.3£0.1

Model

ITDW software (v1.9.1) is needed. Available at https://www.threedworld.org/
https://github.com/sailab-code/continual-of
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Table A.2: MotioN-F1 in fixed-camera streams. The * has the same meaning as in
Tab. A.1.

LEARNING Frozen
A B A B

ResUner 0.829 £0.008 0.661 £ 0.002 * 0.834 £ 0.012 * 0.712 +0.031 *
NpConv 0.840 £0.006 0.667 £ 0.007 0.818 £ 0.003 * 0.738 + 0.015 *
DNpConv 0.836 £0.003 0.682 £ 0.020 * 0.827 £ 0.006 0.701 £ 0.004 *
FrowNEtS 0.771 £0.002 * 0.623 £ 0.009* 0.784 + 0.001 * 0.425 4+ 0.253 *

Model

A.1.2 Forgetting

In this section we deepen our analysis on the forgetting issue, previously discussed
(see Fig. 5.4, 5.5), where we investigate the impact of forgetting earlier experience
by freezing the weights. We show the performance obtained leveraging the different
proposed update policies (see Sec. 5.3.1) and the alternative of updating the weights
on every new frame (Arways policy). We show the performance via the Morion-
F1 metric (in Tab. A.3) and the ReconstrucTION AccURAcY (Tab. A.4) metric. We
report the results obtained on all the streams and in both the “learning” and “frozen”
settings. Additionally, we provide measurements restricted to the first (long-term —
Lr) and the last (short-term — St) 1-minute windows (notice that St and Lt have been
visualized along the axes of the scatter plots in Fig. 5.5). The positive impact of the
update policies is mostly visible in the “frozen” setting. By looking at the relatively
small difference between columns Lt and St, we notice that catastrophic forgetting
does not seem to be an actual issue for the specific task of Optical Flow estimation.

Table A.4: RECONSTRUCTION ACCURACY. Subcolumns as defined in Tab. A.3.

STREAM A StrREAM B StrEAaM C StREAM M
L F St I— L F Sr Lt L F Sr Lt L F Sr Lr

Arways 86.7 84.0 83.6 84.5 76.8 76.7 72.8 73.3 92.3 89.8 90.4 88.8 85.6 86.1 95.0 91.2
Dec (50) 65.4 65.7 55.0 66.1 67.3 69.5 66.2 67.8 90.4 90.5 90.2 89.3 75.1 76.0 89.1 84.7
Div (0.05) 84.7 83.6 83.0 84.0 76.8 78.6 74.6 75.1 90.9 90.0 90.1 89.0 85.1 85.8 94.8 91.0

Arways 87.4 86.0 85.3 86.2 76.3 77.5 72.0 73.3 92.9 91.2 91.3 90.4 87.3 87.9 95.8 92.6
Dec (50) 74.1 81.5 79.7 81.8 68.0 70.5 66.3 68.3 90.5 90.5 90.3 89.4 74.5 74.5 87.5 83.4
Div (0.05) 86.0 85.7 84.3 86.3 76.1 77.0 72.1 73.1 92.2 89.9 90.6 89.1 86.9 87.7 95.5 92.3

Arways 86.0 86.2 85.1 86.5 75.1 76.7 71.3 72.5 93.0 91.1 91.5 90.4 86.4 86.3 94.8 91.5
Dec (50) 65.6 69.1 58.0 69.9 67.2 68.2 65.0 66.2 90.5 90.5 90.2 89.3 74.4 74.5 87.6 83.4
Drv (0.05) 84.7 85.9 84.9 86.2 76.3 77.3 71.8 72.9 92.2 90.4 90.8 89.7 86.2 86.5 94.9 91.5

Arways 83.7 81.2 81.2 81.3 73.2 66.4 64.1 65.5 93.1 91.8 92.3 90.8 82.7 83.3 92.7 88.6
Dec (50) 64.7 65.0 54.1 65.5 65.8 67.7 64.1 66.2 90.0 90.2 90.1 88.9 74.2 74.4 87.3 83.4
Drv (0.05) 83.1 81.7 81.3 81.5 73.4 69.3 64.8 67.1 92.4 91.4 92.0 90.3 82.4 82.9 92.6 88.4

Policy

ResUNET

NpConv

DNbConv

FLowNETS
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Table A.3: Mortion-F1 in fixed-camera streams (streams A and B) in different set-
tings: learning (L), frozen all-stream (F), frozen short-term trial (St), frozen long-
term trial (Lr). We compare Dec with n = 50, Div with [ = 0.05 and Arways policy.

STREAM A StrREAM B
L F St Lr L F St Lr

Arways  0.829 0.803 0.869 0.792 0.659 0.618 0.540 0.497
Dec (50) 0.013 0.024 0.022 0.024 0.114 0.324 0.251 0.161
Div (0.05) 0.821 0.834 0.878 0.825 0.661 0.712 0.599 0.601

Arways 0.840 0.807 0.884 0.801 0.667 0.718 0.678 0.601
Dec (50) 0.479 0.699 0.816 0.704 0.235 0.332 0.287 0.307
Div (0.05) 0.833 0.818 0.886 0.806 0.663 0.738 0.659 0.592

Arways 0.836 0.827 0.879 0.822 0.643 0.715 0.699 0.650
Dec (50) 0.030 0.237 0.250 0.232 0.196 0.700 0.355 0.339
Div (0.05) 0.822 0.823 0.878 0.816 0.682 0.717 0.701 0.686

Arways 0.768 0.764 0.837 0.751 0.618 0.059 0.076 0.027
Dec (50) 0.013 0.001 0.000 0.002 0.027 0.198 0.175 0.086
2 Div (0.05) 0.771 0.784 0.866 0.773 0.623 0.425 0.362 0.237

s}
59

Policy

ResUNET

NpConv

wNETS [DNpCoNv

A.1.3 Data biases

In the main discussion we have also presented experiments designed to investigate
the effect of specific biases in the input stream. In particular, in Fig. 5.6 (stream
A) we showed what happens when playback and pause are interleaved in order to
simulate static segments of real-world streams. In Tab. A.5, A.6 we report results in
“learning” and “frozen” settings on all the streams and the architectures.

A.14 Longer streams

One could be interested in quantitatively assessing the impact of long-stream expo-
sure. For this reason, we provide in Tab. A.8 numerical results (running averages)
for the stream concatenation experiment (see Ch. 5, denoted with ABCM), consid-
ering the ALways update policy and the proposed alternatives (Dirr, Mag, D1v). Fig.
5.7 in Ch. 5 includes visualizations of the evolution of the metrics when considering
the ResUNET model. Such information can be found, aggregated over time, in top
rows of Tab. A.8.

A different experiment (Tab. A.7) concerns updating the weights on a second
exposure to the streams, that significantly improves the metrics (overcoming the
baseline on two streams out of three).
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Table A.5: Morion-F1 when injecting static shots in fixed-camera streams, varying
the update policy. Learning (L), Frozen (F). We compare Dirr with g = 0.001, MacG
with r = 0.02 and & = 0.2, D1v with [ = 0.05 and Arways policy.

STREAM A STREAM B
L F L F

Arways 0.788 0.176 0.596 0.447
Dirr  0.679 0.690 0.588 0.651
Mac 0.797 0.663 0.618 0.624
Div  0.784 0.207 0.634 0.486

Arways 0.820 0.541 0.646 0.521
Dirr  0.788 0.714 0.629 0.640
Mac 0.795 0.745 0.640 0.644
Div  0.769 0.462 0.650 0.483

Arways 0.781 0.443 0.655 0.588
Dirr  0.764 0.739 0.627 0.658
Mac 0.793 0.729 0.659 0.666
Div  0.755 0.672 0.655 0.617

Arways 0.730 0.751 0.612 0.496
Dirr  0.730 0.788 0.569 0.609
Mac 0.730 0.792 0.616 0.641
Div  0.729 0.711 0.612 0.187

Policy

ResUNET

NpConv

DNbpConv

FLowNETS

A.1.5 Comparison with Horn-Schunck algorithm

In Ch. 5 we presented a comparison between the proposed neural-based approach
and classic iterative algorithms, i.e., Horn and Schunck (1981). In Tab. A.9 we show
that the Motion-F1 obtained in the case of the HS algorithm is much lower com-
pared with our proposal, to the point that it is unlikely to be useful for downstream
applications. For the sake of completeness, in the same table we show the Recon-
STRUCTION ACCURACY. This appearingly good result highlights that achieving good
performance in both the metrics is crucial for a satisfactory solution. To emphasize
the capability of the neural models to improve over time, we consider the “learning”
setting when the stream is shown a 2nd time (LEarNING+) and the “frozen” setting
after having learnt from ABCM (Frozen+).
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Table A.6: RECONSTRUCTION ACCURACY (%) when injecting static shots in the streams,
varying the update policy. Learning (L), Frozen (F). See Tab. A.5 for details.

STREAM A STREAM B STREAM C STREAM M
L F L F L F L F

Arways 92.1 84.1 85.8 84.0 95.9 954 90.9 91.9
Dirr 92.0 90.5 86.2 86.3 95.1 94.4 88.9 92.1
Mac 92.2 89.6 86.1 86.7 95.5 95.3 91.0 91.8
Div 915 84.3 86.4 85.0 94.8 95.1 88.5 91.5

Arways 92.8 88.6 86.1 85.6 96.2 95.3 92.1 92.4
Dirr 929 91.8 86.2 87.2 95.6 92.3 91.1 92.3
Mac 92.5 91.5 86.0 87.3 96.0 95.5 92.1 92.2
Div 915 873 86.3 84.9 95.5 95.5 92.1 92.1

Arways 91.6 87.2 86.1 859 96.0 95.3 91.8 91.8
Dirr 91.8 91.7 85.7 86.6 95.5 93.9 90.0 92.0
Mac 91.8 91.2 86.1 87.3 95.5 95.4 91.8 91.7
Div  90.7 90.3 86.2 86.8 95.3 954 91.6 91.7

Arways 90.8 89.4 85.4 83.9 96.3 954 89.3 89.6
Dirr 90.8 90.9 85.1 85.0 95.4 94.1 87.7 89.1
Mac 90.8 91.0 85.4 85.5 96.0 95.5 89.2 88.9
Div  90.5 89.0 85.3 82.7 95.4 95.1 88.5 88.7

Policy

ResUNET

NpConv

DNbpConv

FLowNETS

Table A.7: ReconsTRUCTION AcCURACY (left) and motion-F1 (right) on the shorter
streams, “learning” setting, presenting the stream a second time.

Model A B C
ResUner 0.902 0.805 0.934

NpConv  0.907 0.790 0.944 Model A B
DNbpConv 0.895 0.788 0.947
FLowNETS 0.863 0.745 0.939 ResUner 0.858 0.707
NpConv 0.872 0.693
Nuir  0.652 0.659 0.905 DNbConv 0.869 0.715
FrowNEerS 0.762 0.693 0.914 FrowNETS 0.800 0.638

Rarr-Smarr 0.839 0.739 0.946
Smurr  0.876 0.798 0.958
RAFT 0.859 0.772 0.954

REFERENCE
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Table A.8: Motion-F1 (left) and ReconsTrRUCTION AccURAcY (right) when streams
are sequentially shown to the learning agent (A, B, C, M). We compare Dec with

n = 150, D1v with | = 0.05 and Arways policy.

ResUNET

. LEARNING+ FrOzZEN+ . LEARNING+ Frozen+
Policy Policy
A B A B A B C M A B C M
Arways 0.824 0.709 0.813 0.664 Arways 86.4 79.1 95.5 88.0 89.2 81.7 95.2 87.7

Dec (150) 0.000 0.667 0.787 0.664
Div (0.05) 0.823 0.702 0.807 0.672

ResUNEr

Dec (150) 65.1 76.0 95.2 87.7 88.8 81.0 95.0 87.1
Div (0.05) 85.2 78.2 94.9 87.7 88.8 81.0 95.0 87.3

NbpConv

Arways

0.848 0.689 0.848 0.633

Dec (150) 0.069 0.682 0.851 0.630
Div (0.05) 0.817 0.685 0.851 0.623

NbpConv

ALwAYs

87.7 79.0 95.4 87.8 88.9 80.5 95.2 86.9
Dec (150) 66.0 76.9 95.2 87.5 88.5 79.7 95.0 86.6
Drv (0.05) 85.3 78.1 95.1 87.2 88.1 79.2 94.8 86.2

ONV

Q

ALways

0.839 0.705 0.845 0.645

Dec (150) 0.000 0.650 0.845 0.641
Div (0.05) 0.824 0.698 0.848 0.636

DLONV

ALways

86.1 78.0 95.3 87.7 87.9 79.0 94.9 87.3
Q Dec (150) 65.2 74.7 94.9 87.3 87.6 78.2 94.8 87.0
Z Drv (0.05) 84.9 77.2 94.8 87.2 87.7 78.2 94.8 87.1

TS |DND

ALwAys

0.768 0.668 0.774 0.617

Z Dsc (150) 0.031 0.604 0.760 0.559
2 Dw (0.05) 0.771 0.663 0.768 0.612

ETS (D

ALwAYs

83.7 74.1 94.0 84.9 84.7 74.8 93.3 84.5

Z Dec (150) 64.5 72.3 93.8 84.7 84.7 74.6 93.1 84.3
2 Dv (0.05) 83.1 73.7 93.6 84.6 84.4 74.7 93.2 84.4

Table A.9: Motion-F1 (left) and REcoNsTRUCTION ACCURACY (right), comparing neu-
ral models and HS algorithm (with different iteration limits and warm start mode).
HS algorithm achieves much lower F1 with respect to neural models. The difference
is less evident for RECONSTRUCTION ACCURACY.

Model A B
HS 30 it (w.s.) 0.574 0.369
HS 30 it 0.649 0.489
HS 200 it (w.s.) 0.462 0.322
HS 200 it 0.683 0.462
+ ResUNET 0.858 0.707
E NpConv 0.872 0.693
E DNpConv  0.869 0.715
—~  FrowNEerS 0.800 0.638
+ ResUNET 0.813 0.664
é NpConv 0.848 0.633
u% DNbConv  0.845 0.645
FLowNEerS 0.774 0.617

Model

A B CcC M

HS 30 it (w.s.) 0.830 0.787 0.932 0.884

HS 30t

HS 200 it (w.s.)

HS 200 it

0.879 0.822 0.945 0.867
0.827 0.782 0.936 0.846
0.816 0.790 0.935 0.886

LEARNING+

ResUNET
NbpConv
DNbpConv
FLowNETS

0.902 0.805 0.934 0.880
0.907 0.790 0.944 0.894
0.895 0.788 0.947 0.878
0.863 0.745 0.939 0.850

Frozen+

ResUNET
NbpConv
DNbConv
FLowNETS

0.892 0.817 0.952 0.877
0.889 0.805 0.952 0.869
0.879 0.790 0.949 0.873
0.847 0.748 0.933 0.845




Appendix B

Experimental details on
attention-based agents (COAT)

This supplemental section includes more details about some aspects of COAT, pre-
sented in Sec. 6.4. Code, instructions, and 3D scenes are publicly available!.

B.1 Setup

We created three visual streams (256 x 256), both in grayscale (BW) and color (RGB)—
Sorp is BW only—by observing the moving scenes. To accelerate the experimental
validation we generated ~ 51k, 12k and 20k pre-rendered frames from the three
aforementioned streams, respectively, that correspond to 31 completed laps for each
object. The agent learns by watching the first 25 laps per object and, afterwards, he
receives 3 supervisions (k¢, y¢) per object at different time instants, starting from the
tirst frame of the route and waiting at least 100 frames before supervising the same
object again (of course, a; must belong to the supervised object). When all the ob-
jects complete 30 laps, we stopped learning the model parameters and, finally, the
last lap was the one on which performance is measured.

Parameters. The parameters of the attention model were either fixed (a,, = 1), or
adapted according to a preliminary run of the model on the video streams (ay, p).
For each video stream, we searched for the model hyper-parameters that maximize
the F1 along the attention trajectory, measured during the 30-th laps, considering
the following grids: &« € {5-107%,1074,5-1074,1073}, At € {1072,107},1}, A5 €
{107%,1073,1072}, Ac € {1074,1072,107%,1,10},d € {32,128},¢ € {5k, 10k, 30k},
Be€{35}2
1https ://github.com/sailab-code/cl_stochastic_coherence

2We also evaluated the possibility of removing the outer skip connections in HourGrass, and all
the models tested normalized feature vectors (unitary norm) and not normalized ones.
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B.2 Normalized representations

In addition to what has been described in Sec. 6.4, we also explored the case in which
the feature vectors are normalized in order to have unitary Euclidean norms,

Ifi(x)[[ =1, VxeZ° Vt>0. (B.1)

This avoids the system to encode information in the length of the feature vectors,
and it can be used to simplify the loss terms of Eq. 6.2, Eq. 6.3, Eq. 6.4 as follows,

Lr(fe fie1) == 1 (1 = (fe(ar), fro1(ai-1))) (B.2)
Ls(f) = 5 ¥ (- {f(0), (=) (83)

X,ZES;

X#£z
Le(fr) =), ) (L4 {fi(x), fi(2))) (B4)
xeSy zeOy
where (-, -) is the dot product and each loss has zero as minimum value. In the case
of pixel-wise classification, when using normalized representations we computed
the distance between a template k; and a certain feature vector fy(x) (with ¢ > t)
as

dist (kt/ft’<x)) =1- <kt,ftl(x)>, (B5)
and the open-set threshold ¢ belongs to (0, 2].

B.3 Segmenting the attended moving region

The coordinates belonging to set S; are those of the pixels that belong to the moving
region that includes the attention coordinates a;. If v, is the 2D velocity of pixel at
coordinates x and time ¢, then such pixel is a moving pixel if and only if it is associated
to a non-vanishing optical flow, i.e.,

[oxtll >, (B.6)

given v > 0 and being || - || the Euclidean norm. Two moving pixels that are direct
neighbors in the image plane are defined as connected, and a chain of connected
pixels implements what we will refer to as a path.

We introduce the function path_exists(x, 4;), that returns true if there exists a
path connecting x to the attention 4;. Hence,

Sy = {x: path_exists(x,a;)} U{a;}. (B.7)

If there are no moving pixels in the current frame, then we consider S; to be empty
(in this case, also a; ¢ S¢), and the spatial coherence and contrastive losses are set
to zero.
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In order to segment the moving area as defined above, we implemented a frontier-
based algorithm reported in Alg. 6, where the function neighbors (x) returns the set
of direct neighbors of x.

Algorithm 6 Determining the moving area that includes the focus of attention.

Input: Optical flow [0y ], .., attention coordinates a;, threshold 7 > 0.
Output: Set of coordinates belonging to the moving area, i.e., 5;.

1 S¢ < {at} {> initial set}

2: F < {a;} {> initial frontier}

3: while F # @ do

4: N < Uycrneighbors(x) {> union of the neighbors of the points in the
frontier}

5. F{z:ze NNz & SiN||vzt| >} {>new frontier: moving pixels in A/
(notin S¢)}

6: Sy« S;UF {> adding the new frontier to S;}

7: end while

8: if |S;| = 1 then

9: S5+ @ {> if only a; belongs to S¢, we clear it}

10: end if

11: return S;

B.4 Neural architectures

The experimental campaign was carried out evaluating the performance of the pro-
posed approach using two different types of deep convolutional architectures with
d output filters, referred to as ResUNEr and FCN-ND, respectively. The former is a
UNet (Ronneberger et al., 2015) architecture® based on a ResNet18 backbone. Dif-
terently, the other model we considered, FCN-ND, is a 6-layer Fully-Convolutional
model that maintains the same image-resolution throughout the whole architecture,
without any downsamplings/poolings, inspired by Sherrah (2016). It is based on
5 x 5 filters, with 6 layers composed of 32 filters in each hidden layer, except from
the first one, which contains 16 filter banks. In the experiments, we report the aver-
age results obtained over 3 runs initialized with random seeds. We report in Table
B.1 the hyperparameters corresponding to the best models. See the provided code
repository for further details (e.g, on the network variations hyperparameters.)

Shttps://github.com/usuyama/pytorch-unet (MIT License).
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‘ EmpPTYSPACE SoLiD LiviINGRoom

Parameters| BW RGB BW BW RGB

o 5-107°5.107% 1074 1073 5-10~*4

AT 1 1 107! 107! 107!

= As 107% 107* 10731072 1073
5 Ac 1071 107! 100! 10 10
8 d 32 128 128 32 32
B, 30k 30k 10k 30k 30k
B 5 5 5 5 5
Norm. yes yes yes yes yes

e 1073 1073 1073 107* 1073

AT 1071 1072 10721072 1072

A Ag 1072 1073 10721072 103
Z e 102 1072 102 1 10!
5 4 32 32 32 128 128
R e 10k 10k 10k 30k 30k
B 5 3 3 3 3
Norm. no no no yes yes

Table B.1: Optimal parameters. Best selected hyperparameters drawn from the grid
search described in the main text (see Sec. 5.4), both for ResUNEeT (top) and FCN-ND
(bottom) architectures. Additionally, we denote with Norm. € {yes, no} the choice
of processing normalized feature vectors (unitary norm) and not normalized ones,
respectively. For further details, see the provided code repository.



Appendix C

Experimental details on motion-based
agents (CMOSFET)

This appendix provides further details about CMOSFET, the model proposed in
Sec. 6.5. This includes in-depth descriptions of the neural architectures and the se-
lected competitors, the grids of values of the hyper-parameters that we validated in
our experimental activity, together with the best selected values. We also provide
additional results and qualitative investigations. Code, instructions and data are
publicly available!.

C.1 Neural Architectures

We provide additional details on the selected neural architectures and on the com-
petitors.

Feature extractors The basic block of the feature branch of CMOSFET, i.e., func-
tion f, is a ResUnet architecture, inspired to the one used for COAT but having
a smaller amount of parameters. It is a UNet-like (Ronneberger et al., 2015) ar-
chitecture?, based on a ResNet18 backbone. Among the pretrained competitors,
DPT-Hybrid (Ranftl et al., 2021) is a Transformer-based ViT model, trained on the
ADE20K dataset (Zhou et al., 2019). All the other considered models adopt ResNet
backbones, in particular the ResNet-50 architecture, except for DeepLab v3 (ResNet-
101). DeepLab models® apply Atrous Spatial Pyramid Pooling (ASPP) on top of the
backbone features and they are trained on COCO dataset (Lin et al., 2014). MoCo

Ihttps://github.com/sailab-code/unsupervised-learning-feature-flow

2Inspired to https://github.com/usuyama/pytorch-unet (MIT License), but with one fourth
of filters in each layer. Also, the last layer has an output dimensionality of 32 features

3 Available at https://pytorch.org/vision/stable/models.html
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models* are trained with a contrastive unsupervised objective on ImageNet-1M.
MoCo vz differs from the original version because of an improved training pro-
cedure (better augmentation, cosine learning rate schedule, extra MLP in training
phase). MoCo v3° introduces some tricks to improve the learning stability both
for ViT and ResNets backbones. We focus our analysis on the latter backbone. In
the case of PixPro® models, we use backbone weights obtained from pretraining on
ImageNet-1M with their pixel-level contrastive task.

Motion estimation CMOSFET neural branch for motion estimation, i.e., function
J, inherits its structure and composition from the feature extraction one (ResUnet),
except that we cut the skip connections connecting the input to the output layer, since
we empyrically noticed in preliminary experiments that we could obtain a more sen-
sible estimation. Such a network outputs the vertical and horizontal displacement
maps for all the frame pixels.

C.2 Additional implementation details

In order to complement the already described experimental setup of Sec. 5.4, here
we introduce some further details to make our experience reproducible. For com-
pleteness we report that, in our implementation, the maximum distance between
pairs of pixels in Eq. 6.9 (i.e., Vh? + w? in the normalization factors) is replaced
with the maximum distance between pairs of sampled coordinates.

Data augmentation For each processed frame pair, we create a mini-batch com-
posed of the two original frames (I;_1, I;), as well as multiple augmented views/-
transformations, in order to improve the feature robustness, as common in deep
net training procedures. Augmentations are of 3 different types: (A) large random
crops (with crop ratio greater than 0.9) followed by upscaling to w x h; (B) ran-
dom horizontal/vertical flips; (C) random color distortion and Gaussian blur. For
the augmentations of type (A) and (C), only one of the frames composing the pair
(I;_1, It) is transformed, randomly selected at each t, whilst the other is kept as it is.

Parameters and validation In order to make the comparisons fair, we followed the
exact same hyper-parameter validation procedure of COAT (Sec. 6.4). In particular,
for each video stream we selected the values of the hyper-parameters which max-
imize the F1 score measured during the 30-th lap, only considering one pixel per

% Available at https://github. com/facebookresearch/moco
5Available at https://github.com/facebookresearch/moco-v3
6 Available at https://github.com/zdaxie/PixPro
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frame, along the trajectory of a human-like focus of attention mechanism attending
the scene. We sampled the best hyper-parameters from the following grids:

Am € {1}, Bm € {107%,1073,107%, }, B5 € {1}, 7 € {0.7,0.8,0.9},
T, € {—0.5,-0.3,0,0.3,0.5}, ¢ € {50,100,200}, T € {0.1,0.5},
T € {0.5,1.0,1.5,2.0}, a;, € {1074,5-1074,1073,1072},
ap € {107%,5-107%,1073,107%}, ¢ € {0.5,0.9,0.99}.

An additional speed-up of the training process can be achieved by further limit-
ing the summations of Eq. 6.10 (both of them) by keeping only a fraction X € (0, 1]
of the positive and negative pairs (balanced). In particular, we experimented the
case in which we kept those positive (resp. negative) pairs for which represen-
tations are the least similar (resp. most similar), i.e., focusing on the ones that
mostly contribute to larger values of Ly, ¢. In the hyperparameter search, we con-
sider X € {0.5,0.7,1.0}. The motion estimator ¢ is optimized using Adam (Kingma
and Ba, 2014), while we empirically found better results by optimizing the features
extractor f with SGD (with the exception of the EmpTYSPACE stream, where Adam
usually yields better performances). In addition to the typical smoothness regular-
izer introduced in Eq. 6.8, we also exploited a further regularization modulated by a
customizable parameter A,, in order to keep the estimated motion magnitude small
in the case of uniform backgrounds,

R(5F) = As- (wh) ™ Y IV ()12 +Ar - (k) ™1 Y 167 (x) | (C1)

xeX xeX

with A, As € {1074,5 x 1074,1073,5 x 1073,10~2}. With reference to Eq. 6.8, in the
implementation we have appropriate coefficients for the three terms:

Lfonj :Agur‘CC((sgf fte—ll fte)
+AGip Le(OF, fiza, ff)
+Al£ow£0(§£' té—_ll’ té_l)

+R(5))

(C.2)

with the abovementioned coefficients in the range {1,2} x {1075,1074,1073,1072,10~1}.
Concerning the learning schedule T;.,; (motion estimator warmup), we tried the
following values {0,2,10} laps, where 0 means no scheduling (the entire model is
updated starting on the very first frame). In all our experiments, we reported the
average results obtained over 10 runs, initializing random generators with different
seeds.

We report in Tab. C.1 the best-found values for the hyperparameters.
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Table C.1: Optimal parameters. The best selected hyperparameters drawn from the
grids described in the text, for all the datasets. See the code for further details.

EmpPTYSPACE SoLID LiviNGRoom Rar  Horse
Parameters| BW RGB BW BW RGB RGB RGB

N 07 10 10 10 1.0 07 10
ap |107° 107 1021073 10 10% 107
am [107* 107* 107* 107* 107* 5x10°* 107

1 100 100 100 200 200 200 200
A 1 1 111 1 1
M 0.1 1 1 1 1 0.01  0.01

low
A0 11074 104 102104 104 10* 102

Ay [1072 107 10721072 1072 107* 1072

Adkip 0 0 0 02 02 2x107°2x1073

Adkip 0 0 0 02 02 2x107°2x1073
T 05 01 05 01 01 05 05
T 15 15 2 07 07 13 13
Ty 0 0 -03 -05 -05 05 05
T 09 07 07 09 09 08 08

4 099 05 099 099 099 099  0.99
Ar 1035%x10310%102 102 102 10?2
As 107% 10¢ 10*10* 10* 10°% 10°¢
Tached 10 0 0 0 0 10 2

] .
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Figure C.1: Six frames sampled from the EMPTYSPACE-RGB stream (first row). We
compare the predictions yielded by the COAT (second row) and the outputs by
CMOSEFET (third row). Different colors are used to denote different classes.

C.3 Additional qualitative analysis

We report in Fig. C.1 some additional qualitative results of the predictions obtained
leveraging the features by CMOSFET, on six frames from the EMPTYSPACE-RGB stream
(first row). COAT yields features which are not fully capable to discriminate pixels
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from the chair legs/thinner segments, as long as some textures on the pillow: see for
instance the borders of the pillow which are misled with the ewer (given the similar
brightness/RGB values). Similarly, some parts of the ewer (the spout and the han-
dle) are mistaken for pixels belonging to the pillow. Conversely, CMOSFET allows
the classification procedure (which is not involved in the feature learning process)
to almost completely disentangle all the different objects and their parts, even when
they appear in peculiar poses and orientations (see the chair legs in the fifth image).
As a general consideration, CMOSFET yields features (and thus predictions) which
tend to slightly overflow with respect to the ground-truth object borders.
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Publications

Journal papers

1. S Marullo, M Tiezzi, M Gori, S Melacci, “Continual Learning of Conjugated
Visual Representations through Higher-order Motion Flows”, Submitted to TPAMI.
Candidate’s contributions: design and implementation of algorithms, exper-
imental campaign, writing of the paper.

Peer reviewed conference papers

1. M Tiezzi, S Marullo, F Becattini, S Melacci, “Continual Memory Neurons”,
Submitted to ICLR. Candidate’s contributions: partial design of algorithms,
part of the experimental campaign, partial writing of the paper.

2. A Betti, M Casoni, M Gori, S Marullo, S Melacci, M Tiezzi, “Neural Time-
Reversed generalized Riccati Equation”, Submitted to AAAI. Candidate’s con-
tributions: discussions, part of the experimental campaign, review of the pa-

per.

3. S Marullo, M Tiezzi, A Betti, M Casoni, S Melacci, “ Bridging Continual Learn-
ing of Motion and Self-Supervised Representations”, Submitted to AAAI. Can-
didate’s contributions: design and implementation of algorithms, experimen-
tal campaign, writing of the paper.

4. S Marullo, M Tiezzi, M Gori, S Melacci, T Tuytelaars, “Continual Learning
with Pretrained Backbones by Tuning in the Input Space”, [JCNN, 2023. Can-
didate’s contributions: design and implementation of algorithms, experimen-
tal campaign, writing of the paper.

5. E Meloni, L Faggi, S Marullo, A Betti, M Tiezzi, M Gori, S Melacci, “PARTIME:
Scalable and Parallel Processing Over Time with Deep Neural Networks”, IEEE
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ICMLA, 2022. Candidate’s contributions: discussions, partial implementa-
tion of the algorithms, part of the experimental campaign, review of the paper.

6. M Tiezzi, S Marullo, A Betti, E Meloni, L Faggi, M Gori, S Melacci, “Foveated
Neural Computation”, ECML-PKDD, 2022. Candidate’s contributions: dis-
cussions, part of the experimental campaign, partial writing and review of the

paper.

7. S Marullo, M Tiezzi, A Betti, L Faggi, E Meloni, S Melacci, “Continual Unsu-
pervised Learning for Optical Flow Estimation with Deep Networks”, CoLLAs,
2022. Candidate’s contributions: design and implementation of algorithms,
experimental campaign, writing of the paper.

8. A Betti, L Faggi, M Gori, M Tiezzi, S Marullo, E Meloni, S Melacci, “Continual
Learning through Hamilton Equations”, CoLLAs, 2022. Candidate’s contribu-
tions: discussions, partial implementation of algorithms, rewiew of the paper.

9. M Tiezzi, S Marullo, L Faggi, E Meloni, A Betti, S Melacci, “Stochastic Coher-
ence Over Attention Trajectory For Continuous Learning In Video Streams”,
IJCAI, 2022. Candidate’s contributions: design and implementation of algo-
rithms, part of the experimental campaign, writing of the paper.

10. S Marullo, M Tiezzi, M Gori, S Melacci, “Being Friends Instead of Adversaries:
Deep Networks Learn from Data Simplified by Other Networks”, AAAI, 2022.
Candidate’s contributions: design and implementation of algorithms, exper-
imental campaign, writing of the paper.

11. S Marullo, M Tiezzi, M Gori, S Melacci, “Friendly Training: Neural Networks
Can Adapt Data To Make Learning Easier”, IEEE International Joint Conference
on Neural Networks, 2021. Candidate’s contributions: design and implemen-
tation of algorithms, experimental campaign, writing of the paper.

12. A Betti, M Gori, S Marullo, S Melacci, “Developing Constrained Neural Units
Over Time”, IJCNN, 2020. Candidate’s contributions: discussions, implemen-
tation of algorithms, experimental campaign, partial writing of the paper.

Workshop papers

1. E Meloni, A Betti, L Faggi, S Marullo, M Tiezzi, S Melacci, “Evaluating Contin-
ual Learning Algorithms by Generating 3D Virtual Environments”, IJCAI In-
ternational Workshop on Continual Semi-Supervised Learning, 2021. Candidate’s
contributions: discussions, partial writing of the paper.
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