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A B S T R A C T   

Despite extensive past research efforts, the influence of turbulence on suspension bridge flutter stability has not 
been fully understood yet. Moreover, the role of large-scale turbulence has been overlooked in predicting the 
critical wind velocity, despite experimental and numerical studies indicating that atmospheric turbulence can 
have either a stabilising or a destabilising effect. This study investigates the parametric effects of large-scale 
turbulence on flutter stability based on the 2D Rational Function Approximation model, considering the Har
danger Bridge, in Norway, as a case study. First, a Monte Carlo method is used to analyse the bridge stability 
under various turbulent wind conditions, considering turbulence intensity and integral length scale as key pa
rameters. The results highlight the sensitivity of flutter stability to these turbulence parameters, as well as 
essentially its independence of the spanwise correlation of the parametric excitation. The role of the variation in 
the wind angle of attack is found to be largely dominant compared to that in the wind velocity magnitude. 
Subsequently, Floquet multipliers are employed to study the influence of periodic parametric excitations on 
bridge stability, assuming sinusoidal fluctuations of wind velocity magnitude and angle of attack. This simplified 
scenario helps us understand the various parametric excitation mechanisms and explain the results of the more 
realistic Monte Carlo approach. The study emphasises the key role played in flutter stability and buffeting 
response by the so-called “average parametric effect”, associated with the mean of the aerodynamic derivatives 
as nonlinear functions of the slowly-varying angle of attack. The preponderance of this effect in most realistic 
turbulent wind scenarios also explains the negligible impact of correlation of the parametric variation in the 
angle of attack. Finally, an equivalent linear time-invariant model is proposed to account for the parametric 
effects of turbulence in a simple way, yielding good results and offering a new perspective on the use of classical 
self-excited force coefficients.   

1. Introduction 

At the dawn of a new era of super-long suspension bridges launched 
by the latest opening of the Çanakkale Bridge, Turkey, there is the 
perception that new challenges for wind engineers may appear for such 
unexplored structural flexibility. As a matter of fact, despite several 
decades of research on wind-induced aeroelastic phenomena for long- 
span suspension bridges, the increasing scale of these structures, such 
as the Messina and Gibraltar crossings with spans reaching 3000 m, 
presents new and potentially more complex issues. Although suspension 
bridge designs have not encountered critical problems thus far, as the 
demand for long-span crossings continues to grow, the accuracy of 
bridge response and stability assessment has been becoming increas
ingly crucial. Indeed, the dynamic response to wind excitation can 
significantly impact the design stresses experienced by the bridge 
(Davenport, 1962; Aas-Jakobsen and Strømmen, 2001; Lystad et al., 

2020; Barni et al., 2023a). Consequently, enhancing our understanding 
of wind-induced aeroelastic phenomena and refining mathematical 
models is imperative for the feasibility and to ensure the safety of these 
extraordinary structures. 

Assuming a linear behaviour for both the structure and the aero
dynamic loads, the problem of bridge flutter stability has extensively 
been addressed in both the frequency and the time domain. In most 
studies (e.g., Scanlan, 1978; Jain et al., 1996; Katsuchi et al., 1999; Chen 
and Kareem, 2006; Bartoli and Mannini, 2008), deterministic flutter 
stability thresholds have been estimated neglecting both the uncertainty 
in self-excited force coefficients and the effect of atmospheric turbu
lence. Nevertheless, free-stream turbulence, defects in the experimental 
setup, identification techniques, and limitations in the underlying 
mathematical models can introduce uncertainty in the aerodynamic 
derivatives (Caracoglia et al., 2009; Caracoglia, 2013; Mannini and 
Bartoli, 2015; Scanlan and Lin, 1978; Rizzo and Caracoglia, 2018; Sarkar 
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et al., 2009). In recent years, a few probabilistic approaches have been 
employed in flutter stability analysis, considering Gaussian random 
sources of uncertainty in the aerodynamic derivatives (Seo and Car
acoglia, 2011; Argentini et al., 2014; Canor et al., 2015; Mannini and 
Bartoli, 2015), aiming at determining the flutter failure probability for a 
given mean wind velocity. 

As for atmospheric turbulence, it is now well established that it can 
alter the aerodynamic derivatives, both through small scales (e.g., 
Bearman and Morel, 1983; Mannini et al., 2018), which interact with 
shear layer separation, and through large scales, which locally change 
kinetic pressure and incident wind slope. Then, large-scale atmospheric 
turbulence can introduce various sources of randomness in the param
eters of self-excited forces. In particular, in the early 1980s, Lin and 
Ariaratnam (1980) addressed the random fluctuations in the kinetic 
pressure by studying the almost sure stability of a bridge and deter
mining statistical moment boundaries. This pioneering work was the 
first attempt to consider the influence of longitudinal turbulence on 
bridge stability, specifically focusing on torsional motion. They assumed 
a white-noise random variation in the wind velocity magnitude, which 
parametrically affects aerodynamic damping and stiffness. Such a 
simplified model for turbulence leads to a bridge response that can 
approximately be considered a Markov vector, thus facilitating the study 
of the stochastic differential equation stability. The approximation of the 
turbulence spectrum with a white noise is supported by assuming a 
Mathieu-Hill behaviour for the dynamic system, exhibiting both para
metric damping and stiffness. Indeed, the strongest parametric excita
tion is exhibited at two times the vibration frequency, as described by 
Kozin (1967). Therefore, the spectral density level at this frequency 
becomes the most crucial modelling parameter for longitudinal turbu
lence. Unlike some previous experiments (Irwin and Schuyler, 1978), 
Lin and Ariaratnam (1980) concluded that turbulence can potentially 
cause instability in an otherwise stable system. Building upon this, 
Bucher and Lin (1988a) studied the stability of the second statistical 
moment of a two-degree of freedom system with different bridge 
cross-sections. They found that random variations in the wind velocity 
can stabilise coupled flutter, as the random parametric excitation leads 
to an energy transfer from the critical modes to more stable modes. 
Moreover, the partial correlation of velocity fluctuations makes possible 
such a transfer between modes of the same type (e.g., different torsional 
modes), reducing at the same time the parametric excitation of lower 
order modes (Bucher and Lin, 1988b). Then, using the stochastic 
average approach, Bucher and Lin (1989) made progress in efficiently 
assessing moment stability. In the same period, Tsiatas and Sarkar 
(1988) conducted a similar study focusing on the root mean square 
(RMS) of the bridge response up to the flutter instability onset. They 
utilised stochastic calculus to examine the effects of wide-band weak
ly-stationary random perturbations in the longitudinal and vertical wind 
velocity components, including also the analysis of the effect of spatial 
correlation in the buffeting forces. They found that turbulence could 
destabilise the system, leading to a reduction in the flutter stability 
threshold. Later, Lin and Li (1993) improved the understanding of the 
phenomenon by removing the simplified white-noise assumption and 
introducing a new turbulence model capable of representing various 
broad-band processes by simply adjusting a few parameters. Depending 
on the type of turbulence spectrum and turbulence intensity considered, 
they observed both stabilising and destabilising effects. In the early 
2000s, Poirel and Price (2001, 2003) included the effects of the vertical 
component of wind velocity fluctuations for a 2-DoF airfoil, obtaining 
the stochastic stability boundaries by numerical estimation of the largest 
Lyapunov exponent. The sensitivity of stochastic stability to turbulence 
parameters, such as intensity and integral length scale, as well as to 
structural parameters, was also studied. The results were consistent with 
those obtained by Lin and Ariaratnam (1980) and Tsiatas and Sarkar 
(1988), confirming the destabilising role of turbulence. In particular, a 
more unstable condition was obtained by increasing the turbulence 
length scale, highlighting the crucial role of large-scale (low-frequency) 

turbulent fluctuations. In Poirel and Price (2001, 2003) and in Lin and 
Lin (1995), parametric resonances due to a narrow-band excitation were 
also thoroughly investigated using the averaging method of Bogoliubov 
and Mitroplosky (1961). This extreme simplification of turbulence ef
fects allowed underlining the primary resonance at twice the flutter 
frequency, typically observed in time-variant dynamical systems. All the 
approaches described above consider the turbulent perturbation only in 
the kinetic pressure that scales the self-excited forces, but the indicial 
function or the rational approximation characterising the self-excited 
forces are considered unchanged (see assumption b in Lin and Ariar
atnam, 1980), thus neglecting the variation in the reduced wind velocity 
produced by the turbulent fluctuations. This might be a shortcoming 
when the aerodynamic derivatives show large gradients with the 
reduced velocity, thus significantly varying aerodynamic damping and 
stiffness and leading to parametric excitation phenomena. Furthermore, 
all these studies are based on the assumption of small oscillations of both 
the bridge and the fluid around the steady-state configuration. 

In addition to the parametric effect associated with the kinetic 
pressure, large-scale turbulence also changes in time the angle of attack, 
which is known to affect the aerodynamic derivatives (e.g., Argentini 
et al., 2020; Barni et al., 2021) and, therefore, implies a random varia
tion in the bridge aerodynamics. The attention to this effect originated 
from Prof. Diana and co-workers’ studies, who first recognised the sig
nificance of this effect for bridge buffeting response (Bocciolone et al., 
1992). Then, its modelling has extensively been pursued over the past 
three decades, leading to the development of various nonlinear force 
models that account for the low-frequency modulation of self-excited 
forces caused by large-scale turbulence (Diana et al., 1993, 1995, 
2013; Chen and Kareem, 2001; Diana and Omarini, 2020; Barni et al., 
2021). Along this line of research, Barni et al. (2022) incorporated the 
model proposed in Barni et al. (2021) in a time-variant state-space 
framework, considering the loss of spanwise correlation of turbulent 
fluctuations along the girder. The results revealed that turbulence is able 
to anticipate the flutter stability threshold of the Hardanger Bridge, in 
Norway (1310 m main span), and this effect was mainly attributed to the 
torsional aerodynamic damping variation due to the modulation of the 
aerodynamic coefficient A*

2. Linear and nonlinear buffeting response and 
flutter stability of long-span bridges is also the object of an international 
benchmark organised by the International Association for Bridge and 
Structural Engineering (https://iabse.org/Committees/Technical-G 
roups/Task -Groups/Task-Group-31) (Diana et al., 2019, 2020). 

All the abovementioned models are usually addressed as “nonlinear” 
although they rely on a dynamic linearisation of the aerodynamic forces 
around a slowly-varying angle of attack due to large-scale turbulence. 
This linearisation does not allow accounting for amplitude-dependent 
phenomena typical of post-critical flutter states (e.g., limit-cycle oscil
lations). Nevertheless, it yields a time-variant problem that may exhibit 
characteristic features of nonlinear system, in the same way as Mathieu 
or Hill’s equations (see, e.g., Nayfeh and Mook, 2008). Moreover, some 
models also include in the slowly-varying angle of attack the contribu
tion of the background motion of the bridge, which is another source of 
nonlinearity. 

The role played in bridge flutter stability by the spanwise correlation 
of the parametric excitation is another open issue. Scanlan (1997) sug
gested that turbulence stabilises the bridge by enhancing the loss of 
self-excited force correlation along the girder. Similarly, Chen and 
Kareem (2003) ascribed the limited impact of turbulence on bridge 
flutter stability to the rapid loss of correlation of wind velocity fluctu
ations and, consequently, of the parametric excitation caused by tur
bulence. However, these explanations have not been either 
experimentally or theoretically demonstrated yet. A reason for this is 
also the lack of computational efficiency of the models that consider the 
modulation of self-excited forces along the bridge girder. In this regard, 
the nonlinear buffeting framework proposed in Barni et al. (2022) has 
eventually provided an efficient method to account for the 
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three-dimensional parametric effect of large-scale turbulence. 
The current work aims to study the parametric effects of large-scale 

atmospheric turbulence on bridge flutter stability in terms of variations 
in both wind velocity magnitude and angle of attack, which have always 
separately been addressed so far. A multi-degree-of-freedom model of 
the Hardanger Bridge is considered as a case study. The self-excited force 
modulation due to large-scale turbulence is considered according to the 
2D Rational Function Approximation model (2D RFA), proposed and 
experimentally validated in Barni et al. (2021), and the time-variant 
state-space framework reported in Barni et al. (2022). First, the bridge 
stability is assessed using a Monte Carlo approach, with particular 
emphasis on the influence of turbulence intensity and integral length 
scale. This method allows considering the actual large-scale turbulence 
parametric excitation (no white-noise or similar approximations are 
needed), leading to a realistic modelling of the phenomena. The impact 
of the partial correlation of parametric excitations is also easily studied. 
However, not only does this approach not permit the determination of a 
formal stability limit (e.g., sample or p-th moment stability thresholds), 
but it also does not allow any physical understanding of the phenome
non. Consequently, the parametric effects due to turbulence are then 
investigated by simplifying the parametric excitation assuming a 
time-periodic wind gust. In this case, the stability boundaries can 
formally be determined using the theory of Floquet multipliers for 
time-periodic system. Though strongly simplifying the complex sto
chastic nature of the problem, this time-periodic approach facilitates the 
isolation of various parametric effects and allows drawing conclusions 
regarding their actual impact on the flutter stability and buffeting 
response of realistic suspension bridges. Finally, an equivalent linear 
time-invariant model for self-excited forces is proposed by correcting 
Scanlan’s model to account for the major parametric effect of large-scale 
turbulence. 

The paper is structured as follows. Section 2 summarises the imple
mentation of the 2D RFA model for nonlinear bridge buffeting response 
and flutter stability. The approaches used to determine the parametric 
effects of turbulence on the bridge dynamic response, namely Monte 
Carlo simulations and Floquet analysis, are briefly presented in Section 
3. The bridge case study and the random wind field characteristics 
assumed in the calculations are presented in Section 4. Section 5 dis
cusses the main results of the analyses, highlighting how large-scale 
turbulence parametrically affects the bridge behaviour. Section 6 in
troduces the linear equivalent model that accounts for most of these 
parametric effects. Some conclusions are finally drawn in Section 7. 

2. Background: time-variant state-space model 

Preserving the classical small-vibration hypothesis, the parametric 
variation of self-excited forces due to large-scale turbulence is addressed 
in the present work. In particular, assuming that wind velocity magni
tude and angle of attack oscillate slowly compared to the bridge motion 
(in a similar way to Barni et al., 2021, 2022, though in those cases only 
the variation in the angle of attack was considered), the time-variant 
transfer function G(K̃, α̃) between the motion vector r and the 

self-excited force vector qse for a three-degree-of-freedom two-dimen
sional bridge deck model (Fig. 1) maintains the simple form valid for a 
linear system, but it becomes a function of slowly-varying reduced fre
quency K̃ (or reduced wind velocity 2π/K̃) and turbulence-induced angle 
of attack ̃α, where the operator tilde indicates a low-pass filter applied to 
a certain quantity (⋅), so that (⋅) − (̃⋅) denotes the attendant 
high-frequency component. Theoretically speaking, this is equivalent to 
linearising the aerodynamic forces around a stochastically varying 
condition, specifically the slowly-varying wind velocity magnitude and 
angle of attack. This stands in contrast to the conventional linearisation 
around a fixed point represented by the mean wind incidence and the 
static deformed position of the bridge under dead (or dead and static 
wind) loads. Then, the self-excited forces can be written in the mixed 
time-frequency domain as follows: 

qse

(

K
∼

,α∼,ω
)
= G

(

K
∼

, α∼
)

R(ω)

qse =
[

qy qz qθ
]T

R = F [r] = F [ y z θ ]T

(1)  

The vector R results from the Fourier transform F of the bridge girder 
motion vector r (the self-excited forces acting on cables and pylons are 
neglected here), where y, z and θ denote lateral, vertical and torsional 
displacements, respectively (Fig. 1). In Eq. (1), K̃ = ωB⁄ Ṽ represents the 
slowly-varying reduced frequency, where ω = 2πf is the circular fre

quency of the motion, B is the bridge deck width, V(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[Vm + u(t)]2 + w2(t)
√

is the time-varying wind velocity magnitude, Vm 

is the mean wind speed, while u(t) and w(t) are the longitudinal and 
vertical turbulent wind fluctuations, respectively; α̃ denotes the slowly- 
varying angle of attack, where α(t) = atan{w(t) /[Vm + u(t)]}. The 
aerodynamic derivatives determine the transfer function G(K̃, α̃) as 
explained in Barni et al. (2021). 

Aiming at a time-domain description of the self-excited forces, the 
transfer function can be approximated by Roger’s rational function 
(Roger, 1977): 

G(K̃, α̃)= 1
2

ρṼ2

(

A1(α̃)+A2(α̃)iK̃ +
∑N− 2

l=1
Al+2(α̃)

iK̃
iK̃ + dl(α̃)

)

(2)  

Here, ρ is the air density, N− 2 is the number of additional aeroelastic 
states; Al(α̃) ∈ R3×3 and dl(α̃) ∈ R+ are the time-variant rational- 
approximation coefficients, determined from the aerodynamic de
rivatives through a nonlinear least-squares fitting, as discussed in Barni 
et al. (2021). The multivariate rational function approximation can be 
visualised as a surface, and the model is therefore called 2D RFA model. 
Taking the inverse Fourier transform of Eq. (2), considering Al and dl as 
frozen-time functions of the angle of attack, one obtains the following 
expression of the self-excited forces: 

Fig. 1. Sketch of the Hardanger Bridge section with the reference system for displacements, forces and wind velocities.  

N. Barni and C. Mannini                                                                                                                                                                                                                      



Journal of Wind Engineering & Industrial Aerodynamics 245 (2024) 105615

4

qse(t, α̃)= 1
2

ρṼ2

[

A1(α̃)r(t)+
B
Ṽ

A2(α̃)ṙ(t)+
∑N− 2

l=1
Al+3(α̃) λl(t)

]

(3)  

λl ∈ ℝ3×1 are the additional aeroelastic states, which can be obtained 
from: 

λ̇l = − dl(α
∼
)

V
∼

B
λl + ṙ (4) 

This time-variant self-excited force model can be extended to the 
case of a three-dimensional linearised bridge structure, characterised by 
Nmod vibration modes and exposed to a partially-correlated random wind 
field, in a similar way to Barni et al. (2022). Since the turbulent wind 
field varies in both space and time, wind velocity magnitude and angle 
of attack also change along the bridge girder (Ṽ(x, t), α̃(x, t), where x 
denotes the bridge girder longitudinal axis). By carrying out a modal 
analysis of the suspension bridge in the neighbourhood of the deformed 
configuration under self-weight (or self-weight and mean wind load), 
the nodal displacement vector r can be expressed as the sum of the 
products of the selected natural mode shapes, φi(x) =

[
φiy(x) φiz(x)

φiθ(x)
]T, and the corresponding generalised coordinates, ηi(t) [r(x, t) =

Φ(x)η(t)]. Then, the bridge equation of motion can be written in the 
modal space, yielding: 

η̈ = − M̂ − 1[Ĉ + Ĉae(α
∼
) ]η̇ − M̂ − 1[K̂ + K̂ae(α

∼
) ]η

+
1
2

ρ M̂− 1
∫

l

ΦT V
∼2
[
∑N− 2

l=1
Al+2(α

∼
) ψl

]

dx + q̂ext
(5)  

where 

Ĉae = −
1
2

ρB
∫

l

ΦT V
∼

A2(α
∼
) Φ dx ∈ ℝNmod×Nmod  

K̂ae = −
1
2

ρ
∫

l

ΦT V
∼2

A1(α
∼
) Φ dx ∈ ℝNmod×Nmod  

M̂, Ĉ and K̂ ∈ RNmod×Nmod represent the structural mass, damping and 
stiffness matrices, respectively, in generalised coordinates, while 
Ĉae and K̂ae represent a part of the generalised aerodynamic damping 
and stiffness matrices (another contribution comes from the additional 
aeroelastic states); l indicates that the integral is extended over the 
entire length of the bridge deck. The external load vector q̂ext , here 
projected onto the modal space, can be obtained through a dynamic 
linearisation around the slowly-varying angle of attack, as explained in 
Barni et al. (2022). Then, a state-space transformation can be applied, 
posing γ1 = η, γ2 = η̇ and γl+2 = λl, l ∈ {1,2,…,N − 2}, and the integral 
in Eq. (5) can be expressed as the product of a block matrix Qad(Ṽ, α̃) and 
a column vector γad, which includes all the additional aeroelastic states 
γad(t) = [ γ3(x1, t) ⋯ γN(x1, t) ⋯ γ3(xNx , t) ⋯ γN(xNx , t) ]

T
∈

ℝ3⋅(N− 2)⋅Nx , where Nx denotes the number of nodes (identified by the 
coordinates x1, …, xNx ) used to discretise the bridge girder (see Barni 
et al., 2022 for more details). Eqs. (3), (4), (5) can thus be written as a 
linear time-variant state-space model: 
⎡

⎢
⎣

γ̇1

γ̇2

γ̇ad

⎤

⎥
⎦=

⎡

⎢
⎣

0 I 0
− M̂ − 1(K̂+ K̂ae) − M̂ − 1(Ĉ+ Ĉae) M̂ − 1Qad

0 Ξ Gad

⎤

⎥
⎦

⎡

⎢
⎣

γ1

γ2

γad

⎤

⎥
⎦

+

⎡

⎢
⎣

0
M̂− 1 q̂ext

0

⎤

⎥
⎦

(6)  

where: 

Qad

(

V
∼

, α∼
)
=

1
2

ρ Δx[ Z(x1,α
∼
(x1) ) ⋯ Z(xk,α

∼
(xk) ) ]

∈ ℝNmod×[3⋅(N− 2)⋅Nx ]

Z(xk,α
∼
(xk))=

[

Φ(xk)
T
[
A3(α

∼
(xk))V

∼2
(xk)

]
⋯ Φ(xk)

T
[
AN(α

∼
(xk))V

∼2
(xk)

] ]

∈ℝNmod×[3⋅(N− 2) ]

Gad

(

V
∼

, α∼
)
= − B− 1

⎡

⎢
⎢
⎣

D(x1, t)

⋱

D(xNx , t)

⎤

⎥
⎥
⎦

∈ ℝ[3⋅(N− 2)⋅Nx ]×[3⋅(N− 2)⋅Nx ]

D(α∼(xk), t ) =

⎡

⎢
⎢
⎣

d1(α
∼
(xk, t) ) I V

∼

(xk, t)

⋱

dN− 2(α
∼
(xk, t) ) I V

∼

(xk, t)

⎤

⎥
⎥
⎦

∈ ℝ[3⋅(N− 2)⋅Nx ]×[3⋅(N− 2) ]

Ξ =

⎡

⎢
⎢
⎢
⎣

Φ(x1)

⋮

Φ(xNx )

⎫
⎪⎪⎬

⎪⎪⎭

⋮

N − 2 times

⎤

⎥
⎥
⎥
⎦
∈ ℝ [3⋅(N− 2)⋅Nx ]×Nmod  

I ∈ R Nmod×Nmod is the identity matrix, and Δx is the spanwise distance 
between the nodes (assumed here as equispaced). In compact form, one 
can write: 

γ̇(t) = Ω
(

V
∼

, α∼
)

γ(t) + Bq̂ext(t) (7)  

B =
[

0 M̂− 1 0
]T

∈ R [2Nmod+3⋅(N− 2)⋅Nx]×Nmod is the input matrix, 
γ ∈ ℝ2⋅Nmod+3⋅(N− 2)⋅ Nx is the state vector, while 

Ω
(

V
∼

,α∼
)
∈ ℝ[2⋅Nmod+3⋅(N− 2)⋅Nx ]×[2⋅Nmod+3⋅(N− 2)⋅Nx ] is the slowly-varying time- 

variant state matrix. It is worth emphasising that the dependence of the 
state matrix in Eq. (7) on the local flow characteristics along the deck 
allows taking into account the effect of the partial correlation of the 
random wind field on the modulation of the self-excited forces due to 
large-scale oncoming turbulence. 

The dynamic response of the bridge can efficiently be determined by 
transforming Eq. (7) into a discrete-time state-space equation, given the 
sampling rate 1/Δt: 

γ(s + 1) = Ωd(s)γ(s) + Bd(s)q̂ext(s) (8)  

where: 

Ωd(s) = eΩ(sΔt)Δt ; Bd(s) = [Ωd(s) − I ]Ω(sΔt) (9)–(10)  

s is an integer-valued variable (the discrete-time index), Ωd is the 
discrete-time state matrix, and Bd is the discrete-time input matrix. 

It is worth emphasising that the governing differential equation (Eq. 
(7)) maintains a linear relationship between self-excited forces and 
bridge motion, but a nonlinear-like behaviour is introduced by the time- 
variant nature of the dynamic system. In contrast, when the aero
dynamic derivatives exhibit a nonnegligible dependence on even small 
bridge vibration amplitude (for instance, in the case of bluff bridge cross 
sections, as discussed in Mannini et al., 2016) or in a post-critical flutter 
analysis, it is necessary to consider a fully nonlinear amplitude- 
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dependent model for self-excited forces (e.g., Gao et al., 2020; Sky
vulstad et al., 2021; 2023). However, amplitude-dependent models do 
not allow the identification of a state matrix since the aerodynamic 
forces depend on the bridge response, resulting in computationally more 
expensive calculations, especially for a multi-degree-of-freedom prob
lem like a suspension bridge. Moreover, a fully nonlinear approach is 
usually expected not to be necessary in precritical conditions for 
quasi-streamlined cross-sections, since an amplitude-dependence of the 
aerodynamic derivatives is often observed only for very large vibrations. 
On the other hand, the nonlinearity associated with the low-frequency 
contribution to the angle of attack of the bridge motion (background 
response) is usually small compared to the wind counterpart and can 
reasonably be neglected (Barni et al., 2022), although it would be 
straightforward to account for it through an iterative procedure (note 
that this may be very important in case of nonsynoptic winds). Finally, 
the framework reported above might also be used to determine the 
suspension bridge response under nonstationary winds. Indeed, a 
slowly-varying mean wind velocity and angle of attack are usually 
assumed to account for the transient effects of nonsynoptic winds (e.g., 
Chen, 2014; Hu et al., 2013). 

Crucial points in all band-superposition approaches, and therefore 
also in the 2D RFA model, are the assumption of slow variations in the 
angle of attack and wind velocity magnitude compared to the motion of 
the bridge, and the choice of the cutoff frequency below which wind 
velocity fluctuations are assumed to be effective in modulating the self- 
excited forces. Concerning the former issue, the 2D RFA model has 
experimentally been validated under both multi-harmonic and broad- 
band random angle of attack for different bridge section geometries; a 
frequency ratio of the bridge motion to the modulating angle of attack as 
low as 1.7 has successfully been tested (Barni et al., 2021, 2023b; Barni, 
2022). The second issue is clearly the major drawback of all 
band-superposition models, and the different methods followed in the 
literature are thoroughly discussed in Barni et al. (2022). In order to 
maximise the parametric effects of oncoming turbulence, a multiple 
cutoff strategy was proposed in Barni et al. (2022), setting a different 
cutoff frequency for the self-excited force components associated with 
lateral, vertical, and torsional motions. The same approach is used here, 
considering three distinct slowly-varying wind velocity magnitudes and 
angles of attack, denoted as Ṽy, Ṽz, Ṽθ, and α̃y, α̃z, α̃θ, which are deter
mined by low-pass filtering with the cutoff at the first natural frequency 
of the corresponding first vibration modes. In this regard, it is important 
to remark that the equations presented above were written based on a 
single cutoff frequency for the sake of simplificty and conciseness. The 
adoption of multiple cutoff frequencies for the angle of attack requires 
some modifications in Eq. (6) and in particular in the construction of the 
matrices Gad and D, as explained in details in Barni et al. (2022). Similar 
straightforward changes must be introduced for the slowly-varying wind 
velocity magnitude in the matrices Qad and D. It is also important to note 
that the variation in the 2D RFA coefficients with both Ṽ and ̃α is directly 
accounted for in physical coordinates before modal projection (see Eqs. 
(3) and (4)). This implies that the slowly-varying turbulence parameters 
obtained through low-pass filtering modulate each modal component in 
a consistent manner, namely the same cutoff frequencies are applied to 
the lateral, vertical and torsional components of all modes (see also the 
extensive discussion in Barni et al., 2022 about the role of multiple 
cutoffs with respect to mode coupling effects). Finally, the actual impact 
of the cutoffs on the results for the considered case study will be further 
discussed at the end of this paper by finally ignoring the assumption of 
slow-variation in the wind angle of attack and simply removing them. 

3. Methodologies 

3.1. Monte Carlo approach 

Generally, for a time-invariant system, the asymptotic flutter 

stability threshold is governed by the sign of the real part of the state 
matrix eigenvalues. In contrast, such eigenvalues vary with time for a 
time-variant stochastic system such as that described by Eq. (7), thus 
leading to more complicated concepts of stability, such as sample or p-th 
moment stability (e.g., Arnold et al., 1984; 1986). Lin and Ariaratnam 
(1980) and later Bucher and Lin (1988a) studied the sample stability of a 
similar problem by analysing the behaviour of the statistical moments. 
This approach was allowed by considering turbulence as a white-noise 
process that only affects the wind kinetic pressure in the self-excited 
force formulation, thus neglecting changes in the indicial function. 
Under these assumptions, the turbulence parametric excitation can be 
assimilated to a Wiener process (Xie, 2006) and the bridge response to a 
Markov vector, inheriting all the good properties for the stability of 
Itô-type stochastic differential equations. 

In contrast, the problem described in Eq. (7) is much more compli
cated, aiming to consider all parametric effects of large-scale turbulence. 
It may be possible to express the slowly-varying parameters α̃ and Ṽ 
from scalar Wiener processes, as the output of autoregressive filters 
(e.g., Bartoli et al., 1997; Caracoglia, 2013), and then include them in 
Eq. (6) as additional states (state augmentation, see Grigoriu, 2002). 
This would result in a nonlinear Itô stochastic differential equation, the 
stability of which could be formally investigated through the numerical 
assessment of Lyapunov exponents (for sample stability) or moment 
Lyapunov exponents (for p-th moment stability). This approach may be 
explored in a future study. In contrast, in this work the influence of 
realistic turbulence on the stability threshold is simply assessed by 
determining in a heuristic and approximate, yet unequivocal way the 
position of the vertical asymptote of the nonlinear buffeting response 
curves. The bridge dynamic response is obtained using a Monte Carlo 
approach in a similar way to Barni et al. (2022). The turbulent random 
wind field, necessary to obtain the external buffeting forces, q̂ext , as well 
as the slowly-varying wind velocity magnitude and angle of attack, is 
generated through the method of Shinozuka and Jan (1972) for different 
turbulence intensities and integral length scales. For the sake of 
simplicity, the wind-induced static rotation of the bridge deck is dis
regarded in the present analysis. This rotation is approximately 0.7 deg 
at midspan for a wind speed of 65 m/s, which, although non-negligible, 
is relatively small compared to the mean wind inclination of 2.5 deg 
(furthermore, the latter is constant along the bridge girder). 

3.2. Floquet multipliers 

The previous approach allows considering the full effect of para
metric excitation caused by large-scale turbulence, but it does not help 
much understand the mechanisms standing behind the variation in the 
flutter stability threshold. For this reason, the problem is simplified by 
considering a sinusoidal gust with period T*; then, the stability of the 
time-variant system described by Eq. (7) is addressed travelling the 
periodic trajectory drawn by either the slowly-varying wind velocity 
magnitude or the slowly-varying angle of attack: 

V
∼

(t) = Vm + V0 sin
(

2πt
T*

)

; α∼(t) = αm + α0 sin
(

2πt
T*

)

(12)  

Since the stability of a linear time-variant system only depends on the 
time-variant state matrix, the input term Bq̂ext in Eq. (7) can be ignored 
in this analysis. The solution of the autonomous part of Eq. (7) can be 
expressed as follows: 

γ(t) = ΦΩ(t, t0)γ(t0) (13)  

where t0 denotes the initial time, and ΦΩ(t, t0) ∈ ℝn×n (n= 2⋅Nmod + 3⋅ 
(N − 2)⋅Nx) is the state-transition matrix associated with the state matrix 

Ω
(

V
∼

,α∼
)

, which solves the following differential equation: 
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Φ̇Ω(t, t0) = Ω
(

V
∼

,α∼
)

ΦΩ(t, t0)

ΦΩ(t0, t0) = I ∈ ℝn×n
(14)  

Given the obvious periodicity of the state matrix, Floquet’s theory (e.g., 
Richards, 1983) tells that the eigenvalues of the monodromy matrix 
ΦΩ(T*,0), the so-called Floquet multipliers Ϛj, rule the system stability; 
indeed, a linear time-periodic system is stable if and only if 

⃒
⃒Ϛj
⃒
⃒ ≤ 1, ∀j 

(see Appendix A for further explanations). 
Based on the assumed sinusoidal form of the slowly-varying angle of 

attack and wind velocity magnitude, the equation governing the bridge 
dynamics (Eq. (7)) belongs to the family of Hill’s equations, where the 
parametric excitation can be expressed as a Fourier series with funda
mental period T*. Indeed, the nonlinear relation between the aero
dynamic derivatives and the slowly-varying reduced frequency and 
above all angle of attack, accounted for by the 2D RFA model, gives rise 
to a multi-harmonic parametric excitation. Consequently, these systems 
can exhibit parametric resonances corresponding to higher-order har
monics (e.g., Ying et al., 2019), as will be apparent in Section 5.2. 

4. Case study 

4.1. Hardanger Bridge 

The model previously introduced is used to study the stability of the 
Hardanger Bridge in turbulent flow. This suspension bridge crosses the 
Hardanger Fjord, in Norway, and is characterised by a 1310 m-long 
main span and two 186 m-high reinforced concrete towers. It is the 
largest Norwegian bridge (the third in Europe). The girder is a 3.2 m- 
high and 18.3 m-wide single-box steel deck (Fig. 1) composed of 
orthotropic plates. The bridge finite element model is the same used in 
Barni et al. (2022). The modal analysis was performed after applying the 
dead load, accounting for the geometrically nonlinear stiffness provided 
by the cables. Based on previous analyses, buffeting and stability cal
culations are performed considering 13 modes (1–7, 12 to 15, and 17, 
reported in Table 1). A structural modal damping ratio of 0.5% is 
considered for all modes. In light of the modal characteristics of the 
bridge, the cutoff frequencies for the three motion components, which 
define the slowly-varying wind angles of attack and wind velocity 
magnitudes, are fc

y = 0.05 Hz, fc
z = 0.11 Hz, and f c

θ= 0.36 Hz. 

4.2. Aerodynamic coefficients 

The aerodynamic derivatives, which were measured for different 
mean angles of attack with forced vibration tests and reported in Barni 
et al. (2021), are here approximated with 2D rational functions con
sisting of N= 4 terms (two additional aeroelastic states), adopting 
5th-order polynomials for all Ai , i= 1,…, N, and dl, l= 1,…, N − 2, 
parameters (see Eqs. (3) and (4)). Therefore, 228 coefficients are 
determined, ensuring high accuracy in the experimental data fitting (see 

Fig. 2). The 2D RFA approximation is carried out considering 11 angles 
of attack (namely, − 8, − 6, − 4, − 2, 0, 1, 2, 4, 5, 6, 7 and 8 deg) in a 
reduced velocity (Vr = Vm/(fB)) range up to 55. In the calculations, 
when the slowly-varying angle of attack ̃α falls outside this range, the 2D 
RFA coefficients are kept equal to the values corresponding to either − 8 
or +8 deg. Some experimental aerodynamic derivatives associated with 
the torsional motion are reported in Fig. 2 for a subset of angles of 
attack, together with the corresponding section traces of the 2D rational 
function approximation surface. Two essential features must be under
lined in Fig. 2. First, the aerodynamic coefficients show a strong 
dependence on the mean angle of attack, which implies a possible 
marked time-variant behaviour of the dynamic system. Secondly, the 
important coefficient A*

2, which is directly related to the aerodynamic 
damping in torsion, takes positive values (i.e., the attendant aero
dynamic damping contribution becomes negative) for mean angles of 
attack larger than about 5 deg. This feature clearly emphasises the 
importance of a model that accounts for such a nonlinearity. Finally, it is 
important to note that the aerodynamic effects of small-scale turbulence 
may also be considered by determining the 2D RFA coefficients from a 
set of aerodynamic derivatives measured in a specifically designed 
small-scale turbulent flow (see, e.g., Lander and Letchford, 2023). 

4.3. Turbulent wind field characteristics 

Various random wind fields are generated for the Monte Carlo ana
lyses devised in Section 3.1. Specifically, the longitudinal turbulence 
intensity Iu and integral length scale Lu are assumed to vary between 
10% and 25% and between 100 m and 300 m, respectively. These ranges 
are chosen based on the typical values of interest for these parameters in 
the case of long-span suspension bridges similar to the Hardanger 
Bridge. The vertical turbulence intensity and integral length scale are set 
to half and 10% of their longitudinal counterparts, respectively. Two- 
point normalised cross-spectra in the classical Davenport’s form 
(Davenport, 1962) are assumed with decay coefficients equal to 10 and 
6.5 for the longitudinal and vertical velocities, respectively. The tur
bulent wind velocity components are generated as 1 h-long time series at 
a sampling rate of 6 Hz for 100 equally-spaced points along the bridge 
girder (Δx = 13.23 m). 20 random wind field samples are considered for 
each (Iu, Lu) pair. According to the wind field measurements reported in 
Fenerci and Øiseth (2017) and Fenerci and Øiseth (2018), an upward 
inclination of the mean wind velocity between 2 and 2.5 deg with 
respect to the horizontal plane can normally be observed in the Har
danger Bridge site. For this reason, a mean angle of attack αm= 2.5 deg is 
considered herein for the baseline calculations. 

In the time-periodic system analyses presented in Section 3.2, in 
analogy with the broad-band parametric excitation, a range of pumping 
frequencies (f* = 1/T*) between 0.01 and 0.36 Hz (with a step of 0.001 
Hz) is considered, being 0.36 Hz the still-air natural frequency of the 
first torsional vibration mode. Nevertheless, according to the multiple 
cutoff frequency approach, the sinusoidal variation in Ṽy, Ṽz, Ṽθ, α̃y, α̃z 

and ̃αθ is considered only up to the corresponding cutoff frequency (only 
the mean values Vm and αm are retained beyond it). This guarantees the 
validity of the basic assumption of slow variation in the parametric 
excitation with respect to the bridge motion. In terms of intensity, the 
wind velocity amplitude (V0) is varied between 1% and 50% (with steps 
of 1%) of Vm, while the angle of attack amplitude (α0) between 0 and 10 
deg (with steps of 0.1 deg). 

5. Results 

5.1. Stability under broad-band turbulence 

Considering the aerodynamic derivatives for a mean wind inclina
tion of 2.5 deg, according to the classical deterministic calculation, the 
flutter critical wind speed is Vcr= 65.1 m/s, and the critical frequency is 

Table 1 
Overview of the vibration modes of the Hardanger Bridge considered in the 
analyses.  

Mode Frequency [Hz] Antinodes Dominant motion 

1 0.050 1 Symmetric lateral 
2 0.098 2 Antisymmetric lateral 
3 0.110 2 Antisymmetric vertical 
4 0.140 3 Symmetric vertical 
5 0.169 3 Symmetric lateral 
6 0.197 2 Symmetric vertical 
7 0.210 4 Antisymmetric vertical 
12 0.272 5 Symmetric vertical 
13 0.283 4 Antisymmetric lateral 
14 0.330 6 Antisymmetric vertical 
15 0.360 1 Symmetric torsional 
17 0.392 5 Symmetric lateral and torsional  
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Fig. 2. Lift and moment aerodynamic derivatives associated with the torsional motion for the Hardanger Bridge (see also Barni et al., 2021). Results of wind tunnel 
measurements are reported as a function of the reduced wind velocity Vr for various mean angles of attack. 2D RFA approximations are also shown. 

Fig. 3. RMS of mid-span nonlinear buffeting torsional response of the Hardanger Bridge obtained according to either a linear time-invariant (grey circles) or a linear 
time-variant (red crosses if only the slowly-varying angle of attack α̃ is considered; green asterisks if both α̃ and Ṽ are taken into account) formulation of the self- 
excited forces. The percentages in the top-left corner of each frame indicates the differences between the LTI and LTV flutter threshold. Finally, the blue lines with 
filled triangular markers denote the LTV results obtained assuming a perfectly-correlated parametric variation in the slowly-varying angle of attack (Coh ≡ 1). 
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fcr= 0.297 Hz. This result might also be obtained by imposing Ṽ(t) ≡ Vm 
and ̃α(t) ≡ 2.5 deg in Eq. (7), yielding the so-called linear time-invariant 
(LTI) system. Fig. 3 compares the linear time-invariant and the linear 
time-variant (LTV) torsional response of the bridge for different turbu
lent wind fields, in terms of root-mean-square (RMS) of the rotations. 
Specifically, the mean of the 20 RMS values for each simulated 1 h-long 
random wind field are shown in the figure. The standard deviation of 
these RMS values is always small, except, as expected, very close to the 
flutter stability threshold; therefore, it does not significantly affect the 
buffeting response patterns and the estimated stability limits. The red 
crosses account only for the parametric effect of the slow variation in the 
angle of attack, while the green asterisks also consider the fluctuations of 
kinetic pressure and reduced wind velocity. Since here the focus is 
mainly on the stability threshold, lateral and vertical responses are not 
reported for the sake of brevity. Fig. 3 clearly shows that the flutter 
stability of the Hardanger Bridge is systematically lowered by the 
random parametric effects of turbulence. In particular, the most desta
bilising contribution comes from the angle of attack variation. A non
negligible, though minor, role of Ṽ can be observed only for turbulence 
intensities and integral length scales higher than 20% and 200 m, 
respectively. It is worth emphasasing that this conclusion would not 
significantly change if one removed the cutoffs, also considering the 
parametric excitation at twice the natural frequencies (though violating 
the underlying basic assumption of the 2D RFA model). Fig. 4 shows the 
bridge response spectra corresponding to two representative points near 
the instability onset of the RMS-curves in Fig. 3. The results confirm that 
in this case the time-variant modelling of self-excited forces mainly af
fects the bridge torsional response (Barni et al., 2021, 2022) although, 
due to the aerodynamic coupling, a significant torsional mode contri
bution also appears in the lateral and even more in the vertical response 
of the bridge deck. In particular, the parametric excitation due to the 
slowly-varying angle of attack leads to a higher and sharper peak asso
ciated with the first torsional natural frequency, which reflects a 
damping reduction. In contrast, the parametric effect of wind velocity 
magnitude fluctuations only widens the peaks corresponding to the 
unstable mode. This seems to be due to the torsional aerodynamic 
stiffness (mainly related to the aerodynamic derivative A*

3), which 
makes the torsional mode frequency slightly vary in time as a result of 
fluctuations of Ṽ, spreading the resonance response around the linear 
time-invariant value. Though not reported in Fig. 3 in the interest of 
clarity, calculations for a turbulence intensity Iu = 5% showed nearly 
negligible time-variant effects in such a low-turbulence condition. 

In Barni et al. (2022), the loss of stability of the Hardanger Bridge 
was ascribed, at least partly, to the variation over time in the torsional 
aerodynamic damping associated with the aerodynamic derivative A*

2. 

Indeed, an unstable behaviour is promoted by a slowly-varying angle of 
attack when this becomes larger than about 5 deg (see Fig. 2), leading to 
positive values of A*

2 (negative contribution to the aerodynamic damp
ing in torsion). In particular, if one considers as an example a mean wind 
speed of 45 m/s (corresponding to a reduced velocity for the torsional 
motion of about 7.5), in the worst case of Iu= 25% and Lu= 300 m, 
turbulence-induced fluctuations in the reduced velocity can produce a 
maximum variation of A*

2 of about ± 70% (around the value associated 
with the mean wind velocity and the mean angle of attack of 2.5 deg). In 
the same wind conditions, changes in the angle of attack lead to varia
tions of A*

2 between − 50% and +135%. As explained better in Section 5, 
this argument suggests the different impact on bridge stability of these 
two parametric effects. It also makes plausible the monotonic stability 
reduction with the turbulence intensity, since a higher Iu means higher 
fluctuations of Ṽ and ̃α. In contrast, when a larger integral length scale of 
turbulence is considered, the power associated with low-frequency 

Fig. 4. Comparison of power spectral densities of lateral, vertical and torsional response for the mid-span bridge section obtained according to either a linear time- 
invariant (grey line) or a linear time-variant (red line: only slowly-varying α̃; green line: both α̃ and Ṽ) formulation of the self-excited forces. 

Fig. 5. RMS of the slowly-varying wind velocity magnitude and angle of attack 
associated with the torsional cutoff frequency for different longitudinal turbu
lence intensities and integral length scales (the mean wind speed is always 40 
m/s). 
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velocity fluctuations increases, and so does the variance of Ṽ and ̃α, thus 
further reducing the system stability. However, the destabilising influ
ence of the integral length scale of turbulence tends to saturate for large 
values of Lu. This is because, for Lu ≥ 300 m, most of the turbulent ki
netic energy is already encompassed below the cutoff frequency, and 
additional increases in the variance of the slowly-varying wind velocity 
magnitude and angle of attack become negligible when Lu gets larger, as 
clearly shown in Fig. 5. 

Fig. 3 also reports the torsional response of the bridge to turbulent 
wind in a scenario of perfectly-correlated parametric variation in the 
angle of attack (though the external buffeting force q̂ext in Eq. (7) re
mains partially correlated along the bridge girder). Surprisingly, the 
response curves essentially overlap with the previous ones, thus indi
cating a negligible effect of the spanwise correlation of the parametric 
excitation on the flutter instability mechanism and buffeting response. 
This counterintuitive result contradicts expectations outlined in previ
ous works (e.g., Chen and Kareem, 2003; Barni et al., 2022) and will be 
explained in Section 6. 

Finally, It is worth emphasising that, for all mean angles of attack 
considered, the aerodynamic derivatives of the Hardanger Bridge do not 
exhibit any amplitude-dependence at least up to rotations of 2 deg 
(Barni et al., 2021). Some nonlinear effects associated with oscillation 
amplitude might manifest for a larger torsional response; nevertheless, 
in line with previous works on a similar topic (e.g., Chen and Kareem, 
2003; Diana et al., 2013; Diana and Omarini, 2020; Barni et al., 2022), it 
seems reasonable here to disregard this complication as the focus of the 
investigation is just on the bridge precritical response and flutter sta
bility threshold. 

5.2. Parametric effects of sinusoidal gusts 

This section is instrumental in uncovering the reasons for the sig
nificant variation in the flutter stability threshold and buffeting response 
induced by large-scale turbulence and discussed in the preceding sec
tion. Although it may be conjectured that this destabilising effect is 
linked to the modulation of aerodynamic damping by turbulence (Barni 
et al., 2022), the actual mechanisms responsible for this loss of stability 
have not been clarified yet. For example, are parametric resonances the 
primary driver of destabilisation, or are there other mechanisms influ
encing the phenomenon? Does the parametric variation in aerodynamic 
stiffness play a role similar to what is seen in a Mathieu equation (Nayfeh 
and Mook, 2008)? Why does the spanwise coherence of the parametric 
excitation not seem to play a significant role in destabilising the system? 

To answer these questions, here the problem is tackled by representing 
turbulence as a time-periodic process, as outlined in Section 3.2. Indeed, 
this approach not only facilitates the formal definition of stability 
boundaries but also offers an insight into the various parametric exci
tation mechanisms. 

Fig. 6 shows the evolution of the flutter stability threshold through 
curves (one for each mean wind velocity considered) that represent the 
amplitude and frequency of the parametric excitation for which a Flo

quet multiplier crosses the unit circle 
(

max
j

[⃒
⃒Ϛj(α0, f*)

⃒
⃒
]
= 1

)

. The 

reported stability charts refer to a sinusoidal gust periodically changing 
the angle of attack, considering either a constant mean wind inclination 
αm = 2.5 deg [Fig. 6(a)] or a horizontal mean wind field, αm = 0 deg 
[Fig. 6(b)]. The second scenario is instrumental in highlighting the 
possible role played by the mean angle of attack. When a sinusoidal gust 
amplitude and frequency pair lies above the stability boundary, the 
bridge response diverges to infinity at a rate equal to the maximum real 
part of the Floquet exponents (see Appendix A). In general, the system 
stability is reduced compared to the time-invariant scenario (VLTI

cr = 65.1 
or 65.2 m/s for αm = 2.5 deg and 0 deg, respectively) depending on the 
amplitude and frequency of the sinusoidal gust. Typical features of 
parametrically excited systems are evident, such as parametric reso
nances occurring at rational multiples of the frequency f (15)

θ of the 
torsional mode, which drives the instability (since this is the only 
torsional mode visible in the charts, it will hereafter be referred to as fθ). 
The primary resonance is visible in Fig. 6 as a wide pit in the chart 
boundaries for mean wind velocities of 35 and 40 m/s in Fig. 6(a), and 
35 and 40 and 45 m/s in Fig. 6(b) (top-right corner of both figures). 
Though at higher mean wind speeds, analogous stability boundaries are 
obtained even if only the torsional mode is considered, thus demon
strating that these parametric resonances are only indirectly influenced 
by mode coupling. Furthermore, in the close neighbourhood of the 
torsional frequency a deep and narrow pit superposes to the wider and 
smoother pattern of the stability boundaries. This feature is likely 
associated with the higher-order harmonics in the parametric excitation 
(see, e.g., Ying et al., 2019) due to the abovementioned nonlinear 
relationship between the 2D RFA model parameters and the 
sinusoidally-varying angle of attack. Some narrow and deep secondary 
resonances (Lin, 1996; Nayfeh and Mook, 2008) of the main torsional 
frequency can also be recognised, such as those around 2/3fθ, fθ/2 and 
fθ/3. The influence of the aerodynamic stiffness in torsion is also 
apparent, as the torsional frequency progressively reduces when the 
mean wind velocity increases. 

Fig. 6. Stability chart of the Hardanger Bridge for different amplitudes and frequencies of the perfectly correlated sinusoidal variation of the angle of attack 
modulating the self-excited forces, and for various mean wind speeds. VLTI

cr represents the time-invariant flutter threshold. Results for (a) αm= 2.5 deg and (b) αm= 0 
deg are shown. Frequencies are made dimensionless with the still-air frequency f (15)

θ,0 : f = f/f (15)
θ,0 . f

c
y and f

c
z denote the cutoffs associated with lateral and vertical 

bridge motion components, respectively. The stability boundary highlighted in red is associated with the mean wind velocity considered in Fig. 8. 
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Another very important parametric effect is clear in Fig. 6, where 
nearly horizontal stability boundaries (i.e., independent of the pumping 
frequency) can often be encountered, especially for a mean angle of 
attack of 2.5 deg (Fig. 6(a)) and high mean wind velocities. This phe
nomenon is due to the nonlinear relationship between the aerodynamic 
derivatives and the angle of attack. Indeed, the average of the aero
dynamic coefficients over a cycle of α̃ is generally different from the 
coefficients evaluated at the mean angle of attack αm, leading to mean 
aerodynamic stiffness and damping significantly different from the 
values assumed according to the classical time-invariant approach. This 
effect, which will be hereinafter called average parametric effect, can 
become important if the aerodynamic derivatives significantly vary with 
the mean angle of attack in a nonlinear and non-antisymmetric way 
around αm. To better understand it, let consider a dynamical system 
described by a simple one-degree-of-freedom Hill-type differential 
equation with parametric damping and stiffness: 

ẍ+2ξ0ω0[1 − q ⋅ g(α̃)]ẋ + ω2
0[1 − q ⋅ h(α̃)]x= 0 (15)  

where q is a constant (mimicking, for instance, the wind kinetic pres
sure), while g and h are nonlinear and non-antisymmetric functions of 
the time-varying parameter α̃, which play the same role as the para
metric excitation in Eq. (5). To fix ideas, without loosing generality, let 
also assume that ̃α sinusoidally oscillates around zero and g(0) = h(0)=
0, so that ξ0 and ω0 directly represent the damping ratio and the circular 
frequency of the system for α̃ ≡ 0. In such a case, g(α̃)∕= g(α̃) and 
h(α̃)∕= h(α̃), where the overbar (⋅) denotes the time-average operator. 
Then, if one defines the zero mean functions g′(α̃) = g(α̃) − g(α̃) and 
h′(α̃) = h(α̃) − h(α̃), Eq. (16) can be rewritten as follows: 

ẍ+2ξ0ω0[1 − q ⋅ g(α̃) − q ⋅ g′(α̃)]ẋ + ω2
0[1 − q ⋅ h(α̃) − q ⋅ h′(α̃)] (16)  

This clearly results in time-invariant aerodynamic damping 
( − 2ξ0ω0q g(α̃)) and stiffness ( − qω2

0 h(α̃)) contributions, which leads to 
system instability when g(α̃)> 1 /q. Clearly, such an effect is indepen
dent of the frequency of the parametric excitation. For the complex 
system described by Eq. (7), this effect is shown in Fig. 7 focusing on the 
aerodynamic coefficient A*

2(α̃), directly related to the aerodynamic 
damping in torsion. Here, the average of A*

2(α̃) around αm= 2.5 deg 
grows and even becomes positive (negative contribution to the aero
dynamic damping in torsion) as the parametric excitation amplitude and 
the mean wind velocity increase (α0= 0 deg represents the LTI condi
tion). Since A*

2 is less asymmetric around 0 deg, this effect is less 

pronounced in Fig. 7(b), where, moreover, the average of A*
2(α̃) only 

shows negative values. However, the average parametric effect associ
ated with other aerodynamic derivatives is anyway able to destabilise 
the system (though at higher wind velocities), as shown in Fig. 6(b). 

The previous considerations underscore the potentially pivotal role 
potentially played by the average parametric effect in governing the 
stability of the time-variant bridge system described by Eq. (7) and its 
response, also when subjected to a realistic random noise, such as 

Fig. 7. Map of the average value of A*
2 for a sinusoidal variation of the angle of attack around the mean values αm = 2.5 deg (a) and 0 deg (b), as a function of the 

amplitude α0 and mean wind velocity Vm. The A*
2 coefficient is evaluated at the reduced velocity Vr = Vm /(Bf (15)

θ ). 

Fig. 8. Fast Fourier transform modulus of bridge mid-span lateral, vertical and 
torsional buffeting response at Vm= 50 m/s. The results refer to αm= 0 deg and 
to sinusoidal gust amplitudes and frequencies following the attendant stability 
boundary [see Fig. 6(b)]. The abscissa is the non-dimensional pumping fre
quency of the parametric excitation, f* = f */f (15)

θ,0 , while the ordinate is the non- 

dimensional response frequency, f = f/f (15)
θ,0 . 
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turbulence. In such a case, the magnitude of the fluctuations in the angle 
of attack is associated with the turbulence intensity. Furthermore, in a 
homogeneous random wind field, this effect is invariant along the bridge 
girder, since it is related to a single-point statistic (the mean) and 
therefore unaffected by turbulence spatial correlation. This fact easily 
explains the counterintuitive result of Fig. 3, namely that the bridge 
buffeting response and flutter stability are essentially independent of the 
degree of correlation of the parametric variation in the wind angle of 
attack. 

The effects of parametric excitation can also be observed in the 
buffeting response of the considered time-periodic system (Eq. (7)). 
Fig. 8 presents the Fourier transform modulus of lateral, vertical, and 
torsional responses of the bridge mid-span section, for a mean wind 
velocity of 50 m/s and a null mean angle of attack, αm= 0 deg. Ampli
tudes, α0, and pumping frequencies of the parametric excitation, f*, are 
chosen so to follow the stability boundary corresponding to the 
considered mean wind velocity [see Fig. 6(b)]. The resulting time- 
periodic system is excited by buffeting forces with a white noise spec
trum, ensuring a uniform excitation at all frequencies. The parametric 
excitation induces additional peaks in the response spectrum at fθ+ kf* 

and fθ − kf*, where k is a positive integer, visible in the figures in the 
form of diagonal lines; kf* represents the k-th order modulation fre
quency component in the response time histories. In general, the higher 
the value of k, the lower the energy associated with the attendant 
modulation component. It can be observed that parametric resonances 
occur at the intersection of these lines, namely at f* = 2

k+h fθ, where k 
and h are positive integers. In addition, the parametric diagonal 
branches, though related to the torsional motion, also interact with 
lateral and vertical modes. This interaction results in a more pronounced 
response, highlighted in the figures with a red colour, particularly when 
the modulation frequencies approach the frequencies of lateral bending 
mode, fy, and vertical bending mode, fz. This effect may be indicated as 
parametric coupling resonance and might be responsible for the dip in the 

stability boundaries in Fig. 6(b) around fθ
*
= 0.4 to 0.5 (f = f/ f (15)

θ,0 

denotes the non-dimensional frequency), for mean wind velocities be
tween 50 and 60 m/s. This result shows that parametric excitation could 
also work as a mechanism of energy transfer between different modes, a 
concept that complies with the conclusions of Bucher and Lin (1989). 
Interestingly, this effect can even be observed prior to the onset of 
instability, indicating its potential influence on the bridge buffeting 
response when the amplitude of the parametric excitation becomes 
large. 

To sum up, two distinct parametric excitation mechanisms affect the 

bridge stability. On the one hand, the average parametric effect signif
icantly reduces the overall system damping, leading to an earlier 
occurrence of “standard” flutter instability. Indeed, as the mean wind 
velocity approaches the time-invariant critical velocity VLTI

cr , the stability 
boundaries follow an almost horizontal pattern, indicating that flutter 
arises before the parametric excitation amplitude is such that the 
parametric resonances are able to play a significant role. Relating the 
sinusoidal amplitude to the turbulence intensity in a real-world sce
nario, one may expect that for low turbulence intensity the stability 
threshold is primarily influenced by the average parametric effect. 
Conversely, in case of high turbulence intensity, parametric resonances 
can be effective in reducing the bridge stability, and flutter might occur 
at wind velocities significantly lower than VLTI

cr . 
Finally, some effects of the multiple cutoff frequency approach on the 

stability boundaries are visible in Fig. 6, although relatively minor. The 
interruption of the parametric excitation related to lateral and vertical 
motions (α̃y and α̃z) after 0.05 Hz and 0.11 Hz, respectively (fc

y and f c
z in 

the nondimensional notation of Fig. 6), has an impact on the average 
parametric effect. Indeed, the aerodynamic derivatives associated with 
lateral and vertical motion are no longer affected by the average para
metric effect when α̃y and α̃z are identically set to αm beyond the cutoff 
frequencies. The evidence of it are the discontinuities in the stability 
maps for f* = f c

y and f* = f c
z. In particular, the boundary upshift after f c

y 

reveals the destabilising role in this case of the average parametric effect 
associated with the lateral motion, while the downshift after fc

z un
derscores the stabilising role of the average parametric effect associated 
with the vertical motion. 

Fig. 9 shows the Floquet stability chart in the case of parametric 
excitation in the wind velocity magnitude. Mean wind velocities below 
and above the time-invariant stability limit of 65.1 m/s are considered in 
Fig. 9(a) and (b), respectively. Compared to the angle-of-attack case, two 
different sources of parametric excitation are present here, namely the 
variation in the kinetic pressure and that in the reduced velocity. The 
former plays the same role as the parameter q in the Hill-type equation 
presented in Eq. (16), and essentially modulates the magnitude of the 
self-excited forces, resulting in parametric resonances without any 
average parametric effect (unless it is associated with other parametric 
excitations). In contrast, the sinusoidal variation in the reduced velocity 
may also promote an average parametric effect; nevertheless, this is 
expected to be modest due to the nearly linear local trend of the aero
dynamic derivatives with the reduced velocity. The parametric reso
nances associated with lateral and vertical modes are more evident in 
Fig. 9(a) than in Fig. 6. This may be attributed to the contribution of the 

Fig. 9. Stability chart of the Hardanger Bridge for different amplitudes and frequencies of the perfectly correlated sinusoidal variation in the wind velocity 
magnitude appearing in the self-excited forces for various mean wind speeds. VLTI

cr represents the time-invariant flutter threshold. The results refer to αm= 2.5 deg. 
The nondimensional pumping frequency is defined as f* = f*/f (15)

θ,0 ; the mode vibration frequencies are normalised in the same way. 
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kinetic pressure fluctuation. In addition, as already observed in Fig. 6, a 
progressive decrease in the torsional frequency with the mean wind 
velocity is apparent due to the influence of the aerodynamic stiffness. A 
similar effect can also be observed for the V-shaped lateral and vertical 
parametric resonances. However, this feature can be attributed to an 
increase in modal aerodynamic damping with Vm, which can result in a 
left or right shift of the parametric resonances compared to the un
damped condition (see, e.g., the Mathieu stability chart in Nayfeh and 
Mook, 2008). Interestingly, the two stable regions located slightly below 
and slightly above the frequency of vertical mode 6, and associated with 
mean wind velocities higher than the time-invariant stability threshold 
(Fig. 9(b)), demonstrate the presence of stabilising parametric effects 
too. Finally, large amplitudes of oscillation of the wind velocity 
magnitude are required to produce significant parametric effects on the 
flutter stability and, except for mean wind velocities very close to the 
linear time-invariant threshold, such amplitudes cannot be associated 
with realistic turbulence intensities. Therefore, the parametric excita
tion due to wind velocity magnitude fluctuations plays a secondary role 
compared to that arising from the variation in the angle of attack. This 
result complies with what was observed in the buffeting response in 
Fig. 3, where most of the parametric effect of large-scale turbulence was 
clearly ascribed to the slowly-varying angle of attack. 

6. Equivalent time-invariant model 

Based on previous considerations on the prominent role of the 
average parametric effect (especially for realistic not too large turbu
lence intensity and integral length scale) associated with the a slow 
variation in the angle of attack and on its independence of wind field 
spanwise correlation, it seems reasonable to disregard parametric res
onances (either coupled or not) and account for the average parametric 
effect of large-scale turbulence by slightly modifying Scanlan’s classical 
linear time-invariant model. Indeed, the bridge buffeting response and 
the flutter stability can simply be determined using the aerodynamic 
derivatives averaged over the time histories of the slowly-varying angle 
of attack, defining what we may call the “equivalent linear time- 
invariant model” (LTIeq). Clearly, such an average depends on the 
probability distribution function (PDF) of α̃(t) and not only on its 
amplitude like in the time-periodic case of Section 5.2. In addition, 

average aerodynamic derivatives should be derived from α̃y, α̃z and α̃θ, 
based on the motion components they are associated with. The low-pass 
filters with fixed cutoff frequencies also result in slightly different 
average aerodynamic coefficients depending on the mean wind velocity, 
requiring specific calculations in each case. In order to do so, the time 
history of each aerodynamic derivative can be evaluated according to 
the 2D RFA model and then averaged over time to obtain the average 
aerodynamic damping Cae and stiffness Kae, as shown by the following 
equations: 

Cae(α̃)=
[

1
K

(

A2(α̃) +
∑N− 2

l=1
Al+2(α̃)

dl(α̃)
dl(α̃)2

+ K2

)]

(17)  

Kae(α̃)=
[

1
K2

(

A1(α̃) +
∑N− 2

l=1
Al+2(α̃)

K2

dl(α̃)2
+ K2

)]

(18)  

where the overbar denotes again the time-average operator. However, 
once the time histories of slowly varying angles of attack α̃y, α̃z and α̃θ 

are obtained for a generic point of the bridge, Cae(α̃) and Kae(α̃) can 
easily be determined by a numerical interpolation of experimental 
aerodynamic derivatives for different angles of attack without imple
menting the 2D RFA model as done in the current work for the sake of 
comparison with the linear time-variant results. A few examples for 
three different turbulent wind fields and a mean wind velocity of 50 m/s 
are reported in Fig. 10. For large turbulence intensity and integral length 
scale, the average coefficient A*

2 progressively increases and can even 
become positive, assuming values significantly different from those 
evaluated at the mean angle of attack, αm= 2.5 deg. The LTIeq approach 
leads to a time-invariant state matrix, which allows for a straightforward 
deterministic flutter stability assessment. In particular, the average 
aerodynamic derivatives can also be utilised in simple frequency- 
domain calculations. 

Fig. 11 compares the bridge torsional response obtained with the 
LTIeq model and those obtained with the classical LTI model and with 
the full LTV model for various turbulence intensities and integral length 
scales. Clearly, the LTIeq approach is not only able to predict the LTV 
flutter stability threshold but also to provide a good approximation of 
the buffeting response. In the worst-case scenario, the LTIeq model can 

Fig. 10. Lift and moment aerodynamic derivatives of the Hardanger Bridge associated with the torsional motion. Comparison between the measured coefficients for 
various mean angles of attack and those averaged over the time history of the slowly-varying angle of attack α̃θ for a mean wind velocity of 50 m/s. 
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account for approximately three quarters of the reduction in critical 
mean wind velocity caused by the parametric effect of turbulence. This 
conclusion complies with the stability maps in Fig. 6(a). Indeed, as 
explained above, the stability threshold for a mean wind velocity be
tween 50 and 65 m/s, associated with moderate turbulence intensity, is 
primarily determined by the average parametric effect. Consequently, a 
close correspondence between LTIeq and LTV flutter thresholds is ex
pected when it occurs in this mean wind velocity range. In contrast, for 
high turbulence intensity and large integral length scale, when the 
flutter threshold is remarkably reduced compared to the smooth flow 
condition and the critical wind velocity is below 50 m/s, the parametric 
resonance effects become nonnegligible. This leads to a slightly less 
good agreement between LTIeq and LTV results. Nevertheless, in the 
present case the LTIeq approach never overestimates the flutter critical 
wind speed by more than 7%. By comparing Figs. 3 and 11, it is possible 
to note that the effect of partial spanwise correlation of the parametric 
excitation is negligible even when there is a nonnegligible difference 
between LTIeq and LTV results. Then, one may conjecture that also the 
effect of parametric resonances is practically independent of random 
wind field correlation. 

Given also the abovementioned partial arbitrariness of the range of 
turbulent scales that are effective in parametrically exciting the bridge, 
for the sake of simplicity, one may also consider the entire turbulence 
spectrum without applying any cutoff frequencies. In addition, assuming 
that the probability distribution of the angle of attack coincides with 

that of vertical turbulence (i.e., α = atan
(

w
Vm+u

)
≅ w

Vm
) and is therefore 

Gaussian, the average aerodynamic derivatives can be calculated in a 
straightforward way (with no need for simulated wind angle of attack 

time histories), as follows: 

Cae= E[Cae(α)]=
∫

Cae(α)p(α)dα (19)  

Kae= E[Kae(α)]=
∫

Kae(α)p(α)dα (20)  

p(α)= 1
Iw

̅̅̅̅̅
2π

√ exp
[

−
1
2

(
α − αm

Iw

)2]

(21)  

where E[⋅] stands for the ensemble average operator, and p(α) for the 
probability density function of the wind angle of attack. The results 
obtained with these average aerodynamic derivatives are also reported 
in Fig. 11; they are very close to those provided by the reference LTIeq 
approach (based on the multiple cutoff strategy) for most integral length 
scales and turbulence intensities. However, nonnegligible differences 
are apparent when the integral length scale and the turbulence intensity 
are small. In the first case, clearly the variance of the parametric vari
ation in the angle of attack is significantly larger when the cutoffs are 
disregarded. In contrast, when the turbulence intensity is low the bridge 
is stable up to a mean wind velocity very close to VLTI

cr ; in this condition, a 
small change in the average aerodynamic derivatives and therefore in 
the average parametric effect is able to produce a nonnegligible shift in 
the stability boundary. 

Finally, it is important to highlight that the proposed simplified 
approach does not consider the bridge stochastic stability in terms of 
higher-order statistical moments, even though they may become rele
vant in certain conditions (e.g., temporary states of instability). Higher- 

Fig. 11. RMS of mid-span nonlinear buffeting torsional response at mid-span of the Hardanger Bridge. The grey circles refer to the results obtained with the classical 
linear time-invariant (LTI) approach; the red crosses to the results of the linear time-variant (LTV) model, considering only the self-excited force modulation due to 
the angle of attack; the thick light blue line and the thin black line with small dots correspond to the torsional response obtained by averaging the aerodynamic 
derivatives according to the LTIeq (considering only the low-frequency components of the wind angle of attack in the first case, LTIeq

(1), and the whole spectrum in the 
second case, LTIeq

(2)). The percentages in the top-left corner of each frame indicates the overestimation of the LTV flutter threshold by the LTIeq approach. 
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order statistics can also be significant in characterising the probability 
distribution of the maximum bridge response (see Barni et al., 2022), 
which is crucial for bridge design. However, this issue seems to affect the 
bridge response only close to the flutter stability threshold, thus making 
the limitations of the LTIeq approach acceptable for most practical 
applications. 

7. Conclusions 

The parametric effects induced by large-scale turbulence on the 
flutter stability of suspension bridges has been investigated, considering 
the Hardanger Bridge as a case study. This problem has been addressed 
with a linear time-variant state-space model and solved with a Monte 
Carlo approach for different turbulent wind fields. The Floquet theory 
has been employed to investigate the same dynamic system but with a 
simplified time-periodic parametric excitation to shed some light on the 
observed destabilising effects induced by turbulence. Floquet multipliers 
have proven to be a valuable tool for underscoring the hidden para
metric excitation mechanisms affecting bridge flutter stability. 

The main conclusions of the work are summarised here below. They 
directly refer to the Hardanger Bridge case study, but many of them can 
also be extended to other bridges, with the awareness that specific ef
fects may vary based mainly on the characteristics of the aerodynamic 
derivatives.  

• The parametric excitation of large-scale turbulence, which produces 
slow fluctuations in both wind velocity magnitude and angle of 
attack, can have a significant impact on the bridge flutter stability, 
especially for high turbulence intensity and large integral length 
scale. However, the role of the angle of attack seems to be dominant. 
In particular, a marked destabilising effect was observed for the 
Hardanger Bridge case study.  

• The parametric excitation due to wind turbulence can affect the 
flutter stability based on two mechanisms, namely the parametric 
resonances (either coupled or not) and the average parametric effect. 
These phenomena play a destabilising role for this case study. In 
particular, inspection of stability charts for a time-periodic system 
highlighted the prominent role of the average parametric effect, 
driving the instability when the mean wind velocity gets close to the 
linear time-invariant threshold.  

• When the aerodynamic derivatives present a strongly nonlinear and 
non-antisymmetric pattern with the mean angle of attack, as in the 
case of the Hardanger Bridge, the average parametric effect associ
ated with the angle of attack may significantly affect the buffeting 
response and the flutter stability of the bridge. In contrast, for fairly 
streamlined bridge sections important aerodynamic derivatives tend 
to exhibit a pattern with the reduced wind velocity that is not too far 
from linear; consequently, the average parametric effect associated 
with the wind velocity magnitude is likely to be modest.  

• Since the average parametric effect is associated with a single-point 
statistic, the spatial correlation of the parametric excitation does not 
play a significant role in the flutter stability mechanism and buffeting 
response, thereby explaining the counterintuitive result obtained 
with Monte Carlo simulations. This fact also emphasises the poten
tially strong impact (either beneficial or detrimental) of the para
metric effect of turbulence on the actual stability of long-span 
suspension bridges.  

• The equivalent linear time-invariant (LTIeq) approach is an effective 
simple alternative to the linear time-variant (LTV) approach for 
analysing both the buffeting response and the flutter stability of 
suspension bridges under typical turbulent flow conditions. It is also 
worth noting that the average aerodynamic derivatives to be used in 
the LTIeq approach do not depend on the specific model adopted for 
self-excited forces but just on the pattern of the aerodynamic de
rivatives with the mean angle of attack, as long as the model relies on 

the assumption of slow variations in the angle of attack due to at
mospheric turbulence.  

• For high turbulence intensity and large integral length scale (i.e., for 
high magnitude of the parametric excitation), the accuracy of the 
LTIeq approach in predicting the flutter stability threshold and the 
buffeting response slightly deteriorates due to the effect of coupling 
and torsional parametric resonances. However, the differences 
remain relatively small for the Hardanger Bridge, even considering a 
longitudinal turbulence intensity of 25% and an integral length scale 
of 300 m. Some discrepancies in terms of probability distribution of 
bridge response maxima are also observed close to flutter.  

• The choice of the cutoff frequencies in the 2D RFA model (or in 
similar models) remains an open issue that needs to be addressed, 
especially considering that the spatial correlation of wind velocity 
fluctuations does not influence the average parametric effect and 
then, in this respect, it does not represent a filtering mechanism for 
turbulent scales. It is then natural to wonder which are the turbulent 
scales that can truly modulate the self-excited forces. This issue calls 
for specific experimental studies in the future.  

• Simple calculations carried out with the LTIeq approach considering 
the parametric excitation associated with the entire turbulent wind 
spectrum offered results in close agreement with those obtained 
based on the multiple cutoff strategy, especially for not-so-low tur
bulence intensity and integral length scale. This fact highlights the 
robustness of the analysis performed in this work and of the con
clusions deduced from it.  

• The possibility of having a more stable or unstable average set of 
aerodynamic derivatives compared to those evaluated at the steady- 
state deck rotation and wind incidence explains, to a large extent, 
how atmospheric turbulence can either stabilise or destabilise a 
bridge. This change of perspective also impacts on self-excited force 
measurement in turbulent flow. Indeed, leaving aside here the 
important pure aerodynamic effect stemming from the interaction of 
small-scale turbulence with separated shear layers, aerodynamic 
derivatives identified in turbulent flow can be interpreted as the 
modified coefficients accounting for the abovementioned average 
parametric effect as long as the turbulence characteristics in the wind 
tunnel, namely turbulence intensity and integral length scale, are 
correctly physically modelled.  

• The dependence of the average parametric effect on the integral 
length scale of turbulence is only dictated by the cutoffs used to 
isolate the large scales. Indeed, in the spirit of all band-superposition 
models, these are the only turbulent scales considered effective for 
the parametric excitation of a bridge structure.  

• Although the 2D RFA model has carefully been validated through 
experiments (Barni et al., 2021; Barni, 2022), a final wind tunnel test 
able to demonstrate the validity of the conclusions reported in the 
current work is still missing. Several possible pitfalls can be envis
aged for such an experiment, which represents a decisive develop
ment of this line of research.  

• Finally, the findings of this study contradict the long-standing belief 
that aerodynamic derivatives measured in a smooth flow (and sub
sequently used in the framework of classical linear time-invariant 
models) are generally conservative. 
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APPENDIX A. FLOQUET THEORY 

Due to the periodicity assumption for the parametric excitation [Eq. (12)], the state matrix is also periodic: Ω(t) = Ω(t + T*); then, Floquet’s 
theorem (Richards, 1983) states that the state-transition matrix can be diagonalised as follows: 

ΦΩ(t, t0) = Ψ(t)exp[Γ(t)⋅(t − t0) ]Ψ(t0)
− 1 (A1)  

where Ψ(t) is the periodic modal matrix (Floquet modes) of the state-transition matrix, and Γ(T*) is a diagonal matrix containing the Floquet ex
ponents υ1,υ2,…,υn. The eigenvalues of the monodromy matrix ΦΩ(T*,0), namely the complex numbers Ϛ1,Ϛ2,…,Ϛn, are called Floquet multipliers, 

and are related to the Floquet exponents by υj =
ln(Ϛj)

T* . The location of the Floquet multipliers with respect to the unit circle in the complex plane rules 
the stability of a linear time-periodic system. Indeed, a Floquet multiplier outside the unit circle (

⃒
⃒Ϛj
⃒
⃒ > 1) leads to an asymptotically unstable response 

in the direction of the corresponding Floquet eigenvector ψj(T*). Therefore, once the monodromy state-transition matrix is known, system stability 
can be determined by looking at the Floquet multipliers. ΦΩ(T*,0) can be obtained by numerical integration of Eq. (7) over a period T*. However, 
based on Eq. (14), integrating in discrete time, the state-transition matrix can efficiently be calculated by: 

ΦΩ(s, 0) =
{

Ω(s − 1)Ω(s − 2)…Ω(0) s ≥ 1
I s = 0 (A2)  

The stability of the time-periodic system can be studied for various pumping frequencies (f* = 1/T*) and intensities (amplitudes) of the parametric 
excitation through charts where, for each mean wind speed, the conditions max

j

[⃒
⃒Ϛj(V0, f*)

⃒
⃒
]
> 1 or max

j

[⃒
⃒Ϛj(α0, f*)

⃒
⃒
]
> 1 identify the unstable 

regions. 
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Canor, T., Caracoglia, L., Denoël, V., 2015. Application of random eigenvalue analysis to 
assess bridge flutter probability. J. Wind Eng. Ind. Aerod. 140, 79–86. 

Caracoglia, L., 2013. An Euler-Monte Carlo algorithm assessing moment lyapunov 
exponents for stochastic bridge flutter predictions. Comput. Struct. 122, 65–77. 

Caracoglia, L., Sarkar, P.P., Haan Jr., F.L., Sato, H., Murakoshi, J., 2009. Comparative 
and sensitivity study of flutter derivatives of selected bridge deck sections, part 2: 
implications on the aerodynamic stability of long-span bridges. Eng. Struct. 31 (9), 
2194–2202. 

Chen, X., Kareem, A., 2001. Nonlinear response analysis of long-span bridges under 
turbulent winds. J. Wind Eng. Ind. Aerod. 89 (14–15), 1335–1350. 

Chen, X., Kareem, A., 2003. Aeroelastic analysis of bridges: effects of turbulence and 
aerodynamic nonlinearities. J. Eng. Mech. 129 (8), 885–895. 

Chen, X., Kareem, A., 2006. Revisiting multimode coupled bridge flutter: some new 
insights. J. Eng. Mech. 132 (10), 1115–1123. 

Chen, X., 2014. Analysis of multimode coupled buffeting response of long-span bridges to 
nonstationary winds with force parameters from stationary wind. J. Struct. Eng. 141 
(4), 04014131. 

Davenport, A.G., 1962. Buffetting of a suspension bridge by storm winds. J. Struct. Div. 
88 (3), 233–270. 

Diana, G., Bruni, S., Cigada, A., Collina, A., 1993. Turbulence effect on flutter velocity in 
long span suspended bridges. J. Wind Eng. Ind. Aerod. 48 (2–3), 329–342. 

Diana, G., Falco, M., Bruni, S., Cigada, A., Larose, G.L., Damsgaard, A., Collina, A., 1995. 
Comparisons between wind tunnel tests on a full aeroelastic model of the proposed 
bridge over Stretto di Messina and numerical results. J. Wind Eng. Ind. Aerod. 54, 
101–113. 

Diana, G., Rocchi, D., Argentini, T., 2013. An experimental validation of a band 
superposition model of the aerodynamic forces acting on multi-box deck sections. 
J. Wind Eng. Ind. Aerod. 113, 40–58. 

Diana, G., Stoyanoff, S., Aas-Jakobsen, K., Allsop, A., Andersen, M., Argentini, T., et al., 
2019. IABSE Task Group 3.1 benchmark results. Part 1: numerical analysis of a two- 
degree-of-freedom bridge deck section based on analytical aerodynamics. Struct. 
Eng. Int. 30 (3), 401–410. 

Diana, G., Stoyanoff, S., Aas-Jakobsen, K., Allsop, A., Andersen, M., Argentini, T., et al., 
2020. IABSE Task Group 3.1 benchmark results. Part 2: numerical analysis of a three- 
degree-of-freedom bridge deck section based on experimental aerodynamics. Struct. 
Eng. Int. 30 (3), 411–420. 

Diana, G., Omarini, S., 2020. A nonlinear method to compute the buffeting response of a 
bridge validation of the model through wind tunnel tests. J. Wind Eng. Ind. Aerod. 
201, 104163. 

Fenerci, A., Øiseth, O., 2017. Measured buffeting response of a long-span suspension 
bridge compared with numerical predictions based on design wind spectra. J. Struct. 
Eng. 143 (9), 04017131. 

Fenerci, A., Øiseth, O., 2018. Strong wind characteristics and dynamic response of a 
long-span suspension bridge during a storm. J. Wind Eng. Ind. Aerod. 172, 116–138. 

N. Barni and C. Mannini                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0167-6105(23)00317-3/sref1
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref1
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref2
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref2
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref2
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref3
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref3
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref3
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref4
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref4
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref5
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref5
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref5
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref6
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref6
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref7
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref7
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref7
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref8
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref8
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref8
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref9
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref9
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref9
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref9
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref10
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref10
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref10
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref11
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref11
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref11
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref12
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref12
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref13
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref13
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref14
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref14
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref14
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref15
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref15
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref16
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref16
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref17
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref17
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref18
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref18
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref19
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref19
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref20
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref20
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref21
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref21
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref21
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref21
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref22
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref22
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref23
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref23
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref24
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref24
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref25
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref25
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref25
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref26
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref26
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref27
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref27
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref28
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref28
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref28
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref28
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref29
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref29
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref29
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref30
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref30
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref30
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref30
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref31
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref31
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref31
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref31
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref32
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref32
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref32
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref33
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref33
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref33
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref34
http://refhub.elsevier.com/S0167-6105(23)00317-3/sref34


Journal of Wind Engineering & Industrial Aerodynamics 245 (2024) 105615

16

Gao, G., Zhu, L., Li, J., Han, W., 2020. Application of a new empirical model of nonlinear 
self-excited force to torsional vortex-induced vibration and nonlinear flutter of bluff 
bridge sections. J. Wind Eng. Ind. Aerod. 205, 104313. 

Grigoriu, M., 2002. Stochastic Calculus. Applications in Science and Engineering. 
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