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Abstract
Let q be a nondegenerate quadratic form on V . Let X ⊂ V be invariant for the action of
a Lie group G contained in SO(V, q). For any f ∈ V consider the function df from X to
C defined by df (x) = q(f − x). We show that the critical points of df lie in the subspace
orthogonal to g ·f , that we call critical space. In particular any closest point to f in X lie in
the critical space. This construction applies to singular t-ples for tensors and to flag varieties
and generalizes a previous result of Draisma, Tocino and the author. As an application, we
compute the Euclidean Distance degree of a complete flag variety.
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1 Introduction andMain Result

Let V be a complex vector space equipped with a nondegenerate symmetric bilinear form
q ∈ Sym2V , identified in this paper with its associated quadratic form. The orthogonal
group SO(V, q) = SO(V ) consists of linear transformations of V leaving q invariant. Let
X ⊂ V be an algebraic variety defined over R, this includes the case when X is the cone
over a projective variety defined over R. We assume that X is G-invariant for the action of
a Lie group G ⊂ SO(V ). In many cases of interest X is H -invariant for a larger group H

and we can take G = SO(V )∩H , see Section 2 for the case of partially symmetric tensors.
We denote by g = TeG the Lie algebra of G, where e is the identity element, note

that g ⊂ so(V ). The tangent space to the orbit G · f at f is f + g · f . Denoting by
Gf = {g ∈ G | g · f = f } the isotropy group of f , we have dim g · f = dim g − dimGf .
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We define for f ∈ V the critical space of f as the subspace

Hf := (g · f )⊥ = {v ∈ V | q(v,w) = 0 ∀w ∈ g · f } . (1.1)

We remark that codimHf = dim g · f , so we have codimHf ≤ dim g and the equality
holds for general f in many cases, but it cannot hold in the cases when dim g ≥ dimV (this
happens when V = C

a ⊗ C
b ⊗ C

c and c is large, in the setting of Section 2.2). Consider
the function df : X → C, df (x) = q(f − x, f − x), which, in the case f is real, extends
the squared distance function from f defined over R.

Note that at a critical point x of df we have f − x ∈ (TxX)⊥.

Lemma 1.1 If g ∈ g then q(g · x, y) = −q(x, g · y), in particular q(g · x, x) = 0.

Proof If g = 0 then the statement is trivial. If g �= 0, let g(t) ⊂ G be a path such that g(0) =
e and ġ(0) = g. Taking the derivative at t = 0 of the constant function q(g(t) · x, g(t) · y)

the thesis follows.

Our main result is the following theorem. Its proof is quite simple, nevertheless we will
see in the rest of the paper it has some nontrivial consequences.

Theorem 1.2 Let X be G-invariant for the action of G ⊂ SO(V ).

1. The critical points of df on X lie in Hf .
2. When f is real, any closest point to f in XR (with respect to q) belongs to Hf .
3. f ∈ Hf .

Proof Let x be a critical point. We need to prove q(x − f, g · f ) = 0 ∀g ∈ g. We have
q(g · f, f ) = 0 ∀g ∈ g from Lemma 1.1. So it is enough to show that q(x, g · f ) = 0
∀g ∈ g. The crucial remark is that since X is G-invariant then g · x ⊂ TxX. Since x

is critical it follows the chain of equalities (the second and the third one by Lemma 1.1
0 = q(g · x, x − f ) = −q(g · x, f ) = q(x, g · f ), which proves (1).

(2) is an immediate consequence of (1).
(3) follows by q(f, g · f ) = 0.

A partial converse to Theorem 1.2 is the following.

Theorem 1.3 Let X be G-invariant for the action of G ⊂ SO(V ). Let x ∈ Hf ∩ X.

1. If the orbit G · x is dense in X then x is a critical point of df restricted to X.
2. If X is a cone, x is not isotropic and the orbit G · [x] is dense in PX then there is λ ∈ C

such that λx is a critical point of df restricted to X.

Proof We have the equality g · x = TxX by assumption, and with this equality all the steps
of the proof of Theorem 1.2 are invertible. This proves (1). The assumption of (2) implies
that g ·x +〈x〉 = TxX. Since x is not isotropic there is λ such that since q(λx, λx −f ) = 0,
namely λ = q(x,f )

q(x,x)
, so that orthogonality is guaranteed on the subspace 〈x〉 ⊂ TxX. To

check orthogonality on the remaining part of TxX we may replace x with q(x,f )
q(x,x)

x and the
same argument in (1) works.

A stronger converse form will be proved for tensors, see Theorems 2.2 and 2.4 and
for Grassmann varieties, see Theorem 3.1. In Theorem 3.4 we will compute the Euclidean
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Distance degree (EDdegree) of a complete flag variety with respect to the Frobenius
product.

We recall that EDdegree(X) (introduced in [4] by following an idea by Bernd Sturmfels)
is the number of critical points of df restricted to X for general f . In many cases of interest
it happens that Hf ∩ X is finite and reduced for general f , in these cases its cardinality
counts EDdegree(X), see (2.4) and Theorem 3.4.

The critical space was introduced for tensors in [14] and for partially symmetric tensors
in [5], see also [15]. In Corollary 2.6 we get an alternative proof of the fact proved in [5] by
Draisma, Tocino and the author that any best rank q approximation of a partially symmetric
tensor f lies in the critical space.

Our approach is somehow dual to the one in [3, 6], where EDdegree was considered in
an orthogonally invariant setting, but certain subvarieties of X were constructed in order to
cut transversally the orbits.

2 Symmetric and Partially Symmetric Tensors

2.1 Symmetric Tensors

Let W a space of dimension n + 1 and V = SymdW . We assume that W is equipped
with a nondegenerate quadratic form qW and we choose coordinates in W such that qW =∑n

i=0 x2
i . There is a unique nondegenerate bilinear form q such that

q(xd, yd) = qW (x, y)d ∀x, y ∈ W, (2.1)

which is called the Frobenius (or Bombieri-Weyl) form. Since every polynomial in SymdW

can be written as a sum of powers of linear forms, it is enough to ask (2.1) for any power
xd , yd . The group G = SO(W, qW ) acts over V by the analogous rule g · (xd) =
(g · x)d . We get the inclusion G ⊂ SO(V, q), so that we are in the setting of Section 1;
our aim is to apply Theorem 1.2. The Frobenius form has the coordinate expression

q
(∑

α

(
d
α

)
fαxα,

∑
α

(
d
α

)
gαxα

)
= ∑

α

(
d
α

)
fαgα which, up to a scalar factor, has the nice

M2 [10] implementation
diff(f,g).
Note that SL(W) ∩ SO(V ) = SO(W), but we will not need this fact. The monomials are
orthogonal but not orthonormal with respect to q.

Proposition 2.1

so(W) · f =
〈

xj

∂f

∂xi

− xi

∂f

∂xj

〉

0≤i<j≤n

. (2.2)

Proof It is convenient to denote

Dij (f ) = xj

∂f

∂xi

− xi

∂f

∂xj

. (2.3)

For any skew-symmetric matrix A we have that eA is orthogonal. Then f (etAx) is a path
in the SO-orbit of f . By taking the derivative at t = 0 we get

∑n
p=0

∂f
∂xp

(Ax)p ∈ so(W) ·f .
By taking A = eij − eji we get exactly Dijf and these elements span so(W) · f .
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The rank one tensors in SymdW have the form xd and make a cone over the Veronese
variety vdPW , where the origin has been removed from the cone. We recall that the eigen-
vectors of f ∈ SymdW are the critical points of the function df (xd) = q(f −xd) restricted
to the rank one tensors [11, 12, 16, 17, 19]. In this paper we are interested in the condition
xd ∈ Hf , which does not distinguish between x and its scalar multiples, so by abuse of nota-
tion we may shift to projective space PW and denote by the same symbol the point x ∈ PW .
The eigenvectors correspond to the non isotropic x (i.e. q(x) �= 0) such that ∇f (x) = x

in PW , which means that any representatives of the right and the left hand side differ by a
nonzero scalar multiple. The connection with (2.2) and (2.3) is that the eigenvectors of f

make the base locus of the linear system 〈Dijf 〉.
It follows from Theorem 1.2 that the eigenvectors of f lie in Hf (which is obvious

from the above description since Dijf are the minors of the matrix

(∇f

x

)

) and moreover

the critical points of df on the secant varieties of d-Veronese variety lie in Hf , which
is not obvious from the definition and it was proved first in [5, Theorem 1.1]. We will
state more precisely this claim in the more general setting of partially symmetric tensors in
Corollary 2.6.

We give now a more precise converse to Theorem 1.2 (1) in the case when X is the cone
of symmetric tensors of rank one.

Theorem 2.2 For general f ∈ SymdW , Hf ∩ vdPW consists exactly of the critical points
of df restricted to vdPW , namely of the eigenvectors of f .

Proof Let vd ∈ Hf ∩ vdPW . In particular q(vd, g · f ) = 0 for any g ∈ g, which implies
that Dijf vanishes at v. This is equivalent to the matrix

(∇f

x

)

having rank one at v, which is the condition that v is eigenvector of f , if v is not isotropic.
By [6, Lemma 4.2] the critical points of df for a general f avoid any proper closed subset
of vdPW , so for general f it is guaranteed that no isotropic v is found.

Remark 2.3 Note that for even d, g · (f + cqd/2) = g · f + [qd/2] for any c ∈ C \ {0}.
Conversely, if g · f = g · h for general f, h then we get Hf = Hh, so that f , h have the
same eigenvectors and Turatti proves in [20] (generalizing previous results from [1, 2]) that
there exists c ∈ C such that f + cqd/2 = h.

2.2 Partially Symmetric Tensors

Consider the tensor product Symd1V1 ⊗ · · · ⊗ SymdkVk = V . We assume we have nonde-
generate symmetric bilinear forms qi on Vi . V is equipped with the Frobenius form q such
that on decomposable elements

q
(
v

d1
1 ⊗ · · · ⊗ v

dk

k , w
d1
1 ⊗ · · · ⊗ w

dk

k

)
=

k∏

i=1

qi(vi, wi)
di .

The decomposable elements make a cone over the Segre–Veronese variety X � PV1×· · ·×
PVk embedded in PV with the line bundle O(d1, . . . , dk). The group G = SO(V1, q1) ×
· · · × SO(Vk, qk) acts on V , we have again the inclusion G ⊂ SO(V, q) and Theorem 1.2
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applies. Denote by xi,0 . . . xi,ni
an orthogonal coordinate system on Vi . Analogously to

Proposition 2.1 the orbit so(V1) × · · · × so(Vk) · f is spanned by xp,j
∂f

∂xp,i
− xp,i

∂f
∂xp,j

for
0 ≤ i < j ≤ np , p = 1, . . . , k. It follows that the critical space Hf defined according
to (1.1) coincides with the one defined in [5].

The critical points of df (x) = q(f − x) restricted to the Segre–Veronese variety are the
singular t-ples of f [12], their number is called EDdegree in [4] and it is counted by the
formula in [7], see also [4, §8].

The proof of Theorem 2.2 generalizes to this setting and gives

Theorem 2.4 For general f ∈ Symd1V1 ⊗ · · · ⊗ SymdkVk = V , let X ⊂ PV be the
Segre–Veronese variety of rank one tensors. Hf ∩ X consists exactly of the singular t-ples
of f .

Since general partially symmetric tensors f have trivial isotropic groups, in the binary
case Xd = P

1 × · · · × P
1 embedded in P(Symd1C

2 ⊗ · · · ⊗ SymdkC
2) with the line bundle

O(d1, . . . , dk) we have G = (C∗)k , g = C
k and the nice coincidence codimHf = k =

dimXd. Hence the cardinality of the intersection between Hf and Xd can be counted by
Bezout Theorem and it follows an alternative proof of the formula

EDdegree(Xd) = degXd = k!d1 . . . dk, (2.4)

already known from [7], [18, Eq. (1.6)]. Our approach explains that the resulting equality
between EDdegree and deg of Xd is not a coincidence. Note that Bezout Theorem applies
when the intersection scheme has the expected codimension, without assuming Hf being
general, see (1) in [8, §8.4]. We will apply again this approach to complete flag varieties in
Theorem 3.4.

Example 2.5 If dimA = dimB = dimC = 2 we denote by QA, (resp. QB , QC ) the
isotropic quadric consisting of two points on P(A) (resp. P(B), P(C)).

We have that dim(so · f ) < 3 if and only if f belongs to one of the following six P
3

linearly embedded in P(A ⊗ B ⊗ C) (each item consists of two P
3’s)

QA × P(B ⊗ C), QB × P(A ⊗ C), QC × P(A ⊗ B).

The following result was proved in [5], joint with J. Draisma and A. Tocino. The proof
given here, as a consequence of Theorem 1.2, is maybe simpler.

Corollary 2.6 [5, Theorem 1.1] Let Xq be the q-secant variety to the Segre–Veronese vari-
ety in P

(
Symd1V1 ⊗ · · · ⊗ SymdkVk

)
. Then the critical points of the distance function from

a tensor f to Xq lie in Hf . In particular any best rank q approximation of f (when it exists)
lie in Hf .

3 Grassmann and Flag Varieties

3.1 Grassmann Varieties

Let V = ∧kW , we consider the Grassmann variety Gr(k,W) of k-dimensional subspaces
of W , its cone is embedded in V . Again, a nondegenerate quadratic form qW on W extends
to the Frobenius form q on V by requiring q(v1∧· · ·∧vk,w1∧· · ·∧wk) = det

(
qW (vi, wj )

)
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(the Gram determinant). If v = v1 ∧ · · · ∧ vk ∈ ∧kW then the derivative ∂v
∂xi

∈ ∧k−1W is
defined by the Leibniz formula

∂v

∂xi

=
k∑

j=1

v1 ∧ · · · ∧ ∂vj

∂xi

∧ · · · ∧ vd

and extended by linearity to all ∧kW . This is compatible with the inclusion ∧kW ⊂ W⊗k

and the form q just defined is the restriction of the Frobenius form on W⊗k of the previous
section. The same formula (2.2) holds formally in case SO(W) acts on ∧kW .

so(W) · f =
〈

∂f

∂xi

∧ xj − ∂f

∂xj

∧ xi

〉

0≤i<j≤n

. (3.1)

The EDdegree of Grassmann varieties with respect to the Frobenius form is still unknown
in general.

For a general f ∈ ∧kW , we have that a non isotropic v = v1 ∧ · · · ∧ vk is a critical point
for df if T (v1 ∧ · · · v̂i · · · ∧ vk) = q(vi, −) ∀i = 1, . . . k. Again, the proof of Theorem 2.2
generalizes to this setting and gives

Theorem 3.1 For general f ∈ ∧kW , Hf ∩ Gr(k,W) consists exactly of the critical points
of df restricted to the Grassmann variety Gr(k,W).

3.2 Flag Varieties

For a flag variety X = SL(W)/P , where P is a parabolic subgroup of SL(W) [9, §23.3],
embedded by a very ample line bundle L, Hf ∩ X consists exactly of the critical points
of df . The embedding space is a Schur module SαW where the Frobenius form is defined
again by restriction of the one on W⊗k and again we have G = SO(W).

For complete flag varieties Fn, which parametrize complete flags (L1 ⊂ · · · ⊂ Ln) ⊂ W

with dimLi = i (partial flags may miss someLi’s), the above principle becomes effective in
computing the number of critical points. We recall that dimFn = n(n + 1)/2 and that Fn =
SL(n + 1)/B where B is the Borel subgroup of upper triangular matrices. The following
two lemmas are well known, we include the proofs for the convenience of the reader.

Lemma 3.2 χ(Fn,Z) = (n + 1)!.

Proof A general section of the tangent bundle T Fn is given by a matrix A ∈ SL(n +
1) = SL(W) with distinct eigenvalues and corresponding eigenvectors v1, . . . vn+1. The
zero locus of this section consists of A-invariant complete flags (L1 ⊂ . . . ⊂ Ln) with
dimLi = i. There are (n + 1) choices for Ln, obtained by the span of n among the vi . For
each Ln there are correspondingly n choices for Ln−1, and so on there are (n + 1)! choices
for each A-invariant complete flag. The thesis follows from Gauss–Bonnet theorem.

Lemma 3.3 (i) Let Fn be embedded with the line bundleO(a1, . . . , an) in the projective
space over Sa1,...,anC

n+1, the module with Young diagram having
∑n

i=j ai boxes in
the j th row. The degree of the embedded variety is

(
n + 1

2

)

!
∏

1≤i<j≤n+1

ai + · · · + aj−1

j − i
. (3.2)

(ii) When ai = 1 we get degFn = (
n+1
2

)!.
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Proof We have H 0(Fn,O(a1, . . . , an)) = ∏
1≤i<j≤n+1

ai+···+aj−1+j−i

j−i
by Weyl

character formula (see [9, equation (15.17)]). Then the Hilbert polynomial is

H 0(Fn,O(ta1, . . . , tan)) = ∏
1≤i<j≤n+1

t (ai+···+aj−1)+j−i

j−i
and computing the leading

term we get the thesis. In case (ii) the Hilbert polynomial simplifies to χ(Fn,O(t, . . . , t)) =
(t + 1)(

n+1
2 ).

Theorem 3.4 Let B ⊂ SL(n + 1) be the Borel subgroup of upper triangular matrices.
For a complete flag variety Fn = SL(n + 1)/B, embedded by a very ample line bundle
L = O(a1, . . . , an), with respect to the Frobenius form we have that EDdegreeFn = degFn

is given by (3.2).

Proof For general f ∈ H 0(SL(n + 1)/B), we have again the nice coincidence that the
codimension of Hf is equal to the dimension of Fn, which is

(
n+1
2

) = dim SO(n + 1), so
that the critical points are cut by a linear space of complementary dimension.

Example 3.5 For n = 2, the flag variety SL(3)/B (see I § 3.1 of [13]) embedded with
O(a, b) has EDdegreeF2 = degF2 = 3ab(a + b).
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