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A B S T R A C T

We investigate the metastable behaviour of discrete systems at low temperature evolving
under the stochastic Kawasaki and Glauber dynamics to analyze the transition to the liquid
phase of a supersatured vapour and the spread of an opinion inside a network, respectively.
Concerning the second issue, to capture a realistic description of networks we finally consider
the problem of metastability for a growing random graph. The first step in this direction is
the analysis of the asymptotic properties of such a model, which we address in this work.
The thesis is divided into four parts as follows.

The first two parts are devoted to the analysis of the exit from metastability for a lattice
gas at very low temperature and low density that evolves according to the conservative
Kawasaki dynamics in a discrete domain Λβ whose volume is exponentially large in the inverse
temperature β. Particles perform simple exclusion on Λβ and each of them has a positive
activation energy ∆, but when they occupy neighbouring sites they feel a binding energy.

In the first part of the thesis, we consider variations of the local version of this model,
namely, the gas evolves inside a finite domain Λ ⊂ Λβ and we investigate how the transition
from metastability to stability takes place. We start by considering Λ ⊂ Z2, so that neigh-
bouring particles feel a binding energy −U1 < 0 in the horizontal direction and −U2 < 0 in
the vertical direction. It turns out that the dynamical behaviour drastically changes whether
U1 = U2 (isotropy), U1 < 2U2 (weak anisotropy) or U1 > 2U2 (strong anisotropy). For all
these regimes, our focus is the identification of the critical configurations that have to be crossed
with high probability. The derivation of some geometrical properties of the saddles allows
us to identify the full geometry of the minimal gates for the nucleation. We observe very
different behaviour in the three regimes.

Next, we consider the domain Λ as a subset of the two-dimensional hexagonal lattice and
we assume isotropic interactions between neighbouring particles. We derive the asymptotic
behaviour of the transition time from metastability to stability in the limit as β goes to infinity.
We also provide a characterization of the shape of the critical droplets and we emphasize
that their description differs from that appearing in the standard square lattice since this
feature strongly depends on the underlying geometry. Indeed, the particular shape of the
hexagonal lattice induces an increment of the regularizing motions of particles in such a way
new mechanisms of entering the critical configurations set appear.

In the second part of the thesis, we deal with the original Kawasaki dynamics on the
square lattice in the isotropic regime. This analysis is much harder than in small volumes,
indeed now particles are conserved in all the domain and a detailed control of the interaction
between droplets and the gas of “isolated particles” is needed: the role of the entropy turns
out to be crucial. We analyze how subcritical droplets form and dissolve when the volume is
“moderately large”: the evolution of the gas consists of droplets wandering around on multiple
space-time scales. Based on these results, we are able to predict that the exit from metastability
in “very large” volumes occurs via homogeneous nucleation, i.e., a critical droplet appears in a
box of moderate volume.

In the third part of the thesis, we consider the exit from metastability for systems that
evolve under the non-conservative Glauber dynamics, which, contrary to Kawasaki dynamics,
has its own peculiar features. In particular, we investigate opinion dynamics on networks
with a community structure, assuming that individuals can update their binary opinion as the
result of the interactions with an external influence and with other individuals in the network.
In the very low temperature regime homogeneous opinion patterns prevail and, as such, it
takes evereyone a long time to change opinion. We provide estimates for such a transition
time and we fully identify the critical configurations for the dynamics.

In the final part, we consider a growing random graph, known as preferential attachment
model, such that at each step a new vertex is added and forms m connections. It is well known
that the proportion of nodes with a given degree at step n converges to a constant as n→∞.
Our goal is to find the asymptotic distribution of the fluctuations around this limiting value.
In particular, we prove a central limit theorem for the joint distribution of all degree counts.
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S O M M A R I O

Studiamo il comportamento metastabile di sistemi discreti a bassa temperatura che
evolvono sotto le dinamiche stocastiche di Kawasaki e Glauber per analizzare rispettiva-
mente il passaggio alla fase liquida di un vapore sovrasaturo e la diffusione di un’opinione
all’interno di una rete. Per quanto riguarda la seconda questione, per ottenere una descrizione
realistica delle reti consideriamo alla fine il problema della metastabilità per un grafo aleatorio
dinamico. Il primo passo in questa direzione è l’analisi delle proprietà asintotiche di tale
modello, che affrontiamo in questo lavoro. La tesi è divisa in quattro parti come segue.

Le prime due parti sono dedicate all’analisi della fuga dalla metastabilità per un gas
reticolare a temperatura e densità molto basse che evolve secondo la dinamica conservativa di
Kawasaki in un dominio discreto Λβ di volume esponenzialmente grande nella temperatura
inversa β. Le particelle eseguono un’esclusione semplice in Λβ ed ciascuna di esse ha
un’energia positiva di attivazione ∆, ma quando occupano siti vicini risentono di un’energia
di legame.

Nella prima parte della tesi consideriamo variazioni della versione locale di questo modello,
cioè il gas evolve all’interno di dominio finito Λ ⊂ Λβ ed indaghiamo come avviene la
transizione dalla metastabilità alla stabilità. Iniziamo considerandoΛ ⊂ Z2, cosicché particelle
vicine risentono di un’energia di legame −U1 < 0 nella direzione orizzontale e −U2 < 0 in
quella verticale. Il comportamento dinamico del sistema cambia radicalmente se U1 = U2
(isotropia), U1 < 2U2 (debole anisotropia) o U1 > 2U2 (forte anisotropia). Per tutti i regimi
identificheremo le configurazioni critiche che vengono attraversate con alta probabilità. Grazie
ad alcune loro properietà geometriche, riusciamo ad identificare la geometria completa dei
varchi minimali per la nucleazione. Osserviamo comportamenti molto diversi nei tre regimi.

Consideriamo in seguito il dominio Λ come sottoinsieme del reticolo esagonale ed as-
sumiamo interazioni isotrope tra particelle vicine. Deriviamo il comportamento asintotico
del tempo di transizione dalla metastabilità alla stabilità e forniamo una caratterizzazione
delle gocce critiche, sottolineando che la loro descrizione differisce da quella che appare nel
reticolo quadrato. Essa dipende, infatti, dalla geometria sottostante e la particolare forma del
reticolo esagonale induce un incremento dei moti regolarizzanti delle particelle in modo tale
che appaiano nuovi meccanismi di ingresso nell’insieme delle configurazioni critiche.

Nella seconda parte della tesi ci occupiamo della dinamica originale di Kawasaki sul
reticolo quadrato con interazioni isotrope. Questa analisi è molto più difficile di quella in
volume finito, infatti adesso le particelle sono conservate in tutto il dominio ed è quindi
necessario un controllo dettagliato delle interazioni tra le gocce ed il gas di “particelle isolate”:
il ruolo dell’entropia diventa cruciale. Analizziamo come le gocce sottocritiche si formano e
si dissolvono quando il volume è “moderatamente grande”: l’evoluzione del gas consiste di
gocce erranti su più scale spazio-temporali. Sulla base di questi risultati possiamo prevedere che
l’uscita dalla metastabilità in volumi “molto grandi” avvenga tramite nucleazione omogenea,
cioè una goccia critica appare in una scatola di volume moderato.

Nella terza parte della tesi consideriamo la fuga dalla metastabilità per sistemi che evolvono
secondo la dinamica non conservativa di Glauber, che, contrariamente alla dinamica di Kawasaki,
ha delle caratteristiche peculiari. Indaghiamo in particolare le dinamiche di opinione su
reti con una struttura di comunità, assumendo che gli individui possano aggiornare la loro
opinione binaria come risultato delle interazioni con un’influenza esterna e con altri individui
nella rete. Nel limite di temperatura molto bassa prevalgono motivi di opinioni omogenee e,
pertanto, ci vuole molto tempo affinché tutti cambino idea. Forniamo stime per tale tempo di
transizione e identifichiamo completamente le configurazioni critiche per la dinamica.

Nell’ultima parte della tesi consideriamo un grafo aleatorio dinamico nel tempo, noto
come modello ad attaccamento preferenziale, tale che ad ogni passo viene aggiunto un nuovo
vertice di grado m. È noto che la proporzione di nodi con un dato grado al passo n converge
ad una costante per n→∞. Il nostro obiettivo è, quindi, trovare la distribuzione asintotica
delle fluttuazioni attorno a questo valore limite. In particolare dimostriamo un teorema del
limite centrale per la distribuzione congiunta di tutti i conteggi dei gradi.
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R É S U M É

Nous étudions le comportement métastable de systèmes discrets à basse température qui
évoluent sous la dynamique stochastique de Kawasaki et Glauber pour analyser respective-
ment le passage à la phase liquide d’une vapeur sursaturée et la diffusion d’un avis dans un
réseau. Quant à la deuxième question, pour obtenir une description réaliste des réseaux nous
considèrons enfin le problème de la métastabilité pour un graphe aléatoire dynamique. La
première étape dans cette direction est l’analyse des propriétés asymptotiques de ce modèle,
que nous affrontons dans ce travail. La thèse est divisée en quatre parties comme suit.

Les deux premières parties sont dédiées à l’analyse de la fuite de la métastabilité pour un
gaz de réseau à température et densité très basses évoluant sous la dynamique conservative de
Kawasaki dans un domaine discret Λβ, de volume exponentiellement grand en la tempéra-
ture inverse β. Les particules effectuent une exclusion simple dans Λβ et ont une énergie
d’activation positive ∆, mais des particules voisines sont affectées par une énergie de liaison.

Dans la première partie de la thèse nous considérons des variantes de la version locale
de ce modèle, c’est-à-dire que le gaz évolue à l’intérieur d’un domaine fini Λ ⊂ Λβ et nous
étudions comment s’effectue la transition de la métastabilité à la stabilité. Nous démarrons
en considérant Λ ⊂ Z2, de sorte que les particules voisines sont affectées par une énergie
de liaison −U1 < 0 dans la direction horizontale et −U2 < 0 dans la direction verticale. Le
comportement dynamique du système change radicalement si U1 = U2 (isotropie), U1 < 2U2
(faible anisotropie) ou U1 > 2U2 (forte anisotropie). Pour ces régimes nous identifierons les
configurations critiques qui sont traversées avec grande probabilité. Grâce à certaines de leurs
propriétés géométriques, nous pouvons identifier la géométrie des entrées minimales pour la
nucléation. Nous observons des comportements très différents en les trois régimes.

Nous considérons ensuite le domain Λ comme un sous–ensemble du réseau hexagonal et
supposons des interactions isotropes entre particules voisines. Nous dérivons le comportement
asymptotique du temps de transition de la métastabilité à la stabilité et nous caractérisons
les gouttes critiques, soulignant que leur description diffère de celle dans le réseau carré.
De fait, celles-ci dépendent de la géométrie sous-jacente et la forme particulière du réseau
hexagonal induit une augmentation des mouvements de régularisation des particules de sorte
que nouveaux mécanismes d’entrée apparaissent dans l’ensemble des configurations critiques.

Dans la deuxième partie de la thèse nous traitons la dynamique originale de Kawasaki
sur le réseau carré avec des interactions isotropes. Cette analyse est beaucoup plus difficile
que l’analyse en volumes finis, car les particules sont désormais conservées dans tout le
domaine et un contrôle détaillé des interactions entre les gouttes et le gaz de “particules
isolées” est donc nécessaire : le rôle de l’entropie devient crucial. Nous analysons comment les
gouttes sous-critiques se forment et se dissolvent quand le volume est “modérément grand” :
l’évolution du gaz consiste en gouttes errant sur plusieurs échelles d’espace-temps. Nous pouvons
donc prédire que la fuite de la métastabilité dans des volumes “très grands” se produit par
nucléation homogène: une goutte critique apparaît dans une boîte de volume modéré.

Dans la troisième partie nous considérons la fuite de la métastabilité pour des systèmes
évoluant selon la dynamique non–conservative de Glauber, qui présente des caractéristiques par-
ticulières. Nous étudions une dynamique d’opinion dans les réseaux avec communautés, en
supposant que les individus peuvent mettre à jour leur opinion binaire à la suite d’interactions
avec une influence externe et avec d’autres individus du réseau. Dans la limite de température
très basse les opinions homogènes prévalent et, par conséquent, l’opinion de chacun change
après beaucoup de temps. Nous fournissons des estimations de ce temps de transition et
identifions pleinement les configurations critiques pour la dynamique.

Dans la dernière partie de la thèse nous considérons un graphe aléatoire dynamique, le
modèle d’attachement préférentiel, qui est tel qu’à chaque étape un nouveau sommet de degré m
est ajouté. Il est bien connu que la proportion des sommets avec un degré donné à l’étape n
converge vers une constante pour n→∞. Nous établissons donc la distribution asymptotique
des fluctuations autour de cette valeur limite. En particulier, nous prouvons un théorème
central limite pour la distribution conjointe de tous les nombres de degrés.
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1I N T R O D U C T I O N

1.1 overview

In this thesis we focus on the metastable behaviour of discrete systems at low temperature
that evolve under stochastic dynamics.

Metastability is ubiquitous in nature and the need to capture the behavior of systems
subject to such a phenomenon is the main motivation of this research. Indeed, metastability
naturally arises in a large variety of systems — physics, chemistry, biology, economics and
sociology. In this work we mainly focus on discrete systems aiming at capturing features
coming from both statistical physics and sociology fields.

Behind the phenomenon of metastability there are some common features, such as a large
variability in the moment of the onset of some dramatic change in the properties of the system,
a much shorter time for the actual transition (i.e., between the onset of a noticeable change
and the moment a new state is reached), and unpredictability of the time of the onset of the
transition. It is formally described as a dynamical phenomenon that occurs when a system is
close to a first order phase transition. After changing some thermodynamic parameters, the
system remains for a considerable (random) time in the old phase, the metastable state, before
suddenly making a transition to the new phase, the stable state. In other words, on a short
time scale, the system behaves as if it was in equilibrium, while, on a long time scale, it moves
between different regions of the state space (see Figure 1.1). The transition occurs when the
system manages to create a sufficiently large droplet, the so–called critical droplet, of the new
phase inside the old phase (see Figure 1.2). In the study of metastablity there are three main
issues that are tipically investigated. The first one is the study of the typical transition time from
the metastable to the stable states, i.e., the time necessary to arrive at the equilibrium phase.
The second and third issues concern the geometrical description of the gate configurations
(also called critical configurations) and the tube of typical trajectories. These issues are physically
more interesting, because they provide information about the configurations that will be
crossed by the dynamics. Roughly speaking, the system fluctuates in a neighborhood of the
metastable state until it visits the set of critical configurations and then finally reaches the
equilibrium: the typical paths that the system follows with high probability form the tube of
typical trajectories.

The first main challenge of the mathematical approach to metastability is of a qualitative
nature, namely, to explain why in a large variety of systems the same type of metastable
behaviour is observed. Many such systems are described from first principles as many-body
systems subject to classical or quantum dynamics. While the corresponding equations of
motion are known, they are typically very hard to analyze, in particular, over the extremely
long time intervals in which metastable behaviour occurs. Also, metastability manifestly

Figure 1.1 – The paradigm picture of metastability.
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metastable state stable state

energy

configuration space

critical droplet

Figure 1.2 – The paradigm picture of the energy landscape.

exhibits randomness (the unpredictable time of the occurrence of the transition), the source of
which may be difficult to extract from the underlying deterministic dynamics. It may be due
to quantum effects, or external perturbations of a (non-closed) system. A first simplification
is to pass to a description of the system as a stochastic dynamics. There is a wide variety of
different models where metastability emerges and where the explanation of the underlying
universality is possible.

The second main challenge is of a quantitative nature. Given the parameters of some
underlying model, we would like to be able to compute as precisely as possible the quantities
controlling the metastable phenomena, in particular, the distribution of the times of the
transitions between metastable and stable states. Again, this is hard because most metastable
systems of practical relevance are many-body systems whose dynamics is not easy to capture,
neither analytically nor numerically, and because extremely long time scales may be involved.
Understanding metastability on the quantitative level is of considerable practical interest, as it
affects the behaviour and functioning of many systems in nature.

In this thesis, we investigate the metastable behaviour of interacting particle systems,
described by the standard Ising model, evolving under the stochastic Kawasaki (Section 1.3)
and Glauber dynamics (Section 1.4), with particular attention to the geometrical shape of
the critical configurations, namely, those crossed by the dynamics with high probability. In
particular, we focus on mathematical models describing both phase transitions in statistical
physics and spreads of an opinion inside a community. While the first issue has been
investigated starting from the early mathematical papers on metastability, the second one has
thrived in recent decades, when the advent of the computer age has incited an increasing
interest in the fundamental properties of complex networks. To this end, when interpreting
the Ising model as a model for cooperative behaviour, studying it in a setting where the
underlying domain is a lattice is not appropriate. Hence, in recent years there has been a
large interest in studying metastability for the Ising model on random graphs, which are itself
models for complex networks. See for instance [33, 34, 38, 55, 56], where this problem was
addressed for static random graphs, such as the configuration model, the random regular
graph and Erdös–Rényi graphs.

In this work, we start our analysis of metastability for interacting particle systems describ-
ing the evolution of individuals’ opinions by considering as underlying structure a static (not
random) network with a non trivial community structure. The main object of interest is how
the social system governs the interactions among individuals when it is influenced by external
factors, for example advertisements and political policies. However, the need to capture a
realistic description of certain type of networks leads to consider dynamic random graphs, which
model the growth of the graph in time. To this end, the last part of this thesis is devoted to the
analysis of a particular type of dynamic model, known as preferential attachment model. Our
ultimate goal is to characterize the metastable behaviour of such a model. In this work we
analyze the asymptotic properties of this graph, which represents a first step in this direction.

The idea behind preferential attachment models is simple. In a graph that evolves in time,
the newly added vertices are connected to the already existing ones. Think of such vertex as a
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Figure 1.3 – The in–degree distribution for the citation network of papers in probability and statistics in
Web of Science. On the left (resp. right) we report the log–log plot of probability mass function (resp.
complementary cumulative distribution function). Figure taken from [69].

new individual in a social population, which we model as a graph by letting the individuals
be the vertices and the edges be the relations between pairs of individuals. Is it then realistic
that the edges connect to each already–present individual with equal probability, or is the
newcomer more likely to get to know socially active individuals, who already know many
people? If the latter is true, it should be more likely that the edges are connected to vertices
that already have a high degree. A possible model for such a growing graph was proposed in
[19], and has incited an enormous research effort since.

Such a model has been shown to lead to power–law degree sequences, i.e., the degrees
of the vertices show an enormous amount of variability and the number of vertices with
degree at least k decays slowly for large k, the so–called scale–free phenomenon. This implies
that degrees are highly variable and there exist vertices with extremely high degree. Often,
the tail of the empirical degree distribution seems to fall off as an inverse power of k. The
existence of power–law degree sequences in various real–world networks is quite striking,
and models offering a convincing explanation can teach us about the mechanisms that give
rise to their scale–free nature. Let us illustrate this with the example of citation networks. In
these networks, the vertices are scientific papers, and a directed edge between two papers
represents a reference of the first paper to the second. Thus, the in–degree of a paper is its
number of citations, while the out–degree is its number of references. In Figure 1.3 we depict
the in–degree distribution, in log–log scale, of the citation network of probability and statistics
papers in the period 1980 to May 2015 from Web of Science. We can see that the in–degree
distribution resembles a power law. Indeed, let Nk be the number of vertices with degree k.
When it approximately is proportional to an inverse power of k, i.e., Nk ≈ cnk−τ for some
normalizing constant cn and some exponent τ, then

logNk ≈ log cn − τ logk,

so that the plot of logk→ logNk is close to a straight line.
A possible explanation for the occurrence of power–law degree sequences is offered by

the preferential attachment paradigm. In preferential attachment models, vertices are added
sequentially with a number of edges connected to them. These edges are attached to a
receiving vertex with a probability proportional to the degree of the receiving vertex at that
time, thus favoring vertices with large degrees. For this model, it is shown in [30] that the
number of vertices with degree k decays proportionally to k−3, and this result is a special
case of the more general result on the asymptotic degree sequence of preferential attachment
models (see Section 1.5).

In the preferential attachment models, it is well known that the proportion of nodes with a
given degree at step n converges to a constant as n→∞ (see Section 1.5 for more details). In
this thesis we find the asymptotic distribution of the fluctuations around this limiting value.
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In particular, we will prove a central limit theorem for the joint distribution of all degree
counts.

1.2 mathematical approaches to metastability

The study of metastability has a long and rich history. In this section we give a brief
summary of the most important developments that shaped the work presented in this thesis
focused on very low temperature systems. A mathematical description to study metastability
was first attempted in [77, 100] inspired on Gibbsian equilibrium Statistical Mechanics within
the context of the van der Waals–Maxwell theory. The pathwise approach to metastability
was initiated in the late 1960’s and early 1970’s by Freidlin and Wentzell. They introduced
the theory of large deviations on path space in order to analyze the long–term behaviour of
dynamical systems under the influence of weak random perturbations. Their realisation that
the metastable behaviour is controlled by large deviations of the random processes driving
the dynamics has permeated most of the mathematical literature on the subject since. We
refer to the monograph [57] for an extensive discussion. The application of these ideas in
a statistical physics context was initiated in 1984 [39] and was developed in [95–97]. This
series of works realised that the theory put forward by Freidlin and Wentzell can be applied
to study the metastable behaviour of interacting particle systems.

The pathwise approach focuses on the dynamics of the transition from metastable to stable
state. The advantage of this approach is that it gives a detailed description of metastable
behavior of the system and it made possible to answer the three questions of metastability. By
identifying the most likely path between metastable states, the time of the transition and the
tube of typical trajectories can be determined. A modern version of the pathwise approach
containing the information about time and critical droplets disentangled with respect to
the tube of typical trajectories can be found in [44, 45, 85, 92]. This approach developed
over the years has been extensively applied to study metastability in Statistical Mechanics
lattice models. In this context, this approach and the one that follows [31, 85, 97] have been
developed with the aim of finding answers valid with maximal generality and to reduce as
much as possible the number of model dependent inputs necessary to describe the metastable
behavior of any given system. The pathwise approach was applied in finite volume at low
temperature for single-spin-flip Glauber dynamics, see e.g. [4, 10, 14, 24, 39, 40, 42, 49, 79,
80, 89, 93], for Kawasaki dynamics, see e.g. [13, 16–18, 67, 71, 72, 74, 75, 90], and for parallel
dynamics, see e.g. [43, 46–48]. The drawback of the pathwise approach is that it is generally
hard to identify and control the rate function, especially for systems with a spatial interaction,
for which the dynamics is non–local. Consequently, this approach typically leads to relatively
crude results on the crossover time.

This limitation can be overcome via the use of another approach, the so–called potential-
theoretic approach, initiated in [31] and summerized in the monograph [32]. In this approach,
the metastability phenomenon is interpreted as a sequence of visits of the path to different
metastable sets. This method focuses on a precise analysis of hitting times of these sets
with the help of potential theory. In the potential-theoretic approach the mean transition time
is given in terms of the so-called capacities between two sets. Crucially capacities can be
estimated by exploiting powerful variational principles. This means that the estimates of the
average crossover time that can be derived are much sharper than those obtained via the
pathwise approach. The potential theoretic approach was applied to models at finite volume
and at low temperature, see e.g. [35, 37, 70, 73, 91].

These mathematical approaches, however, are not completely equivalent as they rely
on different definitions of metastable states (see [44, Section 3] for a comparison) and thus
involve different properties of hitting and transition times. The situation is particularly delicate
for evolutions of infinite-volume systems, irreversible systems and degenerate systems, as
discussed in [27, 44, 45, 48]. New difficulties appear when entropy has a larger role to play in
the model. The more involved infinite volume limit at low temperature, higher temperature
or vanishing magnetic field was studied for instance in [11, 36, 41, 52, 53, 62, 63, 66, 75, 86, 87,
105, 106] for Ising-like models under single-spin-flip Glauber and Kawasaki dynamics. More
recent approaches are developed in [6, 20, 21, 28, 29, 82].
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1.3 metastability for conservative systems

Let us take the example of a supersaturated vapor. Consider a vapor below its critical
temperature, near its condensation point. Compress, isothermically, a certain amount of vapor,
free of impurities, up to the saturated vapor pressure (at the corresponding temperature). Then
continue to slowly increase the pressure, trying to avoid significant density gradients inside
the sample. With such careful experimentation we can prepare what is called a supersaturated
vapor: indeed, we observe that the system is still in a pure gaseous phase. It persists in this
situation of apparent equilibrium for a very long time; this is called a “metastable state”,
as opposed to a stable state, which, for the given values of the thermodynamic parameters,
would correspond to coexistence of liquid and vapor. The stationary situation with a pure
phase that we have described above persists until an external perturbation or a spontaneous
fluctuation induces the nucleation of the liquid phase, starting an irreversible process that
leads to a final stable state where liquid and vapor are segregated, and coexist at the saturated
vapor pressure. The lifetime of the metastable state decreases as the degree of supersaturation
increases, up to a threshold value for the pressure (the spinodal point) where the gas becomes
unstable. The above-described behavior is typical of an evolution that is conservative in the
sense that it preserves the number of molecules. To model mathematically phenomena such
as the one described above and superheated or supercooled water, it is often proposed to use
lattice gas models evolving according to Kawasaki dynamics since the dynamics conserves
the number of particles. We emphasize that conservative dynamics are challenging to analyze
because the particles conservation implies that droplets must exchange particles with the gas
surrounding them many times over long time intervals. Thus, the dynamics is non-local in its
very essence.

1.3.1 Kawasaki dynamics

We consider a two–dimensional lattice gas at very low temperature and density that
evolves according to Kawasaki dynamics, i.e., particles are subject to exclusion and interaction
in a domain inside Z2. More precisely, let β be the inverse temperature of the gas. We fix
the density of the gas equal to ρ = e−∆β, with ∆ > 0 an activity parameter. In order to have
particles at all, we see that the domain we consider cannot be finite, but its size has to be
at least exponentially large in β. Thus, we consider that our system evolves in a square box
Λβ ⊂ Z2, centered at the origin and with periodic boundary conditions, such that |Λβ| = eΘβ,
with Θ > ∆. We will see in Section 1.3.4 that the parameter Θ plays a crucial role in the
analysis.

With each site x ∈ Λβ we associate an occupation variable η(x), assuming the values 0 or
1, where η(x) = 0 (resp. η(x) = 1) means that the site x is empty (resp. occupied). A lattice
gas configuration is denoted by η ∈ Xβ := {0, 1}Λβ . With each configuration η we associate
an energy, the so–called Hamiltonian of the system, given by

H(η) = −U
∑

{x,y}∈Λ∗β

η(x)η(y), (1.3.1)

where Λ∗β denotes the set of bonds between nearest-neighbour sites in Λβ, i.e., there is a
binding energy −U < 0 between neighbouring particles. Let

|η| =
∑
x∈Λβ

η(x) (1.3.2)

be the number of particles in Λβ in the configuration η, and let

VN = {η ∈ Xβ : |η| = N} (1.3.3)

be the set of configurations with N particles. We define Kawasaki dynamics as the continuous-
time Markov chain X = (X(t))t>0 with state space VN given by the generator

(Lf)(η) =
∑

{x,y}∈Λ∗β

c(x, y, η)[f(ηx,y) − f(η)], η ∈ Xβ, (1.3.4)
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Λβ

Λ

Λ0

interactions

no interactions

independent random walks
no exclusion + no interactions

Figure 1.4 – Schematic representation of the domain Λβ in the simplified model.

where

ηx,y(z) =


η(z) if z 6= x, y,
η(x) if z = y,

η(y) if z = x,

(1.3.5)

and

c(x, y, η) = e−β[H(ηx,y)−H(η)]+ . (1.3.6)

Equations (1.3.4)–(1.3.6) represent the standard Metropolis dynamics associated with H, and is
conservative because it preserves the number of particles, i.e., |X(t)| = |X(0)| = N for all t > 0.
The canonical Gibbs measure νN defined as

νN(η) =
e−βH(η)1VN(η)

ZN
, ZN =

∑
η∈VN

e−βH(η), η ∈ Xβ, (1.3.7)

is the reversible equilibrium of this stochastic dynamics for any N:

νN(η)c(x, y, η) = νN(ηx,y)c(x, y, ηx,y). (1.3.8)

Varying the parameters U and ∆ leads to a dramatic change in the behaviour of the gas.
Indeed, the choice ∆ ∈ (0,U) represents the unstable gas, ∆ = U represents the spinoidal
point, ∆ ∈ (U, 2U) corresponds to the metastable regime, ∆ = 2U is the condensation point and
∆ > 2U corresponds to a stable gas. We refer to [67, 75] for an extensive discussion on these
points, while in Section 1.3.2 we justify the aforementioned metastable regime.

To rigorously analyze this fully conservative model, the idea is to focus the attention
on what happens in the simplified model introduced in [75]. This model can be obtained
from the Kawasaki dynamics defined above after considering exclusion only inside a finite
β-independent square box Λ ⊂ Λβ and interactions only in

Λ0 := Λ \ ∂−Λ, (1.3.9)

where

∂−Λ := {x ∈ Λ : ∃y /∈ Λ such that |y− x| = 1} (1.3.10)

is the internal boundary of Λ, so that the dynamics of the gas outside Λ is that of independent
random walks (see Figure 1.4). The introduction of this model is justified by the fact that, for
the original Kawasaki dynamics, the interaction between clusters and the “isolated” particles
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of the gas can be approximated by the interaction between clusters and a gas of independent
random walks. As widely explained in [75], the nucleation for the simplified model can be
tackled via the analysis of the local version of the model, the so–called local model. Roughly
speaking, in this model particles live and evolve only inside the finite window Λ, where the
effect on Λ of the gas in Λβ \Λ may be described in terms of the creation of new particles at
rate ρ at sites on the internal boundary of Λ and the annihilation of particles with rate 1 at
sites on the external boundary of Λ. We refer to Section 1.3.2 for the precise definition of the
local model. To summarize, the steps to address the issue of the exit from metastability for
the fully conservative Kawasaki dynamics are the following:

step 1 : Analyze the nucleation time and the tube of typical trajectories for the local model.
These issues have been addressed in [67, 75].

step 2 : Extend these results to the simplified model. This issue has been addressed in [75].

step 3 : Prove that the simplified model is a good approximation for the interactions between
clusters and gas in a finite window for the original Kawasaki dynamics. This issue has
been addressed in [65].

step 4 : Get the estimate for the nucleation time and the tube of typical trajectories for the
original Kawasaki dynamics. This issue is investigated in this thesis (see Section 1.3.4).

As it will be clear throughout the thesis, step 4 is highly non trivial and requires a careful
investigation. We refer to Section 1.3.4 for the main ideas to tackle this problem. Note that
step 3 gives us the correct way to control the behaviour of the gas in Λβ \Λ. It is clear
that the starting point is the analysis of the local model, which is introduced and studied in
Section 1.3.2.

1.3.2 The local model on the square lattice

In this section, we introduce the local model and we present the main results already
present in the literature together with those that are derived in this thesis. Consider a finite
box Λ = {0, ..., L}2 ⊂ Z2 centered at the origin. The side length L is fixed, but arbitrary, and
later we will require L to be sufficiently large. Our configuration space is X := {0, 1}Λ. To be
as general as possible, with each configuration η ∈ X we define the local Hamiltonian energy
Ĥ(η) as

Ĥ(η) := −U1
∑

(x,y)∈Λ∗0,h

η(x)η(y) −U2
∑

(x,y)∈Λ∗0,v

η(x)η(y) +∆
∑
x∈Λ

η(x), (1.3.11)

where Λ∗0,h (resp. Λ∗0,v) is the set of the horizontal (resp. vertical) unoriented bonds joining
nearest-neighbors points in Λ0 (recall (1.3.9)). Thus, the interaction is acting only inside
Λ \ ∂−Λ; the binding energy associated to a horizontal (resp. vertical) bond is −U1 < 0 (resp.
−U2 < 0). Note that Ĥ(η) is obtained after augmenting the energy in (1.3.1) by adding a term
∆|η| and by distinguishing between horizontal and vertical bonds. This models the presence
of an external reservoir that keeps the density of particles in Λβ fixed at ρ = e−β∆. We may
assume without loss of generality that U1 > U2. The dynamical behaviour of the local model
changes drastically based on the relation between the parameters U1 and U2. In particular,
we identify three interesting regimes: isotropic (U1 = U2 = U), weakly anisotropic (U1 < 2U2)
and strongly anisotropic (U1 > 2U2). Although our analysis for the original model is concerned
only with the isotropic case (as it is clear by the Hamiltonian defined in (1.3.1)), we define the
local model in this general setup because we are interested in its analysis for all these three
regimes. The locally conservative Kawasaki dynamics can be defined as the standard dynamics
with different behaviours at the boundary of Λ. To be precise, let b = (x→ y) be an oriented
bond, i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x→ y) : x ∈ ∂−Λ,y 6∈ Λ},
∂∗Λin := {b = (x→ y) : x 6∈ Λ,y ∈ ∂−Λ},
Λ∗,orie := {b = (x→ y) : x, y ∈ Λ},

(1.3.12)
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and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪Λ∗, orie. Two configurations η, η ′ ∈ X with η 6= η ′ are
said to be communicating states if there exists a bond b ∈ Λ̄∗,orie such that η ′ = Tbη, where
Tbη is the configuration obtained from η in any of these ways:

— for b = (x → y) ∈ Λ∗, orie, Tbη denotes the configuration obtained from η by
interchanging particles along b:

Tbη(z) :=


η(z) if z 6= x, y,
η(x) if z = y,

η(y) if z = x.

(1.3.13)

— For b = (x→ y) ∈ ∂∗Λout we set:

Tbη(z) :=

{
η(z) if z 6= x,
0 if z = x.

(1.3.14)

This describes the annihilation of a particle along the border.
— for b = (x→ y) ∈ ∂∗Λin we set:

Tbη(z) :=

{
η(z) if z 6= y,
1 if z = y.

(1.3.15)

This describes the creation of a particle along the border.
Since in finite volume is equivalent and more convenient dealing with a discrete time stochastic
process, we define Kawasaki dynamics as the discrete time Markov chain (ηt)t∈N on the state
space X given by the following transition probabilities: for η 6= η ′:

P(η, η ′) :=

{
|Λ̄∗, orie|

−1
e−β[H(η ′)−H(η)]+ if ∃b ∈ Λ̄∗,orie : η ′ = Tbη,

0 otherwise,
(1.3.16)

where [a]+ = max{a, 0} and P(η, η) := 1−
∑
η ′ 6=η P(η, η

′). This describes a standard Metropo-
lis dynamics with open boundary conditions: along each bond touching ∂−Λ from the outside,
particles are created with rate ρ = e−∆β and are annihilated with rate 1, while inside Λ0
particles are conserved. Note that an exchange of occupation numbers η(x) for any x inside
the ring Λ \Λ0 does not involve any change in energy.

Remark 1.3.1. The stochastic dynamics defined by (1.3.16) is reversible with respect to the Grand–
canonical Gibbs measure

µ(η) :=
e−βĤ(η)

Z
, Z :=

∑
η∈X

e−βĤ(η), η ∈ X. (1.3.17)

In the remainder of this section we will present the main results concerning metastability
and nucleation for the local model in all the three regimes. First, note that the metastable
regime corresponds to taking

∆ ∈ (U1, U1 +U2). (1.3.18)

Indeed, a special feature of Kawasaki dynamics is that in the metastable regime (1.3.18)
particles move along the border of a droplet more rapidly than they arrive from the boundary
of the box. More precisely, the condition ∆ > U1 implies that the arrival of new particles is
slower than the dissociation of protruding particles (see Figure 1.5 on the left), whereas the
condition ∆ < U1 +U2 implies that the arrival of new particles is faster than the dissociation
of non–protruding particles (see Figure 1.5 on the right). Note that in the case of isotropic
interactions the condition in (1.3.18) reads as U < ∆ < 2U. For all these three regimes we
have that the empty box

� := {η ∈ X : η(x) = 0 ∀ x ∈ Λ} (1.3.19)

is the unique metastable state and the full box

� := {η ∈ X : η(x) = 1 ∀ x ∈ Λ0, η(x) = 0 ∀ x ∈ Λ \Λ0} (1.3.20)
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Figure 1.5 – In both clusters we represent in grey the particle we want to detach: the one on the left
(resp. right) is protruding (resp. non–protruding) and detaching it has a probability of order e−U1β

(resp. e−(U1+U2)β).

is the unique stable state, provided that L is sufficiently large. This assumption is needed to
have Ĥ(�) < Ĥ(�) = 0 and later we will provide an explicit lower bound for L. Thus, the
exit from metastability consists in analyzing the transition from � to �. The main objects
of the analysis are the estimate of this transition time and the geometrical description of
the critical droplets the system has to cross to perform the nucleation, the so–called gate for
the transition. In addition, a crucial role both from a probabilistic and physical point of
view is the description of the union of all the minimal gates, where a minimal gate is a gate
that is minimal by inclusion. These have the physical meaning of “minimal sets of critical
configurations” and are a crucial step in the description of the typical trajectories.

To make the previous assumption on L precise, we introduce the so–called critical lengths.
In particular, in the isotropic regime U1 = U2 = U we define the critical length as

`c :=

⌈
U

2U−∆

⌉
, (1.3.21)

while in the anisotropic regimes (U1 6= U2) we define the horizontal and vertical critical
lengths as

`∗1 :=

⌈
U1

U1 +U2 −∆

⌉
, `∗2 :=

⌈
U2

U1 +U2 −∆

⌉
, (1.3.22)

respectively. Thus, we require that

L >

2`c for the isotropic regime,

2`∗1 for the anisotropic regimes.
(1.3.23)

In addition, we need some non–degeneracy assumptions. In particular, for the isotropic model
we assume that

U

2U−∆
/∈N, (1.3.24)

while for the anisotropic models we assume that

U1
U1 +U2 −∆

/∈N,
U2

U1 +U2 −∆
/∈N. (1.3.25)

To avoid pathological trivial cases, we further assume that

∆ ∈


(
3
2U, 2U

)
for the isotropic regime,(

U1 +
U2
2 , U1 +U2

)
for the anisotropic regimes.

(1.3.26)

Note that condition (1.3.26) ensures that all the critical lengths are larger than two. In the
remainder of this section assume that conditions (1.3.23)-(1.3.26) are in force. By [16, 75, 90] it
is well known which is the shape of the canonical critical droplets for the three regimes. In
particular, they consist in a rectangular shape, with the addition of a protuberance (i.e., one
particle attached to a side of the rectangular cluster) and a free particle anywhere in Λ (i.e., a
particle that does not interact with the others). See Figure 1.6 on the left and Figure 1.7. More
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`c

`c − 1

12× 12

Figure 1.6 – Critical configurations in the isotropic regime for `c = 14.

`∗2

`∗1

`∗2

2`∗2 − 2

Figure 1.7 – Canonical critical configurations in the weakly anisotropic regime (on the left) and in the
strongly anisotropic regime (on the right).

precisely, they constitute a gate for the transition, namely, a set of configurations that will be
crossed with probability tending to 1 in the limit as β goes to infinity. To define it rigorously,
a central role is played by the set of optimal paths, which are those paths (i.e., sequence of
communicating configurations) realizing the minimum value among all the paths going from
� to � of the maximal energy reached in a single path. Formally, we set

(�→ �)opt := {ω : �→ � : max
ξ∈ω

Ĥ(ξ) = Φ(�,�)}, (1.3.27)

where ω : �→ � is a general path connecting � to � and

Φ(�,�) := min
ω:�→�

max
ξ∈ω

Ĥ(ξ) (1.3.28)

is the communication height between � and �. Thus, we define a gate C∗(�,�) for the
transition from � to � as a subset of the set of minimal saddles S(�,�), such that any path
ω ∈ (�→ �)opt crosses the set C∗(�,�), where

S(�,�) := {ζ ∈ X : ∃ω ∈ (�→ �)opt,ω 3 ζ such that Ĥ(ζ) = Φ(�,�)}. (1.3.29)

A first important difference that comes out in the different regimes is that in the strongly
anisotropic one the shape of the critical droplets is not Wulff, where the Wulff shape is that
minimizing the energy of a droplet at fixed volume. Indeed, the Wulff shape corresponds to
rectangular droplets of horizontal and vertical dimensions `1 and `2, respectively, such that
`1 − `2 is of order

¯̀ :=
⌈

U1 −U2
U1 +U2 −∆

⌉
, (1.3.30)

which are called standard rectangles. Note that in the isotropic regime this means that the
square clusters are Wulff–shaped. By the shape of the canonical critical droplets it easy to
check that in the isotropic models the Wulff shape concides with the critical shape, so that
it is not possible to distinguish among them. A rigorous analysis of the non equivalence
between critical configurations and Wulff shape motivates the study of anisotropic models



1.3 metastability for conservative systems 11

W
W

subcritical supercritical subcritical

do
m

i

L L

L L

n
o

d omi n
o

s
t

a n
d

a
r

d

supercritical

`2

`∗2

¯̀

2¯̀− 2 `1`1

`2

`∗2

ˆ̀
1 `∗1 `∗1

Figure 1.8 – Typical path for strong anisotropy (on the left) and weak anisotropy (on the right), in which
we highlight with W the critical Wulff–shaped configuration.

-
+U1

-
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−U1

Figure 1.9 – 1-translation of the horizontal north bar at cost U1.

and is a first step in showing the robustness of the argument rooted in the dynamical nature
of metastable systems. On the one hand, also in the weakly anisotropic model the critical
droplet has a Wulff shape, but the evolution of the system does not follow Wulff-shaped
configurations. Indeed, it follows the so–called domino rectangles, which are rectangles for
which the horizontal dimension is “almost” twice as long as the vertical one (see Figure 1.8
on the left). On the other hand, in the strongly anisotropic regime the Wulff shape is not a
critical configuration. Indeed, the rectangular custer is not standard, but is a domino rectangle,
and the dynamics crosses the critical Wulff-shape only in its supercritical part (see Figure 1.8
on the right). In conclusion, in both anisotropic regimes the Wulff shape is not relevant in the
nucleation pattern as for the anisotropic Glauber dynamics, see [79]. The locally conservative
dynamics and the movement of particles along the border of the droplet give a regularization
effect. Surprisingly, as mentioned above, this effect does not drive the nucleation process
along Wulff-shaped configurations, especially in the assumption of strong anisotropy. We
refer to [16, 90] for an extensive discussion.

We denote by C∗ = C∗(�,�) the set of critical configurations and define Γ∗ := Φ(�,�).
In [16, 75, 90] the authors proved that Γ∗ coincide with the energy of the configurations
belonging to C∗ and that C∗ is a gate for the transition. In addition, they proved that with
probability tending to 1 in the limit as β goes to infinity, the system creates the critical droplet
and reaches the stable state � in a time of order eΓ

∗β when it starts from the metastable state
�. In particular, there exists an explicit formula for the energy barrier Γ∗ which depends on
the parameters U1, U2 and ∆ of the Hamiltonian energy and we refer to those papers for
further details.

-
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0, ..., 0
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−U2

Figure 1.10 – 1-translation of the vertical east bar at cost U2.
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Figure 1.11 – Sliding of a unit square around the “north-east corner” at cost U1.

geometrical description of the gate

A relevant issue for the dynamical characterization of the system is the description of all the
“relevant” critical configurations. This description turns out to be very rich when we deal
with the conservative Kawasaki dynamics. Indeed, a crucial feature of this dynamics is that
particles can move along the border of the droplet as a part of regularizing motions. There
are two types of relevant motions: the translation of a bar and the sliding of a bar. Intuitively,
a bar can be thought as a set of connected particles that are attached to a cluster and the
translation of a bar consists in the iteration of the 1–translation depicted in Figures 1.9-1.10.
The sliding of a bar consists instead in moving a bar attached to a cluster around a corner of
the cluster and can be defined as the iteration of the motion depicted in Figure 1.11. We will
introduce later in Section 3.2.1 point 5 the precise definition of bars and of these motions. The
aforementioned motions are crucial for the full geometrical description of the gate. To this
end, we need some geometrical definitions. First, we define the set Q̄ (resp. Q̃) as the set of
configurations having only one cluster anywhere in Λ0 consisting of a `1 × `2 rectangle with
a single protuberance attached to one of the shortest (resp. longest) sides, where

(`1, `2) =


(`c − 1, `c) for the isotropic regime,

(`∗1 − 1, `
∗
2) for the weakly anisotropic regime,

(2`∗2 − 3, `
∗
2) for the strongly anisotropic regime.

By denoting with nc the number of particles of the clusters in Q = Q̄∪ Q̃, we define

D̄ := {η ′ ∈ Vnc | ∃ η ∈ Q̄ : Ĥ(η) = Ĥ(η ′) and Φ|Vnc
(η, η ′) 6 Ĥ(η) +U1},

D̃ := {η ′ ∈ Vnc | ∃ η ∈ Q̃ : Ĥ(η) = Ĥ(η ′) and Φ|Vnc
(η, η ′) 6 Ĥ(η) +U1},

(1.3.31)

where we recall that Vnc is the set of configurations with nc particles and Φ|Vnc
(η, η ′) means

that we are computing the communication height between η and η ′ by looking only at paths
crossing configurations inside the set Vnc . Note that Q̄ ⊂ D̄ (resp. Q̃ ⊂ D̃). To keep the
notation concise we have adopted the same notation for all the three scenarios, but one may
replace U1 with U in the isotropic case. Note that the last condition in (1.3.31) is the same as
requiring that

Φ|Vnc
(η, η ′) < Γ∗ + Ĥ(�) = Γ∗,

which comes from the fact that to describe gates we are interested only in the optimal paths,
so that the energy along them cannot exceed the value Γ∗. Roughly speaking, in the isotropic
and weakly anisotropic cases one can think of D̄ and D̃ as the sets of configurations consisting
of a rectangular cluster with four bars attached to its four sides such that the sum of the
lengths of the bars is fixed. Concerning the strongly anisotropic model, this characterization
comes out only for the set D̄, while the configurations in D̃ have a cluster with a different
shape. The reason why this difference arises is that in the strongly anisotropic regime there is
a larger rigidity of the dynamics, so that the motion of particles along the border of a cluster
is more unlikely. We will elaborate more on this later and we will see the strong impact that
this effect has on some other dynamical features. Concerning the isotropic regime, the full
geometrical characterization has been achieved in [35, Theorem 1.4.1], while it constitutes a
novelty of this thesis for what concerns the anisotropic regimes.

First, let us focus on the isotropic regime. In [35] the authors proved that the gate for the
transition C∗ can be expressed as C∗ = Dfp, where

D := D̄∪ D̃ (1.3.32)
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`∗2

`∗1

`∗2

2`∗2 − 2

Figure 1.12 – Critical configurations in C∗ in the weakly (resp. strongly) anisotropic regime on the left
(resp. right). Moreover, if we remove the free particle we obtain a configuration in D̄ \ Q̄.

and the upper index “fp” indicates the addition of a free particle anywhere inside the box
Λ (see Figure 1.6 on the right). Let us see the key ingredients to prove the aforementioned
geometrical characterization of the gate. Clearly, we have that

Ĥ(C∗) = Ĥ(Dfp) = Ĥ(D) +∆ = Ĥ(Q) +∆ = Γ∗

and therefore

Ĥ(D) = Ĥ(Q) = Γ∗ −∆.

The key ingredients to get the claim are the following (recall (1.3.28)):
(i) Prove that Φ(�,�) 6 Γ∗.
(ii) Prove that Φ(�,�) > Γ∗.
(iii) Get the geometrical characterization of the set D.

For point (i), it suffices to construct a path connecting � to � which does not exceed the
energy value Γ∗. For this we refer to [35, Section 2.3.1].

Concerning point (ii), the proof comes into three steps. The first one is that any optimal
path ω ∈ (�→ �)opt (recall (1.3.27)) must pass through a configuration consisting of a single
(`c − 1)× `c rectangular cluster somewhere in Λ0. This step is achieved by using a standard
isoperimetric inequality–type argument [1], which ensures that the configurations consisting
of `c(`c − 1) particles with minimal energy are those in which the particles form a single
(`c − 1)× `c rectangular cluster. Let us denote by η such a unique configuration modulo
translations and rotations. Note that

Ĥ(η) = Γ∗ − 2∆+U.

The second step consists in proving that all the optimal paths must cross the set Q. Starting
from η, to reach � a new particle has to enter inside Λ0: this brings us to the energy Γ∗−∆+U.
Before any new particle is created, the energy must lower by at least U: the unique way to do
this is to move the free particle until it attaches to the cluster, giving rise to a configuration
in Q. The final steps is to show that to reach � from Q the energy has to reach the value
Γ∗. By [1] we deduce that the unique allowed move is to add a free particle, giving rise to a
configuration with energy Γ∗.

Point (iii) provides the full description of the gate. Indeed, once the system is in Q, before
the arrival of the next particle, it can reach all configurations that have the same energy, the
same number of particles and can be reached at cost less or equal to U, which are precisely
those belonging to D. To get this, one has to study all the possible motions of particles that
can take place on the boundary of the droplet as represented in Figures 1.9-1.11.

Along the way we have also characterized the entrance in the set of critical configurations.
Indeed, from the steps above, it follows that any ω ∈ (� → �)opt passes first through Q,
then possibly through D\Q, and finally through C∗. This refined analysis of the dynamics is
crucial when one tries to find sharper estimates regarding the mean transition time. We will
see in the next paragraph how to achieve this issue.
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Figure 1.13 – Second mechanism to enter the gate in the strongly anisotropic regime: configuration (1)
consists in a (2`∗2 − 1)× (`∗1 − 1) rectangular cluster and has energy equal to Γ∗ −∆+U2 −U1, thus
configurations (7) and (11) have energy equal to Γ∗. In (12) we indicate with a dashed arrow the
detachment of the protuberance at cost U1 and afterwards the movement of the free particle until it
connects to the cluster that decreases the energy by U1 +U2. When the free particle is detached the
dynamics reaches the set C∗.

Let us now consider the weakly anisotropic regime. First, note that in this case

Ĥ(D̄) = Γ∗ −∆ < Γ∗ −∆+U1 −U2 = Ĥ(D̃). (1.3.33)

The main difference that arises with respect to the isotropic regime is that in the weakly
anisotropic regime the gate C∗ can be expressed as C∗ = D̄fp, see Figure 1.12 on the left
(compare with (1.3.32)). The reason why only the set D̄ is relevant for the set C∗ is the
following. Starting from the set D̃, the dynamics either passes through the set D̄ or it is
not possible that a free particle is created without exceeding the energy level Γ∗. Indeed, by
(1.3.33) we know that any η ∈ D̃ has energy Ĥ(η) = Γ∗ −∆+U1 −U2. By the optimality of
the path, starting from such η it is possible to create a free particle only after lowering the
energy. This is possible only if η ∈ Q̃, where it is possible to detach the protuberance and
reattach it to a vertical side, thus we obtain a configuration in Q̄.

Concerning the strongly anisotropic regime, it is reasonable to expect that also in this case
only D̄ is the relevant set for the gate. This is indeed the case. However, configurations in
D̃ have a very different shape in the strongly anisotropic regime compared to those for the
isotropic and weakly anistropic regimes. More precisely, configurations in this set now do
not consist in a unique rectangular droplet with four bars attached to its four sides. Indeed,
starting from a configuration η ∈ Q̃, only a move at cost U2 is allowed. Otherwise, if a move
at cost U1 takes place, then the resulting configuration has energy Γ∗ −∆+ 2U1 −U2 > Γ

∗,
thus the described path would be not optimal. We deduce therefore that the gate C∗ can be
expressed as C∗ = D̄fp (see Figure 1.12 on the right).

Despite the fact that the structure of the gate is similar for the three scenarios, we emphasize
that the entrance in them is very different. In particular, for the strongly anisotropic case there
are two different mechanisms to enter the gate, while for the other two scenarios there is a
unique one, see [18, Lemma 7.13]. In particular, we proved that any ω ∈ (�→ �)opt enters
the set C∗ in one of the following ways:

(i) ω passes through Q̄, then possibly through D̄ \ Q̄, and finally reaches C∗;
(ii) ω follows the path described in Figure 1.13.

This is a consequence of a larger rigidity of the dynamics in the strongly anisotropic case. An
important part of the regularizing motions of particles along the border of the clusters is lost,
and because of this a new mechanism for entering in the critical configurations set appears.

geometrical description of the union of all the minimal gates

On the one hand, it is clear that the properties that are strictly related to the horizontal and
vertical dimensions are the same for both weakly and strongly anisotropic cases. On the other
hand, some properties that involve the motion of particles along the border of the droplet are
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very different. Intuitively, one may think of the weakly anisotropic case as an “interpolation”
between the isotropic and strongly anisotropic ones. Indeed, it has some properties similar to
the first, others to the latter. We now highlight this difference in the description of the set

G(�,�) :=
⋃

W(�,�) minimal gate
W(�,�),

where a minimal gate W(�,�) is a gate minimal by inclusion, i.e., W(�,�) is a gate and for
any W ( W(�,�) there exists ω ′ ∈ (� → �)opt such that ω ′ ∩W ′ = ∅. Note that the set
G(�,�) represents the union of all the minimal gates for the transition from � to �. For
the isotropic case more motions along the border are allowed and thus an explicit geometric
description of the set is more difficult, but for the anisotropic cases we fully obtain it, since
the condition U1 6= U2 makes the sliding of particles along the border of the droplet more
unlikely. Among the anisotropic cases, the structure of the set G(�,�) strongly depends on
how large is U1 with respect to U2, indeed in the case U1 > 2U2 less slidings along the
border are allowed and thus the structure of the union of minimal gates is less rich than the
weakly anisotropic case. This characterization for all the three scenarios represents a novel
contribution of this thesis.

The starting point for this analysis is the introduction of the concept of unessential saddle.
Roughly speaking, a saddle ζ ∈ S(�,�) (recall (1.3.29)) is called unessential if it can be
“bypassed” by an optimal path in one of its neighborhoods, namely, if for any optimal
path crossing ζ there exists another optimal path not crossing ζ such that the two paths
do not differ too much. Formally, this happens if for any ω ∈ (� → �)opt such that
ω ∩ ζ 6= ∅ we have {arg maxω Ĥ} \ {ζ} 6= ∅ and there exists ω ′ ∈ (� → �)opt such that
{arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ζ}. Then we refer to essential saddles as those that are not
unessential. The notion of essential saddles is crucial in the attempt to characterize the union
of minimal gates thanks to [85, Theorem 5.1]. Indeed, the authors proved that a saddle
is essential if and only if it belongs to the union of all the minimal gates. Thanks to this
equivalence, we reduce our study to the identification of the set of all the essential saddles
that has to be crossed during the transition in the three different regimes.

First, we provide a model–independent strategy that is useful to eliminate some unessential
saddles. More precisely, we require some model–dependent inputs in order to prove that two
types of saddles are unessential and therefore they are not in the union of the minimal gates.
In order to apply this strategy to Kawasaki dynamics, we need to verify that the required
model–dependent inputs are valid for our model in the three scenarios. This study, together
with the characterization of the essential saddles, relies on a detailed analysis of the motion
of particles along the border of the droplet, which is a typical feature of Kawasaki dynamics.
In order not to burden the explanation of the basic ideas too much, we present here this
model–independent strategy directly applied to Kawasaki dynamics for the transition from �
to �, while we refer to Section 3.1.2 for the general strategy.

Recall [45, eq. (3.40)] for the definition of cycle: in the case of Metropolis dynamics this
definition coincides with [85, eq. (2.7)]. We need the following definition. Given σ ∈ X, Γ > 0
and A a set of target configurations, we say that the initial cycle for the transition from σ to A

with depth Γ is

CσA(Γ) := {σ}∪ {η ∈ X : Φ(σ, η) − Ĥ(σ) < Γ = Φ(σ,A) − Ĥ(σ)}. (1.3.34)

In words, this initial cycle contains all the configurations that can be reached by σ by spending
less energy than the communication height between σ and the target set A. Note that in
definition (1.3.34) we emphasize the dependence on σ and A, and that Γ is identified by them.
Note that the definition of CσA(Γ) coincides with CA(σ) defined in [85, eq. (2.25)]. We will
focus on the two specific intial cycles C��(Γ

∗) and C��(Γ
∗ − Ĥ(�)). Roughly speaking, in order

to apply the general strategy to our model, we need the following model–dependent inputs
(we encourage the reader to inspect Figure 1.14):

(i) Identify the set of metastable and stable states and the energy barrier between them,
which are �, � and Γ∗ in our model, respectively.

(ii) Find a gate for the transition, which is C∗ in our model.
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Figure 1.14 – Example of the energy landscape for the transition between � and �. We depict on the left
(resp. right) the cycle of the metastable (resp. stable) state C��(Γ

∗) (resp. C��(Γ
∗ − Ĥ(�))). We indicate

in black C∗, in light gray K and K̃, emphasizing in dark gray the part of K and K̃ that intersect the
boundaries of the two previous cycles. We give an example of two configurations σ and σ ′ that are in
CB.

(iii) Find two sets of configurations CG and CB such that when the dynamics reaches CG,
it has made it “over the hill”, while when it reaches CB it has not.

(iv) Identify the subsets K (resp. K̃) of the saddles that are visited by the optimal paths
“just before entering” (resp. “just after visiting”) the gate.

Definition 1.3.2. A saddle σ is of the first type if it is not in C∗ ∪K and belongs to the boundary of
the cycle C��(Γ

∗), i.e., σ ∈ ∂C��(Γ∗)∩ (S(�,�) \ (C∗ ∪K)).

Definition 1.3.3. A saddle ζ is of the second type if it is not in C∗ ∪ K̃ and belongs to the boundary of
the cycle C��(Γ

∗ − Ĥ(�)), i.e., ζ ∈ ∂C��(Γ∗ − Ĥ(�))∩ (S(�,�) \ (C∗ ∪ K̃)).

Thus, provided that we addressed conditions (i)-(iv) for our model, the following results
hold:

1. Any saddle σ of the first type is unessential.

2. Any saddle ζ of the second type is unessential.

On the one hand, we emphasize that point 1 is guaranteed only by the model–dependent
inputs (i), (ii) and (iv). Indeed, the idea of the proof is the following. Given an optimal path ω
passing through a saddle σ of the first type and crossing the cycle C��(Γ

∗) for the last time in
the configuration η, thanks to [85, Lemma 2.28] we know that there exists a path contained in
that cycle C��(Γ

∗), so that it does not cross the saddle σ, such that it can proceed as ω starting
from η. Thus, the path ω ′ obtained by the concatenation of these two paths has the desired
property, namely,

{arg max
ω ′

Ĥ} ⊆ {arg max
ω
Ĥ} \ {σ}.

On the other hand, we emphasize that for point 2 all the model–dependent inputs are
necessary. In particular, point (iii) turns out to be crucial. Indeed, the idea of the proof is the
following. For point (iii) we deduce that every optimal path ω passing through a saddle of
the second type ζ has to cross a saddle η ∈ C∗ ∪ K̃ that communicates with CG via one step
of the dynamics. Thus, we can define the optimal path ω ′ as the path ω up to the saddle η,
then it reaches the set CG and afterwards proceed into C��(Γ

∗ − Ĥ(�)). It is easy to check that
the path ω ′ has the desired property.

To characterize all the essential saddles, the idea is therefore to partition the saddles that
are not in C∗ in three types: the saddles σ of the first type, the saddles ζ of the second type,
and the saddle ξ of the third type, which are all the saddles that are not of the first and second
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Figure 1.15 – Good sites (G) and bad sites (B) for `c = 14.

type. The reason why we exclude the saddles belonging to C∗ is that they are all essential,
as we will see later in detail. After the identification of points (iii) and (iv) above, namely,
the sets CB, CG, K and K̃, the strategy explained above tells us that the saddles of the first
and second type are unessential. Thus, in order to characterize the set G(�,�) we need to
characterize the essential saddles of the third type, which is a task that needs to be addressed
by hand for any model and turns out to be intricate for the conservative Kawasaki dynamics.

First, we introduce the sets CG and CB with the properties claimed in point (iii) above. To
this end, we set

L∗ :=

L− `c for the isotropic regime,

L− `∗2 for the anisotropic regimes.
(1.3.35)

For η ∈ C∗, we associate (η̂, x) with η̂ ∈ D protocritical droplet and x ∈ Λ the position of
the free particle. We denote by CG(η̂) (resp. CB(η̂)) the configurations that can be reached
from (η̂, x) by a path that moves the free particle towards the cluster and attaches the free
particle in ∂−CR(η̂) (resp. ∂+CR(η̂)), where CR(η̂) is the circumscribed rectangle of η̂, namely,
the smallest rectangle containing η̂. In Figure 1.15 and Figure 1.16 on the left we explicitly
depict the good and bad sites for a specific η̂ for isotropic and strongly anisitropic interactions,
respectively. Let

CG =
⋃

η̂∈D
CG(η̂), CB =

⋃

η̂∈D
CB(η̂). (1.3.36)

To prove that these specific sets satisfy the conditions required in (iii), we argue as follows.
We claim that for all the three regimes the following properties hold:

1. If η ∈ CG, then there exists a path ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.

2. If η ∈ CB, then there are no ω : η→ � or ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.

These two properties are precisely the ones required in point (iii). The proof for the isotropic
case is presented in [35], while for the anisotropic cases are presented in [17, 18] and use
similar arguments.

We identify now the sets K and K̃ in (iv). These consist of the saddles that are visited by
the optimal paths just before entering and just after visiting the set C∗, respectively. For the
three regimes we have that K = ∅. To identify the saddles of the second type, note that we
need only to identify the set K̃∩ ∂C��(Γ∗ − Ĥ(�)). We proved that this set has a quite intricate
structure in the isotropic and weakly anisotropic cases, while it is empty for the strongly
anisotropic case. Again, this difference relies on a larger rigidity of motions of particles in the
strongly anisotropic regime. This analysis is very technical and therefore we do not report
here the ingredients of the proof, but we refer to Sections 3.4, 4.3 and 5.3 for the precise and
detailed argument we used in the three regimes.
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Figure 1.16 – On the left-hand side we represent good sites (G) and bad sites (B) for `∗2 = 8. On the
right-hand side we depict with x the sites in B1(η̂), with y the sites in B̄2(η̂), with z and z̄ the sites in
B̄3(η̂) and with z̄ and w the sites in B̄4(η̂).

To prove that C∗ is only composed by essential saddles, we need first to introduce two
sets that will be crucial in our argument. For η ∈ C∗, let η̂ ∈ D be the configuration obtained
from η by removing the free particle. For A ⊆ Λ and x ∈ Λ, we denote by d(x,A) the lattice
distance between x and A. We need the following definitions.

Definition 1.3.4. Let Λ4 be Λ without its four frame-angles. We define, recursively,

B1(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, η̂) = 1}

and

B2(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, B1(η̂)) = 1},
B̄2(η̂) := B2(η̂),

and

B3(η̂) := {x ∈ Λ4| x /∈ B1(η̂), d(x, B2(η̂)) = 1},
B̄3(η̂) := B3(η̂)∪ {B̄2(η̂)∩ ∂−Λ4},

and for i = 4, 5, ..., L∗

Bi(η̂) := {x ∈ Λ4| x /∈ Bi−2(η̂), d(x, Bi−1(η̂)) = 1},
B̄i(η̂) := Bi(η̂)∪ {B̄i−1(η̂)∩ ∂−Λ4}.

In words, B1(η̄) is the ring of sites in Λ4 at distance 1 from η̂, while B̄i(η̂) is the ring
of sites in Λ4 at distance i from η̂ union all the sites in ∂−Λ4 at distance 1 < j < i from η̂

(i = 2, 3, ..., L∗) (see Figure 1.16 on the right-hand side). Note that, depending on the location
of η̂ in Λ, the sets B̄i(η̂) coincide for large enough i. The maximal number of rings is L∗. We
define

C∗(i) := {(η̂, x) : η̂ ∈ D, x ∈ B̄i(η̂)}, i = 2, 3, ..., L∗. (1.3.37)

First, note that the sets C∗(i) are not disjoint. From the definitions of the sets C∗ and (1.3.37),
we deduce that

C∗ =
L∗⋃

i=2

C∗(i). (1.3.38)

The proof of C∗ ⊆ G(�,�) is achieved via two steps:

step 1 : The saddles in C∗(2) are essential.

step 2 : The set C∗(i) belongs to a minimal gate for any i = 3, ..., L∗.
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Figure 1.18 – Critical configurations in the weakly anisotropic case.

On the one hand, the proof of step 1 is the same for the three regimes and is based on the
fact that it is always possible to find an optimal path that crosses the set C∗(2) only in a given
configuration η. On the other hand, the proof of step 2 differs whether we are dealing with
isotropic or weakly anisotropic regimes, and with the strongly anisotropic regime.

We start by considering the isotropic and weakly anisotropic cases. Step 2 is achieved
by proving that the set C∗(i) is a minimal gate for any i = 3, ..., L∗, for isotropic and weakly
anisotropic interactions. Indeed, by the fact that C∗ is a gate it follows that also each C∗(i) is.
In addition, it is always possible to find an optimal path that crosses the set C∗(i) only in a
given configuration η, so that the set C∗(i) \ {η} is not a gate anymore, showing therefore the
minimality of such a gate.

The analysis is different when we are dealing with the strongly anisotropic case. Indeed,
since there are two possible ways to reach the set C∗(2), to find the minimal gates for any
i = 3, ..., L∗ we need to consider C∗(i) union some particular saddles belonging to the path
described in Figure 1.13. This implies anyway step 2.

Finally, in order to obtain the full geometrical description of the union of all the minimal
gates we need to describe the essential saddles of the third type for all the three scenarios.
This part is very technical and requires detailed geometrical definitions, so we skip the details
here and refer instead to Sections 3.5, 4.4 and 5.4. Here we report only some examples of
configurations belonging to G(�,�) to give an idea about the shape of all the essential saddles.
In Figure 1.17 we show three configurations belonging to the set G(�,�) in the isotropic case.
Note that the configuration on the right has no free particle, indeed it is obtained during
the sliding of a bar around a corner of the droplet. We emphasize that in this case many
motions along the border are allowed and thus a totally explicit geometric description of the
set G(�,�) is harder to obtain. In Figure 1.18 we show two configurations belonging to the
set G(�,�) in the weakly anisotropic case. Finally, in Figure 1.19 we show two configurations
belonging to the set G(�,�) in the strongly anisotropic case.

We conclude this part concerning the geometrical analysis of all the minimal gates by
providing the basic ideas to derive this geometrical description. The first step consists in
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Figure 1.19 – Critical configurations in the strongly anisotropic case.

dividing the saddles that remain to be analyzed in those reached before reaching GB and
those reached after crossing that set. The former saddles are clearly unessential. Indeed, we
can argue as follows. Let ξ be such a saddle.

If ξ is reached before crossing the set CG, then it is obtained from a configuration η ∈ C∗

without attaching the free particle. Thus, we deduce that the only possibility is that η is
composed by a protocritical droplet η̂ ∈ D and a free particle at distance two from the cluster.
We deduce therefore that, starting from ξ, the only transition that does not raise the energy is
the reverse move giving rise to η, so that ξ is an unessential saddle.

If ξ is reached after crossing the set CG, due to the properties of the set CG it directly
follows the unessentiality of the saddle ξ.

This means that it remains only to analyze the saddles obtained after crossing the set
CB. This is the hardest part. Indeed, it depends on all the different types of motions of
particles that can take place on the border of the clusters. We emphasize that all the saddles
reached after a sliding of a bar around a corner are essential and the analysis concern their
full geometrical characterization.

sharp estimates

Concerning the asymptotic expectation of the tunneling time, using the pathwise approach, it
is not possible to characterize a certain function f(β) such that log f(β)/β→ 0 in the limit as
β → +∞ and E�τ� = f(β)eΓ

∗β(1+ o(1)), or the presence of a constant factor. To this end,
a more detailed study of the so-called pre-factor f(β) is given in [35] for the two and three
dimensional isotropic model using the potential theoretic approach. The novel contribution of
this thesis regarding the sharp estimate of the mean transition time concerns the estimate of
the prefactor for the anisotropic models.

A key role in this analysis is played by the Dirichlet form

E(h) =
1

2

∑
η,η ′∈X

µ(η)P(η, η ′)[h(η) − h(η ′)]2, h : X→ [0, 1], (1.3.39)

where µ is the Gibbs measure defined in (1.3.17) and P(η, η ′) is the transition probability
defined in (1.3.16). Given two non-empty disjoint sets A,B ⊆ X, the capacity of the pair A,B
is defined by

CAP(A,B) = min
h:X→[0,1]

h|A≡1,h|B≡0

E(h), (1.3.40)

where h|A ≡ 1 means that h(η) = 1 for all η ∈ A and h|B ≡ 1 means that h(η) = 0 for all
η ∈ B. The right-hand side of (1.3.40) has a unique minimizer h∗A,B, called the equilibrium
potential of the pair A,B, given by

h∗A,B = Pη(τA < τB), η ∈ X \ (A∪B). (1.3.41)

By applying the general strategy carried out in [31] and summarized in the monograph [32]
for our model, the sharp estimate of the mean transition time is

E�(τ�) =
1

ZCAP(�,�) (1+ o(1)), β→∞. (1.3.42)
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To get an explicit variatonal formula for the prefactor starting from (1.3.42), we need first
to introduce a graph representation of the configuration space. View X as a graph whose
vertices are configurations and whose edges connect communicating configurations. Let

– X∗ be the subgraph of X obtained by removing all vertices η with Ĥ(η) > Γ∗ and all
edges incident to these vertices;

– X∗∗ be the subgraph of X∗ obtained by removing all vertices η with Ĥ(η) = Γ∗ and all
edges incident to these vertices.

Note that the sets C��(Γ
∗) and C��(Γ

∗− Ĥ(�)) are the connected components of X∗∗ containing
� and �, respectively. Consider the set

X∗∗ \ (C��(Γ
∗)∪ C��(Γ∗ − Ĥ(�))) =

I⋃

i=1

X(i), (1.3.43)

where each X(i) is a well in S(�,�), i.e., a set of communicating configurations with energy
strictly less than Γ∗ but with communication height Γ∗ towards both � and �. Among all
the wells X(i), we can highlight the wells Z�j (resp. Z�j ) of the unessential saddles of the first
(resp. second) type σj (resp. ζj) (recall Definitions (1.3.2) and (1.3.3)). To obtain the sharp
estimate of ZCAP(�,�) we follow the general strategy outlined in [31, 37]:

– All the terms in the Dirichlet form involving configurations η with H(η) > Γ∗, i.e.,
η ∈ X \X∗, contribute at most Ce−(Γ∗+δ)β for some δ > 0 and can be neglected. Thus,
effectively we can replace X by X∗.

– Show that h∗�,� = O(e−δβ) on C��(Γ
∗ − Ĥ(�)) and h∗�,� = 1−O(e−δβ) on C��(Γ

∗) for
some δ > 0.

– Prove sharp upper and lower bounds for h∗�,� on X∗ \ (C��(Γ
∗)∪ C��(Γ∗ − Ĥ(�))).

In addition, a novel contribution of this thesis is to prove that it also holds

h∗�,� = O(e−δβ) on
J�⋃

j=1

({ζj}∪Z�j ) (1.3.44)

and

h∗�,� = 1−O(e−δβ) on
J�⋃

j=1

({σj}∪Z�j ) (1.3.45)

for some δ > 0. This allows a full understanding of the role of the unessential and essential
saddles in the prefactor of the mean excursion time. Indeed, also the unessential saddles σj
and ζj have to be considered in this estimate. However, since the equilibrium potential is
constantly equal to 1 (resp. 0) on σj (resp. ζj), the transitions that involve these unessential
saddles do not contribute to the prefactor.

In [35] the authors estimated the constant pre-factor for the continuous time version of the
isotropic model and found that it does not depend on the parameter β, but on the size of the
box and the cardinality of the set of critical droplets with size `c, namely, the cardinality of
the set D. Note that in the discrete time model we defined in Section 1.3.2, the occupation
variables for at most one bond between nearest-neighbour sites per time step is changed, so
that in continuous time dynamics the mean transition time is rescaled by a factor 1/|Λ̄∗,orie|.
These estimates of the pre-factor are possible once the geometrical description of the critical
configurations and of its neighborhood are found. In particular, the authors proved that there
exists a constant K = K(Λ, `c) such that

E�(τ�) = KeΓ
∗β(1+ o(1)), β→∞. (1.3.46)

The authors derived a representation for the constant K in terms of certain capacities associated
with two–dimensional simple random walk. This representation depends on the geometry of
C∗ and its immediate vicinity, i.e., the configurations η ∈ X \ C∗ for which there exists η ′ ∈ C∗

such that η ′ = Tbη for a bond b ∈ Λ̄∗,orie (recall (1.3.12)). This immediate vicinity is actually
rather complex, due to the fact that when the free particle attaches itself improperly to the
protocritical droplet (i.e., in a bad site), it triggers a motion of particles along the border of the
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droplet. Consequently, no easily computable formula for K is available. It turns out, however,
that the behavior of K for large Λ can be computed explicitly. Indeed, in [35] the authors
proved that

lim
Λ→Z2

|Λ|

log |Λ|
K(Λ, `c) =

1

4πN(`c)
, (1.3.47)

where

N(`c) =

4∑
k=1

(
4

k

)[(
`c + k− 2

2k− 1

)
+ 2

(
`c + k− 3

2k− 1

)]

is the cardinality of D modulo shifts. The intuition behind this result is the following. The
average time it takes for the dynamics to enter C∗ when starting from � is

1

|D|

1

|∂Λ∗,in|
eΓ
∗
(1+ o(1)), β→∞, (1.3.48)

where |D| counts the number of protocritical droplets and |∂Λ∗,in| counts the number of
directed bonds from ∂+Λ to ∂−Λ along which the free particle can be created (recall (1.3.12)).
Let π(Λ, `c) be the probability, averaged with respect to the uniform distribution for the
protocritical droplet on D and the uniform distribution for the free particle entering on ∂∗Λin,
that the free particle moves from ∂−Λ to the protocritical droplet and attaches itself properly
(i.e., in a good site). This is the probability that the dynamics, after it enters the set C∗, moves
onwards to � rather than returns to �. Then

1

π(Λ, `c)
(1+ o(1)), β→∞ (1.3.49)

is the average number of times a free particle just created in ∂−Λ attempts to move to the
protocritical droplet and attaches itself properly before it finally manages to do so. The
average nucleation time is the product of (1.3.48) and (1.3.49), and so we conclude that

K(Λ, `c) =
1

|D||∂∗Λin|π(Λ, `c)
. (1.3.50)

Now, we have

lim
Λ→Z2

|D|

|Λ|
= N(`c). (1.3.51)

Furthermore, we have

lim
Λ→Z2

|∂∗Λin|π(Λ, `c)log |Λ| = 4π. (1.3.52)

Indeed, the term 4π/ log |Λ| is the probability for large Λ that a particle, after detaching itself
from the protocritical droplet, reaches ∂−Λ before reattaching itself. Due to the recurrence
of simple random walk in two dimensions, for large Λ this probability is independent of
the shape and the location of the protocritical droplet, as long as it is far from ∂−Λ. By
reversibility, the reverse motion has the same probability, which explains (1.3.52). Then (1.3.47)
follows by combining (1.3.50)-(1.3.52).

If the free particle attaches in a bad site to the protocritical droplet, then either it may
again detach itself or it may cause some motion of particles along the border of the droplet,
after which another particle may detach itself, possibly leaving behind a different protocritical
droplet. However, since for large Λ a free particle has a small probability to escape from the
protocritical droplet and return to ∂Λ, it must eventually attach itself in a good site.

The asymptotics in (1.3.47) does not depend on the shape of Λ, i.e., it would be the same if
Λ were a circle rather than a large square. Furthermore, in the three-dimensional case similar
results are obtained in [35] but with less control over the geometry and the constant.

Concerning the anisotropic models, the proof relies again on the tools developed in the
potential theoretic approach and the estimates which are obtained are similar. However, for
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the strongly anisotropic regime something different happens. Indeed, since the entrance in
the set of critical configurations is crucial for the estimate of the prefactor, the fact that in this
regime there are two different mechanisms to do so means that a better estimate can be found.
We refer to Section 5.1.2 for more details.

As we said above, how the dynamics enters the gate is a relevant property to derive. In
[35] the authors prove that this entrance in the isotropic regime is uniform in the following
sense:

lim
β→∞P�

(
ητC∗− = η | τC∗ < τ�

)
=

1

|D|
for any η ∈ D, (1.3.53)

where τC∗− is the time just prior to τC∗ . This is reasonable, indeed the protocritical droplets
in D, seen just prior to the creation of the free particle in ∂−Λ, occur with equal probability.
This is what we expect also in the weakly anisotropic regime, while this is not the case in the
strongly anisotropic regime. We refer to [17, 18] for all the technical details, while here we
elaborate on the general strategy behind.

The monograph [32] provides a general framework to prove that the entrance in the gate
is uniform. In particular, the authors prove the uniform entrance distribution subject to two
hypotheses. More precisely, we introduce the sets P∗PTA and C∗PTA as follows. Think of P∗PTA
as the set of configurations where the dynamics, starting from the metastable state, is “almost
on top of the hill”, and of C∗PTA as the set of configurations where the dynamics “has reached
the top of the hill” and is “capable of crossing over” to the stable state without returning to
“the valley around the metastable state”. See [32, Definition 16.3] for the precise definition.
Thus, the hypotheses are

(H1) There is a unique metastable and a unique stable state.
(H2) All the configurations in C∗PTA have the same number of configurations in P∗PTA

from which they can be reached via an allowed move.
Since there is a unique way to enter the gate in the weakly anisotropic regime, nothing
different with respect to the isotropic case happens. However, the situation is completely
different in the case of strong anisotropy. Indeed, we have proved that in this model the set
P∗PTA coincides with D̄ union some protocritical doplets involved in the second mechanism
to enter the gate (such as configurations (6) and (10) in Figure 1.13), and C∗PTA coincides
with C∗(L∗) union some saddles involved in the second mechanism to enter the gate. First,
note that C∗ 6= C∗PTA. Also note that condition (H2) follows from the result concerning
the two mechanisms to enter the gate. Thus, since both (H1) and (H2) hold, [32, Theorem
16.4(b)] should hold, i.e., the entrance has a uniform distribution, but this is not true. More
precisely, this model represents a counterexample of [32, Theorem 16.4(b)]. This depends on
the hypotheses (H2), that takes into account only the map from C∗PTA to P∗PTA and not the
reverse one. Therefore we propose to replace the hypotheses (H2) with

(H2’) All the configurations in C∗PTA have the same number of configurations in P∗PTA
from which they can be reached via an allowed move and viceversa.

We are convinced that this could be the correct hypotheses, indeed the analysis of the uniform
entrance distribution in C∗PTA has to take into account the number of configurations in P∗PTA
that communicate with C∗PTA via one step of the dynamics. Now it is clear that this model
does not satisfy (H2’), indeed each configuration in D̄ has exactly 4L− 4 configurations in C∗

from which it can be reached via an allowed move, while each of the other configurations
composing P∗PTA has only one configuration in C∗PTA with this property. Therefore [32,
Theorem 16.4(b)] does not hold for this model.

Finally, for all the three regimes we also examinated the rate of convergence to the
stationary distribution of the Metropolis Markov chain {ηt}t∈N. We measured the rate of
convergence in terms of the total variational distance and the mixing time, which describes
the time required for the distance to stationarity to become small. More precisely, for any
0 < ε < 1, we define the mixing time as

tmix(ε) := min

{
n > 0 : max

x∈X
||Pn(x, ·) − µ(·)||TV 6 ε

}
, (1.3.54)
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i

Figure 1.20 – We highlight in black the sites j such that d(i, j) 6= 0 on the hexagonal lattice.

where ||ν − ν ′||TV := 1
2

∑
x∈X |ν(x) − ν ′(x)| for any two probability measures ν, ν ′ on X.

Another classical notion to investigate the speed of convergence of Markov chains is the
spectral gap, which is defined as

ρ := a(2), (1.3.55)

where 1 = a(1) > a(2) > ... > a(|X|) > −1 are the eigenvalues of the matrix (P(x, y))x,y∈X
defined in (1.3.16).

Thus, we proved that for all the three regimes and for any ε ∈ (0, 1) it holds

lim
β→∞ 1β log tmix(ε) = Γ∗ = lim

β→∞−
1

β
log ρ.

In addition, there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every
β > 0

c1e−βΓ
∗ 6 ρ 6 c2e−βΓ

∗
.

1.3.3 The local model on the hexagonal lattice

In this section, we introduce the local model on the hexagonal lattice and we present the
main results derived in this thesis. Consider the discrete hexagonal lattice H2 embedded
in R2 and let T2 be its dual, so that T2 is the triangular lattice. Two sites of the discrete
hexagonal lattice are said to be nearest neighbors when they share an edge of the lattice, see
Figure 1.20. We consider an hexagon in H2 with radius L and we define Λ ⊂ T2 as the union
between this hexagon and all the sites, that are not in the hexagon, with lattice distance one
from the hexagon. Recall equation (1.3.9) for the definition of the set Λ0, which is defined
as Λ without its internal boundary. With this choice of the finite β-independent domain Λ,
we deduce that Λ0 is an hexagon with radius L, see Figure 1.21. Note that Λ0 contains 6L2

sites. The side length L is fixed, but arbitrary, and later we will require L to be sufficiently
large. Recall the definition of the configuration space as X = {0, 1}Λ. With each configuration
η ∈ X, we associate the local Hamiltonian energy Ĥ(η) defined in (1.3.11), where we take
U1 = U2 = U and we replace the vertical and horizontal bonds on the square lattice with
the bonds connecting nearest-neighbor sites on the hexagonal lattice. Thus, we can write the
energy as

Ĥ(η) := −U
∑

(x,y)∈Λ∗0

η(x)η(y) +∆
∑
x∈Λ

η(x), (1.3.56)

where

Λ∗0 = {(x, y) ∈ Λ0 ×Λ0 : |x− y| = 1}

is the set of non-oriented bonds in Λ0. Thus, the interaction consists of a binding energy
−U < 0 for each nearest-neighbor pair of particles in Λ0. In addition, there is an activation
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Λ0
Λ

Figure 1.21 – We depict the set Λ with a straight line, while we depict the hexagon Λ0 with a dashed
line.

energy ∆ > 0 for each particle in Λ. Here we consider only the isotropic regime, namely, the
binding energy associated to each bond is the same, because in this thesis we derived results
only in this scenario. However, as we have done for the model evolving on the square lattice,
it is possible to consider anisotropic interactions. This is left as a future research direction. The
locally conservative Kawasaki dynamics on the hexagonal lattice can be therefore defined
as in Section 1.3.2 with a different choice of the domain Λ. For this model, the metastable
regime corresponds to taking

∆ ∈
(
U,
3

2
U
)

. (1.3.57)

We can justify this condition as follows. The condition ∆ > U has the same interpretation
given above, but now the condition ∆ < 2U is not enough as in the square lattice. Indeed,
for more than one particle attached to an hexagonal shape it is possible to detach a single
particle alternatively at cost U and 2U, see Figure 1.22. Thus, the required upper bound on ∆
can be viewed as an average of these two costs. We have that the empty hexagon

:= {η ∈ X : η(x) = 0 ∀ x ∈ Λ} (1.3.58)

is the unique metastable state and the full hexagon

:= {η ∈ X : η(x) = 1 ∀ x ∈ Λ0, η(x) = 0 ∀ x ∈ Λ \Λ0} (1.3.59)

is the unique stable state, provided that L is sufficiently large. This assumption is needed
to have Ĥ( ) < Ĥ( ) = 0 and later we will provide an explicit lower bound for L. Note
that equations (1.3.58)–(1.3.59) coincide with equations (1.3.19)–(1.3.20), but here we use a
different definition of Λ and therefore we change notation only to make clear which lattice we
are referring to. Thus, the exit from metastability consists in analyzing the transition from
to . We will focus on the estimate of this transition time and on the geometrical description
of the critical droplets the system has to cross to perform the nucleation.

The main motivation of this analysis is the following. We investigate how the underlying
lattice affects the dynamical properties of the system. The choice of the hexagonal lattice
comes from a recent study done for this model evolving under the non–conservative Glauber
dynamics (see Section 1.4.1) in [4, 78], because it has been shown how a certain class of parallel
dynamics (shaken dynamics in [2, 3]) on the square lattice induces a collection of parallel
dynamics on a family of Ising models on the hexagonal lattice with non-isotropic interactions,
where the spins in each of the two partitions are alternatively updated. Our result concerning
the gate indicates that the underlying lattice is crucial for the dynamics of the system. One
could be tempted to simply conjecture that the critical configurations are the counterparts on
the hexagonal lattice of those arising for the same model on the square lattice, for example by
replacing the rectangular shape with an hexagonal one, but this conjecture is false. Indeed, we
will prove that for this model there exist two different sizes for the critical droplets depending
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(a) (b) (c) (d)

Figure 1.22 – In all the clusters we represent in grey the particle that is detaching: this has a probability
of occurring of order e−2Uβ (resp. e−Uβ) for clusters (a) and (c) (resp. (b) and (d)).

(a) (b) (c) (d)

Figure 1.23 – In (b) we depict a configuration obtained starting from the configuration represented in
(a). In particular, in (a) we highlight in grey the triangular face that moves towards the elementary
rhombus on the right at cost U, while in (b) we highlight in grey the single protuberance. In (d) we
depict a configuration obtained starting from the configuration represented in (c). In particular, in (c)
we highlight in grey the single protuberance, while in (d) we highlight in light grey the free particle and
in dark grey the last triangular face that has been moved towards left.

on the value of the fractional part of the ratio (∆−U)/(3U− 2∆). This situation occurs also
for the model evolving under Glauber dynamics considered in [4], but we want to stress
that its characterization is very different. Indeed, the main difference between Kawasaki and
Glauber dynamics is that the former conserves the number of particles and therefore the
structure of the gates is much richer. In particular, for Glauber dynamics there is a unique
minimal gate, but for Kawasaki dynamics their characterization is not trivial and therefore
much more interesting to derive. The geometrical description of the minimal gates is out of
the scope of this thesis and is left as a future research direction, but we encourage the reader
to inspect the differences between Theorem 6.1.4 and [4, Theorem 2.13] to keep in mind the
different nature of the gate for the transition for these two different dynamics.

comparison with kawasaki dynamics on the square lattice

Here, we make a comparison between the isotropic model on the hexagonal lattice and
other models evolving under Kawasaki dynamics on the square lattice in order to emphasize
the different behavior of the system depending on the geometry of the lattice. The locally
conservative dynamics and the movement of particles give a regularization effect, but we stress
that the particular shape of the hexagonal lattice induces an increment of these regularizing
motions in such a way that new mechanisms of entering the critical configurations set appear,
see Remarks 1.3.5 and 1.3.6 for more details. This is a first crucial difference between the two
isotropic models. Indeed, on the square lattice a new mechanism to enter the gate appears
only in the strongly anisotropic setting, see [16, 17]. For the weakly anisotropic and isotropic
models there is a unique way to enter the gate: a rectangular shape with a single protuberance
is reached and then a free particle enters from the boundary of the box, see [18, 90] for more
details. On the square lattice, before the entrance of the free particle it is possible that particles
move only along the border of the cluster, while on the hexagonal lattice this phenomenon can
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Figure 1.24 – Stability level Vζ for a configuration ζ.

also appear for particles in an internal region of the cluster, see Figure 1.23(a)-(b) and (c)-(d)
for two examples of the first and last configuration obtained in such a way. As a consequence,
in this case the complete geometrical characterization is hard to obtain, and is left as a future
research direction. The reason we observe this very different behavior rests on the specific
structure of the underlying lattice. Indeed, on the hexagonal lattice, when a particle that does
not belong to the border of a cluster moves, if it attaches to a protuberance then the energy
increases by U (2 bonds are broken and one is created when the moving particle attaches to
the protuberance), while this is false on the square lattice. Indeed, in that case the energy
increases by 2U (3 bonds are broken and one is created when the moving particle attaches
to the protuberance). This difference turns out to be crucial when the dynamics is close to
critical configurations. This phenomenon can be also found in the different metastable regime
for this model with respect to the one on the square lattice. This is peculiar of Kawasaki
dynamics, indeed for Glauber dynamics this does not happen, see [4, Condition 2.6]. This
behavior is also responsible for the particular shape of the critical droplets, which present
two different protuberances and not only one as in the square lattice case. As it will be clear
throughout the work, we come to the conclusion that the geometry of the lattice significantly
influences the behavior of the system subject to Kawasaki dynamics and this makes it very
interesting to study.

identification of stable and metastable states

Here we give the main ideas to deduce that (resp. ) is the unique metastable (resp.
stable) state. The key notion is that of stability level of a configuration σ, which is defined as
the energy barrier (see Figure 1.24)

Vζ := Φ(ζ, Iζ) − Ĥ(ζ), (1.3.60)

where Iζ is the set of states with energy below Ĥ(ζ):

Iζ := {η ∈ X | Ĥ(η) < Ĥ(σ)}. (1.3.61)

We set Vσ :=∞ if Iσ is empty. Since the set of metastable states is formally defined as

Xm :=

{
σ ∈ X |Vσ = max

η∈X\Xs
Vη

}
, (1.3.62)

the idea is to prove that there exists V∗ > 0 such that the only configurations with a stability
level greater than V∗ are and . In particular, V∗ = ∆+U. This proof is divided in two
steps. First of all, we prove that the configurations satisfying certain geometrical properties
have a stability level smaller than or equal to ∆+U, and then we show that all configurations,
different from and , has a stability level smaller than or equal to ∆+U. This implies that
the system reaches with high probability either the state , which is local minimizer of the
Hamiltonian, or the ground state , thanks to Ĥ( ) < Ĥ( ), in a time shorther than e(V

∗+ε)β,
uniformly in the starting configuration for any ε > 0. For all the technical details we refer to
Section 6.3.
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transition time and description of a gate

Before stating the results we have derived, we provide a heuristic discussion from a static
point of view. Consider the metastable regime (1.3.57) and the limit β tending to infinity.
Let us make a rough computation of the probability to see a regular hexagon of radius r
of occupied sites centered at the origin. We denote by µ∗ the restricted ensemble, namely,
the Grand–canonical Gibbs measure defined in (1.3.17) restricted to a suitable subset of
configurations, where all sufficiently large clusters are suppressed. Under restricted ensemble
we have

µ∗(regular hexagon of radius r) ≈ ρ6r2e3U(3r2−r)β,

since the density of the gas ρ is close to the probability to find a particle at a given site and
−U is the binding energy between two particles at the neighboring sites, with 3(3r2 − r) the
number of bonds for an hexagon with radius r. Writing ρ = e−∆β we obtain

µ∗(regular hexagon of radius r) ≈ e−β[6r2∆+3(r−3r2)U],

where the exponent has a saddle point at

r̄ =
U

2(3U− 2∆)
.

This means that droplets with radius r < r̄ appear with a probability that decreases in r and
droplets with radius r > r̄ a probability that increases in r. This would leave to the conclusion
that r̄ is the radius of the critical droplet. We will see in the sequel that the situation is more
delicate (see (1.3.63) for the precise definition of the critical radius r∗), indeed the dynamical
mechanism for the transition between hexagonal droplets, which is not considered here, have
an influence on the growth or shrinkage of the droplets. The choice ∆ ∈ (U, 32U) corresponds
to r∗ ∈ (1,∞), i.e., to a non-trivial critical droplet.

To make the previous assumption on L precise, we introduce the so–called critical radius as

r∗ :=
⌊ U

2(3U− 2∆)
−
1

2

⌋
=
⌊ ∆−U

3U− 2∆

⌋
. (1.3.63)

We require that

L > 2r∗ + 3. (1.3.64)

In addition, we require some non–degeneracy assumptions. In particular, we assume that

∆−U

3U− 2∆
/∈N. (1.3.65)

To avoid pathological trivial cases, we further assume that

∆ ∈
(
7

5
U,
3

2
U

)
. (1.3.66)

Note that condition (1.3.66) ensures that all the critical lengths are larger than two. In the
remainder of this section assume that conditions (1.3.64)–(1.3.66) are in force. Thanks to
(1.3.65), we can write

r∗ =
∆−U

3U− 2∆
− δ,

with δ ∈ (0, 1) the fractional part of (∆−U)/(3U− 2∆) fixed. We will see that δ plays a crucial
role in this analysis. Indeed, depending whether δ ∈ (0, 12 ) or δ ∈ (12 , 1) the system has a
different behaviour. Our goal is to provide estimates for the transition time from and ,
and to characterize the critical droplets.

Next, we prove that the gate for the transition C∗ = C∗( , ) contains those configurations
consisting of one free particle and a unique cluster having a shape close to an hexagon with
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(a) (b) (c) (d)

Figure 1.25 – On the left there are two examples of configurations in S̃(A∗1 − 1), D̃(A∗1 − 1). On the right
there are two examples of configurations in S̃(A∗2 − 1), D̃(A∗2 − 1).

radius r∗. To this end, we argue as follows. First, we define the critical area A∗ as the number
of particles in the configurations in C∗. Formally, it is defined as

A∗ :=

A∗1 if δ ∈ (0, 12 ),

A∗2 if δ ∈ (12 , 1),
(1.3.67)

where A∗1 and A∗2 are two explicit constants depending on r∗. To characterize the critical
droplets, we give an intuitive definition of the configurations denoted by S̃(A∗ − 1) and
D̃(A∗ − 1) that play the role of protocritical configurations. In particular, configurations
in S̃(A∗ − 1) (resp. D̃(A∗ − 1)) have a unique cluster with area A∗ − 1 and shape as in
Figure 1.25(a)-(c) (resp. Figure 1.25(b)-(d)). By denoting by n(η) the number of free particles
of the configuration η, let

K(A∗ − 1) := {η ′ ∈ VA∗−1|∃ω = (η,ω1, ...,ωn, η ′) : η ∈ S̃(A∗ − 1)∪ D̃(A∗ − 1),

Ĥ(η) = Ĥ(η ′), n(ωj) = 0 ∀ j = 1, ..., n and ΦVA∗−1(η, η
′) 6 Ĥ(η) +U}

(1.3.68)

be the set of configurations obtained starting from S̃(A∗ − 1)∪ D̃(A∗ − 1) by a path that does
not create free particles, the energy along it increases by U at most and the starting and final
configurations have the same energy. Note that the last condition in (1.3.68) is the same as
requiring that ΦVA∗−1 < Γ

∗
H, where

Γ∗H := Ĥ(K(A∗ − 1)) +∆ = Ĥ(S̃(A∗ − 1)) +∆ = Ĥ(D̃(A∗ − 1)) +∆.

The set K(A∗−1) plays the same role as the sets D̃ and D̄ introduced for the model evolving on
the square lattice. Indeed, the conditions required in (1.3.68) are analogous to those required
in (1.3.31), with the additional request that the path connecting η ∈ S̃(A∗ − 1)∪ D̃(A∗ − 1) to
η ′ ∈ VA∗−1 do not create any free particle. This condition ensures that η ′ is not obtained
from η by moving a protuberance, because on the hexagonal lattice this does happen by first
detaching the protuberance itself. We do not need this condition on the square lattice because
a protuberance can be moved along a side of a cluster without ever detaching.

In this thesis we will prove that the set C∗ = K(A∗ − 1)fp is a gate for the transition from
to , so that the energy value Γ∗H coincides with the energy of the critical configurations.

We emphasize that we have not obtained a full geometrical characterization of this set. Indeed,
to get this we need to geometrically identify the set K(A∗ − 1). This is left as a future research
direction.

Remark 1.3.5. Unlike what happens on the square lattice, on the hexagonal lattice many more ways
to move particles at cost U can occur. We stress this crucial property of the hexagonal lattice since
it has a strong impact on the geometrical description of the gate. Indeed, for instance, concerning a
configuration as in Figure 1.26(a), note that it is possible to move a protuberance belonging to the
elementary rhombus on the left at cost U. The key fact is that these are not the unique possibilities, as
occurs on the square lattice, indeed in this case it is possible to move also particles that belong to the
internal part of a cluster. For example, it is possible to move towards the elementary rhombus an entire
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(a) (b) (c) (d)

Figure 1.26 – In this figure we depict an example of motions of particles that belong to the internal part
of a cluster at cost U. We represent the cluster in grey. Starting from the configuration represented in
(a), by moving a particle towards the empty site, the energy increases by U and the configuration that
is obtained is the one represented in (b). From now on, the empty site moves at cost 0 until the path
reaches the configuration depicted in (c). Finally, the path reaches the configuration in (d) by lowering
the energy by U, thus the starting and final configuration have the same energy.

Figure 1.27 – Two examples of quasi–regular hexagons.

row of particles giving rise to a configuration with the same energy (see Figure 1.26 for the entire path).
For this reason the geometrical characterization of the gate is much richer and more interesting than
the one derived for the square lattice. Moreover, these additional regularizing motions of particles lead
to several mechanisms to enter the gate. We point the reader to Remark 1.3.6 for more details.

To prove that the set C∗ is a gate for the transition and that the system, with probability
tending to 1 in the limit as β goes to infinity, creates the critical droplet and reaches in a
time of order eΓ

∗
Hβ when it starts from , the key ingredients are the following:

(i) Prove that Φ( , ) 6 Γ∗H.
(ii) Prove that Φ( , ) > Γ∗H.
(iii) Prove that any ω ∈ ( → )opt crosses the set C∗.

For (i), it suffices to construct a reference path ω∗ connecting to which does not exceed
the energy value Γ∗H. In particular, this path is composed by increasing clusters as close as
possible to quasi–regular hexagonal shape, see Figure 1.27. The idea of the construction
of ω∗ is the following: we first construct a skeleton path {ω̄r}

L
r=0 given by a sequence of

configurations that contain a regular hexagon with radius r. Obviously ω̄r is not a path since
the transition from ω̄r to ω̄r+1 cannot occur in a single step of the dynamics. Thus, in order
to obtain a path we interpolate each element of the skeleton path. This is done in two steps.
First, between ω̄r and ω̄r+1, we introduce a sequence of configurations ω̃1r , ..., ω̃

ir
r given by

ω̄r plus a bar, i.e., a quasi-regular hexagon. Again, these configurations are given by a single
increasing droplet. Finally, we introduce a second interpolation to obtain a path ω∗ from
the sequence of configurations ω̃ir. Its construction goes as follows. Between every couple of
consecutive configurations in ω̃, for which the cluster is increased by one particle, a sequence
of configurations with a new particle is inserted. In particular, the new particle is initially
created at the boundary of Λ and then brought to the correct site via consecutive moves of
this free particle.
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Figure 1.28 – From the left to the right we depict in light grey the possible configurations belonging to
XA∗1−1 and crossed by an optimal path. In dashed dark grey, we depict the future position of the free
particle to cover the angle of 53π in the first two examples.

For point (ii), we need to introduce the set EBi(r), which contains the configurations
having a unique cluster with a shape of quasi–regular hexagon, that is a regular hexagon
with i bars attached clockwise. See Figure 1.27, where on the left (resp. right) we depict a
configuration in EB1(4) (resp. EB4(3)). Then the proof proceeds in three steps:

1. If δ ∈ (0, 12 ) (resp. δ ∈ (12 , 1)), prove that any ω ∈ ( → )opt must pass through a
configuration EB5(r

∗) (resp. EB1(r
∗ + 1)).

2. If δ ∈ (0, 12 ) (resp. δ ∈ (12 , 1)), prove that any ω ∈ ( → )opt must pass through a
configuration having cluster belonging to the set EB5(r

∗) (resp. EB1(r
∗ + 1)). with the

addition of two particles

3. Any ω ∈ ( → )opt must reach the energy level Γ∗H.

To prove these three points, we consider separately the cases δ ∈ (0, 12 ) and δ ∈ (12 , 1). To give
an idea of the proofs, here we focus only on the case δ ∈ (0, 12 ). To prove point 1, the idea is
the following. By denoting by Ã the number of particles of the configurations in EB5(r

∗) and
by using an isoperimetric–type argument carried out in [4], we deduce that in V

Ã
the unique

(modulo translations and rotations) configuration of minimal perimeter, and hence minimal
energy, is the one in EB5(r

∗). Since

Ĥ(EB5(r
∗)) = Γ∗H − 3∆+ 2U,

any other configuration in V
Ã

has energy at least Γ∗H − 3∆+ 3U. To increase the particle
number starting from any such configuration, a particle must be created at cost ∆. But
the resulting configuration would have energy Γ∗H − 2∆+ 3U, which exceeds Γ∗H due to the
condition 2∆ < 3U. Thus, this would let to a path exceeding the energy value Γ∗H and therefore
the path would not be optimal. Note that Ã = A∗1 − 3. Thanks to point 1, to prove point
2 we argue as follows. Since the path has to cross VA∗1−1

, starting from a quasi–regular
hexagon with area A∗1 − 3, a free particle is created giving rise to a configuration with energy
Γ∗H − 2∆+ 2U < Γ∗H. Before any new free particle is created, the energy has to decrease by at
least U. The unique way to do so this is to move the particle towards the cluster and attach it
to the quasi–regular hexagon, which lowers the energy to Γ∗H − 2∆+U. Now it is possible to
create another particle at cost ∆ giving rise to a configuration with energy Γ∗H −∆+U < Γ∗H.
Again, before creating a new free particle, the energy has to decrease by at least U. The unique
way to do so this is to move the particle until it is attached to the cluster, which lowers the
energy to Γ∗H −∆. This gives us a configuration η composed by a cluster belonging to EB5(r

∗)
with the addition of two particles, as claimed. To conclude the argument with point 3, we
use again an isoperimetric–type argument carried out in [4], which ensures that the minimal
energy in VA∗1−1

is realized, altough not uniquely, in a configuration as η above. Since it is
not possible to reduce the energy without lowering the particles number and any further
move to increase the particles number involves the creation of a new particle, the energy must
reach the value Γ∗H.

Finally, thanks to points 2 and 3 above, to get (iii) we need to prove that any optimal path
connecting to crosses the set VA∗−1 in a configuration belonging to K(A∗ − 1) (recall
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(1.3.68)) before a new particle is created, giving rise to a configuration in C∗. This part of
the proof is technical and requires a detailed analysis. Indeed, point 2 above does not tell
us how the two additional particles are attached to the quasi–regular hexagonal cluster, see
for instance Figure 1.28 for four admissible examples when δ ∈ (0, 12 ). Note that in the first
two examples it is possible to attach the free particle lowering the energy by 2U, while in the
other two cases the energy decreases by U only. This is responsible for a different behavior
of the dynamics in these two cases. Indeed, the first two configurations belong to the set
K(A∗1 − 1)

fp, while the others do not. The idea of the proof is that, when the dynamics
reaches a configuration different from the first two represented in Figure 1.28, then it cannot
directly reach the cycle of the stable state, but it has to rearrange the clusterized particles to
get a configuration in K(A∗1 − 1)

fp. This will prove the desired statement.

Remark 1.3.6. We emphasize that the result concerning the gate that we obtain is different from [35,
Proposition 2.3.7]. Indeed, on the square lattice the authors were able to prove that any optimal path
from the metastable to the stable state reaches a square or quasi-square shape, then a protuberance is
attached and finally a free particle enters the box. However, points 2 and 3 do not suffice to characterize
the entrance in the gate. Indeed, several mechanisms to enter the gate appear on the hexagonal lattice.
Clearly, one of these possibilities is to add a free particle starting from a configuration in K(A∗i − 1).
But there are many other ways to enter K(A∗i − 1)

fp. For example, suppose that 0 < δ < 1
2 and

an optimal path ω : → crosses a configuration η of the type of the third cluster depicted in
Figure 1.28. Starting from such η, it is possible that the free particle is attached to the cluster in such a
way that it forms an elementary rhombus together with a triangular face already attached. Thus, the
energy reaches the value Γ∗H −U. Thus, it is possible to move the other triangular face at cost U and,
when it is detached, the path ω crosses a configuration in K(A∗1 − 1)

fp, but the path does not cross
the set K(A∗1 − 1). With this example we want to put the attention on the fact that several mechanisms
to enter the gate appear due to the particular shape of the lattice. Indeed, on the square lattice it does
not matter which side the protuberance is attached to because it is possible to move it along the side at
zero cost.

The last result that we have proven is a first step towards the characterization of the tube
of typical trajectories, which is out of the scope of this thesis. In particular, we characterize
subcritical and supercritical quasi-regular hexagons, i.e., subcritical quasi-regular hexagons
shrink to , while supercritical quasi-regular hexagons grow to in the following sense. Let
E−
Bi
(r) (resp. E+

Bi
(r)) be the set of configurations composed by a single quasi-regular hexagon

contained in (resp. containing) EBi(r). The following statements hold:
(i) When δ ∈ (0, 12 ), we have

if η ∈ E−
B5

(r∗) =⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B0

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(1.3.69)

(ii) When δ ∈ (12 , 1), we have

if η ∈ E−
B1

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B2

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(1.3.70)

The proof relies on the notion of cycle, recall (1.3.34). To prove (i) and (ii) we need [92,
Theorem 3.2], which states that every state in a cycle is visited by the process before the exit
with high probability. Using this result, we need to prove the following:

1. When 0 < δ < 1
2 , then

(i) if η is a quasi-regular hexagon contained in EB4(r
∗), then there exists a cycle C (Γ∗H)

containing η and and not containing ;
(ii) if η is a quasi-regular hexagon containing EB0(r

∗ + 1), then there exists a cycle
C (Γ∗H − Ĥ( )) containing η and and not containing ;

2. When 1
2 < δ < 1, then

(i) if η is a quasi-regular hexagon contained in EB0(r
∗ + 1), then there exists a cycle

C (Γ∗H) containing η and and not containing ;
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(ii) if η is a quasi-regular hexagon containing EB2(r
∗ + 1), then there exists a cycle

C (Γ∗H − Ĥ( )) containing η and and not containing .
This can be achieved by means of the reference path ω∗ introduce above. For all the technical
details we refer to Section 6.3.6.

1.3.4 Towards the original model: the role of the entropy

In this section we come back to the original model introduced in Section 1.3.1, namely,
particles now live and evolve on a square box whose size grows exponentially in the inverse
temperature β. We are interested in how the gas nucleates in large volumes, i.e., how the
particles form and dissolve subcritical droplets until they manage to build a critical droplet
that is large enough to trigger the nucleation. The analysis of this model is much harder than
that of the local model, because now particles are conserved in all the domain and a detailed
control of the interaction between droplets and the gas of “isolated particles” is needed.

In this setting the role of the entropy turns out to be crucial. The notion of entropy enters
into every attempt to explain metastability. Indeed, one can argue that metastable states
are determined by the maximum entropy (or minimum free energy) principle under suitable
constraints. The decay from the metastable to the stable state is a typical thermodynamic
irreversible process towards the absolute maximum of entropy (or absolute minimum of
free energy). The transition towards stability is a large–deviation phenomenon that can be
described in terms of suitable rate functions. The exit from metastability to stability is, in
general, intrinsically random. For physically relevant systems the transition mechanism
involves what can be called time entropy: the transition takes place after long random waiting
times inside suitable permanence sets, which are regions inside the state space built as the
connected unions of cycles. Spatial entropy comes into play: in large volumes, even at low
temperatures, entropy is competing with energy because the metastable state and the states
that evolve from it under the dynamics have a non-trivial spatial structure. If we want
to understand the behaviour of such systems, then a coarse–grained description becomes
imperative, since on the microscopic level the competition between energy and entropy does
not allow for a proper understanding of metastable states and their transition paths.

The problem of nucleation for Kawasaki dynamics in large volumes is tackled in a series of
three works. We adopt the point of view that the identification of “tube of typical trajectories”
is the key towards getting full control on the metastable crossover. Already in the early math-
ematical papers on metastability [39, 95, 96, 107], and later in papers on Kawasaki dynamics
in finite volume [67, 75], the main strategy was to identify sets of configurations of increasing
regularity that are resistant to the dynamics on corresponding increasing time scales. These sets
of configurations form the backbone in the construction of the “tube of typical trajectories”.
In particular, the idea was to define temporal configurational environments within which the
trajectories of the process remain confined with high probability on appropriate time scales.
This approach involves an analysis of all the possible evolutions of the process, and requires
the exclusion of rare events via large deviation a priori estimates.

In the first paper [65] the authors proved an ideal gas approximation, i.e., they showed that
the dynamics is well approximated by a process of Independent Random Walks (IRWs). Indeed,
if the lattice gas is sufficiently rarefied, then each particle spends most of its time moving
like a random walk. When two particles occupy nearest–neighbour sites, the binding energy
inhibits their random walk motion, and these pauses are long when the temperature is low.
However, if the time intervals in which a particle is interacting with the other particles are
short compared to the time intervals in which it is free, then the interaction can be represented
as a small perturbation of a free random walk motion. The most challenging situation is when
the temperature and the density of the gas tends to zero simultaneously, which is precisely
our case. The reason is that low temperature corresponds to strong interaction, so that the
ideal gas approximation is far from trivial. This is also the more interesting situation from a
physical point of view. Indeed, e−2Uβ is the density of the saturated gas at the condensation
point, see [76]. For densities smaller than this, namely, ∆ > 2U, we have a stable gas so
rarefied that it behaves like an ideal gas up to very large times. If we pick ∆ < U, we get an
unstable gas, which behaves like an ideal gas only up to short times. If we pick U < ∆ < 2U,
avoiding the appearance of droplets of the liquid phase, we get a metastable gas. In this
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regime we still have a rarefied gas, and the authors proved that it behaves like an ideal gas up
to relatively large times. The ideal gas is represented by a process of IRWs and the ideal gas
approximation is described by a process of Quasi–Random Walks (QRWs), which is defined as
follows. It consists of a process of N labelled particles that can be coupled to a process of N
IRWs in such a way that the two processes follow the same paths outside rare time intervals,
called pause intervals, in which the paths of the QRW–process remain confined to small regions.
In the metastable regime, typically some pauses are much shorter than e∆β, while others are
much longer. The authors showed that the low–density Kawasaki dynamics with labelled
particles is a QRW–process. We encourage the reader to inspect the main properties of QRWs,
which will be a key tool for the analysis of this model. In particular, we refer to [62, Theorems
3.2.3, 3.2.4, 3.2.5, 3.3.1] for the non-superdiffusivity property and for upper and lower bounds
on the spread-out property, respectively.

Let us now discuss the main difficulties arising in analyzing a fully conservative dynamics
by showing the differences appearing with respect to the local and the simplified model. On
the one hand, in the local model (see Section 1.3.2) particles move according to Kawasaki
dynamics only insite a finite box Λ0 and at the boundary particles are created and annihilated.
Thus, there is no effect of the droplets in Λ0 on the gas outside Λ0. Concerning the simplified
model (see Section 1.3.1), the gas reservoir now consists of IRWs. The total number of particles
is fixed and this model is well approximated by the local model for β → ∞ as far as its
metastable behaviour is concerned, see [75]. Note that the gas outside Λ0 influences the
Kawasaki gas inside Λ0 and vice versa. This mutual influence was described by means of
QRWs: the gas particles perform random walks, interspersed with pause intervals during
which they interact with the other particles, and interspersed with jumps corresponding to
the difference between the positions of the particle at the end and at the beginning of a pause
interval. Due to the fact that Λ0 is finite, the jumps are small with respect to the displacement
of the random walks on time scales that are exponentially large in β. Moreover, the number
of pause intervals is controlled by the rare returns of the random walk to Λ0. These two
ingredients —few pause intervals and small jumps— were sufficient to control the dynamics.
For what concerns the fully conservative model, as long as the clusters are small, we may
expect the jumps in the QRWs to be small: at most of the order of the size of the clusters.
The crucial obstacle in approximating the gas particles by QRWs is that the interaction acts
everywhere. Particles must arrive from or return to the gas, which acts as a reservoir, and
therefore the dynamics is not really local. Thus, it is not possible to decouple the dynamics
of the particles inside Λ0 from the dynamics of the gas outside Λ0. Therefore we need to
replace the control on the rare returns of a random walk to a fixed finite box by a control on
the number of particle–particle and particle–cluster collisions. This is achieved with the help
of non–collision estimates developed in [61].

In this thesis, which corresponds to the second work of the series, we use the results in [65]
to analyse how subcritical droplets form and dissolve on multiple space-time scales when the
volume is moderately large, namely, Θ < 2∆−U. In large volumes the possible evolutions of
the Kawasaki lattice gas are much more involved than in small volumes, and multiple events
must be considered and controlled compared to the case of finite volume treated earlier. In
particular, it is important to control the history of the particles. For this reason we introduce
several new tools, such as assigning colours to the particles that summarises information
about how they interacted with the surrounding gas in the past. The focus remains on
the “tube of typical trajectories”, even though the control of all the possible evolutions of
the Kawasaki lattice gas requires the use of multiple graphs describing multiple temporal
configurational environments. These graphs will be identified in Section 7.5, which is the core
of this analysis and contains the proofs of all the principal lemmas.

Finally, in the follow–up paper [12], which is the last in a series of three papers dealing
with Kawasaki dynamics in large volumes, we consider the setting where the volume is very
large, namely, Θ < Γ∗ − (2∆−U) (recall that Γ∗ is the energy of the critical droplet in the local
model), and use the results in the first two papers [11, 62] to identify the nucleation time. The
outcome of the three papers together shows the following:

(1) Subcritical droplets behave as Quasi-Random Walks, see [65].
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(2) Most of the time the configuration consists of quasi-squares and free particles. That is why
we use the terminology droplet dynamics. The crossover time between configurations of
this type is identified on a time scale that is exponential in β (see Theorem 7.1.2).

(3) Starting from configurations consisting of quasi-squares and free particles, the dy-
namics typically resist, i.e., the dimensions of the quasi-squares do not change, for
an exponential time scale in β depending only on the dimensions of the smallest
quasi-square (see Theorem 7.1.3).

(4) Starting from configurations consisting of quasi-squares and free particles, the dynam-
ics typically either creates a larger quasi-square or a smaller quasi-square, depending
on the dimensions of the starting quasi-square (see Theorem 7.1.5). There is a non-
negligible probability that a subcritical quasi-square follows an atypical transition, in
that it grows a larger quasi-square, and this lets the dynamics escape from metastability
(see Theorem 7.1.6).

(5) The crossover from the gas to the liquid (= nucleation) occurs because a supercritical
quasi-square is created somewhere in a moderately large box and subsequently grows into
a large droplet. This issue will be addressed in [12].

(6) The configurations in moderately large boxes behave as if they are essentially independent
and as if the surrounding gas is ideal. No information travels between these boxes
on the relevant time scale that grows exponentially fast with β. The supercritical
quasi-square appears more or less independently in different boxes, a phenomenon
referred to as homogeneous nucleation. This issue will be addressed in [12].

(7) The tube of typical trajectories leading to nucleation is described via a series of events on
which the evolution of the gas consists of droplets wandering around on multiple space-time
scales. This control is achieved via what we call the deductive approach in Section 7.5.

(8) The asymptotics of the nucleation time is identified on a time scale that is exponential
in β and depends on the entropic factor related to the size of the box. This issue will be
addressed in [12].

We will see that in the metastable regime ∆ ∈ (U, 2U) small droplets with “side length”
smaller than a critical length will have a tendency to shrink, while large droplets will have
a tendency to grow. We will refer to the former as subcritical droplets and to the latter as
supercritical droplets. The initial configuration η0 is chosen according to the restricted measure
µR, which is the grand-canonical Gibbs measure associated with H and conditioned to R, i.e.,
conditioned on all the droplets in Λβ being subcritical. More precisely, recalling the definition of
the critical length for the local model `c given in (1.3.21), we define

R := {η ∈ Xβ : all clusters of η have volume less than `c(`c − 1) + 2} (1.3.71)

and the restricted measure µR is defined as

µR(η) =
e−β[H(η)+∆|η|]

ZR
1R(η), η ∈ Xβ, (1.3.72)

where

ZR =
∑
η∈R

e−β[H(η)+∆|η|]. (1.3.73)

To describe the evolution of our system in terms of a droplet dynamics, we will show that on
an appropriate time scale the dynamics typically returns to the set of configurations consisting
of quasi-square droplets, provided the volume is not too large. The main results of this
thesis allow such a description of the dynamics in terms of growing and shrinking wandering
droplets. As part of the nucleation process, droplets grow and shrink by exchanging particles
with the gas surrounding them, as is typical for a conservative dynamics. In particular, we
will identify the main growing and shrinking rates for these droplets up to a time horizon
going beyond the exit of R: up to the formation of a first large droplet with volume of order
λ(β), with λ a slowly increasing but unbounded function. In the follow-up paper [12], these
theorems will be used to identify the nucleation time, i.e., the time of exit of R. Our theorems
only concern the initial phase of the nucleation, until the critical droplet grows into a droplet
that is roughly

√
λ(β) times the size of the critical droplet. They provide no information on
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Figure 1.29 – Each particle is represented by a unit square. A particle is clusterised when it is part of a
cluster. A particle is free when it is not touching any other particles and can be moved to infinity by
moving non–clusterised particles only. Particles 1–5 and 16 are free, particles 6–9, 10, 11–15 are not free.
All other particles are clusterised.

what happens afterwards, when the droplet grows even further and becomes macroscopically
large. In that regime the gas around the droplet becomes depleted, smaller droplets move
around and coalesce into larger droplets, etc. It remains a major challenge to describe what
precisely happens in this regime, which lies beyond metastability.

To make precise the time horizon we are interested in, we need the following definitions.
We set

R ′ :=

{
η ∈ Xβ :

all clusters of η have volume at most `c(`c − 1) + 2

except for at most one cluster with volume less than 1
8λ(β)

}
, (1.3.74)

where λ(β) is an unbounded but slowly increasing function of β satisfying

λ(β) log λ(β) = o(logβ), β→∞, (1.3.75)

e.g. λ(β) =
√

logβ. For C? > 0 large enough, our theorems will hold up to time T? defined
as

T? = eC
?β ∧ min{t > 0 : X(t) /∈ R ′}. (1.3.76)

We will see in [12] that our dynamics starting from µR typically exits R ′ within a time that is
exponentially large in β, and with a probability tending to 1 does so through the formation
of a single large cluster C of volume 18λ(β), rather than through two supercritical droplets.
Hence, T? indeed coincides with the appearance time of C, provided C? is large enough.

As in [62], the notion of active and sleeping particle will be crucial throughout this analysis.
Since the precise definition requires additional notations, we give here an intuitive description
only. For precise definitions we refer to Section 7.4.3.1.

The division of particles into active and sleeping is related to the notion of free particles,
which is slightly different for the original model with respect to that in the local model.
Intuitively, a particle is free if it does not belong to a cluster (= a connected component of
nearest-neighbour particles) and can be moved to infinity without clusterisation, i.e., by
moving non-clusterised particles only (see Figure 1.29). Let

D = U+ d,

with d > 0 sufficiently small. For t > eDβ, a particle is said to be sleeping at time t if it was
not free during the time interval [t− eDβ, t]. Non-sleeping particles are called active. (Note
that being active or sleeping depends on the history of the particle.) By convention, we say
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Λβ

Λ̄2(t
∗)

Λ̄1(t
∗)

Λ̄3(t
∗)

Figure 1.30 – An example of local boxes Λ̄(t∗) = (Λ̄i(t
∗))16i63 for t∗ > 0, where the gray and the

white particles are sleeping, respectively, active.

that prior to time eDβ sleeping particles are those that belong to a large enough quasi-square,
where quasi-squares are clusters with sizes `1 × `2 in the set

QS = {(`1, `2) ∈N2 : `1 6 `2 6 `1 + 1}. (1.3.77)

In order to declare all the particles in the quasi-square as sleeping before time eDβ we require
that `1 > 2.

To define a finite box Λ as the union of a finite number k of disjoint local boxes Λ̄i,
1 6 i 6 k, in analogy with the local model introduced in [75], we associate with each
configuration a local configuration

η̄ ∈ {0, 1}Λ̄ =
∏
16i6k

{0, 1}Λ̄i ,

which we identify with {0, 1}Λ. These local boxes allow us to control the global properties
of the gas in terms of its local properties, namely, via the duality between gas and droplets,
which is represented by the duality between active and sleeping particles, respectively. First,
the local boxes have to contain all the sleeping particles. Second, the local boxes are dynamic,
namely, Λ̄i = Λ̄i(t). Indeed, droplets can move and we want to avoid seeing sleeping particles
outside of the local boxes. In particular, the boxes follow the droplets, i.e., must be redefined
only when the following events occur: two droplets are too close to each other, or a cluster is
too close to the boundary of a box, or a particle outside the boxes falls asleep, or particles in a
box all turn active. At any time t > 0, we require that the collection of the k(t) local boxes
Λ̄(t) = (Λ̄i(t))16i6k(t) satisfy the afore mentioned conditions. We refer to Définition 7.1.1
for the technical details. See Figure 1.30 for an example of local boxes.

Since at each time t all the sleeping particles belong to Λ̄(t), the boxes induce a partition
of the sleeping particles. We say that a coalescence occurs at time t if there exist two sleeping
particles that are in different local boxes at time t−, but are in the same local box at time
t, i.e., if there exist 1 6 i1, i2 6 k(t−), i1 6= i2, 1 6 i∗ 6 k(t) and two sleeping particles
s1, s2 such that sj ∈ Λ̄ij(t−) and sj ∈ Λ̄i∗(t), j = 1, 2. This phenomenon is related to the
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Figure 1.31 – Cost of adding or removing a row of length ` in a finite volume.

possibility that two droplets join to form a single larger droplet. Coalescence is difficult to
control quantitatively, which is why in the present work we limit ourselves to what happens
in the absence of coalescence. In the follow-up paper [12] we show that metastable nucleation is
unlikely to occur via coalescence.

Let X∆+ be the set of configurations without droplets or with droplets that are quasi-
squares with `1 > 2 (and with additional regularity conditions on the gas surrounding
droplets to be specified in Définition 7.2.9). Let XE be the set of configurations in X∆+ without
droplets (see (7.3.1) and Définition 7.2.9). Define (τ̄k)k∈N0

as the sequence of return times in
X∆+ after an active particle is seen in Λ, where τ̄0 is the first hitting time of X∆+ . See (7.1.5)
for the precise definition. Recall that |Λβ| = eΘβ. We assume that ∆ < Θ 6 θ, with θ defined
as follows. Let ε = 2U−∆, and let r(`1, `2) be the resistance of the `1 × `2 quasi-square with
1 6 `1 6 `2 given by (see Figure 1.31)

r(`1, `2) = min{(`1 − 2)ε+ 2U, 2∆−U}

= min{(2U−∆)`1 −U+ 2∆−U, 2∆−U}. (1.3.78)

Let θ = 2∆−U− γ be the resistance of the largest subcritical quasi-square. Since this
quasi-square has sizes (`c − 1)× `c, we have 2∆−U− γ = 2U+ ((`c − 1) − 2)ε, so that

γ = ∆−U− (`c − 2)ε. (1.3.79)

We will see that γ > 0 is an important parameter. The previously mentioned regularity
conditions on the gas use an extra parameter α > 0 (see below Définition 7.2.9), which can be
chosen as small as desired. Since we defined D = U+ d, ∆+ is defined by ∆+ = ∆+α. Call a
function f(β) superexponentially small, written SES(β), if

lim
β→∞ 1β log f(β) = −∞. (1.3.80)

main theorems : growing and shrinking rates of droplets

The main theorems we have derived control the transitions between configurations consisting
of quasi-squares and free particles, the times scales on which these transitions occur, and the
most likely trajectories they follow.

Theorem (I) Our first result describes the typical return times to the set X∆+ . In particular,
we prove that, starting from µR, with probability 1− SES(β) it holds that the return times on
the set X∆+ are of order e(∆+α)β.
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Λβ

Figure 1.32 – An example of a configuration η ∈ X∆+ , where the gray and the white particles are
sleeping, respectively, are active, such that π(η) = {(2, 3), (3, 3), (5, 6)}.

Theorem (II) Our second theorem describes the typical update times for a configuration in
X∆+ . Denoting by π a projection from X∆+ to a finite space

X̄∆ =
⋃

k>0
QS1 × · · · ×QSk, (1.3.81)

where QSi are the sizes of the quasi-square clusters contained in the local boxes Λ̄i and are
defined in (1.3.77). See Figure 1.32. We can define a dynamics on the space X̄∆ of sizes of
quasi-squares, arranged for example in increasing lexicographic order. For i ∈N0, we denote
by (`1,i, `2,i) in QS, with `1,i > 2, the sizes of the smallest quasi-square at time τ̄i, if any, and
otherwise we set `1,i = `2,i = 0. Recall (1.3.78), and define the resistance of a configuration in
XE by

r(0, 0) = 4∆− 2U− θ. (1.3.82)

We prove that, starting from µR and unless a coalescence occurs, for any i ∈N0 the projected
dynamics typically remains in π(X(τ̄i)) through successive visits in X∆+ for a time of order
er(`1,i,`2,i)β. Note that for `1,i > `c all the quasi-squares have the same resistance 2∆−U.
For the case in which X(τ̄i) has no quasi-square, its resistance r(0, 0) involves the resistance of
the empty configuration in the local model and a spatial entropy that comes from the position
in Λβ where the new droplet can appear.

Theorem (III) Our third result describes the typical transition of the system between two
successive visits to X∆+ conditional on the dynamics not returning to the same configuration
at time τ̄i+1. Given a configuration X(τ̄i) ∈ X∆+ , define the typical transition π ′i as follows.
For `1,i > `c, set

π ′i =
{
π(η ′) : η ′ is a configuration obtained from X(τ̄i)

by adding a row to an arbitrary quasi-square
}

.
(1.3.83)

See Figure 1.33. For `1,i < `c, we need to distinguish between the cases `2,i > 3, `2,i = 2 and
`2,i = 0. If `1,i < `c and `2,i > 3 (respectively, `2,i = 2), then we define π ′i as the singleton
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Figure 1.33 – For `c = 4, on the left an example of a configuration η ∈ X∆+ such that π(η) =

{(4, 5), (5, 5), (6, 7)} and on the right one possible typical transition π ′ = {(4, 5), (5, 5), (7, 7)}, where the
gray and the white particles are sleeping, respectively, are active.

Figure 1.34 – On the left an example of a configuration η ∈ X∆+ such that π(η) = {(2, 2), (3, 3), (5, 6)}

and on the right the typical transition π ′ = {(3, 3), (5, 6)}, where the gray and the white particles are
sleeping, respectively, are active.

made up of the collection of sizes of quasi-squares obtained from π(X(τ̄i)) by modifying
one of the smallest quasi-squares, which becomes (`2,i − 1)× `1,i (respectively, 0× 0). If
`1,i = `2,i = 0, then we define π ′i = {π(η ′)}, where η ′ is the configuration obtained from X(τ̄i)

by creating a 2× 2 square droplet, namely, π ′i = {(2, 2)}. See Figure 1.34. Thus, we prove that

lim
β→∞PµR

(
if τ̄i+1 6 T?, then π(X(τ̄i+1)) ∈ π ′i or

a coalescence occurs between τ̄i and τ̄i+1

∣∣∣∣∣π(X(τ̄i+1)) 6= π(X(τ̄i))
)

= 1.

(1.3.84)

Theorem (IV) Our fourth and last theorem characterises the atypical transitions of the system,
starting from a subcritical configuration consisting of a single quasi-square, between two
successive visits to X∆+ , with no creation of new boxes and conditional on the dynamics
not returning to the same configuration at time τ̄i. To this end, given X(τ̄i) ∈ X∆+ with
2 6 `1,i < `c, we define π ′′i = (`2,i, `1,i + 1). This result provides a lower bound for the
atypical transition of “going against the drift” in the case of a subcritical quasi-square. As
we will show in the follow-up paper [12], the escape from metastability occurs via nucleation
of a supercritical droplet somewhere in the box Λβ. Indeed, we will characterize the time
the dynamics needs to exit R, as well as the typical paths of configurations visited by the
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wandering cluster until the formation of a large droplet. The results of this thesis, which are
limited to the case Θ < 2∆−U− γ, will allow us to accomplish this task for larger values of
Θ, namely, Θ < Γ∗ − (2∆−U), where we recall that Γ∗ is the energy of the critical droplet in
the local model.

Remark 1.3.7. The techniques developed in this thesis make it possible to prove that, for any quasi-
square configuration of size `1 × `2 in X∆+ , the cluster exits any finite box centered around the cluster
with a volume that does not depend on β, within a time of order er(`1,`2)β. This is the reason why we
speak of a wandering cluster. We will not state nor use this result as a formal theorem.

The remainder of this section is devoted to provide the idea of the proofs of these four
main theorems. The starting point is to formulate certain regularity properties for the initial
configuration that we can impose because their failure is extremely unlikely. In particular, we
introduce a subset of configurations X∗ ⊂ Xβ, which we refer to as the typical environment,
with the property that if our system is started from the restricted ensemble, then it escapes
from X∗ within any time scale that is exponential in β only with a negligible probability, i.e.,

PµR
(τXβ\X∗ 6 T

?) = SES(β).

This result allows us to work with configurations in X∗. Replacing the original dynamics by
the dynamics restricted to X∗, we can couple the two dynamics in such a way that they have
the same trajectories up to any time that is exponential in β with probability 1− SES(β).

The basic idea to prove theorem (I) is to group configurations into a sequence of subsets
of configurations of increasing regularity and prove a recurrence property to these sets on an
increasing sequence of time scales, i.e, the dynamics reaches these sets within the reference
time with probability 1− SES(β). This is a standard argument for metastable systems at low
temperature, which has been carried out in full detail for a simplified version of our model
[75]. Here we indicate the differences with respect to the earlier work. First, we emphasize
that, alongside the local model, we need to introduce two additional sets to control the
regularity of the gas surrounding the droplets. In addition, the local boxes now are not fixed,
but they move with the droplets. Thus, a delicate control of them is needed: in particular, we
have to control the probability that a new box is created within the reference time.

To prove Theorems (II)–(IV), we need to provide bounds on the probability of transitions
between configurations consisting of quasi–square and free particles. In particular, providing
upper bounds on the probability that typical and atypical transitions occur represents the
main hurdles. Indeed, we need to control all the possible mechanisms to grow and shrink.
These hurdles are organised into what we call the deductive approach: the tube of typical
trajectories leading to nucleation is described via a series of events, whose complements have
negligible probability, on which the evolution of the gas consists of droplets wandering around
on multiple space-time scales in a way that can be captured by a coarse-grained Markov chain
on a space of droplets.

1.4 metastability for non–conservative systems

Let us consider the example of a ferromagnetic system below the critical temperature.
We let the system start from an equilibrium state when a positive external magnetic field
has slowly switched off, and then we let it evolve, after having introduced a small negative
magnetic field. We observe that the initial situation, which is characterized by a positive
magnetization, persists for a long macroscopic time. In other words, the system instead of
undergoing the right phase transition, remains for a long time in an apparently stationary
situation until some external perturbation or some spontaneous large fluctuation will nucleate
the new phase, starting an irreversible process leading the system to the true equilibrium
phase, with negative magnetization. The above-described behavior is typical of an evolution
that is non–conservative in the sense that the magnetization is not preserved. To model
mathematically phenomena such as the one described above it is often proposed to use lattice
models evolving according to Glauber dynamics since the dynamics does not conserve the
total magnetization of the system. We emphasize that non–conservative dynamics have their
peculiar features with respect to the conservative ones, and in the remainder of this section
we aim at highlighting them.
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1.4.1 Glauber dynamics

We consider a finite set of sites V . With each site we associate a spin value (−1 or +1) and
we define the configuration space X = {−1,+1}V . We can associate with each configuration
σ the Hamiltonian energy H̃(σ). Here we do not report the particular choice of the set V
and the energy H̃(σ), because it changes depending on the phenomenon we want to model.
This choice will be shown in Section 1.4.2 where we deal with the spread of an opinion
inside a community. With β being the inverse temperature, we consider the usual single-flip
Metropolis dynamics (Xt)t∈N on X induced by H̃. The transition probabilities of Glauber
dynamics are therefore given by

P(σ, η) = q(σ, η)e−β[H̃(η)−H̃(σ]+ , for all σ 6= η, (1.4.1)

where [·]+ denotes the positive part and q(σ, η) is a connectivity matrix independent of β,
defined, for all σ 6= η, as

q(σ, η) =

 1
|V |

if ∃ x ∈ V such that σ(x) = η,

0 otherwise,
(1.4.2)

where

σ(x)(z) =

σ(z) if z 6= x,
−σ(x) if z = x.

(1.4.3)

This dynamics is reversible with respect to the Gibbs measure

µ(σ) = Z−1 exp(−βH̃(σ)),

where Z =
∑
σ∈X H̃(σ) is the normalizing constant, in the sense that our Markov chain

(Xt)t∈N satisfies the detailed balance condition.

1.4.2 A model for opinion dynamics

In this section, we focus on the Ising model as a first simple canonical model for public
opinion dynamics, c.f. [109, 110], in presence of a binary choice. In this context, the state of a
spin describes the current opinion of an individual, the external magnetic field captures the
exposure to biased information and/or one-sided marketing/campaigning, and the couplings
between neighboring spins model the effect of peer interactions on personal opinions. In
Ising-like binary opinion models, the temperature of the system approximates all the more or
less random events which may influence individuals’ opinions but are not explicitly accounted
for in the model, cf. [110]. In this thesis, we study the metastable behavior of the Ising model
on a network with communities in the very low-temperature limit, which is instrumental to
describe a situation where peer interactions and external factors have a strong influence on
everyone’s opinion. The low temperature favors homogeneous opinion patterns in which there
are fewer individuals that disagree with the peers they interact with, which at a macroscopic
level means that opinions become very rigid and hard to change, e.g., on a very polarizing
issue.

The basic Ising model can be augmented to have more than two opinions and possibly
asymmetric interactions between them, like in [111] where the authors consider an Ising–like
model with three opinions but where the two most extreme opinions do not interact with
each other. Since we are mostly interested in the interplay between opinion dynamics and
network topology, in this thesis we focus on the simpler case of a binary opinion. The voter
model is another Ising–like model to study the evolution of binary opinions which features
a different (and possibly irreversible) majority update rule, see e.g. [8, 51, 94]. For a more
broad review of mathematical and physical opinion dynamics models, we refer the interested
reader to [114].
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It is clear that assuming the underlying structure is a lattice or the complete graph is not
ideal when modeling public opinion dynamics, since individuals have very heterogeneous
social networks and interaction patterns. In particular, it is reasonable to assume that each
individual has only a finite number of interactions and that he/she would tend to align more
with the opinion of individuals in the community we belong to rather than that of complete
strangers. Aiming to understand the role of the community structure in opinion dynamics,
here we consider a very heterogeneous family of networks with very dense communities and
very weak interactions between these communities. Various opinion dynamics models have
been studied on networks with a community structure, e.g., [83, 108], but mostly by means of
numerical simulations, while in this thesis we focus on rigorous mathematical results.

We are primarily interested in understanding the interplay between opinion dynamics and
the community structure of the underlying network. Aiming to derive closed–form results,
we choose a specific family of simple but prototypical clustered networks. More specifically,
we consider the Ising model on a graph G consisting of k clusters of equal size, which are
locally complete graphs, and such that each node is connected to a single node in each of the
other clusters. With this choice, we obtain a network with very dense communities which are
only sparsely connected to each other.

The structure of the network heavily influences both static (i.e., the configurations’ energy)
and dynamic properties (the likelihood of the system’s trajectories) of the Ising model. In this
setting, it is of interest to study the metastability or tunneling phenomena that the opinion
dynamic model may exhibit. For instance, in presence of a positive external magnetic field,
the metastable state of the system describes the diffusion of a second very rigid opinion which
is not aligned with the mainstream one.

Informally, the metastable configurations are those in which the system persists for a long
time before reaching one of the stable configurations, i.e., those minimizing the system’s
energy. In the context of the clustered network that we consider in this thesis, the set of
metastable states heavily depends on the relative strength of the interactions between the
network communities and that of the external magnetic field. In absence of an external
magnetic field, the two opinions are equally likely and the two homogeneous opinion patterns
are both stable states. In this case, it is still interesting to study how, starting with all
individuals agreeing on one opinion, the whole network can transition to the opposite
opinion, how long this will take and what are the most likely trajectories of this process.

Formally, for every k > 2 and every n > 2 we consider an undirected graph G = G(k, n)

consisting of k clusters, each of which is a complete subgraph of size n, in which we further
connect each node, i = 1, . . . , n also to its k− 1 “twins” in the other k− 1 clusters (those with
the same reminder modulo n), hence obtaining a regular graph where each node has degree
n+ k− 2. The vertex set of G(k, n) is V =

⋃k
i=1 V

(i) where V(i) := {n · (i− 1)+ 1, . . . , n · i} are
the nodes in the i-th cluster. The edge set of G(k, n) is E = Eint ∪Ecross, where Eint =

⋃k
i=1 E

(i)
int

is the collection of internal edges, e.g., edges inside a cluster, and Ecross that of the edges across
clusters, to which we refer as cross-edges. The graph G(k, n) then has 12kn(n+ k− 2) edges,
n
(
k
2

)
of which are cross-edges and

(
n
2

)
inside each cluster. Figure 1.35 depicts an instance

of G(3, 5).
With each site i ∈ V we associate a spin variable σ(i) ∈ {−1,+1}. On the configuration

space X = {−1,+1}V , we define the energy function H̃ as

H̃(σ) := −
∑

(i,j)∈Eint
σiσj − ε

∑
(i,j)∈Ecross

σiσj − h
∑
i∈V

σi, σ ∈ X, (1.4.4)

where we assume the strength of interaction across clusters is parametrized by a scalar
ε ∈ [−1, 1], while is equal to 1 along all the other internal edges and h > 0 is the external
magnetic field. We will consider the case h ∈ [0, 1] where, as it will be shown, the system
exhibits a metastable behavior. It is reasonable to assume that the opinions of individuals
that belong to a different community have less influence over each community. For this
reason, the interactions across different network clusters are assumed to be weaker than those
inside each cluster, since their strength is equal to |ε| 6 1. Moreover, by taking negative
values for ε, we can model situations in which individuals tend to disagree with individuals
from other communities. The presence of a nonzero external magnetic field of intensity h
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Figure 1.35 – Representation of the graph G(3, 5).

Figure 1.36 – Example of a configuration in C(4, 3, 3) on the network G(2, 7) with the color-coded spins
(black for +1 and white for −1). The first cluster has p1 = 4 spins +1, has p2 = 3 spins −1 and there
are a = 3 agreeing edges between plus spins.

favors configurations in which the spins are aligned in the direction of the field. Since every
individual spin feels the external field, its energetical contribution has to be proportional to
the number of spins with a certain sign.

Glauber dynamics is then defined as the discrete time Markov chain with transition
probabilities defined in (1.4.1) with the Hamiltonian defined in (1.4.4). For this model,
depending on the values of the parameter ε and of the external magnetic field h we will
characterize the asymptotic properties of the transition time from the set of metastable (or
stable) states to the set of stable states, as well as providing a characterizion of the critical
configurations crossed by the dynamics with probability tending to one in the limit of
very–low temperature.

In this thesis we will be interested to the case k = 2. Figure 1.36 depicts an instance
of G(2, 7). The reason behind this choice is twofold: firstly, the case k = 2 already exhibits a
very diverse and rich behaviour, and, secondly, the more general case with k > 2 clusters is
not conceptually harder to tackle, but simply heavier in terms of notation and terminology.
Having a network with only k = 2 clusters V(1) and V(2) allows for a very compact notation
for spin configurations that are equivalent modulo relabelling of the nodes. For a configuration
σ ∈ X and i = 1, 2, let V(i)

+ (σ) the subset of nodes in cluster i whose spin is equal +1 in σ and
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Figure 1.37 – The two uniform configurations + and −, where we represent in white (resp. black) the
minus (resp. plus) spins.

Figure 1.38 – The two mixed configurations ± and ∓, where we represent in white (resp. black) the
minus (resp. plus) spins.

E+(σ) the subset of edges connecting V(1)
+ (σ) and V(2)

+ (σ). For 0 6 p1, p2 6 n and 0 6 a 6 n,
we define the subset C(p1, p2, a) ⊂ X as

C(p1, p2, a) :=
{
σ ∈ X : |V

(1)
+ (σ)| = p1, |V

(2)
+ (σ)| = p2, and |E+(σ)| = a

}
.

In words, C(p1, p2, a) is the collection of configurations σ on G(2, n) such that
— σ has 0 6 p1 6 n spins +1 on the first cluster and 0 6 p2 6 n spins +1 on the second

cluster;
— σ has a of agreeing cross-edges between spins +1 in the first cluster and spins +1 on

the second cluster.
Note that the number a of agreeing edges given n, p1, p2 must satisfy the following inequality

max{0, p1 + p2 −n} 6 a 6 min{p1, p2}, (1.4.5)

since there cannot be a negative amount of edges between any pair of sub-clusters. We remark
that the parameters p1, p2 and a uniquely identify the set of configurations in C(p1, p2, a),
modulo relabelling of the nodes. Indeed, it implicitly gives information also about spins −1

in the following sense:
— σ has 0 6 n− p1 6 n spins −1 on the first cluster and 0 6 n− p2 6 n spins −1 on the

second cluster;
— σ has p1 − a disagreeing cross-edges between spins +1 on the first cluster and spins

−1 on the second cluster;
— σ has p2 − a disagreeing cross-edges between spins −1 on the first cluster and spins

+1 on the second cluster;
— σ has n+ a− p1 − p2 agreeing cross-edges between spins −1 on the first cluster and

spins −1 on the second cluster.
Figure 1.36 shows an example of a configuration in C(4, 3, 3) on the network G(2, 7).

We further denote by +,− the two homogeneous configurations on G(2, n) consisting
of all +1 spins and all −1 spins, see Figure 1.37. We refer to the configurations which are not
globally homogeneous but are locally uniform inside each cluster as mixed configurations and
denote them as ±,∓. Clearly, there are only 2 of them on G(2, n), see Figure 1.38.
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Figure 1.39 – Here we depict the reference path ω̄ by representing the saddles, the metastable and stable
states that it crosses, where we represent in white (resp. black) the spins −1 (resp. +1).

main theorems : case h = 0

Here we focus on the case h = 0, namely, there is no external magnetic field. The first
result we provide is the identification of metastable and stable states. In particular, we have
that the set of stable states is

Xs =


{+,−} if ε > 0,

{+,−,±,∓} if ε = 0,

{±,∓} if ε < 0,

(1.4.6)

and the set of metastable states is

Xm =

{±,∓} if ε > 0,

{+,−} if ε < 0.
(1.4.7)

In view of this, it is clear that the interesting phenomenon to consider is now the tunneling
transition, namely, the transition between two stable states. Due to the symmetry of the
system, one can conjecture that the gate C∗ for this transition is composed by two types of
configurations. The first one corresponds to having n

2 spins +1 in one of the two clusters, 0
spins +1 in the other cluster and 0 agreeing cross–edges between spins +1 in the two clusters.
The second one corresponds to having n

2 spins +1 in one of the two clusters, n spins +1 in
the other cluster and n

2 agreeing cross–edges between spins +1 in the two clusters. Note that
if n is odd, then n

2 should be replaced by n+1
2 or n−12 depending whether ε > 0 or ε < 0.

Then, we deduce that the system performs the transition between the two stable states in a
time of order eΓ

∗β in the limit as β→∞, where Γ∗ is the energy of the critical configurations
and can be explicitly expressed in terms of n and ε. Let us denote by s1 the starting stable
state and by s2 the target stable state. As we have seen in Section 1.3.3, the key ingredients
are the following:

(i) Prove that Φ(s1, s2) 6 Γ∗.
(ii) Prove that Φ(s1, s2) > Γ∗.
(iii) Prove that any ω ∈ (s1 → s2)opt crosses the set C∗.

For point (i), it suffices to construct a reference path connecting s1 to s2 which does not
exceed the energy value Γ∗. If ε > 0, we define a reference path ω̄ from − to +, while
if ε < 0 we define a path ω̂ from ± to ∓. In words, these paths are constructed in the
following way. The path ω̄, which starts from −, consists in flipping one by one the minus
spins in one community until the path reaches either ± or ∓ and afterward the remaining
minuses are flipped one by one until the path reaches + (see Figure 1.39). The construction
of the path ω̂ is made in a similar way (see Figure 1.40).

Again, points (ii) and (iii) can be proven via an isoperimetric inequality–type argument.
In particular, the idea is to partition the state space in subsets C(p) of configurations hav-
ing precisely p plus spins, see Figure 1.41 for an example, and finally characterize those
configurations that minimize the energy when p is fixed. We refer to Chapter 8 for all the
details.
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Figure 1.40 – Here we depict the reference path ω̂ by representing the saddles, the metastable and stable
states that it crosses, where we represent in white (resp. black) the spins −1 (resp. +1).

Figure 1.41 – An example of a configuration σ on the network G(2, 7) that belongs to the manifold C(10),
since it has p = 10 +1 spins, specifically p1 = 6 in the first cluster and p2 = 4 in the second cluster
(+1/−1 spins are colored in black/white, respectively).

main theorems : case h > 0

We focus here on the case h > 0, which describes the situation in which there is a positive
external magnetic field that favors plus spins. Moreover, we assume that 0 < h 6 1 in order
to avoid the energetical contribution of the external magnetic field prevails over the binding
energies associated with internal edges. As it will be clear later, the dynamical behavior of
the system is different in the two cases 0 < h 6 |ε| 6 1 and 0 6 |ε| < h 6 1, especially when
ε < 0. Indeed, this corresponds to a different “importance” given to the cross-edges and the
external magnetic field. In particular, we have that the set of stable states is

Xs =


{+} if 0 6 ε 6 1 or 0 < −ε < h 6 1,

{+,±,∓} if h = −ε,

{±,∓} if 0 < h < −ε 6 1,

(1.4.8)

and the set of metastable states is

Xm =


{−} if 0 6 ε 6 1 or h = −ε,

{±,∓} if 0 < −ε < h 6 1,

{+} if 0 < h < −ε 6 1.

(1.4.9)

Thus, our interest is to investigate the asymptotic behavior as β → ∞ of the tunneling
time (resp. transition time to the stable state) for the system started at the stable state s1
(resp. metastable state m) to reach for the first time the other stable state s2 (resp. the stable
state s) if 0 < h < −ε 6 1 (resp. if 0 6 ε 6 1 or 0 < −ε < h 6 1). As before, the strategy to
characterize the gate and estimate the transition time is to prove the corresponding version of
points (i)–(iii) above. Here we argue only about point (i) by exhibiting the reference paths,
while we refer to Chapter 8 for all the details concerning points (ii) and (iii).

If ε > 0, consider the path ω̄ represented in Figure 1.39. If 0 < h < −ε 6 1, we define
ω̌ : ± → ∓ as the path represented in Figure 1.42. If 0 < −ε < h 6 1, we define
ω̃ : ±→ + as the path represented in Figure 1.43.
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Figure 1.42 – Here we depict the reference path ω̌ by representing the saddles, the metastable and stable
states that it crosses, where we represent in white (resp. black) the minus (resp. plus) spins.

Figure 1.43 – Here we depict the reference path ω̃ by representing the saddles, the metastable and stable
states that it crosses, where we represent in white (resp. black) the minus (resp. plus) spins.

In this thesis, we investigated opinion dynamics inside a community of individuals via
the analysis of metastability for the Ising model on the graph G(2, n). Depending on the
different parameters ε and h, we showed that the stable and metastable states of the system are
different. Thus, according to the different scenarios, we used the framework of the pathwise
approach [85, 92] to analyze the transition or tunneling time, respectively, and to describe the
critical configurations. Moreover, we showed that the presence of a positive external magnetic
field, which can be interpreted as external information or influence, makes the situation much
richer, especially in the case ε < 0 in which communities tend to have diverging opinions.
More specifically, the set of stable states is completely different according to the role given to
the external information with respect to influence between communities, namely, depending
on whether h < −ε or not. This model is our first attempt to analyze the spread of an opinion
inside two communities. First, the extension to a general number k of communities naturally
arises in this context and will be the focus of future work, together with the computation of
the prefactor for the mean transition time. This represents a challenging task in the case k > 2,
as one needs to take into account all the mechanisms of spreading the new opinion among
different communities. Further, one may consider models with more than two opinions
(Potts model) or with different interaction strengths among communities. We believe that the
opinion dynamics inside a population of individuals with a nontrivial network topology is a
topic of great interest with many several interesting directions to explore further in future
research work.

1.5 preferential attachment random graphs

In this section, we focus on the analysis of the limiting behaviour of the preferential
attachment random graphs. The unprecedented growth in size and complexity of social
and economic networks in the last two decades has sparked considerable interest in the
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Figure 1.44 – Preferential attachment random graph with m = 2 and δ = 0 of sizes 10, 30 and 100.
Figure taken from [69].

Figure 1.45 – Preferential attachment random graph with m = 2 and δ = −1 of sizes 10, 30 and 100.
Figure taken from [69].

understanding of the fundamental properties of such networks. In this context, the preferential
attachment (PA) model, introduced in [19], is a well-known model for a network that grows
in time. More precisely, the PA model consists of a sequence of graphs of increasing size
such that each graph is obtained from the previous according to a certain probabilistic rule.
Namely, at each step a new vertex is added and it forms connections with the vertices in the
graph in such a way that connections with vertices having larger degrees are more likely. Here,
we consider the PA model without self-loops described for example in [59]. In particular, each
graph in the sequence is connected.

Several different PA models appear in the literature, depending on the concrete details
of the attachment mechanism. For instance, in [30, 58, 104, 113, 115] the authors investigate
a directed PA model, while in [23, 50, 58, 59, 88, 103] an undirected version is considered.
However, classical PA networks do not always fit real-world network data well, or in many
applications it is natural to assign some kind of features to the vertices or to the edges. This
led to consider some extensions of the classical PA model. For example, in [7] the authors
consider a general family of preferential attachment models with multi-type edges, while [5,
84, 98] investigate a PA model which mixes PA rules with uniform attachment rules. In this
work we consider the PA model without self-loops described in [59]. We make this choice in
order to simplify the calculations, but we believe that our result also holds, for example, for
the PA model with self-loops considered in the standard reference [69, Chapter 8]. We argue
this in more detail later on. See Figures 1.44 and 1.45 for examples of such random graphs
with self-loops, where each new node has a fixed number m ∈N of edges attached to it and
δ is a parameter of the model (see (1.5.1) for the precise definition). This is a particular case
of the model considered in [59], where m is a random variable and is sampled for each new
node.

Our main result is a central limit theorem for the proportion of nodes with a given degree.
In fact, we prove this jointly for all degree counts. In particular, we give an explicit expression
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Figure 1.46 – RZ(r, r) for m = 1 and δ = −0.5, 0, 1, 3, 5 on the left-hand side and RZ(r, r) for m = 2 and
δ = −1, 0, 2, 6, 10 on the right-hand side. To highlight the different behaviour of the various variance
functions, we use the logarithmic axis on the y-axis.

for the asymptotic covariance. The first results concerning the study of the asymptotic
normality of degree counts in the preferential attachment models without self-loops is given
in [88] by using martingale central limit theorems. Our results generalize those obtained in
[103] for the preferential attachment tree. More precisely, in [103] the authors consider a PA
model with self-loops and such that m = 1. Note that here we consider the PA model with
m > 1 and without self-loops. However, this does not influence the asymptotic behavior of
the degree counts, since as the graph size goes to infinity, the probability that a new vertex
forms a self-loop tends to zero. Because of this one would expect to recover the results in [103]
when plugging m = 1 in our result. Indeed this is the case if one takes into account a few
minor mistakes in [103] which we will discuss later. Note that a major difference between the
two models is the resulting connectivity structure. Our model produces a connected graph
with probability 1 (w.p. 1), while the model in [103] is disconnected w.p. 1. However, this
does not play a role in the distribution of the degree counts. In [99] the authors studied the
joint degree counts in linear preferential attachment random graphs. The results are stated
in terms of weight of vertices, but they can be tought of as degree, since each time a vertex
receives a new edge, its weight increases by one. The main difference between our and their
model is that we consider the attachment probabilities proportional to a linear function of the
degree of an old vertex (see (1.5.1)), while in [99] they are proportional to the degree of an
old vertex.

In practice, in real-world networks not all nodes that enter the network have the same
degree, and thus it would be interesting to extend our result to the case of a random initial
degree distribution. Promising results on this model have been obtained in [54, 59]. Moreover,
in this thesis we assume that the parameters of the model are known, but in many practical
situations one is given a realization of the graph and the task is estimating the unknown
parameters, see [60, 101, 112]. If we consider a more general class of preferential attachment
graphs, for which a model-free approach is used and therefore the exact distribution of the
graph is not known (see for instance [81]), we expect that the techniques presented in this
work could be used to derive central limit theorem for all the degree counts. This is an
interesting open problem.

Let us now describe in detail the random graph model that we consider. Fix once and
for all an integer m > 1. Formally, the preferential attachment model is a sequence of
random graphs (PAs)ts=1. The index s is interpreted as a time parameter. At time s, the
graph PAs has a set V = {0, 1, ..., s} of s+ 1 vertices. For s = 1 the graph PA1 consists of
the vertices 0 and 1, connected by m edges. For s > 2, the graph PAs is obtained from
PAs−1 by adding a new vertex s with degree m as follows. Define PAs,0 =PAs−1 and
PAs,1,...,PAs,m as the intermediate graphs obtained by adding a new edge sequentially to
PAs,0. For i = 1, ...,m, PAs,i is obtained from PAs,i−1 by drawing an edge from s to a
randomly selected vertex among {0, 1, ..., s− 1}. The probability that a vertex s is connected to
some vertex i is proportional to the degree of i. In other words, vertices with large degrees
are more likely to attract new edges. We denote by Nk(s, i) for i = 1, ...,m the number of
vertices of degree k after the i-th edge has been attached at time s, excluding the vertex s. We
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Figure 1.47 – RZ(r, r) for δ = 0 and m = 1, 2, 3. To highlight the different behaviour of the various
variance functions, we use the logarithmic axis on the y-axis.

set Nk(s+ 1, 0) := Nk(s,m). Furthermore, we denote by Ds,i the degree of the vertex which
has been attached to the i−th edge added when constructing PAs from PAs−1. Consider
now the σ-algebra Fs,i generated by the preferential attachment construction up until the
attachment of the i-th edge of the new vertex at time s. The conditional probability that the
i-th edge connects to a vertex of degree Ds,i is

P(Ds,i = k|Fs,i−1) =
(k+ δ)Nk(s, i− 1)∑
j(j+ δ)Nj(s, i− 1)

, (1.5.1)

where δ > −m is an affine parameter. The normalizing constant in (1.5.1) takes the simple
form [59]

∞∑
j=1

(j+ δ)Nj(s, i− 1) = s(2m+ δ) − 2m+ i− 1. (1.5.2)

For the standard PA model considered in [69, Chapter 8] it is shown that there exists a
probability mass function {pk, k > m} such that, uniformly on i ∈ {0, ...,m},

lim
s→∞ Nk(s, i)s

= pk ∈ (0, 1), (1.5.3)

almost surely, where pk is given by

pk = (2+ δ/m)
Γ(k+ δ)Γ(m+ 2+ δ+ δ/m)

Γ(m+ δ)Γ(k+ 3+ δ+ δ/m)
. (1.5.4)

Here Γ(·) is the Gamma function. When the graph size goes to infinity, the probability that a
new vertex forms a self-loop tends to zero and thus it easy to check that (1.5.3) and (1.5.4)
hold still for our model without self-loops following the proof proposed in [69, Section 8.6].

In order to state our main result, we require some further notation. We say that the
events (An)n hold with high probability when P(An) → 1 as n → ∞. Given a random
vector (X

(n)
1 , X

(n)
2 , ...), we write (X

(n)
1 , X

(n)
2 , ...)⇒ (X1, X2, ...) to indicate that for any k ∈N,

as n→∞ (X
(n)
1 , X

(n)
2 , ..., X(n)

k ) converges to (X1, X2, ..., Xk) in distribution as vectors in Rn.
Our main result is the following. As s→∞, we prove that

(
√
s
(Nk(s, i)

s
− pk

)
, k = m,m+ 1, ...

)
⇒ (Zk, k = m,m+ 1, ...), (1.5.5)

where (Zk, k = m,m+ 1, ...) is a mean zero Gaussian process with covariance function RZ
given by (9.1.2). The proof relies on the careful construction of an appropriate martingale.
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Figure 1.48 – RZ(r, 5) for δ = 0 and m = 1, 2, 3.
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Figure 1.49 – Left-hand side: RZ(r, r) for δ = 1 and m = 1 (t = ∞) compared with the numerical
simulations stopped at time t = 100, 1000, 5000. Each empirical curve was obtained by taking the
average of N = 10000 simulations. Right-hand side: RZ(r, 5) for δ = 0 and m = 2 (t = ∞) compared
with the numerical simulations stopped at time t = 100, 1000, 5000. Each empirical curve was obtained
by taking the average of N = 10000 simulations. To highlight the different behaviour of the various
variance functions, we use the logarithmic axis on the y-axis.

Since the expression in (9.1.2) is remarkably complicated, here we do not report it and
we refer to Chapter 9 for the explicit formula. In addition, we plot it for various parameter
choices to help the understanding. In Figure 1.46 we plot the function r 7→ RZ(r, r) for fixed
m = 1 (resp. m = 2) and various values of δ. On the other hand, in Figure 1.47 we plot
the function RZ(r, r) for fixed δ = 0 and various values of m. In Figure 1.48 we plot the
function RZ(r, 5) for δ = 0 and m = 1, 2, 3, 4. Finally, in Figure 1.49 on the left-hand- side we
compare the asymptotic covariance function RZ(r, r) for fixed m = 1, δ = 1 with the empirical
variance obtained by numerically simulating the PA model up until time t = 100, 1000, 5000.
Furthermore, in Figure 1.49 on the right-hand side, we compare the asymptotic covariance
function RZ(r, 5) for fixed m = 2, δ = 0 with the empirical covariance obtained by numerical
simulation of the PA model up until time t = 100, 1000, 5000. While we do not have rigorous
results on the convergence speed of the rescaled vertex counts, Figure 1.49 suggests that the
convergence is indeed quite fast.

Remark 1.5.1. As explained in [69, Chapter 8], it is possible to define the preferential attachment
model with m > 1 in terms of the model with m = 1 by collapsing vertices, thus one could be tempted
to directly apply this construction to the results derived in [103] for the model with m = 1. This is a
possible approach which presents its own difficulties and now we try to highlight them. The central
limit theorem that we want to prove involves the number of vertices with a fixed degree, thus we need
to find a relation between that quantity for the model m > 1 and m = 1 in order to use the result
obtained in [103]. This is not straightforward, indeed a rich control over the graph construction is
required at each step.

Remark 1.5.2. Here we choose to update the degrees during the attachment of a new vertex, but
it is possible to consider also the case in which we update the degrees of the vertices only when the
m-th edge is added. In this case, after constructing a suitable martingale with respect to the filtration
(Fs)s>1 generated by the construction of the preferential attachment graph until time s, it is possible
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to reproduce the same computations. Thus, we are able to prove a similar result for this model by using
the techniques presented here.

Following the argument carried out in [88], we are able to prove a central limit theorem
for the vector composed by the rescaled number of vertices with degree greater than k. In this
case, the covariance matrix of the limiting normal law becomes simple and now we compute
it. Define the number of vertices with degree greater than k as

ψk(s, i) :=
∑
j>k

Nj(s, i) (1.5.6)

and

ψ(s, i) := (ψm(s, i), ψm+1(s, i), ...). (1.5.7)

Note that we can write

ψ(1, i) = (0, ..., 0),

ψ(s, i+ 1) = ψ(s, i) + δDs,i ,
(1.5.8)

where δDs,i is the vector with all the coordinates equal to 0 except the Ds,i-th one, that is
equal to 1. From (1.5.3) it follows that the differences of the vector valued process {ψ(s, i), s >
1, i = 1, ...,m} become more and more indipendent and identically distributed in the limit as
s→∞. Let πk(s, i) := P(Ds,i = k|Fs,i−1) and

πk := lim
s→∞πk(s, i) = k+ δ

2m+ δ
pk. (1.5.9)

Thus, as s→∞, it holds true that
(
√
s
(ψk(s, i)

s
− πk

)
, k = m,m+ 1, ...

)
⇒ (Zk, k = m,m+ 1, ...), (1.5.10)

where (Zk, k = m,m + 1, ...) is a mean zero Gaussian process with covariance matrix
V = (vr`)k×k given by the limit of the upper left minor size i× i of the infinite conditional
covariance matrix Var(δDs,i |Fs,i−1), namely

vrr = πr(1− πr) =
(r+ δ)pr(2m+ δ− (r+ δ)pr)

(2m+ δ)2
,

vr` = −πrπ` = −
(r+ δ)(`+ δ)

(2m+ δ)2
prp`, r 6= `.

(1.5.11)

1.6 outline of the thesis

This thesis is organized as follows. Chapter 2 represents the Italian translation of Chapter
1. Chapters 3-7 are devoted to the study of the metastable conservative Kawasaki dynamics,
while Chapter 8 to the study of the metastable non–conservative Glauber dynamics. Finally,
in Chapter 9 we investigate the asymptotic properties of the preferential attachment model.
More precisely, the content of each chapter is the following.

In Chapter 3, our first goal is to provide the geometrical description of the union of all
the minimal gates G(�,�) in the isotropic case. We will prove that there are many distinct
minimal gates, which we will geometrically characterize together with their union. To this
end, we first give a model-independent strategy that is useful to eliminate some unessential
saddles, i.e., those that are not essential, for the characterization of the set G(m,Xs), where m
is the unique metastable state and Xs is the set of stable states. We then apply this strategy to
the two–dimensional isotropic model that evolves under Kawasaki dynamics, where m = �
and Xs = {�}. In order to do this, we need to verify that the required model-dependent inputs
are valid for our model. This study, together with the characterization of the essential saddles,
relies on a detailed analysis of the motion of particles along the border of the droplet, which is
a typical feature of the Kawasaki dynamics. Additionally, we give some model–independent
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results concerning the sharp asymptotics of the mean transition time, which clarify the role
of the unessential saddles in the computation of the prefactor. We conclude this chapter by
investigating the spectral gap and mixing time of the process. The content of this chapter is
based on the published paper [18] and its extended version [15].

In Chapter 4, we geometrically characterize the set G(�,�) in the weakly anisotropic
case. We do this thanks to the model–independent strategy carried out in Chapter 3 and the
specific analysis of the dynamics of the system. Additionally, we prove sharp asymptotics for
the transition time and for the uniform entrance distribution. We conclude this chapter by
investigating the spectral gap and mixing time of the process. The content of this chapter is
based on the published paper [18] and its extended version [15].

Chapter 5 is devoted to the geometrical description of the set G(�,�) in the strongly
anisotropic regime. We will prove that there are many distinct minimal gates that we will
geometrically characterize together with their union. We apply the model-independent
strategy carried out in Chapter 3 to this model in order to eliminate some unessential saddles.
Thus, we need to verify that the required model-dependent inputs are valid in our case. This
study together with the characterization of the essential saddles rely on a detailed analysis
of the motion of particles along the border of the droplet. On the one hand this is a typical
feature of the Kawasaki dynamics, on the other hand this is peculiar in the strongly anisotropic
case. Additionally, we prove sharp asymptotics for the transition time and we investigate the
spectral gap and mixing time. This chapter is based on [17].

In Chapter 6, we study the local Kawasaki dynamics on the hexagonal lattice with isotropic
interactions. In particular, we investigate the critical configurations and the tunneling time
between (empty hexagon) and (full hexagon) for this model. Our main results are the
following. First, we identify the metastable and stable states and we prove a convergence
in probability, expectation and law for the transition time, answering the first question of
metastability. Then, we prove that the system reaches with high probability either the state
or in a time shorter than eβ(V

∗+ε), uniformly in the starting configuration for any ε > 0,
where V∗ = ∆+U. In other words, the dynamics speeded up by a factor of order eβV

∗

reaches with high probability { , }. Finally, we provide a characterization of a gate for the
transition, answering the second issue of metastability. We emphasize that this result reflects
how the underlying lattice is crucial for the dynamics of the system. This chapter is based on
[13].

In Chapter 7, we consider the fully conservative model on the two-dimensional square
lattice. We will use the results of [62] to analyze how subcritical droplets form and dissolve
on multiple space-time scales when the volume is moderately large, namely, the box has
volume eΘβ, with ∆ < Θ < 2∆−U. Since the dynamics is conservative, we need to control
non-local effects in the way droplets are formed and dissolved. This is done via an axiomatic
approach: the tube of typical trajectories leading to nucleation is described via a series of
events, whose complements have negligible probability, on which the evolution of the gas
consists of droplets wandering around on multiple space-time scales in a way that can be
captured by a coarse-grained Markov chain on a space of droplets. This chapter is based on
the preprint [11].

In Chapter 8, we analyze the Ising model on a specific family of clustered networks, by
identifying the set of metastable and stable states and by estimating the asymptotic behavior of
the transition time between them in the low-temperature limit. In the context of the clustered
network that we consider in this chapter, the set of metastable states depends heavily on
the relative strength of the interactions between the network communities and that of the
external magnetic field. In absence of an external magnetic field, the two opinions are equally
likely and the two homogeneous opinion patterns are both stable states. In this case, it is still
interesting to study how, starting with all individuals agreeing on one opinion, the whole
network can transition to the opposite opinion, how long this will take and what are the most
likely trajectories of this process. This chapter is based on [10].

In Chapter 9, our main result is a central limit theorem for the proportion of nodes with
a given degree for a general preferential attachment model. To this end, we use martingale
central limit theorems. In fact, we prove this jointly for all degree counts. In particular, we give
an explicit expression for the asymptotic covariance and we also use numerical simulations to
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argue that the convergence is quite fast. The proof relies on the careful construction of an
appropriate martingale. The content of this chapter is based on [9].
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2I N T R O D U Z I O N E

2.1 panoramica

In questa tesi ci concentriamo sul comportamento metastabile di sistemi discreti a bassa
temperatura che evolvono sotto dinamiche stocastiche.

La metastabilità è onnipresente in natura e la necessità di catturare il comportamento
di sistemi soggetti a tale fenomeno è la motivazione principale di questa ricerca. Infatti, la
metastabilità nasce naturalmente in una grande varietà di sistemi – fisica, chimica, biologia,
economia e sociologia. In questo lavoro ci concentriamo principalmente sui sistemi discreti
mirando a catturare le caratteristiche provenienti da entrambi i campi della fisica statistica e
della sociologia.

Dietro il fenomeno della metastabilità ci sono alcune caratteristiche comuni, come una
grande variabilità nel momento dell’insorgenza di qualche cambiamento drammatico nelle
proprietà del sistema, un tempo molto più breve per la transizione effettiva (cioè, tra l’inizio di
un cambiamento notevole e il momento in cui si raggiunge un nuovo stato), e imprevedibilità
del momento dell’inizio della transizione. È formalmente descritto come un fenomeno
dinamico che si verifica quando un sistema è vicino a una transizione di fase del primo ordine.
Dopo aver modificato alcuni parametri termodinamici, il sistema rimane per un tempo
considerevole (casuale) nella vecchia fase, lo stato metastabile, prima di fare improvvisamente
una transizione verso la nuova fase, lo stato stabile. In altre parole, in breve tempo, il sistema
si comporta come se fosse in equilibrio, mentre, su una scala a lungo termine, si muove
tra diverse regioni dello spazio degli stati (si veda la Figura 2.1). La transizione avviene
quando il sistema riesce a creare una goccia sufficientemente grande, la cosiddetta goccia
critica, della nuova fase all’interno della vecchia fase (si veda la Figura 2.2). Nello studio
della metastabilità ci sono tre questioni principali che sono tipicamente indagate. La prima
è lo studio del tempo di transizione tipico dagli stati metastabili a quelli stabili, cioè il tempo
necessario per arrivare alla fase di equilibrio. La seconda e la terza questione riguardano la
descrizione geometrica delle configurazioni che formano il varco della transizione (chiamate
anche configurazioni critiche) ed il tubo delle traiettorie tipiche. Questi problemi sono fisicamente
più interessanti, perché forniscono informazioni sulle configurazioni che saranno attraversate
dalla dinamica. Grossomodo, il sistema fluttua in vicinanza dello stato metastabile fino a
quando non visita l’insieme delle configurazioni critiche e infine raggiunge l’equilibrio: i
cammini tipici che il sistema segue con alta probabilità formano il tubo delle traiettorie tipiche.

La prima sfida principale dell’approccio matematico alla metastabilità è di natura qua-
litativa, vale a dire, a spiegare perché in una grande varietà di sistemi si osserva lo stesso
tipo di comportamento metastabile. Molti di questi sistemi sono descritti dai primi principi
come sistemi multicorpo soggetti a dinamica classica o quantistica. Mentre sono note le

Figura 2.1 – Immagine paradigmatica della metastabilità.
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stato metastabile stato stabile

energia

spazio delle configurazioni

goccia critica

Figura 2.2 – Immagine paradigmatica del panorama energetico.

corrispondenti equazioni del moto, sono in genere molto difficili da analizzare su intervalli
di tempo estremamente lunghi in cui si verifica un comportamento metastabile. Inoltre, la
metastabilità mostra manifestamente casualità (il momento imprevedibile del verificarsi della
transizione), la cui origine può essere difficile da estrarre dalle dinamiche deterministiche
sottostanti. Questo può essere dovuto agli effetti quantistici, o alle perturbazioni esterne di
un sistema (non chiuso). Una prima semplificazione è passare ad una descrizione del sistema
attraverso una dinamica stocastica. C’è una grande varietà di modelli diversi dove emerge la
metastabilità e dove è possibile la spiegazione dell’universalità sottostante.

La seconda sfida principale è di natura quantitativa. Dati i parametri di qualche modello
sottostante, vorremmo poter calcolare nel modo più preciso possibile le quantità che control-
lano i fenomeni metastabili, in particolare, la distribuzione dei tempi delle transizioni tra
stati metastabili e stabili. Ancora una volta, questo è difficile perché la maggior parte dei
sistemi metastabili di rilevanza pratica sono sistemi multicorpo la cui dinamica non è facile
da catturare, né analiticamente né numericamente, e perché possono essere coinvolte scale di
tempo estremamente lunghe. La comprensione della metastabilità a livello quantitativo è di
notevole interesse pratico, in quanto influisce sul comportamento e il funzionamento di molti
sistemi in natura.

In questa tesi indaghiamo il comportamento metastabile di sistemi di particelle interagenti,
descritti dal modello standard di Ising, che evolve sotto la dinamica stocastica di Kawasaki
(Sezione 2.3) e di Glauber (Sezione 2.4), con particolare attenzione alla forma geometrica
delle configurazioni critiche, cioè quelle attraversate dal sistema con alta probabilità. In
particolare, ci concentriamo su modelli matematici che descrivono sia le transizioni di fase in
fisica statistica sia come si diffonde un’opinione all’interno di una comunità. Mentre il primo
problema è stato indagato a partire dai primi lavori matematici sulla metastabilità, il secondo
ha prosperato negli ultimi decenni, quando l’avvento dell’era dei computer ha suscitato un
interesse sempre più crescente nelle proprietà fondamentali delle reti complesse. A tal fine,
quando si interpreta il modello di Ising come modello di comportamento cooperativo, non è
appropriato studiarlo in un ambiente dove il dominio sottostante è un reticolo. Quindi, negli
ultimi anni c’è stato un grande interesse nello studio della metastabilità per il modello di
Ising su grafi aleatori, che sono modelli per reti complesse. Ci riferiamo per esempio a [33, 34,
38, 55, 56], dove questo problema è stato affrontato per grafi aleatori statici, come il modello
di configurazione, il grafo aleatorio regolare ed i grafi di Erdös-Rényi.

In questo lavoro iniziamo la nostra analisi della metastabilità per sistemi di particelle
interagenti che descrivono l’evoluzione delle opinioni di invidui considerando come struttura
sottostante una rete statica (non casuale) con una struttura comunitaria non banale. L’oggetto
principale di interesse è come il sistema sociale governa le interazioni tra individui quando è
influenzato da fattori esterni, per esempio pubblicità e politiche sociali. Tuttavia, la necessità
di ottenere una descrizione realistica di alcuni tipi di reti porta a considerare grafi aleatori
dinamici, che modellizzano la crescita del grafo nel tempo. A tal fine, l’ultima parte di questa
tesi è dedicato all’analisi di un particolare tipo di modello dinamico, noto come modello ad
attaccamento preferenziale. Il nostro obiettivo finale è quello di caratterizzare il comportamento
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Figura 2.3 – La distribuzione dei gradi interni per la rete delle citazioni di articoli di probabilità e
statistica in Web of Science. Sulla sinistra (risp. destra) riportiamo il grafico in scala log–log plot della
funzione di probabilità di massa (risp. funzione di distribuzione cumulativa complementare). Figura
presa da [69].

metastabile di tale modello. In questo lavoro analizziamo le proprietà asintotiche di questo
grafo, che rappresenta un primo passo in questa direzione.

L’idea alla base dei modelli ad attacco preferenziali è semplice. In un grafo che si evolve nel
tempo, i vertici appena aggiunti sono collegati a quelli già esistenti. Pensiamo a questo vertice
come ad un nuovo individuo in una popolazione sociale, che rappresentiamo come un grafo
in cui gli individui sono i vertici ed i lati sono le relazioni tra coppie di individui. È realistico
assumere che i lati si connettano ad ogni individuo già presente con pari probabilità, o il
nuovo arrivato ha più probabilità di conoscere persone socialmente attive, le quali conoscono
già molte persone? Se quest’ultimo è vero, dovrebbe essere più probabile che i lati siano
collegati ai vertici che hanno già un alto grado. Un possibile modello per tale grafo dinamico
è stato proposto in [19], e da allora ha incitato un enorme sforzo di ricerca.

È stato dimostrato che tale modello porta a delle sequenze di gradi che seguono una legge
di potenza, cioè, i gradi dei vertici mostrano un’enorme quantità di variabilità ed il numero di
vertici con grado almeno k decade lentamente per k grande, il cosiddetto fenomeno senza scala.
Questo implica che i gradi sono altamente variabili ed esistono vertici con grado estremamente
elevato. Spesso, la coda della distribuzione del grado empirico sembra decadere come una
potenza inversa di k. L’esistenza di sequenze di gradi che seguono una legge di potenza in
varie reti del mondo reale è abbastanza sorprendente, e i modelli che offrono una spiegazione
convincente possono darci informazioni circa i meccanismi che danno origine alla loro natura
senza scala. Cerchiamo di illustrare questo fenomeno con l’esempio delle reti di citazione.
In queste reti, i vertici sono articoli scientifici, e un lato diretto tra due articoli rappresenta
un riferimento del primo articolo al secondo. Così, il grado interno di un articolo è il suo
numero di citazioni, mentre il grado esterno è il suo numero di riferimenti. Nella Figura 2.3
rappresentiamo la distribuzione in gradi, in scala log-log, della rete di citazioni di articoli di
probabilità e statistica dal 1980 al Maggio 2015 in Web of science. Possiamo vedere che la
distribuzione dei gradi interni assomiglia a una legge di potenza. Infatti, sia Nk il numero di
vertici con grado k. Quando è approssimativamente proporzionale a una potenza inversa di k,
cioè, Nk ≈ cnk−τ per qualche costante di normalizzazione cn ed esponente τ, si ottiene che

logNk ≈ log cn − τ logk,

in modo che il grafico di logk→ logNk è vicino ad una linea retta.
Una possibile spiegazione del manifestarsi delle sequenze di gradi che seguono una legge

di potenza è offerto dal paradigma dell’attaccamento preferenziale. Nei modelli ad attacco
preferenziale, i vertici sono aggiunti in sequenza con un certo numero di lati collegati a loro.
Questi lati sono attaccati ad un vertice ricevente con una probabilità proporzionale al grado
del vertice ricevente in quel momento, favorendo così i vertici con un alto grado. Per questo
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modello, in [30] è mostrato che il numero di vertici con grado k decade proporzionalmente a
k−3, e questo risultato è un caso speciale di un risultato più generale sulla sequenza dei gradi
asintotica di modelli ad attaccamento preferenziale (si veda la Sezione 2.5).

Nei modelli ad attaccamento preferenziale, è noto che la proporzione dei nodi con un dato
grado al passo n converge a una costante quando n→∞ (si veda la Sezione 2.5 per maggiori
dettagli). In questa tesi troviamo la distribuzione asintotica delle fluttuazioni intorno a questo
valore limite. In particolare, dimostreremo un teorema di limite centrale per la distribuzione
congiunta di tutti i conteggi dei gradi.

2.2 approcci matematici alla metastabilità

Lo studio della metastabilità ha una storia lunga e ricca. In questa sezione diamo un
breve riassunto degli sviluppi più importanti che hanno dato forma al lavoro presentato
in questa tesi, che è focalizzato su sistemi a temperatura molto bassa. In [77, 100] è stata
tentata per la prima volta una descrizione matematica per lo studio della metastabilità, che
è ispirata alla Meccanica Statistica dell’equilibrio di Gibbs nel contesto della teoria di van
der Waals-Maxwell. L’approccio traiettoriale alla metastabilità nasce tra la fine degli anni ’60 e
l’inizio degli anni ’70 da Freidlin e Wentzell. Hanno introdotto la teoria di grandi deviazioni
sullo spazio dei cammini per analizzare il comportamento a lungo termine di sistemi dinamici
sotto l’influenza di perturbazioni casuali deboli. La loro realizzazione che il comportamento
metastabile è controllato da grandi deviazioni del processo aleatorio che guida la dinamica
ha influenzato da allora la maggior parte della letteratura matematica sull’argomento. Ci
riferiamo alla monografia [57] per un’ampia discussione. L’applicazione di queste idee in
un contesto di fisica statistica è stato avviato nel 1984 [39] ed è stato sviluppato in [95–97].
Questa serie di lavori ha realizzato che la teoria proposta da Freidlin e Wentzell può essere
applicata per studiare il comportamento metastabile di sistemi di particelle interagenti.

L’approccio traiettoriale si concentra sulla dinamica della transizione dallo stato metastabile
allo stato stabile. Il vantaggio di questo approccio è che fornisce una descrizione dettagliata
del comportamento metastabile del sistema ed ha permesso di rispondere alle tre domande
della metastabilità. Individuando il cammino più probabile tra stati metastabili è possibile
determinare sia il tempo della transizione sia il tubo delle traiettorie tipiche. Una versione
moderna dell’approccio traiettoriale contenente le informazioni sul tempo e sulle gocce
critiche divise rispetto a quelle sul tubo delle traiettorie tipiche si trova in [44, 45, 85, 92].
Questo approccio si è sviluppato nel corso degli anni ed è stato ampiamente applicato per
studiare la metastabilità nei modelli reticolari di Meccanica Statistica. In questo contesto,
questo approccio e quello che segue [31, 85, 97] sono stati sviluppati con l’obiettivo di trovare
risposte valide con la massima generalità e ridurre il più possibile il numero di ipotesi
dipendenti dal modello necessarie per descrivere il comportamento metastabile di un dato
sistema. L’approccio traiettoriale è stato applicato in volume finito a bassa temperatura per la
dinamica di Glauber a singola inversione di spin, vedere ad esempio [4, 10, 14, 24, 39, 40,
42, 49, 79, 80, 89, 93], per la dinamica di Kawasaki, vedi ad es. [13, 16–18, 67, 71, 72, 74, 75,
90], e per dinamiche parallele, vedere ad esempio [43, 46–48]. Lo svantaggio dell’approccio
traiettoriale è che la funzione di tasso è generalmente difficile da identificare e controllare,
specialmente per i sistemi con un’interazione spaziale, per cui la dinamica non è locale. Di
conseguenza, questo approccio in genere conduce a risultati relativamente grezzi sul tempo
di transizione.

Questa limitazione può essere superata attraverso l’uso di un altro approccio, il cosid-
detto approccio potenziale–teorico, avviato in [31] e riassunto nella monografia [32]. In questo
approccio, il fenomeno della metastabilità viene interpretato come una sequenza di visite
del cammino a diversi insiemi metastabili. Questo metodo si concentra su un’analisi precisa
dei tempi di arrivo in questi insiemi con l’aiuto della teoria del potenziale. Nell’approccio
potenziale–teorico il tempo medio di transizione è dato in termini delle cosiddette capacità
tra due insiemi. Le capacità possono essere stimate sfruttando potenti principi variaziona-
li. Questo significa che le stime del tempo medio di transizione che si possono ricavare
sono molto più forti rispetto a quelle ottenute tramite l’approccio traiettoriale. L’approccio
potenziale–teorico è stato applicato ai modelli a volume finito e a bassa temperatura, vedi ad
es. [35, 37, 70, 73, 91].
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Questi approcci matematici, tuttavia, non sono del tutto equivalenti poiché si basano su
definizioni diverse degli stati metastabili (vedi [44, Sezione 3] per un confronto) e quindi coin-
volgono proprietà diverse dei tempi di arrivo e di transizione. La situazione è particolarmente
delicata per evoluzioni di sistemi a volume infinito, sistemi irreversibili e sistemi degeneri,
come discusso in [27, 44, 45, 48]. Nuove difficoltà compaiono quando l’entropia ha un ruolo
più importante da giocare nel modello. Le situazioni più interessanti sono il limite di volume
infinito, temperatura più alta o campo magnetico evanescente, che sono state studiate ad
esempio in [11, 36, 41, 52, 53, 62, 63, 66, 75, 86, 87, 105, 106] per modelli di tipo Ising che
evolvono secondo dinamica di Glauber e Kawasaki. Approcci più recenti sono stati sviluppati
in [6, 20, 21, 28, 29, 82].

2.3 metastabilità per sistemi conservativi

Prendiamo l’esempio di un vapore sovrasaturo. Consideriamo un vapore al di sotto
della sua temperatura critica, vicino al suo punto di condensazione. Comprimiamo isoter-
micamente una certa quantità di vapore, privo di impurità, fino alla pressione del vapore
saturo (alla temperatura corrispondente). In seguito continuiamo ad aumentare lentamente
la pressione, cercando di evitare significativi gradienti di densità all’interno del campione.
Con una sperimentazione così attenta possiamo preparare quello che viene chiamato un
vapore sovrasaturo. Osserviamo, infatti, che il sistema è ancora in una fase gassosa pura.
Persiste in questa situazione di apparente equilibrio per molto tempo: questo è chiamato
“stato metastabile”, in contrasto con uno stato stabile, che, per dati valori dei parametri ter-
modinamici, corrisponderebbe alla coesistenza di liquido e vapore. La situazione stazionaria
con una fase pura che abbiamo descritto sopra persiste fino a quando una perturbazione
esterna o una fluttuazione spontanea induce la nucleazione della fase liquida, avviando un
processo irreversibile che porta ad uno stato stabile finale, dove liquido e vapore sono separati,
ma coesistono alla pressione di vapore saturo. La durata dello stato metastabile diminuisce
all’aumentare del grado di sovrasaturazione, fino ad un valore di soglia per la pressione (il
punto spinodale) dove il gas diventa instabile. Il comportamento sopra descritto è tipico di
un’evoluzione conservativa, cioè il numero di molecole viene preservato. Per modellizzare
matematicamente fenomeni come questo e come l’acqua surriscaldata o sopraffusa viene
spesso proposto l’utilizzo modelli di gas reticolari che evolvono secondo la dinamica Kawa-
saki, poiché tale dinamica conserva il numero di particelle. Sottolineiamo che le dinamiche
conservatrici sono difficili da analizzare a causa della conservazione delle particelle: ciò
implica che le gocce molte volte devono scambiarsi particelle con il gas che le circonda in
lunghi intervalli di tempo. Pertanto la dinamica è non locale nella sua essenza.

2.3.1 Dinamica di Kawasaki

Consideriamo un gas reticolare bidimensionale a temperatura e densità molto basse che
si evolve secondo la dinamica di Kawasaki, cioè le particelle sono soggette ad esclusione ed
interazione in un dominio all’interno di Z2. Più precisamente, sia β la temperatura inversa
del gas. Fissiamo la densità del gas uguale a ρ = e−∆β, con ∆ > 0 un parametro di attività. Per
avere particelle vediamo che il dominio che consideriamo non può essere finito, ma la sua
dimensione deve essere almeno esponenzialmente grande in β. Pertanto consideriamo che il
nostro sistema evolva in una scatola quadrata Λβ ⊂ Z2 centrata nell’origine, con condizioni
al bordo periodiche e tale che |Λβ| = eΘβ, con Θ > ∆. Vedremo nella Sezione 2.3.4 che il
parametro Θ gioca un ruolo cruciale nell’analisi.

Ad ogni sito x ∈ Λβ associamo una variabile di occupazione η(x), che può assumere i
valori 0 o 1, dove η(x) = 0 (risp. η(x) = 1) significa che il sito x è vuoto (risp. occupato). Una
configurazione di gas reticolare è indicata da η ∈ Xβ := {0, 1}Λβ . Ad ogni configurazione η
associamo un’energia, la cosiddetta Hamiltoniana del sistema, data da

H(η) = −U
∑

{x,y}∈Λ∗β

η(x)η(y), (2.3.1)
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dove Λ∗β denota l’insieme dei legami tra i siti primi–vicini in Λβ, cioè, c’è una energia di legame
−U < 0 tra particelle vicine. Sia

|η| =
∑
x∈Λβ

η(x) (2.3.2)

il numero di particelle in Λβ nella configurazione η, e sia

VN = {η ∈ Xβ : |η| = N} (2.3.3)

l’insieme delle configurazioni con N particelle. Definiamo la dinamica di Kawasaki come
la catena di Markov a tempo continuo X = (X(t))t>0 con spazio degli stati VN data dal
generatore

(Lf)(η) =
∑

{x,y}∈Λ∗β

c(x, y, η)[f(ηx,y) − f(η)], η ∈ Xβ, (2.3.4)

dove

ηx,y(z) =


η(z) if z 6= x, y,
η(x) if z = y,

η(y) if z = x,

(2.3.5)

e

c(x, y, η) = e−β[H(ηx,y)−H(η)]+ . (2.3.6)

Le equazioni (2.3.4)–(2.3.6) rappresentano la dinamica di Metropolis standard associata ad H,
che è conservativa perché conserva il numero di particelle, cioè, |X(t)| = |X(0)| = N per ogni
t > 0. La misura canonica di Gibbs νN, definita come

νN(η) =
e−βH(η)1VN(η)

ZN
, ZN =

∑
η∈VN

e−βH(η), η ∈ Xβ, (2.3.7)

è l’equilibrio reversibile di questa dinamica stocastica per ogni N:

νN(η)c(x, y, η) = νN(ηx,y)c(x, y, ηx,y). (2.3.8)

Variare i parametri U e ∆ porta a un drastico cambiamento del comportamento del gas.
Infatti, la scelta ∆ ∈ (0,U) rappresenta il gas instabile, ∆ = U rappresenta il punto spinoidale,
∆ ∈ (U, 2U) corrisponde al regime metastabile, ∆ = 2U è il punto di condensazione e ∆ > 2U
corrisponde a un gas stabile. Ci riferiamo a [67, 75] per un’ampia discussione su questi punti,
mentre nella Sezione 2.3.2 giustifichiamo il suddetto regime metastabile.

Per analizzare rigorosamente questo modello completamente conservativo, l’idea è quella
di focalizzare l’attenzione su cosa accade nel modello semplificato introdotto in [75]. Questo
modello può essere ottenuto dalla dinamica di Kawasaki sopra definita dopo aver considerato
esclusione solo all’interno di una scatola quadrata Λ ⊂ Λβ finita e indipendente da β ed
interazioni solo in

Λ0 := Λ \ ∂−Λ, (2.3.9)

dove

∂−Λ := {x ∈ Λ : ∃y /∈ Λ tale che |y− x| = 1} (2.3.10)

è il bordo interno di Λ, in modo che la dinamica del gas fuori da Λ sia quella di passeggiate
aleatorie indipendenti (si veda la Figura 2.4). L’introduzione di questo modello è giustificato
dal fatto che, per la dinamica originale di Kawasaki, l’interazione tra un cluster e le particelle
"isolate" del gas può essere approssimato dall’interazione tra cluster ed un gas di passeggiate
aleatorie indipendenti. Come ampiamente spiegato in [75], la nucleazione per il modello
semplificato può essere affrontato attraverso l’analisi della versione locale del modello, il
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Λβ

Λ

Λ0

interazioni

no interazioni

passeggiate aleatorie indipendenti
no esclusione + no interazioni

Figura 2.4 – Rappresentazione schematica del dominio Λβ nel modello semplificato.

cosiddetto modello locale. In parole povere, in questo modello le particelle vivono ed evolvono
solo all’interno della scatola finita Λ, dove l’effetto su Λ del gas in Λβ \Λ può essere descritto
in termini di creazione di nuove particelle a tasso ρ nei siti sul bordo interno di Λ e l’annichi-
lazione di particelle a tasso 1 nei siti sul bordo esterno di Λ. Ci riferiamo alla Sezione 2.3.2
per la precisa definizione del modello locale. Riassumendo, i passi per affrontare il problema
dell’uscita dalla metastabilità per la dinamica di Kawasaki completamente conservativa sono
i seguenti:

passo 1 : Analizzare il tempo di nucleazione ed il tubo delle traiettorie tipiche per il modello
locale. Questi problemi sono stati affrontati in [67, 75].

passo 2 : Estendere questi risultati al modello semplificato. Questo problema è stato risolto
in [75].

passo 3 : Dimostrare che il modello semplificato è una buona approssimazione per le in-
terazioni tra un cluser ed il gas che lo circonda in una finestra finita per la dinamica
originale di Kawasaki. Questo problema è stato affrontato in [65].

passo 4 : Ottenere la stima del tempo di nucleazione ed il tubo delle traiettorie tipiche per
la dinamica originale di Kawasaki. Questo problema è indagato in questa tesi (vedi
Sezione 2.3.4).

Come risulterà chiaro nel corso della tesi, il passo 4 è altamente non banale e richiede
un’attenta indagine. Ci riferiamo alla Sezione 2.3.4 per le idee principali per affrontare
questo problema. Notiamo che il passaggio 3 ci fornisce il modo corretto per controllare il
comportamento del gas in Λβ \Λ. È chiaro che il punto di partenza è l’analisi del modello
locale, che viene introdotto e studiato nella Sezione 2.3.2.

2.3.2 Il modello locale sul reticolo quadrato

In questa sezione introduciamo il modello locale e presentiamo i principali risultati già
presenti in letteratura insieme a quelli che sono derivati in questa tesi. Consideriamo una
scatola finita Λ = {0, ..., L}2 ⊂ Z2 centrata nell’origine. La lunghezza del lato L è fissa, ma
arbitraria, e più tardi richiederemo che L sia sufficientemente grande. Il nostro spazio degli
stati è X := {0, 1}Λ. Per essere più generici possibile, ad ogni configurazione η ∈ X associamo
l’energia hamiltoniana locale Ĥ(η) come

Ĥ(η) := −U1
∑

(x,y)∈Λ∗0,h

η(x)η(y) −U2
∑

(x,y)∈Λ∗0,v

η(x)η(y) +∆
∑
x∈Λ

η(x), (2.3.11)

dove Λ∗0,h (risp. Λ∗0,v) è l’insieme dei legami non orientati orizzontali (risp. verticali) che
uniscono i punti primi–vicini in Λ0 (si ricordi (2.3.9)). Pertanto, l’interazione agisce solo
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all’interno Λ \ ∂−Λ; l’energia di legame associata ad un legame orizzontale (risp. verticale)
è −U1 < 0 (risp. −U2 < 0). Si noti che Ĥ(η) si ottiene aumentando l’energia in (2.3.1) di un
termine ∆|η| e distinguendo tra legami orizzontali e verticali. Questo modella la presenza
di un serbatoio esterno che conserva la densità delle particelle in Λβ fissata a ρ = e−β∆.
Possiamo assumere senza perdita di generalità che U1 > U2. Il comportamento dinamico
del modello locale cambia drasticamente in base alla relazione tra i parametri U1 e U2. In
particolare individuiamo tre regimi interessanti: isotropo (U1 = U2 = U), debolmente anisotropo
(U1 < 2U2) e fortemente anisotropo (U1 > 2U2). Sebbene la nostra analisi per il modello
originale riguarda solo il caso isotropo (come è chiaro dall’Hamiltoniana definita in (2.3.1)),
definiamo il modello locale in modo generale perché ci interessa la sua analisi per tutti e tre i
regimi. La dinamica di Kawasaki localmente conservativa può essere definita come la dinamica
originale con comportamenti diversi al bordo di Λ. Per essere precisi, sia b = (x → y) un
legame orientato, cioè una coppia ordinata di siti vicini, e definiamo

∂∗Λout := {b = (x→ y) : x ∈ ∂−Λ,y 6∈ Λ},
∂∗Λin := {b = (x→ y) : x 6∈ Λ,y ∈ ∂−Λ},
Λ∗,orie := {b = (x→ y) : x, y ∈ Λ},

(2.3.12)

e poniamo Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪Λ∗, orie. Due configurazioni η, η ′ ∈ X, con η 6= η ′,
si dicono stati comunicanti se esiste un legame b ∈ Λ̄∗,orie tale che η ′ = Tbη, dove Tbη è la
configurazione ottenuta da η in uno dei modi segunti:

— per b = (x → y) ∈ Λ∗, orie, Tbη denota la configurazione ottenuta da η scambiando
particelle lungo b:

Tbη(z) :=


η(z) if z 6= x, y,
η(x) if z = y,

η(y) if z = x.

(2.3.13)

— Per b = (x→ y) ∈ ∂∗Λout poniamo:

Tbη(z) :=

{
η(z) if z 6= x,
0 if z = x.

(2.3.14)

Questo descrive l’annichilazione di una particella lungo il bordo.
— per b = (x→ y) ∈ ∂∗Λin poniamo:

Tbη(z) :=

{
η(z) if z 6= y,
1 if z = y.

(2.3.15)

Questo descrive la creazione di una particella lungo il bordo.
Poiché in volume finito trattare un processo stocastico a tempo discreto è equivalente e più
conveniente rispetto ad un processo a tempo continuo, definiamo la dinamica di Kawasaki
come la catena di Markov a tempo discreto (ηt)t∈N sullo spazio degli stati X data dalle
seguenti probabilità di transizione: per η 6= η ′:

P(η, η ′) :=

{
|Λ̄∗, orie|

−1e−β[H(η ′)−H(η)]+ se ∃b ∈ Λ̄∗,orie : η ′ = Tbη,

0 altrimenti,
(2.3.16)

dove [a]+ = max{a, 0} e P(η, η) := 1 −
∑
η ′ 6=η P(η, η

′). Questo descrive una dinamica di
Metropolis standard con condizioni al contorno aperte: lungo ciascun legame che tocca ∂−Λ
dall’esterno le particelle vengono create con tasso ρ = e−∆β e sono annientate con tasso 1,
mentre all’interno di Λ0 le particelle sono conservate. Si noti che uno scambio di numeri
occupazionali η(x) per ogni x all’interno dell’anello Λ \Λ0 non comporta alcuna variazione
di energia.

Osservazione 2.3.1. La dinamica stocastica definita da (2.3.16) è reversibile rispetto alla misura di
Gibbs gran canonica

µ(η) :=
e−βĤ(η)

Z
, Z :=

∑
η∈X

e−βĤ(η), η ∈ X. (2.3.17)
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Figura 2.5 – In entrambi i cluster rappresentiamo in grigio la particella che sta per staccarsi: quella
a sinistra (risp. destra) è sporgente (risp. non sporgente) e staccarla ha una probabilità dell’ordine di
e−U1β (risp. e−(U1+U2)β).

`c

`c − 1

12× 12

Figura 2.6 – Configurazioni critiche nel regime isotropo per `c = 14.

Nel resto di questa sezione presenteremo i principali risultati riguardanti la metastabilità
e la nucleazione per il modello locale in tutti e tre i regimi. Innanzitutto, si noti che il regime
metastabile corrisponde a prendere

∆ ∈ (U1, U1 +U2). (2.3.18)

Una caratteristica particolare della dinamica di Kawasaki è che nel regime metastabile (2.3.18)
le particelle si muovono lungo il bordo di una goccia più rapidamente di quanto arrivino dal
bordo della scatola. Più precisamente, la condizione ∆ > U1 implica che l’arrivo di nuove
particelle è più lento della dissociazione delle particelle sporgenti (si veda la Figura 2.5 a
sinistra), mentre la condizione ∆ < U1 +U2 implica che l’arrivo di nuove particelle è più
veloce della dissociazione delle particelle non sporgenti (si veda la Figura 2.5 a destra). Si noti
che nel caso di interazioni isotrope la condizione in (2.3.18) si legge come U < ∆ < 2U. Per
tutti questi tre regimi abbiamo che la scatola vuota

� := {η ∈ X : η(x) = 0 ∀ x ∈ Λ} (2.3.19)

è l’unico stato metastabile e la scatola piena

� := {η ∈ X : η(x) = 1 ∀ x ∈ Λ0, η(x) = 0 ∀ x ∈ Λ \Λ0} (2.3.20)

è l’unico stato stabile, purché L sia sufficientemente grande. Questa ipotesi è necessaria per
avere Ĥ(�) < Ĥ(�) = 0 e più avanti forniremo un limite inferiore esplicito per L. L’uscita
dalla metastabilità consiste quindi nell’analizzare la transizione da � a �. I principali oggetti
dell’analisi sono la stima di questo tempo di transizione e la descrizione geometrica delle
gocce critiche che il sistema deve attraversare per eseguire la nucleazione, il cosiddetto varco
per la transizione. Inoltre, un aspetto cruciale sia da un punto di vista probabilistico che fisico
è la descrizione dell’unione di tutti i varchi minimali, dove un varco minimale è un varco che è
minimo per inclusione. Questi hanno il significato fisico di “insiemi minimi di configurazioni
critiche” e sono un passo cruciale nella descrizione delle traiettorie tipiche.

Per rendere precisa l’ipotesi precedente su L, introduciamo le cosiddette lunghezze critiche.
In particolare, nel regime isotropo U1 = U2 = U definiamo la lunghezza critica come

`c :=

⌈
U

2U−∆

⌉
, (2.3.21)
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`∗2

`∗1

`∗2

2`∗2 − 2

Figura 2.7 – Configurazioni critiche canoniche nel regime debolmente anisotropo (sulla sinistra) e nel
regime fortemente anisotropo (sulla destra).

mentre nei regimi anisotropi (U1 6= U2) definiamo rispettivamente la lunghezza critica
orizzontale e verticale come

`∗1 :=

⌈
U1

U1 +U2 −∆

⌉
, `∗2 :=

⌈
U2

U1 +U2 −∆

⌉
. (2.3.22)

Richiediamo quindi

L >

2`c per il regime isotropo,

2`∗1 per i regimi anisotropi.
(2.3.23)

Abbiamo bisogno inoltre di alcune ipotesi di non degenerazione. In particolare, per il modello
isotropo assumiamo

U

2U−∆
/∈N, (2.3.24)

mentre per i modelli anisotropi assumiamo

U1
U1 +U2 −∆

/∈N,
U2

U1 +U2 −∆
/∈N. (2.3.25)

Per evitare casi banali patologici, assumiamo inoltre

∆ ∈


(
3
2U, 2U

)
per il regime isotropo,(

U1 +
U2
2 , U1 +U2

)
per i regimi anisotropi.

(2.3.26)

Notiamo che la condizione (2.3.26) garantisce che tutte le lunghezze critiche siano maggiori
di due. Nel resto di questa sezione assumeremo che tali condizioni (2.3.23)-(2.3.26) siano
valide. Da [16, 75, 90] è ben nota la forma delle gocce critiche canoniche per i tre regimi:
sono costituite da una forma rettangolare con l’aggiunta di una protuberanza (cioè una
particella attaccata a un lato del cluster rettangolare) e di una particella libera ovunque in
Λ (cioè una particella che non interagisce con le altre). Si veda la Figura 2.6 a sinistra e
la Figura 2.7. Più precisamente, queste costituiscono un varco per la transizione, cioè un
insieme di configurazioni che sarà attraversato con probabilità tendente a 1 nel limite di β
che va all’infinito. Per definire rigorosamente il concetto di varco, un ruolo centrale è giocato
dall’insieme dei cammini ottimali, che sono quei cammini (ovvero sequenze di configurazioni
comunicanti) che tra tutti quelli che vanno da � a � realizzano il valore minimo dell’energia
massima raggiunta in un singolo cammino. Poniamo formalmente

(�→ �)opt := {ω : �→ � : max
ξ∈ω

Ĥ(ξ) = Φ(�,�)}, (2.3.27)

dove ω : �→ � è un cammino generico che collega � a � e

Φ(�,�) := min
ω:�→�

max
ξ∈ω

Ĥ(ξ) (2.3.28)
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Figura 2.8 – Cammino tipico per forte anisotropia (a sinistra) e debole anisotropia (a destra), in cui si
evidenzia con W la forma della configurazione critica di Wulff.

è l’altezza di comunicazione tra � e �. Definiamo quindi un varco C∗(�,�) per il passaggio
da � a � come sottoinsieme dell’insieme delle selle minime S(�,�) tale che ogni cammino
ω ∈ (�→ �)opt attraversa l’insieme C∗(�,�), dove

S(�,�) := {ζ ∈ X : ∃ω ∈ (�→ �)opt,ω 3 ζ tale che Ĥ(ζ) = Φ(�,�)}. (2.3.29)

Una prima importante differenza che viene fuori nei diversi regimi è quella che nel regime
fortemente anisotropo la forma delle gocce critiche non è Wulff, dove la forma di Wulff è
quella che minimizza l’energia di una goccia a volume fissato. In effetti la forma di Wulff
corrisponde a gocce rettangolari di dimensioni orizzontali e verticali rispettivamente pari a `1
e `2 tale che `1 − `2 sia di ordine

¯̀ :=
⌈

U1 −U2
U1 +U2 −∆

⌉
, (2.3.30)

che si chiamano rettangoli standard. Si noti che nel regime isotropo ciò significa che i cluster
quadrati hanno la forma di Wulff. Dalla forma delle gocce critiche canoniche è facile verificare
che nel modello isotropo la forma di Wulff coincide con la forma critica, cosicché non è
possibile distinguerle. Un’analisi rigorosa della non equivalenza tra configurazioni critiche e
forma di Wulff motiva lo studio dei modelli anisotropi ed è un primo passo per mostrare la
robustezza dell’argomentazione radicata nella natura dinamica dei sistemi metastabili. Da un
lato osserviamo che anche nel modello debolmente anisotropo la goccia critica ha una forma
Wulff, ma in questo caso l’evoluzione del sistema non segue configurazioni con forma di
Wulff. In effetti il sistema segue i cosiddetti rettangoli domino, che sono rettangoli per i quali la
dimensione orizzontale è “quasi” il doppio di quella verticale (si veda la Figura 2.8 a sinistra).
Dall’altro lato osserviamo che nel regime fortemente anisotropo le configurazioni critiche non
hanno forma di Wulff. Il custer rettangolare, infatti, non è standard, ma è un rettangolo domino,
e la dinamica incrocia la forma critica di Wulff solo nella sua parte supercritica (si veda la
Figura 2.8 a destra). In conclusione, in entrambi i regimi anisotropi la forma di Wulff non è
rilevante nello schema di nucleazione come accade per la dinamica anisotropa di Glauber,
si veda [79]. La dinamica localmente conservativa e il movimento delle particelle lungo il
bordo delle gocce dà un effetto di regolarizzazione. Sorprendentemente, come accennato
in precedenza, questo effetto non guida il processo di nucleazione lungo configurazioni
con forma di Wulff, soprattutto nell’ipotesi di forte anisotropia. Ci riferiamo a [16, 90] per
un’ampia discussione.

Indichiamo con C∗ = C∗(�,�) l’insieme delle configurazioni critiche e definiamo Γ∗ :=
Φ(�,�). In [16, 75, 90] gli autori hanno dimostrato che Γ∗ coincide con l’energia delle
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Figura 2.9 – 1-traslazione della barra orizzontale nord a costo U1.

-
+U2

-
0, ..., 0

-
−U2

Figura 2.10 – 1-traslazione della barra verticale est a costo U2.

configurazioni appartenenti a C∗ e che C∗ è un varco per la transizione. Hanno dimostrato
inoltre che, con probabilità tendente a 1 nel limite di β che tende all’infinito, il sistema crea la
goccia critica e raggiunge lo stato stabile � in un tempo di ordine eΓ

∗β quando parte dallo
stato metastabile �. Esiste in particolare una formula esplicita per l’energia di barriera Γ∗ che
dipende dai parametri U1, U2 e ∆ dell’energia Hamiltoniana e rimandiamo a quei lavori per
ulteriori dettagli.

descrizione geometrica del varco

Una questione significativa per la caratterizazione dinamica del sistema è la descrizione
di tutte le configurazioni critiche “rilevanti”. Questa descrizione risulta essere molto ricca
quando affrontiamo la dinamica conservativa di Kawasaki. Una caratteristica cruciale di
questa dinamica, infatti, è che le particelle possono muoversi lungo il bordo delle gocce come
parte di movimenti di regolarizzazione. Ci sono due tipi di movimenti rilevanti: la traslazione
di una barra e lo scorrimento di una barra. Intuitivamente, una barra può essere pensata come
un insieme di particelle connesse che sono collegate ad un cluster e la traslazione di una barra
consiste nell’iterazione dell’1–traslazione rappresentata nelle Figure 2.9-2.10. Lo scorrimento
di una barra consiste invece nello spostamento di una barra attaccata ad un cluster attorno ad
un angolo del cluster e può essere definito come l’iterazione del moto raffigurato in Figura
2.11. Presenteremo più avanti nella Sezione 3.2.1 punto 5 la precisa definizione delle barre e
di questi movimenti. Le citate mosse sono cruciali per la descrizione geometrica completa
del varco. A tal fine abbiamo bisogno di alcune definizioni geometriche. Per prima cosa
definiamo l’insieme Q̄ (risp. Q̃) come l’insieme delle configurazioni che hanno soltanto un
cluster in Λ0 costituito da un rettangolo di dimensioni `1 × `2 con una sola protuberanza
attaccata ad uno dei lati più corti (risp. lunghi), dove

(`1, `2) =


(`c − 1, `c) per il regime isotropo,

(`∗1 − 1, `
∗
2) per il regime debolmente anisotropo,

(2`∗2 − 3, `
∗
2) per il regime fortemente anisotropo.

Indicando con nc il numero di particelle dei cluster in Q = Q̄∪ Q̃, definiamo

D̄ := {η ′ ∈ Vnc | ∃ η ∈ Q̄ : Ĥ(η) = Ĥ(η ′) e Φ|Vnc
(η, η ′) 6 Ĥ(η) +U1},

D̃ := {η ′ ∈ Vnc | ∃ η ∈ Q̃ : Ĥ(η) = Ĥ(η ′) e Φ|Vnc
(η, η ′) 6 Ĥ(η) +U1},

(2.3.31)

dove ricordiamo che Vnc è l’insieme delle configurazioni con nc particelle e Φ|Vnc
(η, η ′)

significa che stiamo calcolando l’altezza di comunicazione tra η e η ′ guardando soltanto i
cammini che attraversano le configurazioni all’interno dell’insieme Vnc . Si noti che Q̄ ⊂ D̄

(risp. Q̃ ⊂ D̃). Per mantenere la notazione concisa abbiamo adottato la stessa per tutti e tre gli
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-
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-
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-
+U2

-
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−U2

Figura 2.11 – Scorrimento di un quadrato unitario attorno all’ “angolo nord-est” a costo U1.



2.3 metastabilità per sistemi conservativi 69

scenari, ma uno può sostituire U1 con U nel caso isotropo. Si noti che l’ultima condizione in
(2.3.31) equivale a richiedere

Φ|Vnc
(η, η ′) < Γ∗ + Ĥ(�) = Γ∗,

che deriva dal fatto che per descrivere i varchi ci interessano soltanto i cammini ottimali, in
modo che l’energia lungo di loro non può superare il valore Γ∗. In parole povere, nei casi
isotropo e debolmente anisotropo si può pensare a D̄ e D̃ come gli insiemi delle configurazioni
costituite da un cluster rettangolare con quattro barre attaccate ai suoi quattro lati tale che la
somma delle lunghezze delle barre è fissato. Per quanto riguarda il modello fortemente aniso-
tropo, questa caratterizzazione viene fuori solo per l’insieme D̄, mentre le configurazioni in D̃

hanno un cluster con una forma diversa. Il motivo per cui sorge questa differenza risiede nel
fatto che nel regime fortemente anisotropo c’è una maggiore rigidità della dinamica, in modo
che il moto delle particelle lungo il bordo di un cluster sia più improbabile. Ne parleremo
meglio in seguito e vedremo il forte impatto che questo effetto ha su altre caratteristiche della
dinamica. Per quanto riguarda il regime isotropo, la caratterizzazione geometrica completa è
stata ottenuta in [35, Teorema 1.4.1], mentre per i regimi anisotropi costituisce una novità di
questa tesi.

Concentriamoci innanzitutto sul regime isotropo. In [35] gli autori hanno dimostrato che
il varco per la transizione C∗ può essere espresso come C∗ = Dfp, dove

D := D̄∪ D̃ (2.3.32)

e l’indice superiore “fp” indica l’aggiunta di una particella libera ovunque all’interno della
scatola Λ (si veda Figura 2.6 a destra). Vediamo gli ingredienti chiave per dimostrare la
suddetta caratterizzazione geometrica del varco. Abbiamo chiaramente che

Ĥ(C∗) = Ĥ(Dfp) = Ĥ(D) +∆ = Ĥ(Q) +∆ = Γ∗

e quindi

Ĥ(D) = Ĥ(Q) = Γ∗ −∆.

Gli ingredienti chiave per ottenere l’asserto sono i seguenti (si ricordi (2.3.28)):
(i) Dimostrare che Φ(�,�) 6 Γ∗.
(ii) Dimostrare che Φ(�,�) > Γ∗.
(iii) Ottenere la descrizione geometrica dell’insieme D.

Per il punto (i) è sufficiente costruire un cammino che collega � a � per cui l’energia lungo
di esso non superi il valore critico Γ∗. Per questo facciamo riferimento a [35, Sezione 2.3.1].

Per quanto riguarda il punto (ii), la dimostrazione si articola in tre passi. Il primo è che
qualsiasi cammino ottimale ω ∈ (� → �)opt (si ricordi (2.3.27)) deve passare attraverso
una configurazione costituita da un singolo cluster rettangolare di dimensioni (`c − 1)× `c
da qualche parte in Λ0. Questo passo si ottiene utilizzando un argomento standard di
tipo disuguaglianza isoperimetrica [1], che garantisce che le configurazioni costituite da
`c(`c − 1) particelle con energia minima sono quelle in cui le particelle formano un unico
cluster rettangolare di dimensioni (`c − 1)× `c. Indichiamo con η tale configurazione, che è
unica modulo traslazioni e rotazioni. Notiamo che

Ĥ(η) = Γ∗ − 2∆+U.

Il secondo passo consiste nel dimostrare che tutti i cammini ottimali devono attraversare
l’insieme Q. Partendo da η, per raggiungere � è necessario che una nuova particella entri
all’interno di Λ0: questo porta l’energia del sistema a raggiungere il valore Γ∗ −∆+U. Prima
che venga creata una nuova particella, l’energia deve dunque diminuire di almeno U: l’unico
modo per farlo è spostare la particella libera finché non si attacca al cluster, dando luogo ad
una configurazione in Q. Il passo finale consiste nel dimostrare che per raggiungere � da
Q l’energia deve raggiungere il valore Γ∗. Da [1] deduciamo che l’unica mossa consentita è
aggiungere una particella libera, dando luogo ad una configurazione con energia Γ∗.

Il punto (iii) fornisce la descrizione completa del varco. Infatti, una volta che il sistema è in
Q, prima dell’arrivo della particella seguente, il sistema può raggiungere tutte le configurazioni
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Figura 2.12 – Configurazioni critiche in C∗ nel regime debolmente (risp. fortemente) anisotropo sulla
sinistra (resp. destra). Inoltre, se la particella libera viene rimossa, otteniamo una configurazione in
D̄ \ Q̄.

che hanno la stessa energia, lo stesso numero di particelle e che possono essere raggiunte ad
un costo inferiore o uguale ad U, che sono appunto quelle appartenenti a D. Per ottenere
questo bisogna studiare tutti i possibili moti delle particelle che possono avvenire sul bordo
della goccia, come rappresentato nelle Figure 2.9-2.11.

Attraverso questo ragionamento abbiamo anche caratterizzato l’ingresso nell’insieme delle
configurazioni critiche. Dai passaggi precedenti, infatti, segue che ogni ω ∈ (� → �)opt
attraversa prima l’insieme Q, poi eventualmente l’insieme D\Q, ed infine l’insieme C∗. Questa
analisi raffinata della dinamica è cruciale quando si cerca di trovare stime più forti relative
al tempo medio di transizione. Vedremo nel prossimo paragrafo come risolvere questa
problematica.

Consideriamo ora il regime debolmente anisotropo. Notiamo innanzitutto che in questo
caso

Ĥ(D̄) = Γ∗ −∆ < Γ∗ −∆+U1 −U2 = Ĥ(D̃). (2.3.33)

La principale differenza che viene fuori rispetto al regime isotropo è che in presenza di debole
anisotropia il varco C∗ può essere espresso come C∗ = D̄fp, si veda la Figura 2.12 a sinistra
(si confronti con (2.3.32)). Il motivo per cui soltanto l’insieme D̄ è rilevante per l’insieme C∗ è
il seguente. Partendo dall’insieme D̃, la dinamica passa attraverso l’insieme D̄ oppure non
è possibile che si crei una particella libera senza superare il livello di energia Γ∗. Infatti, da
(2.3.33) sappiamo che qualsiasi configurazione η ∈ D̃ ha energia Ĥ(η) = Γ∗ −∆+U1 −U2.
Per l’ottimalità del cammino, partendo da tale η è possibile creare una particella libera solo
dopo aver abbassato l’energia. Questo è possibile solo se η ∈ Q̃, infatti in tal caso possiamo
staccare la protuberanza e riattaccarla su un lato verticale, ottenendo così una configurazione
in Q̄.

Per quanto riguarda il regime fortemente anisotropo, è lecito aspettarsi che anche in questo
caso soltanto D̄ è l’insieme rilevante per il varco. Questo è infatti ciò che succede. Tuttavia,
le configurazioni in D̃ hanno una forma molto diversa nel regime fortemente anisotropo
rispetto a quelli isotropi e debolmente anistropi. Più precisamente, le configurazioni in questo
insieme ora non consistono più in un’unica goccia rettangolare con quattro barre attaccate ai
suoi quattro lati. Partendo da una configurazione η ∈ Q̃, infatti, soltanto una mossa a costo
U2 è ammessa. Altrimenti, se avvenisse una mossa a costo U1, la configurazione risultante
avrebbe energia Γ∗ −∆+ 2U1 −U2 > Γ

∗, quindi il cammino descritto non sarebbe ottimale.
Deduciamo quindi che il varco C∗ può essere espresso come C∗ = D̄fp (si veda la Figura 2.12

a destra).
Nonostante il fatto che la struttura del varco sia simile per i tre scenari, sottolineiamo che

l’ingresso in essi è molto diverso. In particolare, per il caso fortemente anisotropo ci sono
due diversi meccanismi per entrare nel varco, mentre per gli altri due scenari ce n’è uno
unico, si veda [18, Lemma 7.13]. In particolare abbiamo dimostrato che ogni ω ∈ (�→ �)opt
raggiunge l’insieme C∗ in uno dei seguenti modi:

(i) ω passa per Q̄, quindi eventualmente attraverso D̄ \ Q̄, e infine raggiunge C∗;
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Figura 2.13 – Secondo meccanismo per l’ingresso nel varco nel regime fortemente anisotropo: la
configurazione (1) consiste in un cluster rettangolare di dimensioni (2`∗2 − 1)× (`∗1 − 1) ed ha energia
pari a Γ∗ −∆+U2 −U1, quindi le configurazioni (7) e (11) hanno energia pari a Γ∗. In (12) indichiamo
con una freccia tratteggiata il distacco della protuberanza a costo U1 ed in seguito il movimento della
particella libera fino a che non si attacca al cluster, facendo sì che l’energia decresca di U1 +U2. Quando
la particella libera si stacca la dinamica raggiunge l’insieme C∗.

(ii) ω segue il cammino descritto in Figura 2.13.
Questa è la conseguenza di una maggiore rigidità della dinamica nel caso fortemente

anisotropo. Una parte importante dei moti di regolarizzazione delle particelle lungo il bordo
dei cluster si viene a perdere e per questo motivo appare un nuovo meccanismo per entrare
nell’insieme delle configurazioni critiche.

descrizione geometrica dell’unione di tutti i varchi minimali

Da un lato è chiaro che le proprietà strettamente correlate alle dimensioni orizzontali e
verticali sono le stesse per i casi anisotropi. D’altra parte, alcune proprietà che coinvolgono
il moto delle particelle lungo il bordo delle gocce sono molto diverse. Si potrebbe pensare
intuitivamente del caso debolmente anisotropo come una “interpolazione” tra quello isotropo
e fortemente anisotropo. In effetti, ha alcune proprietà simili al primo, altre al secondo.
Evidenziamo ora questa differenza nella descrizione dell’insieme

G(�,�) :=
⋃

W(�,�) varco minimale
W(�,�),

dove un varco minimale W(�,�) è un varco minimo per inclusione, cioè W(�,�) è un varco
e per qualsiasi W ( W(�,�) esiste ω ′ ∈ (� → �)opt tale che ω ′ ∩W ′ = ∅. Si noti che
l’insieme G(�,�) rappresenta l’unione di tutti i varchi minimali per il passaggio da � a �.
Per il caso isotropo sono consentiti più spostamenti lungo il bordo dei cluster e quindi è
più difficile fornire una descrizione geometrica esplicita di tale insieme, mentre per i casi
anisotropi la otteniamo pienamente, poiché la condizione U1 6= U2 rende più improbabile
lo spostamento delle particelle lungo il bordo delle gocce. Tra i casi anisotropi, la struttura
dell’insieme G(�,�) dipende fortemente da quanto è grande U1 rispetto a U2, infatti nel caso
U1 > 2U2 sono consentiti meno scivolamenti lungo il bordo e quindi la struttura dell’unione
dei varchi minimali è meno ricca rispetto a quella nel caso debolmente anisotropo. Questa
caratterizzazione per tutti e tre gli scenari rappresenta un contributo innovativo di questa tesi.

Il punto di partenza di questa analisi è l’introduzione del concetto di sella non essenziale. In
parole povere, una sella ζ ∈ S(�,�) (si ricordi (2.3.29)) è detta non essenziale se può essere
“aggirata” da un cammino ottimale in uno dei suoi dintorni, vale a dire, se per qualsiasi
cammino ottimale che attraversa ζ esiste un altro cammino ottimale che non attraversa ζ
in modo tale che i due cammini non differiscano troppo. Formalmente, questo accade
se per qualsiasi ω ∈ (� → �)opt tale che ω ∩ ζ 6= ∅ abbiamo {arg maxω Ĥ} \ {ζ} 6= ∅ ed
esiste ω ′ ∈ (� → �)opt tale che {arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ζ}. Definiamo quindi le
selle essenziali come quelle che non sono non essenziali. La nozione di selle essenziali è
cruciale nel tentativo di caratterizzare l’unione dei varchi minimali grazie a [85, Teorema
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Figura 2.14 – Esempio del panorama energetico per la transizione tra � e �. Rappresentiamo sulla sini-
stra (risp. destra) il ciclo dello stato metastabile (risp. stabile) C��(Γ

∗) (risp. C��(Γ
∗ − Ĥ(�))). Indichiamo

C∗ in nero, K e K̃ in grigio chiaro, evidenziando in grigio scuro la parte di K e K̃ che interseca i bordi dei
due cicli precedenti. Forniamo un esempio di due configurazioni σ e σ ′ che sono in CB.

5.1]. Infatti gli autori hanno dimostrato che una sella è essenziale se e solo se appartiene
all’unione di tutti i varchi minimali. Grazie a questa equivalenza possiamo ridurre il nostro
studio all’identificazione dell’insieme di tutte le selle essenziali che devono essere attraversate
durante la transizione nei tre diversi regimi.

Per prima cosa forniamo una strategia indipendente dal modello utile ad eliminare alcune selle
non essenziali. Più precisamente abbiamo bisogno di alcuni input dipendenti dal modello
per dimostrare che due tipologie di selle non sono essenziali e quindi non appartengono
all’unione dei varchi minimali. Per applicare questa strategia alla dinamica di Kawasaki
dobbiamo quindi verificare che gli input richiesti sono validi per il nostro modello nei tre
scenari. Questo studio, insieme alla caratterizzazione delle selle essenziali, si basa su un’analisi
dettagliata del movimento delle particelle lungo il bordo delle gocce, che è una caratteristica
tipica della dinamica di Kawasaki. Per non appesantire troppo la spiegazione delle idee di
base, presentiamo qui questa strategia indipendente dal modello applicata direttamente alla
dinamica di Kawasaki per la transizione da � a �, mentre ci riferiamo alla Sezione 3.1.2 per
la strategia generale.

Si ricordi [45, eq. (3.40)] per la definizione di ciclo: nel caso di una dinamica di Metropolis
questa definizione coincide con [85, eq. (2.7)]. Abbiamo bisogno della seguente definizione.
Dati σ ∈ X, Γ > 0 ed un insieme di configurazioni di arrivo A, diciamo che il ciclo iniziale per
la transizione da σ ad A con profondità Γ è

CσA(Γ) := {σ}∪ {η ∈ X : Φ(σ, η) − Ĥ(σ) < Γ = Φ(σ,A) − Ĥ(σ)}. (2.3.34)

In parole, questo ciclo iniziale contiene tutte le configurazioni raggiungibili da σ spendendo
meno energia rispetto all’altezza di comunicazione tra σ e l’insieme di arrivo A. Si noti
che nella definizione (2.3.34) sottolineiamo la dipendenza da σ e A, e che Γ è identificato
da essi. Si noti che la definizione di CσA(Γ) coincide con CA(σ) definito in [85, eq. (2.25)].
Ci concentreremo sui due specifici cicli iniziali C��(Γ

∗) e C��(Γ
∗ − Ĥ(�)). In parole povere,

per applicare la strategia generale al nostro modello, abbiamo bisogno dei seguenti input
dipendenti dal modello (incoraggiamo il lettore ad ispezionare la Figura 2.14):

(i) Identificare l’insieme degli stati metastabili e stabili e la barriera energetica tra loro,
che nel nostro modello sono rispettivamente �, � e Γ∗.

(ii) Trovare un varco per la transizione, che nel nostro modello è C∗.
(iii) Trovare due insiemi di configurazioni CG e CB tali che quando la dinamica raggiunge

CG, l’ha fatto “oltre la collina”, mentre quando raggiunge CB no.
(iv) Identificare i sottoinsiemi K (risp. K̃) delle selle che sono visitate dai cammini ottimali

“appena prima di entrare” (risp. “appena dopo aver visitato”) il varco.
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Figura 2.15 – Siti buoni (G) e siti cattivi (B) per `c = 14.

Definizione 2.3.1. Una sella σ è del primo tipo se non è in C∗ ∪ K e appartiene al bordo del ciclo
C��(Γ

∗), cioè σ ∈ ∂C��(Γ∗)∩ (S(�,�) \ (C∗ ∪K)).
Definizione 2.3.2. Una sella ζ è del secondo tipo se non è in C∗ ∪ K̃ e appartiene al bordo del ciclo
C��(Γ

∗ − Ĥ(�)), cioè ζ ∈ ∂C��(Γ∗ − Ĥ(�))∩ (S(�,�) \ (C∗ ∪ K̃)).
Quindi, a condizione che le condizioni (i)-(iv) siano verificate per il nostro modello,

valgono i seguenti risultati:
1. Ogni sella σ del primo tipo è non essenziale.
2. Ogni sella ζ del secondo tipo è non essenziale.

Da un lato sottolineiamo che il punto 1 è garantito solo dagli input dipendenti dal modello
(i), (ii) e (iv). Infatti, l’idea della dimostrazione è la seguente. Dato un cammino ottimale ω
che passa da una sella σ del primo tipo e attraversa il ciclo C��(Γ

∗) per l’ultima volta nella
configurazione η, grazie a [85, Lemma 2.28] sappiamo che esiste un cammino contenuto in
quel ciclo C��(Γ

∗), cosicché non attraversa la sella σ, tale che può procedere come ω a partire
da η. Pertanto il cammino ω ′ ottenuto dalla concatenazione di questi due cammini ha la
proprietà desiderata, cioè

{arg max
ω ′

Ĥ} ⊆ {arg max
ω
Ĥ} \ {σ}.

Sottolineiamo invece che per il punto 2 tutti gli input dipendenti dal modello sono
necessari. In particolare il punto (iii) risulta cruciale. Infatti, l’idea della dimostrazione è la
seguente. Per il punto (iii) deduciamo che ogni cammino ottimale ω che attraversa una sella
del secondo tipo ζ deve attraversare una sella η ∈ C∗ ∪ K̃ che comunica con CG attraverso un
passo della dinamica. Possiamo quindi definire il cammino ottimale ω ′ come il cammino
uguale ad ω fino alla sella η che poi raggiunge l’insieme CG, procedendo successivamente in
C��(Γ

∗ − Ĥ(�)). È facile verificare che il cammino ω ′ ha la proprietà desiderata.
Per caratterizzare tutte le selle essenziali, l’idea è quindi quella di partizionare le selle che

non sono in C∗ in tre tipi: le selle σ del primo tipo, le selle ζ del secondo tipo, e le selle ξ del
terzo tipo, che sono tutte le selle che non sono né del primo né del secondo tipo. Il motivo per
cui escludiamo le selle appartenenti a C∗ è che sono tutte essenziali, come vedremo più avanti
nel dettaglio. Dopo l’individuazione dei punti (iii) e (iv) precedenti, vale a dire gli insiemi CB,
CG, K e K̃, la strategia spiegata sopra ci dice che le selle del primo e del secondo tipo sono
non essenziali. Per caratterizzare l’insieme G(�,�) dobbiamo quindi caratterizzare le selle
essenziali del terzo tipo, che è un compito che deve essere affrontato a mano per qualsiasi
modello e risulta essere intricato per la dinamica conservativa di Kawasaki.

Introduciamo in primo luogo gli insiemi CG e CB con le proprietà rivendicate al punto (iii)
precedente. A tal fine poniamo

L∗ :=

L− `c per il regime isotropo,

L− `∗2 per i regimi anisotropi.
(2.3.35)
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Figura 2.16 – Sulla sinistra rappresentiamo i siti buoni (G) e i siti cattivi (B) per `∗2 = 8. Sulla sinistra
rappresentiamo con x i siti in B1(η̂), con y i siti in B̄2(η̂), con z e z̄ i siti in B̄3(η̂) e con z̄ e w i siti in
B̄4(η̂).

Ad ogni η ∈ C∗ associamo la coppia (η̂, x), dove η̂ ∈ D rappresenta la goccia protocritica e
x ∈ Λ la posizione della particella libera. Indichiamo con CG(η̂) (risp. CB(η̂)) le configurazioni
raggiungibili da (η̂, x) da un cammino che sposta la particella libera verso il cluster e la attacca
in ∂−CR(η̂) (risp. ∂+CR(η̂)), dove CR(η̂) è il rettangolo circoscritto di η̂, cioè il rettangolo più
piccolo contenente η̂. Nelle Figure 2.15 e 2.16 a sinistra per un η̂ specifico rappresentiamo
esplicitamente i siti buoni e cattivi rispettivamente per interazioni isotrope e fortemente
anisotrope. Siano

CG =
⋃

η̂∈D
CG(η̂), CB =

⋃

η̂∈D
CB(η̂). (2.3.36)

Per dimostrare che questi insiemi specifici soddisfano le condizioni richieste in (iii), ragionia-
mo come segue. Affermiamo che per tutti e tre i regimi valgono le seguenti proprietà:

1. Se η ∈ CG, allora esiste un cammino ω : η→ � tale che maxζ∈ω Ĥ(ζ) < Γ∗.

2. Se η ∈ CB, allora non ci sono ω : η→ � oppure ω : η→ � tale che maxζ∈ω Ĥ(ζ) < Γ∗.

Queste due proprietà sono precisamente quelle richieste al punto (iii). La dimostrazione per
il caso isotropo è presentata in [35], mentre per i casi anisotropi sono presentate in [17, 18] e
usa argomentazioni simili.

Identifichiamo ora gli insiemi K e K̃ in (iv). Questi insiemi sono costituiti rispettivamente
dalle selle che sono visitate dai cammini ottimali appena prima di entrare e subito dopo la
visita all’insieme C∗. Per i tre regimi abbiamo che K = ∅. Per identificare le selle del secondo
tipo osserviamo che abbiamo bisogno soltanto di identificare l’insieme K̃∩ ∂C��(Γ∗ − Ĥ(�)).
Abbiamo dimostrato che questo insieme ha una struttura piuttosto complessa nei casi isotropi
e debolmente anisotropi, mentre è vuoto per il caso fortemente anisotropo. Questa differenza si
basa ancora una volta su una maggiore rigidità dei moti delle particelle nel regime fortemente
anisotropo. Questa analisi è molto tecnica e quindi non riportiamo qui gli ingredienti della
prova, ma ci riferiamo alle Sezioni 3.4, 4.3 e 5.3 per l’argomentazione precisa e dettagliata che
abbiamo usato nei tre regimi.

Per dimostrare che C∗ è composto soltanto da selle essenziali, dobbiamo prima introdurre
due insiemi che saranno cruciali nella nostra argomentazione. Per ogni η ∈ C∗ sia η̂ ∈ D la
configurazione ottenuta da η rimuovendo la particella libera. Per A ⊆ Λ e x ∈ Λ, indichiamo
con d(x,A) la distanza sul reticolo tra x e A. Abbiamo bisogno delle seguenti definizioni.

Definizione 2.3.3. Sia Λ4 ottenuto da Λ rimuovendo i suoi quattro angoli. Definiamo ricorsivamente

B1(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, η̂) = 1}

e

B2(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, B1(η̂)) = 1},
B̄2(η̂) := B2(η̂),
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Figura 2.17 – Configurazioni critiche nel caso isotropo.

e

B3(η̂) := {x ∈ Λ4| x /∈ B1(η̂), d(x, B2(η̂)) = 1},
B̄3(η̂) := B3(η̂)∪ {B̄2(η̂)∩ ∂−Λ4},

e per i = 4, 5, ..., L∗

Bi(η̂) := {x ∈ Λ4| x /∈ Bi−2(η̂), d(x, Bi−1(η̂)) = 1},
B̄i(η̂) := Bi(η̂)∪ {B̄i−1(η̂)∩ ∂−Λ4}.

In parole, B1(η̄) è l’anello dei siti in Λ4 a distanza 1 da η̂, mentre B̄i(η̂) è l’anello dei siti
in Λ4 a distanza i da η̂ e da tutti i siti in ∂−Λ4 a distanza 1 < j < i da η̂ (i = 2, 3, ..., L∗) (si
veda Figura 2.16 sulla destra). Si noti che, a seconda della posizione di η̂ in Λ, gli insiemi
B̄i(η̂) coincidono per i sufficientemente grande. Il numero massimo di anelli è L∗. Definiamo

C∗(i) := {(η̂, x) : η̂ ∈ D, x ∈ B̄i(η̂)}, i = 2, 3, ..., L∗. (2.3.37)

Notiamo per prima cosa che gli insiemi C∗(i) non sono disgiunti. Dalla definizione dell’insie-
me C∗ e da (2.3.37) deduciamo che

C∗ =
L∗⋃

i=2

C∗(i). (2.3.38)

La dimostrazione del fatto che C∗ ⊆ G(�,�) si ottiene attraverso due passi:

passo 1 : Le selle in C∗(2) sono essenziali.

passo 2 : L’insieme C∗(i) appartiene ad un varco minimale per ogni i = 3, ..., L∗.

Da un lato si ha che la dimostrazione del passo 1 è la stessa per i tre regimi e si basa sul fatto
che è sempre possibile trovare un cammino ottimale che attraversi l’insieme C∗(2) solo in un
data configurazione η. La dimostrazione del passo 2 è invece diversa se abbiamo a che fare
regimi isotropi o debolmente anisotropi, e con il regime fortemente anisotropo.

Iniziamo considerando i casi isotropo e debolmente anisotropo. Il passo 2 si ottiene
dimostrando che l’insieme C∗(i) è un varco minimale per ogni i = 3, ..., L∗. Dal fatto che
C∗ è un varco segue infatti che anche ogni C∗(i) lo è. Inoltre è sempre possibile trovare un
cammino ottimale che attraversi l’insieme C∗(i) solo in una data configurazione η, in modo
che l’insieme C∗(i) \ {η} non è più un varco, mostrando quindi la minimalità di un tale varco.

L’analisi è invece diversa quando si ha a che fare con il caso fortemente anisotropo.
Infatti, poiché ci sono due modi possibili per raggiungere l’insieme C∗(2), per trovare i varchi
minimali dobbiamo considerare per ogni i = 3, ..., L∗ l’unione dell’insieme C∗(i) con alcune
particolari selle appartenenti al cammino descritto in Figura 2.13. Questo implica comunque
il passo 2.

Infine, per ottenere la descrizione geometrica completa dell’unione di tutti i varchi minima-
li, dobbiamo descrivere le selle essenziali del terzo tipo per tutti e tre gli scenari. Questa parte
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Figura 2.18 – Configurazioni critiche nel caso debolmente anisotropo.
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Figura 2.19 – Configurazioni critiche nel caso fortemente anisotropo.

è molto tecnica e richiede definizioni geometriche dettagliate, quindi qui saltiamo i dettagli
e facciamo invece riferimento alle Sezioni 3.5, 4.4 e 5.4. Di seguito riportiamo solo alcuni
esempi di configurazioni appartenenti a G(�,�) per dare un’idea della forma di tutte le selle
essenziali. In Figura 2.17 mostriamo tre configurazioni appartenenti all’insieme G(�,�) nel
caso isotropo. Si noti che la configurazione a destra non ha particelle libere e si ottiene durante
lo scorrimento di una barra attorno ad un angolo della goccia. Sottolineiamo che in questo
caso molti movimenti lungo il bordo sono ammessi e quindi una descrizione geometrica
del tutto esplicita dell’insieme G(�,�) è più difficile da ottenere. In Figura 2.18 mostriamo
due configurazioni appartenenti all’insieme G(�,�) nel caso debolmente anisotropo. Infine,
in Figura 2.19 mostriamo due configurazioni appartenenti all’insieme G(�,�) nel caso for-
temente anisotropo. Concludiamo questa parte riguardante l’analisi geometrica di tutti
i varchi minimali fornendo le idee di base per derivare questa descrizione geometrica. Il
primo passo consiste nel dividere le selle che restano da analizzare in quelle raggiunte prima
di raggiungere GB e dopo aver attraversato quell’insieme. Le prime tipologie di selle sono
chiaramente non essenziali. Possiamo infatti argomentare come segue. Sia ξ una tale sella.

Se ξ viene raggiunta prima di attraversare l’insieme CG, allora è ottenuta da una configu-
razione η ∈ C∗ senza attaccare la particella libera. Deduciamo quindi che l’unica possibilità
è che η sia composta da un goccia protocritica η̂ ∈ D e da una particella libera a distanza
due dal cluster. Deduciamo quindi che, partendo da ξ, l’unica transizione che non aumenta
l’energia è la mossa inversa che dà origine a η, quindi ξ è una sella non essenziale.

Se ξ viene raggiunta dopo aver attraversato l’insieme CG, per le proprietà dell’insieme CG

segue direttamente la non essenzialità della sella ξ.
Ciò significa che resta solo da analizzare le selle ottenute dopo aver attraversato l’insieme

CB. Questa è la parte più difficile, infatti dipende da tutti i diversi tipi di moti di particelle che
possono aver luogo al bordo dei cluster. Sottolineiamo che tutte le selle raggiunte dopo uno
scivolamento di una barra attorno ad un angolo sono essenziali e l’analisi riguarda quindi la
loro completa caratterizzazione geometrica.

stime più forti

Per quanto riguarda il valore atteso asintotico del tempo di transizione, utilizzando l’approccio
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traiettoriale non è possibile stabilire se la funzione f(β) tale che E�τ� = f(β)eΓ
∗β(1+ o(1))

nel limite di β→ +∞ è tale che log f(β)/β→ 0 oppure è un fattore costante e indipendente
da β. A tal fine, uno studio più dettagliato del cosiddetto prefattore f(β) è dato in [35] per il
modello isotropo in due e tre dimensioni utilizzando l’approccio potenziale–teorico. Il contributo
innovativo di questa tesi relativo alle stime più forti del tempo medio di transizione riguarda
la stima del prefattore per i modelli anisotropi.

Un ruolo chiave in questa analisi è giocato dalla forma di Dirichlet

E(h) =
1

2

∑
η,η ′∈X

µ(η)P(η, η ′)[h(η) − h(η ′)]2, h : X→ [0, 1], (2.3.39)

dove µ è la misura di Gibbs definita in (2.3.17) e P(η, η ′) è la probabilità di transizione definita
in (2.3.16). Dati due insiemi disgiunti e non vuoti A,B ⊆ X, la capacità della coppia A,B è
definita da

CAP(A,B) = min
h:X→[0,1]

h|A≡1,h|B≡0

E(h), (2.3.40)

dove h|A ≡ 1 significa che h(η) = 1 per ogni η ∈ A e h|B ≡ 1 significa che h(η) = 0 per ogni
η ∈ B. Il lato destro di (2.3.40) ha un unico minimizzatore h∗A,B, detto potenziale di equilibrio
della coppia A,B, dato da

h∗A,B = Pη(τA < τB), η ∈ X \ (A∪B). (2.3.41)

Applicando al nostro modello la strategia generale sviluppata in [31] e riassunta nella
monografia [32], la stima precisa del tempo medio di transizione è

E�(τ�) =
1

ZCAP(�,�) (1+ o(1)), β→∞. (2.3.42)

Per ottenere una formula variazionale esplicita per il prefattore partendo da (2.3.42), dobbiamo
prima introdurre una rappresentazione attraverso un grafo dello spazio delle configurazioni.
Visualizzamo quindi X come un grafo i cui vertici sono configurazioni e i cui lati connettono
configurazioni comunicanti. Poniamo

– X∗ come il sottografo di X ottenuto rimuovendo tutti i vertici η con Ĥ(η) > Γ∗ e tutti i
lati incidenti a questi vertici;

– X∗∗ come il sottografo di X∗ ottenuto rimuovendo tutti i vertici η con Ĥ(η) = Γ∗ e tutti
i lati incidenti a questi vertici.

Si noti che gli insiemi C��(Γ
∗) e C��(Γ

∗− Ĥ(�)) sono le componenti connesse di X∗∗ contenenti
rispettivamente � e �. Consideriamo l’insieme

X∗∗ \ (C��(Γ
∗)∪ C��(Γ∗ − Ĥ(�))) =

I⋃

i=1

X(i), (2.3.43)

dove ogni X(i) è una valle in S(�,�), cioè un insieme di configurazioni comunicanti con
energia strettamente inferiore a Γ∗ ma con altezza di comunicazione Γ∗ verso sia � che �. Tra
tutte le valli X(i) possiamo evidenziare le valli Z�j (risp. Z�j ) delle selle non essenziali del
primo (risp. secondo) tipo σj (risp. ζj) (ricordiamo le Definizioni (2.3.1) e (2.3.2)). Per ottenere
la stima precisa di ZCAP(�,�) seguiamo la strategia generale delineata in [31, 37]:

– Tutti i termini nella forma di Dirichlet che coinvolgono configurazioni η con H(η) > Γ∗,
cioè η ∈ X \X∗, contribuiscono al massimo di Ce−(Γ∗+δ)β per qualche δ > 0 e quindi
possono essere trascurati. Quindi, effettivamente, possiamo sostituire X con X∗.

– Mostrare che h∗�,� = O(e−δβ) su C��(Γ
∗ − Ĥ(�)) e h∗�,� = 1−O(e−δβ) su C��(Γ

∗)
per qualche δ > 0.

– Dimostrare stime superiori ed inferiori più precise per h∗�,� su X∗ \ (C��(Γ
∗)∪C��(Γ∗−

Ĥ(�))).
Inoltre, un contributo innovativo di questa tesi è dimostrare che vale anche

h∗�,� = O(e−δβ) su
J�⋃

j=1

({ζj}∪Z�j ) (2.3.44)



78 introduzione

e

h∗�,� = 1−O(e−δβ) su
J�⋃

j=1

({σj}∪Z�j ) (2.3.45)

per qualche δ > 0. Ciò consente una piena comprensione del ruolo delle selle non essenziali ed
essenziali nel calcolo del prefattore del tempo medio di escursione. Infatti anche le selle non
essenziali σj e ζj devono essere considerate in questa stima. Tuttavia, poiché il potenziale di
equilibrio è costantemente uguale ad 1 (risp. 0) su σj (risp. ζj), le transizioni che coinvolgono
queste selle non essenziali non contribuiscono al calcolo del prefattore.

In [35] gli autori hanno fornito una stima del prefattore per la versione a tempo continuo
del modello isotropo ed hanno dimostrato che è una costante che non dipende dal parametro
β, ma soltanto dalla dimensione della scatola e dalla cardinalità dell’insieme delle gocce
critiche di dimensione `c, cioè dalla cardinalità dell’insieme D. Notiamo che nel modello
a tempo discreto che abbiamo definito in Sezione 2.3.2, ad ogni passo temporale vengono
scambiate le variabili di occupazione per al massimo un legame tra i siti primi vicini, cosicché
per le dinamiche a tempo continuo il tempo medio di transizione viene riscalato di un
fattore 1/|Λ̄∗,orie|. Queste stime del prefattore sono possibili una volta che viene fornita la
descrizione geometrica delle configurazioni critiche e di quelle che si trovano nei loro dintorni.
Gli autori hanno dimostrato in particolare che esiste una costante K = K(Λ, `c) tale che

E�(τ�) = KeΓ
∗β(1+ o(1)), β→∞. (2.3.46)

Gli autori hanno derivato una rappresentazione per la costante K in termini di determinate
capacità associate ad una passeggiata aleatoria semplice bidimensionale. Questa rappresenta-
zione dipende dalla geometria di C∗ e delle sue immediate vicinanze, cioè quelle configurazioni
η ∈ X \ C∗ per cui esiste η ′ ∈ C∗ tale che η ′ = Tbη per un legame b ∈ Λ̄∗,orie (ricorda
(2.3.12)). Questa immediata vicinanza è in realtà piuttosto complessa: questo è dovuto al fatto
che quando la particella libera si attacca impropriamente alla goccia protocritica (cioè in un
sito cattivo), questa innesca un movimento di particelle lungo il bordo della goccia. Di
conseguenza nessuna formula facilmente calcolabile per K è disponibile. Si scopre, tuttavia,
che il comportamento di K per un grande volume Λ può essere calcolato in modo esplicito.
Infatti, in [35] gli autori hanno dimostrato che

lim
Λ→Z2

|Λ|

log |Λ|
K(Λ, `c) =

1

4πN(`c)
, (2.3.47)

dove

N(`c) =

4∑
k=1

(
4

k

)[(
`c + k− 2

2k− 1

)
+ 2

(
`c + k− 3

2k− 1

)]

è la cardinalità di D modulo spostamenti. L’intuizione alla base di questo risultato è la
seguente. Il tempo medio necessario alla dinamica per raggiungere C∗ quando parte da � è

1

|D|

1

|∂Λ∗,in|
eΓ
∗
(1+ o(1)), β→∞, (2.3.48)

dove |D| conta il numero di gocce protocritiche e |∂Λ∗,in| conta il numero di legami diretti da
∂+Λ a ∂−Λ lungo i quali può essere creata la particella libera (si ricordi (2.3.12)). Sia π(Λ, `c)
la probabilità, mediata rispetto alla distribuzione uniforme per la goccia protocritica su D e
la distribuzione uniforme per la particella libera che entra in ∂∗Λin, che la particella libera
si muova da ∂−Λ alla goccia protocritica e si attacchi propriamente (cioè in un sito buono).
Questa è la probabilità che la dinamica, dopo essere entrata nell’insieme C∗, vada avanti verso
� anziché tornare a �. Allora

1

π(Λ, `c)
(1+ o(1)), β→∞ (2.3.49)
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è il numero medio di volte in cui una particella libera appena creata in ∂−Λ tenta di arrivare
alla goccia protocritica e di attaccarsi correttamente prima di riuscire a farlo. Il tempo medio
di nucleazione è il prodotto di (2.3.48) e (2.3.49), e quindi concludiamo che

K(Λ, `c) =
1

|D||∂∗Λin|π(Λ, `c)
. (2.3.50)

Ora abbiamo che

lim
Λ→Z2

|D|

|Λ|
= N(`c). (2.3.51)

Inoltre abbiamo che

lim
Λ→Z2

|∂∗Λin|π(Λ, `c)log |Λ| = 4π. (2.3.52)

Infatti, il termine 4π/ log |Λ| è la probabilità per un grande volume Λ che una particella, dopo
essersi staccata dalla goccia protocritica, raggiunga ∂−Λ prima di riattaccarsi. A causa della
ricorrenza di una passeggiata aleatoria semplice in due dimensioni, per grandi volumi Λ
questa probabilità è indipendente dalla forma e dalla posizione della goccia protocritica,
fintanto che è lontana da ∂−Λ. Per la reversibilità, la mossa inversa ha la stessa probabilità,
che spiega (2.3.52). Allora (2.3.47) segue combinando (2.3.50)-(2.3.52).

Se la particella libera si attacca alla goccia protocritica in un sito cattivo, allora può di
nuovo staccarsi oppure può causare un movimento di particelle lungo il bordo della goccia,
dopo di che un’altra particella può staccarsi, possibilmente formando una diversa goccia
protocritica. Tuttavia, poiché per dei grandi volume Λ una particella libera ha una piccola
probabilità di sfuggire alla goccia protocritica e tornare a ∂Λ, alla fine deve attaccarsi in un
sito buono.

La stima asintotica in (2.3.47) non dipende dalla forma di Λ, cioè sarebbe la stessa se Λ
fosse un cerchio piuttosto che una grande scatola. Inoltre, nel caso tridimensionale in [35]
sono stati ottenuti risultati simili, ma con meno controllo sulla geometria e sulla costante.

Per quanto riguarda i modelli anisotropi, la dimostrazione si basa ancora sugli strumenti
sviluppati nell’approccio potenziale–teorico e le stime che si ottengono sono simili. Tuttavia,
per il regime fortemente anisotropo accade qualcosa di diverso. Infatti, poichè l’ingresso
nell’insieme delle configurazioni critiche è cruciale per la stima del prefattore, il fatto che in
questo regime ci sono due diversi meccanismi per farlo significa che è possibile trovare una
stima migliore. Ci riferiamo alla Sezione 5.1.2 per ulteriori dettagli.

Come abbiamo detto sopra, come la dinamica entra nel varco è una proprietà rilevante da
derivare. In [35] gli autori dimostrano che questa entrata nel regime isotropo è uniforme nel
seguente senso:

lim
β→∞P�

(
ητC∗− = η | τC∗ < τ�

)
=

1

|D|
per ogni η ∈ D, (2.3.53)

dove τC∗− è l’istante appena prima di τC∗ . Questo è ragionevole, infatti le gocce protocritiche
in D, viste appena prima della creazione della particella libera in ∂−Λ, appaiono con uguale
probabilità. Questo è quello che ci aspettiamo anche nel regime debolmente anisotropo,
mentre questo non è il caso in presenza di forte anisotropia. Ci riferiamo a [17, 18] per tutti i
dettagli tecnici, mentre qui approfondiamo la strategia generale dietro.

La monografia [32] fornisce un quadro generale per dimostrare che l’ingresso nel varco
è uniforme. In particolare, gli autori dimostrano la distribuzione uniforme dell’ingresso nel
caso in cui due ipotesi siano soddisfatte. Più precisamente, introduciamo gli insiemi P∗PTA e
C∗PTA come segue. Pensiamo a P∗PTA come all’insieme delle configurazioni dove la dinamica,
partendo dallo stato metastabile, è “quasi in cima alla collina”, e a C∗PTA come l’insieme delle
configurazioni dove la dinamica “ha raggiunto la cima della collina” ed è “capace di passare”
allo stato stabile senza tornare alla “valle intorno allo stato metastabile”. Si rimanda a [32,
Definizione 16.3] per la definizione precisa. Quindi le ipotesi richieste sono

(H1) Esiste un unico stato metastabile ed un unico stato stabile.
(H2) Tutte le configurazioni in C∗PTA hanno lo stesso numero di configurazioni in P∗PTA

da cui possono essere raggiunti tramite un mossa consentita.
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Dal momento che c’è un modo unico per entrare nel varco nel regime debolmente anisotropo,
non accade niente di diverso rispetto al caso isotropo. Tuttavia, la situazione è completamente
diversa in caso di forte anisotropia. Infatti, abbiamo dimostrato che in questo modello
l’insieme P∗PTA coincide con l’unione di D̄ e di gocce protocritiche coinvolte nel secondo
meccanismo per entrare nel varco (come le configurazioni (6) e (10) in Fig. 2.13), e C∗PTA
coincide con l’unione di C∗(L∗) e di alcune selle coinvolte nel secondo meccanismo per entrare
nel varco. Innanzitutto notiamo che C∗ 6= C∗PTA. Si noti inoltre che la condizione (H2) segue
dal risultato relativo ai due meccanismi per entrare nel varco. Quindi, poiché valgono sia (H1)
che (H2), [32, Teorema 16.4(b)] dovrebbe valere, cioè l’ingresso ha una distribuzione uniforme,
ma questo non è vero. Più precisamente, questo modello rappresenta un controesempio di
[32, Teorema 16.4(b)]. Questo dipende dall’ ipotesi (H2), che tiene conto solo della mappa da
C∗PTA a P∗PTA e non di quella inversa. Pertanto proponiamo di sostituire l’ipotesi (H2) con

(H2’) Tutte le configurazioni in C∗PTA hanno lo stesso numero di configurazioni in P∗PTA
da cui possono essere raggiunte tramite una mossa consentita e viceversa.

Siamo convinti che questa possa essere l’ipotesi corretta, infatti l’analisi della distribuzione
dell’ingresso uniforme in C∗PTA deve tener conto del numero di configurazioni in P∗PTA che
comunicano con C∗PTA attraverso un passo della dinamica. Ora è chiaro che questo modello
non soddisfa (H2’), infatti ogni configurazione in D̄ ha esattamente 4L− 4 configurazioni
in C∗ da cui è possibile raggiungerla tramite una mossa consentita, mentre ciascuna delle
altre configurazioni che appartiene a P∗PTA ha una sola configurazione in C∗PTA con questa
proprietà. Pertanto [32, Teorema 16.4(b)] non vale per questo modello.

Abbiamo infine analizzato per tutti e tre i regimi il tasso di convergenza alla distribuzione
stazionaria della catena di Markov di Metropolis {ηt}t∈N. Abbiamo misurato il tasso di
convergenza in termini della distanza in variazionale totale e del tempo di mescolamento,
che descrive il tempo necessario affinché la distanza dalla stazionarietà diventi piccola. Più
precisamente, per ogni 0 < ε < 1, definiamo il tempo di mescolamento come

tmix(ε) := min

{
n > 0 : max

x∈X
||Pn(x, ·) − µ(·)||TV 6 ε

}
, (2.3.54)

dove ||ν − ν ′||TV := 1
2

∑
x∈X |ν(x) − ν ′(x)| per ogni due misure di probabilità ν, ν ′ su X.

Un’altra nozione classica per indagare la velocità di convergenza delle catene di Markov è il
gap spettrale, che è definito come

ρ := a(2), (2.3.55)

dove 1 = a(1) > a(2) > ... > a(|X|) > −1 sono gli autovalori della matrice (P(x, y))x,y∈X
definita in (2.3.16).

Abbiamo quindi dimostrato che per tutti e tre i regimi e per ogni ε ∈ (0, 1) vale

lim
β→∞ 1β log tmix(ε) = Γ∗ = lim

β→∞−
1

β
log ρ.

Esistono inoltre due costanti 0 < c1 6 c2 <∞ indipendenti da β tale che per ogni β > 0 vale

c1e−βΓ
∗ 6 ρ 6 c2e−βΓ

∗
.

2.3.3 Il modello locale sul reticolo esagonale

In questa sezione introduciamo il modello locale sul reticolo esagonale e presentiamo
i principali risultati ricavati in questa tesi. Consideriamo il reticolo esagonale discreto H2

immerso in R2 e sia T2 il suo duale, cosicché T2 è il reticolo triangolare. Diremo che due
siti del reticolo esagonale discreto sono primi vicini quando condividono un lato del reticolo,
si veda la Figura 2.20. Consideriamo un esagono in H2 con raggio L e definiamo Λ ⊂ T2

come l’unione tra questo esagono e tutti i siti, che non appartengono all’esagono, a distanza
reticolare uno dall’esagono. Richiamiamo l’equazione (2.3.9) per la definizione dell’insieme
Λ0, che è definito come Λ senza il suo bordo interno. Con questa scelta del dominio finito
Λ indipendente da β, deduciamo che Λ0 è un esagono di raggio L, si veda la Figura 2.21.
Notiamo che Λ0 contiene 6L2 siti. La lunghezza del lato L è fissa, ma arbitraria, e più
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i

Figura 2.20 – Evidenziamo in nero i siti j tali che d(i, j) 6= 0 sul reticolo esagonale.

Λ0
Λ

Figura 2.21 – Rappresentiamo l’insieme Λ con una linea dritta, mentre rappresentiamo l’esagono Λ0
con una linea tratteggiata.

avanti richiederemo che L sia sufficientemente grande. Ricordiamo la definizione dello spazio
delle configurazioni come X = {0, 1}Λ. Ad ogni configurazione η ∈ X associamo l’energia
hamiltoniana locale Ĥ(η) definita in (2.3.11), dove prendiamo U1 = U2 = U e sostituiamo i
legami verticali e orizzontali sul reticolo quadrato con i legami che collegano i siti primi vicini
sul reticolo esagonale. Possiamo quindi scrivere l’energia come

Ĥ(η) := −U
∑

(x,y)∈Λ∗0

η(x)η(y) +∆
∑
x∈Λ

η(x), (2.3.56)

dove

Λ∗0 = {(x, y) ∈ Λ0 ×Λ0 : |x− y| = 1}

è l’insieme dei legami non orientati in Λ0. L’interazione consiste pertanto in un’energia di
legame −U < 0 per ciascuna coppia di particelle prime vicine in Λ0. C’è inoltre un’energia
di attivazione ∆ > 0 per ogni particella in Λ. Qui consideriamo solo il regime isotropo, cioè
l’energia di legame associata ad ogni legame è la stessa, perché in questa tesi abbiamo derivato
dei risultati solo in questo scenario. Tuttavia, come abbiamo fatto per il modello che evolve sul
reticolo quadrato, è possibile considerare interazioni anisotrope. Questo è lasciato come futura
direzione di ricerca. La dinamica localmente conservativa di Kawasaki sul reticolo esagonale
può essere quindi definita come nella Sezione 2.3.2 con una diversa scelta del dominio Λ. Per
questo modello il regime metastabile corrisponde a prendere

∆ ∈
(
U,
3

2
U
)

. (2.3.57)

Possiamo giustificare questa condizione come segue. La condizione ∆ > U ha la stessa
interpretazione data sopra, ma ora la condizione ∆ < 2U non è sufficiente come nel reticolo
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(a) (b) (c) (d)

Figura 2.22 – In tutti i cluster rappresentiamo in grigio la particella che si sta staccando: questa mossa
ha una probabilità di verificarsi di ordine e−2Uβ (risp. e−Uβ) per i cluster (a) e (c) (risp. (b) e (d)).

quadrato. Anzi, per più di una particella attaccata ad un cluster esagonale è possibile staccare
una singola particella alternativamente a costo U e 2U, si veda la Figura 2.22. Pertanto, il
limite superiore richiesto su ∆ può essere visto come una media di questi due costi. Abbiamo
che l’esagono vuoto

:= {η ∈ X : η(x) = 0 ∀ x ∈ Λ} (2.3.58)

è l’unico stato metastabile e l’esagono pieno

:= {η ∈ X : η(x) = 1 ∀ x ∈ Λ0, η(x) = 0 ∀ x ∈ Λ \Λ0} (2.3.59)

è l’unico stato stabile, purché L sia sufficientemente grande. Questa ipotesi è necessaria per
avere Ĥ( ) < Ĥ( ) = 0 e più avanti forniremo un limite inferiore esplicito per L. Notiamo
che le equazioni (2.3.58)–(2.3.59) coincidono con le equazioni (2.3.19)–(2.3.20), ma qui usiamo
una diversa definizione di Λ e pertanto cambiamo notazione solo per rendere esplicito a quale
reticolo ci riferiamo. L’uscita dalla metastabilità consiste quindi nell’analizzare la transizione
da a . Ci concentreremo sulla stima di questo tempo di transizione e sulla descrizione
geometrica delle gocce critiche che il sistema deve attraversare per eseguire la nucleazione.

La motivazione principale di questa analisi è la seguente. Indaghiamo come il reticolo
sottostante influisce sulle proprietà dinamiche del sistema. La scelta del reticolo esagona-
le deriva da un recente studio fatto per questo modello che evolve sotto la dinamica non
conservativa di Glauber (si veda la Sezione 2.4.1) in [4, 78], perché è stato mostrato come
una certa classe di dinamiche parallele (dinamiche scosse in [2, 3]) sul reticolo quadrato
induce una collezione di dinamiche parallele su una famiglia di modelli di Ising sul reticolo
esagonale con interazioni non isotrope, dove gli spin in ciascuna delle due partizioni sono
alternativamente aggiornati. Il nostro risultato riguardante il varco indica che il reticolo sotto-
stante è fondamentale per la dinamica del sistema. Si potrebbe semplicemente congetturare
che le configurazioni critiche sono le controparti sul reticolo esagonale di quelle derivanti
dallo stesso modello sul reticolo quadrato, ad esempio sostituendo la forma rettangolare
con una esagonale, ma questa congettura è falsa. In effetti, dimostreremo che per questo
modello esistono due diverse dimensioni per le gocce critiche a seconda del valore della parte
frazionaria del rapporto (∆−U)/(3U− 2∆). Questa situazione si verifica anche per il modello
che evolve sotto la dinamica di Glauber considerato in [4], ma ci teniamo a sottolineare che
la sua caratterizzazione è molto diversa. In effetti, la differenza principale tra la dinamica
di Kawasaki e quella di Glauber è che la prima conserva il numero di particelle e quindi la
struttura dei varchi è molto più ricca. In particolare, per la dinamica di Glauber c’è un unico
varco minimale, mentre per la dinamica di Kawasaki la loro caratterizzazione non è banale
e quindi molto più interessante da derivare. La descrizione geometrica dei varchi minimali
esula dagli scopi di questa tesi ed è lasciata come futura direzione di ricerca, ma incoraggiamo
il lettore a ispezionare le differenze tra Teorema 6.1.4 e [4, Teorema 2.13] per tenere presente
la diversa natura del varco della transizione per queste due diverse dinamiche.
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(a) (b) (c) (d)

Figura 2.23 – In (b) rappresentiamo una configurazione ottenuta da quella rappresentata in (a). In
particolare in (a) evidenziamo in grigio la faccia triangolare che si muove verso il rombo elementare sulla
destra a costo U, mentre in (b) evidenziamo in grigio la protuberanza singola. In (d) rappresentiamo
una configurazione ottenuta da quella rappresentata in (c). In particolare in (c) evidenziamo in grigio la
protuberanza singola, mentre in (d) evidenziamo in grigio chiaro la particella libera ed in grigio scuro
l’ultima faccia triangolare che è stata mossa verso sinistra.

confronto con la dinamica di kawasaki sul reticolo quadrato

Qui facciamo un confronto tra il modello isotropo sul reticolo esagonale e altri modelli
che evolvono sotto la dinamica di Kawasaki sul reticolo quadrato per enfatizzare il diverso
comportamento del sistema in base alla geometria del reticolo sottostante. La dinamica
localmente conservativa e il movimento delle particelle danno un effetto di regolarizzazione,
ma sottolineiamo che la forma particolare del reticolo esagonale induce un incremento di
questi movimenti regolarizzanti in modo tale che appaiono nuovi meccanismi di ingresso
nell’insieme delle configurazioni critiche, si vedano le Osservazioni 2.3.2 e 2.3.3 per maggiori
dettagli. Questa è una prima differenza cruciale tra i due modelli isotropi. Sul reticolo
quadrato, infatti, un nuovo meccanismo per entrare nel varco appare solo in presenza di
forte anisotropia, si veda [16, 17]. Per i modelli debolmente anisotropi e isotropi c’è un
modo unico per entrare nel varco: una forma rettangolare con una sola protuberanza viene
raggiunta e quindi entra una particella libera dal bordo della scatola, vedere [18, 90] per
maggiori dettagli. Sul reticolo quadrato, prima dell’ingresso della particella libera, soltanto le
particelle lungo il bordo del cluster possono muoversi, mentre sul reticolo esagonale questo
fenomeno può verificarsi anche per le particelle in una regione interna del cluster, vedere
Figura 2.23(a)-(b) e (c)-(d) per due esempi della prima e dell’ultima configurazione ottenute in
tal modo. Di conseguenza, in questo caso la caratterizzazione geometrica completa è difficile
da ottenere, ed è lasciata come futura direzione di ricerca. Il motivo per cui osserviamo
questo comportamento molto diverso poggia sulla struttura specifica del reticolo sottostante.
Infatti, sul reticolo esagonale, quando una particella che non appartiene al bordo di un
cluster si muove, se si attacca ad una protuberanza l’energia aumenta di U (2 legami vengono
spezzati ed uno viene creato quando la particella in movimento si attacca alla protuberanza),
mentre questo è falso sul reticolo quadrato. Infatti, in quel caso l’energia aumenta di 2U (3
legami vengono spezzati e uno viene creato quando la particella in movimento si attacca
alla protuberanza). Questa differenza risulta essere cruciale quando la dinamica è vicina
alle configurazioni critiche. Questo fenomeno può anche essere trovato nel diverso regime
metastabile per questo modello rispetto a quello sul reticolo quadrato. Questo è peculiare
delle dinamica di Kawasaki, infatti per la dinamica di Glauber ciò non accade, si veda [4,
Condizione 2.6]. Anche questo comportamento è responsabile della particolare forma delle
gocce critiche, che presentano due diverse protuberanze e non solo una come nel caso del
reticolo quadrato. Come risulterà chiaro nel corso del lavoro, arriviamo alla conclusione che
la geometria del reticolo influenza significativamente il comportamento del sistema soggetto
alla dinamica di Kawasaki e questo aspetto lo rende molto interessante da studiare.

identificazione degli stati stabili e metastabili

Qui daremo le idee principali per dedurre che (risp. ) è l’unico stato metastabile (risp.
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Figura 2.24 – Livello di stabilità Vζ per una configurazione ζ.

stabile). La nozione chiave è quella di livello di stabilità di una configurazione σ, che è definita
come la barriera energetica (si veda la Figura 2.24)

Vζ := Φ(ζ, Iζ) − Ĥ(ζ), (2.3.60)

dove Iζ è l’insieme degli stati con energia inferiore a Ĥ(ζ):

Iζ := {η ∈ X | Ĥ(η) < Ĥ(σ)}. (2.3.61)

Poniamo Vσ := ∞ se Iσ è vuoto. Poiché l’insieme degli stati metastabili è formalmente
definito come

Xm :=

{
σ ∈ X |Vσ = max

η∈X\Xs
Vη

}
, (2.3.62)

l’idea è dimostrare che esiste V∗ > 0 tale che le uniche configurazioni con un livello di stabilità
maggiore di V∗ sono e . In particolare V∗ = ∆+U. Questa dimostrazione si divide in due
passi. Prima di tutto dimostriamo che le configurazioni che soddisfano determinate proprietà
geometriche hanno un livello di stabilità minore o uguale a ∆+U, e poi mostriamo che tutte
le configurazioni, diverse da e , hanno un livello di stabilità minore o uguale a ∆+U.
Questo implica che il sistema raggiunge con alta probabilità lo stato , che è il minimo locale
dell’hamiltoniana, o lo stato fondamentale , poichè Ĥ( ) < Ĥ( ), in un tempo inferiore a
e(V

∗+ε)β, uniformemente nella configurazione di partenza per ogni ε > 0. Per tutti i dettagli
tecnici rimandiamo alla Sezione 6.3.

tempo di transizione e descrizione di un varco

Prima di enunciare i risultati che abbiamo ottenuto, forniamo una discussione euristica
da un punto di vista statico. Consideriamo il regime metastabile (2.3.57) e il limite di β che
tende all’infinito. Facciamo un calcolo approssimativo della probabilità di vedere un esagono
regolare di raggio r di siti occupati e centrato nell’origine. Indichiamo con µ∗ l’insieme
ristretto, cioé la misura di Gibbs grancanonica definita in (2.3.17) limitata ad un adeguato
sottoinsieme di configurazioni, dove tutti i cluster sufficientemente grandi vengono soppressi.
Sotto l’insieme ristretto abbiamo che

µ∗(esagono regolare di raggio r) ≈ ρ6r2e3U(3r2−r)β,

poiché la densità del gas ρ è prossima alla probabilità di trovare una particella in un dato
sito e −U è l’energia di legame tra due particelle nei siti primi vicini, con 3(3r2 − r) che
rappresenra il numero di legami per un esagono di raggio r. Scrivendo ρ = e−∆β si ottiene

µ∗(esagono regolare di raggio r) ≈ e−β[6r
2∆+3(r−3r2)U],

dove l’esponente ha un punto di sella in

r̄ =
U

2(3U− 2∆)
.
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(a) (b) (c) (d)

Figura 2.25 – Sulla sinistra forniamo due esempi di configurazioni in S̃(A∗1 − 1), D̃(A∗1 − 1). Sulla destra
forniamo due esempi di configurazioni S̃(A∗2 − 1), D̃(A∗2 − 1).

Ciò significa che le gocce con raggio r < r̄ appaiono con una probabilità che diminuisce in
r e gocce con raggio r > r̄ con una probabilità che aumenta in r. Questo porterebbe alla
conclusione che r̄ è il raggio della goccia critica. Vedremo nel seguito che la situazione è più
delicata (vedi (2.3.63) per la definizione precisa del raggio critico r∗), infatti il meccanismo
dinamico per la transizione tra gocce esagonali, che qui non viene considerato, influisce sulla
crescita o sul restringimento delle gocce. La scelta ∆ ∈ (U, 32U) corrisponde a r∗ ∈ (1,∞),
cioè ad una goccia critica non banale.

Per rendere precisa l’ipotesi precedente su L, introduciamo il cosiddetto raggio critico come

r∗ :=
⌊ U

2(3U− 2∆)
−
1

2

⌋
=
⌊ ∆−U

3U− 2∆

⌋
. (2.3.63)

Abbiamo bisogno di assumere

L > 2r∗ + 3. (2.3.64)

Richiediamo inoltre alcune ipotesi di non degenerazione. In particolare assumiamo che

∆−U

3U− 2∆
/∈N. (2.3.65)

Per evitare casi banali patologici, assumiamo inoltre che

∆ ∈
(
7

5
U,
3

2
U

)
. (2.3.66)

Notiamo che la condizione (2.3.66) garantisce che tutte le lunghezze critiche siano maggiori
di due. Nel resto di questa sezione assumeremo che tali condizioni (2.3.64)–(2.3.66) siano in
vigore. Grazie a (2.3.65), possiamo scrivere

r∗ =
∆−U

3U− 2∆
− δ,

con δ ∈ (0, 1) la parte frazionaria di (∆−U)/(3U− 2∆) fissata. Vedremo che δ ricoprirà un
ruolo cruciale in questa analisi. Infatti, a seconda che δ ∈ (0, 12 ) o δ ∈ (12 , 1), il sistema ha un
comportamento differente. Il nostro obiettivo è fornire stime per il tempo di transizione da
e , e caratterizzare le gocce critiche.

Dimostriamo in seguito che il varco per la transizione C∗ = C∗( , ) contiene quelle
configurazioni costituite da una particella libera e da un unico cluster di forma vicina ad un
esagono di raggio r∗. A tal fine ragioniamo come segue. Per prima cosa definiamo l’area
critica A∗ come il numero delle particelle nelle configurazioni in C∗. Formalmente è definita
come

A∗ :=

A∗1 se δ ∈ (0, 12 ),

A∗2 se δ ∈ (12 , 1),
(2.3.67)
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dove A∗1 e A∗2 sono due costanti esplicite che dipendono da r∗. Per caratterizzare le gocce
critiche diamo una definizione intuitiva delle configurazioni che indichiamo con S̃(A∗ − 1)
e D̃(A∗ − 1) e che svolgeranno il ruolo di configurazioni protocritiche. In particolare, le
configurazioni in S̃(A∗ − 1) (risp. D̃(A∗ − 1)) hanno un unico cluster di area A∗ − 1 e forma
come in Fig. 2.25(a)-(c) (risp. Fig. 2.25(b)-(d)). Indicando con n(η) il numero di particelle
libere della configurazione η, poniamo

K(A∗ − 1) := {η ′ ∈ VA∗−1|∃ω = (η,ω1, ...,ωn, η ′) : η ∈ S̃(A∗ − 1)∪ D̃(A∗ − 1),

Ĥ(η) = Ĥ(η ′), n(ωj) = 0 ∀ j = 1, ..., n e ΦVA∗−1(η, η
′) 6 Ĥ(η) +U}

(2.3.68)

l’insieme delle configurazioni ottenute a partire da S̃(A∗− 1)∪ D̃(A∗− 1) con un cammino che
non crea particelle libere, l’energia lungo di esso aumenta al massimo di U e le configurazioni
iniziali e finali hanno la stessa energia. Notiamo che l’ultima condizione in (2.3.68) equivale a
richiedere che ΦVA∗−1 < Γ

∗
H, dove

Γ∗H := Ĥ(K(A∗ − 1)) +∆ = Ĥ(S̃(A∗ − 1)) +∆ = Ĥ(D̃(A∗ − 1)) +∆.

L’insieme K(A∗ − 1) svolge lo stesso ruolo degli insiemi D̃ e D̄ introdotti per il modello che
evolve sul reticolo quadrato. Infatti, le condizioni richieste in (2.3.68) sono analoghe a quelle
in (2.3.31), con l’ulteriore richiesta che il cammino che collega η ∈ S̃(A∗ − 1) ∪ D̃(A∗ − 1) a
η ′ ∈ VA∗−1 non deve creare alcuna particella libera. Questa condizione garantisce che η ′

non si ottiene da η spostando una protuberanza, perché sul reticolo esagonale ciò avviene
staccando prima la protuberanza stessa. Non abbiamo bisogno di questa condizione sul
reticolo quadrato perché una protuberanza può essere spostata lungo un lato di un cluster
senza mai staccarsi.

In questa tesi dimostreremo che l’insieme C∗ = K(A∗ − 1)fp è un varco per la transizione
da a , cosicché il valore energetico Γ∗H coincide con l’energia delle configurazioni critiche.
Sottolineiamo che non abbiamo ottenuto una caratterizzazione geometrica completa di questo
insieme. Per ottenere questo, infatti, abbiamo bisogno di identificare geometricamente
l’insieme K(A∗ − 1). Questo è lasciato come futura direzione di ricerca.

Osservazione 2.3.2. A differenza di quanto accade sul reticolo quadrato, sul reticolo esagonale molti
altri modi di spostare particelle a costo U può verificarsi. Sottolineiamo questa proprietà cruciale
del reticolo esagonale perché ha un forte impatto sulla descrizione geometrica del varco. Infatti, ad
esempio, considerando una configurazione come in Figura 2.26(a), osserviamo che è possibile spostare
una protuberanza appartenente al rombo elementare a sinistra a costo U. Il fatto chiave è che questa
non è l’unica possibilità, come avviene sul reticolo quadrato, infatti in questo caso è possibile muovere
anche particelle che appartengono alla parte interna di un cluster. Ad esempio, è possibile spostare
verso il rombo elementare un’intera fila di particelle dando origine ad una configurazione con la stessa
energia (si veda Figura 2.26 per l’intero cammino). Da qui segue che la caratterizzazione geometrica
del varco è molto più ricca ed interessante di quella che emerge per il reticolo quadrato. Inoltre, questi
ulteriori movimenti regolarizzanti delle particelle porta a diversi meccanismi per entrare nel varco.
Segnaliamo al lettore l’Osservazione 2.3.3 per maggiori dettagli.

Per dimostrare che l’insieme C∗ è varco per la transizione e che il sistema, con probabilità
tendente a 1 nel limite per β che tende all’infinito, crea la goccia critica e raggiunge in un
tempo di ordine eΓ

∗
Hβ quando parte da , gli ingredienti fondamentali sono i seguenti:

(i) Dimostrare che Φ( , ) 6 Γ∗H.
(ii) Dimostrare che Φ( , ) > Γ∗H.
(iii) Dimostrare che ogni ω ∈ ( → )opt attraversa l’insieme C∗.

Per (i) è sufficiente costruire un cammino di riferimento ω∗ che collega a e che non supera
il valore energetico Γ∗H. In particolare, questo cammino è composto da cluster che crescono
il più vicino possibile a forme esagonali quasi–regolari, si veda la Figura 2.27. L’idea per la
costruzione di ω∗ è la seguente: per prima cosa costruiamo un cammino scheletro {ω̄r}

L
r=0

dato da una sequenza di configurazioni che contengono un esagono regolare di raggio r.
Ovviamente ω̄r non è un cammino poichè la transizione da ω̄r a ω̄r+1 non può verificarsi
in un singolo passo della dinamica. Così, al fine di ottenere un cammino, interpoliamo ogni
elemento del cammino scheletro. Questo avviene in due fasi. Innanzitutto introduciamo tra
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(a) (b) (c) (d)

Figura 2.26 – In questa figura forniamo un esempio di movimento di particelle che stanno nella parte
interna di un cluster a costo U. Rappresentiamo il cluster in grigio. Partendo dalla configurazione rap-
presentata in (a), muovendo una particella verso il sito vuoto, l’energia aumenta di U e la configurazione
ottenuta è rappresentata in (b). Da ora in poi il sito vuoto si muove a costo 0 fino a quando il cammino
raggiunge la configurazione rappresentata in (c). Infine il cammino raggiunge la configurazione in (d)
diminuendo l’energia di U, cosicché le configurazioni iniziale e finale hanno la stessa energia.

Figura 2.27 – Due esempi di esagoni quasi regolari.

ω̄r e ω̄r+1 una sequenza di configurazioni ω̃1r , ..., ω̃
ir
r date da ω̄r più una barra, cioè da un

esagono quasi regolare. Di nuovo, queste configurazioni sono date da una singola goccia
che cresce. Introduciamo infine una seconda interpolazione per ottenere un cammino ω∗

dalla sequenza di configurazioni ω̃ir. La sua costruzione è la seguente. Tra ogni coppia di
configurazioni consecutive in ω̃, per cui il cluster è aumentato di una particella, viene inserita
una sequenza di configurazioni con una nuova particella. In particolare la nuova particella è
inizialmente creata al bordo di Λ e poi portata al sito corretto tramite movimenti consecutivi
di questa particella libera.

Per il punto (ii) dobbiamo introdurre l’insieme EBi(r), che contiene le configurazioni
che hanno un unico cluster con una forma di esagono quasi–regolare, che è un esagono
regolare con i barre attaccate in senso orario. Si veda Figura 2.27, dove a sinistra (risp. destra)
rappresentiamo una configurazione in EB1(4) (risp. EB4(3)). La dimostrazione procede quindi
in tre passi:

1. Se δ ∈ (0, 12 ) (risp. δ ∈ (12 , 1)), dimostrare che ogni ω ∈ ( → )opt deve passare
attraverso una configurazione EB5(r

∗) (risp. EB1(r
∗ + 1)).

2. Se δ ∈ (0, 12 ) (risp. δ ∈ (12 , 1)), dimostrare che ogni ω ∈ ( → )opt deve passare
attraverso una configurazione che ha il cluster che appartiene all’insieme EB5(r

∗) (risp.
EB1(r

∗ + 1)) con l’aggiunta di due particelle.

3. Ogni ω ∈ ( → )opt deve raggiungere il livello di energia Γ∗H.

Per dimostrare questi tre punti consideriamo separatamente i casi δ ∈ (0, 12 ) e δ ∈ (12 , 1). Per
dare un’idea delle prove qui ci concentriamo soltanto sul caso δ ∈ (0, 12 ). Per dimostrare il
punto 1 l’idea è la seguente. Denotando con Ã il numero di particelle delle configurazioni in
EB5(r

∗) e utilizzando un argomento di tipo isoperimetrico realizzato in [4], deduciamo che in
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Figura 2.28 – Da sinistra a destra rappresentiamo in grigio chiaro le configurazioni possibili in XA∗1−1 e
attraversate da un cammino ottimale. In grigio scuro trattegiato rappresentiamo la posizione futura
della particella libera per riempire l’angolo di 53π nei primi due esempi.

V
Ã

l’unica (modulo traslazioni e rotazioni) configurazione di perimetro minimo, e quindi di
energia minima, è quella in EB5(r

∗). Da

Ĥ(EB5(r
∗)) = Γ∗H − 3∆+ 2U,

qualsiasi altra configurazione in V
Ã

ha energia almeno Γ∗H − 3∆ + 3U. Per aumentare il
numero di particelle partendo da una tale configurazione una particella deve essere creata al
costo ∆. La configurazione risultante avrebbe però energia Γ∗H − 2∆+ 3U, che eccede Γ∗H per
la condizione 2∆ < 3U. Questo implicherebbe che il cammino supera il valore energetico Γ∗H e
quindi non sarebbe ottimale. Osserviamo che Ã = A∗1 − 3. Grazie al punto 1, per dimostrare
il punto 2 ragioniamo come segue. Poiché il cammino deve attraversare VA∗1−1

, partendo
da un esagono quasi regolare con area A∗1 − 3 si crea una particella libera dando origine
ad una configurazione con energia Γ∗H − 2∆+ 2U < Γ∗H. Prima che venga creata qualsiasi
nuova particella libera l’energia deve diminuire di almeno U. L’unico modo per fare questo
è spostare la particella verso il cluster e attaccarla all’esagono quasi–regolare, in modo tale
che l’energia diminuisce a Γ∗H − 2∆+U. Ora è possibile creare un’altra particella al costo ∆
dando origine ad una configurazione con energia Γ∗H −∆+U < Γ∗H. Di nuovo, prima di creare
una nuova particella libera, l’energia deve diminuire di almeno U. L’unico modo per farlo è
spostare la particella fino a quando non è attaccata al cluster, abbassando quindi l’energia a
Γ∗H −∆. Questo ci dà una configurazione η composta da un cluster appartenente a EB5(r

∗)
con l’aggiunta di due particelle, come affermato. Per concludere l’argomentazione con il
punto 3, usiamo ancora un argomento di tipo isoperimetrico realizzato in [4], che assicura
che l’energia minima in VA∗1−1

si realizza, anche se non univocamente, in una configurazione
come η descritta sopra. Poiché non è possibile ridurre l’energia senza abbassare il numero
di particelle e qualsiasi ulteriore mossa per aumentare il numero di particelle comporta la
creazione di una nuova particella, l’energia deve raggiungere il valore Γ∗H.

Infine, grazie ai precedenti punti 2 e 3, per ottenere (iii) dobbiamo dimostrare che qualsiasi
cammino ottimale che connette a attraversa l’insieme VA∗−1 in una configurazione
appartenente a K(A∗ − 1) (si ricordi l’equazione (2.3.68)) prima che venga creata una nuova
particella, dando origine ad una configurazione in C∗. Questa parte della dimostrazione
è tecnica e richiede un’analisi dettagliata. Infatti il punto 2 sopra non dice come le due
particelle aggiuntive sono attaccate al cluster esagonale quasi–regolare, si veda ad esempio
la Figura 2.28 per quattro esempi ammissibili quando δ ∈ (0, 12 ). Si noti che nei primi due
esempi è possibile attaccare la particella libera abbassando l’energia di 2U, mentre negli
altri due casi l’energia diminuisce solo di U. Questo è responsabile di un comportamento
diverso della dinamica in questi due casi. Le prime due configurazioni, infatti, appartengono
all’insieme K(A∗1 − 1)

fp, mentre le altre no. L’idea della dimostrazione è che, quando la
dinamica raggiunge una configurazione diversa dalle prime due rappresentate in Figura 2.28,
allora non può raggiungere direttamente il ciclo dello stato stabile, ma deve riorganizzare
le particelle clusterizzate per ottenere una configurazione in K(A∗1 − 1)

fp. Ciò dimostrerà
l’affermazione desiderata.

Osservazione 2.3.3. Sottolineiamo che il risultato riguardante il varco che otteniamo è diverso da
[35, Proposizione 2.3.7]. Sul reticolo quadrato, infatti, gli autori sono stati in grado di dimostrare
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che qualsiasi cammino ottimale dallo stato metastabile a quello stabile raggiunge una forma quadrata
o quasi–quadrata, quindi viene poi attaccata una protuberanza e infine una particella libera entra
nella scatola. Tuttavia, i punti 2 e 3 non sono sufficienti a caratterizzare l’ingresso nel cancello. Sul
reticolo esagonale, infatti, appaiono diversi meccanismi per entrare nel varco. Una di queste possibilità
è chiaramente aggiungere una particella libera partendo da una configurazione in K(A∗i − 1), ma ci
sono molti altri modi per entrare in K(A∗i − 1)

fp. Ad esempio, supponiamo che 0 < δ < 1
2 e che un

cammino ottimale ω : → attraversi una configurazione η del tipo del terzo cluster raffigurato in
Figura 2.28. Partendo da tale η è possibile che la particella libera sia attaccata al cluster in modo tale
da formare un rombo elementare insieme ad una faccia triangolare già attaccata. Pertanto l’energia
raggiunge il valore Γ∗H −U. Allora è possibile spostare l’altra faccia triangolare a costo U e, quando
si stacca, il cammino ω passa da una configurazione in K(A∗1 − 1)

fp, ma il cammino non attraversa
l’insieme K(A∗1 − 1). Con questo esempio vogliamo porre l’attenzione sul fatto che diversi meccanismi
per entrare nel varco appaiono a causa della particolare forma del reticolo. Infatti sul reticolo quadrato
non ha importanza da che parte è attaccata la protuberanza perché è possibile spostarla lungo il lato a
costo zero.

L’ultimo risultato che abbiamo dimostrato è un primo passo verso la caratterizzazione del
tubo delle traiettorie tipiche, che esula dagli scopi di questa tesi. Caratterizziamo in particolari
esagoni quasi–regolari sottocritici e supercritici, cioè gli esagoni quasi–regolari sottocritici si
riducono a , mentre gli esagoni quasi–regolari supercritici crescono fino a nel seguente
senso. Sia E−

Bi
(r) (risp. E+

Bi
(r)) l’insieme delle configurazioni composte da un singolo esagono

quasi–regolare contenuto in (risp. contenente) EBi(r). Valgono le seguenti affermazioni:
(i) Quando δ ∈ (0, 12 ), abbiamo

se η ∈ E−
B5

(r∗) =⇒ lim
β→∞Pη(τ < τ ) = 1,

se η ∈ E+
B0

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(2.3.69)

(ii) Quando δ ∈ (12 , 1), abbiamo

se η ∈ E−
B1

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1,

se η ∈ E+
B2

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(2.3.70)

La dimostrazione si basa sulla nozione di ciclo (ricordare (2.3.34)). Per dimostrare (i) e (ii)
abbiamo bisogno di [92, Teorema 3.2], che afferma che ogni stato in un ciclo è visitato dal
processo prima dell’uscita con alta probabilità. Usando questo risultato dobbiamo dimostrare
quanto segue:

1. Quando 0 < δ < 1
2 , allora

(i) se η è un esagono quasi–regolare contenuto in EB4(r
∗), allora esiste un ciclo C (Γ∗H)

contenente η e e non contenente ;
(ii) se η è un esagono quasi–regolare contenente EB0(r

∗ + 1), allora esiste un ciclo
C (Γ∗H − Ĥ( )) contenente η e e non contenente ;

2. Quando 1
2 < δ < 1, allora

(i) se η è un esagono quasi–regolare contenuto in EB0(r
∗ + 1), allora esiste un ciclo

C (Γ∗H) contenente η e e non contenente ;
(ii) se η è un esagono quasi–regolare contenente EB2(r

∗ + 1), allora esiste un ciclo
C (Γ∗H − Ĥ( )) contenente η e e non contenente .

Ciò può essere ottenuto mediante il cammino di riferimento ω∗ introdotto sopra. Per tutti i
dettagli tecnici rimandiamo alla Sezione 6.3.6.

2.3.4 Verso il modello originale: il ruolo dell’entropia

In questa sezione torniamo al modello originale introdotto nella Sezione 2.3.1, cioè le
particelle adesso vivono ed evolvono su una scatola quadrata le cui dimensioni crescono in
modo esponenziale nella temperatura inversa β. Siamo interessati a come il gas nuclea in
grandi volumi, cioè a come le particelle formano e dissolvono gocce sottocritiche finché non
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riescono a costruire una goccia critica che è abbastanza grande da innescare la nucleazione.
L’analisi di questo modello è molto più difficile rispetto a quella del modello locale, perché
ora le particelle sono conservate in tutto il dominio ed è necessario un controllo dettagliato
dell’interazione tra le gocce ed il gas di “particelle isolate“.

In questo contesto il ruolo dell’entropia risulta fondamentale. La nozione di entropia,
infatti, entra in gioco in ogni tentativo di spiegare la metastabilità e si può sostenere che gli
stati metastabili vengono determinati dal principio di massima entropia (o minima energia
libera) sotto opportuni vincoli. Il passaggio dallo stato metastabile allo stato stabile è un
tipico processo termodinamico irreversibile verso il massimo assoluto dell’entropia (o minimo
assoluto dell’energia libera). La transizione verso la stabilità è un fenomeno di grandi
deviazioni che può essere descritto in termini di opportune funzioni di tasso. L’uscita dalla
metastabilità alla stabilità è, in generale, intrinsecamente aleatorio. Per sistemi fisicamente
rilevanti il meccanismo di transizione coinvolge quella che può essere chiamata entropia
temporale: il passaggio avviene dopo lunghi tempi di attesa aleatori all’interno di opportuni
insiemi di permanenza, che sono regioni all’interno dello spazio degli stati costruiti come
unioni connesse di cicli. Entra in gioco anche l’entropia spaziale: in grandi volumi, anche
a basse temperature, l’entropia è in competizione con l’energia perché lo stato metastabile
e gli stati che ne derivano sotto la dinamica hanno una struttura spaziale non banale. Se
vogliamo capire il comportamento di tali sistemi, allora una descrizione a grana grossa diventa
imperativa, poiché a livello microscopico la competizione tra energia ed entropia non consente
una corretta comprensione degli stati metastabili e dei loro cammini di transizione.

Il problema della nucleazione per la dinamica di Kawasaki in grandi volumi viene affron-
tato in una serie di tre lavori. Adottiamo il punto di vista che l’identificazione del “tubo delle
traiettorie tipiche” è la chiave per ottenere il pieno controllo sulla transizione metastabile.
Già nei primi articoli matematici sulla metastabilità [39, 95, 96, 107], e successivamente
negli articoli sulla dinamica di Kawasaki a volume finito [67, 75], la strategia principale era
identificare insiemi di configurazioni di regolarità crescente che sono resistenti alla dinamica
su corrispondenti scale temporali crescenti. Questi insiemi di configurazioni costituiscono
la spina dorsale nella costruzione del “tubo delle traiettorie tipiche”. In particolare l’idea
era quella di definire ambienti configurazionali temporali entro cui le traiettorie del processo
rimangono confinate con alta probabilità su scale temporali opportune. Questo approccio
comporta un’analisi di tutte le possibili evoluzioni del processo e richiede l’esclusione di
eventi rari attraverso stime a priori di grandi deviazioni.

Nel primo articolo [65] gli autori hanno dimostrato una approssimazione di gas ideale, cioè
hanno mostrato che la dinamica è ben approssimata da un processo di passeggiate aleatorie
indipendenti (IRW). Infatti, se il gas reticolare è sufficientemente rarefatto, ogni particella
trascorre la maggior parte del suo tempo muovendosi come una passeggiata aleatoria. Quando
due particelle occupano siti primi vicini, l’energia di legame inibisce il loro movimento di
camminata casuale, e queste pause sono lunghe quando la temperatura è bassa. Tuttavia, se
gli intervalli di tempo in cui una particella sta interagendo con le altre particelle sono brevi
rispetto agli intervalli di tempo in cui è libera, l’interazione può essere rappresentata come
una piccola perturbazione di un movimento di camminata aleatoria libera. La situazione più
difficile è quando la temperatura e la densità del gas tendono a zero contemporaneamente,
che è proprio il nostro caso. Il motivo è che ad una bassa temperatura corrisponde una forte
interazione, cosicché l’approssimazione di gas ideale è tutt’altro che banale. Questa è anche la
situazione più interessante dal punto di vista fisico. Infatti e−2Uβ è la densità del gas saturo
nel punto di condensazione, si veda [76]. Per densità inferiori a questa, ovvero per ∆ > 2U,
abbiamo un gas stabile così rarefatto che si comporta come un gas ideale fino a tempi molto
grandi. Se scegliamo ∆ < U otteniamo un gas instabile che si comporta come un gas ideale
solo fino a tempi brevi. Se scegliamo U < ∆ < 2U, evitando la presenza di gocce della fase
liquida, otteniamo un gas metastabile. In questo regime abbiamo ancora un gas rarefatto
e gli autori hanno dimostrato che si comporta come un gas ideale fino a tempi relativamente
grandi. Il gas ideale è rappresentato da un processo di IRW e l’approssimazione di gas ideale
è descritta da un processo di Quasi–Random Walks (QRW), che è definito come segue. Consiste
in un processo di N particelle etichettate che può essere accoppiato ad un processo di N IRW
in modo tale che i due processi seguano gli stessi cammini al di fuori di rari intervalli di
tempo, detti intervalli di pausa, in cui i percorsi del processo di QRW rimangono confinati in
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piccole regioni. Nel regime metastabile tipicamente alcune pause sono molto più brevi di
e∆β, mentre altre sono molto più lunghe. Gli autori hanno dimostrato che la dinamica di
Kawasaki a bassa densità con particelle etichettate è un processo di QRW. Incoraggiamo il
lettore ad ispezionare le principali proprietà dei QRW, che saranno uno strumento chiave per
l’analisi di questo modello. Ci riferiamo in particolare a [62, Teoremi 3.2.3, 3.2.4, 3.2.5, 3.3.1]
rispettivamente per la proprietà di non-superdiffusività e per i limiti superiore ed inferiore
relativi alla proprietà di spalmatura.

Analizziamo ora le principali difficoltà che emergono nell’analisi di una dinamica pie-
namente conservativa mostrando le differenze che appaiono rispetto al modello locale e a
quello semplificato. Da un lato, nel modello locale (si veda la Sezione 2.3.2) le particelle si
muovono secondo la dinamica di Kawasaki solo all’interno di una scatola finita Λ0 e al bordo
le particelle vengono create e distrutte. Pertanto non vi è alcun effetto delle gocce in Λ0
sul gas fuori da Λ0. Per quanto riguarda il modello semplificato (si veda la Sezione 2.3.1),
il serbatoio di gas è ora costituito da IRW. Il numero totale di particelle è fissato e questo
modello è ben approssimato dal modello locale per β → ∞ per quanto riguarda il suo
comportamento metastabile, si veda [75]. Si noti che il gas all’esterno di Λ0 influenza il gas di
Kawasaki all’interno di Λ0 e viceversa. Questa influenza reciproca è stata descritta per mezzo
di QRW: le particelle del gas eseguono passeggiate aleatorie, intervallate da pause durante le
quali interagiscono con le altre particelle, e intervallate da salti corrispondenti alla differenza
tra le posizioni della particella alla fine e all’inizio intervallo di pausa. Poichè Λ0 è finito
i salti sono piccoli rispetto allo spostamento delle passeggiate aleatorie su scale temporali
esponenzialmente grandi in β. Inoltre, il numero degli intervalli di pausa è controllato dai
rari ritorni della passeggiata aleatoria a Λ0. Questi due ingredienti —pochi intervalli di pausa
e piccoli salti— erano sufficienti per controllare la dinamica. Per quanto riguarda il modello
pienamente conservativo, purché i cluster siano piccoli, possiamo aspettarci che i salti nei
QRW siano piccoli: al massimo dell’ordine della dimensione dei cluster. L’ostacolo cruciale
nell’approssimazione delle particelle del gas con QRW è che l’interazione agisce ovunque.
Le particelle devono arrivare o ritornare al gas, che funge da serbatoio, e quindi la dinamica
non è propriamente locale. Pertanto non è possibile disaccoppiare la dinamica delle particelle
all’interno di Λ0 dalla dinamica del gas fuori da Λ0. Quindi dobbiamo sostituire il controllo
sui rari ritorni di una passeggiata aleatoria verso una scatola finita fissa mediante un controllo
sul numero di collissioni particella–particella e particella–cluster. Questo si ottiene con l’aiuto
delle stime di non collisione sviluppate in [61].

In questa tesi, che corrisponde al secondo lavoro della serie, usiamo i risultati in [65]
per analizzare come le gocce sottocritiche si formano e dissolvono su scale spazio-temporali
multiple quando il volume è moderatamente grande, ovvero Θ < 2∆−U. In grandi volumi le
possibili evoluzioni del gas reticolare di Kawasaki sono molto più complicate che in piccoli
volumi, e devono essere considerati e controllati più eventi rispetto al caso di volume finito
trattato in precedenza. In particolare, è importante controllare la storia delle particelle. Per
questo motivo introduciamo diversi nuovi strumenti, come l’assegnazione di colori alle
particelle che riassume le informazioni su come hanno interagito con il gas circostante in
passato. L’attenzione rimane sul “tubo delle traiettorie tipiche”, anche se il controllo di tutte
le possibili evoluzioni del gas reticolare di Kawasaki richiede l’uso di molteplici grafi che
descrivono gli ambienti configurazionali temporali. Questi grafi saranno identificati nella
Sezione 7.5, che è il fulcro di questa analisi e contiene le dimostrazioni di tutti i lemmi
principali.

Infine, nell’articolo successivo [12], che è l’ultimo di una serie di tre articoli che si occupano
della dinamica di Kawasaki in grandi volumi, consideriamo il contesto in cui il volume è
molto grande, cioè Θ < Γ∗ − (2∆−U) (ricordiamo che Γ∗ è l’energia della goccia critica nel
modello locale), e usiamo i risultati dei primi due articoli [11, 62] per identificare il tempo di
nucleazione. Il risultato complessivo dei tre articoli mostra quanto segue:

(1) Le gocce sottocritiche si comportano come Quasi–Random Walks, si veda [65].
(2) La maggior parte del tempo la configurazione consiste di quasi–quadrati e particelle

libere. Ecco perché usiamo la terminologia dinamica di gocce. Il tempo di transizione tra
configurazioni di questo tipo è individuato su una scala temporale esponenziale in β
(si veda Teorema 7.1.2).

(3) A partire dalle configurazioni costituite da quasi–quadrati e particelle libere, la dina-
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mica tipicamente resiste, cioè le dimensioni dei quasi–quadrati non cambiano, per una
scala temporale esponenziale in β dipendente solo dalle dimensioni del più piccolo
quasi–quadrato (si veda Teorema 7.1.3).

(4) A partire dalle configurazioni costituite da quasi–quadrati e particelle libere, la dina-
mica tipicamente crea un quasi–quadrato più grande o un quasi–quadrato più piccolo,
a seconda delle dimensioni del quasi–quadrato di partenza (si veda Teorema 7.1.5).
C’è una probabilità non trascurabile che un quasi–quadrato sottocritico segua una
transizione atipica, cioè cresce in un quasi–quadrato più grande, e questo fa sì che la
dinamica sfugga alla metastabilità (si veda Teorema 7.1.6).

(5) Il passaggio da gas a liquido (= nucleazione) avviene perché un quasi–quadrato supercriti-
co viene creato da qualche parte in una scatola moderatamente grande e successivamente
cresce in una goccia grande. Questo problema verrà affrontato in [12].

(6) Le configurazioni in scatole moderatamente grandi si comportano come se fossero
essenzialmente indipendenti e come se il gas circostante fosse ideale. Nessuna informazione
viaggia tra queste scatole sulla scala temporale rilevante che cresce esponenzialmente
con β. Il quasi–quadrato supercritico appare più o meno indipendentemente in scatole
diverse, un fenomeno chiamato nucleazione omogenea. Questo problema verrà affrontato
in [12].

(7) Il tubo delle traiettorie tipiche che porta alla nucleazione è descritto attraverso una serie
di eventi in cui l’evoluzione del gas è costituita da gocce che vagano su più scale spazio–
temporali. Questo controllo si ottiene tramite quello che chiamiamo approccio deduttivo
nella Sezione 7.5.

(8) Il comportamento asintotico del tempo di nucleazione è individuato su una scala
temporale che è esponenziale in β e dipende dal fattore entropico relativo alla dimensione
della scatola. Questo problema verrà affrontato in [12].

Vedremo che nel regime metastabile ∆ ∈ (U, 2U) gocce piccole con “lunghezza laterale”
minore di una lunghezza critica avranno la tendenza a restringersi, mentre gocce grosse
avranno la tendenza a crescere. Ci riferiremo al primo tipo come gocce sottocritiche e a
quest’ultimo come gocce supercritiche. La configurazione iniziale η0 viene scelta in base alla
misura ristretta µR, che è la misura di Gibbs grancanonica associata a H e condizionata a R,
cioè condizionata all’avere in Λβ soltanto gocce sottocritiche. Più precisamente, richiamando la
definizione della lunghezza critica per il modello locale `c data in (2.3.21), definiamo

R := {η ∈ Xβ : tutti i cluster di η hanno volume minore di `c(`c − 1) + 2} (2.3.71)

e la misura ristretta µR è definita come

µR(η) =
e−β[H(η)+∆|η|]

ZR
1R(η), η ∈ Xβ, (2.3.72)

dove

ZR =
∑
η∈R

e−β[H(η)+∆|η|]. (2.3.73)

Per descrivere l’evoluzione del nostro sistema in termini di dinamica di gocce mostreremo che
su una scala temporale appropriata la dinamica in genere ritorna all’insieme di configurazioni
costituite da gocce quasi quadrate, a condizione che il volume non sia troppo grande. I
principali risultati di questa tesi consentono una tale descrizione della dinamica in termini
di gocce erranti che crescono e si restringono. Come parte del processo di nucleazione le
gocce crescono e si restringono scambiando particelle con il gas che le circonda, come è tipico
di una dinamica conservativa. Identificheremo in particolare i principal tassi di crescita e
restringimento per queste gocce fino ad un orizzonte temporale che va ben oltre l’uscita da
R, cioè fino alla formazione di una prima grande goccia di volume di ordine λ(β), con λ
una funzione lentamente crescente ma illimitata. Nell’articolo successivo [12] questi teoremi
verranno utilizzati per identificare il tempo di nucleazione, cioè il tempo di uscita da R. I
nostri teoremi riguardano soltanto la fase iniziale della nucleazione, cioè fino a quando la
goccia critica cresce in una goccia che è all’incirca

√
λ(β) volte la dimensione della goccia

critica. Non forniscono informazioni su cosa succede dopo, cioè quando la goccia cresce
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Figura 2.29 – Ciascuna particella è rappresentata da un quadrato unitario. Una particella è clusterizzata
quando è parte di un cluster. Una particella è libera quando non tocca nessun’altra particella e può
essere spostata all’infinito muovendo soltanto particelle non clusterizzate. Le particelle 1–5 e 16 sono
libere, le particelle 6–9, 10, 11–15 non sono libere. Tutte le altre particelle sono clusterizzate.

ancora di più e diventa macroscopicamente grande. In quel regime il gas attorno alla goccia si
esaurisce, gocce più piccole si muovono e si fondono in gocce più grandi, ecc. Descrivere cosa
succede precisamente in questo regime rimane una grande sfida, che va oltre la metastabilità.

Per precisare l’orizzonte temporale a cui siamo interessati abbiamo bisogno delle seguenti
definizioni. Poniamo

R ′ :=

{
η ∈ Xβ :

tutti i cluster di η hanno volume al massimo `c(`c − 1) + 2

tranne al massimo un cluster con volume inferiore a 18λ(β)

}
, (2.3.74)

dove λ(β) è una funzione illimitata ma lentamente crescente in β che soddisfa

λ(β) log λ(β) = o(logβ), β→∞, (2.3.75)

es. λ(β) =
√

logβ. Per C? > 0 abbastanza grande i nostri teoremi valgono fino al tempo T?

definito come

T? = eC
?β ∧ min{t > 0 : X(t) /∈ R ′}. (2.3.76)

Vedremo in [12] che la nostra dinamica, partendo da µR, tipicamente esce da R ′ entro
un tempo che è esponenzialmente grande in β, e con una probabilità che tende ad 1 lo
fa attraverso la formazione di un unico grande cluster C di volume 1

8λ(β), piuttosto che
attraverso la formazione di due gocce supercritiche. Quindi T? coincide effettivamente con il
tempo di comparsa di C, ammesso che C? sia sufficientemente grande.

Come in [62], la nozione di particella attiva e dormiente sarà cruciale durante questa
analisi. Poiché la definizione precisa richiede notazioni aggiuntive, diamo qui solo una
descrizione intuitiva. Per le definizioni precise facciamo riferimento a Sezione 7.4.3.1.

La divisione delle particelle in attive e dormienti è legata alla nozione di particelle libere,
che è leggermente diversa per il modello originale rispetto a quella del modello locale.
Intuitivamente una particella è libera se non appartiene ad un cluster (= una componente
connessa delle particelle più vicine) e può essere spostata all’infinito senza clusterizzazione,
cioè spostando solo particelle non clusterizzate (si veda la Figura 2.29). Sia

D = U+ d,

con d > 0 sufficientemente piccolo. Per t > eDβ, si dice che una particella è dormiente
all’istante t se non è libera durante l’intervallo di tempo [t − eDβ, t]. Le particelle non
dormienti sono chiamate attive. Si noti che essere attivi o dormienti dipende dalla storia della
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Figura 2.30 – Un esempio di scatole locali Λ̄(t∗) = (Λ̄i(t
∗))16i63 per t∗ > 0, dove le particelle grigie e

bianche sono rispettivamente dormienti e attive.

particella. Per convenzione diciamo che prima del tempo eDβ le particelle dormienti sono
quelle che appartengono a un quasi-quadrato abbastanza grande, dove i quasi quadrati sono
clusters con dimensioni `1 × `2 nell’insieme

QS = {(`1, `2) ∈N2 : `1 6 `2 6 `1 + 1}. (2.3.77)

Per dichiarare dormienti tutte le particelle del quasi-quadrato prima del tempo eDβ richiedia-
mo che `1 > 2.

Per definire una scatola finita Λ come unione di un numero finito k di scatole locali
disgiunte Λ̄i, 1 6 i 6 k, in analogia con il modello locale introdotto in [75], associamo ad
ogni configurazione una configurazione locale

η̄ ∈ {0, 1}Λ̄ =
∏
16i6k

{0, 1}Λ̄i ,

che identifichiamo con {0, 1}Λ. Queste scatole locali ci permettono di controllare le proprietà
globali del gas in termini di proprietà locali, cioè attraverso la dualità tra gas e goccioline, che
è rappresentata rispettivamente dalla dualità tra particelle attive e dormienti. Innanzitutto
richiediamo che le scatole locali contengano tutte le particelle dormienti. In secondo luogo
le scatole locali sono dinamiche, ovvero Λ̄i = Λ̄i(t). Le gocce, infatti, possono muoversi e
vogliamo evitare di vedere particelle dormienti fuori dalle scatole locali. In particolare le
scatole seguono le gocce, cioè devono essere ridefinite solo quando si verificano i seguenti
eventi: due gocce sono troppo vicine l’una all’altra, oppure un cluster è troppo vicino al bordo
di una scatola, oppure una particella fuori dalle scatole si addormenta, oppure le particelle in
una scatola diventano tutte attive. In qualsiasi momento t > 0 richiediamo che la collezione
delle k(t) scatole locali Λ̄(t) = (Λ̄i(t))16i6k(t) soddisfino le precedenti condizioni. Facciamo
riferimento alla Definizione 7.1.1 per i dettagli tecnici. Si veda la Figura 2.30 per un esempio
di scatole locali.

Poiché ad ogni tempo t tutte le particelle dormienti appartengono a Λ̄(t), le scatole
inducono una partizione delle particelle dormienti. Diciamo che al tempo t si verifica una
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Figura 2.31 – Costo per aggiungere o rimuovere una riga di lunghezza ` in volume finito.

coalescenza se esistono due particelle dormienti che si trovano in diverse scatole locali all’istante
t−, ma si trovano nella stessa scatola locale all’istante t, cioè se esistono 1 6 i1, i2 6 k(t−),
i1 6= i2, 1 6 i∗ 6 k(t) e due particelle dormienti s1, s2 tali che sj ∈ Λ̄ij(t−) e sj ∈ Λ̄i∗(t),
j = 1, 2. Questo fenomeno è legato alla possibilità che due gocce si uniscano per formare
un’unica goccia più grande. La coalescenza è difficile da controllare quantitativamente, ragion
per cui nel presente lavoro ci limitiamo a cosa succede in assenza di coalescenza. Nel lavoro
successivo [12] mostriamo che è improbabile che la nucleazione metastabile si verifichi tramite
coalescenza.

Sia X∆+ l’insieme delle configurazioni senza gocce o con gocce che sono quasi–quadrati
con `1 > 2 (e con ulteriori condizioni di regolarità sul gas che circonda le gocce da specificare
nella Definizione 7.2.9). Sia XE l’insieme delle configurazioni in X∆+ senza gocce (si veda
(7.3.1) e Definizione 7.2.9). Definiamo (τ̄k)k∈N0

come la successione dei tempi di ritorno in
X∆+ dopo che una particella attiva è stata vista in Λ, dove τ̄0 è il tempo di primo arrivo in X∆+ .
Rimandiamo a (7.1.5) per la definizione precisa. Ricordiamo che |Λβ| = eΘβ. Supponiamo
che ∆ < Θ 6 θ, con θ definito come segue. Sia ε = 2U−∆, e sia r(`1, `2) la resistenza del
quasi–quadrato `1 × `2 con 1 6 `1 6 `2 dato da (si veda la Figura 2.31)

r(`1, `2) = min{(`1 − 2)ε+ 2U, 2∆−U}

= min{(2U−∆)`1 −U+ 2∆−U, 2∆−U}. (2.3.78)

Sia θ = 2∆−U− γ la resistenza del più grande quasi–quadrato sottocritico. Poiché questo
quasi–quadrato ha dimensioni (`c − 1)× `c, abbiamo che 2∆−U− γ = 2U+ ((`c − 1) − 2)ε,
cosicché

γ = ∆−U− (`c − 2)ε. (2.3.79)

Vedremo che γ > 0 è un parametro importante. Le già citate condizioni di regolarità sul
gas utilizzano un parametro aggiuntivo α > 0 (si veda la Definizione 7.2.9 sotto), che può
essere scelto piccolo quanto desiderato. Poiché abbiamo definito D = U+ d, ∆+ è definito da
∆+ = ∆+α. Chiamiamo una funzione f(β) superesponenzialmente piccola, e la indichiamo
con SES(β), se

lim
β→∞ 1β log f(β) = −∞. (2.3.80)

teoremi principali : tassi di crescita e riduzione delle gocce

I principali teoremi che abbiamo derivato controllano le transizioni tra le configurazioni
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Λβ

Figura 2.32 – Un esempio di configurazione η ∈ X∆+ , dove le particelle grigie e bianche sono
rispettivamente dormienti e attive, tale che π(η) = {(2, 3), (3, 3), (5, 6)}.

costituite da quasi–quadrati e particelle libere, le scale temporali su cui avvengono queste
transizioni, e le traiettorie più probabili che seguono.

Teorema (I) Il nostro primo risultato descrive i tempi di ritorno tipici all’insieme X∆+ . In
particolare dimostriamo che, partendo da µR, con probabilità 1− SES(β) vale che i tempi di
ritorno sull’insieme X∆+ sono dell’ordine e(∆+α)β.

Teorema (II) Il nostro secondo teorema descrive i tempi di aggiornamento tipici per una
configurazione in X∆+ . Indichiamo con π una proiezione da X∆+ ad uno spazio finito

X̄∆ =
⋃

k>0
QS1 × · · · ×QSk, (2.3.81)

dove QSi sono le dimensioni dei cluster quasi–quadrati contenuti nelle scatole locali Λ̄i e
definite in (2.3.77). Si veda la Figura 2.32. Possiamo definire una dinamica sullo spazio X̄∆
delle dimensioni dei quasi–quadrati, disposti ad esempio in ordine lessicografico crescente.
Per i ∈N0 indichiamo con (`1,i, `2,i) in QS, con `1,i > 2, le dimensioni del quasi–quadrato
più piccolo al tempo τ̄i, se presente, altrimenti impostiamo `1,i = `2,i = 0. Richiamiamo
(2.3.78) e definiamo la resistenza di una configurazione in XE come

r(0, 0) = 4∆− 2U− θ. (2.3.82)

Dimostriamo che partendo da µR e a meno che non si verifichi una coalescenza, per ogni
i ∈N0 la dinamica proiettata tipicamente rimane in π(X(τ̄i)) attraverso visite successive in
X∆+ per un tempo di ordine er(`1,i,`2,i)β. Notiamo che per `1,i > `c tutti i quasi–quadrati
hanno la stessa resistenza 2∆−U. Nel caso in cui X(τ̄i) non abbia quasi–quadrati, la sua
resistenza r(0, 0) coinvolge la resistenza della configurazione vuota nel modello locale e
l’entropia spaziale che viene dalla posizione in Λβ dove può apparire la nuova goccia.

Teorema (III) Il nostro terzo risultato descrive la transizione tipica del sistema tra due visite
successive a X∆+ a condizione che la dinamica non ritorni nella stessa configurazione al
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Figura 2.33 – Per `c = 4 rappresentiamo sulla sinistra un esempio di configurazione η ∈ X∆+ tale che
π(η) = {(4, 5), (5, 5), (6, 7)} e sulla destra una possibile transizione tipica π ′ = {(4, 5), (5, 5), (7, 7)}, dove
le particelle grigie e bianche sono rispettivamente dormienti e attive.

Figura 2.34 – Sulla sinistra rappresentiamo un esempio di configurazione η ∈ X∆+ tale che π(η) =

{(2, 2), (3, 3), (5, 6)} e sulla destra la transizione tipica π ′ = {(3, 3), (5, 6)}, dove le particelle grigie e
bianche sono rispettivamente dormienti e attive.

tempo τ̄i+1. Data una configurazione X(τ̄i) ∈ X∆+ definiamo la transizione tipica π ′i come
segue. Per `1,i > `c poniamo

π ′i =
{
π(η ′) : η ′ è una configurazione ottenuta da X(τ̄i)

aggiungendo una riga a un quasi–quadrato arbitrario
}

.
(2.3.83)

Si veda la Figura 2.33. Per `1,i < `c dobbiamo distinguere i casi `2,i > 3, `2,i = 2 e `2,i = 0.
Se `1,i < `c e `2,i > 3 (risp. `2,i = 2), allora definiamo π ′i come il singoletto costituito
dalla collezione delle dimensioni dei quasi–quadrati ottenuta da π(X(τ̄i)) modificando uno
dei quasi–quadrati più piccoli, che diventa (`2,i − 1)× `1,i (risp. 0× 0). Se `1,i = `2,i = 0

definiamo allora π ′i = {π(η ′)}, dove η ′ è la configurazione ottenuta da X(τ̄i) creando una
goccia quadrata 2× 2, cioè π ′i = {(2, 2)}. Si veda la Figura 2.34. Dimostriamo quindi che

lim
β→∞PµR

(
se τ̄i+1 6 T?, allora π(X(τ̄i+1)) ∈ π ′i o

si verifica una coalescenza tra τ̄i e τ̄i+1

∣∣∣∣∣π(X(τ̄i+1)) 6= π(X(τ̄i))
)

= 1. (2.3.84)

Teorema (IV) Il nostro quarto e ultimo teorema caratterizza le transizioni atipiche del sistema,
partendo da una configurazione sottocritica costituita da un unico quasi–quadrato, tra due
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visite successive a X∆+ , senza la creazione di nuove scatole e condizionato ad una dinamica
che non torna alla stessa configurazione al tempo τ̄i. A tal fine, dato X(τ̄i) ∈ X∆+ con
2 6 `1,i < `c, definiamo π ′′i = (`2,i, `1,i + 1). Questo risultato fornisce un limite inferiore per
la transizione atipica di “andare controcorrente” nel caso di un quasi–quadrato sottocritico.
Come mostreremo nell’articolo successivo [12], la fuga dalla metastabilità avviene tramite
nucleazione di una goccia supercritica da qualche parte nella scatola Λβ. Caratterizzeremo,
infatti, il tempo che impiega la dinamica per uscire da R, così come le traiettorie tipiche delle
configurazioni visitate dal cluster errante fino alla formazione di una goccia grossa I risultati
di questa tesi, che sono limitati al caso Θ < 2∆−U− γ, ci consentiranno di svolgere questa
analisi per valori maggiori di Θ, cioè Θ < Γ∗ − (2∆−U), dove ricordiamo che Γ∗ è l’energia
della goccia critica nel modello locale.

Osservazione 2.3.4. Le tecniche sviluppate in questa tesi consentono di dimostrare che, per qualsiasi
configurazione quasi–quadrata di dimensioni `1 × `2 in X∆+ , il cluster esce da una qualsiasi scatola
finita, centrata attorno al cluster e con volume indipendente da β, entro un tempo di ordine er(`1,`2)β.
Questo è il motivo per cui si parla di cluster errante. Non enunciamo né usiamo questo risultato come
teorema formale.

Il resto di questa sezione è dedicato a fornire l’idea delle prove di questi quattro teoremi
principali. Il punto di partenza è formulare determinate proprietà di regolarità per la
configurazione iniziale che possiamo imporre perché la loro violazione è estremamente
improbabile. In particolare introduciamo un sottoinsieme di configurazioni X∗ ⊂ Xβ, che
chiamiamo ambiente tipico, con la proprietà che se il nostro sistema parte dall’insieme ristretto,
poi esce dall’ambito X∗ entro una qualsiasi scala temporale esponenziale in β solo con una
probabilità trascurabile, cioè

PµR
(τXβ\X∗ 6 T

?) = SES(β).

Questo risultato ci permette di lavorare con configurazioni in X∗. Sostituendo, quindi, la
dinamica originale con la dinamica ristretta a X∗, possiamo accoppiare le due dinamiche
in modo tale che abbiano le stesse traiettorie fino a qualsiasi tempo esponenziale in β con
probabilità 1− SES(β).

L’idea di base per dimostrare il teorema (I) consiste nel raggruppare le configurazioni
in una sequenza di sottoinsiemi di configurazioni di regolarità crescente e dimostrare una
proprietà di ricorrenza a questi insiemi su una sequenza crescente di scale temporali, cioè la
dinamica raggiunge questi insiemi entro il tempo di riferimento con probabilità 1− SES(β).
Questo è un argomento standard per sistemi metastabili a bassa temperatura, che è stato
eseguito nei minimi dettagli per una versione semplificata del nostro modello [75]. Qui
indichiamo le differenze rispetto al lavoro precedente. Sottolineiamo innanzitutto che, rispetto
al modello locale, dobbiamo introdurre due insiemi aggiuntivi per controllare la regolarità del
gas che circonda le gocce. Inoltre, le scatole locali ora non sono fisse, ma si muovono con le
gocce e pertanto è necessario un loro controllo accurato: dobbiamo controllare in particolare
la probabilità che una nuova scatola venga creata entro il tempo di riferimento.

Per dimostrare i Teoremi (II)–(IV) dobbiamo fornire stime sulla probabilità di transizione
tra configurazioni costituite da quasi–quadrati e particelle libere. In particolare, fornire
limiti superiori alla probabilità che si verifichino transizioni tipiche e atipiche rappresenta il
principale ostacolo. Dobbiamo controllare, infatti, tutti i possibili meccanismi per crescere
e contrarsi. Questi ostacoli sono organizzati in quello che chiamiamo approccio deduttivo: il
tubo delle traiettorie tipiche che portano alla nucleazione è descritto attraverso una serie di
eventi, i cui complementari hanno una probabilità trascurabile, sui quali l’evoluzione del gas
consiste in gocce erranti su scale spazio-temporali multiple in un modo che può essere descritto
da una catena di Markov a grana grossa su uno spazio di gocce.

2.4 metastabilità per sistemi non conservativi

Consideriamo l’esempio di un sistema ferromagnetico al di sotto della temperatura critica.
Facciamo partire il sistema da uno stato di equilibrio quando un campo magnetico esterno
positivo si è lentamente spento, e poi lo lasciamo evolvere, dopo aver introdotto un piccolo
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campo magnetico negativo. Osserviamo che la situazione iniziale, caratterizzata da una
magnetizzazione positiva, persiste per un lungo tempo macroscopico. In altre parole il
sistema, invece di subire la giusta transizione di fase, rimane a lungo in una situazione
apparentemente stazionaria fino a quando qualche perturbazione esterna o qualche grande
fluttuazione spontanea nucleerà la nuova fase, avviando un processo irreversibile che porterà
il sistema alla vera fase di equilibrio con magnetizzazione negativa. Il comportamento sopra
descritto è tipico di un’evoluzione non conservativa nel senso che la magnetizzazione non
si conserva. Per modellizzare matematicamente i fenomeni come quello appena descritto si
propone spesso di utilizzare modelli reticolari che evolvono secondo la dinamica di Glauber
poiché la dinamica non conserva la magnetizzazione totale del sistema. Sottolineiamo che
le dinamiche non conservative hanno le proprie caratteristiche peculiari rispetto a quelle
conservative, e nel resto di questa sezione ci proponiamo di evidenziarle.

2.4.1 Dinamica di Glauber

Consideriamo un insieme finito di siti V . Ad ogni sito associamo un valore di spin (−1 o
+1) e definiamo lo spazio delle configurazioni come X = {−1,+1}V . Possiamo associare ad
ogni configurazione σ l’energia Hamiltoniana H̃(σ). Qui non riportiamo la scelta particolare
dell’insieme V e dell’energia H̃(σ), perché cambia a seconda del fenomeno che vogliamo
analizzare. Questa scelta verrà mostrata nella Sezione 2.4.2 dove analizzeremo la diffusione
di un’opinione all’interno di una comunità. Ponendo β la temperatura inversa, consideriamo
la dinamica di Metropolis usuale a cambiamento singolo di spin (Xt)t∈N su X indotta da H̃.
Le probabilità di transizione della dinamica di Glauber sono quindi date da

P(σ, η) = q(σ, η)e−β[H̃(η)−H̃(σ]+ , per tutti σ 6= η, (2.4.1)

dove [·]+ denota la parte positiva e q(σ, η) è una matrice di connettività indipendente da β,
definita, per ogni σ 6= η, come

q(σ, η) =

 1
|V |

se ∃ x ∈ V tale che σ(x) = η,

0 altrimenti,
(2.4.2)

dove

σ(x)(z) =

σ(z) se z 6= x,
−σ(x) se z = x.

(2.4.3)

Questa dinamica è reversibile rispetto alla misura di Gibbs

µ(σ) = Z−1 exp(−βH̃(σ)),

dove Z =
∑
σ∈X H̃(σ) è la costante di normalizzazione, nel senso che la nostra catena di

Markov (Xt)t∈N soddisfa la condizione di equilibrio dettagliato.

2.4.2 Un modello per la dinamica di opinioni

In questa sezione ci concentriamo sul modello di Ising come primo semplice modello ca-
nonico per una dinamica di opinione pubblica, c.f. [109, 110], in presenza di una scelta binaria.
In questo contesto lo stato di uno spin descrive l’opinione corrente di un individuo, il campo
magnetico esterno cattura l’esposizione a informazioni distorte e/o marketing/campagna
unilaterale, e gli accoppiamenti tra spin vicini rappresentano l’effetto delle interazioni tra
pari sulle opinioni personali. Nei modelli di opinione binaria simili a Ising la temperatura
del sistema approssima più o meno eventi aleatori che possono influenzare le opinioni degli
individui ma non sono esplicitamente presi in considerazione nel modello, cfr. [110]. In questa
tesi studiamo il comportamento metastabile del modello di Ising su una rete con comunità nel
limite di temperatura molto bassa, che è utile a descrivere una situazione in cui le interazioni
tra pari e fattori esterni hanno una forte influenza sull’opinione di tutti. La bassa temperatura
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favorisce motivi di opinioni omogenee in cui ci sono meno individui che non sono d’accordo
con i pari con cui interagiscono, che a livello macroscopico significa che le opinioni diventano
molto rigide e difficili da cambiare, ad esempio, su una situazione di polarizzazione.

Il modello base di Ising può essere ampliato per avere più di due opinioni e possibilmente
interazioni asimmetriche tra loro, come in [111], dove gli autori considerano un modello simile
a quello di Ising con tre opinioni ma dove le due opinioni più estreme non interagiscono
tra loro. Dal momento che siamo principalmente interessati all’interazione tra dinamiche di
opinioni e topologia di rete, in questa tesi ci concentriamo sul caso più semplice di un’opinione
binaria. Il modello elettorale è un altro modello simile ad Ising per studiare l’evoluzione
delle opinioni binarie che presentano una diversa (e possibilmente irreversibile) regola di
aggiornamento della maggioranza, si veda ad esempio [8, 51, 94]. Per una revisione più
ampia dei modelli matematici e fisici di dinamica di opinioni rimandiamo il lettore interessato
a [114].

È chiaro che assumere che la struttura sottostante sia un reticolo o il grafo completo non è
l’ideale quando si analizza una dinamica di opinione pubblica, poiché gli individui hanno reti
sociali e motivi di interazione molto eterogenei. In particolare è ragionevole supporre che ogni
individuo abbia solo un numero finito di interazioni e che tenderebbe ad allinearsi di più con
l’opinione degli individui della comunità a cui appartiene piuttosto che a quella di perfetti
sconosciuti. Con l’obiettivo di capire il ruolo della struttura comunitaria nelle dinamiche di
opinione, consideriamo qui un famiglia di reti molto eterogenea con comunità molto dense
ed interazioni molto deboli tra queste comunità. Vari modelli di dinamiche di opinione sono
stati studiati su reti a struttura comunitaria, ad esempio, [83, 108], ma soprattutto mediante
simulazioni numeriche, mentre in questa tesi ci concentriamo su risultati matematici rigorosi.

A noi interessa soprattutto capire l’interazione tra le dinamiche di opinione e la struttura
comunitaria della rete sottostante. Con l’obiettivo di derivare risultati in forma chiusa,
scegliamo una specifica famiglia di reti clusterizzate semplice ma emblematica. Consideriamo
in particolare il modello di Ising su un grafo G costituito da k cluster di uguale dimensione,
che sono grafi localmente completi, e tale che ogni nodo sia connesso ad un singolo nodo in
ciascuno degli altri cluster. Con questa scelta otteniamo una rete con comunità molto fitte che
sono solo scarsamente collegate tra loro.

La struttura della rete influenza pesantemente sia le proprietà statiche (cioè l’energia delle
configurazioni) che quelle dinamiche (la probabilità delle traiettorie del sistema) del modello
di Ising. In questo contesto è interessante studiare i fenomeni di metastabilità o “tunneling”
che il modello di dinamica di opinioni può esibire. In presenza di un campo magnetico
esterno positivo, ad esempio, lo stato metastabile del sistema descrive la diffusione di una
seconda opinione molto rigida che non è allineata con quella principale.

Informalmente, le configurazioni metastabili sono quelle in cui il sistema persiste per molto
tempo prima di raggiungere una delle configurazioni stabili, cioè quelle che minimizzano
l’energia del sistema. Nel contesto della rete clusterizzata che consideriamo in questa tesi,
l’insieme degli stati metastabili dipende fortemente dalla forza relativa delle interazioni tra
le comunità della rete e da quella del campo magnetico esterno. In assenza di un campo
magnetico esterno le due opinioni sono ugualmente probabili ed i due motivi di opinione
omogenei sono entrambi stati stabili. In questo caso è comunque interessante studiare come,
iniziando con tutti gli individui che concordano su un’opinione, l’intera rete può passare
all’opinione opposta, quanto tempo ci vorrà e quali sono le traiettorie più probabili di questo
processo.

Formalmente, per ogni k > 2 e ogni n > 2 consideriamo un grafo non orientatoG = G(k, n)

costituito da k cluster, ognuno dei quali è un sottografo completo di dimensione n, in cui
colleghiamo ulteriormente ogni nodo, i = 1, . . . , n anche ai suoi k− 1 “gemelli” negli altri
k − 1 cluster (quelli con lo stesso marchio modulo n), ottenendo così un grafo regolare
dove ogni nodo ha grado n+ k− 2. L’insieme dei vertici di G(k, n) è V =

⋃k
i=1 V

(i), dove
V(i) := {n · (i− 1) + 1, . . . , n · i} sono i nodi nel cluster i-esimo. L’insieme degli archi di G(k, n)
è E = Eint ∪ Ecross, dove Eint =

⋃k
i=1 E

(i)
int è la collezione dei lati interni, cioè dei lati all’interno

di un cluster, e Ecross quella dei lati tra i cluster, a cui ci riferiamo come lati incrociati. Il grafo
G(k, n) ha allora 1

2kn(n+ k− 2) lati, di cui n
(
k
2

)
sono incrociati e

(
n
2

)
sono all’interno di

ciascun cluster. Figura 2.35 raffigura un’istanza di G(3, 5).
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Figura 2.35 – Rappresentazione del grafo G(3, 5).

Ad ogni sito i ∈ V associamo una variabile di spin σ(i) ∈ {−1,+1}. Nello spazio delle
configurazioni X = {−1,+1}V definiamo la funzione di energia H̃ come

H̃(σ) := −
∑

(i,j)∈Eint
σiσj − ε

∑
(i,j)∈Ecross

σiσj − h
∑
i∈V

σi, σ ∈ X, (2.4.4)

dove assumiamo che la forza dell’interazione tra i cluster sia parametrizzata da uno scalare ε ∈
[−1, 1], mentre è uguale a 1 lungo tutti gli altri lati interni e h > 0 è il campo magnetico esterno.
Considereremo il caso h ∈ [0, 1] dove, come si vedrà, il sistema mostra un comportamento
metastabile. È ragionevole supporre che le opinioni degli individui che fanno parte di una
comunità diversa hanno meno influenza su ciascuna comunità. Per questo motivo assumiamo
che le interazioni tra diversi cluster di rete siano più deboli di quelli all’interno di ciascun
cluster, poiché la loro forza è pari a |ε| 6 1. Inoltre, assumendo valori negativi per ε, possiamo
considerare situazioni in cui gli individui tendono a non essere d’accordo con individui di
altre comunità. La presenza di un campo magnetico esterno diverso da zero di intensità h
favorisce le configurazioni in cui gli spin sono allineati nella direzione del campo. Poiché ogni
singolo spin sente il campo esterno, il suo contributo energetico deve essere proporzionale al
numero di spin con un certo segno.

La dinamica di Glauber è quindi definita come la catena di Markov a tempo discreto
con probabilità di transizione definite in (2.4.1) con l’Hamiltoniana definita in (2.4.4). Per
questo modello, a seconda dei valori del parametro ε e del campo magnetico esterno h,
caratterizzeremo le proprietà asintotiche del tempo di transizione dall’insieme degli stati
metastabili (o stabili) all’insieme degli stati stabili, oltre a fornire una caratterizzazione delle
configurazioni critiche che sono attraversate dalla dinamica con probabilità tendente a uno
nel limite di temperatura molto bassa.

In questa tesi ci interesseremo al caso k = 2. La Figura 2.36 raffigura un’istanza di G(2, 7). Il
motivo di questa scelta è duplice: in primo luogo il caso k = 2 presenta già un comportamento
molto vario e ricco, e, in secondo luogo, il caso più generale con k > 2 cluster non è
concettualmente più difficile da affrontare, ma semplicemente più pesante in termini di
notazione e terminologia. Avere una rete con solo k = 2 cluster V(1) e V(2) consente una
notazione molto compatta per configurazioni di spin equivalenti modulo rietichettatura dei
nodi. Per una configurazione σ ∈ X e i = 1, 2, sia V(i)

+ (σ) il sottoinsieme dei nodi nel cluster i
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Figura 2.36 – Esempio di una configurazione in C(4, 3, 3) sulla rete G(2, 7) con gli spin codificati (neri
per +1 e bianchi per −1). Il primo cluster ha p1 = 4 spin +1, ha p2 = 3 spin −1 e ci sono a = 3 lati
concordi tra spin positivi.

Figura 2.37 – Le due configurazioni uniformi + e −, dove rappresentiamo in bianco (risp. nero) gli
spin −1 (risp. +1).

il cui spin è uguale a +1 in σ e E+(σ) il sottoinsieme dei lati che connettono V(1)
+ (σ) e V(2)

+ (σ).
Per 0 6 p1, p2 6 n e 0 6 a 6 n, definiamo il sottoinsieme C(p1, p2, a) ⊂ X come

C(p1, p2, a) :=
{
σ ∈ X : |V

(1)
+ (σ)| = p1, |V

(2)
+ (σ)| = p2, e |E+(σ)| = a

}
.

In parole, C(p1, p2, a) è la collezione delle configurazioni σ su G(2, n) tali che
— σ ha 0 6 p1 6 n spin +1 nel primo cluster e 0 6 p2 6 n spin +1 nel secondo cluster;
— σ ha a lati incrociati concordi tra gli spin +1 nel primo cluster e gli spin +1 nel secondo

cluster.
Si noti che, dati n, p1, p2, il numero a di lati concordi deve soddisfare la seguente disugua-
glianza

max{0, p1 + p2 −n} 6 a 6 min{p1, p2}, (2.4.5)

poiché non può esserci una quantità negativa di lati tra una qualsiasi coppia di sottocluster.
Si noti che i parametri p1, p2 e a identificano in modo univoco l’insieme delle configurazioni
in C(p1, p2, a), modulo rietichettatura dei nodi. Implicitamente fornisce, infatti, informazioni
anche sugli spin −1 nel seguente senso:

— σ ha 0 6 n− p1 6 n spin −1 nel primo cluster e 0 6 n− p2 6 n spin −1 nel secondo
cluster;

— σ ha p1 − a lati incrociati discordi tra gli spin +1 nel primo cluster e gli spin −1 nel
secondo cluster;

— σ ha p2 − a lati incrociati discordi tra gli spin −1 nel primo cluster e gli spin +1 nel
secondo cluster;

— σ ha n+ a− p1 − p2 lati incrociati concordi tra gli spin −1 nel primo cluster e gli spin
−1 nel secondo cluster.

La Figura 2.36 mostra un esempio di una configurazione in C(4, 3, 3) sulla rete G(2, 7).
Indichiamo ulteriormente con +,− le due configurazioni omogenee su G(2, n) composte

da tutti spin +1 e da tutti spin −1, si veda la Figura 2.37. Ci riferiamo alle configurazioni che
non sono globalmente omogenee ma localmente uniformi all’interno di ciascun cluster come
configurazioni miste e le denotiamo con ±,∓. Chiaramente ce ne sono solo 2 su G(2, n), si
veda la Figura 2.38.
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Figura 2.38 – Le due configurazioni miste ± e ∓, dove rappresentiamo in bianco (risp. nero) gli spin
−1 (risp. +1).

Figura 2.39 – Raffiguriamo il cammino di riferimento ω̄ rappresentando le selle e gli stati metastabili e
stabili che attraversa, dove indichiamo in bianco (risp. nero) gli spin −1 (risp. +1).

teoremi principali : caso h = 0

Qui ci concentriamo sul caso h = 0, cioè non c’è campo magnetico esterno. Il primo
risultato che forniamo è l’identificazione degli stati metastabili e stabili. In particolare abbiamo
che l’insieme degli stati stabili è

Xs =


{+,−} se ε > 0,

{+,−,±,∓} se ε = 0,

{±,∓} se ε < 0,

(2.4.6)

e l’insieme degli stati metastabili è

Xm =

{±,∓} se ε > 0,

{+,−} se ε < 0.
(2.4.7)

Alla luce di ciò è chiaro che il fenomeno interessante da considerare è la transizione di tunneling,
cioè la transizione tra due stati stabili. A causa della simmetria del sistema si può congetturare
che il varco C∗ per questa transizione è composto da due tipi di configurazioni. Il primo
corrisponde all’avere n2 spin +1 in uno dei due cluster, 0 spin +1 nell’altro cluster e 0 spin
incrociati concordi tra gli spin +1 nei due cluster. Il secondo corrisponde all’avere n

2 spin
+1 in uno dei due cluster, n spin +1 nell’altro cluster e n2 lati incrociati concordi tra gli spin
+1 nei due cluster. Notiamo che se n è dispari, n2 dovrebbe essere sostituito da n+12 o n−1

2

a seconda che ε > 0 o ε < 0. Deduciamo quindi che il sistema esegue la transizione tra i
due stati stabili in un tempo di ordine eΓ

∗β nel limite di β → ∞, dove Γ∗ è l’energia delle
configurazioni critiche e può essere espresso in modo esplicito in termini di n e ε. Indichiamo
con s1 lo stato stabile di partenza e con s2 lo stato stabile finale. Come abbiamo visto nella
Sezione 2.3.3, gli ingredienti fondamentali sono i seguenti:

(i) Dimostrare che Φ(s1, s2) 6 Γ∗.
(ii) Dimostrare che Φ(s1, s2) > Γ∗.
(iii) Dimostrare che ogni ω ∈ (s1 → s2)opt attraversa l’insieme C∗.

Per il punto (i) è sufficiente costruire un cammino di riferimento che collega s1 e s2 e che non
supera il valore energetico Γ∗. Se ε > 0 definiamo un cammino di riferimento ω̄ da − a
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Figura 2.40 – Raffiguriamo il cammino di riferimento ω̂ rappresentando le selle e gli stati metastabili e
stabili che attraversa, dove indichiamo in bianco (risp. nero) gli spin −1 (risp. +1).

Figura 2.41 – Esempio di una configurazione σ sulla rete G(2, 7) che appartiene alla varietà C(10), poichè
ha p = 10 spin +1, nello specifico p1 = 6 nel primo cluster e p2 = 4 nel secondo cluster (gli spin +1/−1
sono colorati rispettivamente in nero/bianco).

+, mentre se ε < 0 definiamo un cammino ω̂ da ± a ∓. A parole, questi percorsi sono
costruiti nel modo seguente. Il cammino ω̄, che parte da −, consiste nel cambiare uno ad
uno gli spin −1 in una comunità finché il cammino non raggiunge ± o ∓ e successivamente
gli spin −1 rimanenti vengono cambiati uno ad uno finché il cammino raggiunge + (si veda
la Figura 2.39). La costruzione del cammino ω̂ è fatto in modo simile (si veda la Figura 2.40).

Ancora una volta, i punti (ii) e (iii) possono essere dimostrati tramite un argomento di
tipo disuguaglianza isoperimetrica. L’idea è di partizionare lo spazio degli stati in sottoin-
siemi C(p) di configurazioni aventi precisamente p spin +1, si veda la Figura 2.41 per un
esempio, e caratterizzare quelle configurazioni che minimizzano l’energia quando p è fissato.
Rimandiamo al Capitolo 8 per tutti i dettagli.

teoremi principali : caso h > 0

Ci concentriamo qui sul caso h > 0, che descrive la situazione in cui c’è un campo
magnetico esterno positivo che favorisce gli spin +1. Assumiamo inoltre che 0 < h 6 1 per
evitare che il contributo energetico del campo magnetico esterno prevalga sulle energie di
legame associate ai lati interni. Come sarà chiaro in seguito, il comportamento dinamico del
sistema è diverso nei due casi 0 < h 6 |ε| 6 1 e 0 6 |ε| < h 6 1, specialmente quando ε < 0.
Questo corrisponde, infatti, ad una diversa “importanza” data ai lati incrociati e al campo
magnetico esterno. Abbiamo che l’insieme degli stati stabili è

Xs =


{+} se 0 6 ε 6 1 o 0 < −ε < h 6 1,

{+,±,∓} se h = −ε,

{±,∓} se 0 < h < −ε 6 1,

(2.4.8)
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Figura 2.42 – Raffiguriamo il cammino di riferimento ω̌ rappresentando le selle e gli stati metastabili e
stabili che attraversa, dove indichiamo in bianco (risp. nero) gli spin −1 (risp. +1).

Figura 2.43 – Raffiguriamo il cammino di riferimento ω̃ rappresentando le selle e gli stati metastabili e
stabili che attraversa, dove indichiamo in bianco (risp. nero) gli spin −1 (risp. +1).

e l’insieme degli stati metastabili è

Xm =


{−} se 0 6 ε 6 1 o h = −ε,

{±,∓} se 0 < −ε < h 6 1,

{+} se 0 < h < −ε 6 1.

(2.4.9)

Il nostro interesse è pertanto quello di indagare il comportamento asintotico per β→∞ del
tempo di tunneling (risp. tempo di transizione allo stato stabile) del sistema che parte dallo
stato stabile s1 (risp. stato metastabile m) per raggiungere per la prima volta l’altro stato
stabile s2 (risp. lo stato stabile s) se 0 < h < −ε 6 1 (risp. se 0 6 ε 6 1 o 0 < −ε < h 6 1).
Come prima, la strategia per caratterizzare il varco e stimare il tempo di transizione è
dimostrare la versione corrispondente dei punti precedenti (i)–(iii). Qui discutiamo soltanto
il punto (i) esibendo i cammini di riferimento, mentre ci riferiamo al Capitolo 8 per tutti i
dettagli relativi ai punti (ii) e (iii). Se ε > 0, consideriamo il cammino ω̄ rappresentato in
Figura 2.39. Se 0 < h < −ε 6 1, definiamo ω̌ : ±→ ∓ come il cammino rappresentato in
Figura 2.42. Se 0 < −ε < h 6 1, definiamo ω̃ : ±→ + come il cammino rappresentato in
Figura 2.43.

In questa tesi abbiamo indagato le dinamiche di opinione all’interno di una comunità di
individui attraverso l’analisi della metastabilità per il modello di Ising sul grafo G(2, n). A
seconda dei diversi parametri ε e h abbiamo mostrato che gli stati stabili e metastabili del
sistema sono diversi. Quindi, a seconda dei diversi scenari, abbiamo utilizzato la struttura
dell’approccio traiettoriale [85, 92] per analizzare il tempo di transizione o di tunneling,
rispettivamente, e per descrivere le configurazioni critiche. Inoltre, abbiamo dimostrato
che la presenza di un campo magnetico esterno positivo, che può essere interpretato come
informazioni o influenze esterne, rende la situazione molto più ricca, soprattutto nel caso
ε < 0 in cui le comunità tendono ad avere opinioni divergenti. Più specificamente, l’insieme
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degli stati stabili è completamente diverso a seconda del ruolo dato alle informazioni esterne
per quanto riguarda l’influenza tra le comunità, vale a dire, a seconda che h < −ε o meno.
Questo modello è il nostro primo tentativo di analisi della diffusione di un’opinione all’interno
di due comunità. In primo luogo, l’estensione a un numero generale k di comunità nasce
naturalmente in questo contesto e sarà al centro del lavoro futuro, unitamente al calcolo del
prefattore per il tempo medio di transizione. Questo rappresenta un compito impegnativo
nel caso k > 2, perché bisogna tener conto di tutti i meccanismi di diffusione della nuova
opinione tra le diverse comunità. Inoltre, si possono considerare i modelli con più di due
opinioni (modello di Potts) o con diverse forze di interazione tra le comunità. Crediamo che
la dinamica di opinione all’interno di una popolazione di individui con una topologia di rete
non banale sia un argomento di grande interesse con molte direzioni interessanti da esplorare
ulteriormente in futuri lavori di ricerca.

2.5 grafi aleatori ad attaccamento preferenziale

In questa sezione ci concentriamo sull’analisi del comportamento asintotico dei grafi
aleatori ad attaccamento preferenziale. La crescita senza precedenti in termini di dimensioni e
complessità delle reti sociali ed economiche negli ultimi due decenni ha suscitato un notevole
interesse per la comprensione delle proprietà fondamentali di tali reti. In questo contesto, il
modello ad attaccamento preferenziale (PA), introdotto in [19], è un noto modello di rete che
cresce nel tempo. Più precisamente, il modello PA è costituito da una sequenza di grafi di
dimensione crescenti tale che ogni grafo è ottenuto dal precedente secondo una determinata
regola probabilistica. Ad ogni passo un nuovo vertice viene aggiunto e forma connessioni
con i vertici nel grafo in modo tale che le connessioni con vertici con gradi maggiori siano
più probabili. Qui consideriamo il modello PA senza cappi descritto ad esempio in [59]. In
particolare, ogni grafo della sequenza è connesso.

In letteratura compaiono diversi modelli di PA, a seconda dei dettagli concreti del mecca-
nismo di attaccamento. Ad esempio, in [30, 58, 104, 113, 115] gli autori indagano un modello
PA diretto, mentre in [23, 50, 58, 59, 88, 103] si considera una versione indiretta. Tuttavia, le
reti PA classiche non sempre si adattano bene ai dati delle reti del mondo reale, o in molte
applicazioni è naturale assegnare alcuni tipi di caratteristiche ai vertici o ai lati. Ciò ha portato
a prendere in considerazione alcune estensioni del modello PA classico. Ad esempio, in [7]
gli autori considerano una famiglia generale di modelli ad attaccamento preferenziale con
bordi multitipo, mentre [5, 84, 98] indagano un modello PA che mescola le regole PA con
regole di attaccamento uniformi. In questo lavoro consideriamo il modello PA senza cappi
descritto in [59]. Facciamo questa scelta per semplificare i calcoli, ma crediamo che il nostro
risultato valga anche, ad esempio, per il modello PA con cappi considerato nella referenza [69,
Capitolo 8]. Discuteremo di questo più in dettaglio in seguito. Si vedano le Figure 2.44 e 2.45

per esempi di tali grafi aleatori con cappi, dove ogni nuovo nodo ha un numero fisso m ∈N

di lati attaccati ad esso e δ è un parametro del modello (si veda (2.5.1) per la definizione
precisa). Questo è un caso particolare del modello considerato in [59], dove m è una variabile
aleatoria ed è campionato per ogni nuovo nodo.

Il nostro risultato principale è un teorema del limite centrale per la proporzione di nodi
con un dato grado. Infatti, dimostriamo questo congiuntamente per tutti i conteggi dei
gradi. Diamo in particolare un’espressione esplicita per la covarianza asintotica. I primi
risultati riguardanti lo studio della normalità asintotica dei conteggi dei gradi nei modelli ad
attaccamento preferenziale senza cappi sono dati in [88] usando teoremi del limite centrale per
martingale. I nostri risultati generalizzano quelli ottenuti in [103] per l’albero ad attaccamento
preferenziale. Più precisamente, in [103] gli autori considerano un modello PA con cappi e
tale che m = 1. Noi invece consideriamo il modello PA con m > 1 e senza cappi. Tuttavia,
questo non influisce il comportamento asintotico dei conteggi dei gradi, poiché quando la
dimensione del grafo va all’infinito, la probabilità che un nuovo vertice formi un cappio tende
a zero. Per questo ci si aspetterebbe di ritrovare i risultati in [103] quando inseriamo m = 1

nel nostro risultato. In effetti questo è il caso se si tiene conto di qualche piccolo errore in [103]
di cui parleremo più avanti. Si noti che una grande differenza tra i due modelli è la struttura
di connettività risultante. Il nostro modello produce un grafo connesso con probabilità 1 (w.p.
1), mentre il modello in [103] è disconnesso w.p. 1. Questo non ha tuttavia un ruolo nella
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Figura 2.44 – Grafo aleatorio ad attaccamento preferenziale con m = 2 e δ = 0 di taglia 10, 30 e 100.
Figura presa da [69].

Figura 2.45 – Grafo aleatorio ad attaccamento preferenziale con m = 2 e δ = −1 di taglia 10, 30 e 100.
Figura presa da [69].

distribuzione dei conteggi dei gradi. In [99] gli autori hanno studiato i conteggi dei gradi
congiunti in grafi aleatori ad attaccamento preferenziale lineare. I risultati sono espressi in
termini di peso dei vertici, ma possono essere considerati come grado, poiché ogni volta che
un vertice riceve un nuovo lato, il suo peso aumenta di uno. La principale differenza tra il
nostro ed il loro modello è che noi consideriamo le probabilità di attaccamento proporzionale
ad una funzione lineare del grado di un vecchio vertice (si veda (2.5.1)), mentre in [99] sono
proporzionali al grado di un vecchio vertice.

In pratica nelle reti del mondo reale non tutti i nodi che entrano nella rete hanno lo stesso
grado, e quindi sarebbe interessante estendere il nostro risultato nel caso di una distribuzione
aleatoria dei gradi iniziali. Risultati promettenti su questo modello sono stati ottenuti in
[54, 59]. In questa tesi assumiamo, inoltre, che i parametri del modello siano noti, ma in
molte situazioni pratiche si ha a disposizione una realizzazione del grafo ed il compito sta
nella stima dei parametri sconosciuti, si veda [60, 101, 112]. Se consideriamo una classe più
generale di grafi ad attaccamento preferenziale, per cui un approccio “senza modello” viene
utilizzato e quindi la distribuzione esatta del grafo non è nota (si veda ad esempio [81]), ci
aspettiamo che le tecniche presentate in questo lavoro possano essere usate per derivare il
teorema del limite centrale per tutti i conteggi dei gradi. Questo è un interessante problema
aperto.

Descriviamo ora in dettaglio il modello di grafo aleatorio che consideriamo. Fissiamo una
volta per tutte un intero m > 1. Formalmente, il modello ad attaccamento preferenziale è
una successione di grafi aleatori (PAs)ts=1. L’indice s viene interpretato come un parametro
temporale. All’istante s il grafo PAs ha un insieme V = {0, 1, ..., s} di s+ 1 vertici. Per s = 1, il
grafo PA1 è composto dai vertici 0 e 1, collegati da m archi. Per s > 2, il grafo PAs è ottenuto
da PAs−1 aggiungendo un nuovo vertice s di grado m come segue. Definiamo PAs,0 =PAs−1
e PAs,1,...,PAs,m come i grafi intermedi ottenuti aggiungendo un nuovo lato in sequenza a
PAs,0. Per i = 1, ...,m, PAs,i si ottiene da PAs,i−1 disegnando un lato da s ad un vertice
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Figura 2.46 – RZ(r, r) per m = 1 e δ = −0.5, 0, 1, 3, 5 sulla sinistra e RZ(r, r) per m = 2 e δ = −1, 0, 2, 6,
10 sulla destra. Per evidenziare il comportamento differente delle diverse funzioni di varianza usiamo
la scala logaritmica sull’asse y.

scelto a caso tra {0, 1, ..., s− 1}. La probabilità che un vertice s sia connesso a qualche vertice
i è proporzionale al grado di i. In altre parole, vertici con gradi grandi hanno maggiore
probabilità di attrarre nuovi lati. Indichiamo con Nk(s, i) per i = 1, ...,m il numero di vertici
di grado k dopo che l’i-esimo lato è stato attaccato al tempo s, escluso il vertice s. Poniamo
Nk(s+ 1, 0) := Nk(s,m). Inoltre, indichiamo con Ds,i il grado del vertice che è stato attaccato
al lato i−esimo aggiunto durante la costruzione di PAs da PAs−1. Consideriamo ora la
σ-algebra Fs,i generata dalla costruzione ad attaccamento preferenziale fino all’attaccamento
dell’i-esimo lato del nuovo vertice al tempo s. La probabilità condizionata che l’arco i-esimo
si colleghi ad un vertice di grado Ds,i è

P(Ds,i = k|Fs,i−1) =
(k+ δ)Nk(s, i− 1)∑
j(j+ δ)Nj(s, i− 1)

, (2.5.1)

dove δ > −m è un parametro affine. La costante di normalizzazione in (2.5.1) assume la
forma semplice [59]

∞∑
j=1

(j+ δ)Nj(s, i− 1) = s(2m+ δ) − 2m+ i− 1. (2.5.2)

Per il modello PA standard considerato in [69, Capitolo 8] si dimostra che esiste una funzione
di probabilità di massa {pk, k > m} tale che, uniformemente in i ∈ {0, ...,m},

lim
s→∞ Nk(s, i)s

= pk ∈ (0, 1), (2.5.3)

quasi certamente, dove pk è dato da

pk = (2+ δ/m)
Γ(k+ δ)Γ(m+ 2+ δ+ δ/m)

Γ(m+ δ)Γ(k+ 3+ δ+ δ/m)
. (2.5.4)

Qui Γ(·) rappresenta la funzione Gamma. Quando la dimensione del grafo va all’infinito, la
probabilità che un nuovo vertice formi un cappio tende a zero e quindi è facile verificare che
(2.5.3) e (2.5.4) valgono ancora per il nostro modello senza cappi seguendo la dimostrazione
proposta in [69, Sezione 8.6].

Per enunciare il nostro risultato principale abbiamo bisogno di qualche ulteriore notazione.
Diciamo che gli eventi (An)n valgono con alta probabilità quando P(An) → 1 per n → ∞.
Dato un vettore aleatorio (X

(n)
1 , X

(n)
2 , ...), scriviamo (X

(n)
1 , X

(n)
2 , ...)⇒ (X1, X2, ...) per indicare

che per ogni k ∈ N, (X(n)
1 , X

(n)
2 , ..., X(n)

k ) converge a (X1, X2, ..., Xk) in distribuzione come
vettori in Rn per n→∞. Il nostro risultato principale è il seguente. Per s→∞, dimostriamo
che

(
√
s
(Nk(s, i)

s
− pk

)
, k = m,m+ 1, ...

)
⇒ (Zk, κ = m,m+ 1, ...), (2.5.5)
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Figura 2.47 – RZ(r, r) per δ = 0 e m = 1, 2, 3. Per evidenziare il comportamento differente delle diverse
funzioni di varianza usiamo la scala logaritmica sull’asse y.

5 10 15 20 25

−0.5

0

1

·10−2

r

lo
g
R

Z
(r
,5
)

m = 1

5 10 15 20 25

−2

0

5

·10−2

r

m = 2

5 10 15 20 25

−0.5

0

1

·10−1

r

m = 3

Figura 2.48 – RZ(r, 5) per δ = 0 e m = 1, 2, 3.

dove (Zk, k = m,m+ 1, ...) è un processo gaussiano con media nulla e funzione di covarianza
RZ data da (9.1.2). La dimostrazione si basa sull’attenta costruzione di un’apposita martingala.

Poiché l’espressione in (9.1.2) è notevolmente complicata, qui non la riportiamo e ci
riferiamo al Capitolo 9 per la formula esplicita. Per aiutare la comprensione ne raffiguriamo
l’andamento per varie scelte dei parametri. In Figura 2.46 rappresentiamo la funzione
r 7→ RZ(r, r) per m = 1 (risp. m = 2) fissato e vari valori di δ. In Figura 2.47 rappresentiamo
la funzione RZ(r, r) per δ = 0 fissato e vari valori di m. In Figura 2.48 tracciamo la funzione
RZ(r, 5) per δ = 0 e m = 1, 2, 3, 4. Infine, in Figura 2.49 sul lato sinistro confrontiamo la
funzione di covarianza asintotica RZ(r, r) per m = 1, δ = 1 fissati con la varianza empirica
ottenuta dalle simulazioni numeriche del modello PA fino al tempo t = 100, 1000, 5000. Inoltre,
in Figura 2.49 sul lato destro, confrontiamo la funzione di covarianza asintotica RZ(r, 5) per
m = 2, δ = 0 fissati con la covarianza empirica ottenuta dalle simulazioni numeriche del
modello PA fino al tempo t = 100, 1000, 5000. Anche se non abbiamo risultati rigorosi
sulla velocità di convergenza dei conteggi riscalati dei vertici, Figura 2.49 suggerisce che la
convergenza è in effetti abbastanza veloce.

Osservazione 2.5.1. Come spiegato in [69, Capitolo 8], è possibile definire il modello ad attaccamento
preferenziale con m > 1 in termini del modello con m = 1 collassando i vertici, quindi si potrebbe
essere tentati di applicare direttamente questa costruzione ai risultati derivati in [103] per il modello
con m = 1. Questo è un possibile approccio che presenta le sue difficoltà e ora proviamo a evidenziarle.
Il teorema del limite centrale che vogliamo dimostrare coinvolge il numero di vertici con un grado fisso,
quindi abbiamo bisogno di trovare una relazione tra quella quantità per il modello m > 1 e m = 1

per utilizzare il risultato ottenuto in [103]. Questo non è semplice, infatti è richiesto un controllo
dettagliato sulla costruzione del grafo ad ogni passo.

Osservazione 2.5.2. Qui scegliamo di aggiornare i gradi durante l’attaccamento di un nuovo vertice,
ma è possibile considerare anche il caso in cui aggiorniamo i gradi dei vertici solo quando viene aggiunto
il lato m-esimo. In questo caso, dopo aver costruito una martingala adatta rispetto alla filtrazione
(Fs)s>1 generata dalla costruzione del grafo ad attaccamento preferenziale fino al tempo s, è possibile
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Figura 2.49 – Sulla sinistra rappresentiamo la funzione RZ(r, r) per δ = 1 e m = 1 (t =∞) confrontata
con le simulazioni numeriche interrotte al tempo t = 100, 1000, 5000. Ciascuna curva empirica è stata
ottenuta prendendo una media di N = 10000 simulazioni. Sulla destra rappresentiamo la funzione
RZ(r, 5) per δ = 0 e m = 2 (t = ∞) confrontata con le simulazioni numeriche interrotte al tempo
t = 100, 1000, 5000. Ciascuna curva empirica è stata ottenuta prendendo una media di N = 10000

simulazioni. Per evidenziare il comportamento differente delle diverse funzioni di varianza usiamo la
scala logaritmica sull’asse y.

riprodurre gli stessi calcoli. Siamo quindi in grado di dimostrare un risultato simile per questo modello
utilizzando le tecniche qui presentate.

Seguendo l’argomentazione svolta in [88], siamo in grado di dimostrare un teorema del
limite centrale per il vettore composto dal numero riscalato di vertici con grado maggiore di
k. In questo caso la matrice di covarianza della legge limite normale diventa semplice ed ora
lo calcoliamo. Definiamo il numero di vertici con grado maggiore di k come

ψk(s, i) :=
∑
j>k

Nj(s, i) (2.5.6)

e

ψ(s, i) := (ψm(s, i), ψm+1(s, i), ...). (2.5.7)

Osserviamo che possiamo scrivere

ψ(1, i) = (0, ..., 0),

ψ(s, i+ 1) = ψ(s, i) + δDs,i ,
(2.5.8)

dove δDs,i è il vettore con tutte le coordinate uguali a 0 tranne il Ds,i-esimo, che è uguale a 1.
Da (2.5.3) segue che le differenze del processo a valori vettoriali {ψ(s, i), s > 1, i = 1, ...,m}

diventa sempre più indipendente e identicamente distribuito nel limite di s → ∞. Sia
πk(s, i) := P(Ds,i = k|Fs,i−1) e

πk := lim
s→∞πk(s, i) = k+ δ

2m+ δ
pk. (2.5.9)

Quindi, quand s→∞, è vero che
(
√
s
(ψk(s, i)

s
− πk

)
, k = m,m+ 1, ...

)
⇒ (Zk, k = m,m+ 1, ...), (2.5.10)

dove (Zk, k = m,m+ 1, ...) è un processo gaussiano con media nulla e matrice di covarianza
V = (vr`)k×k data dal limite della dimensione minore in alto a sinistra i× i della matrice di
covarianza condizionale infinita Var(δDs,i |Fs,i−1), cioè

vrr = πr(1− πr) =
(r+ δ)pr(2m+ δ− (r+ δ)pr)

(2m+ δ)2
,

vr` = −πrπ` = −
(r+ δ)(`+ δ)

(2m+ δ)2
prp`, r 6= `.

(2.5.11)
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2.6 schema della tesi

Questa tesi è organizzata come segue. I Capitoli 3-7 sono dedicati allo studio della dina-
mica metastabile conservativa di Kawasaki, mentre il Capitolo 8 allo studio della dinamica
metastabile non conservativa di Glauber. Infine, nel Capitolo 9 studiamo le proprietà asinto-
tiche del modello ad attaccamento preferenziale. Più precisamente, il contenuto di ciascun
capitolo è il seguente.

Nel Capitolo 3, il nostro obiettivo primario è fornire la descrizione geometrica dell’unione
di tutti i varchi minimali G(�,�) nel caso isotropo. Dimostreremo che ci sono molti varchi
minimali distinti, che caratterizzeremo geometricamente insieme alla loro unione. A tal fine
diamo prima una strategia indipendente dal modello utile ad eliminare alcune selle non essenziali,
cioè quelle che non sono essenziali per la caratterizzazione dell’insieme G(m,Xs), dove m
è l’unico stato metastabile e Xs è l’insieme degli stati stabili. Applichiamo quindi questa
strategia al modello isotropo bidimensionale che evolve sotto la dinamica di Kawasaki, dove
m = � e Xs = {�}. Per fare questo dobbiamo verificare che gli input dipendenti dal modello
richiesti sono validi per il nostro modello. Questo studio, insieme alla caratterizzazione delle
selle essenziali, si basa su un’analisi dettagliata del moto delle particelle lungo il bordo delle
gocce, che è una caratteristica tipica della dinamica di Kawasaki. Indaghiamo inoltre il gap
spettrale ed il tempo di mescolamento del processo. Concludiamo questo capitolo fornendo
alcuni risultati indipendenti dal modello relativi alle stime asintotiche forti del tempo medio
di transizione, che chiariscono il ruolo delle selle non essenziali nel calcolo del prefattore. Il
contenuto di questo capitolo si basa sull’articolo pubblicato [18] e sulla sua versione estesa
[15].

Nel Capitolo 4 caratterizziamo geometricamente l’insieme G(�,�) nel caso debolmente
anisotropo. Lo facciamo grazie alla strategia indipendente dal modello introdotta nel capitolo
3 e all’analisi specifica della dinamica del sistema. Indaghiamo inoltre il gap spettrale ed il
tempo di miscelazione del processo. Concludiamo questo capitolo fornendo stime asintotiche
forti del tempo medio di transizione e della distribuzione uniforme dell’ingresso nel varco. Il
contenuto di questo capitolo si basa su l’articolo pubblicato [18] e la sua versione estesa [15].

Il Capitolo 5 è dedicato alla descrizione geometrica dell’insieme G(�,�) nel regime
fortemente anisotropo. Dimostreremo che ci sono molti varchi minimali distinti che carat-
terizzeremo geometricamente insieme alla loro unione. Applichiamo la strategia introdotta
nel Capitolo 3 a questo modello per eliminare alcune selle non essenziali. Dobbiamo quindi
verificare che gli input dipendenti dal modello richiesti sono validi nel nostro caso. Questo
studio, insieme alla caratterizzazione delle selle essenziali, si basa su un’analisi dettagliata
del moto delle particelle lungo il bordo delle gocce. Da un lato questa è una caratteristica
tipica della dinamica di Kawasaki, dall’altro questa è una caratteristica peculiare del caso
fortemente anisotropo. Forniamo inoltre stime asintotiche forti del tempo medio di transizione
ed indaghiamo il gap spettrale ed il tempo di mescolamento. Questo capitolo è basato su [17].

Nel Capitolo 6 studiamo la dinamica locale di Kawasaki sul reticolo esagonale con
interazioni isotrope. In particolare, indaghiamo le configurazioni critiche ed il tempo di
transizione tra (esagono vuoto) e (esagono pieno) per questo modello. I nostri principali
risultati sono i seguenti. Identifichiamo innanzitutto gli stati metastabili e stabili e dimostriamo
una convergenza in probabilità, valore atteso e legge per il tempo di transizione, rispondendo
alla prima domanda della metastabilità. Dimostriamo, quindi, che il sistema raggiunge con
alta probabilità lo stato o in un tempo più breve di eβ(V

∗+ε), uniformemente nella
configurazione di partenza per ogni ε > 0, dove V∗ = ∆+U. In altre parole, la dinamica
accelerata di un fattore di ordine eβV

∗
raggiunge con alta probabilità { , }. Forniamo

infine una caratterizzazione di un varco per la transizione, rispondendo al secondo problema
della metastabilità. Sottolineiamo che questo risultato riflette come il reticolo sottostante sia
fondamentale per la dinamica del sistema. Questo capitolo è basato su [13].

Nel Capitolo 7 consideriamo il modello completamente conservativo sul reticolo quadrato
bidimensionale. Useremo i risultati di [62] per analizzare come le gocce sottocritiche si
formano e si dissolvono su scale spazio-temporali multiple quando il volume è moderatamente
grande, cioè quando la scatola ha volume eΘβ, con ∆ < Θ < 2∆−U. Poiché la dinamica è
conservativa, dobbiamo controllare gli effetti non locali nel modo in cui le gocce si formano
e si dissolvono. Ciò avviene tramite un approccio assiomatico: il tubo delle traiettorie tipiche
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che portano alla nucleazione è descritto attraverso una serie di eventi, i cui complementari
hanno probabilità trascurabile, su cui l’evoluzione del gas è costituita da gocce erranti su
scale spazio-temporali multiple in un modo che può essere descritto da una catena di Markov
a grana grossa su uno spazio di gocce. Questo capitolo è basato sulla prestampa [11].

Nel Capitolo 8 analizziamo il modello di Ising su una specifica famiglia di reti cluste-
rizzate, identificando l’insieme degli stati metastabili e stabili e stimando il comportamento
asintotico del tempo di transizione tra di loro nel limite di bassa temperatura. Nel contesto
della rete clusterizzata che consideriamo in questo capitolo, l’insieme degli stati metastabili
dipende fortemente dalla forza relativa delle interazioni tra le comunità della rete e quella
del campo magnetico esterno. In assenza di un campo magnetico esterno, le due opinioni
sono ugualmente probabili e i due modelli di opinioni omogenee sono entrambi stati stabili.
In questo caso è comunque interessante studiare come, iniziando con tutti gli individui che
concordano su un’opinione, l’intera rete può passare al parere contrario, quanto tempo ci
vorrà e quali sono le traiettorie più probabili di questo processo. Questo capitolo è basato su
[10].

Il risultato principale del Capitolo 9 è un teorema del limite centrale per la proporzione di
nodi con un dato grado per un modello generale ad attaccamento preferenziale. A tal fine
usiamo i teoremi del limite centrale per martingale. Dimostriamo questo congiuntamente per
tutti i conteggi dei gradi. In particolare, diamo un’espressione esplicita per la covarianza
asintotica e usiamo anche simulazioni numeriche per sostenere che la convergenza è abba-
stanza veloce. La dimostrazione si basa sull’attenta costruzione di un’apposita martingala. Il
contenuto di questo capitolo è basato su [9].
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This chapter is devoted to the geometrical characterization of the union of all the minimal
gates for the local model evolving under Kawasaki dynamics with isotropic interactions,
namely, U1 = U2 = U in (1.3.11). To this end, we provide a model–independent strategy
to identify some unessential saddles, which therefore are not in the minimal gates, and we
apply this method to the local isotropic model. We will see how the motion of particles along
the border of a cluster plays a crucial role in this analysis and in the isotropic regime this
makes a totally explicit geometrical characterization of the minimal gates hard to obtain.
Moreover, we investigate the mixing time and spectral gap for this model. Finally, we provide
a model–independent discussion about the sharp asymptotics of the mean transition time, in
order to clarify the role of the unessential saddles in the computation of the prefactor.

The outline of the chapter is as follows. In Section 3.1 we give some model–independent
definitions in order to state our main model-independent results in Propositions 3.1.3 and
3.1.5. In Section 3.2, after giving some geometric definitions valid for Kawasaki dynamics in
finite volume (see Section 3.2.1), we state our main results concerning the gates in Section
3.2.2 and concerning the sharp asymptotics in Section 3.2.3. In Section 3.3 we prove the
model-independent results that we apply to our model in Section 3.4. In Section 3.5 we give
the proof of the main result regarding the identification of the union of all the minimal gates
(see Theorem 3.2.7). In Section 3.6 we state and give the proof of the main model–independent
theorems about the sharp asymptotics, together with the proof of the asymptotic behaviour
of the mixing time and the spectral gap. In Appendix 3.A we give additional explicit proofs
and computations.

3.1 model–independent definitions and results

We will use italic capital letters for subsets of Λ, script capital letters for subsets of X, and
boldface capital letters for events under the Kawasaki dynamics. We use this convention in
order to keep the various notations apart. We will denote by Pη0 the probability law of the
Markov process (ηt)t>0 starting at η0 and by Eη0 the corresponding expectation.

3.1.1 Model–independent definitions

1. Paths and hitting times.
— A path ω is a sequence ω = (ω1, . . . ,ωk), with k ∈ N, ωi ∈ X and P(ωi,ωi+1) > 0

for i = 1, . . . , k − 1. We write ω : η → η ′ to denote a path from η to η ′, namely
with ω1 = η, ωk = η ′. A set A ⊂ X with |A| > 1 is connected if and only if for all
η, η ′ ∈ A there exists a path ω : η → η ′ such that ωi ∈ A for all i. We indicate with
ω1 ◦ω2 the composition of two paths ω1 and ω2, namely if ω1 = (ω11, ...,ω

1
k) and

ω2 = (ω21, ...,ω
2
m) then ω1 ◦ω2 = (ω11, ...,ω

1
k,ω

2
1, ...,ω

2
m).

— Given a non–empty set A ⊂ X and a state η ∈ X, define the first-hitting time of A with
initial state η at time t = 0 as

τ
η
A := min{t > 0 : ηt ∈ A |η0 = η}. (3.1.1)

2. Min-max and communication height
— Given a function f : X→ R and a subset A ⊆ X, we denote by

arg maxAf := {η ∈ A : f(η) = max
ζ∈A

f(ζ)} (3.1.2)

the set of points where the maximum of f in A is reached. If ω = (ω1, ...,ωk) is a path,
in the sequel we will write arg maxω Ĥ to indicate arg maxA Ĥ, with A = {ω1, ...,ωk}
and Ĥ the Hamiltonian energy.

115
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— The bottom F(A) of a non–empty set A ⊂ X is the set of global minima of the Hamiltonian
Ĥ in A:

F(A) := arg minAĤ = {η ∈ A : Ĥ(η) = min
ζ∈A

Ĥ(ζ)}. (3.1.3)

For a set A ⊂ X such that all the configurations have the same energy, with an abuse of
notation we denote this energy by Ĥ(A).

— The communication height between a pair η, η ′ ∈ X is

Φ(η, η ′) := min
ω:η→η ′

max
ζ∈ω

Ĥ(ζ). (3.1.4)

Given A ⊂ X, we define the restricted communication height between η, η ′ ∈ A as

Φ|A(η, η ′) := min
ω:η→η ′
ω⊆A

max
ζ∈ω

Ĥ(ζ), (3.1.5)

where (ω1, ...,ωk) = ω ⊆ A means ωi ∈ A for every i.

3. Stability level, stable and metastable states
— We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ, Iζ) − Ĥ(ζ), (3.1.6)

where Iζ is the set of states with energy below Ĥ(ζ):

Iζ := {η ∈ X : Ĥ(η) < Ĥ(ζ)}. (3.1.7)

We set Vζ :=∞ if Iζ is empty.
— We call V-irreducible states the set of all states with stability level larger than V :

XV := {η ∈ X : Vη > V}. (3.1.8)

— The set of stable states is the set of the global minima of the Hamiltonian:

Xs := F(X). (3.1.9)

— The set of metastable states is given by

Xm := {η ∈ X : Vη = max
ζ∈X\Xs

Vζ}. (3.1.10)

We denote by Γm the stability level of the states in Xm.

4. Optimal paths, saddles and gates
— We denote by (η → η ′)opt the set of optimal paths as the set of all paths from η to η ′

realizing the min-max in X, i.e.,

(η→ η ′)opt := {ω : η→ η ′ such that max
ξ∈ω

Ĥ(ξ) = Φ(η, η ′)}. (3.1.11)

— The set of minimal saddles between η, η ′ ∈ X is defined as

S(η, η ′) := {ζ ∈ X : ∃ω ∈ (η→ η ′)opt, ω 3 ζ such that max
ξ∈ω

Ĥ(ξ) = Ĥ(ζ)}. (3.1.12)

— A saddle ξ ∈ S(η, η ′) is called unessential if for any ω ∈ (η → η ′)opt such that
ω∩ ξ 6= ∅ we have {arg maxω Ĥ} \ {ξ} 6= ∅ and there exists ω ′ ∈ (η→ η ′)opt such that
{arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ξ}.

— A saddle ξ ∈ S(η, η ′) is called essential if it is not unessential, i.e., if either
(i) there exists ω ∈ (η→ η ′)opt such that {arg maxωĤ} = {ξ} or
(ii) there exists ω ∈ (η → η ′)opt such that {arg maxωĤ} ⊃ {ξ} and {arg maxω ′Ĥ} *

{arg maxωĤ} \ {ξ} for all ω ′ ∈ (η→ η ′)opt.
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— Given a pair η, η ′ ∈ X, we say that W ≡ W(η, η ′) is a gate for the transition η → η ′

if W(η, η ′) ⊆ S(η, η ′) and ω ∩W 6= ∅ for all ω ∈ (η → η ′)opt. In words, a gate is a
subset of S(η, η ′) that is visited by all optimal paths.

— We say that W(η, η ′) is a minimal gate for the transition η → η ′ if it is a gate and for
any W ′ ( W(η, η ′) there exists ω ′ ∈ (η→ η ′)opt such that ω ′ ∩W ′ = ∅. In words, a
minimal gate is a minimal subset of S(η, η ′) by inclusion that is visited by all optimal
paths.

— For a given pair of configurations η, η ′, we denote by G(η, η ′) the union of all minimal
gates:

G(η, η ′) :=
⋃

W(η,η ′) minimal gate
W(η, η ′). (3.1.13)

3.1.2 Model–independent strategy

In this section we give a general strategy to analyze the geometry of the set G(m,Xs),
where either m ∈ Xm is a metastable state if we analyze metastability or m ∈ Xs is a stable
state if we analyze tunneling between two stable states. Assume that we are in finite volume
and W(m,Xs) is a set of configurations that has been proven to be a gate. The following
strategy is useful to eliminate some unessential saddles from the set S(m,Xs) \W(m,Xs) in
order to determine the set G(m,Xs). Indeed, [85, Theorem 5.1] states the equivalence between
being an unessential saddle and not belonging to G(m,Xs). This strategy is more effective if
the gate proposed is minimal or union of minimal gates.

Since we will apply this strategy to Kawasaki dynamics, we refer to the Hamiltonian
energy as Ĥ, but one could simply replace it with another energy function to get the results
for another model. In order to state our results concerning the unessential saddles we need
the following definitions.

— A nonempty set A ⊂ X is a cycle if it is either a singleton or it verifies the relation

max
x,y∈A

Φ(x, y) < Φ(A,X \A). (3.1.14)

See [45, equation (3.40)]. In the case of Metropolis dynamics, this definition coincides
with [85, equation (2.7)].

— Given σ ∈ X, Γ > 0 and A a set of target configurations, we say that the initial cycle for
the transition from σ to A with depth Γ is

CσA(Γ) := σ∪ {η ∈ X : Φ(σ, η) − Ĥ(σ) < Γ = Φ(σ,A) − Ĥ(σ)}. (3.1.15)

Note that in definition (3.1.15) we emphasize the dependence on σ and A and that Γ is
identified by them. Note that this definition of CσA(Γ) concides with CA(σ) defined in
[85, equation (2.25)].

In order to apply this strategy to a concrete model, we require the following model-
dependent inputs (we encourage the reader to inspect Fig. 3.1):

(i) Identify the sets Xm and Xs = {ηs1, ..., η
s
k}, where ηs1, ..., η

s
k have to be in CXs

m (Γm +

Ĥ(m) − Ĥ(Xs)), with Γm := Φ(m,Xs) − Ĥ(m) the energy barrier between m and Xs

for a given m ∈ Xm.
(ii) Find a set W(m,Xs) and prove that it is a gate for the transition m→ Xs.
(iii) Find two sets of configurations LG and LB and prove the following conditions for

any η ∈W(m,Xs):
(a) there exist a path ωG1 : η→ LG such that maxσ∈ωG1 Ĥ(σ) 6 Γm + Ĥ(m) and a path

ωG2 : LG → Xs such that maxσ∈ωG2 Ĥ(σ) < Γm + Ĥ(m);

(b) there exists a path ωB1 : η → LB such that maxσ∈ωB1 Ĥ(σ) 6 Γm + Ĥ(m) and

@ ωB2 : LB → Xs and @ ωB2 : LB → m such that maxσ∈ωB2 Ĥ(σ) < Γm + Ĥ(m);
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W(m,X s)K K̃K ∩ ∂CmX s(Γm)

K̃ ∩ ∂CX s

m (Γm + Ĥ(m)− Ĥ(X s))

σ′ σ′′

LB
Γm

σi ζi

m Ĥ(m)

Ĥ(X s)X s

CmX s(Γm)

CX s

m (Γm + Ĥ(m)− Ĥ(X s))

Φ(m,X s)

Figure 3.1 – We depict an example of the energy landscape for the transition between the metastable
state m and the stable states Xs. We depict on the left the cycle of the metastable state CmXs(Γm) and on
the right the cycle of the stable states CX

s

m (Γm + Ĥ(m) − Ĥ(Xs)). We indicate in black W(m,Xs), in light
grey K and K̃, emphasizing with dark grey the part of K and K̃ that intersect the boundaries of the two
previous cycles. We give an example of two configurations σ ′ and σ ′′ that are in LB.

(iv) Identify the subset K (resp. K̃) of the saddles that are visited by the optimal paths just
before entering (resp. just after visiting) W(m,Xs). More precisely,

K := {η̄ ∈ S(m,Xs) \W(m,Xs) : ∃ η ∈W(m,Xs) and ω = ω1 ◦ω2,
with ω1 : η→ η̄ s.t. ω1 ∩W(m,Xs) = {η}, ω1 ∩ CmXs(Γm) = ∅
and ω2 : η̄→ m s.t. ω2 ∩W(m,Xs) = ∅, maxσ∈ω Ĥ(σ) 6 Γm + Ĥ(m)}

(3.1.16)

and

K̃ := {η̄ ∈ S(m,Xs) \W(m,Xs) : ∃ η ∈W(m,Xs) and ω = ω1 ◦ω2, with

ω1 : η→ η̄ s.t. ω1 ∩W(m,Xs) = {η},ω1 ∩ CXs

m (Γm + Ĥ(m) − Ĥ(Xs)) = ∅
and ω2 : η̄→ Xs s.t. ω2 ∩W(m,Xs) = ∅, maxσ∈ω Ĥ(σ) 6 Γm + Ĥ(m)}.

(3.1.17)

If Xs is a singleton, then it belongs to CXs

m (Γm+ Ĥ(m)− Ĥ(Xs)). Conditions (iii)-(a) and (iii)-(b)
guarantee that when the dynamics reaches LG it has gone “over the hill", while when it reaches
LB the energy has to increase again to the level Γm + Ĥ(m) to visit m or Xs. In particular,
this implies that LG ⊂ CXs

m (Γm + Ĥ(m) − Ĥ(Xs)) and LB * CXs

m (Γm + Ĥ(m) − Ĥ(Xs)). We
will show in Section 3.4 how the model-dependent inputs (iii)-(a) and (iii)-(b) apply to the
isotropic model evolving under Kawasaki dynamics. For the anisotropic cases, see Sections 4.3
and 5.3. In Section 3.6 we will refer to CmXs(Γm) as Xmeta and to ∂CXs

m (Γm + Ĥ(m) − Ĥ(Xs))

as Xstab.

Remark 3.1.1. Note that it is possible that K = ∅ and/or K̃ = ∅, since the gate W(m,Xs) could
contain all the configurations with such properties. Indeed, in [26, Lemma 6.4(a)] it is proved that this
is the case for the q-state Potts model with negative external magnetic field evolving under Glauber
dynamics. In that case m = 111, namely, the configuration with all spins 1, and the gate W(111,Xs) is
defined as the set of configurations in which all the vertices have spins 1, except those in a rectangle
with a protuberance attached to it, which have the same spin different from 1. In particular, assuming
q = 2, the same result holds for the Ising model.

See Figure 3.1 for Propositions 3.1.3 and 3.1.5.
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Definition 3.1.2. A saddle σ is of the first type if it is not in W(m,Xs) ∪ K and belongs to the
boundary of the cycle CmXs(Γm), i.e., σ ∈ ∂CmXs(Γm)∩ (S(m,Xs) \ (W(m,Xs)∪K)), where CmXs(Γm)

is defined in (3.1.15).

Note that Definition 3.1.2 for Kawasaki dynamics coincides with Definition 1.3.2.

Proposition 3.1.3. Any saddle σ of the first type is unessential and therefore it is not in G(m,Xs).

We refer to Section 3.3.1 for the proof of Proposition 3.1.3. As we can see in the proof, it will
be clear that this result is guaranteed only by the model-dependent inputs (i), (ii) and (iv).

Definition 3.1.4. A saddle ζ is of the second type if it is not in W(m,Xs) ∪ K̃ and belongs to the
boundary of the cycle CXs

m (Γm+ Ĥ(m)− Ĥ(Xs)), i.e., ζ ∈ ∂CXs

m (Γm+ Ĥ(m)− Ĥ(Xs))∩ (S(m,Xs)\
(W(m,Xs)∪ K̃)), where CXs

m (Γm + Ĥ(m) − Ĥ(Xs)) is defined in (3.1.15).

Note that Definition 3.1.4 for Kawasaki dynamics coincides with Definition 1.3.3.

Proposition 3.1.5. Any saddle ζ of the second type is unessential and therefore it is not in G(m,Xs).

We refer to Section 3.3.2 for the proof of Proposition 3.1.5. For this result all of the four
model-dependent inputs are necessary.

Remark 3.1.6. This strategy can also be applied in the tunneling scenario, i.e., the transition between
two stable states, which corresponds to selecting the starting state m ∈ Xs. The model-dependent
input (i) has to be modified by requiring that the configurations in Xs \ {m} are in the same cycle that
does not contain m, while the inputs (ii)-(iv) remain the same. Thus, Propositions 3.1.3 and 3.1.5 still
hold after replacing the set Xs by Xs \ {m}. In this case, since Ĥ(m) = Ĥ(Xs), note that the cycles
Cm
Xs\{m}

(Γm) and C
Xs\{m}
m (Γm + Ĥ(m) − Ĥ(Xs)) have the same depth. The idea of this strategy can

be applied also in the tunneling scenario in which the configurations in Xs \ {m} are not in the same
cycle, but this requires an extension of this strategy. This occurs in the q-state Potts model with q
possible spins and zero external magnetic field [25], where the stable states are the configurations with
all spins of the same type. In [25, Theorem 3.4] the authors study the gates relevant for the tunneling
between one stable state m to the set of the other stable states Xs \ {m}. For the proof of this theorem
they use [25, Theorem 3.2], in which they identify all the unessential saddles for the transition between
the selected stable state m to one of the other stable states s ∈ Xs \ {m} when the dynamics is restricted
only to the optimal paths that do not visit the rest of the stable states Xs \ {m, s}. The proof of [25,
Theorem 3.2] uses, in the specific model, the ideas presented in this section and the symmetry of the
energy landscape for q-state Potts model with zero external magnetic field.

These model-independent propositions will be applied to the isotropic model evolving under
Kawasaki dynamics (in Section 3.4) to identify the set G(m,Xs). For the application to the
anisotropic models, see Sections 4.3 and 5.3.

3.2 main results

In this section we state our main results. To this end, in Section 3.2.1 we give some model–
dependent definitions, so that in Section 3.2.2 we obtain the geometrical characterization
of the union of all minimal gates for the isotropic case. Moreover, we derive the mixing
time and spectral gap in Section 3.2.3. For the corresponding results obtained in the weakly
and strongly anisotropic cases we refer respectively to Sections 4.1.1 and 5.1.1 for results
concerning the gates and union of minimal gates, and to Section 4.1.2 and 5.1.2 for results
concerning the asymptotic transition time, mixing time and spectral gap.

3.2.1 Geometrical definitions for Kawasaki dynamics on the square lattice

We give some model–dependent definitions and notations in order to state our main
theorems.

1. Free particles and clusters
— For x ∈ Λ0, let nn(x) := {y ∈ Λ0 : d(y, x) = 1} be the set of nearest–neighbor sites of x

in Λ0 according to the lattice distance, where d in the entire thesis denotes the lattice
distance.
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• A free particle in η ∈ X is a site x, with η(x) = 1, such that either x ∈ ∂−Λ, or x ∈ Λ0
and
∑
y∈nn(x)∩Λ0 η(y) = 0. We denote by ηfp the union of free particles in ∂−Λ and

free particles in Λ0. We denote by n(η) the number of free particles in η.
We denote by ηcl the clusterized part of the occupied sites of η:

ηcl := {x ∈ Λ0 : η(x) = 1} \ ηfp. (3.2.1)

— We denote by ηfp the addition of a free particle anywhere in Λ to the configuration η.
— Given a configuration η ∈ X, consider the subset C(ηcl) of R2 defined as the union

of the 1× 1 closed squares centered at the occupied sites of ηcl in Λ0 and call the
maximal connected components of this set the clusters of ηcl.

— Given a set A ⊂ R2, we define the number of 1× 1 closed occupied squares in A as

|A| := |A∩C(ηcl)| (3.2.2)

and as ||A|| the numbers of 1× 1 closed squares in A. Note that || · || takes into account
the possibility that the squares are occupied or not.

2. Projections, semi-perimeter and vacancies
— For η ∈ X, we denote by g1(η) (resp. g2(η)) one half of the horizontal (resp. vertical)

length of the Euclidean boundary of C(ηcl). Then, the energy associated with η is
given by

Ĥ(η) = −(U1 +U2 −∆)|C(ηcl)|+U1g2(η) +U2g1(η) +∆n(η). (3.2.3)

— Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of C(ηcl),
respectively. More precisely, let rj,1 = {x ∈ Z2 : (x)1 = j} be the j-th column and
rj,2 = {x ∈ Z2 : (x)2 = j} be the j-th row, where (x)1 or (x)2 denote the first or second
component of x. Let

π1(η) := {j ∈ Z : rj,1 ∩C(ηcl) 6= ∅} (3.2.4)

and p1(η) := |π1(η)|. In a similar way we define the vertical projection π2(η) and
p2(η).

— We define g ′i(η) := gi(η) − pi(η) > 0; we call monotone a configuration such that
gi(η) = pi(η) for i = 1, 2.

— We define the semi–perimeter s(η) and the vacancies v(η) as

s(η) := p1(η) + p2(η),

v(η) := p1(η)p2(η) − |C(ηcl)|.
(3.2.5)

3. n-manifold, rectangles and corners
— The configuration space X can be partitioned as

X =
⋃

n

Vn, (3.2.6)

where Vn := {η ∈ X : |C(ηcl)|+n(η) = n} is the set of configurations with n particles,
called the n-manifold.

— We denote by R(`1, `2) the set of configurations that have no free particle and a
single cluster such that C(ηcl) is a rectangle R(`1, `2), with `1, `2 ∈ N. For any
η, η ′ ∈ R(`1, `2) we have immediately

Ĥ(η) = Ĥ(η ′) = Ĥ(R(l1, l2)) = U1`2 +U2`1 − ε`1`2, (3.2.7)

where

ε := U1 +U2 −∆. (3.2.8)

If `1 6 `2 6 `1 + 1, we say that the rectangle R(`1, `2) is a quasi–square (recall (1.3.77)).
— A corner in η ∈ X is a closed 1× 1 square centered in an occupied site x ∈ Λ0 such that,

if we order clockwise its four nearest neighbors x1, x2, x3, x4, then
∑
y∈nn(x) η(y) = 2,

with η(xi) = η(xi+1) = 1, with i = 1, ..., 4 and the convention that x5 = x1 (see Figure
3.2 on the righ).
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CR+(η)∂+CR(η)

Figure 3.2 – Here we depict the same configuration η on the left and on the right to emphasize different
geometrical definitions. The grey area in both pictures represents C(ηcl). In particular, on the left-hand
side we stress the frame-angles cαα

′
(η), the bars Bα(η), CR−(η) and the circumscribing rectangle CR(η)

(respresented with a dashed line). While on the right-hand side we stress the sites that are in a corner
(represented with a dot), CR+(η) and the external frame ∂+CR(η) (the dashed area).

4. Circumscribed rectangle, frames and bars
— If η is a configuration with a single cluster, then we denote by CR(η) the rectangle

circumscribing C(ηcl), i.e., the smallest rectangle containing η.
We denote ∂+CR(η) the external frame of CR(η) as the union of squares 1× 1 centered
at sites that are not contained in CR(η) such that those sites have Euclidean distance
with sites in CR(η) less or equal than

√
2 (see Figure 3.2 on the right-hand side). Note

that the external frame of CR(η) contains only non occupied sites.
We denote ∂−CR(η) the internal frame of CR(η) as the union of squares 1× 1 centered
at sites that are contained in CR(η) such that those sites have Euclidean distance with
sites not in CR(η) less or equal than

√
2. If this distance is equal to

√
2, we say that the

unit square is a frame-angle cαα
′
(η) in ∂−CR(η), where αα ′ ∈ {ne, nw, se, sw}, with

n = north, s = south, etc. Note that the internal frame of CR(η) is a geometrical object
contained in R2 that can contain both occupied and non occupied sites (see Figure
3.2 on the left-hand side). We partition the set ∂−CR(η) without frame-angles in two
horizontal and two vertical rows rα(η), with α ∈ {n,w, e, s}.
Moreover, we set

CR−(η) = CR(η) \ ∂−CR(η),

CR+(η) = CR(η)∪ ∂+CR(η).
(3.2.9)

See Figure 3.2 for an example.
Remark 3.2.1. Note that, for example, the frame-angles cne(η) and cen(η) are the same, but
this distinction will be useful in Definitions 3.2.4 and 3.2.5.

— A vertical (respectively horizontal) bar Bα(η) of a single cluster of η with length k is
a 1× k (respectively k× 1) rectangle contained in C(ηcl), with α ∈ {n,w, e, s}, k > 1,
such that each square 1× 1 of the bar is attached only to one square of C(ηcl) \Bα(η)
(see Figure 3.2 on the left-hand side). In the cases in which it is not specified if the
bar is vertical or horizontal we call it simply bar. If k = 1 we say that the bar is a
protuberance.
Remark 3.2.2. Note that two bars Bα(η) and Bα

′
(η), with α,α ′ ∈ {n, s,w, e}, can possibly

intersect in the frame-angle cαα
′
(η). If this is the case, we get |Bα(η)∪Bα ′(η)| = |Bα(η)|+

|Bα
′
(η)|− 1.

5. Motions along the border
Recall definitions of | · | and || · || in (3.2.2) and below. In the following, we give the precise
notion of translation by 1 of a bar, for example to the left or to the right, while keeping all the
squares of the bar attached to the cluster below.

Definition 3.2.3. Given η and a bar Bα(η) of length k, with α ∈ {n, s, e,w}, we say that it is possible
to translate the bar Bα(η) if

k = |Bα(η)| < |∂+Bα(η)|. (3.2.10)
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We define the 1-translation of a bar Bα(η) of length k as a sequence of configurations (η1, ..., ηk)
such that η1 = η and ηi is obtained from ηi−1 translating by 1 a unit square along the rectangle
∂+Bα(η)∩C(ηcl) for any 2 6 i 6 k.

In Fig. 1.9 (resp. Fig. 1.10) we depict a 1-translation of a horizontal (resp. vertical) bar at
cost U1 (resp. U2).

In the following, we give the precise notion of sliding a unit square from row rα(η) to
rα
′
(η) passing through the frame angle cαα

′
(η).

Definition 3.2.4. Given η, let αα ′ such that cαα
′
(η) is a frame-angle. We say that it is possible to

slide a unit square around a frame-angle cαα
′
(η) ⊆ ∂−CR(η) from a row rα(η) ⊆ ∂−CR(η) to

a row rα
′
(η) ⊆ ∂−CR(η) via a frame-angle cαα

′
(η) if

|cαα
′
(η)| = 0, |rα(η)| > 1, 1 6 |rα

′
(η)| < ||rα

′
(η)||+ 1. (3.2.11)

Let α ′′ 6= α ′ such that cαα
′′
(η) is a frame-angle. See Figure 1.11 for an example. We define a sliding

of a unit square around a frame-angle cαα
′
(η) ⊆ ∂−CR(η) as the composition of a sequence

of 1-translations of the bar Bα(η) from rα(η) ∪ cαα ′′(η) to rα(η) ∪ cαα ′(η), namely (η1, ..., ηk),
and the 1-translation of a bar Bα

′
(η) = C(ηkcl) ∩ (rα

′
(η) ∪ cαα ′(η)) from rα

′
(η) ∪ cαα ′(η) to

rα
′
(η)∪ cα ′α ′′′(η), where α ′′′ 6= α is such that cα

′α ′′′(η) is a frame-angle.

The definition above is used only to define the following sliding of a bar from row rα(η)

to rα
′
(η) passing through the frame angle cαα

′
(η), that corresponds to iteratively apply the

sliding of a unit square around a frame-angle.

Definition 3.2.5. Given η, let αα ′ such that cαα
′
(η) is a frame-angle. Before sliding a bar around

a frame-angle, we translate the bars Bα(η) and Bα
′
(η) at distance 1 to the frame-angle cαα

′
(η)

obtaining a configuration η ′. We say that it is possible to slide a bar Bα(η ′) around a frame-angle
cαα

′
(η ′) ⊆ ∂−CR(η ′) if it is possible to move all the unit squares in Bα(η ′) around a frame-angle

cαα
′
(η ′) from a row rα(η ′)∪ cαα ′′(η ′) to a row rα

′
(η ′)∪ cα ′α ′′′(η ′), where α ′′ 6= α ′ and α ′′′ 6= α

are such that cαα
′′
(η ′) and cα

′α ′′′(η ′) are frame-angles. Namely,

|Bα(η ′)|+ |rα
′
(η ′)| 6 ||rα

′
(η ′)||+ 1. (3.2.12)

Moreover, we define a sliding of a bar Bα(η ′) around a frame-angle cαα
′
(η ′) as the sequence of

|Bα(η ′)| slidings of unit squares around a frame-angle cαα
′
(η ′).

See the path described in Fig. 1.13, that connects the configuration η to the configuration
(12) for an example of sliding of the bar Be(η) around the frame-angle cen(η), with η as the
configuration (3).

3.2.2 Gate for isotropic interactions

Recall (3.2.8) for the definition of ε. We will consider 0 < ε � U, where � means
sufficiently smaller; for instance ε 6 U

100 is enough. In order to state our main result we
recall some important definitions that are given in [35]. Recall the definition of the critical
length `c given in (1.3.21) and that we have defined Q̄ as the set of configurations having one
cluster consisting of an (`c − 1)× `c quasi–square anywhere in Λ0 with a single protuberance
attached anywhere to one of the shortest sides. Similarly, the set Q̃ contains the configurations
having one cluster anywhere in Λ0 consisting of an (`c − 1)× `c quasi–square with a single
protuberance attached anywhere to one of the longest sides. The critical value of the energy
is

Γ∗ = 2U(`c + 1) − (2U−∆)(`c(`c − 1) + 2) (3.2.13)

and the volume of the clusters in Q = Q̄∪ Q̃ is

nc = `c(`c − 1) + 1. (3.2.14)

Finally, recall (1.3.31) for the definition of the sets D̄ and D̃. By [35, Theorem 1.4.1] we obtain
the geometric description of the set D as D = D̄ ∪ D̃ that will be useful later on. Roughly
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12× 12

Q̄

-

U-path
12× 12

D̄

Figure 3.3 – Configurations in Q̄ and D̄ for `c = 14. A similar picture applies for Q̃ and D̃ with a 11× 13
rectangle in the center.

speaking, one can think of D as the set of configurations consisting of a rectangular cluster
with four bars attached to its four sides, whose lengths satisfy precise conditions. See Figure
3.3 for an example of a configuration in D̄ that is obtained from a configuration in Q̄ via a
U-path, i.e., via a path connecting two configurations with the same energy and such that
along it no free particle is created and the energy is increased by at most U. Finally, we set

C∗ := Dfp. (3.2.15)

Note that

Ĥ(C∗) = = Ĥ(Dfp) = Ĥ(D) +∆ = Ĥ(Q) +∆

= −U((`c − 1)
2 + `c(`c − 2) + 1) +∆(`c(`c − 1) + 2)

= 2U(`c + 1) − (2U−∆)(`c(`c − 1) + 2)

= Γ∗.

(3.2.16)

Next we define two types of sets that will be useful in order to characterize the set G(�,�).
For any i = 0, 1, 2, 3, we define Pi ⊆ S(�,�) to consist of configurations with a single cluster
and no free particle, and a fixed number of vacancies that is not monotone with circumscribed
rectangle obtained from the one of the configurations in D via increasing and/or decreasing
the horizontal or vertical length. More precisely,

Pi := {η : n(η) = 0, v(η) = 2`c − i(i+ 1) − 2, ηcl is connected, g ′1(η) + g
′
2(η) = 1,

with a (`c + i+ 1)× (`c − i) circumscribed rectangle}, i = 0, 1, 2, 3.
(3.2.17)

See Figure 1.17(c) for an example of configurations in P1 and not in C∗.
For any i = −1, 0, 1, 2, we define P

fp
i ⊆ S(�,�) to consist of configurations with a

single cluster and one free particle, and a fixed number of vacancies that is monotone with
circumscribed rectangle obtained from the one of the configurations in Pi via decreasing by
one the shortest length. More precisely,

P
fp
i := {η : n(η) = 1, v(η) = `c − i(i+ 2) − 2, ηcl is connected, g ′1(η) + g

′
2(η) = 0,

with a (`c + i+ 1)× (`c − i− 1) circumscribed rectangle}, i = −1, 0, 1, 2.
(3.2.18)

See Figure 1.17 for an example of configuration in P
fp
−1 \ C

∗ (in (a)) and in P
fp
0 and in C∗ (in

(b)). Note that other examples of configurations in C∗ can be obtained by those in Figure 3.3
by adding a free particle.

Remark 3.2.6. Note that C∗ ( P
fp
−1 ∪P

fp
0 . Indeed, there exist configurations that are in P

fp
−1 ∪P

fp
0

and not in C∗: for an example see Fig. 1.17(a).
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The set G(�,�) contains all the configurations that are in the sets defined in (3.2.17) and
(3.2.18) with the following further conditions. First, for any i = 0, 1, 2, 3 we define the subset
I α
i of the saddles in Pi with the condition that the configurations have only one occupied

unit square in either a row or in one of its two adjacent frame-angles. More precisely,

I α
i := {η ∈ Pi : |r

α(η)∪ cαα ′(η)∪ cαα ′′(η)| = 1}, i = 0, 1, 2, 3, (3.2.19)

with α,α ′, α ′′ ∈ {n, s,w, e} such that cαα
′
(η) and cαα

′′
(η) are different frame-angles. Next,

for any i = 0, 1, 2 we define the subset I α,α ′
k,k ′,i of the saddles in Pi that are obtained from

η ∈ Pi during the sliding of the bar Bα
′
(η) around the frame-angle cα

′α(η). More precisely,
for any i = 0, 1, 2 we define

I α,α ′
k,k ′,i := {η ∈ Pi : |r

α(η)| = k− 1, |rα
′
(η)| = k ′ − k+ 1, k ′ 6 1+ ||rα(η)||,

|cα
′α(η)| = 1, (rα(η)∪ cα ′α(η))∩ ηcl = rα,1cl ∪̇rα,2cl with d(rα,1cl , r

α,2
cl ) = 2},

(3.2.20)

where α,α ′ ∈ {n, s,w, e} is such that cα
′α(η) is a frame-angle, rα,1cl , rα,2cl are two disjoint

connected components in rα(η)∪ cα ′α(η) and k ′ = 2, ..., `c, k = 2, ..., k ′ (see for example the
configuration in Figure 1.17(c), which is in I e,s

`c−2,`c−1,1
). The index i in (3.2.20) has to be

different from 3 because if the system is in I α
3 , then it is not possible to complete the sliding

of a bar around the frame-angle. Note that the conditions in (3.2.20) guarantee that these
configurations are obtained during a sliding of a bar around a frame-angle, that is identified
by the indeces α and α ′. Moreover, the index k ′ denotes the length of the bar that we are
sliding. The index k counts the number of particles that are in rα(η) ∪ cα ′α(η) during the
sliding and can be less or equal than `c, but for some values of k the set I α,α ′

k,k ′,i can be empty.
Our notation does not distinguish whether I α,α ′

k,k ′,i is empty or not in order to avoid the
presence of an additional index.

Furthermore, for any i = −1, 0, 1, 2 we define the subset I α,α ′
i of the saddles in P

fp
i as the

last saddle at the end of a path that describes the sliding of a bar around a frame-angle, i.e.,
the saddle where the last particle of the bar (protuberance) is detached. (See configuration (12)
in the path described in Figure 1.13, imposing U1 = U2 = U because we are in the isotropic
case). More precisely,

I α,α ′
i := {η ∈ P

fp
i : ∃ η ′ ∈ I α,α ′

2,k ′,i such that η is obtained from η ′ by removing the

non monotonicity, then removing the protuberance and

possibly moving the free particle at zero cost}, i = −1, 0, 1, 2,

(3.2.21)

where α,α ′ ∈ {n, s,w, e}. Again, the indices α and α ′ identify the frame–angle with respect
to which the sliding of the bar takes place. Note that the configuration in Fig. 1.17(a) is in
I s,w
0 ∪I e,n

0 and the configuration in Fig. 1.17(b) is in Iw,s
−1 ∪Iw,n

−1 ∪I e,n
−1 ∪I n,e

1 .
In the discussion below [35, Theorem 1.4.3], the authors state that the full identification of

the set G(�,�) is not known. The following result fills this gap.

Theorem 3.2.7. (Union of minimal gates for isotropic interactions). We obtain the following
description for G(�,�):

G(�,�) = C∗ ∪
3⋃

i=0

⋃

α

I α
i ∪

2⋃

i=0

⋃

α,α ′

⋃

k,k ′
I α,α ′
k,k ′,i ∪

2⋃

i=−1

⋃

α,α ′
I α,α ′
i . (3.2.22)

We refer to Section 3.5 for the proof of the main Theorem 3.2.7.
In [35, Theorem 1.4.3(i)] the authors show that in S(�,�) there are unessential saddles,

also called dead–ends, without fully identifying them, while in Corollary 3.4.4 and Proposition
3.4.5 we identify three types of unessential saddles. Moreover, in Proposition 3.4.2 we prove
that C∗ is contained in G(�,�), which contradicts what is said in the discussion below [35,
Theorem 1.4.3].
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3.2.3 Sharp asymptotics

In this section we investigate the sharp asymptotics concerning the mixing time and
spectral gap, and we refer to Section 3.6 for a model–independent argument that provides a
correct way to treat the unessential saddles in the computation of the prefactor [32, eq. (1.4.6)].

Recall (1.3.54) and (1.3.55) for the definition of mixing time and spectral gap, respectively.

Theorem 3.2.8. For any ε ∈ (0, 1)

lim
β→∞ 1β log tmix(ε) = Γ∗ = lim

β→∞−
1

β
log ρ. (3.2.23)

Furthermore, there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓ∗ 6 ρ 6 c2e−βΓ

∗
. (3.2.24)

Theorem 3.2.8 holds also for the weakly and strongly anisotropic cases, see Theorems 4.1.7
and 5.1.8, respectively.

3.3 proof of the model–independent propositions

In this section we give the proof of Propositions 3.1.3 and 3.1.5.

3.3.1 Proof of Proposition 3.1.3

We denote by σ1, ..., σj the saddles in the statement. We want to prove that these saddles
are unessential (see Section 3.1.1 point 4 for the definition). Since we can repeat the following
argument j times, we may focus on a single configuration σi. Consider any ω ∈ (m →
Xs)opt such that ω ∩ σi 6= ∅. Since W(m,Xs) is a gate for the transition from m to Xs and
σi ∈ S(m,Xs) \W(m,Xs) for any i = 1, ..., j, we note that {arg maxω Ĥ} \ {σi} 6= ∅. Thus, our
strategy consists in finding ω ′ ∈ (m→ Xs)opt such that {arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {σi}.
We analyze separately the two following cases.

Case 1. Suppose that the path ω reaches S(m,Xs) for the first time in the configuration
σi ∈ ∂CmXs(Γm)∩ (S(m,Xs) \ (W(m,Xs)∪K)), i.e., there exists the configuration σi (as above)

such that ω = (m, ..., σi, ..., η
(1)
1 , ...,Xs), where η(1)1 ∈ ∂CmXs(Γm)∩ (W(m,Xs)∪K). Any such

ω can be written as

(m,ω1, ...,ωk1 , σi,ωk1+1, ...,ωk2 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq) ◦ ω̄,

(3.3.1)

where ω1, ...,ωk1 ,ωk1+1, ..., γ1 ∈ CmXs(Γm), ωk2+1, ...,ωk3 , γ2, ...,ωkq+1, ...,ωkq+1 and γq
are in X \ S(m,Xs), and η(j)i ∈ S(m,Xs) for all i = 1, ...,m, j = 1, ..., q. At least one among

these saddles belongs to W(m,Xs) and ω̄ is a path that connects η(q)mq to Xs such that
maxσ∈ω̄ Ĥ(σ) < Γm + Ĥ(m). Note that q and m1, ...,mq could be 1. We want to prove that
σi is unessential, thus we define a new path

ω ′ = (m,ω ′1, ...,ω
′
h, γ1, η

(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq) ◦ ω̄, (3.3.2)

where (m,ω ′1, ...,ω
′
h, γ1) is a path that is contained in CmXs(Γm) such that its time–reversal

exists by [85, Lemma 2.28] with η = γ1 and A = m. We note that the part of ω ′ after γ1 is the
same as in equation (3.3.1), thus {arg maxω ′Ĥ} = {η

(1)
1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq } and therefore

{arg maxω ′Ĥ} ⊆ {arg maxωĤ} \ {σi}, i = 1, ..., n. (3.3.3)

This implies that the saddle σi is unessential for any i = 1, ..., n and thus, using [85, Theorem
5.1], σi ∈ S(m,Xs) \ G(m,Xs).
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Case 2. The path ω reaches S(m,Xs) before reaching ∂CmXs(Γm)∩ (S(m,Xs) \ (W(m,Xs)∪K))
in σi. In this case we can bypass the saddle σi by arguing in a similar way as in case 1, indeed
we can write the path ω as

(m,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ..., σi, ..., γt, η

(t)
1 , ..., η(t)mt , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq) ◦ ω̄,

(3.3.4)

and define

ω ′ = (m,ω ′1, ...,ω
′
h, γt, η

(t)
1 , ..., η(t)mt , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq) ◦ ω̄, (3.3.5)

where (m,ω ′1, ...,ω
′
h, γt) is a path that is contained in CmXs(Γm) such that its time–reversal

exists by [85, Lemma 2.28] with η = γt and A = m. Thus,

{arg maxω ′Ĥ} = {η
(t)
1 , ..., η(t)mt , ..., η

(q)
1 , ..., η(q)mq } (3.3.6)

and therefore (3.3.3) holds.

3.3.2 Proof of Proposition 3.1.5

We denote by ζ1, ..., ζl the saddles in the statement. We want to prove that these saddles
are unessential (see Section 3.1.1 point 4 for the definition). Since we can repeat the following
argument l times, we may focus on a single configuration ζi. Consider any ω ∈ (m →
Xs)opt such that ω ∩ ζi 6= ∅. Since W(m,Xs) is a gate for the transition from m to Xs and
ζi ∈ S(m,Xs) \W(m,Xs) for any i = 1, ..., j, we note that {arg maxω Ĥ} \ {ζi} 6= ∅. Thus, our
strategy consists in finding ω ′ ∈ (m→ Xs)opt such that {arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ζi}.
Due to Proposition 3.1.3, we can reduce the proof to consider any ω ∈ (m → Xs)opt such
that the first saddle that is visited is η(1)1 ∈ ∂CmXs(Γm)∩ (W(m,Xs)∪K). Note that there exists

η
(q)
mq ∈ ∂CXs

m (Γm + Ĥ(m) − Ĥ(Xs))∩ (W(m,Xs)∪ K̃), different from ζi, that can be connected
to the set LG via one step of the dynamics. By the model–dependent input (iii) we deduce
that ζi can be reached either after visiting the set LG

ω = (m,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq , η

G, ..., ζi) ◦ ω̃,
(3.3.7)

or directly from η
(q)
mq

ω = (m,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq , ζi, ..., η̄

G) ◦ ω̄,
(3.3.8)

where ω1, ...,ωk1 , γ1 ∈ CmXs(Γm) and ωk1+1, ...,ωk2 , γ2, ...,ωkq+1, ...,ωkq+1 ∈ X \ S(m,Xs).

Additionally, the configurations η(j)i ∈ S(m,Xs) for all i = 1, ...,m, j = 1, ..., q and at least one
among these saddles belongs to W(m,Xs). Moreover, ηG (resp. η̄G) is in LG and ω̃ (resp. ω̄)
is a path that connects ζi (resp. η̄G) to Xs. Note that q and m1, ...,mq could be 1. We want to
prove that ζi is unessential, thus for both ω in (3.3.7) and (3.3.8) we define a new path

ω ′ = (m,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq , η

G) ◦ ω̂, (3.3.9)

where by the model–dependent input (iii)-(a) there exists a path ω̂ that connects ηG to Xs

such that

max
σ∈ω̂

Ĥ(σ) < Γm + Ĥ(m). (3.3.10)

Thus, {arg maxω ′Ĥ} = {η
(1)
1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq } and therefore

{arg maxω ′Ĥ} ⊆ {arg maxωĤ} \ {ζi}, i = 1, ..., n. (3.3.11)

This implies that the saddle ζi is unessential for any i = 1, ..., n and thus, using [85, Theorem
5.1], ζi ∈ S(m,Xs) \ G(m,Xs).
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3.4 model-dependent strategy

Recall equations (1.3.35)-(1.3.38) and Definition 1.3.4. In this section we give a useful
lemma that helps us to characterize the gates and we present our model-dependent strategy
to characterize the union of all the minimal gates G(�,�). Below we state Lemma 3.4.1 for
the isotropic case, but it holds also for the anisotropic cases (see Lemmas 4.2.3 and 5.2.3).

Lemma 3.4.1. Starting from C∗ \ Qfp, if the free particle is attached to a bad site obtaining ηB ∈ CB,
the only transitions that do not exceed the energy Γ∗ are either detaching the protuberance, or a
sequence of 1-translations of a bar or slidings of a bar around a frame-angle. Moreover, we get:

(i) if it is possible to slide a bar around a frame-angle, then the saddles that are crossed are essential;
(ii) if it is not possible to slide a bar around a frame-angle, then the path must come back to the

starting configuration and the saddles that are crossed are unessential.

Proof. Let ηB ∈ CB the configuration obtained by attaching the free particle as a protuberance
to a bar, thus Ĥ(ηB) = Γ∗−U. Note that it is impossible to move particles in ∂−CR(ηB) before
further lowering the energy, since this move costs at least 2U. Moreover, it is impossible to
create a new particle before further lowering the energy, since this move costs ∆. On the
other hand there are no moves available to lower the energy. If the protuberance is detached,
then the energy reaches the value Γ∗. Analyzing motions of particles along the border of
the droplet (both sequence of 1-translations of a bar and sliding around a frame-angle), the
energy raises by U at the first step, it is constant in the following steps but the last, when it
decreases by U. Thus, these are admissible moves.

First, we prove (i). Let ξ(e)1 , ..., ξ(e)m /∈ C∗ the saddles visited during the sliding of a bar
around a frame-angle. We want to prove that these saddles are essential (see Section 3.1.1
point 4 for the definition). Since we can repeat the following argument m times, we may focus
on a single configuration ξ(e)i . Since C∗ is a gate for the transition and ξ(e)i ∈ S(�,�) \ C∗ for

any i = 1, ...,m, we note that a path ω ∈ (� → �)opt such that {arg maxω Ĥ} = {ξ
(e)
i } does

not exist. Thus, our strategy consists in finding a path ω ∈ (� → �)opt such that for any
ω ′ ∈ (�→ �)opt

ω∩ ξ(e)i 6= ∅ and {arg maxω ′Ĥ} * {arg maxωĤ} \ {ξ
(e)
i }, i = 1, ...,m. (3.4.1)

Let ηB be the union of a cluster η ∈ D and a protuberance attached to one of its bars in a
site with coordinates (i, j). Without loss of generality assume that the bar is Bn(η) and that
|cwn(η)| = 1, otherwise a sequence of 1-translations of the bars Bn(η) and Bw(η) can take
place before creating the free particle in order to obtain |cwn(η)| = 1. Note that during these
translations the path does not cross any saddle. We define the specific path ω of the strategy
above as

ω = (�,ω1, ...,ωk, η, η1, ..., ηL−j−2, ηB, ξ(e)1 , ..., ξ(e)m ) ◦ ω̄, (3.4.2)

where ω1, ...,ωk ∈ C��(Γ
∗), η ∈ D, η1 ∈ C∗(L− j− 1), ..., ηL−j−2 ∈ C∗(2), ηB ∈ CB(η̂L−j−2)

(see Figure 3.4 for a picture of this situation) and ω̄ is a path that connects ξ(e)m to � such
that maxσ∈ω̄ Ĥ(σ) 6 Γ∗. Now we show that for any ω ′ the condition (3.4.1) is satisfied. If ω ′

passes through the configuration ξ(e)i , {arg maxω ′Ĥ} ⊇ {ξ
(e)
i }, thus (3.4.1) is satisfied. There-

fore we can assume that ω ′ ∩ ξ(e)i = ∅. If ω ′ crosses the set S(�,�) through a configuration η̃
such that η̃∩ω = ∅, then the condition (3.4.1) holds. In the sequel ω ′ visits the configurations
η1, ..., ηL−j−2 ∈ C∗. Starting from ηL−j−2, there are four allowed directions for moving the
free particle. If we move it in the direction of the cluster (south in Figure 3.4), we deduce
that the path ω ′ visits the configuration ηB. For the other three choices, the free particle still
remains free after the move, indeed by construction of the path ω, starting from ηL−j−2 it
is not possible to reach the set CG via one step of the dynamics. Thus, the path ω ′ can visit
either a saddle not already visited by ω (west or east in Figure 3.4) or a saddle that has been
already visited by ω (north in Figure 3.4). In the first case, we obtain that (3.4.1) is satisfied.
In the latter case, we can iterate this argument and, since ω ′ goes from � to �, we can assume
that the path ω ′ visits the configuration ηB ∈ CB(η̂L−j−2). From now on, starting from ηB,
there are two possible scenarios:
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Λ
Λ0

• (i, j)

• (i, L− 1)
•

•

•

•

• (i, j+ 1)

(i, L− 2)

Figure 3.4 – Here we depict the configuration η1 that consists of a cluster η ∈ D union a free particle, in
grey, that is in position (i, L− 1). The dotted unit squares represent the following positions of the free
particle that moves as represented by the arrows on the left, until the particle is attached to the cluster
in position (i, j). The latter is the configuration ηB.

I. ω ′ activates the same sliding of a bar around a frame-angle as ω;
II. ω ′ activates a sliding of a bar around a frame-angle different from ω.
In case I, since ω ′ ∩ ξ(e)i = ∅, the sliding of a bar around a frame-angle has been stopped

before hitting ξ(e)i . Thus, we can assume that ω ′ comes back to ηB, otherwise the energy
exceeds Γ∗. Since the path ω ′ must reach �, starting from ηB the protuberance is detached
and in the sequel is attached in another site. Thus, ω ′ reaches a saddle that is not visited by
ω. This implies that (3.4.1) is satisfied.

In case II, when the path ω ′ initiates the sliding of a bar around a frame-angle, it reaches
at the first step a saddle that it is not visited by ω, thus the condition (3.4.1) is satisfied.
Therefore the unique possibility is not to start this sliding and thus the path ω ′ must come
back to ηB, since it has to reach �. From now on, as before, the path ω ′ has to detach the
protuberance that in the sequel is attached in another site, thus ω ′ visits a saddle that is not
visited by ω. This implies that (3.4.1) is satisfied. Thus, we have proved that the saddle ξ(e)i
is essential for any i = 1, ...,m.

Finally, we prove (ii). By assumptions we know that it is not possible to complete a sliding
of a bar around a frame–angle and thus this sliding must stop. Let ξ(ne)1 , ..., ξ(ne)n the saddles
that are visited during this motion, we want to prove that these saddles are unessential (see
Section 3.1.1 point 4 for the definition). Since we can repeat the following argument n times,
we may focus on a single configuration ξ(ne)i . Consider any ω ∈ (� → �)opt such that

ω ∩ ξ(ne)i 6= ∅. Since C∗ is a gate for the transition from � to � and ξ(ne)i ∈ S(�,�) \ C∗

for any i = 1, ..., n, we note that {arg maxω Ĥ} \ {ξ
(ne)
i } 6= ∅. Thus, our strategy consists in

finding ω ′ ∈ (� → �)opt such that {arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ξ
(ne)
i }. Starting from

ξ
(ne)
i , the unique admissible moves in order to not exceed Γ∗ are the time–reversal of the

previous moves. This implies that the path must come back to the starting configuration ηB.
Thus, we can write

ω = (�,ω1, ...,ωk, γ1, ..., γl, η, ηB, ξ(ne)1 , ..., ξ(ne)i , .., ξ(ne)1 , ηB) ◦ ω̄, (3.4.3)

where ω1, ...,ωk ∈ C��(Γ
∗), γ1, ..., γl ∈ X \ C��(Γ

∗ − Ĥ(Xs)) such that H(γi) 6 Γ∗ for any i =
1, ..., l and η ∈ C∗, ηB ∈ CB(η̂) and ω̄ is a path that connects ηB to� such that maxσ∈ω̄ Ĥ(σ) 6
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Γ∗. For this path we define a new path ω ′ = (�,ω1, ...,ωk, γ1, ..., γl, η, ηB) ◦ ω̄. Thus, we
deduce that {arg maxω ′Ĥ} ⊆ {arg maxωĤ} \ {ξ

(ne)
i }, which implies that the saddle ξ(ne)i is

unessential for any i = 1, .., n.

Our goal is to characterize the union of all the minimal gates. To this end, due to
[85, Theorem 5.1], we will characterize all the essential saddles for the transition from the
metastable to the stable state. In this section we apply the model–independent strategy
explained in Section 3.1.2 in order to identify some unessential saddles. We apply (3.1.15) both
for σ = �, A = {�} and Γm = Γ∗ defining C��(Γ

∗), and for σ = �, A = {�} and Γm = Γ∗− Ĥ(�)
defining C��(Γ

∗ − Ĥ(�)). We chose this notation in order to emphasize the dependence on
Γ∗. First, we the required model–dependent inputs (iii)-(a) and (iii)-(b) in Section 3.1.2 are
satisfied thanks to [35, Proposition 2.3.9]. Second, by [35, Theorem 1.3.3(iii)], we know that
C∗ is a gate for the transition from � to �. Thus, we apply the model–independent strategy
explained in Section 3.1.2 to Kawasaki dynamics by taking m = �, Xs = {�}, W(m,Xs) = C∗,
LB = CB and LG = CG. In Proposition 3.4.2 we prove that C∗ ⊆ G(�,�), that allows us to
study the essentiality only of the saddles that are not in C∗.

In order to apply Propositions 3.1.3 and 3.1.5, we need to characterize the sets K and
K̃ (see (3.1.16) and (3.1.17), respectively, for the definitions) for our models. This is done
in Proposition 3.4.3. Due to this result, our strategy consists in partitioning the saddles
that are not in C∗ in three types: the saddles that are in the boundary of C��(Γ

∗), i.e.,
σ ∈ ∂C��(Γ∗) ∩ (S(�,�) \ C∗), the saddles that are in the boundary of C��(Γ

∗ − Ĥ(�)) and
not in K̃, i.e., ζ ∈ ∂C��(Γ∗ − Ĥ(�)) ∩ (S(�,�) \ (C∗ ∪ K̃)), and the remaining saddles ξ ∈
S(�,�) \ (∂C��(Γ∗)∪ (∂C��(Γ∗ − Ĥ(�)) \ K̃)∪ C∗). By Propositions 3.1.3 and 3.1.5, we obtain
Corollary 3.4.4 that states that the saddles of the first and second types are respectively
unessential. In Proposition 3.4.5 we highlight some of the saddles of type three that are
unessential. This analysis is different when we are dealing with isotropic or weakly anisotropic
interactions, and with strongly anisotropic interactions due to the different mechanisms to
enter C∗ (see [35, Proposition 2.3.7], Lemma 4.3.7 and Lemma 5.3.8, respectively). For the
anisotropic cases this strategy is presented in Sections 4.3 and 5.3. Finally, we identify the
essential saddles of the third type in Proposition 3.5.1.

3.4.1 Main Propositions

In this section we give the main results for our model–dependent strategy. We refer to
Section 3.4.3 for the proof of these propositions.

Proposition 3.4.2. C∗ ⊆ G(�,�).
Proposition 3.4.2 holds also in the weakly and strongly anisotropic regimes, see Propositions
4.3.2 and 5.3.2, respectively.

Proposition 3.4.3. The following statements hold.
(i) K = ∅;
(ii) K̃∩ ∂C��(Γ∗ − Ĥ(�)) = {η ∈ ⋃i

⋃
α,α ′ I

α,α ′
i \ C∗ : it is possible to attach the free

particle in ∂−CR(η) via one step of the dynamics} =: Ī ;

For the corresponding result of Proposition 3.4.3 for the anisotropic regimes, see Propositions
4.3.3 and 5.3.3.

Corollary 3.4.4. The following statements hold.
(i) The saddles of the first type σ ∈ ∂C��(Γ∗)∩ (S(�,�) \ C∗) are unessential;
(ii) The saddles of the second type ζ ∈ ∂C��(Γ∗ − Ĥ(�))∩ (S(�,�) \ (C∗ ∪ Ī )) are unessential;

Proof. Combining Propositions 3.1.3, 3.1.5 and 3.4.3 we get the claim.

Proposition 3.4.5. Any saddle ξ that is neither in C∗, nor in the boundary of the cycle C��(Γ
∗),

nor in ∂C��(Γ
∗ − Ĥ(�)) \ K̃, i.e., ξ ∈ S(�,�) \ (∂C��(Γ∗)∪ (∂C��(Γ∗ − Ĥ(�)) \ K̃)∪ C∗), such that

τξ < τCB is unessential. Therefore it is not in G(�,�).
For the corresponding result of Proposition 3.4.5 for the anisotropic regimes, see Propositions
4.3.5 and 5.3.5.
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3.4.2 Useful Lemmas for the model-dependent strategy

In this section we give some useful lemmas about the entrance in the gate and the
minimality of the sets C∗(i) with i = 3, ..., L∗. We stress that the behavior for isotropic and
weakly anisotropic interactions is very different from that observed for strongly anisotropic
interactions, indeed we note that the weakly anisotropic model has some characteristics similar
to the isotropic and some similar to the strongly anisotropic model. For the corresponding
results obtained in the anisotropic cases we refer to Sections 4.3.2 and 5.3.2.

[35, Proposition 2.3.7] investigates how the entrance in C∗ occurs for the isotropic regime.
We encourage the reader to inspect the difference between this proposition and Lemma 4.3.7.
and Lemma 5.3.8, where the peculiar entrance in the gate for the strongly anisotropic case is
analyzed.

We refer to Section 3.4.4 for the proof of the remaining lemmas. In Lemma 3.4.6 we correct
the statement in [35, eq. (3.5.5)] for C∗(i) with i = 3, ..., L∗. Concerning C∗(2), in Lemma 3.4.8,
we replace the minimality of the gate C∗(2) with the sentence “C∗(2) is composed by essential
saddles”. We stress that this correction does not effect the results where the statement was
used in [35].

Lemma 3.4.6. C∗(i) is a minimal gate for any i = 3, ..., L∗.

Remark 3.4.7. In the strongly anisotropic case, the statement of Lemma 3.4.6 does not hold. A
different result is derived in Lemma 5.3.9.

Lemma 3.4.8. The saddles in C∗(2) are essential.

3.4.3 Proof of Propositions

Proof of Proposition 3.4.2. By Lemma 3.4.8 we know that the saddles in C∗(2) are essential and
thus are in G(�,�) due to [85, Theorem 5.1]. Moreover, by Lemma 3.4.6 we know that the set
C∗(i) is a minimal gate for any i = 3, ..., L∗, thus

C∗ = C∗(2)∪
L∗⋃

i=3

C∗(i) ⊆ G(�,�). (3.4.4)

Proof of Proposition 3.4.3. (i) To prove that K = ∅ we argue by contradiction. Let η̄ ∈ K, thus
there exist η ∈ C∗ and ω = ω1 ◦ω2 from η to � with the properties described in (3.1.16),
where ◦ denotes the composition of two paths. We know that η is composed by the union
of a protocritical droplet in D and a free particle. Since ω1 ∩ C∗ = {η}, we note that the free
particle must be in Λ−, otherwise the free particle has to cross at least Λ− and ∂Λ−, the
latter in the configuration η ′ ∈ C∗, with η ′ 6= η, which contradicts the conditions in (3.1.16).
Therefore, starting from η, by the optimality of the path we deduce that the unique admissible
move is to remove the free particle. The configuration that is obtained in this way is in D, that
belongs to C��(Γ

∗), which is absurd since (3.1.16) requires that ω1 ∩ C��(Γ∗) = ∅. Thus, it is
not possible to find such ω1 and ω2, therefore K = ∅.

(ii) Let η̄ ∈ K̃∩ ∂C��(Γ∗ − Ĥ(�)). By the definition of the set K̃ we know that there exist η ∈ C∗

and ω = ω1 ◦ω2 from η to � with the properties described in (3.1.17). We know that η is
composed by the union of a protocritical droplet η̂ ∈ D and a free particle. Sinceω1 ∩C∗ = {η},
we note that η ∈ C∗(2), otherwise the free particle has to cross at least B̄2(η̂) and B̄3(η̂), the
latter in the configuration η ′ ∈ C∗, with η ′ 6= η, which contradicts the conditions in (3.1.17).
Therefore, starting from η, by the optimality of the path we deduce that the unique admissible
move is to attach the free particle to the cluster. If η̄ is obtained from η by attaching the free
particle in a good site giving rise to a configuration in CG(η̂), by [35, Proposition 2.3.9(i)] we
know that ω1 ∩ C��(Γ∗ − Ĥ(�)) 6= ∅, that contradicts (3.1.17), thus it is not possible to find
such ω1 and ω2, therefore η̄ /∈ K̃, which is in contradiction with the assumption.

Assume now that η̄ is obtained from η by attaching the free particle in a bad site giving
rise to a configuration in CB(η̂). If η ∈ Qfp, then by [35, Proposition 2.3.8(ii)] the unique
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admissible move is the reverse one, thus we may assume that η ∈ C∗ \ Qfp and that the path
does not go back to η, otherwise we can iterate this argument for a finite number of steps
since the path has to reach �. Starting from η, by Lemma 3.4.1 we know that η̄ is obtained
either via a sequence of 1-translations of a bar or via a sliding of a bar around a frame-angle.
If a sequence of 1-translations takes place, by the optimality of the path we deduce that the
unique possibility is either detaching the protuberance or sliding a bar around a frame-angle.
In the first case the configuration that is obtained is in C∗ and thus η̄ /∈ K̃, which contradicts
the assumption.

Consider now the case in which a sliding of a bar around a frame–angle takes place. The
configurations visited by the path ω during this sliding are η̄1, ..., η̄m ∈ I α,α ′

k,k ′,i for some
α,α ′ ∈ {n, s,w, e}, k ′ = 2, ..., `c and k = 2, ..., k ′, while the last configuration is a saddle η̃ ∈
I α,α ′
i when the last particle of the bar is detached. Thus, {η̄1, ..., η̄m}∩ ∂C��(Γ∗ − Ĥ(�)) = ∅.

Starting from η̃, the free particle can move and be attached in ∂+CR(η̃) and another sliding of
a bar around a frame–angle can take place. If this is the case, as proved above the saddles
visited during this motion are not in ∂C��(Γ

∗ − Ĥ(�)) except the last configuration ˜̃η visited
during the sliding, that is a saddle, if P(˜̃η,CG) > 0. Thus, the unique possibility to have
η̄ ∈ K̃ ∩ ∂C��(Γ∗ − Ĥ(�)) is that η̄ ∈ I α,α ′

i \ C∗ and it is possible to attach the free particle
in ∂−CR(η̄) via one step of the dynamics. Taking the union over all i ∈ {−1, 0, 1, 2} and
α,α ′ ∈ {n, s,w, e}, we get the claim.

Proof of Proposition 3.4.5. We denote by ξ1, ..., ξn the saddles in the statement. We want to
prove that these saddles are unessential (see Section 3.1.1 point 4 for the definition). Since
we can repeat the following argument n times, we may focus on a single configuration ξi.
Consider any ω ∈ (�→ �)opt such that ω∩ ξi 6= ∅. By hypotheses, we have to analyze only
the case in which the path ω reaches the saddle ξi before reaching CB. Since C∗ is a gate for
the transition and ξi ∈ S(�,�) \ C∗, we note that {arg maxω Ĥ} \ {ξi} 6= ∅. Thus, our strategy
consists in finding ω ′ ∈ (�→ �)opt such that {arg maxω ′ Ĥ} ⊆ {arg maxω Ĥ} \ {ξi}.

First, assume that ω reaches the saddle ξi before reaching CG and thus ξi must be
obtained by a configuration η ∈ C∗ without attaching the free particle. In particular, [35,
Propositions 2.3.7 and 2.3.8(ii)] imply that the only possibility is that η is composed by the
union of a cluster η̂ ∈ Q and a free particle at distance 2 from the cluster. Moreover, ξi is the
union of a quasi–square (`c − 1)× `c with a dimer. Thus, starting from ξi, by [35, Proposition
2.3.8(ii)] we know that the only transition that does not raise the energy is the reverse move
giving rise to the configuration η. Thus by Lemma [35, Proposition 2.3.7] we can write

ω = (�,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , γq, η

(q)
1 , ..., η(q)mq , η, ξi, η) ◦ ω̄, (3.4.5)

where ω1, ...,ωk1 , ...,ωkq ∈ C��(Γ
∗), γ1, ..., γq ∈ D, η(1)1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq ∈ C∗ and ω̄

is a path that connects η to � such that maxσ∈ω̄ Ĥ(σ) 6 Γ∗. We define a new path

ω ′ = (�,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ...,ωkq , ...,ωkq+1 , γq, η

(q)
1 , ..., η(q)mq , η) ◦ ω̄. (3.4.6)

Thus, {arg maxω ′ Ĥ} = {η
(1)
1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq , η}∪ {arg maxω̄ Ĥ} and therefore

{arg maxω ′Ĥ} ⊆ {arg maxωĤ} \ {ξi}, i = 1, ..., n. (3.4.7)

This implies that the saddle ξi is unessential for any i = 1, ..., n and thus, using [85, Theorem
5.1], ξi ∈ S(�,�) \ G(�,�).

Finally, if the path ω reaches the saddle ξi after reaching CG in the configuration ηG, we
can write

ω = (�,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq , η

G, ..., ξi, ...,�) (3.4.8)

and define

ω ′ = (�,ω1, ...,ωk1 , γ1, η
(1)
1 , ..., η(1)m1 , ..., η

(q)
1 , ..., η(q)mq , η

G) ◦ ω̃, (3.4.9)

where ω̃ is a path such that maxσ∈ω̃ Ĥ(σ) < Γ∗. This path exists by [35, Proposition 2.3.9(i)].
It easy to check that the saddle ξi is unessential for any i = 1, ..., n and thus, using [85,
Theorem 5.1], ξi ∈ S(�,�) \ G(�,�).
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3.4.4 Proof of Lemma 3.4.8

Let ξ1, ..., ξn the saddles in C∗(2), we want to prove that these saddles are essential (see
Section 3.1.1 point 4 for the definition). Since we can repeat the following argument n
times, we may focus on a single configuration ξi. We note that a path ω ∈ (� → �)opt
such that {arg maxω Ĥ} = {ξi} does not exist, thus our strategy consists in finding a path
ω ∈ (�→ �)opt such that for any ω ′ ∈ (�→ �)opt

ω∩ ξi 6= ∅ and {arg maxω ′Ĥ} * {arg maxωĤ} \ {ξi}, i = 1, ..., n. (3.4.10)

Let ξi be the union of a cluster η ∈ D and a free particle in a site with coordinates (i, j) at
lattice distance 2 from the cluster. We define the specific path ω of the strategy above as

ω = (�,ω1, ...,ωk, η, η1, ..., ηL−j−3, ξi, η(1), ..., η(k), ηG) ◦ ω̄, (3.4.11)

where ω1, ...,ωk ∈ C��(Γ
∗), η ∈ D, η1 ∈ C∗(L− j− 1), ..., ηL−j−3 ∈ C∗(3), η(1), ..., η(k) ∈ C∗,

ηG ∈ CG(η̂(k)) and ω̄ a path that connects ηG to � such that maxσ∈ω̄ Ĥ(σ) < Γ∗. Note
that the part of the path ω from ξi to η(k) is constructed by moving the free particle at
zero cost from (i, j) to a good site depicted in Figure 1.15, so that we obtain a configuration
ηG. Moreover, the path ω̄ exists by [35, Proposition 2.3.9(i)]. Now we show that for any ω ′

condition (3.4.10) is satisfied. If ω ′ passes through the configuration ξi, then {arg maxω ′ Ĥ} ⊇
{ξi}, thus (3.4.10) is satisfied. Therefore we can assume that ω ′ ∩ ξi = ∅. If ω ′ crosses the set
S(�,�) through a configuration η̃ such that ω∩ η̃ = ∅, then condition (3.4.10) holds. Thus,
we can reduce our analysis to ω ′ that visits all the configurations η1, ..., ηL−j−3 ∈ C∗. Starting
from ηL−j−3 ∈ C∗(3), there are four allowed directions for moving the free particle. The move
cannot be in the direction of the cluster, indeed in that case the path ω ′ visits ξi ∈ C∗(2).
Concerning the other three choices, we have two cases. In the first case, the path ω ′ visits
a saddle not already present in ω, thus (3.4.10) is satisfied. In the second case, the path ω ′

visits a saddle that has been already visited by ω, thus we can iterate this argument for a
finite number of steps, since the path ω ′ has to reach �. Thus, we have proved that the saddle
ξi is essential for any i = 1, ..., n.

3.5 proof of the main theorem 3 .2 .7

In this Section we give the proof of the main Theorem 3.2.7 by analyzing the geometry
of the set G(�,�), emphasizing the saddles for the transition from � to � that are essential
and the ones that are not. We want to investigate in more detail the saddles ξ ∈ S(�,�) \
(∂C��(Γ

∗)∪ ∂C��(Γ∗ − Ĥ(�))∪ C∗) visited after crossing the set CB.

Proposition 3.5.1. Any saddle ξ that is neither in C∗, nor in the boundary of the cycle C��(Γ
∗), nor

in ∂C��(Γ
∗ − Ĥ(�)) \ K̃, such that τξ > τCB can be essential or not. For those essential, we obtain

the following characterization:

G(�,�)∩ S(�,�) \ (∂C��(Γ∗)∪ (∂C��(Γ∗ − Ĥ(�)) \ K̃)∪ C∗)

=

3⋃

i=0

⋃

α

I α
i ∪

2⋃

i=0

⋃

α,α ′

⋃

k,k ′
I α,α ′
k,k ′,i ∪

2⋃

i=−1

⋃

α,α ′
I α,α ′
i .

(3.5.1)

We refer to Section 3.5.1 for the proof of the Proposition 3.5.1.

Proof of the main Theorem 3.2.7. By Corollary 3.4.4 we know that the saddles of the first and
second type, defined in Definitions 3.1.2 and 3.1.4, respectively, are unessential. By Proposi-
tions 3.4.5 and 3.5.1 we have the characterization of the essential saddles of the third type.
Use Proposition 3.4.2 to get the claim.

3.5.1 Proof of Proposition 3.5.1

We recall Definitions 3.2.3 and 3.2.5 for the definitions of the 1-translation of a bar and
for the sliding of a bar around a frame-angle, respectively, and that d(·, ·) denotes the lattice
distance. In order to prove Proposition 3.5.1 we need the following lemma.
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(a)

(`c −2)×(`c −2)

(b)

(`c −2)×(`c −2)

(c)

(`c −3)×(`c −1)

Figure 3.5 – Here we depict a possible configuration η in (a), its corresponding η ′ in (b) and the
configuration obtained from η ′ after the sliding of the bar Be(η) around the frame-angle cen(η ′) in (c)
for the case 1A.

Lemma 3.5.2. (i) Starting from η ∈ I α,α ′
0 (resp. η ∈ I α,α ′

−1 ), if the free particle is attached in
∂+CR(η) obtaining the configuration η ′, then the following saddles obtained via a 1-translation
of any bar are essential and in I α

0 ∪I α
1 (resp. in I α

0 ). Moreover, all the saddles in I α
0 ∪I α

1

can be obtained from a η ∈ I α,α ′
−1 ∪I α,α ′

0 via a 1-translation of a bar. In particular, starting
from η ∈ C∗, if the free particle is attached in a bad site obtaining ηB ∈ CB, then the following
saddles obtained via a 1-translation of any bar are essential. These saddles are in I α

0 if η̂ ∈ D̄

and in I α
0 ∪I α

1 if η̂ ∈ D̃.
(ii) Starting from η ∈ I α,α ′

1 , if the free particle is attached in ∂+CR(η) obtaining the configura-
tion η ′, then the following saddles obtained via a 1-translation of any bar are essential and in
I α
1 ∪I α

2 . Moreover, all the saddles in I α
1 ∪I α

2 can be obtained from a η ∈ I α,α ′
1 via a

1-translation of a bar.
(iii) Starting from η ∈ I α,α ′

2 , if the free particle is attached in ∂+CR(η) obtaining the configura-
tion η ′, then the following saddles obtained via a 1-translation of any bar are essential and in
I α
2 ∪I α

3 . Moreover, all the saddles in I α
2 ∪I α

3 can be obtained from a η ∈ I α,α ′
2 via a

1-translation of a bar.

The proof of the lemma is postponed to Section 3.5.2.

Proof of Proposition 3.5.1. Consider a configuration η ∈ C∗(2) such that η = (η̂, x), with η̂ ∈ D

and x the site of the free particle such that d(η̂, x) = 2. By hypotheses we have that the free
particle is attached in a bad site obtaining a configuration η ′ ∈ CB (see Figure 3.5(a)-(b) for
a possible pair of configuration (η, η ′)). Due to [85, Theorem 5.1], our strategy consists in
characterizing the essential saddles that could be visited after attaching the free particle in a
bad site. We consider the following cases:

case 1 . η̂ ∈ D̄;

case 2 . η̂ ∈ D̃.

Note that from case 1 one can go to the other cases and viceversa, but since the path has
to reach � this back and forth must end in a finite number of steps.

Case 1. Let η̂ ∈ D̄, thus by [35, Theorem 1.4.1] we know that η̂ consists in an (`c− 2)× (`c− 2)

square with four bars Bα(η), with α ∈ {n, e,w, s}, attached to its four sides satisfying

1 6 |Bα(η)| 6 `c,
∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = 3`c − 3. (3.5.2)

First, note that at most three frame-angles in ∂−CR(η̂) can be occupied, otherwise |∂−CR(η̂)| =
4`c − 4 > 3`c − 3, which is absurd. Thus, we consider separately the following cases:

A. three frame-angles in ∂−CR(η̂) are occupied;
B. two frame-angles in ∂−CR(η̂) are occupied;
C. one frame-angle in ∂−CR(η̂) is occupied;
D. no frame-angle in ∂−CR(η̂) is occupied.

Case 1A. Without loss of generality we consider η as in Figure 3.5(a). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then
by Lemma 3.5.2(i) the saddles that are crossed are essential and in I α

0 . If a sequence of
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(a)

(`c −2)×(`c −2)

(b)

(`c −2)×(`c −2)

(c)

(`c −2)×(`c −2)

Figure 3.6 – Case 1B(i): we depict a possible starting configuration η ∈ C∗ in (a), the configuration
η̃ obtained from η after the sliding of the bar Bn(η) around the frame–angle cnw(η ′) in (b) and the
configuration η̄ obtained from η̃ after the sliding of the bar Bs(η̃) around the frame–angle cse(η ′′) in (c).

1-translations of a bar takes place in such a way that the last configuration has at most two
occupied frame–angles, then we can reduce our proof to the cases B, C and D below. Thus,
we are left to analyze the case in which there is the activation of a sliding of a bar around a
frame–angle. Consider again, for example, η as in Figure 3.5(a). If the free particle is attached
to the bar Be(η), then it is not possible to slide the bar Bn(η) around the frame–angle cne(η ′),
since the condition (3.2.12) is not satisfied. Thus, by Lemma 3.4.1(ii) we know that the saddles
that could be crossed are unessential. If the free particle is attached to the bar Bs(η), we
conclude as before. If the free particle is attached to the bar Bn(η) (see Figure 3.5(b)), then
it is not possible to slide the bar Bw(η) around the frame–angle cwn(η ′) because condition
(3.2.12) is not satisfied and thus we can conclude as before. The unique possibility is to slide
the bar Be(η) around the frame–angle cen(η ′) if |Be(η)| < |Bn(η)|, otherwise (3.2.12) is not
satisfied. The saddles that are possibly visited (except the last one) are in I α,α ′

k,k ′,0 and by
Lemma 3.4.1(i) they are essential. The last configuration visited during this sliding of a bar is
depicted in Figure 3.5(c). It belongs to C∗, indeed the cluster is in D̃ and therefore the saddles
that could be crossed starting from it will be investigated in case 2. If the free particle is
attached to the bar Bw(η), we conclude in a similar way as before. This concludes case 1A.

Case 1B. We consider separately the following subcases:
(i) the two occupied frame-angles are cαα

′
(η) and cα

′′α ′′′(η), with all the indeces α,α ′, α ′′

and α ′′′ different between each other (see Figure 3.6(a));
(ii) the two occupied frame-angles are cαα

′
(η) and cα

′α ′′(η), with α 6= α ′′ (see Figure
3.7(a)).

Case 1B(i). Without loss of generality we consider η as in Figure 3.6(a). If we are
considering the case in which a sequence of 1-translations of a bar is possible and takes
place, then by Lemma 3.5.2(i) the saddles that are crossed are essential and they are in I α

0 .
If at least one bar is full, it is possible to activate a sequence of 1-translations of a bar in
order to obtain either two occupied frame–angles with a bar in common or three occupied
frame–angles. For example, in Figure 3.6(a), if the bar Bs(η) is full, one could attach the
free particle to Be(η) and translate the bar Bw(η) in order to have the frame–angle csw(η)
occupied. In both situations the saddles visited up to this point are essential by Lemma
3.5.2(i), while the saddles that follow are analyzed in case 1B(ii) and 1A, respectively. Thus,
we can reduce our proof to the case in which there is no translation of a bar and therefore we
need to consider only the sliding of a bar around a frame–angle. We may assume without
loss of generality that |Bn(η)| < |Bw(η)| and |Bs(η)| < |Be(η)|, indeed the other cases can be
treated with the same argument. By Lemma 3.4.1 to obtain essential saddles there are one
of the following possibilities: attach the free particle to the bar Bw(η) (resp. Be(η)) and then
slide the bar Bn(η) (resp. Bs(η)) around the frame–angle cnw(η ′) (resp. cse(η ′)). Assume
first that the free particle is attached to Bw(η). By Lemma 3.4.1(i) the saddles that are possibly
visited are essential and, except the last one, they are in I α,α ′

k,k ′,0. The last configuration visited
during this sliding of a bar is η̃ ∈ I α,α ′

0 and it is depicted in Figure 3.6(b). Starting from
η̃, the unique possibility to visit essential saddles is to attach a free particle in ∂+CR(η̃) and
then either activate a sequence of 1-translations of bars or slide a bar around a frame–angle.
In the first case, by Lemma 3.5.2(i) the saddles that are possibly visited are essential and in
I α
0 ∪I α

1 . In the latter case, the unique possibility is to attach the free particle to the bar
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(a)

(`c −2)×(`c −2)

(b)

(`c −3)×(`c −1)

(c)

(`c −3)×(`c −1)

Figure 3.7 – Case 1B(ii): we depict a possible starting configuration η ∈ C∗ in (a), the configuration
η̃ obtained from η after the sliding of the bar Bw(η) around the frame-angle cwn(η ′) in (b) and the
configuration η̄ obtained from η after the sliding of the bar Be(η) around the frame-angle cen(η ′′) in (c).

(a)

(`c −2)×(`c −2)

(b)

(`c −2)×(`c −2)

(c)

(`c −2)×(`c −2)

Figure 3.8 – Case 1C: in (a) we depict a possible starting configuration η ∈ C∗ and in (b) the configuration
η̃ obtained from η after the sliding of the bar Bw(η) around the frame-angle cwn(η ′). Case 1D: in (c)
we depict a possible starting configuration in C∗.

Be(η̃) obtaining a configuration η ′′, and then slide Bs(η̃) around the frame–angle cse(η ′′). By
Lemma 3.4.1(i) the saddles that are possibly visited are essential and, except the last one, they
are in I α,α ′

k,k ′,1. The last configuration visited during this sliding of a bar is in I α,α ′
1 and it

is depicted in Figure 3.6(c). Starting from this configuration it is impossible to slide a bar
around any frame–angle, thus by Lemma 3.4.1(ii) the saddles that possibly will be crossed if
the sliding of a bar is initiated are unessential. If a sequence of 1-translations of bars takes
place, by Lemma 3.5.2(ii) the saddles that could be crossed are essential and in I α

1 ∪I α
2 .

Note that if |Bw(η)| < |Bn(η)| and/or |Be(η)| < |Bs(η)| a similar argument can be used.
This concludes case 1B(i).

Case 1B(ii). Without loss of generality we consider η as in Figure 3.7(a). If we are
considering the case in which a sequence of 1-translations of a bar is possible and takes place,
then by Lemma 3.5.2(i) the saddles that are crossed are essential and they are in I α

0 . If one
bar among Bw(η) and Be(η) is full, it is possible to activate a sequence of 1-translations of
the bar Bs(η) in order to have three occupied frame–angles. This situation has already been
analyzed in case 1A. Thus, we can reduce our proof to the case in which there is no translation
of a bar and therefore we need to consider only the sliding of a bar around a frame–angle.
If the free particle is attached to the bar Bs(η), since it is not possible to slide a bar around
any frame–angle, by Lemma 3.4.1(ii) we know that the saddles that could be crossed are
unessential. If the free particle is attached to one bar among Bw(η) and Be(η), then it is not
possible to complete the sliding of the bar Bn(η) around the frame–angle cnw(η ′) or cne(η ′).
Thus, by Lemma 3.4.1(ii) the saddles that could be crossed are unessential. If the free particle
is attached to the bar Bn(η), then it is possible to slide the bar Bw(η) or Be(η) around the
frame–angle cwn(η ′) or cen(η ′), respectively. Thus, by Lemma 3.4.1(i) we know that the
saddles that could be crossed are essential and they are in I α,α ′

k,k ′,0, except the last one that
is in C∗ (see Figure 3.7(b)-(c)). Hence the saddles that could be crossed starting from such
configuration will be analyzed in case 2. This concludes case 1B(ii).

Case 1C. Without loss of generality we consider η as in Figure 3.8(a). If we are a considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by
Lemma 3.5.2(i) the saddles that are crossed are in I α

0 . Starting from this configuration it is
possible to obtain two occupied frame–angles: this situation has been already analyzed in case
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1B. Thus, we can reduce our proof to the case in which there is no 1-translation of a bar and
therefore there is the activation of a sliding of a bar around a frame–angle. If the free particle
is attached to the bar Be(η) or Bs(η), since it is not possible to complete any sliding of a bar
around a frame–angle at cost U, by Lemma 3.4.1(ii) we know that the saddles that could be
crossed are unessential. If |Bw(η)| < |Bn(η)| and the free particle is attached to the bar Bn(η),
then it is possible to slide the bar Bw(η) around the frame–angle cwn(η ′). Thus, by Lemma
3.4.1(i) the saddles that could be crossed are essential and, except the last one, they are in
I α,α ′
k,k ′,0. Note that the last configuration is in I α,α ′

0 (see Figure 3.8(b)). Starting from such a
configuration, since it is not possible to complete any sliding of a bar around a frame–angle,
by Lemma 3.4.1(ii) we know that the saddles that could be visited are unessential unless a
sequence of 1-translations of bars takes place. In this case, by Lemma 3.5.2(ii) the saddles that
could be visited are essential and in I α

0 ∪I α
1 . The case |Bn(η)| < |Bw(η)| in which the free

particle is attached to the bar Bw(η) is analogue. This concludes case 1C.

Case 1D. Without loss of generality we consider η as in Figure 3.8(c). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by
Lemma 3.5.2(i) the saddles that are crossed are in I α

0 . Starting from this configuration, it
is possible to obtain one or two occupied frame–angles: these situations have been already
analyzed in cases 1C and 1B, respectively. Thus, we can reduce our proof to the case in which
there is no 1-translation of a bar and therefore there is the activation of a sliding of a bar
around a frame–angle. If the free particle is attached to one of the bars, since it is not possible
to complete any sliding of bar around a frame–angle, by Lemma 3.4.1(ii) we know that the
saddles that could be crossed are unessential. This concludes case 1D.

Case 2. Let η̂ ∈ D̃, thus by [35, Theorem 1.4.1] we know that η̂ consists of an (`c− 3)× (`c− 1)

quasi–square with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides satisfying

1 6 |Bα(η)|, |Bα
′
(η)| 6 `c + 1, 1 6 |Bα

′′
(η)|, |Bα

′′′
(η)| 6 `c − 1, (3.5.3)

where either α,α ′ ∈ {n, s} and α ′′, α ′′′ ∈ {w, e}, or α,α ′ ∈ {w, e} and α ′′, α ′′′ ∈ {n, s}, and∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = 3`c − 2. (3.5.4)

First, note that at most three frame–angles in ∂−CR(η̂) can be occupied, otherwise |∂−CR(η̂)| =
4`c − 4 > 3`c − 2, which is absurd. By hypotheses we have that the free particle is attached in
a bad site obtaining a configuration η ′ ∈ CB. We consider separately the following cases:

A. three frame-angles in ∂−CR(η) are occupied;
B. two frame-angles in ∂−CR(η) are occupied;
C. one frame-angle in ∂−CR(η) is occupied;
D. no frame-angle in ∂−CR(η) is occupied.
The argument used in case 2 is analogue to that used above in case 1 and is discussed in

details in Appendix 3.A.

3.5.2 Proof of Lemma 3.5.2

(i) Note that Ĥ(η ′) = Γ∗ −U, thus it is possible to translate bars at cost U. These saddles
are in I α

0 if η ∈ I α,α ′
−1 and in I α

0 ∪I α
1 if η ∈ I α,α ′

0 . To conclude, all the configurations in
I α
0 ∪I α

1 can be obtained from a configuration η ∈ I α,α ′
−1 ∪I α,α ′

0 via a 1-translation of a
bar. Since D̄fp ⊆ I α,α ′

−1 and D̃fp ⊆ I α,α ′
0 , we get the particular case in which η ′ = ηB ∈ CB

as claimed.
It remains to prove that the saddles in I α

0 ∪I α
1 are essential. Let ξ1, ..., ξm ∈ I α

0 ∪I α
1

the saddles visited during a 1-translation of a bar. We want to prove that these saddles are
essential (see Section 3.1.1 point 4 for the definition). Since we can repeat the following
argument m times, we may focus on a single configuration ξi. Since C∗ is a gate for
the transition and ξi ∈ S(�,�) \ C∗, we note that a path ω ∈ (� → �)opt such that
{arg maxω Ĥ} = {ξi} does not exist. Thus, our strategy consists in finding a path ω ∈ (�→
�)opt such that for any ω ′ ∈ (�→ �)opt

ω∩ ξi 6= ∅, {arg maxω ′Ĥ} * {arg maxωĤ} \ {ξi}, i = 1, ...,m. (3.5.5)
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(i, j)

(i+ 1, j)

Figure 3.9 – Here we depict in grey the configuration η1 that consists of the union of a cluster C(η1)
and a free particle. The dotted unit squares represent the following positions of the free particle that
moves as represented by the arrows on the left, north, east and south, until the particle is attached to
the cluster in position (i, j). The latter is the configuration η ′. To simplify the exposition we chose to use
the path in the external frame of ∂+CR(C(η1)).

Let η ′ be the configuration with a single cluster obtained as union of a cluster C(η1) and a
protuberance attached to one of its bars in a site with coordinates (i, j) such that Ĥ(η1) = Γ∗

and η1 is the configuration with cluster C(η1) and one free particle. More precisely, by (3.2.21)
the configuration η1 is obtained by the configuration η0 via a sliding of the bar Bα(η0) around
the frame–angle cαα

′
(η0). Without loss of generality we assume that the protuberance of η ′

is attached to the bar Be(C(η1)). We define the specific path ω of the strategy above as

ω = (�,ω1, ...,ωk, γ1, ..., η0, ...γs, η1, ..., ηk, η ′, ξ1, ..., ξm) ◦ ω̄, (3.5.6)

where ω1, ...,ωk ∈ C��(Γ
∗), γ1, ..., γs ∈ X such that Ĥ(γi) 6 Γ∗ for any i = 1, ..., s and ω̄ is a

path that connects ξm to � such that maxσ∈ω̄ Ĥ(σ) 6 Γ∗. Moreover, the saddles η1, ..., ηk are
composed by the union of the cluster C(η1) and a free particle such that the free particle is at
distance > 3 from a site in ∂−CR(η1) (see Figure 3.9 for a picture of this situation in the case
α = w and α ′ = n). In particular, consider that η1 has the free particle in B̄2(η1) and ηk in
the site with coordinates (i+ 1, j) ∈ B̄2(η1) using the assumption that the protuberance of η ′

is attached to Be(η1).
Now we show that for any ω ′ condition (3.5.5) is satisfied. If ω ′ passes through the

configuration ξi, {arg maxω ′Ĥ} ⊇ {ξi}, thus (3.5.5) is satisfied. Therefore we can assume that
ω ′ ∩ ξi = ∅. If ω ′ crosses the set S(�,�) through a configuration η ′′ such that η ′′ ∩ω = ∅,
then condition (3.5.5) holds. Thus, we can reduce our analysis to ω ′ that visits all the saddles
η1, ..., ηk. Starting from ηk, there are four allowed directions for moving the free particle.
If we move it in the direction of the cluster (west in Figure 3.9), we deduce that the path
ω ′ visits the configuration η ′. For the other three choices, the free particle still remains free
after the move, indeed by construction of the path ω, starting from ηk it is not possible to
attach the free particle in ∂−CR(η1) via one step of the dynamics. Thus, the path ω ′ can
visit either a saddle not already visited by ω (south or east in Figure 3.9) or a saddle that
has been already visited by ω (north in Figure 3.9). In the first case, we obtain that (3.5.5) is
satisfied. In the latter case, we can iterate this argument and, since ω ′ goes from � to �, we
can assume that the path ω ′ visits the configuration η ′. From now on, starting from η ′, there
are two possible scenarios:

I. ω ′ activates the same 1-translation of a bar as ω;
II. ω ′ activates a different 1-translation of a bar from ω.
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In case I, since ω ′ ∩ ξi = ∅, we deduce that the 1-translation of a bar has been stopped
before hitting ξi. Thus, we can assume that ω ′ comes back to η ′, otherwise the energy
exceeds Γ∗. Since the path ω ′ has to reach �, starting from η ′ the protuberance is detached
and in the sequel is attached in another site. Thus, ω ′ reaches a saddle that is not visited by
ω. This implies that (3.5.5) is satisfied.

In case II, when the path ω ′ initiates a 1-translation of a bar different from ω, it reaches a
saddle that it is not visited by ω, thus condition (3.5.5) is satisfied. Therefore we deduce that
the path does not start this 1-translation and thus the path ω ′ must go back to η ′ (since it has
to reach �). From now on, as before, the path ω ′ has to detach the protuberance and in the
sequel it is attached in another site, thus ω ′ reaches a saddle that is not visited by ω. This
implies that (3.5.5) is satisfied. Thus, we have proved that the saddle ξi is essential for any
i = 1, ...,m.

The proof of (ii) and (iii) is analogue to the one done in (i) by modifying the length of the
horizontal and vertical sides of CR(η).

3.6 proof of the sharp asymptotics

In this section, following the approach initiated in [35] for Kawasaki dynamics and devel-
oped in [32, Chapters 16 and 18], we provide a comparison with some model–independent
results given in [32, Chapter 16]. For this reason we give our results for a continuous
time dynamics, but we encourage the reader to inspect Remark 3.6.8, which translates the
aforementioned results to the discrete time Kawasaki dynamics we consider in this thesis.

3.6.1 Model-independent results for the prefactor

In order to give the results, we need some definitions. In [32] the authors refer to the
protocritical and critical sets as P∗(m, s) and C ∗(m, s), respectively. Since they differ from
our notation, we refer to them as P∗PTA(m, s) and C ∗PTA(m, s), respectively, where PTA
stands for potential–theoretic approach. Given ξ, ξ ′ ∈ X, we set ξ ∼ ξ ′ if the two configurations
can be obtained from each other via an allowed move.

Definition 3.6.1. [32, Definition 16.3] Recall that

Γm = Φ(m, s) − Ĥ(m). (3.6.1)

Then (P∗PTA(m, s),C
∗
PTA(m, s)) is the maximal subset of X×X such that:

(1) ∀ ξ ∈ P∗PTA(m, s) ∃ ξ ′ ∈ C ∗PTA(m, s) : ξ ∼ ξ ′ and ∀ ξ ′ ∈ C ∗PTA(m, s) ∃ ξ ∈
P∗PTA(m, s) : ξ

′ ∼ ξ;
(2) ∀ ξ ∈P∗PTA(m, s), Φ(ξ,m) < Φ(ξ, s);
(3) ∀ ξ ′ ∈ C ∗PTA(m, s) ∃ γ : ξ ′ → s such that max

ζ∈γ
Ĥ(ζ)− Ĥ(m) 6 Γm, γ∩ {ζ ∈ X : Φ(ζ,m) <

Φ(ζ, s)} = ∅.

Now we abbreviate P∗PTA = P∗PTA(m, s) and C ∗PTA = C ∗PTA(m, s). In [32] the following
results (Theorems 3.6.2 and 3.6.3) are proved subject to the two hypotheses

(H1) Xm = {m} and Xs = {s};
(H2) ξ ′ → |{ξ ∈P∗PTA : ξ ∼ ξ ′}| is constant on C ∗PTA.

Theorem 3.6.2. [32, Theorem 16.4]
(a) lim

β→∞Pm(τC ∗PTA < τs|τs < τm) = 1;

(b) lim
β→∞Pm(ξτC∗

PTA
= χ) =

1

|C ∗PTA|
for all χ ∈ C ∗PTA.

Theorem 3.6.3. [32, Theorem 16.5] There exists a constant K ∈ (0,∞) such that

lim
β→∞ e−βΓmEm(τs) = K. (3.6.2)
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Concerning Theorem 3.6.3, the general strategy developed in [32, Section 16.3.2] is reported
in Section 1.3.2 by replacing the Dirichlet form in (1.3.39) with its continuous time version

Eβ(h) =
1

2

∑
η,η ′∈X

µβ(η)cβ(η, η
′)[h(η) − h(η ′)]2, h : X→ [0, 1], (3.6.3)

where µβ is the Gibbs measure defined in [32, eq. (16.1.1)] and cβ is the kernel of transition
rates defined in [32, eq. (16.1.2)]. By viewing X as a graph whose vertices are configurations
and whose edges connect communicating configurations, recall the following notation:

- X∗ be the subgraph of X obtained by removing all vertices η with H(η) > Γ∗ +H(m)

and all edges incident to these vertices;
- X∗∗ be the subgraph of X∗ obtained by removing all vertices η with H(η) = Γ∗ +H(m)

and all edges incident to these vertices;
- Xmeta and Xstab be the connected components of X∗∗ containingm and s respectively.

Moreover, we consider the set

X∗∗ \ (Xmeta ∪Xstab) =
I⋃

i=1

X(i), (3.6.4)

where we recall that each X(i) is a well in S(m, s), i.e., a set of communicating configurations
with energy strictly less than Γm + Ĥ(m) but with communication height Γm + Ĥ(m) towards
both m and s. Among all the wells X(i), we can highlight the wells Zmj (resp. Zsj ) of the
unessential saddles of the first (resp. second) type σj (resp. ζj) (see Definitions 3.1.2 and 3.1.4,
and Propositions 3.1.3 and 3.1.5). In particular, these wells can be defined as follows.

Definition 3.6.4. We define
1) Zmj ⊂ X∗∗, j = 1, ..., Jm, is a connected set such that, for all η ∈ Zmj , Φ(m,η) = Φ(s, η) and

any path ω : η→ s must be such that ω∩Xmeta 6= ∅;
2) Zsj ⊂ X∗∗, j = 1, ..., Js, is a connected set such that, for all η ∈ Zmj , Φ(s, η) = Φ(m,η) and

any path ω : η→ m must be such that ω∩Xstab 6= ∅.

Proposition 3.6.5. If Zmj 6= ∅, X(i) ≡ Zmj if and only if Zmj is a connected component in X∗∗ \
(Xmeta ∪Xstab) such that there exists a saddle of the first type σj that communicates via one step
with a configuration in Zmj .

Proof. First, assume that X(i) ≡ Zmj for some i ∈ {1, ..., I} and j ∈ {1, ..., Jm}. It is clear
that Zmj is a connected component in X∗∗ \ (Xmeta ∪ Xstab), indeed any configuration
η ∈ Xmeta ∪Xstab has Φ(η,m) 6= Φ(η, s). Furthermore, by definition of Zmj , we note that

Φ(s, η) = Γm + Ĥ(m) and any path ω : η→ s must be such that ω∩Xmeta 6= ∅. This implies
that there exists σj ∈ ω∩ S(s,m) that is an unessential saddle of the first type (see Proposition
3.1.3) such that it communicates via one step with a configuration in Zmj .

Conversely, assume that any fixed Zmj is a connected component in X∗∗ \ (Xmeta ∪Xstab)
such that there exists a saddle of the first type σj that communicates via one step with a
configuration in Zmj . Thus we deduce that X(i) ≡ Zmj for some i ∈ {1, ..., I}, indeed for all

η ∈ Zmj it hold Φ(η,m) = Φ(η, s) = Γm + Ĥ(m) and Ĥ(η) < Γm + Ĥ(m) since Zmj ⊂ X∗∗.

Proposition 3.6.6. If Zsj 6= ∅, X(i) ≡ Zsj if and only if Zsj is a connected component in X∗∗ \
(Xmeta ∪Xstab) such that there exists a saddle of the second type ζj that communicates via one step
with a configuration in Zsj .

Proof. The proof is analogue to the proof of Proposition 3.6.5 by replacing Zmj with Zsj and
“ω : η→ s such that ω∩Xmeta 6= ∅" with “ω : η→ m such that ω∩Xstab 6= ∅".

First, note that the unessential saddles of the first and second type are not in the set C ∗PTA.
Indeed, on the one hand, the saddles {σj}

Jm
j=1 do not verify the condition (3) in Definition 3.6.1,

because every optimal path that connects any fixed σj to s passes through Xmeta. On the
other hand the saddles {ζj}

Js
j=1 do not verify conditions (1) and (2) in Definition 3.6.1, because

they communicate only with configurations that are not in P∗PTA. By [32, eq. (16.3.4)] and
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[32, Lemma 16.16], we know that h is constant on each wells, but for the wells Zmj and Zsj we
compute this constant in Lemma 3.6.7, indeed [32, Lemma 16.15] can be extended also for
these sets together with the unessential saddles of the first and second type.

Lemma 3.6.7. Recall Definitions 3.1.2 and 3.1.4 for the definition of the saddles σj of the first type
and ζj second type respectively and Definition 3.6.4 for the definition of the wells Zmj and Zsj . As
β→∞,

ZCAP(m, s) = [1+ o(1)]Θe−βΓm , (3.6.5)

with

Θ = min
c1,...,cĪ

min
h:X∗→[0,1]

h
|Xmeta
I

=1, h
|Xstab
II

=0, h|X(i)=ci,i=1,...,Ī

1

2

∑
ξ,ξ ′∈X∗

1{ξ∼ξ ′}[h(ξ) − h(ξ
′)]2, (3.6.6)

where

XmetaI := Xmeta ∪
Jm⋃

j=1

({σj}∪Zmj ), XstabII := Xstab ∪
Js⋃

j=1

({ζj}∪Zsj ). (3.6.7)

and X(i), i = 1, ..., Ī, are all the wells of the transition except
⋃Jm
j=1 Z

m
j and

⋃Js
j=1 Z

s
j .

Proof. The statement is similar to the one of [32, Lemma 16.17], but the difference is in the
variational formula for Θ. More precisely, comparing (3.6.6) with [32, eq. (16.3.11)], the proof
is analogue to the one done for [32, Lemma 16.17], but we have to prove that the function h is
constant equal to 1 (resp. 0) on

⋃Jm
j=1({σj}∪Zmj ) (resp.

⋃Js
j=1({ζj}∪Zsj )).

Fix any saddle of the first type σj. By [32, Lemma 16.16] we set h(η) = cj for any η ∈ Zmj ,
h(η) = ck for any η ∈ Zmk with k 6= j, and h(σj) = c̄j. By definition of saddles of the first
type, note that σj communicates only with configurations either in Xmeta, or in Zmj or in Zmk
with k 6= j. Thus the contribution to (3.6.6) of the saddle of the first type σj is∑

ξ∈Xmeta
|σj ∼ ξ|(1− c̄j)

2 +
∑
ξ∈Zmj

|σj ∼ ξ|(c̄j − cj)
2 +

∑
ξ∈Zm

k
k6=j

|σj ∼ ξ|(ck − c̄j)
2. (3.6.8)

The cases Zmj = ∅ (resp. Zmk = ∅) or there is no ξ ∈ Zmj (resp. ξ ∈ Zmk ) such that σj ∼ ξ
correspond to the situation in which either there is not the well Zmj (resp. Zmk for any k 6= j)
or the dynamics does not allow the communication via one step from σj and Zmj (resp. Zmk ).
In the first situation we get c̄j = 1 and in the second one we get c̄j = cj = 1. Otherwise, since
the quantity in (3.6.8) is greater or equal than zero, the minimum with respect to cj, ck and c̄j
of (3.6.8) is obtained for cj = ck = c̄j = 1, thus h is constant equal to 1 on

⋃Jm
j=1({σj}∪Zmj ). If

we consider all the possible transitions of this type and use (3.6.8), we obtain a contribution to
(3.6.6) equal to

Jm∑
j=1

( ∑
ξ∈Xmeta

|σj ∼ ξ|(1− c̄j)
2+

∑
ξ∈Zmj

|σj ∼ ξ|(c̄j− cj)
2+

∑
ξ∈Zm

k
k6=j

|σj ∼ ξ|(ck− c̄j)
2

)
. (3.6.9)

Again, the minimum of (3.6.9) with respect to c1, ..., cJm and c̄1, ..., c̄Jm is obtained for
ci = c̄i = 1 for any i = 1, ..., Jm.

Similarly, we deduce that h is constant equal to 0 on
⋃Js
j=1({ζj}∪Zsj ). Indeed, if we fix any

saddle of the second type ζj, by [32, Lemma 16.16] we set h(η) = cj for any η ∈ Zsj , h(η) = ck
for any η ∈ Zsk with k 6= j, and h(ζj) = c̄j. By definition of saddles of the second type, note
that ζj communicates only with configurations either in Xstab, or in Zsj or in Zsk with k 6= j.
Thus the contribution to (3.6.6) of the saddle of the second type ζj is∑

ξ∈Xstab
|ζj ∼ ξ|c̄

2
j +

∑
ξ∈Zsj

|ζj ∼ ξ|(c̄j − cj)
2 +
∑
ξ∈Zs

k
k6=j

|ζj ∼ ξ|(ck − c̄j)
2. (3.6.10)
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The cases Zsj = ∅ (resp. Zsk = ∅) or there is no ξ ∈ Zsj (resp. ξ ∈ Zsk) such that ζj ∼ ξ

correspond to the situation in which either there is not the well Zsj (resp. Zsk for any k 6= j) or
the dynamics does not allow the communication via one step from ζj and Zsj (resp. Zsk). In
the first situation we get c̄j = 0 and in the second one we get c̄j = cj = 0. Otherwise, since the
quantity in (3.6.10) is greater or equal than zero, the minimum with respect to cj, ck and c̄j of
(3.6.10) is obtained for cj = ck = c̄j = 0, thus h is constant equal to 0 on

⋃Js
j=1({ζj}∪ Zsj ). If

we consider all the possible transitions of this type, we obtain a contribute to (3.6.6) equal to

Js∑
j=1

( ∑
ξ∈Xstab

|ζj ∼ ξ|c̄
2
j +

∑
ξ∈Zmj

|ζj ∼ ξ|(c̄j − cj)
2 +

∑
ξ∈Zm

k
k6=j

|ζj ∼ ξ|(ck − c̄j)
2

)
. (3.6.11)

Again, the minimum of (3.6.11) with respect to c1, ..., cJs and c̄1, ..., c̄Js is obtained for ci =
c̄i = 0 for any i = 1, ..., Js. Therefore formula (16.3.15) in the proof of [32, Lemma 16.17]
should be modified as

h =



1 on Xmeta ∪
Jm⋃

j=1

({σj}∪Zmj ),

0 on Xstab ∪
Js⋃

j=1

({ζj}∪Zsj ),

ci on X(i), i = 1, ..., Ī,

(3.6.12)

where X(i), i = 1, ..., Ī, are all the wells of the transition except
⋃Jm
j=1 Z

m
j and

⋃Js
j=1 Z

s
j . Thus,

we get the claim.

Remark 3.6.8. Note that Lemma 3.6.7 can be simply adapted to the discrete time Kawasaki dynamics
we consider in this thesis by modifying (3.6.6) as follows. Since the transition rates of the dynamics
for the discrete time version are those of the continuous time version rescaled by a factor 1/|Λ̄∗,orie|,
equation (3.6.6) should be modified as

Θ = min
c1,...,cĪ

min
h:X∗→[0,1]

h
|Xmeta
I

=1, h
|Xstab
II

=0, h|X(i)=ci,i=1,...,Ī

1

2

∑
ξ,ξ ′∈X∗

1{ξ∼ξ ′}

|Λ̄∗,orie|
[h(ξ) −h(ξ ′)]2. (3.6.13)

Remark 3.6.9. Lemma 3.6.7 implies that also the unessential saddles σj and ζj have to be considered
in the estimate of the prefactor. However, since h(σj) = 1 and h(ζj) = 0 for any j, the transitions
that involve these unessential saddles do not contribute numerically to the computation of K. The
variational formula for Θ in (3.6.6) is non-trivial because it depends on the geometry of all the wells
X(i), i = 1, ..., I, and on the form of the function h on the configurations in X∗ \ X∗∗, namely the
saddle configurations. These two steps are the model–dependent keys to compute the prefactor K = 1/Θ.

Remark 3.6.10. For the hexagonal Ising model that evolves under Glauber dynamics, the estimate of
the upper bound of the prefactor, given in [4, Section 6.1], is done setting the equilibrium potential
h, for that specific model, according to our discussion (see (3.6.12) and [4, eq. (6.19)])). The authors
analyzed the unessential saddles of first and second type that they used for the definition of h together
with their valleys. Indeed, they define the sets

⋃JA
j=1N

A
j and

⋃JB
j=1N

B
j in [4, Section 6.1] that coincide,

in their model, with
⋃Jm
j=1 Z

m
j (resp.

⋃Js
j=1 Z

s
j ) by Proposition 3.6.5 (resp. Proposition 3.6.6). In [4,

Section 6.1] an explicit example of saddle σi is given.

Remark 3.6.11. In [26, Section 7] the authors study the estimate of the prefactor for the q-state Potts
model that evolves under Glauber dynamics using the above discussion and Lemma 3.6.7. In [26,
Lemma 7.4(b)] the authors identify geometrically unessential saddles of the first type (see [26, Figure
18(b)]) and describe their wells in the proof. In [26, Lemma 7.4(c)] the authors identify geometrically
one unessential saddle of the second type (see [26, Figure 19]). Choosing q = 2, this Lemma gives the
same results for the standard Ising model. We refer also to [32, Chapter 17], where the authors compute
the prefactor in [32, Theorem 17.4] using [32, Lemma 16.17] and some model-dependent properties
without identifying the unessential saddles.
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Remark 3.6.12. For the Ising model with weakly and strongly anisotropic interactions that evolves
under Kawasaki dynamics, the estimate of the prefactor is given in Theorems 4.1.4 and 5.1.5, respectively,
according to the above discussion and Lemma 3.6.7. For the strongly anisotropic case the authors
are able to obtain a sharp estimate for K in (5.1.13). Nevertheless, the asymptotic behavior of the
prefactor in the strongly anisotorpic regime as Λ→ Z2 is the same as that of the isotropic and weakly
anisotropic regimes, see [35, Theorem 1.4.5] and Theorem 4.1.4), respectively. Moreover, in Figure 5.5
an example of unessential saddle of the second type is given.

For our model Xm = {�} and Xs = {�}, thus (H1) holds and Γm = Φ(�,�) − Ĥ(�) =

Γ∗. Moreover, P∗PTA(�,�) = D and C ∗PTA(�,�) is the union of all the configurations
that are composed by a cluster in D and a free particle in ∂−Λ. Therefore it is clear that
C∗ 6= C ∗PTA(�,�). Note that (H2) follows from [35, Proposition 2.3.7]. Here we abbreviate
P∗PTA = P∗PTA(�,�) and C ∗PTA = C ∗PTA(�,�). Note that Xmeta = C��(Γ

∗) and Xstab =

C��(Γ
∗ − Ĥ(�)). Recall Definition 3.6.4 for the definition of the wells Z�j and Z�j . Concerning

Theorem 3.6.3, by [35, Lemma 3.3.2] we know that h is constant on each wells. Thanks to
the model–independent discussion given in this section and Lemma 3.6.7, formula (3.6.12)
becomes

h =



1 on C��(Γ
∗)∪

J�⋃

j=1

({σj}∪Z�j ),

0 on C��(Γ
∗ − Ĥ(�))∪

J�⋃

j=1

({ζj}∪Z�j ),

ci on X(i), i = 1, ..., Ī,

(3.6.14)

where X(i), i = 1, ..., Ī, are all the wells of the transition except
⋃J�
j=1 Z

�
j and

⋃J�
j=1 Z

�
j . Note

that formula (3.3.20) in the proof of [35, Proposition 3.3.3] should be modified accordingly to
(3.6.14).

3.6.2 Proof of Theorem 3.2.8

Thanks to [92, Lemma 3.6], we deduce that for our model the quantity Γ̃(B), with B ( X,
defined in [92, eq. (21)] is such that Γ̃(X \ {�}) = Γ∗. Thus, Theorem 3.2.8 follows by the
following proposition.

Proposition 3.6.13. [92, Proposition 3.24] For any ε ∈ (0, 1) and any s ∈ Xs

lim
β→∞ 1β log tmixβ (ε) = Γ̃(X \ {s}) = lim

β→∞−
1

β
log ρβ. (3.6.15)

Furthermore, there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓ̃(X\{s}) 6 ρβ 6 c2e−βΓ̃(X\{s}). (3.6.16)

appendix

3.a additional material for section 3 .5

We give explicit argument to complete the proof of Proposition 3.5.1, considering the cases
that were left in Section 3.5.1, since the proofs are analogue to the ones discussed in that
section. Due to [85, Theorem 5.1], our strategy consists in characterizing the essential saddles
that could be visited after attaching the free particle in a bad site.

Case 2A. Without loss of generality we consider η as in Figure 3.10(a). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by
Lemma 3.5.2(i) the saddles that are crossed are essential and in I α

0 ∪I α
1 . If a sequence of

1-translations of a bar takes place so that the last configuration has at most two occupied
frame-angles and it belongs to the cases 2B, 2C and 2D treated below. Thus we are left to
analyze the case in which there is the activation of a sliding of a bar around a frame-angle.
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(a)

(`c − 3)× (`c − 1)

(b)

(`c − 4)× `c

(c)

(`c − 2)× (`c − 2)

Figure 3.10 – Case 2A: in (a) we depict a possible starting configuration η ∈ C∗, in (b) the configuration
η̃ obtained from η after the sliding of the bar Be(η) around the frame-angle cen(η ′) and in (c) the
configuration η̃ obtained from η after the sliding of the bar Bs(η) around the frame-angle csw(η ′).

(`c− 3)× (`c− 1) (`c− 3)× (`c− 1)

Figure 3.11 – On the left-hand side we depict a possible starting configuration η ∈ C∗ for the case 2B(i)
and on the right-hand side a possible starting configuration η ∈ C∗ for the case 2B(ii).

If the free particle is attached to the bar Be(η), then it is not possible to complete the
sliding of the bar Bn(η) around the frame-angle cne(η ′), since the condition (3.2.12) is not
satisfied. Thus by Lemma 3.4.1(ii) we know that the saddles that could be crossed in this
attempt are unessential. If the free particle is attached to the bar Bs(η), we conclude as before.

If the free particle is attached to the bar Bn(η), then it is not possible to complete the
sliding of the bar Bw(η) around the frame-angle cwn(η ′) because the condition (3.2.12) is
not satisfied and thus we can conclude as before. If |Be(η)| < |Bn(η)| the condition (3.2.12) is
satisfied, thus it is possible to slide the bar Be(η) around the frame-angle cen(η ′). By Lemma
3.4.1(i) the saddles that are possibly visited are essential and, except the last one, they are in
I α,α ′
k,k ′,1. The last configuration visited during this sliding of a bar is η̃ ∈ I α,α ′

1 , has a free
particle and it is depicted in Figure 3.10 (b). Starting from such a configuration, if a sequence
of 1-translations of a bar is possible and takes place, then by Lemma 3.5.2(ii) the saddles
that could be crossed are essential and in I α

1 ∪I α
2 . If this free particle is now attached to

∂−CR(η̃), then the path reaches C��(Γ
∗) and the saddles are those obtained up to this point.

Otherwise, if the free particle is now attached to Bw(η̃) obtaining the configuration η ′′, and if
a sliding of the bar Bs(η̃) around the frame-angle csw(η ′′) takes place, by Lemma 3.4.1(i) the
saddles that could be crossed are essential and, except the last one, are in I α,α ′

k,k ′,1. The last
configuration is in C∗, because the cluster is in D̃. If this sliding of a bar does not take place,
the path ω has to go back to a configuration in I α,α ′

1 and the saddles that could be crossed
are already considered. From now on, we can iterarate this argument for a finite number of
steps since the path has to reach �.

If the free particle is first attached to the bar Bw(η), we argue in a similar way as before.
Indeed, if |Bs(η)| < |Bw(η)|, it is possible to slide the bar Bs(η) around the frame-angle
csw(η ′). By Lemma 3.4.1(i) the saddles that are possibly visited are essential and, except the
last one, are in I α,α ′

k,k ′,0. The last configuration visited during this sliding of a bar is in C∗ (see
Figure 3.10(c)) and it belongs to case 1A. This concludes case 2A.
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Case 2B. We consider separately the following subcases:
(i) the two occupied frame-angles are cαα

′
(η) and cα

′′α ′′′(η), with all the indices α,α ′, α ′′

and α ′′′ different between each other (see Figure 3.11 on the left-hand side);
(ii) the two occupied frame-angles are cαα

′
(η) and cα

′α ′′(η), with α 6= α ′′ (see Figure
3.11 on the right-hand side).

Case 2B(i). Without loss of generality we consider η as in Figure 3.11 on the left-hand
side. If we are considering the case in which a sequence of 1-translations of a bar is possible
and takes place, then by Lemma 3.5.2(i) the saddles that are crossed are essential and they are
in I α

0 ∪I α
1 . If at least one bar is full and a sequence of 1-translations of a bar takes place,

it is possible to obtain a configuration either with two occupied frame-angles with a bar in
common or with three occupied frame-angles. The first case will been analyzed in case 2B(ii)
and the latter one has been already analyzed in case 2A. Thus we can reduce our proof to the
case in which there is no translation of bars and therefore there is the activation of a sliding
of a bar around a frame-angle. First, assume that |Bn(η)| < |Bw(η)| and |Bs(η)| < |Be(η)|. By
Lemma 3.4.1 the only two possibilities to obtain essential saddles is to attach the free particle
to the bar Bw(η) or Be(η) and then slide the bar Bn(η) around the frame-angle cnw(η ′) or
Bs(η) around cse(η ′) respectively. If the free particle is first attached to Bw(η), by Lemma
3.5.2(i) the saddles that are possibly visited are essential and, except the last one, are in
I α,α ′
k,k ′,0. The last configuration is η̃ ∈ I α,α ′

−1 . Starting from η̃, it is possible to attach the free
particle to the bar Be(η̃) obtaining a configuration η ′′, and then slide the bar Bs(η̃) around
the frame-angle cse(η ′′). Thus by Lemma 3.4.1(i) we know that these saddles are essential
and, except the last one, are in I α,α ′

k,k ′,0. The last configuration is η̄ ∈ I α,α ′
0 . Starting from η̄,

it is not possible to complete any sliding of a bar around a frame-angle and thus by Lemma
3.4.1(ii) we conclude that the saddles that will be possibly crossed are unessential unless a
sequence of 1-translations of bars takes place. In this case, by Lemma 3.5.2(i) the saddles that
could be crossed are essential and in I α

0 ∪I α
1 . If the free particle is first attached to Be(η),

we conclude similarly.
Assume now that |Bw(η)| < |Bn(η)| and |Be(η)| < |Bs(η)|: we argue in the same way as

before. If the free particle is first attached to the bar Bn(η), the essential saddles that could be
crossed are in I α,α ′

k,k ′,1 and the last one is η̃ ∈ I α,α ′
1 and has a free particle. Again, starting

from η̃, if the free particle is attached to the bar Bs(η̃) obtaining the configuration η ′′, by
Lemma 3.4.1(i) we know that the saddles that will be possibly crossed are essential and,
except the last one, are in I α,α ′

k,k ′,2. The last configuration is η̄ ∈ I α,α ′
2 . If the free particle is

first attached to the bar Bs(η), we conclude as above. Starting from η̄, it is not possible to
complete any sliding of a bar around a frame-angle and thus by Lemma 3.4.1(ii) the saddles
that could be crossed are unessential unless a sequence of 1-translations of bars takes place.
In the latter case, by Lemma 3.5.2(iii) the saddles that could be crossed are essential and in
I α
2 ∪I α

3 .
The cases |Bw(η)| < |Bn(η)|, |Bs(η)| < |Be(η)| and |Bn(η)| < |Bw(η)|, |Be(η)| < |Bs(η)| can

be treated with the same argument as the previous ones and the essential saddles encountered
have been already considered. This concludes case 2B(i).

Case 2B(ii). Without loss of generality we consider η as on the right-hand side in Figure
3.11. If we are considering the case in which a sequence of 1-translations of a bar is possible
and takes place, then by Lemma 3.5.2(i) the saddles that are crossed are essential and they are
in I α

0 ∪I α
1 . If one bar among Bw(η) and Be(η) is full, then it is possible that a sequence of

1-translations of the bar Bs(η) takes place in order to have three occupied frame-angles. This
situation has already been analyzed in case 2A. Thus we can reduce our proof to the case
in which there is no translation of bars and therefore there is the activation of a sliding of a
bar around a frame-angle. If the free particle is attached to the bar Bs(η), it is not possible to
complete any sliding of a bar around a frame-angle at cost U and by Lemma 3.4.1(ii) we know
that the saddles that could be crossed are unessential. If the free particle is attached to one
bar among Bw(η) and Be(η), since (3.2.12) is not satisfied it is not possible to complete the
sliding of the bar Bn(η) around the frame-angle cnw(η ′) and cne(η ′) respectively. Thus by
Lemma 3.4.1(ii) the saddles that will be possibly crossed are unessential. If the free particle is
attached to the bar Bn(η), then it is possible to complete the sliding of the bar Bw(η) or Be(η)
around the frame-angle cwn(η ′) or cen(η ′) respectively. Thus by Lemma 3.4.1(i) we know
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(`c − 3)× (`c − 1) (`c − 3)× (`c − 1)

Figure 3.12 – On the left-hand side we depict a possible starting configuration η ∈ C∗ for the case 2C
and on the right-hand side a possible starting configuration η ∈ C∗ for the case 2D.

that the saddles that will be crossed are essential and, except the last one, are in I α,α ′
k,k ′,1. The

last configuration is η̃ ∈ I α,α ′
1 that has a free particle. If this free particle is now attached to

∂−CR(η̃), then the path reaches C��(Γ
∗) and the saddles are those obtained up to this point.

Otherwise, since condition (3.2.12) is not satisfied, it is not possible to complete any sliding of
a bar around a frame-angle, thus by Lemma 3.4.1(ii) the saddles that will be possibly crossed
during the sliding of a bar are unessential. On the other hand, if a sequence of 1-translations
of a bar is possible and takes place, then, starting from η̃, by Lemma 3.5.2(ii) the saddles that
could be crossed are essential and in I α

1 ∪I α
2 . This concludes case 2B(ii).

Case 2C. Without loss of generality we consider η as in Figure 3.12 on the left-hand side.
If we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 3.5.2(i) the saddles that are crossed are in I α

0 ∪I α
1 . Thus we can

reduce our proof to the case in which there is no 1-translation of a bar and therefore there is
only the activation of a sliding of a bar around a frame-angle. Starting from this configuration
it is possible to obtain two occupied frame-angles via a sequence of 1-translations of a bar:
this situation has been already analyzed in case 2B. If the free particle is attached to the bar
Be(η) or Bs(η), since it is not possible to complete any sliding of bar around a frame-angle at
cost U, by Lemma 3.4.1(ii) we know that the saddles that could be crossed are unessential. If
|Bw(η)| < |Bn(η)| (resp. |Bn(η)| < |Bw(η)|) and the free particle is attached to the bar Bn(η)
(resp. Bw(η)), then it is possible to complete a sliding of the bar Bw(η) (resp. Bn(η)) around
the frame-angle cwn(η ′) (resp. cnw(η ′)). Thus by Lemma 3.4.1(i) the saddles that could be
crossed are essential and in I α,α ′

k,k ′,1 (resp. I α,α ′
k,k ′,0), except the last one that is η̃ ∈ I α,α ′

1 (resp.
η̃ ∈ I α,α ′

−1 ) with a free particle. If this free particle is now attached to ∂−CR(η̃), then the path
reaches C��(Γ

∗) and the saddles are those obtained up to this point. Otherwise, condition
(3.2.12) is not satisfied, thus it is not possible to complete any sliding of a bar around a
frame-angle. Therefore by Lemma 3.4.1(ii) we know that the saddles that could be visited are
unessential unless a sequence of 1-translations of a bar is possible and takes place. In this
case, by Lemma 3.5.2(ii) (resp. Lemma 3.5.2(i)) the saddles that could be crossed are essential
and in I α

1 ∪I α
2 (resp. I α

0 ). This concludes case 2C.

Case 2D. Without loss of generality we consider η as in Figure 3.12 on the right-hand side.
If we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 3.5.2(i) the saddles that are crossed are essential and in I α

0 ∪I α
1 .

Thus, we can reduce our proof to the case in which there is no 1-translation of a bar and
therefore there is only the activation of a sliding of a bar around a frame-angle. Starting from
this configuration, it is possible to obtain one or two occupied frame-angles via a sequence of
1-translations: these situations have been already analyzed in cases 2C and 2B respectively. If
the free particle is attached to one of the bars, since it is not possible to complete any sliding
of bar around a frame-angle at cost U, by Lemma 3.4.1(ii) we know that the saddles that could
be crossed are unessential. This concludes case 2D.
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4C R I T I C A L D R O P L E T S O N T H E S Q UA R E L AT T I C E : W E A K
A N I S O T R O P Y

This chapter is devoted to the geometrical characterization of the union of all the minimal
gates for the local model evolving under Kawasaki dynamics with weakly anisotropic interac-
tions, namely, U1 < 2U2 in (1.3.11). To this end, we apply the model–independent strategy
carried out in Chapter 3 to the weakly anisotropic local model. For this regime we are able to
fully identify the geometry of the union of all the minimal gates. We observe very different
behaviour compared to the strongly anisotropic regime (U1 > 2U2). Finally, we provide sharp
asymptotics concerning the mean transition time, the mixing time and the spectral gap.

This chapter is structured as follows. We state our main results in Section 4.1. In particular,
we state the results concerning the gates in Section 4.1.1 and the sharp asymptotics in Section
4.1.2. In Section 4.2 we provide some results that are useful for the model–dependent strategy
concerning the minimal gates carried out in Section 4.3. In Section 4.4 we give the proof of
the main result regarding the identification of the union of all the minimal gates (see Theorem
3.2.7), while in Section 4.5 we give the proof of the main model–independent theorems about
the sharp asymptotics. In Section 4.6 we provide an argument to extend to the simplified
weakly anisotropic model the results about the nucleation derived for the local model. Finally,
in Appendices 4.A and 4.B we give additional explicit proofs and computations.

4.1 main results

In this section we state our main results. In Section 4.1.1 we obtain the geometrical
characterization of the union of all minimal gates. In order to do this, we need some specific
definitions for the weakly anisotropic case (see Section 4.1.1). In Section 4.1.2 we derive
sharp estimates for the asymptotic transition time in the weakly anisotropic case. Moreover,
we derive the mixing time and spectral gap. For the corresponding results obtained in
the isotropic and strongly anisotropic cases we refer to Sections 3.2.2 and 5.1.1 for results
concerning the gates and union of minimal gates, respectively. For the corresponding results
concerning the asymptotic transition time, mixing time and spectral gap obtained for the
isotropic and strongly anisotropic cases we refer to Section 3.2.3 and 5.1.2, respectively.

4.1.1 Gate for the local model

In this section we assume U1 6= U2 and U1 < 2U2 − 2ε in (1.3.11) (recall (3.2.8) for the
definition of ε), i.e., we consider weakly anisotropic interactions between nearest neighboring
sites. We will consider 0 < ε� U2, where� means suffiently smaller; for instance ε 6 U2

100

is enough. In order to state our main results for the gates in the weakly anisotropic regime
we need the following definitions. Recall (1.3.30) for the definition of ¯̀ and (3.2.5) for the
definition of s. For x ∈ Z, n ∈ N, we define [x]n := x mod n. For any s > ¯̀ + 2, if s has
the same parity as ¯̀ i.e., [s− ¯̀]2 = [0]2, then we define the set of 0-standard rectangles as
R0−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ ¯̀

2
, `2(s) :=

s− ¯̀

2
, for [s− ¯̀]2 = [0]2. (4.1.1)

If s has the same parity as ¯̀ − 1 i.e., [s− ¯̀]2 = [1]2, we define the set of 1-standard rectangles to
be R1−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ ¯̀ − 1

2
, `2(s) :=

s− ¯̀ + 1
2

, for [s− ¯̀]2 = [1]2. (4.1.2)

147
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For this value of s we define the set of quasi-standard rectangles as Rq−st(s) := R(`1(s) +

1, `2(s) − 1). Finally, we set

Rst(s) :=

{
R0−st(s) if [s− ¯̀]2 = [0]2,

R1−st(s) if [s− ¯̀]2 = [1]2.
(4.1.3)

Recall (1.3.22) for the definition of the horizontal and vertical critical lengths `∗1 and `∗2,
respectively. We set the critical value of s as

s∗ := `∗1 + `
∗
2 − 1. (4.1.4)

Recall that we have defined Q̄ as the set of configurations having one cluster anywhere in
Λ0 consisting of a (`∗1 − 1)× `∗2 rectangle with a single protuberance attached to one of the
shortest sides. Similarly, the set Q̃ contains the configurations having one cluster anywhere in
Λ0 consisting of a (`∗1 − 1)× `∗2 rectangle with a single protuberance attached to one of the
longest sides. The critical value of the energy is

Γ∗ = U1`∗2 +U2`
∗
1 +U1 +U2 + ε`

∗
2 − ε`

∗
1`
∗
2 − 2ε (4.1.5)

and the volume of the clusters in Q̄ is

nc = `
∗
2(`
∗
1 − 1) + 1. (4.1.6)

Finally, recall (1.3.31) for the definition of the sets D̄ and D̃. We encourage the reader to
consult Proposition 4.2.1, where we give the geometric description of the sets D̄ and D̃.
Roughly speaking, one can think of D̄ and D̃ as the sets of configurations consisting of a
rectangular cluster with four bars attached to its four sides, whose lengths satisfy precise
conditions. Finally, we set

C∗ = D̄fp. (4.1.7)

The reason why only the set D̄ is relevant for the set C∗ will be clarified in Lemma 5.2.6. Note
that

Ĥ(C∗) = Ĥ(D̄fp) = Ĥ(D̄) +∆ = Ĥ(Q̄) +∆

= U1`
∗
2 +U2(`

∗
1 − 1) − ε`

∗
2(`
∗
1 − 1) + 2∆−U1

= U1`
∗
2 +U2`

∗
1 +U1 +U2 + ε`

∗
2 − ε`

∗
1`
∗
2 − 2ε

= Γ∗.

(4.1.8)

See Figure 4.1 for examples of configurations in C∗.

Remark 4.1.1. Note that Ĥ(Q̄) < Ĥ(Q̃). Indeed,

Ĥ(Q̄) = Γ∗ −∆,

Ĥ(Q̃) = Γ∗ −∆+U1 −U2.
(4.1.9)

The first main result of Section 4.1.1 is a refinement of [90, Theorem 2].

Theorem 4.1.2. (Gate for weakly anisotropic interactions). The set C∗ is a gate for the transition
from � to �.

We refer to Section 4.4.1 for the proof of Theorem 4.1.2.
In order to give the result regarding the geometric characterization of G(�,�), we need

some definitions. For any i = 0, 1 we define Pi ⊆ S(�,�) to consist of configurations with a
single cluster and no free particle, and a fixed number of vacancies that is not monotone with
circumscribed rectangles obtained from the one of the configurations in D̄ via increasing by
one the horizontal or vertical length. More precisely,

Pi := {η : n(η) = 0, v(η) = 2`∗2 + i(`
∗
1 − `

∗
2) − 2, g

′
1(η) = i, g

′
2(η) = 1− i, ηcl is

connected with circumscribed rectangle in R(`∗1 − i+ 1, `
∗
2 + i)}, i = 0, 1.

(4.1.10)
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`∗2

`∗1

`∗2

`∗1

Figure 4.1 – Critical configurations in C∗ in the weakly anisotropic case. Moreover, if we remove the free
particle, then we obtain on the left a configuration in Q̄ and on the right a configuration in D̄ \ Q̄.

See Figure 1.18 for examples of configurations in P0 (on the left-hand side) and in P1 (on the
right-hand side).

The set G(�,�) contains all the configurations that are in the sets defined in (4.1.10) with
the following further conditions. First, we define the subset Nα

′
0 (resp. Nα1 ) of the saddles in

P0 (resp. P1) as the set that contains only one occupied unit square in either a vertical (resp.
horizontal) row or in one of its two adjacent frame-angles. More precisely,

Nα
′
0 := {η ∈ P0 : |rα

′
(η)∪ cα ′ᾱ(η)∪ cα ′α̃(η)| = 1}, (4.1.11)

for any α ′ ∈ {w, e} and ᾱ, α̃ ∈ {n, s} such that ᾱ 6= α̃, and

Nα1 := {η ∈ P1 : |rα(η)∪ cαα ′′(η)∪ cαα ′′′(η)| = 1}, (4.1.12)

for any α ∈ {n, s} and α ′′, α ′′′ ∈ {w, e} such that α ′′ 6= α ′′′. Note that in Figure 1.18 the
configuration on the left-hand side is in Ne0 and the configuration on the right-hand side is in
Nn1 .

Next, we define the subset Nα,α
′

k,k ′ of the saddles in P0 as the set of configurations that are
obtained from η ∈ P0 during the sliding of the bar Bα

′
(η) around the frame-angle cα

′α(η).
More precisely,

Nα,α
′

k,k ′ := {η ∈ P0 : |rα(η)| = k− 1, |rα
′
(η)| = k ′ − k+ 1, k ′ 6 1+ ||rα(η)||,

|cα
′α(η)| = 1, (rα(η)∪ cα ′α(η))∩ ηcl = rα,1cl ∪̇rα,2cl with d(rα,1cl , r

α,2
cl ) = 2},

(4.1.13)

where α ∈ {n, s}, α ′ ∈ {w, e}, rα,1cl , rα,2cl are two disjoint connected components in rα(η) ∪
cα
′α(η) and k ′ = `∗1 − `

∗
2 + 1, ..., `

∗
2, k = 2, ..., k ′. Note that the conditions in (4.1.13) guarantee

that these configurations are obtained during a sliding of a bar around a frame-angle, that is
identified by the indeces α and α ′. Note that the index k ′ denotes the length of the bar that
we are sliding. The index k counts the number of particles that are in rα(η)∪ cα ′α(η) during
the sliding and can be less or equal than `∗2, but it is possible that for some values of k the set
Nα,α

′
k,k ′ is empty. Our notation does not distinguish whether Nα,α

′
k,k ′ is empty or not in order to

avoid the presence of an additional index.
Now we are able to give the second main result of Section 4.1.1.

Theorem 4.1.3. (Union of minimal gates for weakly anisotropic interactions). We obtain the
following description for G(�,�):

G(�,�) = C∗ ∪
⋃

α

⋃

α ′

`∗2⋃

k ′=`∗1−`
∗
2+1

k ′⋃

k=2

Nα,α
′

k,k ′ ∪
⋃

α ′
Nα

′
0 ∪

⋃

α

Nα1 . (4.1.14)

We refer to Section 4.4.2 for the proof of Theorem 4.1.3.
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4.1.2 Sharp asymptotics

Below we state the main results concerning the sharp asymptotics, whose proof and some
discussions are deferred to Section 4.5. Equation (4.1.16) below corrects a minor mistake in
[18, eq. (4.14)], where the multiplicative factor |Λ̄∗, orie| in the asymptotic behaviour of the
prefactor is missing.

Theorem 4.1.4. There exists a constant K = K(Λ, `∗2) such that

E�(τ�) = KeΓ
∗β [1+ o(1)], β→∞. (4.1.15)

Moreover, as Λ→ Z2,

K(Λ, `∗2)→
|Λ̄∗, orie|
4πN

log |Λ|

|Λ|
, (4.1.16)

where

N =

4∑
k=1

(
4

k

)(
`∗2 + k− 2
2k− 1

)
(4.1.17)

is the cardinality of D̄ = D̄(Λ, `∗2) modulo shifts.

Theorem 4.1.4 investigates the prefactor for the weakly anisotropic case. This analysis for the
isotropic case is given in [35, Theorem 1.4.4], while for the strongly anisotropic case is given
in Theorem 5.1.5.

Theorem 4.1.5. Let τC∗− be the time just prior τC∗ . Then the entrance distribution of C∗ is uniform,
i.e.,

lim
β→∞P�

(
ητC∗− = η|τC∗ < τ�

)
=

1

|D̄|
∀ η ∈ D̄. (4.1.18)

Remark 4.1.6. Note that Theorem 4.1.5 concerning the uniform entrance distribution in the gate
cannot be extended to the strongly anisotropic case due to the two possible entrances in the gate, see
Lemma 5.3.8.

Recall (1.3.54) and (1.3.55) for the definition of mixing time and spectral gap, respectively.

Theorem 4.1.7. For any ε ∈ (0, 1),

lim
β→∞ 1β log tmix(ε) = Γ∗ = lim

β→∞−
1

β
log ρ. (4.1.19)

Furthermore, there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0,

c1e
−βΓ∗ 6 ρ 6 c2e−βΓ

∗
. (4.1.20)

Theorem 4.1.7 holds also for the isotropic and strongly anisotropic cases, see Theorems 3.2.8
and 5.1.8, respectively. in the isotropic regime

4.2 useful model–dependent tools

4.2.1 Geometric description of the protocritical droplets

In [35, Theorem 1.4.1] the authors obtain the geometric description of the set D as
D = D̄∪ D̃ . In this section we derive the geometric description of the analogous sets for the
weakly anistropic regime following the argument proposed in [35]. The geometric description
of these sets for the strongly anisotropic regime is given in Proposition 5.2.1.

Proposition 4.2.1. (Geometric description of D̃ and D̄). For the weakly anisotropic regime we
obtain the following geometric description of D̄ and D̃:
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(a) D̄ is the set of configurations having one cluster η anywhere in Λ0 consisting of a (`∗1 −
2)× (`∗2 − 2) rectangle with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides
satisfying

1 6 |Bw(η)|, |Be(η)| 6 `∗2, `∗1 − `
∗
2 + 1 6 |Bn(η)|, |Bs(η)| 6 `∗1, (4.2.1)

and ∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = 2`∗1 + `

∗
2 − 3. (4.2.2)

(b) D̃ is the set of configurations having one cluster η anywhere in Λ0 consisting of a (`∗1 −
3)× (`∗2 − 1) rectangle with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides
satisfying

1 6 |Bw(η)|, |Be(η)| 6 `∗2 + 1, 1 6 |Bn(η)|, |Bs(η)| 6 `∗1 − 1, (4.2.3)

and ∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = `∗1 + 2`

∗
2 − 2. (4.2.4)

Remark 4.2.2. Let η ∈ D̄.
(i) Note that (4.2.2) takes into account the number of occupied unit squares in ∂−CR(η) due to

Remark 3.2.2. We deduce that at most three frame-angles of CR(η) can be occupied, otherwise
|∂−CR(η)| = 2`∗1 + 2`

∗
2 − 4 > 2`

∗
1 + `

∗
2 − 3, which is absurd.

(ii) Since |Bs(η)|+ |Bw(η)| 6 `∗1 + `∗2 − 4+ k− |cne(η)|, we get

|Bn(η)|+ |Be(η)| = 2`∗1 + `
∗
2 − 3− (|Bs(η)|+ |Bw(η)|) + k > `∗1 + 1+ |cne(η)|. (4.2.5)

By symmetry, we generalize the inequality above for any α ∈ {n, s} and α ′ ∈ {w, e}: we get
|Bα(η)|+ |Bα

′
(η)| > `∗1 + 1+ |cαα

′
(η)|.

Proof of Proposition 4.2.1. (a) We denote by D̄geo the geometric set with the properties specified
in point (a) that we introduce to make the argument more clear. The proof will be given in
two steps:

(i) D̄geo ⊆ D̄;
(ii) D̄geo ⊇ D̄.

Proof of (i). To prove (i) we must show that for all η ∈ D̄geo,
(i1) Ĥ(η) = Ĥ(Q̄);
(i2) ∃ ω : Q̄ → η, i.e., ω = (ω1, ...,ωk = η), such that maxi Ĥ(ωi) 6 Ĥ(Q̄) +U1, with

|ωi| = nc for all i = 1, ..., k and ω1 ∈ Q̄ (see (4.1.6) for the value of nc).
Proof of (i1). Any η ∈ D̄geo satisfies n(η) = 0, |C(ηcl)| = (`∗1 − 2)(`

∗
2 − 2) + 2`

∗
1 + `

∗
2 − 3 =

nc, and g1(η) = `∗1 and g2(η) = `∗2 since the configuration is monotone. Thus by (3.2.3) we
deduce that Ĥ is constant on D̄geo. Since Q̄ ⊆ D̄geo, this completes the proof of (i1).

Proof of (i2). Consider ζ ∈ Q̄ and η ∈ D̄geo. Here, without loss of generality, we assume
that the protuberance is in rw(ζ). Then we have

- |Bw(ζ)| = 1;
- |Bn(ζ)| = |Bs(ζ)| = `∗1 − 1;
- |Be(ζ)| = `∗2;
- |cne(ζ)| = |cse(ζ)| = 1.

Using the sliding of a unit square around a frame-angle described in Figure 1.11 (see Definition
3.2.4), we move, one by one, |Bn(ζ)|− |Bn(η)| particles around the frame-angle cnw(ζ). After
that we move |Be(ζ)| − |Be(η)| + |Bs(ζ)| − |Bs(η)| particles around the frame-angle csw(ζ).
Finally, we move |Be(ζ)|− |Be(η)| particles around the frame-angle ces(ζ). The result is the
configuration η ∈ D̄geo. This concludes the proof of (i2).

Proof of (ii). By (i2), we know that all configurations in D̄geo are connected via U1-path to Q̄.
Since Q̄ ⊆ D̄∩ D̄geo, in order to prove (ii) it suffices to show that following U1-paths it is not
possible to exit D̄geo. We call a path clustering if all the configurations in the path consist of a
single cluster and no free particles. Below we will prove that for any η ∈ D̄geo and any η ′

connected to η by a clustering U1-path,
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+U2 0 0 0

Figure 4.2 – Creation and motion of the recess at cost 0.

(A) CR(η ′) = CR(η);
(B) η ′ ⊇ CR−(η).
Proof of (A). Starting from any η ∈ X, it is geometrically impossible to modify CR(η)

without detaching a particle, that contradicts the hypotheses of clustering U1-path.
Proof of (B). Fix η ∈ D̄geo. The proof is done in two steps.

1. First, we consider clustering U1-paths along which we do not move a particle from CR−(η).
Along such paths we only encounter configurations in D̄geo or those obtained from D̄geo
by breaking one of the bars in ∂−CR(η) into two pieces at cost U1 (resp. U2) if the bar is
horizontal (resp. vertical). This holds because there is no particles outside CR(η) that can
lower the cost.

If the broken bar is horizontal, then only moves at zero cost are admissible, so any particle
can be detached. This implies that the unique way to regain U1 and complete the U1-path is
to restore the bar.

If the broken bar is vertical, then the admissible moves are those with cost less or equal
than U1 −U2. Again any particle can be detached, indeed its cost is at least U1. The moves at
cost U2 are not possible, since U1 < 2U2 − 2ε. Thus, the unique way to complete the U1-path
is to restore the broken bar. We have therefore proved that η ′ ⊇ CR−(η).
2. Consider now clustering U1-paths along which we move a particle from a corner of CR−(η).
It is not allowed to move at cost U1 +U2, because it exceeds U1, thus the overshoot U2 must
be regained by letting the particle slide next to a bar that is attached to a side of CR−(η)

(see Figure 4.2). If the particle moves vertically (resp. horizontally), we regain U1 (resp. U2).
Since there are never two bars attached to the same side, we can at most regain U1, thus it is
not possible to move a particle from CR−(η) other than from a corner. From now on, since
U2 < 2U1 − 2ε, only moves at cost at most zero are admissible. There are no protuberances
present anymore, because only the configurations in Q̄ have a protuberance. Thus, no particle
outside CR−(η) can move, except those just detached from CR−(η). These particles can move
back, in which case we return to the same cofiguration η (see Figure 4.2). In fact, all possible
moves at zero cost consist in moving the recess just created in CR−(η) along the same side of
CR−(η), until it reaches the top of the bar, after which it cannot advance anymore at zero cost
(see Figure 4.2). All these moves do not change the energy, except the last one that returns the
particle to its original position and regains U1. This concludes the proof of (B).

From (A), we deduce that CR(η ′) = R(`∗1, `
∗
2). From (A) and (B), we deduce that the

number of particles that are in ∂−CR(η) is equal to the number of particles that are in
∂−CR(η ′), thus (4.2.2), 1 6 |Bw(η ′)|, |Be(η ′)| 6 l∗2 and 1 6 |Bn(η ′)|, |Bs(η ′)| 6 l∗1 hold. In
order to prove that following clustering U1-paths it is not possible to exit D̄geo, we have to
prove the lower bound in (4.2.1) for the lengths |Bn(η ′)| and |Bs(η ′)|. We set

k =
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η ′)|. (4.2.6)

Since |Bw(η ′)|+ |Be(η ′)| 6 2`∗2 − 4+ k, by (4.2.2) we get

|Bn(η ′)|+ |Bs(η ′)| = 2`∗1 + `
∗
2 − 3− (|Bw(η ′)|+ |Be(η ′)|) + k > 2`∗1 − `∗2 + 1. (4.2.7)

Since |Bs(η ′)| 6 `∗1, (4.2.7) implies

|Bn(η ′)| > 2`∗1 − `∗2 + 1− |Bs(η ′)| > `∗1 − `∗2 + 1. (4.2.8)
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By symmetry we can similarly argue for the length |Bs(η ′)|. This implies that following
U1-paths it is not possible to exit D̄geo. The argument goes as follows. Detaching a particle
costs at least U1 +U2 unless the particle is a protuberance, in which case the cost is U1.
The only configurations in D̄geo having a protuberance are those in Q̄. If we detach the
protuberance from a configuration in Q̄, then we obtain a (`∗1 − 1)× `∗2 rectangle with a free
particle. Since in the sequel only moves at zero cost are allowed, it is only possible to move
the free particle. Since in a U1-path the particle number is conserved, the only way to regain
U1 and complete the U1-path is to reattach the free particle to a vertical side of the rectangle,
thus return to Q̄. This implies that for any η ∈ D̄geo and any η ′ connected to η by a U1-path
we must have that η ′ ∈ D̄geo. This concludes the proof.

(b) The proof is analogue to the one in (a).

4.2.2 Useful lemmas for the gates

In this section we give some useful lemmas that help us to characterize the gates.
Below we state Lemma 4.2.3 for the weakly anisotropic model, but it holds also for the

isotropic and strongly anisotropic cases, see Lemmas 3.4.1 and 5.2.3, respectively.

Lemma 4.2.3. Starting from C∗ \ Qfp, if the free particle is attached to a bad site obtaining ηB ∈ CB,
the only transitions that does not exceed the energy Γ∗ are either detaching the protuberance, or a
sequence of 1-translations of a bar or slidings of a bar around a frame-angle. Moreover, we get:

(i) if it is possible to slide a bar around a frame-angle, then the saddles that are crossed are essential;
(ii) if it is not possible to slide a bar around a frame-angle, then the path must come back to the

starting configuration and the saddles that are crossed are unessential.

Proof. The proof is analogue to the one of Lemma 3.4.1.

Lemmas 4.2.5 and 4.2.6 are valid also in the strongly anisotropic case (see Lemmas 5.2.5
and 5.2.6 , respectively), while Lemma 4.2.4 has a corresponding version for the strongly
anisotropic case, see Lemma 5.2.4. We postone the proof of the following lemmas to Appendix
4.A.

Lemma 4.2.4. Starting from ηB ∈ CB, the saddles obtained by a 1-translation of a bar are essential and
in Nα

′
0 ∪Nα1 . Moreover, all the saddles in Nα

′
0 ∪Nα1 can be obtained from this ηB by a 1-translation

of a bar.

Lemma 4.2.5. Starting from a configuration η ∈ C∗, it is not possible to slide a vertical bar around a
frame-angle without exceeding the energy Γ∗.

With the following Lemma we can justify the definition of C∗ given in (4.1.7).

Lemma 4.2.6. Starting from D̃, the dynamics either passes through D̄ or it is not possible that a free
particle is created without exceeding the energy level Γ∗.

4.3 model-dependent strategy

Our goal is to characterize the union of all the minimal gates in the weakly anisotropic
regime. To this end, we follow the model–dependent strategy carried out in Section 3.4 for the
isotropic regime. In order to apply Propositions 3.1.3 and 3.1.5, we need to characterize the
sets K and K̃ (see (3.1.16) and (3.1.17) respectively for the definitions) for our model. This is
done in Proposition 4.3.3. By Propositions 3.1.3 and 3.1.5, we obtain Corollary 4.3.4 that states
that the saddles of the first and second types are respectively unessential. In Proposition 4.3.5
we highlight some of the saddles of type three that are unessential. This analysis is different
when we are dealing with isotropic or weakly anisotropic interactions, and with strongly
anisotropic interactions due to the different mechanisms to enter C∗ (see [35, Proposition
2.3.7], Lemma 4.3.7 and Lemma 5.3.8, respectively). For the isotropic and strongly anisotropic
cases this strategy is presented in Sections 3.4 and 5.3, respectively. Finally, we identify the
essential saddles of the third type in Proposition 4.4.2.
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4.3.1 Main Propositions

In this section we give the main results for our model-dependent strategy. We refer to
Section 4.3.3 for the proof of these propositions.

The next proposition shows that when the dynamics reaches CG it has gone “over the
hill”, while when it reaches CB the energy has to increase again to the level Γ∗ to visit � or �.
An analogue version for the isotropic case is proven in [35, Proposition 2.3.9], while here we
extend that result to the weakly anisotropic case following a similar argument. Note that this
result holds also in the strongly anisotropic case, see Proposition 5.3.1.

Proposition 4.3.1. The following statements hold.

(i) If η ∈ CG, then there exists a path ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.

(ii) If η ∈ CB, then there are no ω : η→ � or ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.

Proposition 4.3.2. C∗ ⊆ G(�,�).

Proposition 4.3.2 holds also in the isotropic and strongly anisotropic cases, see Propositions
3.4.2 and 5.3.2, respectively.

Proposition 4.3.3. The following statements hold.
(i) K = ∅;
(ii) K̃∩ ∂C��(Γ∗ − Ĥ(�)) =

⋃
α

⋃
α ′
⋃
k ′ N

α,α ′
2,k ′ .

For the corresponding result of Proposition 4.3.3 for the isotropic and strongly anisotropic
regimes, see Propositions 3.4.3 and 5.3.3, respectively.

Corollary 4.3.4. The following statements hold.
(i) The saddles of the first type σ ∈ ∂C��(Γ∗)∩ (S(�,�) \ C∗) are unessential;
(ii) The saddles of the second type ζ ∈ ∂C��(Γ∗− Ĥ(�))∩ (S(�,�) \ (C∗ ∪

⋃
α

⋃
α ′
⋃
k ′ N

α,α ′
2,k ′ ))

are unessential.

Proof. Combining Propositions 3.1.3, 3.1.5 and 4.3.3 we get the claim.

Proposition 4.3.5. Any saddle ξ that is neither in C∗, nor in the boundary of the cycle C��(Γ
∗),

nor in ∂C��(Γ
∗ − Ĥ(�)) \ K̃, i.e., ξ ∈ S(�,�) \ (∂C��(Γ∗)∪ (∂C��(Γ∗ − Ĥ(�)) \ K̃)∪ C∗), such that

τξ < τCB is unessential. Therefore it is not in G(�,�).

For the corresponding result of Proposition 4.3.5 for the isotropic and strongly anisotropic
regimes, we refer to Propositions 3.4.5 and 5.3.5, respectively.

4.3.2 Useful Lemmas for the model-dependent strategy

In this section we give some useful lemmas about the entrance in the gate and the
minimality of the sets C∗(i) with i = 3, ..., L∗. We stress that the behavior for the isotropic and
weakly anisotropic regimes is very different from that observed in the strongly anisotropic
regime, indeed we note that the weakly anisotropic model has some characteristics similar
to the isotropic and some similar to the strongly anisotropic model. For the corresponding
results obtained in the isotropic and strongly anisotropic cases, we refer to Sections 3.4.2 and
5.3.2, respectively. The next lemma generalizes [32, Proposition 2.3.8], proved for the isotropic
case, to the weakly anisotropic case following similar arguments. In the strongly anisotropic
case, this result is given in Lemma 5.2.3.

Lemma 4.3.6. The following statements hold.
(i) Starting from C∗ \ Qfp, the only transitions that do not raise the energy are motions of the

free particle in the region where the free particle is at lattice distance > 3 from the protocritical
droplet.

(ii) Starting from Qfp, the only transitions that do not raise the energy are motions of the free
particle in the region where the free particle is at lattice distance > 3 from the protocritical
droplet and motions of the protuberance along the side of the rectangle where it is attached.
When the lattice distance is 2, either the free particle can be attached to the protocritical droplet
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or the protuberance can be detached from the protocritical droplet and attached to the free
particle, to form a rectangle plus a dimer. From the latter configuration the only transition that
does not raise the energy is the reverse move.

(iii) Starting from C∗, the only configurations that can be reached by a path that lowers the energy
and does not decrease the particle number, are those where the free particle is attached to the
protocritical droplet.

Proof. The proof is analogue to the one reported in [32] for the isotropic case: the path we
consider is the same as in the isotropic case, but the energy of the moves is different. Indeed,
the energy decreases by U in the isotropic regime and now by either U1 or U2 depending
whether it is attached to the vertical or horizontal side respectively.

The next lemma investigates how the entrance in C∗ occurs in the weakly anisotropic case.
This result is proven in [35, Proposition 2.3.7] for the isotropic case. We encourage the reader
to inspect the difference between Lemma 4.3.7 and Lemma 5.3.8, where the peculiar entrance
in the gate for the strongly anisotropic case is analyzed.

Lemma 4.3.7. Any ω ∈ (� → �)opt passes first through Q, then possibly through D \ Q, and
finally through C∗.

We postpone the proof of Lemma 4.3.7 in Appendix 4.A. We refer to Section 4.3.4 for the
proof of the remaining lemmas.

Lemma 4.3.8. C∗(i) is a minimal gate for any i = 3, ..., L∗.

Remark 4.3.9. In the strongly anisotropic case, the statement of Lemma 4.3.8 does not hold. A
different result is derived in Lemma 5.3.9.

Lemma 4.3.10. The saddles in C∗(2) are essential.

4.3.3 Proof of Propositions

Proof of Proposition 4.3.1. (i) If η ∈ CG, then its energy is either Γ∗ −U1 −U2 or Γ∗ −U1 (resp.
Γ∗ −U2), depending on whether the attached particle is in a corner or is a protuberance on
a vertical (resp. horizontal) side. In the latter case we can move the particle at no cost and
gain an extra −U2 (resp. −U1) when it has become a corner. After that it is possible to create
a new particle and attach it, which leads to energy Γ∗ −U1 −U2 − (U1 +U2 −∆) < Γ

∗. We
can continue in this way, filling up all the sites in ∂−CR(η). Now we can proceed along the
reference path for the nucleation constructed in [90, Section 3.2] until the path reaches �. We
have exhibited a path ω such that maxσ∈ω Ĥ(σ) < Γ∗.

(ii) If η ∈ CB, then Ĥ(η) = Γ∗ −U1 (resp. Ĥ(η) = Γ∗ −U2) if the protuberance has been
attached to a vertical (resp. horizontal) side. As long as the energy does not exceed Γ∗, it
is impossible to create a new particle before further lowering the energy. But there are no
moves available to lower the energy. As a consequence the unique admissible moves are those
where the last particle that was attached is moving along the side at zero cost or detaching
again, or start a sliding of a bar around a frame-angle (see the explanation in the third case).
In the first case we obtain a configuration that is analogue to η ∈ CB and therefore we can
iterate the argument by taking this configuration as ηB for a finite number of steps, since
the path has to reach �. In the second case, we obtain a configuration that is in C∗, thus the
path has to reach again the energy value Γ∗. In the third case, we justify separately when the
sliding is at cost U1 or at cost U2. If Ĥ(η) = Γ∗ −U1, the only admissible motions along the
border of the droplet that do not exceed Γ∗ are those at cost U1, since the unique possibility
is to move the particle in a frame-angle in such a way that it connects to the protuberance,
otherwise all the other moves have cost at least U1 +U2. Similarly, by symmetry we deduce
that if Ĥ(η) = Γ∗ −U2, then the only admissible move is starting a sliding of a bar around a
frame-angle at cost U2. In both cases the energy returns to Γ∗, which concludes the proof.
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Proof of Proposition 4.3.2. By Lemma 4.3.10 we know that the saddles in C∗(2) are essential
and thus are in G(�,�) due to [85, Theorem 5.1]. Moreover, by Lemma 4.3.8 we know that
the set C∗(i) is a minimal gate for any i = 3, ..., L∗, thus

C∗ = C∗(2)∪
L∗⋃

i=3

C∗(i) ⊆ G(�,�). (4.3.1)

Proof of Proposition 4.3.3. (i) The proof is analogue to the one of Proposition 3.4.3(i).

(ii) The proof is analogue to the one of Proposition 3.4.3(ii), except for the case in which a
sliding of a bar around a frame–angle takes place, for which we use the following argument.
By (3.2.12), Proposition 4.2.1(a) and Lemma 4.2.5 we deduce that the unique possibility to
slide a bar around a frame–angle is that the bar is horizontal and it has length between
`∗1 − `

∗
2 + 1 and `∗2 − 1. Thus, the configurations visited by the path ω during this sliding are

η̄1, ..., η̄m ∈ Nα,α
′

k,k ′ for some α ∈ {n, s}, α ′ ∈ {w, e}, k ′ = `∗1 − `
∗
2 + 1, ..., `

∗
2 − 1 and k = 2, ..., k ′,

while the last configuration η̃ obtained when the last particle of the bar is detached is not
a saddle. Note that η̃ is not in the set B defined in [90, eq. (3.64)], since s(η̃) = s∗ + 1 and
v(η̃) = 2`∗2 − `

∗
1 − 2 < pmin(η̃) − 1 = `∗2 − 1. Thus, by [90, Proposition 11] we know that

η̃ ∈ C��(Γ
∗ − Ĥ(�)). This implies that only the configuration η̄m, that belongs to Nα,α

′
2,k ′ , is in

K̃ ∩ ∂C��(Γ∗ − Ĥ(�)). Taking the union of Nα,α
′

2,k ′ over all α ∈ {n, s} and α ′ ∈ {w, e}, xwe get
the claim.

Proof of Proposition 4.3.5. The proof is analogue to the one of Proposition 3.4.5 after considering
that the saddle ξi, if crossed by the path before reaching CG, is the union of a rectangle
(`∗1 − 1)× `∗2 with an horizontal dimer

4.3.4 Proof of Lemmas

Proof of Lemma 4.3.8. First, we prove that C∗(i) is a gate. By Lemma 4.3.7 we know that
any ω ∈ (� → �)opt enters C∗ through a configuration of the form (η̂, z), with η̂ ∈ D̄ a
protocritical droplet and z the site occupied by the free particle. Note that either z ∈ Bi(η̂) if
d(∂−Λ4, η̂) > i or z ∈ B̄i(η̂) if d(∂−Λ4, η̂) 6 i, thus C∗(i) is a gate.

Now we prove that C∗(i) is a minimal gate. For any η ∈ C∗(i), our strategy consists
in proving that C∗(i) \ {η} is not a gate by defining a path ω ∈ (� → �)opt such that
ω ∩ (C∗(i) \ {η}) = ∅. For the following the reader can visualize the path described using
Figure 1.16 on the right-hand side. We take an arbitrary path starting from � and that enters
C∗(i) in η = (η̂, z). Then the path proceeds by moving the free particle from z to η̂ such that
the distance between the free particle and η̂ at the first step is strictly decreasing, and at the
later steps is not increasing. Finally the free particle is attached in a site x ∈ ∂−CR(η̂) giving
rise to a configuration in CG(η̂). From this configuration, the path proceeds towards � as the
one in Proposition 4.3.1(i). Since the constructed ω ∈ (� → �)opt and ω∩ C∗(i) = {η}, the
proof is concluded.

Proof of Lemma 4.3.10. The proof is analogue to the one of Proposition 3.4.8.

4.4 proof of the main results

4.4.1 Proof of the main Theorem 4.1.2

In this section we give the proof of the main Theorem 4.1.2. Recall the definitions of
standard rectangles given in (4.1.3). Now we recall the definition of the set P given in [90] as

P := {η : n(η) = 1, v(η) = `2(s
∗) − 1, ηcl is connected, monotone,

with circumscribed rectangle in R(`1(s
∗) + 1, `2(s∗))}.

(4.4.1)

In particular, in order to state that the set C∗ is a gate for the transition from � to �, we need
the following
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(a) (b) (c) (d)

Figure 4.3 – Here we depict in (a) the configuration η; in (b) the configuration obtained by η by attaching
the free particle at cost −U1 to Bw(η); in (c) the configuration η ′ obtained from η by attaching the free
particle to cse(η) and then detaching the particle in cnw(CR−(η)) and attach it to Be(η), and in (d) the
configuration η ′′ obtained from η ′ by detaching the particle in cne(CR−(η ′)) attach it to Bn(η ′).

Lemma 4.4.1. If ω ∈ (�→ �)opt passes through the set P, then ω∩ C∗ 6= ∅.

We postpone the proof of Lemma 4.4.1 after the proof of the main Theorem 4.1.2.

Proof of the main Theorem 4.1.2. By [90, Theorem 2], we know that the set P is a gate for the
transition from � to �. By Lemma 4.4.1 we know that every path ω ∈ (� → �)opt that
crosses P has to intersect also C∗. This implies that every optimal path ω from � to � is such
that ω∩ C∗ 6= ∅ and thus C∗ ∩P ≡ C∗ is a gate.

Proof of Lemma 4.4.1. Consider ω ∈ (� → �)opt. If ω ∩ C∗ 6= ∅, we get the claim. Thus, we
can reduce our analysis to the case in which the path ω reaches the set P in a configuration
η ∈ P \ C∗. We set ω = (�,ω1, ...,ωk, η) ◦ ω̄, where ω̄ is a path that connects η to � such that
maxσ∈ω Ĥ(σ) 6 Γ∗. We are interested in the time–reversal of the path ω. Since η ∈ P \ C∗,
we know that it is composed by the union of a cluster CR−(η) = R(`∗1 − 2, `

∗
2 − 2), such that

at least one frame-angle of CR−(η) is empty, a free particle and four bars attached to the four
sides of CR−(η) in such a way that η contains nc + 1 particles (see (4.1.6) for the precise value
of nc). Suppose that CR−(η) contains x empty frame-angles, with 1 6 x 6 4, (see Figure
4.3(a) to visualize the configuration η in the case x = 1). Since Ĥ(η) = Γ∗, the move from η to
ωk must have a non–positive cost and thus the unique admissible moves are:

(i) either moving the free particle at zero cost;
(ii) or removing the free particle;
(iii) or attaching the free particle at cost −U1 (see Figure 4.3(b)) or −U2, or −U1 −U2.

Case (i). In this case the configuration ωk is analogue to η and therefore we can iterate this
argument by taking this configuration as η.

Case (ii). In this case Ĥ(ωk) = Γ∗ −∆. We may assume that the configuration ωk−1 is not
obtained by ωk via adding a free particle, otherwise ωk−1 is analogue to η and thus we can
iterate the argument by taking this configuration as η. By the optimality of the path, again
considering the time-reversal, we deduce that the unique admissible move to obtain ωk−1
from ωk is breaking a horizontal (resp. vertical) bar at cost U1 (resp. U2). Thus, it is possible
that either a sequence of 1-translations of a bar or a sliding of a bar around a frame-angle
takes place. In the first case, we obtain a configuration that is analogue to ωk−1 and thus
we can iterate the argument for a finite number of steps, since the path has to reach �. In
the latter case, by Remark 4.2.2(ii) we deduce that the condition (3.2.12) is not satisfied and
therefore it is not possible to complete any sliding of a bar around a frame-angle. This implies
that the unique admissible moves are the reverse ones, thus we obtain a configuration that is
analogue to ωk−1 and therefore we can iterate the argument f or a finite number of steps,
since the path has to reach �. In this way we can reduce ourselves to consider case (iii).

Case (iii). (a) We consider the case where from η, again considering the time-reversal, we
attach a particle at cost −U1 in ∂+CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) =
Γ∗ −U1 (see Figure 4.3(b)). Thus, it is possible that either a sequence of 1-translations of
a bar or a sliding of a bar around a frame-angle takes place. In the first case, we obtain a
configuration that is analogue to ωk and thus we can iterate the argument for a finite number
of steps, since the path has to reach �. In the latter case, by Remark 4.2.2(ii) we deduce that
the condition (3.2.12) is not satisfied and therefore it is not possible to complete any sliding of
a bar around a frame-angle. This implies that the unique admissible moves are the reverse
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ones, thus we obtain a configuration that is analogue to ωk and therefore we can iterate the
argument for a finite number of steps, since the path has to reach �.

(b) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost −U2 in ∂+CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) = Γ∗ −U2.
We argue in a similar way as above.

(c) We consider the case where from η, again considering the time-reversal, we attach
a particle at cost −U1 −U2 in ∂−CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) =
Γ∗ −U1 −U2. Thus, it is possible either to have a sequence of 1-translations of a bar, or to
have a sliding of a bar around a frame-angle, or to detach a particle at cost U1 +U2. In the
first two possibilities, analogously to what has been discussed previously in (a) and (b), the
unique admissible moves are the reverse ones a nd therefore we conclude as above. In the
latter possibility, we have that either ωk−1 is obtained from ωk by detaching a particle from
a bar at cost U1 +U2 or from a corner of η that is in CR−(η). In the first case, the particle
can be attached to an empty frame-angle of CR−(η) and we can repeat these steps at most
x− 1 times (if x > 2), that implies that there exists k̄ < k− 1 such that ωk̄ is composed by
the union of a free particle and a rectangle R(`∗1 − 2, `

∗
2 − 2) with four bars attached to its

four sides in such a way ωk̄ contains nc + 1 particles, namely, ωk̄ ∈ C∗. In the second case,
we may assume that the detached particle is attached to a bar in ∂−CR(η) giving rise to a
configuration η ′ (see Figure 4.3(c)), otherwise we obtain a configuration that is analogue to η.
Starting from η ′, similarly we obtain η ′′ (see Figure 4.3(d)) if η ′ has a corner in CR−(η ′). If
this is the case, we can proceed in a similar way until we obtain a configuration η ′′′ that has
no corner in CR−(η ′′′). Starting from η ′′′, by the optimality of the path we deduce that the
unique admissible moves are the reverse ones and therefore the path goes back to η. This
concludes the proof.

4.4.2 Proof of the main Theorem 4.1.3

In this section we analyze the geometry of the set G(�,�) (recall (3.1.13)). In particular,
we give the proof of the main Theorem 4.1.3 by giving in Proposition 4.4.2 the geometric
characterization of the essential saddles of the third type that are not in C∗ and that are visited
after crossing the set CB.

Proposition 4.4.2. Any saddle ξ that is neither in C∗, nor in the boundary of the cycle C��(Γ
∗), nor

in ∂C��(Γ
∗ − Ĥ(�)) \ K̃, such that τξ > τCB can be essential or not. For those essential, we obtain

the following characterization:

G(�,�)∩ S(�,�) \ (∂C��(Γ∗)∪ (∂C��(Γ∗ − Ĥ(�)) \ K̃)∪ C∗) =

=
⋃

α

⋃

α ′

⋃

k ′

k ′⋃

k=2

Nα,α
′

k,k ′ ∪
⋃

α ′
Nα

′
0 ∪

⋃

α

Nα1 .
(4.4.2)

Since the proof of Proposition 4.4.2 is similar to that of Proposition 5.4.3, we postpone it to
Appendix 4.B.

Proof of Theorem 4.1.3. By Corollary 4.3.4 we know that the saddles of the first and second
type, defined in Definitions 3.1.2 and 3.1.4, respectively, are unessential. By Propositions
4.3.5 and 4.4.2 we have the characterization of the essential saddles of the third type. We use
Proposition 4.3.2 to get the claim.
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4.5 proof of the sharp asymptotics

Thanks to the model-independent discussion given in Section 3.6.1 together with the
application to our model, and Lemma 3.6.7, also for the weakly anisotropic case formula
(3.6.12) becomes

h =



1 on C��(Γ
∗)∪

J�⋃

j=1

({σj}∪Z�j ),

0 on C��(Γ
∗ − Ĥ(�))∪

J�⋃

j=1

({ζj}∪Z�j ),

ci on X(i), i = 1, ..., Ī,

(4.5.1)

where X(i), i = 1, ..., Ī, are all the wells of the transition except
⋃J�
j=1 Z

�
j and

⋃J�
j=1 Z

�
j .

We give now the proof of Theorem 4.1.4, that represents sharp asymptotics for the weakly
anisotropic case. Recall (1.3.42). The guiding idea behind the sharp estimate of ZCAP(�,�) is
that h∗�,� is exponentially close to 1 on C��(Γ

∗) and exponentially close to 0 on C��(Γ
∗− Ĥ(�)).

By [35, Lemma 3.3.1] we know that h∗�,� is trivial on C��(Γ
∗)∪C��(Γ∗− Ĥ(�)), thus it remains

to understand what h∗�,� looks like on the set

X∗ \ (C��(Γ
∗)∪ C��(Γ∗ − Ĥ(�))) = {η ∈ X∗ : Φ(η,�) = Φ(η,�)}, (4.5.2)

which separates C��(Γ
∗) and C��(Γ

∗ − Ĥ(�)) and contains S(�,�). Before doing so, we first
show that h∗�,� is also trivial on X∗∗ \ (C��(Γ

∗)∪ C��(Γ∗ − Ĥ(�))). This set can be partitioned
into maximally connected components as in (1.3.43). By [35, Lemma 3.3.2] applied to the
weakly anisotropic model we know that h∗�,� is close to a constant on each of these wells. By
Proposition 4.3.1(ii) we know that for each η̂ ∈ D̄ the four bars of bad sites in ∂+CR(η̂) form
a well. These are not the only wells, but [35, Lemma 3.3.2] applied to the weakly anisotropic
model shows that we not need care too much about wells anyway. Thus, only the transitions
in and out of the wells contribute to the Dirichlet form at the order we are after, not those inside
the wells. Since the mechanism to enter the gate C∗ for both isotropic and weakly anisotropic
model is analogue, it easy to check that [35, Proposition 3.3.4] and [35, Lemma 3.4.1] can be
adapted to the weakly anisotropic model. Thus, using them together with Lemma 3.6.7 and
Remark 3.6.8, in order to prove Theorem 4.1.4 it remains to count the cardinality of the set D̄
modulo shifts, which we refer to as N.

Proposition 4.5.1.

N =

4∑
k=1

(
4

k

)(
`∗2 + k− 2
2k− 1

)
.

Proof. We have to count the number of different shapes of the clusters in D̄. We do this
by counting in how many ways `∗2 − 1 particles can be removed from the four bars of a
`∗1 × `∗2 rectangle starting from the corners. We split the counting according to the number
k = 1, 2, 3, 4 of corners from which particles are removed. The number of ways in which we
can choose k corners is

(
4
k

)
. After we have removed the particles at these corners, we need

to remove `∗2 − 1− k more particles from either side of each corner. The number of ways in
which this can be done is

|{(m1, ...,m2k) ∈N2k
0 : m1 + ... +m2k = `∗2 − 1− k}|

= |{(m1, ...,m2k) ∈N2k : m1 + ... +m2k = `∗2 − 1+ k}|

=

(
`∗2 + k− 2
2k− 1

)
.

(4.5.3)

Thus, we get the claim.



160 critical droplets on the square lattice : weak anisotropy

4.5.1 Proof of Theorem 4.1.5

In this section we give the proof of Theorem 4.1.5, that represents the uniform entrance
distribution. Let ∂−C∗ be those configurations in C∗ where the free particle is in ∂−Λ.
Following the same argument used in [35] for the isotropic regime, since D̄ ⊆ C��(Γ

∗) by [35,
Theorem 2.3.10(ii)], it follows from [35, Lemma 3.3.1] and C∗ ⊆ S(�,�) that

min
η ′∈D̄

h∗�,∂−C∗(η
′) > 1−Ce−δβ, (4.5.4)

where

h∗�,∂−C∗(η
′) =

{
0 if η ′ ∈ ∂−C∗,
Pη ′(τ� < τ∂−C∗) otherwise.

(4.5.5)

Moreover, letting ∂−−C∗ be the set of configurations obtained from ∂−C∗ by moving the free
particle from ∂−Λ to ∂−−Λ = ∂−(Λ−), we deduce that

max
η ′∈∂−−C∗

h∗�,∂−C∗(η
′) 6 Ce−δβ. (4.5.6)

From now on, following the argument proposed in [35] we are able to prove the assertion in
(4.1.18).

4.5.2 Proof of Theorem 4.1.7

Thanks to [92, Lemma 3.6], we deduce that for our model the quantity Γ̃(B), with B ( X,
defined in [92, eq. (21)] is such that Γ̃(X \ {�}) = Γ∗. Thus, Theorem 4.1.7 follows by [92,
Proposition 3.24].

4.6 extensions to the simplified model

In this section we provide a discussion aiming at extending the results proved for the
local model to the simplified version of the model in the weakly anisotropic model. To this
end, we follow the strategy proposed in [75] for the isotropic case. In [75, Section 2] the
authors give several large deviation estimates concerning exponential clocks, that hold also
for the weakly anisotropic case. In [75, Section 3] the authors give several large deviation
estimates concerning random walks. All these results are valid for the weakly anisotropic
case without changes except for [75, Proposition 3.13], in which we have to replace U with
U1. The recurrence property for the weakly anisotropic simplified model is obtained with
similar arguments carried out in [75, Section 6]. To this end, we modify the definition of the
set X̄2 given in [75, eq. (5.8)] by replacing U with U1. Therefore also the definition of the set
X2 given in [75, eq. (6.1)] should be modified accordingly. Thus, if we define for the weakly
anisotropic model T1 = e0β, T2 = eU1β and T3 = e∆β, [75, Proposition 6.2] holds also for the
weakly anisotropic case. Concerning the reduction, we follow the strategy proposed in [75,
Section 7]. In particular, we have to study the behavior of the gas and its interaction with the
dynamics in the box Λ. There are two classes of gas particles with different behavior: particles
that have been in Λβ \Λ for a long time (say of order T3), which we call green particles; and
particles that exit from Λ and afterwards return to Λ in a short time (say of order 1), which
we call red particles. The effect of green (resp. red) particles is studied in [75, Section 7.6]
(resp. [75, Section 7.7]) and can be extended to the weakly anisotropic case by modifying the
times T1, T2 and T3, and the sets X2 and X̄2 as above.

appendix

4.a additional material for section 4 .2

Proof of Lemma 4.2.4. Note that Ĥ(ηB) = Γ∗ −U2 (resp. Ĥ(ηB) = Γ∗ −U1) if the free particle
has been attached to an horizontal (resp. vertical) bar. In the first case, in order to avoid
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exceeding the energy value Γ∗ it is possible to translate only the vertical bars. These saddles
are in Nα1 . In the latter case, it is possible to translate both vertical and horizontal bars. If the
translated bar is horizontal, the saddles that are crossed are in Nα

′
0 . If the translated bar is

vertical, the configurations obtained do not reach the level Γ∗, thus they are not saddles. To
conclude, all the configurations in Nα

′
0 ∪Nα1 can be obtained from a configuration ηB via a

1-translation of a bar.
It remains to prove that the saddles in Nα

′
0 ∪Nα1 are essential. This part of the proof is

analogue to the corresponding one done for the isotropic case in Lemma 3.5.2.

Proof of Lemma 4.2.5. Since Ĥ(η) = Γ∗, it is possible to activate a sliding of a vertical bar
around a frame–angle only after lowering the energy. Thus, the only admissible move is to
attach the free particle to an horizontal bar, since we want to slide a vertical bar. When this
happens, the energy reaches the value Γ∗ −U2. Now the only possibility to slide the bar is to
activate a 1-translation of the vertical bar at cost U2, thus the subsequent moves must be at
zero cost, until the last one that costs −U2. This implies that the last configuration has energy
Γ∗ −U2. If a 1-translation of a horizontal bar is activated, the energy increases by U1 and
thus it reaches the value Γ∗ −U2 +U1 > Γ∗, which is in contradiction with the optimality of
the path.

Proof of Lemma 4.2.6. By Proposition 4.2.1(a) we know the geometric description of D̃. Starting
from a configuration η ∈ D̃, since Ĥ(η) = Γ∗ −∆+U1 −U2, by the optimality of the path,
it is possible to create a free particle only after lowering the energy. This is possible only if
η ∈ Q̃, where it is possible to detach the protuberance and reattach it to a vertical side, thus
we obtain a configuration in Q̄. This concludes the proof.

Proof of Lemma 4.3.7. The proof is analogue to that of Lemma 5.3.8 done for the strongly
anisotropic interactions. The difference is only in case (iii), indeed, considering the time-
reversal of the path ω from η ∈ C∗ to �, if a sliding of a bar around a frame–angle takes place
at cost U1, the configuration ωk̄ that we obtain does not belong to the set B defined in [90, eq.
(3.64)], because s(ωk̄) = s

∗ + 1 and v(ωk̄) = 2`
∗
2 − `

∗
1 − 2 < pmin(ωk̄) − 1 = `

∗
2 − 1. Thus, by

[90, Proposition 11] we know that the time–reversal of the path ω visits a configuration σ̄ ∈ C∗.
We can therefore iterate the argument by taking this configuration as η and the iteration
involves a finite number of steps since ω has to reach �. This concludes the proof.

4.b additional material for section 4 .4

Proof of Proposition 4.4.2. Consider a configuration η ∈ C∗(2) such that η = (η̂, x), with η̂ ∈ D̄

and d(η̂, x) = 2. By Proposition 4.2.1(a) we deduce that that η̂ consists of an (`∗1 − 2)× (`∗2 − 2)
rectangle with four bars Bα, with α ∈ {n, s,w, e}, attached to its four sides satisfying

1 6 |Bw(η)|, |Be(η)| 6 `∗2, `∗1 − `
∗
2 + 1 6 |Bn(η)|, |Bs(η)| 6 `∗1, (4.B.1)

and ∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = 2`∗1 + `

∗
2 − 3. (4.B.2)

Assume that the free particle is attached in a bad site obtaining a configuration η ′ ∈ CB. Due
to [85, Theorem 5.1] and Proposition 4.3.5, our strategy consists in characterizing the essential
saddles that could be visited after attaching the free particle in a bad site. By Remark 4.2.2(i)
we consider separately the following cases:

A. three frame-angles of CR(η̂) are occupied;
B. two frame-angles of CR(η̂) are occupied;
C. one frame-angle of CR(η̂) is occupied;
D. no frame-angle of CR(η̂) is occupied.
Note that from case A one can go to the other cases and viceversa, but since the path has

to reach � this back and forth must end in a finite number of steps.
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(`∗1− 2)× (`∗2− 2) (`∗1− 2)× (`∗2− 2)

Figure 4.4 – Case A: on the left-hand side we represent a possible starting configuration η ∈ C∗ and on
the right-hand side the configuration η̃ obtained from η after the sliding of the bar Bn(η) around the
frame-angle cnw(η ′).

(`∗1− 2)× (`∗2− 2)

(a)

(`∗1− 2)× (`∗2− 2)

(b)

(`∗1− 2)× (`∗2− 2)

(c)

Figure 4.5 – Case B(i): in (a) we depict a possible starting configuration η ∈ C∗ and in (b) the configuration
η̃ obtained from η after the sliding of the bar Bn(η) around the frame-angle cnw(η ′). Case B(ii): in (c)
we depict a possible starting configuration η ∈ C∗.

Case A. Without loss of generality we consider η as in Figure 4.4 on the left-hand side. If we
are considering the case in which a 1-translation of a bar is possible and takes place, then
by Lemma 4.2.4 the saddles that are crossed are essential and in Nα

′
0 ∪Nα1 . If a sequence

of 1-translations of a bar takes place in such a way that the last configuration has at most
two occupied frame-angles, then the saddles that could be visited starting from such a
configuration will be analyzed in cases B, C and D. Thus, we are left to analyze the case in
which there is the activation of a sliding of a bar around a frame-angle. In the following
we quickly exclude the cases in which the particle is attached to Bn(η), Bs(η) or Be(η) and
then explain the more interesting case in which it is attached to Bw(η) giving rise to Figure
4.4 on the right-hand side. If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by
Lemma 4.2.5 we know that it is not possible to complete the sliding of the bar Bw(η) (resp.
Be(η)) around the frame-angle cwn(η ′) (resp. ces(η ′)). If the free particle is attached to the
bar Be(η) or Bw(η), then it is not possible to slide the bar Bs(η) around the frame-angle
cse(η ′) or csw(η ′) respectively, since (3.2.12) is not satisfied. In the last two cases by Lemma
4.2.3(ii), we know that the saddles that are visited are unessential. This implies that the unique
possibility to activate and complete a sliding of a bar around a frame-angle is attaching the
free particle to the bar Bw(η), then sliding the bar Bn(η) around the frame-angle cnw(η ′)
when |Bn(η)| < |Bw(η)|, otherwise (3.2.12) is not satisifed. The saddles that are possibly
visited by the sliding path are in Nα,α

′
k,k ′ (see Definition (4.1.13)) except the last one, thus by

Lemma 4.2.3(i) they are essential. The last configuration visited during this sliding of a bar is
depicted in Figure 4.4 on the right-hand side. This configuration has energy Γ∗ −U1 +U2
and therefore it is not a saddle and is in C��(Γ

∗ − Ĥ(�)). By Propositions 3.1.5 and 4.3.3(ii)-(b),
the latter implies that the saddles that could be visited are either unessential or in Nα,α

′
2,k ′ and

therefore the case A is concluded.

Case B. If we are considering the case in which a 1-translation of a bar is possible and takes
place, then by Lemma 4.2.4 the saddles that are crossed are essential and in Nα

′
0 ∪Nα1 . We

consider separately the following subcases:
(i) The two occupied frame-angles are cαα

′
(η) and cα

′′α ′′′(η), with all the indices α,α ′, α ′′

and α ′′′ different between each other (see Figure 4.5(a));
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(`∗1− 2)× (`∗2− 2) (`∗1− 2)× (`∗2− 2)

Figure 4.6 – Case B(iii): on the left-hand side we depict a possible starting configuration η ∈ C∗ and on
the right-hand side the configuration η̃ obtained from η after the sliding of the bar Bn(η) around the
frame-angle cnw(η ′).

(ii) The two occupied frame-angles are cαα
′
(η) and cα

′α ′′(η), with α ′ ∈ {n, s} and α 6= α ′′
(see Figure 4.5(c));

(iii) The two occupied frame-angles are cαα
′
(η) and cα

′α ′′(η), with α ′ ∈ {e,w} and
α 6= α ′′ (see Figure 4.6 on the left-hand side).

Case B(i). Without loss of generality we consider η as in Figure 4.5(a). We can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η)
(resp. Bs(η)), by Lemma 4.2.5 we know that it is not possible to complete the sliding of the bar
Bw(η) (resp. Be(η)) around the frame-angle cwn(η ′) (resp. ces(η ′)). By Lemma 4.2.3(ii), this
implies that the saddles that could be crossed are unessential. Note that if the free particle is
attached to the bar Bn(η) (resp. Bs(η)), it is not possible to slide the bar Be(η) (resp. Bw(η))
by definition. If the free particle is attached to the bar Bw(η) (resp. Be(η)) it is possible
to slide the bar Bn(η) (resp. Bs(η)) around the frame-angle cnw(η ′) (resp. cse(η ′)) when
|Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Be(η)|), otherwise (3.2.12) is not satisifed. The saddles
that are possibly visited by the sliding path are in Nα,α

′
k,k ′ except the last one, thus by Lemma

3.4.1(i) they are essential. The last configuration visited during this sliding of a bar is depicted
in Figure 4.5(b). This configuration has energy Γ∗ −U1 +U2 and therefore it is not a saddle
and is in C��(Γ

∗ − Ĥ(�)). By Propositions 3.1.5 and 4.3.3(ii)-(b), the latter implies that the
saddles that could be visited are either unessential or in Nα,α

′
2,k ′ and therefore the case B(i) is

concluded.
Case B(ii). Without loss of generality we consider η as in Figure 4.5(c). If one bar among

Bw(η) and Be(η) is full, it is possible to translate Bs(η) in order to have three occupied
frame-angles. This situation has already been analyzed in case A. Thus, we can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) or
Bs(η), by Lemma 4.2.5 we know that it is not possible to complete the sliding of a vertical bar
around any frame-angle. If the free particle is attached to the bar Bw(η) or Be(η), since the
bar Bn(η) is full, we deduce that (3.2.12) is not satisfied. This implies that it is not possible
to slide the bar Bn(η) around the frame-angle cnw(η ′) and cne(η ′). In the last two cases by
Lemma 3.4.1(ii) we know that the saddles that are visited are unessential. This concludes case
B(ii).

Case B(iii). Without loss of generality we consider η as in Figure 4.6 on the left-hand side.
If the bar Bn(η) (resp. Bs(η)) is full, it is possible to translate Be(η) to occupy the frame-angle
cne(η ′) (resp. cse(η ′)). This situation has already been analyzed in case A. Otherwise, it
is possible to translate a bar with one occupied frame-angle in order to have two occupied
frame-angles in such a way that they have no bar in common. This situation has already
been analyzed in case B(i). Thus, we can reduce our proof to the case in which there is
no translation of a bar and therefore there is the activation of a sliding of a bar around a
frame-angle. If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 4.2.5 we
know that it is not possible to complete the sliding of the bar Bw(η) around the frame-angle
cwn(η ′) (resp. cws(η ′)). If the free particle is attached to the bar Be(η), we deduce that
(3.2.11) is not satisfied. In the last two cases by Lemma 4.2.3(ii) we know that the saddles
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(`∗1− 2)× (`∗2− 2)

(a)

(`∗1− 2)× (`∗2− 2)

(b)

(`∗1− 2)× (`∗2− 2)

(c)

Figure 4.7 – Case C: in (a) we depict a possible starting configuration η ∈ C∗ and in (b) the configuration
η̃ obtained from η after the sliding of the bar Bn(η) around the frame-angle cnw(η ′). Case D: in (c) we
depict a possible starting configuration η ∈ C∗.

that are visited are unessential. If the free particle is attached to the bar Bw(η), it is possible
to slide the bar Bn(η) (resp. Bs(η)) around the frame-angle cnw(η ′) (resp. csw(η ′)) when
|Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Bw(η)|), otherwise (3.2.12) is not satisifed. The saddles that
are possibly visited by the sliding path are in Nα,α

′
k,k ′ except the last one, thus by Lemma 3.4.1(i)

they are essential. The last configuration visited during the sliding of the bar Bn(η) around the
frame-angle cnw(η ′) is depicted in Figure 4.6 on the right-hand side. This configuration has
energy Γ∗ −U1 +U2 and therefore it is not a saddle and is in C��(Γ

∗ − Ĥ(�)). By Propositions
3.1.5 and and 4.3.3(ii)-(b), the latter implies that the saddles that could be visited are either
unessential or in Nα,α

′
2,k ′ and therefore the case B(iii) is concluded.

Case C. Without loss of generality we consider η as in Figure 4.7(a). If we are considering
the case in which a 1-translation of a bar is possible and takes place, then by Lemma 4.2.4
the saddles that are crossed are essential and in Nα

′
0 ∪Nα1 . Starting from this configuration it

is possible to obtain two occupied frame-angles: this situation has been already analyzed in
Case B. Thus, we can reduce our proof to the case in which there is no translation of a bar and
therefore there is the activation of a sliding of a bar around a frame-angle. If the free particle
is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 4.2.5 we know that it is not possible to
complete the sliding of the bar Bw(η) around the frame-angle cwn(η ′) (resp. cws(η ′)). If the
free particle is attached to the bar Be(η), we deduce that (3.2.11) is not satisfied. In the last
two cases by Lemma 4.2.3(ii) we know that the saddles that are visited are unessential. If
the free particle is attached to the bar Bw(η), it is possible to slide the bar Bn(η) around the
frame-angle cnw(η ′) when |Bn(η)| < |Bw(η)|, otherwise (3.2.12) is not satisifed. The saddles
that are possibly visited by the sliding path are in Nα,α

′
k,k ′ except the last one, thus by Lemma

4.2.3(i) they are essential. The last configuration visited during this sliding of a bar is depicted
in Figure 4.7(b). This configuration has energy Γ∗ −U1 +U2 and therefore it is not a saddle
and is in C��(Γ

∗ − Ĥ(�)). By Propositions 3.1.5 and 4.3.3(ii)-(b), the latter implies that the
saddles that could be visited are either unessential or in Nα,α

′
2,k ′ and therefore the case C is

concluded.

Case D. Without loss of generality we consider η as in Figure 4.7(c). If we are considering
the case in which a 1-translation of a bar is possible and takes place, then by Lemma 4.2.4
the saddles that are crossed are essential and in Nα

′
0 ∪Nα1 . Starting from this configuration it

is possible to obtain one or two occupied frame-angles: these situations have been already
analyzed in Cases C and B, respectively. Thus, we can reduce our proof to the case in which
there is no translation of a bar and therefore there is the activation of a sliding of a bar around
a frame-angle. If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 4.2.5 we
know that it is not possible to complete the sliding of the bar Bw(η) around the frame-angle
cwn(η ′) (resp. cws(η ′)). If the free particle is attached to the bar Bw(η) or Be(η), we deduce
that (3.2.11) is not satisfied. In the last two cases by Lemma 4.2.3(ii) we know that the saddles
that are visited are unessential. This concludes case D.



5C R I T I C A L D R O P L E T S O N T H E S Q UA R E L AT T I C E : S T R O N G
A N I S O T R O P Y

This chapter is devoted to the geometrical characterization of the union of all the minimal
gates for the local model evolving under Kawasaki dynamics with strongly anisotropic
interactions, namely, U1 > 2U2 in (1.3.11). To this end, we apply the model–independent
strategy carried out in Chapter 3 to the strongly anisotropic local model. For this regime
we are able to fully identify the geometry of the union of all the minimal gates. We observe
very different behaviour compared to the weakly anisotropic regime (U1 < 2U2). Finally,
we provide sharp asymptotics concerning the mean transition time, the mixing time and the
spectral gap.

The outline of the chapter is as follows. In Section 5.1 we state our main results. In
particular, we state the results concerning the gates in Section 5.1.1 and the sharp asymptotics
in Section 5.1.2. In Section 5.2, we give some model-dependent results that are useful for the
model–dependent strategy concerning the minimal gates carried out in Section 5.3. In Section
5.4 we give the proof of the main result regarding the identification of the union of all the
minimal gates (see Theorem 5.1.3). In Section 5.5 we give the proof of the theorems about the
sharp asymptotics.

5.1 main results : the gates for our model

In this section we state our main results. In particular, in Section 5.1.1 we obtain the
geometrical characterization of the union of all minimal gates and in Section 5.1.2 we provide
the sharp asymptotics for the mean transition time and for the mixing time and spectral gap.
To this end, we need some specific definitions for the strongly anisotropic case provided in
Section 5.1.1. For the corresponding results obtained in the isotropic and weakly anisotropic
cases, we refer respetively to Sections 3.2.2 and 4.1.1 for the results concerning the gates
and union of minimal gates, and to Sections 3.2.3 and 4.1.2 for the results concerning the
asymptotic transition time, mixing time and spectral gap.

5.1.1 Gate for strongly anisotropic interactions

In this section we assume U1 > 2U2 in (1.3.11), i.e., we consider strongly anisotropic
interactions between nearest neighboring sites. Recall the definition of ε given in (3.2.8). We
will consider 0 < ε� U2, where� means sufficiently smaller; for instance ε 6 U2

100 is enough.
In order to state our main results for the gates in the strongly anisotropic regime we need the
following definitions. Recall (1.3.22) for the definition of the critical length `∗2 and we set the
critical value of s as

s∗ := 3`∗2 − 1. (5.1.1)

Recall that we have defined Q̄ as the set of configurations having one cluster anywhere in
Λ0 consisting of a (2`∗2 − 3)× `∗2 rectangle with a single protuberance attached to one of the
shortest sides. Similarly, the set Q̃ contains the configurations having one cluster anywhere in
Λ0 consisting of a (2`∗2 − 3)× `∗2 rectangle with a single protuberance attached to one of the
longest sides. The critical value of the energy is

Γ∗ = U1`∗2 + 2U2`
∗
2 +U1 −U2 − 2ε(`

∗
2)
2 + 3ε`∗2 − 2ε. (5.1.2)

and the volume of the clusters in Q̄ is

nc = `
∗
2(2`

∗
2 − 3) + 1. (5.1.3)

Finally, recall (1.3.31) for the definition of the sets D̄ and D̃. We encourage the reader to
consult Proposition 5.2.1, where we give the geometrical description of the sets D̄ and D̃.

165
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l∗2

2l∗2 − 2

l∗2

2l∗2 − 2

Figure 5.1 – Critical configurations in C∗ in the strongly anisotropic case. Moreover, if we remove the
free particle we obtain on the left a configuration in Q̄ and on the right a configuration in D̄ \ Q̄.

Roughly speaking, one can think of D̄ as the set of configurations consisting of a rectangular
cluster with four bars attached to its four sides, whose lengths satisfy precise conditions.
Finally, we set

C∗ = D̄fp. (5.1.4)

The reason why only the set D̄ is relevant for the set C∗ will be clarified in Lemma 5.2.6. Note
that

Ĥ(C∗) = Ĥ(D̄fp) = Ĥ(D̄) +∆ = Ĥ(Q) +∆

= U1`
∗
2 + 2U2`

∗
2 −U1 − 3U2 − ε`

∗
2(2`

∗
2 − 3) + 2∆

= U1`
∗
2 + 2U2`

∗
2 +U1 −U2 − 2ε(`

∗
2)
2 + 3ε`∗2 − 2ε

= Γ∗.

(5.1.5)

See Figure 5.1 for an example of configurations in C∗. Note that Ĥ(Q̄) < H(Q̃), see Remark
4.1.1.

The first main result of Section 5.1.1 is the following.

Theorem 5.1.1. (Gate for strongly anisotropic interactions). The set C∗ is a gate for the transition
from � to �.

We refer to Section 5.4.1 for the proof of the Theorem 5.1.1.

Remark 5.1.2. In Theorem 5.1.1 we sharpen the previous result obtained in [16, Theorem 2.4]. Indeed,
in [16] the authors proved that P1 ∪P2 is a gate (see (5.1.6) and (5.4.1) for the definitions of P ′0 = P1
and P2 respectively), while here we refine that result by proving that C∗ is a gate. In particular, we
emphasize that C∗ ⊂ P1 and therefore there is an important improvement in the statement since our
gate is much smaller than the one found in [16].

In order to give the result regarding the geometric characterization of G(�,�), we need
some definitions. For any i = 0, 1 we define P ′i ⊆ S(�,�) that consists of configurations with
a single cluster and no free particle, a fixed number of vacancies, that is not monotone with
circumscribed rectangles obtained from the one of the configurations in D̄ via increasing by
one the horizontal or vertical length. More precisely,

P ′i := {η : n(η) = 0, v(η) = 2`∗2 + i`
∗
2 − i(i+ 1) − 2, g

′
1(η) = i, g

′
2(η) = 1− i, ηcl is

connected, with circumscribed rectangle in R(2`∗2 − i− 1, `
∗
2 + i)}, i = 0, 1.

(5.1.6)

See Figure 1.19 for an example of configurations in P ′0 (on the left-hand side) and in P ′1 (on
the right-hand side).

The set G(�,�) contains all the configurations that are in the sets defined in (5.1.6) with
the following further conditions. First, we define the subsets Aα

′
0 (resp. Aα1 ) of the saddles in

P ′0 (resp. P ′1) that contains only one occupied unit square in either a vertical (resp. horizontal)
row or in one of its two adjacent frame-angles. More precisely,

Aα
′
0 := {η ∈ P ′0 : |rα

′
(η)∪ cα ′ᾱ(η)∪ cα ′α̃(η)| = 1}, (5.1.7)



5.1 main results : the gates for our model 167

for any α ′ ∈ {w, e} and ᾱ, α̃ ∈ {n, s} such that ᾱ 6= α̃, and

Aα1 := {η ∈ P ′1 : |rα(η)∪ cαα ′′(η)∪ cαα ′′′(η)| = 1}, (5.1.8)

for any α ∈ {n, s} and α ′′, α ′′′ ∈ {n, s} such that α ′ 6= α ′′′. Note that in Figure 1.19 the
configuration on the right-hand side is in An1 .

Next, we define the subsets Aα,α
′

k of the saddles in P ′0 that are obtained from η ∈ P ′0
during the sliding of the bar Bα

′
(η) around the frame-angle cα

′α(η). More precisely,

Aα,α
′

k := {η ∈ P ′0 : |rα(η)| = k− 1, |rα
′
(η)| = `∗2 − k, |c

α ′α(η)| = 1,

(rα(η)∪ cα ′α(η))∩ ηcl = rα,1cl ∪̇rα,2cl with d(rα,1cl , r
α,2
cl ) = 2},

(5.1.9)

where α ∈ {n, s}, α ′ ∈ {w, e}, rα,1cl , rα,2cl are two disjoint connected components in rα(η) ∪
cα
′α(η) and k = 2, ..., `∗2. Note that the conditions in (5.1.9) guarantee that these configurations

are obtained during a sliding of a bar around a frame-angle, that is identified by the indeces
α and α ′. Note that in this case there is not the index k ′ as in (3.2.20) and (4.1.13) for the
isotropic and weakly anisotropic cases, respectively, because in the strongly anisotropic case
less sliding on the border of the droplet are allowed. Indeed, in this case `∗2 − 1 denotes
the length of the bar that we are sliding and thus we can consider k ′ = `∗2 − 1 fixed. The
index k counts the number of particles that are in rα(η) ∪ cα ′α(η) during the sliding and
can be less or equal than `∗2. Referring to Figure 1.13, configuration (7) (resp. (11)) is an
example of configuration that belongs to An,e2 (resp. An,e`∗2 ). Note that the set Aα,α

′
k contains

k− 1 configurations for any α, α ′ and k, indeed these configurations are crossed during the
sliding of the bar Bα

′
(η) around the frame-angle cα

′α(η), with η the configuration obtained
by R(2`∗2 − 1, `

∗
2 − 1) adding a protuberance to one of its longest sides (in Figure 1.13 η

corresponds to the configuration (3) and α = n, α ′ = e). Thus, we set

Aα,α
′

k = {ξα,α
′

1 , ..., ξα,α
′

k−1 }. (5.1.10)

Now we are able to give the second main result of Section 5.1.1.

Theorem 5.1.3. (Union of minimal gates for strongly anisotropic interactions). We obtain the
following description for G(�,�):

G(�,�) = C∗ ∪
⋃

α

⋃

α ′

`∗2⋃

k=2

Aα,α
′

k ∪
⋃

α ′
Aα

′
0 ∪

⋃

α

Aα1 . (5.1.11)

We refer to Section 5.4.2 for the proof of Theorem 5.1.3.

Remark 5.1.4. With the strategy carried out in [75] and the argument explained in Section 4.6 the
results about the nucleation time and gates derived for the strongly anisotropic local model can be
directly extended to the simplified model.

5.1.2 Sharp asymptotics for strongly anisotropic interactions

In this section we investigate the prefactor for the strongly anisotropic case, which is the
subject of Theorem 5.1.5. This analysis for the isotropic case is given in [35, Theorem 1.4.4],
while for the weakly anisotropic case is given in Theorem 4.1.4. For a model–independent
discussion concerning the prefactor we refer to Section 3.6.1. Moreover, in Theorem 5.1.8 we
provide sharp asymptotics of mixing time and spectral gap. For the proof of Theorems 5.1.5
and 5.1.8 we refer to Section 5.5. Equation (5.1.14) below corrects a minor mistake in [17, eq.
(4.28)], where the multiplicative factor |Λ̄∗, orie| in the asymptotic behaviour of the prefactor
is missing.

Theorem 5.1.5. There exists a constant K = K(Λ, `∗2) such that

E�(τ�) = KeΓ
∗β [1+ o(1)], β→∞, (5.1.12)
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with

1

Θ2
6 K 6 1

Θ1
, (5.1.13)

where Θ1 and Θ2 are defined in (5.5.17) and (5.5.27), respectively. Moreover, as Λ→ Z2,

K(Λ, `∗2)→
|Λ̄∗, orie|
4πN

log |Λ|

|Λ|
, (5.1.14)

where

N =

4∑
k=1

(
4

k

)(
`∗2 + k− 2
2k− 1

)
(5.1.15)

is the cardinality of D̄ = D̄(Λ, `∗2) modulo shifts.

Remark 5.1.6. For the strongly anisotropic case we obtain a sharp estimate of K in (5.1.13). Nev-
ertheless, the asymptotic behavior of the the prefactor K as Λ→ Z2 (see (5.1.14)) is the same as the
isotropic and weakly anisotropic regimes, see [35, eq. (1.4.9)] and (4.1.16), respectively.

Remark 5.1.7. Note that [35, Theorem 1.4.3(iii)] and Theorem 4.1.5 concerning the uniform entrance
distribution in the gate does not hold for the strongly anisotropic case due to the two possible entrance
mechanisms in C∗ (see Lemma 5.3.8).

Recall (1.3.54) and (1.3.55) for the definition of mixing time and spectral gap, respectively.

Theorem 5.1.8. For any ε ∈ (0, 1)

lim
β→∞ 1β log tmix(ε) = Γ∗ = lim

β→∞−
1

β
log ρ. (5.1.16)

Furthermore, there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓ∗ 6 ρ 6 c2e−βΓ

∗
. (5.1.17)

Theorem 5.1.8 holds also for the isotropic and weakly anisotropic cases, see Theorems 3.2.8
and 4.1.7, respectively.

5.2 useful model–dependent tools

5.2.1 Geometric description of the protocritical droplets

In this Section we derive the geometric description of the sets D̄ and D̃ for the strongly
anistropic models following the argument proposed in [35].

Proposition 5.2.1. (Geometric description of D̃ and D̄). For the strongly anisotropic regime we
obtain the following geometric description of D̃ and D̄:

(a) D̃ = {η ∈ X : n(η) = 0, v(η) = 2`∗2 − 4, ηcl is connected and monotone,
1 6 |rα(η)∪ cαα ′(η)| 6 2, |rα(η)| 6 1, with α ∈ {n, s}, α ′ ∈ {w, e}, and
circumscribed rectangle in R(2`∗2 − 3, `

∗
2 + 1)},

(b) D̄ is the set of configurations having one cluster η anywhere in Λ0 consisting of a (2`∗2 −
4)× (`∗2 − 2) rectangle with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides
satisfying

1 6 |Bw(η)|, |Be(η)| 6 `∗2, `∗2 − 1 6 |Bn(η)|, |Bs(η)| 6 2`∗2 − 2, (5.2.1)

and ∑
α

|Bα(η)|−
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η)| = 5`∗2 − 7. (5.2.2)
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Remark 5.2.2. Let η ∈ D̄.
(i) Note that (5.2.2) takes into account the number of occupied unit squares in ∂−CR(η) due to

Remark 3.2.2. We deduce that at most three frame-angles of CR(η) can be occupied, otherwise
|∂−CR(η)| = 6`∗2 − 8 > 5`

∗
2 − 7, which is absurd.

(ii) Since |Bs(η)|+ |Be(η)| 6 3`∗2 − 6+ k− |cnw(η)|, we get

|Bn(η)|+ |Bw(η)| = 5`∗2 − 7− (|Bs(η)|+ |Be(η)|) + k > 2`∗2 − 1+ |cnw(η)|. (5.2.3)

By symmetry, we generalize the inequality above for any α ∈ {n, s} and α ′ ∈ {w, e}: we get
|Bα(η)|+ |Bα

′
(η)| > 2l∗2 − 1+ |cαα

′
(η)|.

Proof of Proposition 5.2.1. (a) We introduce only in the proof of this result the following geo-
metrical definition to make the argument more clear

D̃geo := {η ∈ X : n(η) = 0, v(η) = 2`∗2 − 4, ηcl is connected and monotone,

1 6 |rα(η)∪ cαα ′(η)| 6 2, |rα(η)| 6 1, with α ∈ {n, s}, α ′ ∈ {w, e},

and circumscribed rectangle in R(2`∗2 − 3, `
∗
2 + 1)}.

(5.2.4)

The proof will be given in two steps:
(i) D̃geo ⊆ D̃;
(ii) D̃geo ⊇ D̃.

Proof of (i). To prove (i) we must show that for all η ∈ D̃geo,
(i1) Ĥ(η) = Ĥ(Q̃);
(i2) ∃ ω : Q̃ → η, i.e., ω = (ω1, ...,ωk = η) such that maxi Ĥ(ωi) 6 Ĥ(Q̃) +U1, with

|ωi| = nc for all i = 1, ..., k (see (5.1.3) for the value of nc).
Proof of (i1). Any η ∈ D̃geo satisfies n(η) = 0, |C(η)| = (2`∗2 − 3)(`

∗
2 + 1) − v(η) = nc, and

g1(η) = 2`
∗
2 − 3 and g2(η) = `∗2 + 1 since the configuration is monotone. Thus, by (3.2.3) we

deduce that Ĥ is constant on D̃geo. Since Q̃ ⊆ D̃geo, this completes the proof of (i1).
Proof of (i2). Consider ζ ∈ Q̃ and η ∈ D̃geo. If η ∈ Q̃∩ D̃geo, i.e., |rα(η)∪ cαα ′(η)| = 1 for

some α ∈ {n, s} and α ′ ∈ {w, e}, then η can be obtained from ζ by moving the protuberance at
zero cost along the side which is attached to if the protuberance in ζ is on the same side as
the protuberance in η, otherwise η can be obtained detaching the protuberance at cost U2 and
reattaching it to the other side at cost −U2. If η ∈ D̃geo \ Q̃, i.e., |rα(η) ∪ cαα ′(η)| = 2 with
|rα(η)| = 1 for some α ∈ {n, s} and α ′ ∈ {w, e}, again we have two cases. If the protuberance in
ζ is contained in rα(η) (is in the same side of the rectangle), we deduce that η can be obtained
from ζ by moving the protuberance at zero cost until it arrives at distance one from cαα

′
(ζ)

and then translate the bar Bα
′
(ζ) towards the frame-angle cα

′α(ζ) at cost U2. Otherwise, if
the protuberance in ζ is contained in rα

′′
(η) with α ′′ ∈ {n, s} \ {α} (is in the opposite side

of the rectangle), the path is constructed as before, provided that first the protuberance is
detached at cost U2 and reattached to the other side at cost −U2. This concludes the proof of
(i2).

Proof of (ii). By (i2), we know that all the configurations in D̃geo are connected via U1-path to
Q̃. Since Q̃ ⊆ D̃∩ D̃geo, in order to prove (ii) it suffices to show that followingU1-paths it is not
possible to exit D̃geo. Let η ′ ∈ D̃geo, thus by (i1) and (3.2.3) we get Ĥ(η ′) = Γ∗−∆+U1−U2.
Note that no particle can arrive because we impose that the number of particles is constant
to nc thus, if η ′ ∈ D̃geo \ Q̃, the unique possibility is to translate the bar Bα

′
(η ′), with

α ′ ∈ {w, e}, at cost U2 giving rise to a configuration that is in D̃geo ∩ Q̃. Then it is possible
either to move the protuberance at zero cost, or to detach the protuberance at cost U2 and
then necessarily reattach it at cost −U2, giving rise to a configuration that is still in D̃geo ∩ Q̃.
Note that no other moves are allowed, since it is not possible to complete the sliding of
a vertical bar around a frame-angle because the 1-translation of a horizontal bar costs U1.
Indeed, the latter implies that the energy reaches the value Γ∗ −∆+ 2U1 −U2 > Γ

∗, thus the
path described is not a U1-path. If η ′ ∈ D̃geo ∩ Q̃, with paths similar to the ones described
above (possibly in different order), we can conclude case (a).

(b) We denote by D̄geo the geometric set with the properties specified in point (b) that we
introduce to make the argument more clear. The proof will be given in two steps:
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(i) D̄geo ⊆ D̄;
(ii) D̄geo ⊇ D̄.

Proof of (i). To prove (i) we must show that for all η ∈ D̄geo,
(i1) Ĥ(η) = Ĥ(Q̄);
(i2) ∃ ω : Q̄ → η, i.e., ω = (ω1, ...,ωk = η) such that maxi Ĥ(ωi) 6 Ĥ(Q̄) +U1, with

|ωi| = nc for all i = 1, ..., k and ω1 ∈ Q̄.
Proof of (i1). Any η ∈ D̄geo satisfies n(η) = 0, |C(η)| = (2`∗2 − 2)(`

∗
2 − 2) + 5`

∗
2 − 7 = nc,

and g1(η) = 2`∗2 − 2 and g2(η) = `∗2 since the configuration is monotone. Thus, by (3.2.3) we
deduce that Ĥ is constant on D̄geo. Since Q̄ ⊆ D̄geo, this completes the proof of (i1).

Proof of (i2). Consider ζ ∈ Q̄ and η ∈ D̄geo. Here, without loss of generality, we assume
that the protuberance is in rw(ζ). Then we have

- |Bw(ζ)| = 1;
- |Bn(ζ)| = |Bs(ζ)| = 2`∗2 − 3;
- |Be(ζ)| = `∗2;
- |cne(ζ)| = |cse(ζ)| = 1.

Using the sliding of a unit square around a frame-angle described in Figure 1.11 (see Definition
3.2.4), we move, one by one, |Bn(ζ)|− |Bn(η)| particles around the frame-angle cnw(ζ). After
that we move |Be(ζ)| − |Be(η)| + |Bs(ζ)| − |Bs(η)| particles around the frame-angle csw(ζ).
Finally, we move |Be(ζ)|− |Be(η)| particles around the frame-angle ces(ζ). The result is the
configuration η ∈ D̄geo. This concludes the proof of (i2).

Proof of (ii). By (i2), we know that all configurations in D̄geo are connected via U1-path to Q̄.
Since Q̄ ⊆ D̄∩ D̄geo, in order to prove (ii) it suffices to show that following U1-paths it is not
possible to exit D̄geo. We call a path clustering if all the configurations in the path consist of a
single cluster and no free particles. Below we will prove that for any η ∈ D̄geo and any η ′

connected to η by a clustering U1-path, the following conditions hold:
(A) CR(η ′) = CR(η);
(B) η ′ ⊇ CR−(η).
Proof of (A). Starting from any η ∈ X, it is geometrically impossible to modify CR(η)

without detaching a particle, that contradicts the hypotheses of clustering U1-path.
Proof of (B). Fix η ∈ D̄geo. The proof is done in two steps.

1. First, we consider clustering U1-paths along which we do not move a particle from CR−(η).
Along such paths we only encounter configurations in D̄geo or configurations obtained from
D̄geo by breaking one of the bars in ∂−CR(η) into two pieces at cost U1 (resp. U2) if the bar
is horizontal (resp. vertical). This holds because there is no particle outside CR(η) that can
lower the cost.

If the broken bar is horizontal, then only moves at zero cost are admissible, so any particle
can be detached. This implies that the unique way to regain U1 and complete the U1-path is
to restore the bar.

If the broken bar is vertical, then the admissible moves in a U1-path are those with cost
less or equal than U1 −U2. Again any particle can not be detached, indeed its cost is at least
U1. The moves at cost U2 are possible, thus it is possible to break another vertical bar. From
now on, depending on U1− 2U2 > 0, it is possible to break other vertical bars. More precisely,
let U1 = nU2 + δ, with n > 2 and 0 < δ < U2 fixed, thus it is possible to break other n− 2

vertical bars in addition to the previous two. When this sequence of moves is completed, the
unique way to complete the U1-path is to restore all the broken bars. Thus, we have proved
that η ′ ⊇ CR−(η).
2. Consider now a general clustering U1-path along which we move a particle from a corner of
CR−(η). It is not allowed to move at cost U1 +U2, because it exceeds U1, thus the overshoot
U2 must be regained by letting the particle slide next to a bar that is attached to a side of
CR−(η) (see Figure 4.2). If the particle moves vertically (resp. horizontally), we regain U1
(resp. U2). Since there are never two bars attached to the same side, we can at most regain
U1, thus it is not possible to move a particle from CR−(η) other than from a corner. If the
corner particle has been moved vertically (increasing the energy by U2), the same moves
(if possible) are allowed on another corner. Depending on the difference U1 − 2U2 > 0, it
is possible to break some vertical bars. More precisely, let U1 = nU2 + δ, with n > 2 and
0 < δ < U2 fixed, it is possible to break n− 2 vertical bars. From now on, only moves at cost



5.2 useful model–dependent tools 171

at most zero are admissible. There are no protuberances present anymore, because only the
configurations in Q̄ have a protuberance. Thus no particle outside CR−(η) can move, except
those just detached from CR−(η). These particles can move back, in which case we return to
the same configuration η (see Figure 4.2). In fact, all possible moves at zero cost consist in
moving the recess just created in CR−(η) along the same side of CR−(η), until it reaches the
top of the bar, after which it cannot advance anymore at zero cost (see Figure 4.2). All these
moves do not change the energy, except the last one that returns the particle to its original
position and regains U1. This concludes the proof of (B).

From (A), we deduce that CR(η ′) = R(2`∗2 − 2, `
∗
2). From (A) and (B), we deduce that

the number of particles that are in ∂−CR(η) is equal to the number of particles that are in
∂−CR(η ′), thus (5.2.2), 1 6 |Bw(η ′)|, |Be(η ′)| 6 `∗2 and 1 6 |Bn(η ′)|, |Bs(η ′)| 6 2`∗2 − 2 hold.
In order to prove that following clustering U1-paths it is not possible to exit D̄geo, we have to
prove the lower bound in (5.2.1) for the lengths |Bn(η ′)| and |Bs(η ′)|. We set

k =
∑

αα ′∈{nw,ne,sw,se}
|cαα

′
(η ′)|. (5.2.5)

Since |Bw(η ′)|+ |Be(η ′)| 6 2`∗2 − 4+ k, by (5.2.2) we get

|Bn(η ′)|+ |Bs(η ′)| = 5`∗2 − 7− (|Bw(η ′)|+ |Be(η ′)|) + k > 3`∗2 − 3. (5.2.6)

Since |Bs(η ′)| 6 2`∗2 − 2, (5.2.6) implies

|Bn(η ′)| > 3`∗2 − 3− |Bs(η ′)| > `∗2 − 1. (5.2.7)

By symmetry we can similarly argue for the length |Bs(η ′)|. This implies that following
U1-paths it is not possible to exit D̄geo. The argument goes as follows. Detaching a particle
costs at least U1 +U2 unless the particle is a protuberance, in which case the cost is U1.
The only configurations in D̄geo having a protuberance are those in Q̄. If we detach the
protuberance from a configuration in Q̄, then we obtain a (2`∗2 − 3)× `∗2 rectangle with a free
particle. Since in the sequel only moves at zero cost are allowed, it is only possible to move
the free particle. Since in a U1-path the particle number is conserved, the only way to regain
U1 and complete the U1-path is to reattach the free particle to a vertical side of the rectangle,
thus return to Q̄. This implies that for any η ∈ D̄geo and any η ′ connected to η by a U1-path
we must have that η ′ ∈ D̄geo. This concludes the proof.

5.2.2 Useful lemmas for the gates

In this Section we give some useful Lemmas that help us to characterize the gates. below
we state Lemma 5.2.3 for the strongly anisotropic case, but it holds also for the isotropic and
weakly anisotropic cases, see Lemmas 3.4.1 and 4.2.3. The proof is the same of Lemma 4.2.3
for the weakly anisotropic case.

Lemma 5.2.3. Starting from C∗ \ Qfp, if the free particle is attached to a bad site obtaining ηB ∈ CB,
the only transitions that does not exceed the energy Γ∗ are either detaching the protuberance, or a
sequence of 1-translations of a bar or slidings of a bar around a frame-angle. Moreover, we get:

(i) if it is possible to slide a bar around a frame-angle, then the saddles that are crossed are essential;
(ii) if it is not possible to slide a bar around a frame-angle, then the path must come back to the

starting configuration and the saddles that are crossed are unessential.

Lemmas 5.2.5 and 5.2.6 below are valid also in the weakly anisotropic case, see Lemmas
4.2.5 and 4.2.6, respectively, while Lemma 5.2.4 has a corresponding version for the weakly
anisotropic case, see Lemma 4.2.4.

Lemma 5.2.4. Starting from ηB ∈ CB, the saddles obtained by a 1-translation of a bar are essential and
in Aα

′
0 ∪Aα1 . Moreover, all the saddles in Aα

′
0 ∪Aα1 can be obtained from this ηB by a 1-translation

of a bar.

Proof. Note that Ĥ(ηB) = Γ∗ − U2 (resp. Ĥ(ηB) = Γ∗ − U1) if the free particle has been
attached to an horizontal (resp. vertical) bar. In the first case, in order to avoid exceeding the
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energy value Γ∗ it is possible to translate only the vertical bars. These saddles are in Aα1 . In
the latter case, it is possible to translate both vertical and horizontal bars. If the translated
bar is horizontal, the saddles that are crossed are in Aα

′
0 . If the translated bar is vertical, the

configurations obtained do not reach the level Γ∗, thus they are not saddles. To conclude, all
the configurations in Aα

′
0 ∪Aα1 can be obtained from a configuration ηB via a 1-translation of

a bar.
It remains to prove that the saddles in Aα

′
0 ∪Aα1 are essential. This part of the proof is

analogue to the corresponding one done for the isotropic case in Lemma 3.5.2.

Lemma 5.2.5. Starting from a configuration η ∈ C∗, it is not possible to slide a vertical bar around a
frame-angle without exceeding the energy Γ∗.

With the following lemma we can justify the definition of C∗ given in (5.1.4).

Lemma 5.2.6. Starting from D̃, the dynamics either passes through D̄ or it is not possible that a free
particle is created without exceeding the energy level Γ∗.

The proof of Lemmas 5.2.5 and 5.2.6 are analogue to those of Lemmas 4.2.5 and 4.2.6,
respectively, in the weakly anisotropic case.

5.3 model–dependent strategy

Our goal is to characterize the union of all the minimal gates in the strongly anisotropic
regime. To this end, we follow the model–dependent strategy carried out in Section 3.4 for the
isotropic regime. In order to apply Propositions 3.1.3 and 3.1.5, we need to characterize the
sets K and K̃ (see (3.1.16) and (3.1.17) respectively for the definitions) for our model. This is
done in Proposition 5.3.3. By Propositions 3.1.3 and 3.1.5, we obtain Corollary 5.3.4 that states
that the saddles of the first and second types are respectively unessential. In Proposition 5.3.5
we highlight some of the saddles of type three that are unessential. This analysis is different
when we are dealing with isotropic or weakly anisotropic interactions, and with strongly
anisotropic interactions due to the different mechanisms to enter C∗ (see [35, Proposition
2.3.7], Lemma 4.3.7 and Lemma 5.3.8, respectively). For the isotropic and weakly anisotropic
cases this strategy is presented in Sections 3.4 and 4.3, respectively. Finally, we identify the
essential saddles of the third type in Proposition 5.4.3.

5.3.1 Main Propositions

In this section, we give the main results for our model–dependent strategy. The next
proposition shows that when the dynamics reaches CG it has gone “over the hill", while when
it reaches CB the energy has to increase again to the level Γ∗ to visit � or �. An analogue
version for the isotropic case is proven in [35, Proposition 2.3.9] and for the weakly anisotropic
case is proven in Proposition 4.3.1.

Proposition 5.3.1. The following statements hold.
(i) If η ∈ CG, then there exists a path ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.
(ii) If η ∈ CB, then there are no ω : η→ � or ω : η→ � such that maxζ∈ω Ĥ(ζ) < Γ∗.

Proof. The proof is analogue to that of Proposition 4.3.1 for the weakly anisotropic case by
using the reference path for the nucleation constructed in [16, Section 3.2].

The next Proposition holds also in the isotropic and weakly anisotropic cases, see Propositions
3.4.2 and 4.3.2, respectively. We refer to Section 5.3.3 for the proof of Propositions 5.3.2, 5.3.3
and 5.3.5.

Proposition 5.3.2. C∗ ⊆ G(�,�).

Proposition 5.3.3. The following statements hold.
(i) K = ∅;
(ii) K̃∩ ∂C��(Γ∗ − Ĥ(�)) = ∅.
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For the corresponding result of Proposition 5.3.3 for isotropic and weakly anisotropic cases,
we refer to Propositions 3.4.3 and 4.3.3, respectively.

Corollary 5.3.4. The following statements hold.
(i) The saddles of the first type σ ∈ ∂C��(Γ∗)∩ (S(�,�) \ C∗) are unessential;
(ii) The saddles of the second type ζ ∈ ∂C��(Γ∗ − Ĥ(�))∩ (S(�,�) \ C∗) are unessential.

Proof. Combining Propositions 3.1.3, 3.1.5 and 5.3.3 we get the claim.

For the corresponding result of Corollary 5.3.4 for the isotropic and weakly anisotropic cases,
we refer to Corollary 3.4.4 and Corollary 4.3.4, respectively.

Proposition 5.3.5. Any saddle ξ that is neither in C∗, nor in
⋃
k,α,α ′ A

α,α ′
k , nor in the boundary

of the cycles C��(Γ
∗) or C��(Γ

∗ − Ĥ(�)), i.e., ξ ∈ S(�,�) \ (∂C��(Γ∗) ∪ ∂C��(Γ∗ − Ĥ(�)) ∪ C∗ ∪⋃
k,α,α ′ A

α,α ′
k ), such that τξ < τCB is unessential. Therefore it is not in G(�,�).

For the corresponding result of Proposition 5.3.5 for the isotropic and weakly anisotropic
cases, we refer to Propositions 3.4.5 and 4.3.5, respectively.

5.3.2 Useful Lemmas for the model-dependent strategy

In this Section we give some useful lemmas about the entrance in the gate and some
properties of the sets C∗(i) with i = 3, ..., L∗. We stress that the behavior for the isotropic and
weakly anisotropic cases is very different from that observed for the strongly anisotropic case,
indeed we note that the weakly anisotropic model has some characteristics similar to the
isotropic and some similar to the strongly anisotropic model. The next lemma generalizes [35,
Proposition 2.3.8], proved for the isotropic case, following similar arguments. The proof of
Lemma 5.3.6 is analogue to that of Lemma 4.3.6 for the weakly anisotropic case.

Lemma 5.3.6. (i) Starting from C∗ \ Qfp, the only transitions that do not raise the energy are
motions of the free particle in the region where the free particle is at lattice distance > 3 from
the protocritical droplet.

(ii) Starting from Qfp, the only transitions that do not raise the energy are motions of the free
particle in the region where the free particle is at lattice distance > 3 from the protocritical
droplet and motions of the protuberance along the side of the rectangle where it is attached.
When the lattice distance is 2, either the free particle can be attached to the protocritical droplet
or the protuberance can be detached from the protocritical droplet and attached to the free
particle, to form a rectangle plus a dimer. From the latter configuration the only transition that
does not raise the energy is the reverse move.

(iii) Starting from C∗, the only configurations that can be reached by a path that lowers the energy
and does not decrease the particle number, are those where the free particle is attached to the
protocritical droplet.

Lemma 5.3.7. The saddles in C∗(2) are essential.

The proof of Lemma 5.3.7 is analogue to that of Lemmas 3.4.8 and 4.3.10 for the isotropic
and weakly anisotropic cases, respectively. The next lemma investigates how the entrance
in C∗ occurs. We encourage the reader to inspect the difference between Lemma 5.3.8, [35,
Proposition 2.3.7] and Lemma 4.3.7, indeed the entrance in the gate in the strongly anisotropic
case is peculiar and different with respect the isotropic and weakly anisotropic ones. Recall
(5.1.9) and (5.1.10).

Lemma 5.3.8. Any ω ∈ (�→ �)opt enters C∗ in one of the following ways:
(i) ω passes first through Q̄, then possibly through D̄ \ Q̄, and finally reaches C∗;
(ii) ω passes through the configuration R(2`∗2 − 1, `

∗
2 − 1), then a free particle is created and

moved towards the rectangle until it is attached to an horizontal side α ∈ {n, s}. Then for some
α ′ ∈ {w, e} the path ω passes through the sets Aα,α

′
k for all k = 2, ..., `∗2, and finally reaches

C∗(2).
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Since in Lemma 5.3.8 we have proved that there are two possible ways to reach C∗(2), where
the possibility (i) is analogue to the isotropic and weakly anisotropic cases, to find the minimal
gates in the strongly anisotropic regime for any i = 3, ..., L∗ we need to consider C∗(i) union
some particular saddles belonging to the paths described in (ii).

Lemma 5.3.9. For any i = 3, ..., L∗ and k = 2, ..., `∗2 the set C∗(i)∪⋃α,α ′ {ξα,α
′

j(k) } is a minimal gate

for all 1 6 j(k) 6 k− 1, where {ξα,α
′

j(k) } are the elements in Aα,α
′

k defined in (5.1.9) and (5.1.10).

Remark 5.3.10. We encourage the reader to inspect the difference between the statement of Lemma
5.3.9 and Lemmas 3.4.6 and 4.3.8: the sets C∗(i), with i = 3, ..., L∗, are minimal gates for the isotropic
and weakly anisotropic regimes, while they are not minimal gates for the strongly anisotropic regime.

Lemma 5.3.11. For the strongly anisotropic interactions, we have

C∗ ∪
`∗2⋃

k=2

⋃

α,α ′
Aα,α

′
k ⊆ G(�,�). (5.3.1)

5.3.3 Proof of Propositions

Proof of Proposition 5.3.2. The statement follows by Lemma 5.3.11.

Proof of Proposition 5.3.3. (i) The proof is analogue to the one of Proposition 3.4.3(i).
(ii) Let η̄ ∈ K̃ ∩ ∂C��(Γ∗ − Ĥ(�)). By the definition of the set K̃ we know that there exist

η ∈ C∗ and ω = ω1 ◦ω2 from η to � with the properties described in (3.1.17). We know
that η is composed by the union of a protocritical droplet η̂ ∈ D and a free particle. Since
ω1 ∩ C∗ = {η}, we note that η ∈ C∗(2), otherwise the free particle has to cross at least
B̄2(η̂) and B̄3(η̂), the latter in the configuration η ′ ∈ C∗, with η ′ 6= η, which contradicts the
conditions in (3.1.17). Therefore, starting from η, by the optimality of the path we deduce
that the unique admissible move is to attach the free particle to the cluster. If η̄ is obtained
from η by attaching the free particle in a good site giving rise to a configuration in CG(η̂), by
Proposition 5.3.1(i) we know that ω1 ∩ C��(Γ∗ − Ĥ(�)) 6= ∅, that contradicts (3.1.17), thus it
is not possible to find such ω1 and ω2, therefore η̄ /∈ K̃, which is in contradiction with the
assumption.

Assume now that η̄ is obtained from η by attaching the free particle in a bad site giving rise
to a configuration in CB(η̂). If η ∈ Qfp, then by Lemma 5.3.6(ii) the unique admissible move
is the reverse one, thus we may assume that η ∈ C∗ \ Qfp and that the path does not go back
to η, otherwise we can iterate this argument for a finite number of steps since the path has to
reach �. Starting from η, by Lemma 5.2.3 we know that η̄ is obtained either via a sequence
of 1-translations of a bar or via a sliding of a bar around a frame-angle. If a sequence of
1-translations takes place, by the optimality of the path we deduce that the unique possibility
is either detaching the protuberance or sliding a bar around a frame-angle. In the first case the
configuration that is obtained is in C∗ and thus η̄ /∈ K̃, which contradicts the assumption. By
(3.2.12), Proposition 5.2.1(b) (in particular conditions in (5.2.1)) and Lemma 5.2.5 we deduce
that the only possibility to slide a bar around a frame-angle is that the bar is horizontal and it
has length exactly `∗2 − 1. Thus, the configurations visited by the path ω during this sliding
are η̄1, ..., η̄m ∈ Aα,α

′
k for some α ∈ {n, s}, α ′ ∈ {w, e} and k = 2, ..., `∗2 − 1, while the last

configuration η̃ obtained when the last particle of the bar is detached is composed by the
union of R(2`∗2 − 1, `

∗
2 − 1) and a free particle (see the time–reversal of the path described in

Figure 1.13, in particular η̄m is the configuration (7) and η̃ is the configuration (2)). Therefore
η̃ belongs to the set B defined in [16, eq. (3.29)] since s(η̃) = s∗ − 1 and p2(η̃) = `∗2 − 1. Thus,
by [16, Theorem 3.7] we deduce that η̃ /∈ C��(Γ

∗ − Ĥ(�)) and therefore η̄m /∈ ∂C��(Γ∗ − Ĥ(�)),
that implies K̃∩ ∂C��(Γ∗ − Ĥ(�)) = ∅.

Proof of Proposition 5.3.5. The proof is analogue to that of Lemmas 3.4.5 and 4.3.5 in the
isotropic and weakly anisotropic cases, respectively, but now we use Lemmas 5.3.6(ii) and
5.3.8 and, η as the union of a cluster η̂ ∈ Q and a free particle at distance 2 from the cluster.
Moreover, ξi is the union of a rectangle (2`∗2 − 3)× `∗2 with an horizontal dimer.
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5.3.4 Proof of Lemmas

Proof of Lemma 5.3.8. By Theorem 5.1.1 we know that any ω ∈ (� → �)opt passes through
C∗. We denote by η this configuration, that is composed by the union of a protocritical droplet
η̂ ∈ D̄ and a free particle in the site x. Note that there exists i = 2, ..., L∗ such that either
x ∈ Bi(η̂) if d(∂−Λ4, η̂) > i or x ∈ B̄i(η̂) if d(∂−Λ4, η̂) 6 i. We set ω = (�,ω1, ...,ωk, η) ◦ ω̄,
where ω̄ is a path that connects η to � such that maxσ∈ω Ĥ(σ) 6 Γ∗. In order to analyze the
entrance in C∗ we consider the time–reversal of the path ω. Since Ĥ(η) = Γ∗, the move from η

to ωk must have a non–positive cost and thus the unique admissible moves are:
(i) either moving the free particle at zero cost;
(ii) or removing a free particle at cost −∆;
(iii) or attaching the free particle at cost −U1 (resp. −U2) or −U1 −U2.

Case (i). In this case we obtain that the configuration ωk is still in C∗, thus it is analogue to η
and therefore we can iterate the argument by taking this configuration as η.
Case (ii). In this case Ĥ(ωk) = Γ∗ −∆ and ωk ∈ D̄. If ωk ∈ Q̄ we get the claim, thus in the
sequel we assume that ωk ∈ D̄ \ Q̄. Since the path ω starts from �, there exist k1 < k2 < k
such that |ωk1 | = |ωk|− 1 and there is a free particle in ωk2 , i.e., n(ωk2) = 1. Starting from
ωk and considering the time–reversal of the path ω, in order to obtain a free particle in
ωk2 we note that the minimal cost for detaching a particle is U1 +U2 giving rise to the
energy value greater or equal than Γ∗ −∆+U1 +U2 > Γ

∗, which is in contradiction with the
optimality of the path. Thus, the unique possibility is detaching the protuberance from a
configuration in Q̄ at cost U1. This implies that ωk is obtained via a U1–path starting from a
configuration in Q̄.
Case (iii). First, we consider the case where from η, again considering the time–reversal, we
attach a particle at cost −U1 giving rise to the configuration ωk, i.e., Ĥ(ωk) = Γ∗ −U1. Since
the path ω starts from �, there exists k1 < k such that |ωk1 | = |ωk|− 1, that implies that
there exists a configuration ωk̄ with a free particle during the transition from ωk1 to ωk (see
Figure 1.13 where ωk is configuration (12) and ωk̄ is configuration (2)). If ωk̄ ∈ C∗, we can
iterate the argument by taking this configuration as η. Otherwise, if ωk̄ /∈ C∗, we deduce
that (ωk̄)cl /∈ D̄. Starting from ωk̄, since the activation of a sequence of 1-translations of
bars of configurations in D̄ gives rise to configurations that are in D̄, the unique possibility
in order not to exceed Γ∗ is that ωk is obtained from ωk̄ via a sliding of a bar, say Bα

′
(ωk),

around a frame-angle, say cα
′α(ωk). In order to do that, by (3.2.12) and Proposition 5.2.1(b),

we deduce that the unique possibility to match the two conditions in (5.2.1) is that during
the transition the path ω crosses S(�,�) through the sets Aα,α

′
k for any k = 2, ..., `∗2, with

α ∈ {n, s}, α ′ ∈ {w, e}. In Figure 1.13 we represent this transition with α = n, α ′ = e

and the configurations (11)–(3) for the sliding. At the end of this sliding we obtain the
configuration R(2`∗2 − 1, `

∗
2 − 1) union a free particle. This configuration must be obtained

from R(2`∗2 − 1, `
∗
2 − 1) via adding a free particle, otherwise the path ω is not optimal.

Second, we consider the case where from η we attach a particle at cost −U2 giving rise
to the configuration ωk, i.e., Ĥ(ωk) = Γ∗ −U2. We argue in a similar way as above, but
the difference is that in this case the sliding of a bar around a frame-angle at cost U2 is not
allowed by Lemma 5.2.5.

Third, we consider the case where from η we attach a particle at cost −U1 −U2 giving rise
to the configuration ωk, i.e., Ĥ(ωk) = Γ∗ −U1 −U2. Since ηcl ∈ D̄, the unique possibility is
that ωk ∈ CG(η̂), therefore by Lemma 5.3.1(i) we get ωk ∈ C��(Γ

∗ − Ĥ(�)). Since by Theorem
5.1.1 we know that C∗ is a gate for the transition, we deduce that there exists k1 < k such that
ωk1 ∈ C∗. Thus, we can iterate the argument by taking this configuration as η.

Proof of Lemma 5.3.9. Let i ∈ {3, ..., L∗}, k ∈ {1, ..., n} and 1 6 j(k) 6 k− 1.
First, we prove that C∗(i) ∪⋃α,α ′ {ξα,α

′
j(k) } is a gate. By Theorem 5.1.1 we know that any

ω ∈ (� → �)opt crosses C∗. If the path ω enters C∗ without crossing the set P ′0, then by
Lemma 5.3.8(i) we know that ω has to pass through C∗(i). If the path ω enters C∗ after
crossing the set P ′0, then by Lemma 5.3.8(ii) we know that ω∩⋃α,α ′ {ξα,α

′
j(k) } 6= ∅.

Now we prove that C∗(i) ∪⋃α,α ′ {ξα,α
′

j(k) } is a minimal gate by showing that for any

η ∈ C∗(i) ∪⋃α,α ′ {ξα,α
′

j(k) } the set (C∗(i) ∪⋃α,α ′ {ξα,α
′

j(k) }) \ {η} is not a gate: there exists ω ∈
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(�→ �)opt such that ω∩ ((C∗(i)∪⋃α,α ′ {ξα,α
′

j(k) }) \ {η}) = ∅. We consider separately the cases

η ∈ ⋃α,α ′ {ξα,α
′

j(k) } and η ∈ C∗(i).

Case 1. Let η ∈ ⋃α,α ′ {ξα,α
′

j(k) }, thus η = ξᾱ,ᾱ
′

j(k) for some ᾱ ∈ {n, s} and ᾱ ′ ∈ {w, e}. We can
define ω as the reference path defined in [16, Section 3.2] that crosses the configurations
ξᾱ,ᾱ

′
1 ,...,ξᾱ,ᾱ

′
k−1 , then it enters C∗(2) and finally the free particle is attached in a good site

without passing through C∗(i) with i = 3, ..., L∗ (see Figure 1.13). From this configuration, the
path proceeds towards � as the one in Proposition 5.3.1(i). The constructed ω is optimal and
ω∩⋃α,α ′ {ξα,α

′
j(k) } = {ξᾱ,ᾱ

′
j(k) }, thus this case is concluded.

Case 2. Let η ∈ C∗(i). We take an arbitrary path starting from � and that enters C∗(i) in
η = (η̂, z), where η̂ ∈ D̄ is the protocritical droplet and z is the position of the free particle at
distance i from the cluster. Then the path proceeds by moving the free particle from z to η̂
such that the distance between the free particle and η̂ at the first step is strictly decreasing,
and at the later steps is not increasing. Finally the free particle is attached in a good site
x ∈ ∂−CR(η̂) giving rise to a configuration in CG(η̂). From this configuration, the path
proceeds towards � as the one in Proposition 5.3.1(i). Since the constructed ω ∈ (�→ �)opt
and ω∩ C∗(i) = {η}, the proof is completed.

Proof of Lemma 5.3.11. By Lemma 5.3.7 we know that the saddles in C∗(2) are essential and
thus are in the set G(�,�) due to [85, Theorem 5.1]. Furthermore, by Lemma 5.3.9 we know
that C∗(i) ∪⋃α,α ′ {ξα,α

′
j(k) } is a minimal gate for any i = 3, ..., L∗ and j(k) = 1, ..., k− 1, with

k = 2, ..., `∗2. Therefore we get

G(�,�) ⊇ C∗(2)∪
L∗⋃

i=3

`∗2⋃

k=2

⋃

j(k),α,α ′
(C∗(i)∪ {ξα,α ′j(k) }) = C∗ ∪

`∗2⋃

k=2

⋃

α,α ′
Aα,α

′
k . (5.3.2)

5.4 proof of the main results : strongly anisotropic case

In this Section we give the proof of the main Theorems 5.1.1 and 5.1.3, see Sections 5.4.1
and 5.4.2, respectively.

5.4.1 Proof of the main Theorem 5.1.1

In this section we give the proof of the main Theorem 5.1.1. Now we recall the definition
of the set P2 given in [16] as

P2 := {η : n(η) = 1, v(η) = `∗2 − 1, ηcl is connected, monotone,

with circumscribed rectangle in R(2`∗2 − 2, `
∗
2)}.

(5.4.1)

In particular, in order to state that the set C∗ is a gate for the transition from � to �, we need
the following

Lemma 5.4.1. If ω ∈ (�→ �)opt is such that ω∩P2, then ω∩ C∗ 6= ∅.

We postpone the proof of Lemma 5.4.1 after the proof of the main Theorem 5.1.1.

Proposition 5.4.2. If ω ∈ (�→ �)opt is such that ω∩P ′0 6= ∅, then ω∩ C∗ 6= ∅.

We postpone the proof of Proposition 5.4.2 after the proof of Lemma 5.4.1.

Proof of the main Theorem 5.1.1. By [16, Theorem 2.4] taking P1 = P ′0, we know that the set
P ′0 ∪ P2 is a gate for the transition from � to �. By Lemma 5.4.1 we know that every
ω ∈ (�→ �)opt that crosses P2 then crosses C∗, thus we deduce that the set P ′0 ∪C∗ is a gate.
Furthermore, by Proposition 5.4.2 we obtain that every path ω ∈ (� → �)opt that crosses
P ′0 then crosses also C∗. This implies that every optimal path ω from � to � is such that
ω∩ C∗ 6= ∅, thus C∗sa is a gate.
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Proof of Lemma 5.4.1. Consider ω ∈ (� → �)opt. If ω ∩ C∗ 6= ∅, we get the claim. Thus, we
can reduce our analysis to the case in which the path ω reaches the set P2 in a configuration
η ∈ P2 \ C

∗. We set ω = (�,ω1, ...,ωk, η) ◦ ω̄, where ω̄ is a path that connects η to � such
that maxσ∈ω Ĥ(σ) 6 Γ∗. We are interested in the time–reversal of the path. Since η ∈ P2 \ C

∗,
we know that it is composed by the union of a cluster CR−(η) = R(2`∗2 − 4, `

∗
2 − 2), such that

at least one frame-angle of CR−(η) is empty, a free particle and four bars attached to the four
sides of CR−(η) in such a way that η contains nc + 1 particles (see (5.1.3) for the precise value
of nc). For the entire proof we refer to Figure 4.3, where for the strongly anisotropic regime
the horizontal and vertical lengths have to be changed to 2`∗2 − 2 and l∗2, respectively. Suppose
that CR−(η) contains x empty frame-angles, with 1 6 x 6 4. See Figure 4.3(a) to visualize
the configuration η in the case x = 1. Since Ĥ(η) = Γ∗, the move from η to ωk must have a
non-positive cost and thus the unique admissible moves are:

(i) either moving the free particle at zero cost;
(ii) or removing the free particle;
(iii) or attaching the free particle at cost −U1 (see Figure 4.3(b)) or −U2, or −U1 −U2.

Case (i). In this case the configuration ωk is analogue to η and therefore we can iterate this
argument by taking this configuration as η.
Case (ii). In this case Ĥ(ωk) = Γ∗ −∆. We may assume that the configuration ωk−1 is not
obtained by ωk via adding a free particle, otherwise ωk−1 is analogue to η and thus we can
iterate the argument by taking this configuration as η. By the optimality of the path, again
considering the time-reversal, we deduce that the unique admissible move to obtain ωk−1
from ωk is breaking a horizontal (resp. vertical) bar at cost U1 (resp. U2). Thus, it is possible
that either a sequence of 1-translations of a bar or a sliding of a bar around a frame-angle
takes place. In the first case, we obtain a configuration that is analogue to ωk−1 and thus
we can iterate the argument for a finite number of steps, since the path has to reach �. In
the latter case, by Remark 5.2.2(ii) we deduce that the condition (3.2.12) is not satisfied and
therefore it is not possible to complete any sliding of a bar around a frame-angle. This implies
that the unique admissible moves are the reverse ones, thus we obtain a configuration that
is analogue to ωk−1 and therefore we can iterate the argument for a finite number of steps,
since the path has to reach �. In this way we can reduce ourselves to consider case (iii).
Case (iii). (a) We consider the case where from η, again considering the time-reversal, we
attach a particle at cost −U1 in ∂+CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) =
Γ∗ −U1 (see Figure 4.3(b)). Thus, it is possible that either a sequence of 1-translations of
a bar or a sliding of a bar around a frame-angle takes place. In the first case, we obtain a
configuration that is analogue to ωk and thus we can iterate the argument for a finite number
of steps, since the path has to reach �. In the latter case, by Remark 5.2.2(ii) we deduce that
the condition (3.2.12) is not satisfied and therefore it is not possible to complete any sliding of
a bar around a frame-angle. This implies that the unique admissible moves are the reverse
ones, thus we obtain a configuration that is analogue to ωk and therefore we can iterate the
argument for a finite number of steps, since the path has to reach �.

(b) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost −U2 in ∂+CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) = Γ∗ −U2.
We argue in a similar way as above.

(c) We consider the case where from η, again considering the time-reversal, we attach
a particle at cost −U1 −U2 in ∂−CR(η) giving rise to the configuration ωk, i.e., Ĥ(ωk) =
Γ∗ −U1 −U2. Thus, it is possible either to have a sequence of 1-translations of a bar, or to
have a sliding of a bar around a frame-angle, or to detach a particle at cost U1 +U2. In the
first two possibilities, analogously to what has been discussed previously in (a) and (b), the
unique admissible moves are the reverse ones and therefore we conclude as above. In the
latter possibility, we have that either ωk−1 is obtained from ωk by detaching a particle from
a bar at cost U1 +U2 or from a corner of η that is in CR−(η). In the first case, the particle
can be attached to an empty frame-angle of CR−(η) and we can repeat these steps at most
x− 1 times (if x > 2), that implies that there exists k̄ < k− 1 such that ωk̄ is composed by
the union of a free particle and a rectangle R(2`∗2 − 4, `

∗
2 − 2) with four bars attached to its

four sides in such a way that ωk̄ contains nc + 1 particles, namely, ωk̄ ∈ C∗. In the second
case, we may assume that the detached particle is attached to a bar in ∂−CR(η) giving rise to
a configuration η ′ (see Figure 4.3(c)), otherwise we obtain a configuration that is analogue to
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η. Starting from η ′, similarly we obtain η ′′ (see Figure 4.3(d)) if η ′ has a corner in CR−(η ′). If
this is the case, we can proceed in a similar way until we obtain a configuration η ′′′ that has
no corner in CR−(η ′′′). Starting from η ′′′, by the optimality of the path we deduce that the
unique admissible moves are the reverse ones and therefore the path goes back to η. This
concludes the proof.

Proof of Proposition 5.4.2. Consider any ω ∈ (�→ �)opt such that ω∩ P ′0 6= ∅. We consider
separately the following three cases.
Case (i). Assume that the path ω crosses the set A :=

⋃
α,α ′,kA

α,α ′
k , with α ∈ {n, s},

α ′ ∈ {w, e} and k = 2, ..., `∗2, in the configuration η. Since Ĥ(η) = Γ∗, as long as the energy
does not exceed Γ∗, it is impossible to create a free particle before further lowering the energy
by a quantity greater or equal than U1 +U2. Since g ′2(η) = 1, it is possible to connect at cost
−U1 the two protuberances or a bar and a protuberance. Moreover, there is no admissible
move that costs −U2, since g ′1(η) = 0 and there is no free particle that could been attached to
an horizontal side of the cluster. Thus, the only admissible moves are starting a sliding of a
bar around a frame-angle cαα

′
(η) or cα

′α(η), with α ∈ {n, s}, α ′ ∈ {w, e}, at cost less or equal
than U1. We consider separately these two possibilities, that correspond to the two different
directions to cross the path described in Figure 1.13 starting from the configuration η. More
precisely, one of these possibilities (that we will analyze in (iA)), gives rise to the configuration
(12), while the other (that will be treated in (iB)) corresponds to the time-reversal of the path
described in Figure 1.13 starting from the configuration η.

(iA). In this situation it is possible to obtain one or more saddles ξ1, ..., ξn−1 such that ξi ∈
A for all i = 1, ..., n− 1 and for the last configuration we have |rα

′
(ξn−1)∪ cαα

′
(ξn−1)| = 1,

with α ∈ {n, s}, α ′ ∈ {w, e} and g ′2(ξn−1) = 1 (see configuration (12) in Figure 1.13). From
this configuration, since Ĥ(ξn−1) = Γ∗, by the optimality of the path ω it is impossible to
detach the protuberance before lowering the energy. Thus, the unique admissible moves are
either the reverse move or connect the protuberance and the bar at cost −U1 and then detach
the protuberance at cost U1 (see the move starting from the configuration (12) in Figure 1.13

that is described with a dashed arrow). In the latter situation the path reaches a configuration
ξn ∈ C∗. Thus, we have to consider the possibilities that ω visits ξn and ω does not visit
ξn. In the first possibility, since ω passes through ξn ∈ C∗ we get the claim. In the latter
possibility, the path ω does not pass through the configuration ξn, but assume that the path
ω visits the saddles ξi, ..., ξj for some 1 6 i 6 j 6 n− 1. We set

ω = (�,ω1, ...,ωk, ξi, ζi, .., ζh, ξi+1, ζh+1, ..., ζh+m, ..., ξj) ◦ ω̄,

where ζi, ..., ζh are not saddles, but are crossed during the sliding of a bar around a frame-
angle connecting ξi to ξi+1 and so on. Moreover, ω̄ is a path that connects ξj to � such that
maxσ∈ω Ĥ(σ) 6 Γ∗. Note that the configuration ξj coincides with ξi+1 in the case j = i+ 1.
If i = j, we set

ω = (�,ω1, ...,ωk, ξi) ◦ ω̄,

where ω̄ is a path that connects ξi to � such that maxσ∈ω Ĥ(σ) 6 Γ∗. To prove our statement
we investigate the structure of the path ω before entering A, namely, we consider the time–
reversal of the path. Since ξi ∈ A that implies Ĥ(ξi) = Γ∗, we note that the move from ξi
to ωk must have a non–positive cost. Thus, the admissible transitions from ξi to ωk are
either moving the particle at zero cost or moving a particle at cost −U1. In the first case, we
obtain a configuration that is analogue to ξi and therefore we can iterate for a finite number
of steps this argument until we get the situation described in the latter case. In the latter
case Ĥ(ωk) = Γ∗ −U1, thus ωk−1 can be obtained from ωk by breaking a bar at cost U1
or U2, since it is not possible to detach any particle because its cost is at least U1 +U2. If
the cost is U1, we deduce that ωk−1 is analogue to the initial configuration ξi and thus
we can iterate this argument for a finite number of steps, because the path has to reach �.
If the cost is U2, we can iterate this argument to deduce that starting from ωk a sliding
of a bar around a frame-angle takes place (see the time–reversal of the path described in
Figure 1.13, where ωk−1 can be, for example, the configuration (9)). Since the path has to
reach �, this implies that there exists k1 < k such that ωk1 is composed by the union of a
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rectangle R(2`∗2 − 1, `
∗
2 − 1) and a protuberance attached to one of the longest sides. Note

that Ĥ(ωk1) = Γ
∗ −U1. Furthermore, since either moving the protuberance along the side

or detaching it from the cluster are the only admissible moves with maxσ∈ω Ĥ(σ) 6 Γ∗, we
note that there exists k2 < k1 such that the configuration ωk2 is composed by the union
of R(2`∗2 − 1, `

∗
2 − 1) and a free particle. Note that ωk2 belongs to the set B defined in [16,

Definition 3.5] because p2(ωk2) = `
∗
2 − 1. Thus, by [16, Theorem 3.7] we know that ω reaches

a configuration in P2. We get the claim by using Lemma 5.4.1.
(iB). Note that this situation can be treated as in (iA) for the case in which ω does not visit

ξn, indeed without loss of generality we may assume that η = ξi and then we proceed as
above.
Case (ii). Assume that ω crosses the set Aα

′
0 ∪Aα1 in the configuration η, with α ∈ {n, s} and

α ′ ∈ {w, e}. By Lemma 5.2.4 we know that η has been obtained from a configuration ηB ∈ CB,
thus there exists a configuration η̄ ∈ C∗ such that ω passes through η̄ before crossing ηB.
Case (iii). Assume that ω crosses the set P ′0 \ (

⋃
α,α ′,kA

α,α ′
k ∪⋃α ′ Aα

′
0 ∪

⋃
αAα1 ) in the

configuration η, thus the path ω crosses either ηB ∈ CB or ηG ∈ CG before passing through
η. In the first case, η is obtained either via a 1-translation of a bar or via a sliding of
a bar around a frame-angle that in both cases cannot be completed because η is not in⋃
α,α ′,kA

α,α ′
k ∪⋃α ′ Aα

′
0 ∪

⋃
αAα1 . Therefore the path ω, before crossing ηB, passes through

a configuration η̄ ∈ C∗. In the latter case, we argue similarly. This concludes the proof.

5.4.2 Proof of the main Theorem 5.1.3

In this section we analyze the geometry of the set G(�,�) (recall (3.1.13)). In particular,
we give the proof of the main Theorem 5.1.3 by giving in Proposition 5.4.3 the geometric
characterization of the essential saddles of the third type that are not in C∗ and that are visited
after crossing the set CB.

Proposition 5.4.3. Any saddle ξ that is neither in C∗, nor in the boundary of the cycles C��(Γ
∗)

nor C��(Γ
∗ − Ĥ(�)) such that τξ > τCB can be essential or not. For those essential we obtain the

following description:

G(�,�)∩ (S(�,�) \ (∂C��(Γ∗)∪ ∂C��(Γ∗ − Ĥ(�))∪ C∗)) =
⋃

α

⋃

α ′

`∗2⋃

k=2

Aα,α
′

k ∪
⋃

α ′
Aα

′
0 ∪

⋃

α

Aα1 .
(5.4.2)

Remark 5.4.4. In Proposition 5.3.5 we have proved that the saddles ξ of type three that are not in⋃
k,α,α ′ A

α,α ′
k and such that τξ < τCB are unessential. Note that we have not to study separately

the essentiality of the saddles ξ ∈ ⋃k,α,α ′ Aα,α
′

k , since
⋃
k,α,α ′ A

α,α ′
k is included in the essential

saddles ξ of type three such that τξ > τCB , analyzed in Proposition 5.4.3.

We postpone the proof of Proposition 5.4.3 after the proof of the main Theorem 5.1.3.

Proof of Theorem 5.1.3. By Corollary 5.3.4 we know that the saddles of the first and second
type, defined in Definitions 3.1.2 and 3.1.4, respectively, are unessential. By Propositions
5.3.5 and 5.4.3 we have the characterization of the essential saddles of the third type. We use
Proposition 5.3.2 to get the claim.

Proof of Proposition 5.4.3. Consider a configuration η ∈ C∗(2) such that η = (η̂, x), with η̂ ∈ D̄

and d(η̂, x) = 2. By Proposition 5.2.1(b), note that η̂ consists of an (2`∗2− 4)× (`∗2− 2) rectangle
with four bars Bα(η), with α ∈ {n, s,w, e}, attached to its four sides satisfying

1 6 |Bw(η)|, |Be(η)| 6 `∗2, `∗2 − 1 6 |Bn(η)|, |Bs(η)| 6 2`∗2 − 2, (5.4.3)

and ∑
α

|Bα(η)|− k = 5`∗2 − 7, (5.4.4)
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(2`∗2− 4)× (`∗2− 2) (2`∗2− 4)× (`∗2− 2)

Figure 5.2 – Case A: on the left-hand side we represent a possible starting configuration η ∈ C∗ and on
the right-hand side the configuration η ′ obtained from η after the sliding of the bar Bn(η) around the
frame-angle cnw(η ′).

(2`∗2− 4)× (`∗2− 2)

(a)

(2`∗2− 4)× (`∗2− 2)

(b)

(2`∗2− 4)× (`∗2− 2)

(c)

Figure 5.3 – Case B(i): in (a) we depict a possible starting configuration η ∈ C∗. Case B(ii): in (b)
we depict a possible starting configuration η ∈ C∗. Case B(iii): in (c) we depict a possible starting
configuration η ∈ C∗.

with k =
∑
αα ′∈{nw,ne,sw,se} |c

αα ′(η)|. Assume that the free particle is attached in a bad
site obtaining a configuration η ′ ∈ CB. Due to [85, Theorem 5.1], our strategy consists in
characterizing the essential saddles that could be visited after attaching the free particle in a
bad site. By Remark 5.2.2(i) we consider separately the following cases:

A. three frame-angles of CR(η̂) are occupied;
B. two frame-angles of CR(η̂) are occupied;
C. one frame-angle of CR(η̂) is occupied;
D. no frame-angle of CR(η̂) is occupied.
Note that from case A one can go to the other cases and viceversa, but since the path has

to reach � this back and forth must end in a finite number of steps.
Case A. Without loss of generality we consider η as in Figure 5.2 on the left-hand side. If
we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 5.2.4 the saddles that are crossed are essential and in Aα

′
0 ∪Aα1 .

If a sequence of 1-translations of a bar takes place in such a way that the last configuration
has at most two occupied frame-angles, then the saddles that are visited starting from it will
be analyzed in cases B, C and D. Thus, we are left to analyze the case in which there is the
activation of a sliding of a bar around a frame-angle. In the following we quickly exclude the
cases in which the particles is attached to Bn(η), Bs(η) or Be(η) and then explain the more
interesting case in which it is attached to Bw(η) giving rise to Figure 5.2 on the right-hand side.
If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.2.5 we know that it
is not possible to complete the sliding of the bar Bw(η) (resp. Be(η)) around the frame-angle
cwn(η ′) (resp. ces(η ′)). If the free particle is attached to the bar Be(η) or Bw(η), then it is
not possible to slide the bar Bs(η) around the frame-angle cse(η ′) or csw(η ′), respectively,
since (3.2.12) is not satisifed. In the last two cases by Lemma 5.2.3(ii) we know that the
saddles that are visited are unessential. This implies that the unique possibility to activate
and complete a sliding of a bar around a frame-angle is attaching the free particle to the bar
Bw(η), then sliding the bar Bn(η) around the frame-angle cnw(η ′) when |Bn(η)| = `∗2 − 1
and |Bw(η)| = `∗2, otherwise (3.2.12) is not satisifed. The saddles that are possibly visited
by the path we described are in Aα,α

′
k,k ′ except the last one, thus by Lemma 5.2.3(i) they are

essential. The last configuration visited during this sliding of a bar is depicted in Figure 5.2
on the right-hand side. This configuration has energy Γ∗ −U1 +U2 and therefore it is not a
saddle. Starting from this configuration, by Lemma 5.3.8 we know that the saddles that could
be visited are in C∗ or again in Aα,α

′
k,k ′ . This concludes case A.
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(2`∗2− 4)× (`∗2− 2) (2`∗2− 4)× (`∗2− 2)

Figure 5.4 – Case C: on the left-hand side we depict a possible starting configuration η ∈ C∗. Case D: on
the right-hand side we depict a possible starting configuration η ∈ C∗.

Case B. If we are considering the case in which a sequence of 1-translations of a bar is
possible and takes place, then by Lemma 5.2.4 the saddles that are crossed are essential and
in Aα

′
0 ∪Aα1 . We consider separately the following subcases:

(i) The two occupied frame-angles are cαα
′
(η) and cα

′′α ′′′(η), with all the indeces
α,α ′, α ′′ and α ′′′ different between each other (see Figure 5.3(a));

(ii) The two occupied frame-angles are cαα
′
(η) and cα

′α ′′(η), with α ′ ∈ {n, s} and α 6= α ′′
(see Figure 5.3(b));

(iii) The two occupied frame-angles are cαα
′
(η) and cα

′α ′′(η), with α ′ ∈ {e,w} and
α 6= α ′′ (see Figure 5.3(c)).

Case B(i). Without loss of generality we consider η as in Figure 5.3(a). We can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) (resp.
Bs(η)), by Lemma 5.2.5 we know that it is not possible to complete the sliding of the bar Bw(η)
(resp. Be(η)) around the frame-angle cwn(η ′) (resp. ces(η ′)). By Lemma 5.2.3(ii), this implies
that the saddles that could be crossed are unessential. If the free particle is attached to the bar
Bw(η) (resp. Be(η)), it is possible to slide the bar Bn(η) (resp. Bs(η)) around the frame-angle
cnw(η ′) (resp. cse(η ′)) when |Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Be(η)|), otherwise (3.2.12) is
not satisifed. By (5.4.3) and (5.4.4) we note that |Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Be(η)|) is
not possible and the case B(i) is concluded.

Case B(ii). Without loss of generality we consider η as in Figure 5.3(b). If one bar among
Bw(η) and Be(η) is full, it is possible to translate Bs(η) in order to have three occupied
frame-angles. This situation has already been analyzed in case A. Thus, we can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) (or
Bs(η)), by Lemma 5.2.5 we know that it is not possible to complete the sliding of a vertical bar
around any frame-angle. If the free particle is attached to the bar Bw(η) or Be(η), since the
bar Bn(η) is full, we deduce that (3.2.12) is not satisfied. This implies that it is not possible
to slide the bar Bn(η) around the frame-angle cnw(η ′) and cne(η ′). In the last two cases by
Lemma 5.2.3(ii) we know that the saddles that could be visited are unessential. This concludes
case B(ii).

Case B(iii). Without loss of generality we consider η as in Figure 5.3(c). If the bar Bn(η) (or
Bs(η)) is full, it is possible to translate Be(η) to occupy the frame-angle cne(η ′) (or cse(η ′)).
This situation has already been analyzed in case A. Otherwise, it is possible to translate a
bar with one occupied frame-angle in order to have two occupied frame-angles in such a
way that they have no bar in common. This situation has already been analyzed in case
B(i). Thus, we can reduce our proof to the case in which there is no translation of a bar and
therefore we can consider only the activation of a sliding of a bar around a frame-angle. If
the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.2.5 we know that
it is not possible to complete the sliding of the bar Bw(η) around the frame-angle cwn(η ′)
(resp. cws(η ′)). If the free particle is attached to the bar Be(η), we deduce that (3.2.11) is not
satisfied. In the last two cases by Lemma 5.2.3(ii) we know that the saddles that are visited
are unessential. If the free particle is attached to the bar Bw(η), it is possible to slide the bar
Bn(η) (resp. Bs(η)) around the frame-angle cnw(η ′) (resp. csw(η ′)) when |Bn(η)| < |Bw(η)|

(resp. |Bs(η)| < |Bw(η)|), otherwise (3.2.12) is not satisifed. By (5.4.3) and (5.4.4) we note that
|Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Bw(η)|) is not possible and the case B(iii) is concluded.
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Case C. Without loss of generality we consider η as in Figure 5.4 on the left-hand side. If
we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 5.2.4 the saddles that are crossed are essential and in Aα

′
0 ∪Aα1 .

Starting from this configuration it is possible to obtain two occupied frame–angles, which has
been already analyzed in Case B. Thus, we can reduce our proof to the case in which there
is no translation of a bar and therefore there is the activation of a sliding of a bar around a
frame-angle. If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.2.5 we
know that it is not possible to complete the sliding of the bar Bw(η) around the frame-angle
cwn(η ′) (resp. cws(η ′)). If the free particle is attached to the bar Be(η), we deduce that
(3.2.12) is not satisfied. In the last two cases by Lemma 5.2.3(ii) we know that the saddles
that are visited are unessential. If the free particle is attached to the bar Bw(η), it is possible
to slide the bar Bn(η) around the frame-angle cnw(η ′) when |Bn(η)| < |Bw(η)|, otherwise
(3.2.12) is not satisfied. By (5.4.3) and (5.4.4) we note that |Bn(η)| < |Bw(η)| is not possible
and case C is concluded.
Case D. Without loss of generality we consider η as in Figure 5.4 on the right-hand side. If
we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 5.2.4 the saddles that are crossed are essential and in Aα

′
0 ∪Aα1 .

Starting from this configuration, it is possible to obtain one or two occupied frame-angles:
these situations have been already analyzed in cases C and B, respectively. Thus, we can
reduce our proof to the case in which there is no translation of a bar and therefore there is the
activation of a sliding of a bar around a frame-angle. If the free particle is attached to the bar
Bn(η) (resp. Bs(η)), by Lemma 5.2.5 we know that it is not possible to complete the sliding of
the bar Bw(η) around the frame-angle cwn(η ′) (resp. cws(η ′)). If the free particle is attached
to the bar Bw(η) or Be(η), we deduce that (3.2.11) is not satisfied. In the last two cases by
Lemma 3.4.1(ii) we know that the saddles that are visited are unessential. This concludes case
D.

5.5 proof of the sharp asymptotics

For the model-independent discussion we refer to Section 3.6.1. Following the strategy
given in [35] for the isotropic case, here we apply this argument for the strongly anisotropic
one. For the corresponding strategy in the isotropic and weakly anisotropic cases we refer to
Sections 3.6 and 4.5, respectively.

5.5.1 Application of the potential theory to the strongly anisotropic case

In [32] the authors let the protocritical and critical sets as P∗(m, s) and C ∗(m, s), respec-
tively (see [32, Definition 16.3] for the definition of P∗(m, s) and C ∗(m, s)). Since they differ
from our notation, we refer to them as P∗PTA(m, s) and C ∗PTA(m, s). In [32] the authors
proved [32, Theorem 16.4] and [32, Theorem 16.5] subject to the two hypotheses

(h1) Xm = {m} and Xs = {s};

(h2) ξ ′ → |{ξ ∈P∗PTA(m, s) : ξ ∼ ξ ′}| is constant on C ∗PTA(m, s).

For our model Xm = {�} and Xs = {�}, thus (H1) holds and Γm = Φ(�,�) − Ĥ(�) = Γ∗.
Now we abbreviate P∗PTA = P∗PTA(�,�) and C ∗PTA = C ∗PTA(�,�). Moreover, we prove
that geometrically P∗PTA = D̄ ∪⋃α,α ′ Āα,α

′
2 (see (5.5.5) for the definition of Āα,α

′
2 ) and

C ∗PTA = C∗(L∗) ∪⋃α,α ′ Aα,α
′

2 (recall (5.1.9) for the definition of Aα,α
′

2 ) with α ∈ {n, s} and
α ′ ∈ {e,w}. Therefore it is clear that C∗ 6= C ∗PTA. Note that (H2) follows from Lemma
5.3.8, indeed each configuration in C ∗PTA has exactly one configuration in P∗PTA from which
it can be reached via an allowed move. In particular, the configurations in C∗(L∗) and D̄

are connected by removing the free particle in ∂−Λ, while those in Aα,α
′

2 and Āα,α
′

2 are
connected between each other by attaching the two particles separated by an empty site at
cost −U1. Since (H1) and (H2) hold, [32, Theorem 16.4] and [32, Theorem 16.5] should hold,
but for the strongly anisotropic case this is not true. More precisely, this model represents a
counterexample of [32, Theorem 16.4(b)], indeed on the one hand [32, Theorem 16.4(a)] and
[32, Theorem 16.5] are valid, but on the other hand [32, Theorem 16.4(b)] does not hold. This
relies on a peculiar feature of this model: the entrance in C ∗PTA cannot be uniform due to the
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(2`∗2− 4)× (`∗2− 2)
−U1−U2

(2`∗2− 4)× (`∗2− 2)
+U2

(2`∗2− 4)× (`∗2− 2)
+U1

(2`∗2− 4)× (`∗2− 2)

Figure 5.5 – We depict the transition that, starting from a configuration in C∗, passes through CG and
after two moves reaches an unessential saddle ζ.

two possibile different entrance mechanisms, as claimed in Lemma 5.3.8. This depends on
the hypothesis (H2), that takes into account only the map from C ∗PTA to P∗PTA and not the
reverse one. Therefore we propose to replace the hypothesis (H2) with

(h2’) ξ ′ → |{ξ ∈ P∗PTA(m, s) : ξ ∼ ξ ′}| is constant on C ∗PTA(m, s) and ξ → |{ξ ′ ∈
C ∗PTA(m, s) : ξ

′ ∼ ξ}| is constant on P∗PTA(m, s).

We are convinced that this could be the correct hypotheses, indeed the analysis of the uniform
entrance distribution in C ∗PTA(m, s) has to take into account the number of configurations
in P∗PTA(m, s) that communicate with C ∗PTA(m, s) via one step of the dynamics. Now it
is clear that this model does not satisfy (H2’), indeed each configuration in D̄ has exactly
4L− 4 configurations in C∗ from which it can be reached via an allowed move, while each
configuration in Āα,α

′
2 has only one configuration in Aα,α

′
2 with this property. Therefore [32,

Theorem 16.4(b)] does not hold for this model.
Recall Definition 3.6.4 for the definition of the wells Z�sa,j and Z�sa,j and Definitions 3.1.2

and 3.1.4 for the definition of the saddles σsa,j of the first type and ζsa,j of the second
type, respectively. Concerning [32, Theorem 16.5], by [32, Lemma 16.16] for the case strongly
anisotropic case, we know that h is constant on each wells. For the wells Zmj and Zsj this
constant is computed in Lemma 3.6.7 indeed [32, Lemma 16.15] can be extended for these
sets together with the unessential saddles of the first and second type. Thanks to the model–
independent discussion given in Section 3.6.1 and Lemma 3.6.7, equation (3.6.12) becomes

h =



1 on C��(Γ
∗)∪

J�⋃

j=1

({σj}∪Z�j ),

0 on C��(Γ
∗ − Ĥ(�))∪

J�⋃

j=1

({ζj}∪Z�j ),

ci on X(i), i = 1, ..., Ī,

(5.5.1)

where X(i), i = 1, ..., Ī, are all the wells of the transition except
⋃J�
j=1 Z

�
j and

⋃J�
j=1 Z

�
j . This

implies that the unessential saddles, not characterizing the typical behavior of the process,
can not be neglected in the study of the prefactor K. However, since they do not communicate
with some X(i) via one step of the dynamics together with the fact that h(σj) = 1 and
h(ζj) = 0 for any j, the transitions that involve these unessential saddles do not contribute
numerically to the computation of K. The variational formula for Θ = 1/K in (3.6.6) is non–
trivial because it depends on the geometry of all the wells and on the form of the function h
on the configurations in X∗ \ X∗∗, namely, the saddle configurations.

Remark 5.5.1. In Figure 5.5 we depict a transition that, starting from a configuration in C∗, gives an
unessential saddle ζ of the third type.

5.5.2 Proof of Theorem 5.1.5

Using Lemma 3.6.7 and Remark 3.6.8, in order to prove Theorem 5.1.5 it remains to analyze
in detail the number of possible transitions inside the gates and in–between their boundaries.
Finally, we need to count the cardinality of D̄ modulo shifts, which we will refer to as N.
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lower bound

We consider the following sets:

X� := C��(Γ
∗)∪⋃J�j=1({σj}∪Z�j ),

X� := C��(Γ
∗ − Ĥ(�))∪⋃J�j=1({ζj}∪Z�j ).

(5.5.2)

The lower bound Θ > Θ1 is obtained by removing all the transitions that do not involve either
a protocritical droplet and a free particle that moves or the path described in Figure 1.13.
The first type of transitions gives a contribute that can be treated in a similar way as in the
lower bound in [35, Proposition 3.3.4]. Indeed, by rescaling the transition rates in the case of
discrete time dynamics as explained in Remark 3.6.8, we obtain:∑
η̂∈D̄

min
cj(η̂),j=1,2,3,4

min
g:Λ∗→[0,1]

g
|∂Gη̂

≡0,g
|∂B
j
η̂
≡cj,j=1,2,3,4,g|∂+Λ≡1

1

2|Λ̄∗, orie|

∑
x,x ′∈Λ+

x∼x ′

[g(x) − g(x ′)]2

>
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR(η̂)),

(5.5.3)

where g(x) := h(η̂, x) = h(η) for η̂ ∈ D̄ and x ∈ Λ \ CR++(η̂), and ∂Gη̂ denotes the set of
good sites in ∂−CR(η̂), ∂Bj η̂, j = 1, 2, 3, 4, denote the four bars of bad sites in ∂+CR(η̂) and
for any F ⊆ Λ+

CAPΛ
+
(∂+Λ, F) = min

g:Λ+→[0,1]
g
|∂+Λ

≡1,g|F≡0

1

2|Λ̄∗, orie|

∑
x,x ′∈Λ+

x∼x ′

[g(x) − g(x ′)]2. (5.5.4)

For α ∈ {n, s}, α ′ ∈ {w, e} and k = 2, ..., `∗2, we define

Āα,α
′

k := {η : n(η) = 0, v(η) = 2`∗2 − 2, |r
α(η)| = k− 1, |rα(η)| = `∗2 − k, |c

αα ′(η)| = 1,

ηcl is connected, monotone, with circumscribed rectangle in R(2`∗2 − 1, `
∗
2)}

(5.5.5)

and

Ãα,α
′

k := {η : n(η) = 0, v(η) = 2`∗2 − 2, |r
α(η)| = k, |rα(η)| = `∗2 − k, |c

αα ′(η)| = 0,

ηcl is connected, monotone, with circumscribed rectangle in R(2`∗2 − 1, `
∗
2)}.

(5.5.6)

Referring to Figure 1.13, note that the configuration (6) is in Ān,e2 and the configuration (10)
is in Ān,e3 , while the configuration (8) is in Ãn,e2 .

Now we analyze the transitions described in Figure 1.13. The configuration (6) is in
Ān,e2 ⊆ C��(Γ

∗) ⊆ X� and therefore h(
⋃
α,α ′ Ā

n,e
2 ) = 1. Thanks to [35, Lemma 3.3.2], we

know that h is constant on the wells and thus we analyze the transitions to and from each
wells. In particular, note that during the transition from Ãα,α

′
k and Āα,α

′
k+1 only configurations

with energy strictly smaller than Γ∗ are crossed, thus they belong to the same well and
therefore we can set h constant on these configurations. We set h(

⋃
α,α ′ A

α,α ′
2 ) = c1, h ≡ c2

on
⋃
α,α ′ Ã

α,α ′
2 and on its wells, and so on until the last set h(

⋃
α,α ′ Ā

α,α ′
`∗2

) = c2`∗2−2 and
h(η) = c2`∗2−1 for any η ∈ C∗(2). Thus, we have to minimize with respect to c1, c2, ..., c2`∗2−1
the following term:

(1− c1)
2 + (c1 − c2)

2 + ... + (c2`∗2−3 − c2`
∗
2−2

)2 + (c2`∗2−2 − c2`
∗
2−1

)2 + kc22`∗2−1
, (5.5.7)

where k = `∗2 − 1 is the number of good sites of the configuration (12) in Figure 1.13. We
prove by induction over n that

cn =
1+Kncn+1
Kn + 1

, 1 6 n 6 2`∗2 − 2, (5.5.8)
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where Kn satisfies the following recurrence relationKn = (Kn−1 + 1)
2, 2 6 n 6 2`∗2 − 2,

K1 = 1.
(5.5.9)

n = 1We have to prove that c1 = 1+c2
2 . This can be easily checked by minimizing the function

f(c1, c2) = (1− c1)
2 + (c1 − c2)

2 with respect to c1. Indeed, we get

∂f

∂c1
= 4c1 − 2c2 − 2 = 0 ⇔ c1 =

1+ c2
2

. (5.5.10)

2 6 n 6 2`∗2 − 2 Assume now that (5.5.8) holds for n− 1 and we prove that it holds also for n.
We consider the function f(cn−1, cn, cn+1) = (cn−1 − cn)

2 + (cn − cn+1)
2 and we replace

the expression of cn−1 in terms of cn. Thus, we get

f(cn, cn+1) =

(
1+Kn−1cn
Kn−1 + 1

− cn

)2
+ (cn − cn+1)

2 (5.5.11)

and therefore

∂f

∂cn
= 2

(
Kn−1

Kn−1 + 1
− 1

)(
1+Kn−1cn
Kn−1 + 1

− cn

)
+ 2(cn − cn+1). (5.5.12)

The equation ∂f
∂cn

= 0 gives

cn − 1

(Kn−1 + 1)2
= cn+1 − cn, (5.5.13)

that implies (5.5.8) by using (5.5.9). Thus, we get the claim.
Now we have to find the value of the constant c2`∗2−1 that minimizes (5.5.7). By considering

the function f(c2`∗2−2, c2`∗2−1) = (c2`∗2−2 − c2`
∗
2−1

)2 + (`∗2 − 1)c
2
2`∗2−1

and proceeding in a
similar way as above, we deduce that

c2`∗2−1 =
1

(`∗2 − 1)(K2`∗2−2 + 1)
2 + 1

. (5.5.14)

By (5.5.8) and (5.5.14) we get

1− c1 =
1− c2
2

and cn−1 − cn =
1− cn
Kn−1 + 1

. (5.5.15)

Finally, by (5.5.15) we deduce that the minimizer of the quantity in (5.5.7) is given by

(1− c2
2

)2
+

2`∗2−1∑
n=2

( 1− cn
Kn−1 + 1

)2
+

`∗2 − 1
((`∗2 − 1)(K2`∗2−2 + 1)

2 + 1)2
, (5.5.16)

where the coefficients c2, ..., c2`∗2−1 can be explicitly derived from (5.5.8) e (5.5.14). Combining
(5.5.3) and (5.5.16), we get

Θ >
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR(η̂)) + 4

[(1− c2
2

)2
+

2`∗2−1∑
n=2

( 1− cn
Kn−1 + 1

)2

+
`∗2 − 1

[(`∗2 − 1)(K2`∗2−2 + 1)
2 + 1]2

]
:= Θ1.

(5.5.17)

The first term in the r.h.s. of (5.5.17) can be treated in a similar way as [35, Lemma 3.4.1] for
Λ→ Z2. Since the remaining part of the r.h.s. of (5.5.17) does not depend on the size of the
box, that implies that we can neglect its contribute as Λ→ Z2, we deduce that

Θ1 →
4πN

|Λ̄∗, orie|
|Λ|

log |Λ|
as Λ→ Z2, (5.5.18)

where N is computed in Proposition 5.5.2.
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upper bound

We define

C++ := {η = (η̂, x) : η̂ ∈ D̄, x ∈ Λ \ CR++(η̂)}. (5.5.19)

and we consider the following test function

h(η) :=



1 if η ∈ X�,

ci if η ∈ X(i), i = 1, ..., Ī

g(x) if η ∈ C++,

0 if η ∈ X�,

(5.5.20)

where g(x) := h(η̂, x) = h(η) for η̂ ∈ D̄ and x ∈ Λ \ CR++(η̂), i.e., η ∈ C++. Thus, by (3.6.13)
we get

CAP(�,�) 6 (1+ o(1))

(∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂)) + min

c1,...,cI

min
h:X∗→[0,1]

h
|X�=1,h

|X�=0,h|X(i)=ci,i=1,...,Ī

1

2

∑
η,η ′∈X∗

µβ(η, η
′)P(η, η ′)[h(η) − h(η ′)]2,

(5.5.21)

where CAPΛ
+
(∂+Λ, F) is defined in (5.5.4). We have to analyze the possible transitions between

X� and X(i) ∪⋃j{ξj}, between X(i) and X(j) with i 6= j and between X(i) ∪⋃j{ξj} and X�,
where the saddles ξj are neither saddles of the first type nor saddles of the second type (recall
Definitions 3.1.2 and 3.1.4). We set

X(1) =
⋃

α∈{n,s}

⋃

α ′∈{w,e}
Aα,α

′
2 ,

where an example is given in Figure 1.13 by the configuration (7)). We set X(2) as the union
of Ãα,α

′
2 , Āα,α

′
3 and the configurations connecting these sets in the path described in Figure

1.13 that are in the same well. We iterate this construction until the last set X(2`∗2 − 1) as we
did for the lower bound. Furthermore, we set

X(2`∗2) = CB, X(2`∗2 + 1) =
⋃

α ′∈{e,w}

Aα
′
0 , X(2`∗2 + 2) =

⋃

α ′∈{e,w}

Aα1 .

Now we analyze all the transitions that give a non–trivial contribute to (5.5.21).

Transitions between X� and X(i) ∪⋃j{ξj}. The transition via one step of the dynamics from
η ∈ X� and η ′ ∈ X(i)∪⋃j{ξj} is possible only if either η ∈ D̄ and η ′ ∈ C∗ or η ∈ Āα,α

′
2 and

η ′ ∈ Aα,α
′

2 for some α ∈ {n, s} and α ′ ∈ {w, e}. The latter transition contributes 4 times to the
quantity in (5.5.21) depending on which frame-angle is involved in the transition.

Transitions between X(i) and X(j). We consider the sequence of transitions that forms the path
described in Figure 1.13, the transitions between C∗(2) and CB, between CB and X(2`∗2 + 1)
and between CB and X(2`∗2 + 2).

Transitions between X(i) and X�. The transition via one step of the dynamics from η ∈ X(i)

and η ′ ∈ X� is possible only if η ∈ C∗(2) and η ′ ∈ CG.
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Collecting all these transitions, by (5.5.20) and (5.5.21) we get

CAP(�,�) 6 e
−βΓ∗

Z
(1+ o(1))

(
1

|Λ̄∗, orie|

[
min

c̄,c1,...,c2`∗
2
+2

4
[
(1− c1)

2 + (c1 − c2)
2

+... + (c2`∗2−2 − c2`
∗
2−1

)2 + (`∗2 − 1)c
2
2`∗2−1

]
+
∑

η∈C∗(2)
η ′∈CG

c̄2

+
∑

η∈C∗(2)
η ′∈X(2`∗

2
)

(c̄2 − c2`∗2)
2 + 2

∑
η∈X(2`∗

2
)

η ′∈X(2`∗
2
+1)

(c2`∗2 − c2`
∗
2+1

)2

+2
∑

η∈X(2`∗
2
)

η ′∈X(2`∗
2
+2)

(c2`∗2 − c2`
∗
2+2

)2

]
+
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂))

)
.

(5.5.22)

Rearranging the term, we get

CAP(�,�) 6 e
−βΓ∗

Z
(1+ o(1))

(
1

|Λ̄∗, orie|

[
min

c1,...,c2`∗
2
−1

4
[
(1− c1)

2 + (c1 − c2)
2

+... + (c2`∗2−2 − c2`
∗
2−1

)2 + (`∗2 − 1)c
2
2`∗2−1

]
+ min
c̄,c2`∗

2
,...,c2`∗

2
+2

∑
η∈C∗(2)
η ′∈CG

c̄2

+
∑

η∈C∗(2)
η ′∈X(2`∗

2
)

(c̄− c2`∗2)
2 + 2

∑
η∈X(2`∗

2
)

η ′∈X(2`∗
2
+1)

(c2`∗2 − c2`
∗
2+1

)2

+2
∑

η∈X(2`∗
2
)

η ′∈X(2`∗
2
+2)

(c2`∗2 − c2`
∗
2+2

)2

]
+
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂))

)
.

(5.5.23)

Now we analyze separately the two following terms:

Θ̄ = min
c1,...,c2`∗

2
−1

4
[
(1− c1)

2+(c1− c2)
2+ ...+(c2`∗2−2− c2`

∗
2−1

)2+(`∗2− 1)c
2
2`∗2−1

]
(5.5.24)

and

Θ̃ = min
c̄,c2`∗

2
,...,c2`∗

2
+2

∑
η∈C∗(2)
η ′∈CG

c̄2 +
∑

η∈C∗(2)
η ′∈X(2`∗

2
)

(c̄− c2`∗2)
2 + 2

∑
η∈X(2`∗

2
)

η ′∈X(2`∗
2
+1)

(c2`∗2 − c2`
∗
2+1

)2

+2
∑

η∈X(2`∗
2
)

η ′∈X(2`∗
2
+2)

(c2`∗2 − c2`
∗
2+2

)2 +
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂)).

(5.5.25)

Note that the minimum of (5.5.24) coincides with 4 times the minimum of (5.5.7) and therefore
Θ̄ can be computed in the same way as in the lower bound (see (5.5.8), (5.5.14) and (5.5.16)). It
is easy to check that the minimum of (5.5.25) with respect to c̄ and c2`∗2 ,...,c2`∗2+2 is obtained

for c̄ = c2`∗2 = c2`∗2+1 = c2`∗2+2 = 0. Thus, the term Θ̃ becomes

Θ̃ =
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂)) (5.5.26)

and therefore

Θ 6 e
−βΓ∗

Z
(1+ o(1))

(
1

|Λ̄∗, orie|
Θ̄+ Θ̃

)

=
e−βΓ

∗

Z
(1+ o(1))

[
4

|Λ̄∗, orie|

((1− c2
2

)2
+

2`∗2−1∑
n=2

( 1− cn
Kn−1 + 1

)2

+
`∗2 − 1

[(`∗2 − 1)(K2`∗2−2 + 1)
2 + 1]2

)
+
∑
η̂∈D̄

CAPΛ
+
(∂+Λ,CR++(η̂))

]
:= Θ2,

(5.5.27)
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where the coefficients c2, ..., c2`∗2−2, c2`∗2−1 can be explictly derived from (5.5.8) and (5.5.14),
and the sequence Kn is defined in (5.5.9). The first term in the r.h.s. of (5.5.27) does not
depend on the size of the box, thus we can neglect its contribution as Λ → Z2. Since the
remaining part of the r.h.s. of (5.5.27) can be treated in a similar way as [35, Lemma 3.4.1]
for Λ→ Z2 up to the rescaling factor 1/|Λ̄∗, orie| since we are dealing with a discrete time
dynamics, we deduce that

Θ2 →
4πN

|Λ̄∗, orie|
|Λ|

log |Λ|
as Λ→ Z2, (5.5.28)

where N is computed in Proposition 5.5.2.

Proposition 5.5.2.

N =

4∑
k=1

(
4

k

)(
`∗2 + k− 2
2k− 1

)
.

Proof. We have to count the number of different shapes of the clusters in D̄. We do this
by counting in how many ways `∗2 − 1 particles can be removed from the four bars of a
(2`∗2 − 2)× `∗2 rectangle starting from the corners. We split the counting according to the
number k = 1, 2, 3, 4 of corners from which particles are removed. The number of ways in
which we can choose k corners is

(
4
k

)
. After we have removed the particles at these corners,

we need to remove `∗2 − 1− k more particles from either side of each corner. The number of
ways in which this can be done is

|{(m1, ...,m2k) ∈N2k
0 : m1 + ... +m2k = `∗2 − 1− k}|

= |{(m1, ...,m2k) ∈N2k : m1 + ... +m2k = `∗2 − 1+ k}|

=

(
`∗2 + k− 2
2k− 1

)
.

(5.5.29)

Thus, we get the claim.

5.5.3 Proof of Theorem 5.1.8

Thanks to [92, Lemma 3.6], we deduce that for our model the quantity Γ̃(B), with B ( X,
defined in [92, eq. (21)] is such that Γ̃(X \ {�}) = Γ∗. Thus, Theorem 5.1.8 follows by [92,
Proposition 3.24].



6L O C A L D Y N A M I C S O N T H E H E X A G O N A L L AT T I C E

The goal of this chapter is to investigate the metastable transition for Kawasaki dynamics
on the hexagonal lattice in order to understand the role of the underlying lattice on the
dynamical properties of the system. In particular, we identify stable and metastable states,
we provide the limiting behaviour of the transition time and we characterize a gate for the
transition. Concerning the last issue, we emphasize the differences with the analogous model
on the standard square lattice. We conclude that the shape of the hexagonal lattice has a
crucial impact on the critical configurations and on the mechanisms for entering them.

This chapter is structured as follows. In Section 6.1 we state our main results. In Section
6.2, we give the proof of the theorems concerning the asymptotic behavior of the transition
time and the characterization of the critical configurations after identifying the maximal
stability level. This is done by providing an upper and lower bound via a reference path
and by using the isoperimetric inequality respectively. Finally, in Section 6.3 we prove the
recurrence property to the set { , } which allows use to identify the metastable and stable
states of the system.

6.1 main results

6.1.1 Geometrical definitions for Kawasaki dynamics on the hexagonal lattice

We briefly give some geometrical definitions and notations in order to state our main
theorems. In particular, we explicitly provide those depending on the underlying lattice and
therefore differs from the corresponding for the square lattice, while we refer to Section 3.2.1
for the others. For the extensive geometrical definitions see Section 6.2.1. Recall that T2 is the
dual of H2, i.e., T2 is the discrete triangular lattice embedded in R2.

• We call triangular unit or triangular face an equilateral triangle of area one, whose
center belongs to the discrete hexagonal lattice and whose vertices belong to its dual
(see Figure 1.20). Moreover, a set of two triangular units that share an edge is called
elementary rhombus.

• Given a configuration η ∈ X we denote by C(ηcl) its Peierls contour, that lives on the
dual lattice and is the union of piecewise linear curves separating the empty triangular
faces from the triangular faces with particles inside.

6.1.2 Main results

In this section we present our main results for this model. Recall (1.3.58) and (1.3.59) for
the definition of the empty configuration and of the configuration that is full in Λ0 and empty
in Λ \Λ0, respectively. By (1.3.56) and (1.3.58) we have that Ĥ( ) = 0. Recall the definition of
the critical radius r∗ given in (1.3.63) We assume that U

2(3U−2∆) −
1
2 is not integer in order

to avoid strong degeneracy of the critical configurations. Similar assumptions are common
in the literature (see e.g., [37, 44, 47]). We recall the assumption 3U− 2∆� U, in particular
3U− 2∆ 6 U

100 is enough. In the following theorem, we will identify the stable and metastable
states and we will show that for our model the energy barrier Γm is equal to

Γ∗H :=

Γ∗H,1 if δ ∈
(
0, 12

)
,

Γ∗H,2 if δ ∈
(
1
2 , 1
)
.

(6.1.1)

where

Γ∗H,1 = −3(3(r∗)2 − r∗)U+ 6(r∗)2∆+ 5(2r∗ + 1)∆− (15r∗ + 4)U+∆

and

Γ∗H,2 = −3(3(r∗ + 1)2 − (r∗ + 1))U+ 6(r∗ + 1)2∆+ (2r∗ + 3)∆− 3(r∗ + 1)U+∆.

189
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The value of ΓK-Hex is obtained by computing the energy of the critical configurations. We
will see that these configurations consist of a cluster having a shape that is close to a hexagon
with radius r∗ and, in particular, we will compute the critical area to be

A∗1 = 6(r∗)2 + 10r∗ + 6 if δ ∈
(
0, 12

)
,

A∗2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2 if δ ∈
(
1
2 , 1
)
.

(6.1.2)

Theorem 6.1.1. (Identification of the metastable state). Let L > 2r∗ + 3, then Xm = { } and
Xs = { }. Moreover, Γm = Φ( , ) = Γ∗H.

The idea is to find an upper bound for Γm by building a reference path and a lower bound
using an isoperimetric inequality. Another goal is to find the asymptotic behavior as β→∞
of the transition time for the system started at the metastable state .

Theorem 6.1.2. (Asymptotic behavior of τ ). For any ε > 0, we have

lim
β→∞P

(
eβ(Γ

∗
H−ε) < τ < eβ(Γ

∗
H+ε)

)
= 1, (6.1.3)

lim
β→∞ 1β log E τ = Γ∗H. (6.1.4)

Moreover, letting Tβ := inf{n > 1 : P (τ 6 n) > 1− e−1}, we have

lim
β→∞P (τ > tTβ) = e−t (6.1.5)

and

lim
β→∞

E τ

Tβ
= 1. (6.1.6)

We refer to Section 6.3.5 for the proof of Theorem 6.1.2. We recall that a function β 7→ f(β)

is SES(β) if it satisfies (1.3.80). With this notation we can state our first theorem concerning
the recurrence of the system to either the state or .

Theorem 6.1.3. (Recurrence property). Let V∗ = ∆+U, we have XV∗ ⊆ { , } and for any ε > 0
and sufficiently large β, we have

β 7→ sup
σ∈X

Pσ(τXV∗ > eβ(V
∗+ε)) is SES. (6.1.7)

Equation (6.1.7) implies that the system reaches with high probability either the state
(which is a local minimizer of the Hamiltonian) or the ground state in a time shorter than
eβ(V

∗+ε), uniformly in the starting configuration σ for any ε > 0. The proof of Theorem 6.1.3
follows from Proposition 6.3.1 and [85, Theorem 3.1] (see Section 6.3 for more details).

In order to characterize the gate for the transition, we recall Figure 1.25(a)(c) (resp. Figure
1.25(b)(d)) for an example of configurations in S̃(A∗− 1) (resp. D̃(A∗− 1)). We refer the reader
to Definitions 6.2.12 and 6.2.13 for a precise definition of these sets. Recall (1.3.68) for the
definition of the set K(A∗ − 1). The following theorem characterizes the gate for the transition
from to .

Theorem 6.1.4. (Gate for the transition). Given δ ∈ (0, 1) and A∗ ∈ {A∗1, A
∗
2} as in (6.1.2), the set

C(A∗) := K(A∗ − 1)fp is a gate for the transition from to .

We refer to Section 6.3.5 for the proof of Theorem 6.1.4.
In order to state the last result of this section, we recall the set EBi(r) that contains the

configurations which have a unique cluster with a shape of quasi–regular hexagon, that is a
regular hexagon with i bars attached clockwise. See Figures 1.27 and 6.1 on the left–hand
side and in the middle together with definitions 6.2.7, 6.2.8, 6.2.9 for more details.

Theorem 6.1.5. (Subcritical and supercritical quasi–regular hexagons). Let E−
Bi
(r) (resp. E+

Bi
(r))

be the set of configurations composed by a single quasi-regular hexagon contained in (resp. containing)
EBi(r). For L > 2r∗ + 3, the following statements hold:
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regular hexagon quasi regular hexagon standard polyiamond

Figure 6.1 – Starting from the left: a regular hexagon with radius length 3, a quasi-regular hexagon with
three bars attached clockwise from the top, a standard polyiamond with a complete bar attached on the
top and an incomplete bar with cardinality 4 attached close to the top.

(i) If δ ∈ (0, 12 ), we have

if η ∈ E−
B5

(r∗) =⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B0

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(6.1.8)

(ii) If δ ∈ (12 , 1), we have

if η ∈ E−
B1

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B2

(r∗ + 1) =⇒ lim
β→∞Pη(τ < τ ) = 1.

(6.1.9)

In words, we characterize subcritical and supercritical quasi–regular hexagons, i.e., sub-
critical quasi–regular hexagons shrink to , while supercritical quasi-regular hexagons grow
to . We refer to Section 6.3.6 for the proof of Theorem 6.1.5.

6.2 identification of maximal stability level

6.2.1 Extensive geometrical definitions

Now we recall some geometrical definitions and properties about clusters and polyiamonds
present in [4].

Definition 6.2.1. A polyiamond P ⊂ R2 is a finite maximally connected union of three or more
triangular units that share at least a side.

Note that if two triangular units share only a point these are considered, by definition, two
different polyiamonds. We define a new bijection that associates to each cluster a polyiamond
with the same shape. This implies that to each cell without a particle, we associate an empty
triangular unit.

Definition 6.2.2. The boundary of a polyiamond P is the collection of unit edges of the lattice T2

such that each edge separates a triangular unit belonging to P from an empty triangular unit. The
edge-perimeter p(P) of a polyamond P is the cardinality of its boundary.

In other words the perimeter is given by the number of interfaces on the discrete triangular
lattice T2 between the sites inside the polyiamond and those outside. If not specified
differently, we will refer to the edge–perimeter simply as perimeter.

Definition 6.2.3. The external boundary of a polyiamond consists of the connected components of
the boundary such that for each edge there exists a hexagonal–path in H2 which connects this edge
with the boundary of Λ without intersecting the polyiamond. The internal boundary of a polyiamond
consists of the connected components of the boundary that are not external.
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Figure 6.2 – An example of polyiamond with the external boundary oriented counter-clockwise and the
internal boundary oriented clockwise.

Definition 6.2.4. Let us orient counter-clockwise the external boundary and clockwise the internal
boundary. For each pair of oriented edges, the angle defined rotating counter-clockwise the second edge
on the first edge is called internal angle (see Figure 6.2).

Definition 6.2.5. A hole of a polyiamond P is a finite maximally connected component of empty
triangular units surrounded by the internal boundary of P.

We refer to holes consisting of a single empty triangle as elementary holes.

Definition 6.2.6. A polyiamond is regular if it has only internal angles of π and 23π and it has no
holes.

We note that a regular polyiamond has the shape of a hexagon.

Definition 6.2.7. A polyiamond is a regular hexagon if it is a regular polyiamond with all equal
sides. We denote by E(r) the regular hexagon, where r is its radius (see Figure 6.1 on the left-hand
side).

Definition 6.2.8. A bar B(`) with larger base ` is a set of ||B(`)|| = 2`− 1 triangular units obtained
as a difference between an equilateral triangle with side length l and another equilateral triangle with
side length `− 1 (see Figure 6.3).

Definition 6.2.9. We denote by EB1(r) the polyiamond obtained attaching a bar B1 along its larger
base r to the regular hexagon (see Figure 6.4). Analogously, we denote by EBi(r) for i = 2, ..., 5 the
polyiamonds obtained attaching a bar Bi along its larger base r+ 1 to EBi−1(r). Finally, we denote
by EB6(r) the polyiamond obtained attaching a bar B6 along its larger base r+ 2 to EB5(r). We call
EBi(r) a quasi-regular hexagon, where r is the radius of the regular hexagon E(r) and i ∈ {1, ..., 6}
is the number of bars attached to it.

Note that EBi(r) is always contained in E(r+ 1) and it is defined up to a rotation of zπ3
for z ∈ Z. Moreover E(r) ≡ EB0(r) and E(r+ 1) ≡ EB6(r).

Notation 6.2.10. We denote by E(r) the set of configurations η ∈ X such that η has a unique cluster
with shape E(r). We denote by EBi(r) the set of configurations η ∈ X such that η has a unique cluster
with shape EBi(r).

Definition 6.2.11. An incomplete bar of cardinality k < 2`− 1 is a subset of a bar with larger base
` (see Figure 6.5).

Definition 6.2.12. A standard polyiamond of area A, denoted by S(A), is a quasi-regular hexagon
EBi(r) with possibly an additional incomplete bar of cardinality k attached clockwise, such that it is
contained in EBi+1(r). If k = 2, we denote it by S̃(A).
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l

l −
1

Figure 6.3 – The lightly shaded triangular units form a bar with larger base ` and it is obtained as
difference between an equilateral triangle with side length l and an equilateral triangle with side length
`− 1.

Figure 6.4 – On the left a quasi-regular hexagon EB1
(4). We observe that the cardinality of B1 of EB1

(3)

is ||B1|| = 2r− 1 = 5. On the right a quasi-regular hexagon EB4
(3). We observe that the cardinality

of B1 of EB1
(3) is ||B1|| = 2r− 1 = 5, while the cardinality of Bi of EB4

(3) is ||Bi|| = 2r+ 1 = 7 with
i = 2, . . . , 4.

When we refer to a standard cluster with area A, our meaning is that the cluster has the
shape and the properties of a standard polyiamond S(A). Note that a standard polyiamond
S(A) is determined solely by its area A. We characterize S(A) in terms of its radius r, the
number i of bars attached to the regular hexagon E(r) to obtain EBi(r) and the cardinality k
of the possible incomplete bar. Starting from the area A, these values can be computed by
using [4, algorithm 3.18].

Definition 6.2.13. A polyiamond consisting of a quasi-regular hexagon with two triangular units
attached to one of its longest sides at triangular lattice distance 2 one from the other is called defective
and it is denoted by D̃(A), where A is the area.

Notation 6.2.14. We denote by S̃(A) (resp. D̃(A)) the set of configurations η ∈ X such that η has a
unique cluster with shape S̃(A) (resp. D̃(A)). See (a)(c) (resp. (b)(d)) in Figure 1.25 for examples of
configurations in S̃(A) (resp. D̃(A)).

Definition 6.2.15. We call a corner of a standard polyiamond P the pair of triangular faces of P
contained in the internal angle of 23π.

6.2.2 Reference path

In this section, we construct our reference path ω∗, which is a sequence of configurations
connecting and such that the maximum of the energy along this path is Γ∗H. In particular,
this path is composed by increasing clusters as close as possible to quasi-regular hexagonal
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Figure 6.5 – On the left an incomplete bar with trapeze shape and cardinality k = 5 attached to
the regular hexagon E(4). We observe that the cardinality of the bar containing the incomplete bar
is ||B1|| = 7 > k. On the right an incomplete bar with parallelogram shape and cardinality k = 4,
attached to the quasi-regular hexagon EB5

(3). We observe that the cardinality of the bar containing the
incomplete bar is ||B6|| = 9 > k.

shape. The idea of the construction of ω∗ is the following: we first construct a skeleton path
{ω̄r}

L
r=0 given by a sequence of configurations that contain regular hexagon with radius r.

Obviously ω̄r is not a path in the sense that the transition from ω̄r to ω̄r+1 can not be given
in a single step of the dynamics, since ω̄r and ω̄r+1 contain regular hexagons. Thus in order
to obtain a path we have to interpolate each transition of the skeleton path. This is done in
two steps. First, we introduce between ω̄r and ω̄r+1 a sequence of configurations ω̃1r , ..., ω̃

ir
r

given by ω̄r plus a bar, i.e., a quasi–regular hexagon. Again, these configurations are given
by a single increasing droplet. Finally, we introduce a second interpolation to obtain a path
ω∗ from the sequence of configurations ω̃ir. Its construction goes as follows. Between every
couple of consecutive configurations in ω̃, for which the cluster is increased by one particle,
a sequence of configurations with a new particle is inserted. In particular, the new particle
is initially created at the boundary of Λ and then brought to the correct site via consecutive
moves of this free particle.

Skeleton ω̄: Let us construct a sequence of configurations that contain regular hexagons
ω̄ = {ω̄r}, with r = 0, ..., L, such that ω̄0 = , ..., ω̄L = and ω̄r ⊂ ω̄r+1. Starting from the
origin, given r = 1, ..., L let ω̄r the regular hexagon with radius r, i.e., ω̄r ∈ E(r).

First interpolation ω̃: From ω̄0 to ω̄1, we define the path ω̃i0 such that ω̃00 = ω̄0 and
insert between ω̄0 and ω̄1 a sequence of configurations {ω̃i0}

6
i=0, which correspond to the

creation of a hexagon of radius one obtained by adding sequentially particles clockwise.
Given a choice for ω̄r, with r < L, we can construct the path ω̃ir such that ω̃0r = ω̄r and
insert between ω̄r and ω̄r+1 a sequence of configurations {ω̃ir}

ir
i=0 as follows. Starting from

a configuration in E(r), add consecutive triangular units to the regular hexagon until we
obtain a configuration in EB1(r). Next we fill the bar on the top right adding consecutive
triangular units until we obtain a configuration in EB2(r). We go on in the same way adding
bars clockwise, until we obtain configurations in EB3(r), ...,EB6(r) ≡ E(r+ 1).

Second interpolation ω∗: For any pair of configurations (ω̃ir, ω̃
i+1
r ) such that ||ω̃ir|| <

||ω̃i+1r ||, by construction of the path ω̃ir the particles are created along the external boundary
of the clusters, except for the first particle that is at the origin. So there exist x1, ..., xji a
connected chain of nearest-neighbor empty sites of ω̃ir such that x1 ∈ ∂−Λ and xji is the site
where is located the additional particle in ω̃i+1r . Define

ω̂i,0r = ω̃ir, ω̂
i,ji
r = ω̃i+1r , r = 0, ..., L. (6.2.1)

Insert between each pair (ω̃ir, ω̃
i+1
r ) a sequence of configurations ω̂i,jr , with j = 1, ..., ji − 1,

where the free particle is moving from x1 ∈ ∂−Λ to the cluster until it reaches the position
xji . Otherwise, for any pair of configurations (ω̃ir, ω̃

i+1
r ) such that ||ω̃ir|| = ||ω̃i+1r ||, we define

ω̂i,0r = ω̃ir and ω̂i+1,0r = ω̃i+1s . This concludes the definition of the reference path.
With an abuse of notation we denote a configuration in EBi(r) by EBi(r).
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Proposition 6.2.16. The maximum of the energy in ω∗ between two consecutive quasi–regular
hexagonsΦω∗(EBi(r),EBi+1(r)) for every i = 0, ..., 5 is achieved in the standard polyiamond obtained
adding to EBi(r) an elementary rhombus along the longest side and a free particle.

Proof. Let A(n) be the area obtained after adding n triangular units to the area of the quasi-
regular hexagon in EBi(r), where n = 0, ..., ||Bi+1||. Note that A(n) is the area of the standard
polyiamond S(A(n)). We observe that S(A(0)) = EBi(r) and S(A(||Bi+1||)) = EBi+1(r). Since
the maximum of the energy is obtained after adding a free particle, we obtain

Ĥ(S(A(n))fp) − Ĥ(S(A(n−1))fp) =


∆−U if n = 1,

∆−U if n is even,

∆− 2U if n 6= 1 is odd.

(6.2.2)

Therefore we deduce that

Ĥ(S(A(n))fp) − Ĥ(EBi(r)
fp) =

U−n
(
3
2U−∆

)
if n is even,

U

2
−n

(
3
2U−∆

)
if n is odd.

(6.2.3)

Since the r.h.s. of the last equation decreases with n, due to the fact that ∆ < 3
2U, in both the

odd and even case, it is immediate to check that the maximum is attained for n = 2, namely
in S(A(2))fp.

Proposition 6.2.17. The maximum of the energy in ω∗ between two consecutive quasi–regular
hexagonsΦω∗(EBi(r),EBi−1(r)) for every i = 1, ..., 6 is achieved in the standard polyiamond obtained
removing counter-clockwise from EBi(r) a number of particles equals to ||Bi||− 3 and detaching the
(||Bi||− 2)-th particle from Bi.

Proof. Let A(n) be the area obtained after adding n triangular units to the area of the quasi-
regular hexagon EBi−1(r), where n = 0, ..., ||Bi||. Note that S(A(n)) can be obtained either by
removing ||Bi||−n triangular units from EBi(r) or by adding and attaching n triangular units
to the quasi-regular hexagon in EBi−1(r). We recall that removing a triangular unit means
detaching it from the cluster and moving the free particle outside Λ. Since the maximum of
the energy is obtained after adding a free particle, we obtain

Ĥ(S(A(n−1))fp) − Ĥ(S(A(n))fp) =


2U−∆ if n 6= 1 is odd,

U−∆ if n is even,

U−∆ if n = 1.

(6.2.4)

Therefore we deduce that

Ĥ(S(A(n))fp) − Ĥ(EBi(r)
fp) =


n
(3
2
U−∆

)
−U if n is even,

n
(3
2
U−∆

)
−
U

2
if n is odd.

(6.2.5)

Since the r. h. s. of the last equation increases with n, due to the fact that ∆ < 3
2U, in both

the odd and even case, it is immediate to check that the maximum is attained by removing
||Bi||− 3 triangular units from EBi(r) and detaching another triangular unit from Bi. Therefore
we obtain a configuration in S(A(2))fp.

Recalling (1.3.63), from now on the strategy is to divide the reference path ω∗ into three
regions depending on r:

— the region r 6 r∗ will be considered in Proposition 6.2.18;
— the region r = r∗ + 1 will be considered in Proposition 6.2.19;
— the region r > r∗ + 2 will be considered in Proposition 6.2.20
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Proposition 6.2.18. If r 6 r∗, then the communication height between two consecutive regular
hexagons Φω∗(E(r),E(r+ 1)) along the path ω∗ is achieved in a configuration with a free particle
and a standard cluster such that the number of its triangular units is Ã = 6r2 + 10r+ 5, that is
Φω∗(E(r),E(r+ 1)) = Φω∗(EB5(r),E(r+ 1)) = Ĥ(S(Ã)) +∆. Moreover, Φω∗( ,E(r∗ + 1)) =
Φω∗(E(r

∗),E(r∗ + 1)) = Ĥ(S(A∗1 − 1)) +∆ is achieved in a configuration with a free particle and a
standard cluster S(A∗1 − 1), where A∗1 = 6(r∗)2 + 10r∗ + 6.

Proof. Let S(A) be a standard polyiamond with an incomplete bar of cardinality two. We
obtain:

Ĥ(S(A)) =



−3(3r2 − r)U+ 6r2∆+ 2(∆−U) if A = 6r2 + 2,

−3(3r2 − r)U+ 6r2∆+ (2r+ 1)∆− 3rU if A = 6r2 + 2r+ 1,

−3(3r2 − r)U+ 6r2∆+ 2(2r+ 1)∆− (6r+ 1)U if A = 6r2 + 4r+ 2,

−3(3r2 − r)U+ 6r2∆+ 3(2r+ 1)∆− (9r+ 2)U if A = 6r2 + 6r+ 3,

−3(3r2 − r)U+ 6r2∆+ 4(2r+ 1)∆− (12r+ 3)U if A = 6r2 + 8r+ 4,

−3(3r2 − r)U+ 6r2∆+ 5(2r+ 1)∆− (15r+ 4)U if A = 6r2 + 10r+ 5.

(6.2.6)

We compare Φω∗(E(r),EB1(r)) = Φω∗(S(6r
2), S(6r2 + 2r− 1)) with Φω∗(EB1(r),EB2(r)) =

Φω∗(S(6r
2 + 2r− 1), S(6r2 + 4r)). By Proposition 6.2.16 we have:

Φω∗(E(r),EB1(r)) = Ĥ(S(6r2 + 2)) +∆,

Φω∗(EB1(r),EB2(r)) = Ĥ(S(6r2 + 2r+ 1)) +∆.
(6.2.7)

By using (6.2.6), we obtain that Φω∗(E(r),EB1(r)) 6 Φω∗(EB1(r),EB2(r)) if and only if
r 6 2U−∆

3U−2∆ = U
2(3U−2∆) +

1
2 , which is true since we are assuming r 6 r∗ and r∗ 6 2U−∆

3U−2∆

due to the condition 2∆ < 3U.
We compare the two communication heights Φω∗(EB1(r),EB2(r)) = Φω∗(S(6r

2 + 2r−

1), S(6r2 + 4r)) and Φω∗(EB2(r),EB3(r)) = Φω∗(S(6r
2 + 4r), S(6r2 + 6r+ 1)). By Proposition

6.2.16 we have:

Φω∗(EB1(r),EB2(r)) = Ĥ(S(6r2 + 2r+ 1)) +∆,

Φω∗(EB2(r),EB3(r)) = Ĥ(S(6r2 + 4r+ 2)) +∆.
(6.2.8)

By using (6.2.6), we obtain that Φω∗(EB1(r),EB2(r)) 6 Φω∗(EB2(r),EB3(r)) if and only if
r 6 ∆−U

3U−2∆ , which is true since we are assuming r 6 r∗.
We compare the communication heights Φω∗(EB2(r),EB3(r)) = Φω∗(S(6r

2 + 4r), S(6r2 +

6r + 1)) and Φω∗(EB3(r),EB4(r)) = Φω∗(S(6r
2 + 6r + 1), S(6r2 + 8r + 2)). By Proposition

6.2.16 we have:

Φω∗(EB2(r),EB3(r)) = Ĥ(S(6r2 + 4r+ 2)) +∆,

Φω∗(EB3(r),EB4(r)) = Ĥ(S(6r2 + 6r+ 3)) +∆.
(6.2.9)

By using (6.2.6), we obtain that Φω∗(EB2(r),EB3(r)) 6 Φω∗(EB3(r),EB4(r)) if and only if
r 6 ∆−U

3U−2∆ , which is true since we are assuming r 6 r∗.
By performing similar computations, we obtain the following inequalities:

Φω∗(EB3(r),EB4(r)) 6 Φω∗(EB4(r),EB5(r)),
Φω∗(EB4(r),EB5(r)) 6 Φω∗(EB5(r),E(r+ 1)).

(6.2.10)

Thus, the communication height between two consecutive regular hexagons along the path
ω∗ is achieved in S(6r2 + 10r+ 5)fp, that is Φω∗(E(r),E(r+ 1)) = Φω∗(EB5(r),E(r+ 1)) =

Ĥ(S(Ã))+∆, where Ã = 6r2+ 10r+ 5. The maximum of the function Ĥ(S(Ã))+∆ = −3(3r2−

r)U+ 6r2∆+ 5(2r+ 1)∆− (15r+ 4)U+∆ is obtained in r = U
2(3U−2∆) −

5
6 . However r ∈ N

and r 6 r∗, therefore the maximum is attained in r∗ andΦω∗( ,E(r+1)) = Φω∗(E(r
∗),E(r∗+

1)) = Ĥ(S(A∗1 − 1)) +∆, where A∗1 = 6(r∗)2 + 10r∗ + 6.
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Proposition 6.2.19. If r = r∗ + 1, then the communication height Φω∗(E(r∗ + 1),E(r∗ + 2)) along
the path ω∗ is achieved in a configuration with a free particle and a standard cluster S(A∗2 − 1), where
A∗2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2.

Proof. Note that in this case r =
⌊

U
2(3U−2∆) +

1
2

⌋
. We analyze Φω∗(E(r∗ + 1),E(r∗ + 2)) by

using Proposition 6.2.16. We compare the same communication height of Proposition 6.2.18,
obtaining the following inequalities since r = r∗ + 1:

Φω∗(S(6r
2), S(6r2 + 2r− 1)) < Φω∗(S(6r

2 + 2r− 1), S(6r2 + 4r)), (6.2.11)

and

Φω∗(S(6r
2 + 2r− 1), S(6r2 + 4r)) > Φω∗(S(6r

2 + 4r), S(6r2 + 6r+ 1))

> Φω∗(S(6r
2 + 6r+ 1), S(6r2 + 8r+ 2))

> Φω∗(S(6r
2 + 8r+ 2), S(6r2 + 10r+ 3))

> Φω∗(S(6r
2 + 10r+ 3), S(6r2 + 12r+ 6)).

(6.2.12)

Then the communication height along the path ω∗ between two consecutive regular hexagons
with radius r∗ + 1 is Φω∗(E(r∗ + 1),E(r∗ + 2)) = Φω∗(S(6(r∗ + 1)2 + 2(r∗ + 1) − 1), S(6(r∗ +
1)2 + 4(r∗ + 1))) and, by Proposition 6.2.16, it is attained in S(A∗2 − 1)

fp, with A∗2 = 6(r∗ +
1)2 + 2(r∗ + 1) + 2.

Proposition 6.2.20. If r > r∗ + 2, then the communication height between two consecutive regular
hexagonsΦω∗(E(r),E(r+ 1)) along the path ω∗ is achieved in a configuration with a free particle and
a standard cluster such that the number of its triangular units is Ã = 6r2+ 2, that isΦω∗(E(r),E(r+
1)) = Φω∗(E(r),EB1(r)) = Ĥ(S(Ã)) +∆. Moreover, Φω∗(E(r∗ + 2), ) = Φ(E(r∗ + 2),E(r∗ +
3)) = Ĥ(S(A∗3 − 1)) +∆ is achieved in a configuration with a free particle and a standard cluster
S(A∗3 − 1), where A∗3 = 6(r∗ + 2)2 + 3.

Proof. We analyze Φω∗(E(r),E(r+ 1)) by using Proposition 6.2.16. We compare the same
communication height of Proposition 6.2.18, obtaining the following inequalities since r >
r∗ + 2:

Φω∗(S(6r
2), S(6r2 + 2r− 1)) > Φω∗(S(6r2 + 2r− 1), S(6r2 + 4r))

> Φω∗(S(6r2 + 4r), S(6r2 + 6r+ 1))
> Φω∗(S(6r2 + 6r+ 1), S(6r2 + 8r+ 2))
> Φω∗(S(6r2 + 8r+ 2), S(6r2 + 10r+ 3))
> Φω∗(S(6r2 + 10r+ 3), S(6r2 + 12r+ 6)).

(6.2.13)

Thus, the communication height between two consecutive regular hexagons along the path
ω∗ is attained in S(6r2+ 2)fp, that is Φω∗(E(r),E(r+ 1)) = Φω∗(E(r),EB1(r)) = Ĥ(S(Ã))+∆,
where Ã = 6r2 + 2. The maximum of the function Ĥ(S(Ã)) + ∆ = −3(3r2 − r)U+ 6r2∆+

2(∆−U) +∆ is attained in r = U
2(3U−2∆) , but r ∈N and r > r∗ + 2, so Φω∗(E(r∗ + 2), ) =

Φω∗(E(r
∗ + 2),E(r∗ + 3)) = Ĥ(S(A∗3 − 1)) +∆, where A∗3 = 6(r∗ + 2)2 + 3.

Proposition 6.2.21. Let δ ∈ (0, 1) be such that U
2(3U−2∆) −

1
2 − δ is an integer number. The

maximum Φω∗( , ) along the path ω∗ is attained in a configuration with a free particle and a
standard cluster with area A∗ − 1 (see Figure 6.6), where

1) A∗ = A∗1 = 6(r∗)2 + 10r∗ + 6 if 0 < δ < 1
2 ;

2) A∗ = A∗2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2 if 12 < δ < 1.

Proof. We compare Φω∗( ,E(r∗ + 1)), Φω∗(E(r∗ + 1),E(r∗ + 2)) and Φω∗(E(r∗ + 2), ). By
Proposition 6.2.18 we have

Φω∗( ,E(r∗ + 1)) = Ĥ(S(6(r∗)2 + 10r∗ + 5)) +∆

= −3(3(r∗)2 − r∗)U+ 6(r∗)2∆+ 5(2r∗ + 1)∆− (15r∗ + 4)U+∆.
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Figure 6.6 – Two standard clusters with critical area A∗1 − 1 and a free particle for 0 < δ < 1
2 .

(6.2.14)

By Proposition 6.2.19 we have

Φω∗(E(r
∗ + 1),E(r∗ + 2)) = Ĥ(S(6(r∗ + 1)2 + 2(r∗ + 1) + 1)) +∆

= −3(3(r∗ + 1)2 − (r∗ + 1))U+ 6(r∗ + 1)2∆

+(2(r∗ + 1) + 1)∆− 3(r∗ + 1)U+∆.

(6.2.15)

By Proposition 6.2.20 we have

Φω∗(E(r
∗ + 2), ) = Ĥ(S(6(r∗ + 2)2 + 2)) +∆

= −3(3(r∗ + 2)2 − (r∗ + 2))U+ 6(r∗ + 2)2∆+ 2(∆−U) +∆.
(6.2.16)

By comparing equations (6.2.14),(6.2.15) and (6.2.16), we obtain

Φω∗( ,E(r∗ + 1)) > Φω∗(E(r
∗ + 2), ),

Φω∗(E(r
∗ + 1),E(r∗ + 2)) > Φω∗(E(r

∗ + 2), ).
(6.2.17)

Thus we deduce that Φω∗(E(r∗ + 2), ) cannot be the maximum. Moreover, we obtain

Φω∗( ,E(r∗ + 1)) > Φω∗(E(r∗ + 1),E(r∗ + 2)) if 0 < δ < 1
2 ,

Φω∗( ,E(r∗ + 1)) < Φω∗(E(r∗ + 1),E(r∗ + 2)) if 12 < δ < 1.
(6.2.18)

and therefore the maximum Φω∗( , ) = Φω∗( ,E(r∗ + 1)) is achieved in a configuration
S(6(r∗)2 + 10r∗ + 5)fp if δ ∈ (0, 12 ). Otherwise, if δ ∈ (12 , 1), then the maximum Φω∗( , ) =

Φω∗(E(r
∗ + 1),E(r∗ + 2)) is achieved in a configuration S(6(r∗ + 1)2 + 2(r∗ + 1) + 1)fp.

Corollary 6.2.22. Let Γ∗H as in (6.1.1). We have

Φ( , ) 6 Γ∗H. (6.2.19)

Proof. By definition of communication height and the fact that Ĥ( ) = 0, Proposition 6.2.21

implies that

Φ( , ) 6 max
i
Ĥ(ω∗i ) = Γ

∗
H (6.2.20)

in the two cases 0 < δ < 1
2 and 1

2 < δ < 1.

6.2.3 Lower bound of maximal stability level

In this section we will find a lower bound for Γ∗H. In particular, we prove thatΦ( , ) > Γ∗H
separately for the case δ ∈

(
0, 12

)
and δ ∈

(
1
2 , 1
)
. The proof comes in three steps, which are

the contents of the three following lemmas. The last result of this section combines the upper
and lower bound on Φ( , ) which we have found.
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Lemma 6.2.23. The following statements hold:
1. If δ ∈

(
0, 12

)
, any ω ∈ ( → )opt must pass through the set EB5(r

∗).
2. If δ ∈

(
1
2 , 1
)
, any ω ∈ ( → )opt must pass through the set EB1(r

∗ + 1).

Proof. We analyze separately the two cases.
1. Let δ ∈

(
0, 12

)
and Ã = 6(r∗)2 + 10r∗ + 3. Any path ω : → must cross the

set VÃ. By using [4, Theorem 3.22] and [4, Lemma 3.24] with m = 5, in VÃ the
unique (modulo translations and rotations) configuration of minimal perimeter and
hence minimal energy is the standard polyiamond S(Ã), which contains only the
quasi-regular hexagon. Thus, the configuration S(Ã) has energy

Ĥ(S(Ã)) = −3(3(r∗)2 − r∗)U+ 6(r∗)2∆+ 5(2r∗ + 1)∆− (15r∗ + 1)U

= Γ∗H − 3∆+ 2U.
(6.2.21)

All the other configurations in VÃ have energy at least Γ∗H − 3∆+ 3U. To increase
the particle number starting from any such a configuration, we must create a particle
at cost ∆. But the resulting configuration would have energy Γ∗H − 2∆+ 3U, which
exceeds Γ∗H due to the condition 2∆ < 3U. Thus, this would lead to a path exceeding
the energy value Γ∗H and therefore the path would not be optimal.

2. Let δ ∈
(
1
2 , 1
)

and Ã = 6(r∗ + 1)2 + 2(r∗ + 1) − 1. By observing that [4, Lemma 3.24]
holds with m = 1, we can argue as before.

Lemma 6.2.24. The following statements hold:
1. If δ ∈

(
0, 12

)
, any ω ∈ ( → )opt must pass through a configuration composed by a cluster

EB5(r
∗) with the addition of two triangular faces.

2. If δ ∈
(
1
2 , 1
)
, any ω ∈ ( → )opt must pass through a configuration composed by a cluster

EB1(r
∗ + 1) with the addition of two triangular faces.

Proof. We analyze the two cases separately.
1. Follow the path until it hits VA∗1−3. By Lemma 6.2.23, the configuration in this set must

be a quasi-regular hexagon with area 6(r∗)2+ 10r∗+ 3. Since we need not consider any
paths that return to the set VA∗1−3 afterwards and the path has to cross the set VA∗1−1,
the path proceeds as follows. Starting from a quasi-regular hexagon with area A∗1 − 3,
a free particle is created giving rise to a configuration with energy Γ∗H − 2∆+ 2U < Γ∗H.
Before any new particle is created, the energy has to decrease by at least U. The unique
way to do this is to move the particle towards the cluster and attach it to the quasi-
regular hexagon, which lowers the energy to Γ∗H − 2∆+U. Now it is possible to create
another particle at cost ∆ giving rise to a configuration with energy Γ∗H −∆+U < Γ∗H.
Again, before creating a new particle, the energy has to decrease by at least U. The
unique way to do this is to move the particle until it is attached to the cluster, which
lowers the energy to Γ∗H −∆. Note that this gives us a configuration composed by a
cluster EB5(r

∗) with the addition of two triangular faces, as claimed.
2. We can argue as in the previous case.

Lemma 6.2.25. Any ω ∈ ( → )opt must reach the energy Γ∗H.

Proof. By Lemma 6.2.24, we know that any ω ∈ ( → )opt must cross a configuration
composed by two triangular faces attached to a cluster EB5(r

∗) (resp. EB1(r
∗+ 1)) if δ ∈

(
0, 12

)

(resp. δ ∈
(
1
2 , 1
)
). Starting from such a configuration, it is impossible to reduce the energy

without lowering the particle number. Indeed, [4, Theorem 3.22] asserts that, for δ ∈
(
0, 12

)

(resp. δ ∈
(
1
2 , 1
)
), the minimal energy in VA∗1−1

(resp. VA∗2−1) is realized (although not
uniquely) in such a configuration. Since any further move to increase the particles number
involves the creation of a new particle, the energy must reach the value Γ∗H.

Corollary 6.2.26. We have

Φ( , ) = Γ∗H. (6.2.22)

Proof. Combining Corollary 6.2.22 and Lemma 6.2.25, we obtain the claim.
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6.2.4 Structure of the communication level set

Recalling the two values of the critical area in (6.1.2), we have the following result.

Proposition 6.2.27. The following statements hold:
1. Let δ ∈

(
0, 12

)
and A∗ = A∗1 = 6(r∗)2 + 10r∗ + 6. Any ω ∈ ( → )opt must pass through

the set C(A∗) = K(A∗ − 1)fp.
2. Let δ ∈

(
1
2 , 1
)

and A∗ = A∗2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2, any ω ∈ ( → )opt must pass
through the set C(A∗) = K(A∗ − 1)fp.

Proof. We analyze the two cases separately.
1. By Lemmas 6.2.23 and 6.2.24, we can obtain a configuration η0 with a cluster according

to the following cases:

(1) the two triangular faces form an elementary rhombus which is attached to one
of the longest sides of the quasi-regular hexagonal cluster, namely the resulting
configuration is in S̃(A∗ − 1) (see Figure 1.28);

(2) the two triangular faces are attached to one of the longest sides of the quasi-regular
hexagonal cluster at triangular lattice distance 2, namely the resulting configuration
is in D̃(A∗ − 1) (see Figure 1.28);

(3) the two triangular faces are attached to the same side of the quasi-regular hexagonal
cluster at triangular lattice distance greater than 2 (see Figure 1.28);

(4) the two triangular faces are attached to two different sides of the quasi-regular
hexagonal cluster (see Figure 1.28);

(5) the two triangular faces form an elementary rhombus which is attached to one of
the sides, other than the longest, of the quasi-regular hexagonal cluster;

(6) the two triangular faces are attached at triangular lattice distance 2 to the same side,
other than the longest, of the quasi-regular hexagonal cluster;

(7) the two triangular faces form an elementary rhombus which is attached to one of
the sides, but the direction of the elementary rhombus is towards the outer direction
of the cluster.

Note that in all these cases the cluster has minimal perimeter, indeed it has the same
perimeter as a standard hexagon with the same area. Moreover, in all these cases the
configuration η0 has energy Γ∗H −∆. We will prove that every ω ∈ ( → )opt crosses
a configuration in C(A∗). Since we need not consider any paths that return to the
set VA∗1−2 afterwards and the energy can increase by at most ∆ in order to have an
optimal path, there are only the following possibilities:
A. a free particle enters Λ;
B. a particle is detached from the cluster;
C. a particle moves at cost U without detaching from the cluster.
Case A. We may assume that the free particle does not exit from Λ, otherwise we
can iterate this argument for a finite number of steps since the path has to reach .
Let η1 = ηfp0 . Since Ĥ(η1) = Γ∗H, in order to have an optimal path the energy cannot
increase. Thus the unique admissible moves are the movement of the free particle at
zero cost and the attachment of the particle to the cluster. We may assume that the
particle attaches to the cluster, otherwise we can iterate this argument.
In cases (1) and (2), note that η1 contains an internal angle of 53π, thus we consider the
configuration η2 obtained from η1 by attaching the free particle to cover the internal
angle of 53π of the cluster (see Figure 1.28). Thus the energy decreases by 2U and
therefore it is possible to create a new particle without exceeding the energy value Γ∗H.
Indeed, let η3 be the configuration obtained from η2 by creating a new particle, thus
we obtain:

Ĥ(η3) = (Ĥ(η3) − Ĥ(η2)) + (Ĥ(η2) − Ĥ(η1)) + Ĥ(η1)

= Γ∗H +∆− 2U < Γ∗H.
(6.2.23)

From now on the path proceeds as the reference path ω∗ without exceeding the energy
value Γ∗H. Note that the path crosses the set C(A∗) in the configuration η1.
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In cases (5) and (6), since η1 contains an internal angle of 53π, it is possible that the
free particle attaches to the cluster at cost −2U. If this occurs, we can derive (6.2.23)
as before, but we show that now it is not possible to reach without exceeding Γ∗H
unless the path reaches a configuration η0 as in cases (1) or (2). Any side s of EB5(r

∗),
other than the longest, has length r∗ + 1, so the bar B with the larger base r∗ + 1 has
cardinality ` = 2r∗ − 1. We can write

ω = ( , ..., η̃, ..., η0, η1, ..., ηi` , ..., ηi`+1 , ..., ηi`+2 , η̄, ..., ), (6.2.24)

where η̃ = EB5(r
∗), η0 and η1 are as above, ηi` is the configuration obtained after

filling the new bar B and creating a free particle, ηi`+1 is the configuration obtained
from ηi` by attaching the free particle and afterwards creating another free particle,
and ηi`+2 is the configuration obtained from ηi`+1 by attaching the free particle to the
cluster. Finally, let η̄ the configuration obtained from ηi`+2 by creating a free particle.
Thus we obtain the following contradiction:

Ĥ(η̄) = (Ĥ(η̄) − Ĥ(ηi`+2)) + (Ĥ(ηi`+2) − Ĥ(ηi`+1)) + (Ĥ(ηi`+1) − Ĥ(ηi`))

+(Ĥ(ηi`) − Ĥ(η1)) + Ĥ(η1)

= ∆−U+ (∆−U) + ((2r∗ − 3)∆+ (4− 3r∗)U) + Γ∗H > Γ
∗
H.

(6.2.25)

Therefore, starting from the configuration η1, after attaching the protuberance at cost
−2U the path cannot sequentially create and attach a particle to the cluster: this
follows from (6.2.25). Thus the path has to further lower the energy before reaching the
configuration ηi`+2 . If the path reaches a configuration ξ such that n(ξ) = 0, i.e., ξ has
no free particle, a free particle has been attached and the energy lowered by 2U at most,
but this does not suffice due to (6.2.25). But there are no moves that further lower the
energy. If the path reaches a configuration ξ such that n(ξ) = 1, then the unique way
to lower the energy is to attach the free particle at cost −2U or −U, but again this does
not suffice due to (6.2.25). Since the path ω has to reach and therefore the number of
particles has to increase, the unique possibility in order to have an optimal path is that
the path ω comes back to the configuration η0. Thus, we are done as claimed before.
If the particle attaches at cost −U, motions of particles at cost U can take place. The
unique possibility to first move a particle at cost U is to attach it to the elementary
rhombus (see Figure 1.23(a)), otherwise it is possible to move the last attached protu-
berance, but in this case we can iterate the argument. All the configurations that are
crossed during these motions have energy either Γ∗H or Γ∗H −U. Since the energy has to
further lower in order to create a new particle and reach , the unique possibility is to
detach a protuberance at cost U and attach it to cover the unique internal angle of 53π
(see Figure 1.23(b)). Thus, we can argue as before for cases (5) and (6).
In cases (3), (4) and (7) note that the configuration η1 does not contain an internal angle
of 53π, thus the free particle can attach only at cost −U. Let η2 be the configuration
obtained from η1 by attaching the free particle to the cluster at cost −U, thus Ĥ(η2) =
Γ∗H −U. Note that now the unique admissible moves are those at cost U at most, thus
it is not possible to create a new particle before further lowering the energy.
In cases (3) and (7), since the path has to reach , the unique possibility is to move
a protuberance T in such a way it forms an angle of 53π with another protuberance.
If the two protuberances in configuration η0 are not on the longest side, we are left
to analyze case A for a configuration η2 as in cases (5) or (6) and therefore we can
argue as before. If the two protuberances in configuration η0 are on the longest side,
we obtain a configuration composed by a cluster as in case (1) or (2) with the addition
of a protuberance. As explained before, it is possible that motions at cost U take place.
All the configurations that are crossed during these motions have energy either Γ∗H or
Γ∗H −U. At the end of these motions, there are only the two following possibilities:
there is a unique cluster with an internal angle of 53π and either a free particle (see
Figure 1.23(d)) or a single protuberance (see Figure 1.23(c)). In the first case, the
configuration that is obtained is in C(A∗). In the latter case, since the energy has to
further lower in order to create a new particle and reach , the unique possibility is to
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detach the single protuberance at cost U and attach to the cluster at cost −2U. When
the protuberance is detached the path crosses the set C(A∗).
In case (4), if the third protuberance is attached in such a way all the three protuberances
are attached to different sides, then the unique admissible moves are detaching a
protuberance. Thus we can iterate this argument for a finite number of steps, since the
path has to reach . We are left to consider the case in which at least two protuberances
are attached to the same side. We can argue as above.
Case B. Let η1 be the configuration obtained from η0 by detaching a particle from
a cluster. Since Ĥ(η0) = Γ∗H − ∆ and the path ω has to be optimal, the energy can
increase by U at most. Thus, only a protuberance can be detached. After that, only
moves with cost 0 at most are admissible. Since the path has to reach and therefore
the free particle cannot move for infinite time at zero cost, the unique possibility is to
attach the free particle to the cluster. Thus we obtain a configuration that is analogue
to η0 and we can iterate this argument for a finite number of steps, until we come back
to case A.
Case C. Note that this case is admissible only for configurations η0 as in cases (1), (2),
(5) or (6). Since Ĥ(η0) = Γ∗H −∆ and the path ω has to be optimal, the energy can
increase by U at most.
In cases (1) or (2), starting from η0, all the configurations that can be obtained without
exceeding the energy value Γ∗H are in the set K(A∗ − 1): this directly follows from the
definition of that set given in (1.3.68) since no particle is detached from the cluster.
From now on, since the energy of the last configuration is Γ∗H −∆, it is possible either
to create a free particle, or to detach a protuberance at cost U, or to move a particle at
cost U. In the first case, we can conclude as in case A. Note that the path ω crosses the
set C(A∗) when the free particle is created. In the second case, we can conclude as in
case B. In the latter case, we can iterate this argument for a finite number of steps.
In cases (5) or (6), we can argue as for the cases (1) or (2). Indeed, the same kind of
motions can take place, but when the free particle is created, we can argue as in the
case A for η1 as in cases (5) or (6). This concludes the proof.

2. The proof of this case is similar to the previous one.

6.3 recurrence property

The goal of this section is to prove Theorem 6.1.3. Recall (3.1.6) for the definition of
stability level. The following theorem states that every configuration of X different from
and has a stability level ∆+U at most.

Proposition 6.3.1. Let η ∈ X be a configuration such that η 6∈ { , }, then Vη 6 ∆+U.

An immediate consequence of Proposition 6.3.1 is that the only configurations with a
stability level greater than ∆ +U are and , as reported in Theorem 6.1.3. The proof
of Proposition 6.3.1 is divided in two steps. First of all, in Section 6.3.1 we prove that
the configurations with peculiar geometrical properties has a stability level smaller than
or equal to ∆ + U (see Lemmas 6.3.2-6.3.7), and then in Section 6.3.2 we show that all
configurations, different from and , has a stability level smaller than or equal to ∆+U,
i.e., X∆+U \ { , } = ∅ (see Lemma 6.3.8).

6.3.1 Configurations with stability level ∆+U at most

Recall (3.1.8) for the definition of V-irreducible states. In this Section, we emphasize the
different stability level for configurations depending on their particular geometrical properties.
For the proof of the lemmas we refer to Section 6.3.3. The following lemma characterizes the
configurations in X0.

Lemma 6.3.2. Any configuration η ∈ X0 has no free particles.

In order to state the following lemmas, we need the following definition. Moreover, recall
Definition 6.2.5 for the definition of a hole.
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Z1, Z2 R1, R2

Figure 6.7 – On the left-hand side we depict an example of the cluster in a configuration of Z, while on
the right-hand side an example of the cluster in a configuration of R.

Y1, Y2

Figure 6.8 – An example of clusters in a configuration of Y.

Definition 6.3.3. Two clusters are called interacting if their lattice distance is two. Otherwise, two
clusters are called non-interacting if its lattice distance is strictly greater than 2.

Lemma 6.3.4. If a configuration σ contains a cluster with an internal angle of 13π and no free particles,
no holes and no interacting clusters, then it has a stability level smaller than or equal to U, i.e., σ 6∈ XU.

Lemma 6.3.5. If a configuration σ contains a cluster with an internal angle of 53π and no free particles,
no holes and no interacting clusters, then it has a stability level smaller than or equal to ∆, i.e., σ 6∈ X∆.

Lemma 6.3.6. If a configuration σ contains a cluster with an internal angle of 43π and no free particles,
no holes and no interacting clusters, then it has a stability level smaller than or equal to 2∆−U, i.e.,
σ 6∈ X2∆−U.

The next lemma investigates the case in which a configuration contains two interacting
clusters or a cluster with a hole.

Lemma 6.3.7. If a configuration σ contains two interacting clusters or a cluster with a hole, then it
has a stability level smaller than or equal to ∆+U, i.e., σ 6∈ X∆+U.

6.3.2 Identification of configurations in X∆+U

In Section 6.3.1, we established that the configurations with particular geometrical proper-
ties has a stability level ∆+U at most. The configurations, that do not satisfy Lemma 6.3.2 and
Lemma 6.3.7, has no free particle and no interacting clusters. Moreover, the configurations,
that do not satisfy Lemmas 6.3.4-6.3.6, contain clusters with internal angles of π and 2

3π

only. Thus, the clusters contained in these configurations have an hexagonal shape. Now,
we partition the set of remaining configurations, different from and , into three subsets
Z, R, Y and we prove that also these configurations has a stability level smaller than or equal
to ∆+U. Thus, it follows that if there exists a configuration with a stability level strictly
greater than ∆+U, then it is or .
Z is the set of configurations consisting of a single quasi–regular hexagonal cluster (see

Figure 6.7 on the left-hand side). More precisely, Z = Z1 ∪Z2, where:
— Z1 is the collection of configurations such that there exists only one cluster with shape
EBm(r) ⊂ Λ with r 6 r∗ and m ∈ {0, 1, 2, 3, 4, 5};
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j

(a)

j

(b)

j1

j2

(c)

Figure 6.9 – On the left-hand side (resp. center) we depict the site j when σ has an internal angle of 53π
(resp. 13π). On the right-hand side we depict the two sites j1, j2 when σ has an internal angle of 43π.

— Z2 is the collection of configurations such that there exists only one cluster with shape
EBm(r) ⊂ Λ with r > r∗ + 1 and m ∈ {0, 1, 2, 3, 4, 5}.

We define the set R to be the set of configurations consisting of a single hexagonal cluster
(see Figure 6.7 on the right-hand side). Formally, R = R1 ∪ R2, where:

— R1 is the collection of configurations such that there exists only one cluster with
hexagonal shape E ⊂ Λ such that it contains the greatest quasi-regular hexagon with
radius r 6 r∗;

— R2 is the collection of configurations such that there exists only one cluster with
hexagonal shape E ⊂ Λ such that it contains the greatest quasi–regular hexagon with
radius r > r∗ + 1.

The set Y contains all configurations with more than one hexagonal cluster of the types in
Z1, Z2, R1, R2 (see Figure 6.8). More precisely, we have Y = Y1 ∪ Y2, where:

— Y1 is the collection of configurations such that there exists a family of non–interacting
clusters with hexagonal shape such that it contains the greatest quasi-regular hexagon
with radius r 6 r∗;

— Y2 is the collection of configurations such that there exists a family of clusters with at
least one having hexagonal shape containing the greatest quasi–regular hexagon with
radius r > r∗ + 1.

In other words, Y1 contains a collection of clusters of the same type of those in Z1 or R1, and
Y2 contains a collection of clusters where at least one is of the same type of those in Z2 or R2.

Lemma 6.3.8. If σ ∈ Z∪ R∪ Y, then Vσ 6 ∆+U.

We refer to Section 6.3.3 for the proof of this lemma.

6.3.3 Proof of Lemmas

Proof of Lemma 6.3.2. If η has a free particle, then η is obviously 0-reducible, i.e., its stability
level is 0 and therefore η /∈ X0. Indeed, the reducing path is immediately obtained by bringing
the free particle outside Λ or attaching it to a cluster.

Proof of Lemma 6.3.4. Let σ be a configuration as in the statement and let C(σ) be a cluster
with an internal angle α = 1

3π. Let j be a site such that σ(j) = 1 and that belongs to the closed
triangular face of C(σ) intersecting its boundary in two edges (see Figure 6.9(b)). We define η
as the configuration obtained from σ by detaching the particle in j and then moving it outside
Λ. Note that it is possible to bring the particle outside Λ since σ does not contain clusters
with holes or interacting clusters. We construct a path ω : σ→ η as

ω = (σ, ξ1, ξ2, ..., ξn, η), (6.3.1)

where ξ1 is the configuration obtained from σ by moving the particle at site j in one of the
two empty nearest-neighbor sites. The cost of this move is U. Then the particle, after being
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detached, can be brought outside Λ passing through the configurations ξ2, ..., ξn, possibly
interacting with other clusters. We need to bring the particle outside Λ because the energy
does not necessarily decreases by 2U when the particle interacts with the clusters during the
motion. Note that the energy of the configurations ξ2, ..., ξn is Ĥ(ξ1) at most. Thus we obtain

Ĥ(η) − Ĥ(σ) = U−∆ < 0, (6.3.2)

where the inequality follows from the condition ∆ > U. Thus, η belongs to Iσ and Vσ 6 U.

Proof of Lemma 6.3.5. Let σ be a configuration as in the statement and let C(σ) be a cluster
with an internal angle α = 5

3π. Let j be the site at distance one to a site in C(σ) such that
σ(j) = 0 and that belongs to the closed triangular face intersecting the boundary of C(σ) in
two or more edges (see Figure 6.9(a)). We define η as the configuration obtained by σ after
creating a particle and then attaching it in the site j. Note that it is possible to bring the
particle from the boundary of Λ towards the site j since σ does not contain clusters with holes
or interacting clusters. We construct a path ω connecting σ and η as

ω = (σ, ξ1, ξ2, ..., ξn, η), (6.3.3)

where ξ1 is the configuration obtained from σ by creating a particle in ∂−Λ at cost ∆. Then,
this particle moves towards the cluster C(σ), passing through the configurations ξ2, ..., ξn,
until it is attached in the site j at cost −2U giving rise to the configuration η. Note that the
energy of the configurations ξ2, ..., ξn is Ĥ(ξ1) at most. Thus we obtain

Ĥ(η) − Ĥ(σ) = ∆− 2U < 0, (6.3.4)

where the inequality follows from ∆ < 3
2U. Thus, η belongs to Iσ and Vσ 6 ∆.

Proof of Lemma 6.3.6. Let σ be a configuration as in the statement and let C(σ) be a cluster
with an internal angle α = 4

3π. Let j1, j2 be two sites such that σ(j1) = σ(j2) = 0, d(j1, j2) = 1
and let each of them belong to one closed triangular face intersecting the boundary of C(σ) in
one edge (see Figure 6.9(c)). We define η as the configuration obtained by σ after the following
sequence of moves: creation of a particle and movement of it until it is attached in the site j1;
creation of another particle and movement of it until it is attached in the site j2. Note that it
is possible to bring particles from the boundary of Λ towards the sites j1 and j2 since σ does
not contain clusters with holes. We construct a path ω connecting σ and η as

ω = (σ, ξi1 , ξi2 , ..., ξin , ξ, ξj1 , ..., ξjm , η), (6.3.5)

where ξi1 is the configuration obtained from σ by creating a particle in ∂−Λ at cost ∆. Then,
this particle moves towards the cluster C(σ), passing through the configurations ξi2 , ..., ξin ,
until it is attached in the site j1 at cost −U giving rise to the configuration ξ. Note that the
energy of the configurations ξi2 , ..., ξin is Ĥ(ξi1) at most. The configuration ξj1 is obtained
from ξ by creating a particle in ∂−Λ at cost ∆. Then, this particle moves towards the cluster
C(σ), passing through the configurations ξj2 , ..., ξjm , until it is attached in the site j2 at cost
−2U giving rise to the configuration η. Note that the energy of the configurations ξj2 , ..., ξjm
is Ĥ(ξj1) at most. Thus we obtain

Ĥ(η) − Ĥ(σ) = 2∆− 3U < 0, (6.3.6)

where the inequality follows from ∆ < 3
2U. Thus, η belongs to Iσ and Vσ 6 2∆−U.

Proof of Lemma 6.3.7. We analyze the configuration σ starting from the clusters with minimal
distance to the boundary of Λ. If the first clusters C1(σ) and C2(σ), according to this minimal
distance, are interacting, we consider the shared vertex v := C1(σ)∩C2(σ) on the triangular
lattice, see the first and the second pictures in Figure 6.10. We let into Λ a particle and we call
σ1 this new configuration. Then this new particle moves until it is attached to v giving rise to
the configuration σ2. In this way, there are two possibilities:

(i) the triangular face of this particle shares an edge with C1(σ), an edge with C2(σ) and
contains v, see the second picture in Figure 6.10;
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Figure 6.10 – Here we represent clusters in light grey. In the first two pictures we depict two interacting
clusters C1 and C2, while in the third one (resp. fourth one) we depict an example of configuration
belonging to case 2 (resp. case 3) in the proof of Lemma 6.3.7.

(ii) the triangular face of this particle contains v and shares an edge either with C1(σ) or
C2(σ), see the first picture in Figure 6.10.

Case (i). We have

Ĥ(σ1) − Ĥ(σ) = ∆,

Ĥ(σ2) − Ĥ(σ1) = −2U
(6.3.7)

and therefore

Ĥ(σ2) − Ĥ(σ) = [Ĥ(σ2) − Ĥ(σ1)] + [Ĥ(σ1) − Ĥ(σ)] = −2U+∆ < 0. (6.3.8)

Thus, the stability level of σ in this case is Vσ = ∆.
Case (ii). We may assume without loss of generality that the triangular face T of the new

particle shares an edge with C1(σ). We have that

Ĥ(σ1) − Ĥ(σ) = ∆,

Ĥ(σ2) − Ĥ(σ1) = −U
(6.3.9)

and therefore

Ĥ(σ2) − Ĥ(σ) = −U+∆ > 0. (6.3.10)

since ∆ > U. Thus, the energy has to further lower. We define the configuration σ3 as the one
obtained from σ2 by creating a new particle. Then this particle moves towards the cluster
until it is attached close to the triangular face T in such a way it is attached also to the cluster
C2(σ). This configuration is called σ4. Thus, we have

Ĥ(σ3) − Ĥ(σ2) = ∆,

Ĥ(σ4) − Ĥ(σ3) = −2U.
(6.3.11)

It follows that

Ĥ(σ4) − Ĥ(σ) = [Ĥ(σ4) − Ĥ(σ3)] + [Ĥ(σ3) − Ĥ(σ2)]

+[Ĥ(σ2) − Ĥ(σ1)] + [Ĥ(σ1) − Ĥ(σ)]

= −3U+ 2∆ < 0

(6.3.12)

and the stability level of σ in this case is Vσ = 2∆−U.
Thus, we conclude that the stability level for a configuration with two interacting clusters

is max{∆, 2∆−U} = 2∆−U.
Next, suppose that the first clusters are not interacting. Let C(σ) be the first cluster of σ

with a hole. Consider one of the empty triangular faces in the hole that share at least an edge
with the cluster. There are three cases:

1. the empty triangular face shares three edges with the cluster;
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2. the empty triangular face shares two edges with the cluster, which we represent with
the dark grey triangular face T ′ in the third picture in Figure 6.10;

3. the empty triangular face shares only one edge with the cluster, which we represent
with the dark grey triangular face T1 in the fourth picture in Figure 6.10.

In the first case, we move the empty triangular face until it reaches the internal boundary of
the cluster. Since every triangular face in the internal boundary of the cluster shares at least
an edge with the empty triangular faces outside the cluster, then

Ĥ(η) − Ĥ(σ) 6 −U, (6.3.13)

where η is the configuration obtained from σ by exchanging the empty triangular face of the
hole with a triangular face on the internal boundary of the cluster. Thus, Vσ = 0.

In the second case, as before, we move the empty triangular face T ′ until it reaches the
internal boundary of the cluster giving rise to the configuration σ1. If σ and σ1 can be
connected via one step of the dynamics, then the energy value remains the same. Otherwise,
during the first step, the energy increases by U, indeed the empty triangular face T ′ can be
detached from the other empty triangular face by breaking two bonds and creating only a new
bond (see the third picture in Figure 6.10). Thus in both cases it holds that Ĥ(σ1) − Ĥ(σ) 6 U.
Moreover, every triangular face in the internal boundary of the cluster shares one or two
edges with the empty triangular face outside the cluster.

— If there exists a triangular face T in the internal boundary of the cluster C(σ) with two
shared edges with some empty triangular faces, then, denoting by η the configuration
obtained from σ1 by exchanging the empty triangular face of the hole with T , we have

Ĥ(η) − Ĥ(σ1) = −2U, (6.3.14)

Ĥ(η) − Ĥ(σ) = [Ĥ(η) − Ĥ(σ1)] + [Ĥ(σ1) − Ĥ(σ)] 6 −U. (6.3.15)

Thus, Vσ = U.
— Otherwise, if each triangular face in the internal boundary has only one shared edge

with an empty triangular face outside cluster, then we have

Ĥ(σ2) − Ĥ(σ1) = −U, (6.3.16)

where σ2 is the configuration obtained from σ1 by exchanging the empty triangular
face of the hole with a triangular face in the internal boundary of the cluster. Thus, we
obtain Ĥ(σ2) = Ĥ(σ), and by construction σ2 has an internal angle of 53π (see Figure
6.9(a)). We define a configuration σ3 obtained from σ2 by getting in Λ a new particle,
and we define σ4 from σ3 by moving and attaching this particle to cover the internal
angle of 53π. We have

Ĥ(σ3) − Ĥ(σ2) = ∆,

Ĥ(σ4) − Ĥ(σ3) = −2U
(6.3.17)

and therefore

Ĥ(σ4) − Ĥ(σ) = [Ĥ(σ4) − Ĥ(σ3)] + [Ĥ(σ3) − Ĥ(σ2)] + [Ĥ(σ2) − Ĥ(σ)]

6 −2U+∆ < 0.
(6.3.18)

Thus, Vσ = ∆.
In the third case, the empty triangular face T1 has only one shared edge with the cluster,

so there exists another empty triangular face T2 in the hole that is connected with T1. We
move the two empty triangular faces until they reach the internal boundary of the cluster
giving rise to the configuration σ1. If σ and σ1 can be connected via one step of the dynamics,
then the energy value increases by U. Otherwise, during the first step, the energy increases
by 2U, indeed the empty triangular face moves T1 from the other empty triangular face by
breaking two bonds (see the fourth picture in Figure 6.10). Thus in both cases we have that

Ĥ(σ1) − Ĥ(σ) 6 2U. (6.3.19)

Moreover, every triangular face in the internal boundary of the cluster shares one or two
edges with the empty triangular faces outside the cluster, and we proceed as in the previous
case.
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— If there exist two triangular faces T, T ′ in the internal boundary of the cluster C(σ)
such that they both share two edges with some empty triangular faces, then we denote
by η the configuration obtained from σ1 by exchanging the empty triangular face of
the hole with T . We have

Ĥ(η) − Ĥ(σ1) = −2U, (6.3.20)

Ĥ(η) − Ĥ(σ) = [Ĥ(η) − Ĥ(σ1)] + [Ĥ(σ1) − Ĥ(σ)] 6 0. (6.3.21)

Then, in a similar way, we move the empty triangular face T2 until the internal boundary
of the cluster in T ′. During the first step, the energy possibly increases by U as in the
second case. If we denote by η1 this configuration, then we have Ĥ(η1) − Ĥ(η) 6 U.
Moreover, T ′ has two shared edges with some empty triangular face, then, denoting by
ξ the configuration obtained from η1 by exchanging the empty triangular face of the
hole with T , we have

Ĥ(ξ) − Ĥ(η1) = −2U, (6.3.22)

Ĥ(ξ) − Ĥ(η) = [Ĥ(ξ) − Ĥ(η1)] + [Ĥ(η1) − Ĥ(η)] 6 −U. (6.3.23)

Thus, we obtain

Ĥ(ξ) − Ĥ(σ) = [Ĥ(ξ) − Ĥ(η)] + [Ĥ(η) − Ĥ(σ)] = −U (6.3.24)

and therefore by (6.3.19) it follows that Vσ = 2U.
— If there exists only one triangular face T such that it shares two edges with some

triangular face outside of the cluster, then we define the configurations σ1, η, η1 and ξ
as before. Since now Ĥ(ξ) − Ĥ(η1) = −U, we obtain Ĥ(ξ) − Ĥ(σ) = 0. By construction
ξ has an internal angle of 53π, see Figure 6.9(a). We define a configuration ξ1 obtained
from ξ by getting in Λ a new particle, and we define ξ2 as the configuration obtained
from ξ1 by moving and attaching this particle to cove the internal angle of 53π. We
have

Ĥ(ξ1) − Ĥ(ξ) = ∆,

Ĥ(ξ2) − Ĥ(ξ1) = −2U
(6.3.25)

and therefore

Ĥ(ξ2)− Ĥ(σ) = [Ĥ(ξ2)− Ĥ(ξ1)]+ [Ĥ(ξ1)− Ĥ(ξ)]+ [Ĥ(ξ)− Ĥ(σ)] = −2U+∆. (6.3.26)

Thus, by (6.3.19) Vσ = 2U.
— If each triangular face in the internal boundary has only one shared edge with an

empty triangular face outside cluster, then we have

Ĥ(σ2) − Ĥ(σ1) = −U, (6.3.27)

where σ2 is the configuration obtained from σ1 by exchanging the empty triangular
face of the hole with a triangular face T1 in the internal boundary of the cluster. Thus,
we obtain Ĥ(σ2) − Ĥ(σ) 6 U, and by construction σ2 has an internal angle of 53π
(see Figure 6.9(a)). We define a configuration σ3 obtained from σ2 by getting in Λ a
new particle, and we define σ4 as the configuration obtained from σ3 by moving and
attaching this particle to cover the internal angle of 53π. We have

Ĥ(σ3) − Ĥ(σ2) = ∆,

Ĥ(σ4) − Ĥ(σ3) = −2U
(6.3.28)

and therefore

Ĥ(σ4) − Ĥ(σ) = [Ĥ(σ4) − Ĥ(σ3)] + [Ĥ(σ3) − Ĥ(σ2)] + [Ĥ(σ2) − Ĥ(σ)]

= −U+∆ > 0.
(6.3.29)

We observe that in σ4 there is an empty triangular face as in the second case. So, we
iterate the same procedure starting from σ4. Finally we obtain for the energy a total
decreasing value t 6 (−U+ ∆) + (−2U+ ∆), thus the stability level is Vσ = ∆+U,
which is obtained in σ3.
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Figure 6.11 – We depict an example of the energy landscape between EBm
(r) and EBm−1

(r) for the
value r = 4. We highlight with a circle the maximum of the energy, which is attained in ω9.

Proof of Lemma 6.3.8. We distinguish the three cases σ ∈ Z, σ ∈ R and σ ∈ Y. Recall Definition
6.2.15 and extend it to clusters. We denote by Ω(η, η ′) the set of all the paths connecting η
and η ′.

Stability level of Z. We begin by considering the set Z1. For any configuration σ ∈ Z1 we
construct a path ω ∈ Ω(σ, Iσ ∩ (Z1 ∪ { })) that dismantles the bar on one of the shortest sides
of the quasi-regular hexagon starting from one of its corners. Starting from σ ≡ ω0 ∈ Z1,
we will define ω1 as follows. Consider a corner in one of the shortest sides of the cluster
in EBm(r), with m = 0, ..., 5 and let j be a site belonging to this corner. Define ω1 as the
configuration obtained starting from ω0 by moving the particle in j to the empty nearest
site. Since ω1 is obtained by breaking two bonds, we have Ĥ(ω1) − Ĥ(ω0) = 2U. Then,
consider ω2 as the configuration obtained from ω1 by moving the same particle outside Λ.
We observe that ω1 and ω2 are not connected via one step of the dynamics, but there exist
some configurations ξ1, ..., ξn such that (ω1, ξ1, ..., ξn,ω2) is a path with Ĥ(ξi) = Ĥ(ξj) for
all i, j ∈ {1, ..., n}. We have Ĥ(ω2) − Ĥ(ω1) = −∆. Then, we analogously define ω3 and ω4
by considering the site j1, where j1 is the other site belonging to the same corner. In this case,
when a particle is detached from the cluster defining ω3, only one bond is broken. Thus, we
have Ĥ(ω3) − Ĥ(ω2) = U and Ĥ(ω4) − Ĥ(ω3) = −∆. By iterating this procedure along the
considered side, a bar of the cluster is erased and we obtain the configuration η ≡ ωk such
that η = EBm−1

(r) for m 6= 0, otherwise η = EB5(r− 1) for m = 0. Note that k is twice the
cardinality of the bar. See Figure 6.11.

Note that if the initial configuration contains a regular hexagon with radius length one,
then the final configuration contains a trapeze composed by three particles.

In order to determine where the maximum is attained, we observe that Ĥ(ω2j) <
Ĥ(ω2j+1) for every j = 0, ..., k−22 and Ĥ(ωk) < Ĥ(ωk−1). Thus, we will find the maxi-
mum over the configuration with odd index. By (1.3.56), we have

Ĥ(ω1) − Ĥ(ω0) = 2U,

Ĥ(ω3) − Ĥ(ω0) = 3U−∆

and for every s = 2, · · · , k−42 , we have

Ĥ(ω2s+1) − Ĥ(ω2s−3) = 3U− 2∆,

Ĥ(ωk−1) − Ĥ(ωk−5) = 2U− 2∆.
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It follows that for n < k− 1 odd, n = 2s̃+ 1, we obtain

Ĥ(ωn) − Ĥ(ω0) =



∑
s=2,..,s̃
s even

[Ĥ(ω2s+1) − Ĥ(ω2s−3)] + [Ĥ(ω1) − Ĥ(ω0)] if s̃ even

∑
s=3,..,s̃
s odd

[Ĥ(ω2s+1) − Ĥ(ω2s−3)] + [Ĥ(ω3) − Ĥ(ω0)] if s̃ odd,

=

 s̃2 (3U− 2∆) + 2U if n = 2s̃+ 1 with s̃ even,
s̃−1
2 (3U− 2∆) + 3U−∆ if n = 2s̃+ 1 with s̃ odd.

(6.3.30)

Thus, for n = k− 1 we have

Ĥ(ωk−1) − Ĥ(ω0) = [Ĥ(ωk−1) − Ĥ(ωk−5)] + [Ĥ(ωk−5) − Ĥ(ω0)]

= 2U− 2∆+ k−6
4 (3U− 2∆) + 2U

= k−2
4 (3U− 2∆) +U,

(6.3.31)

where we have used that s̃ is even, indeed k− 1 = 2(2r− j) − 1 = 2s̃− 1 with j ∈ {−1,+1,+3}.
Since the result is an increasing function of n = 2s̃+ 1, comparing the three maxima, we see
that the absolute maximum is attained in ωk−5. Since k is twice the cardinality of a bar, by
Definitions 6.2.8 and 6.2.9, we have

— k = 2(2r− 1) if the initial configuration is EB1(r);
— k = 2(2r+ 1) if the initial configuration is EBm(r) for m = 2, 3, 4, 5;
— k = 2(2r+ 3) if the initial configuration is E(r+ 1).

So, by using (6.3.30) and replacing k− 5 = 2s̃+ 1 with s̃ even, we have

Φ(ω) − Ĥ(ω0) = Ĥ(ωk−5) − Ĥ(ω0) =
k− 6

4
(3U− 2∆) + 2U. (6.3.32)

Thus, Φ(ω) depends only on the value k, that is an increasing function of the radius r of the
quasi–regular hexagon. The cardinality of the longest bar among those of the quasi–regular
hexagon in a configuration in Z1 is 2r∗ + 1 (obtained by removing B5 from EB5(r

∗)), so we
choose k = 2(2r∗ + 1). Note that the maximum is not obtained for k = 2(2r∗ + 3), since
E(r∗ + 1) 6∈ Z1.

Let us check that ωk ∈ Iσ ∩ (Z1 ∪ { }). Since k 6 2(2r∗ + 1), with r∗ =
⌊

U
2(3U−2∆) − 1/2

⌋
,

and by (6.3.31), we get

Ĥ(ω0) − Ĥ(ωk) = [Ĥ(ω0) − Ĥ(ωk−1)] + [Ĥ(ωk−1) − Ĥ(ωk)]

= −k−24 (3U− 2∆) −U+∆

> −
2(2r∗+1)−2

4 (3U− 2∆) −U+∆ = δ(3U− 2∆) > 0.

(6.3.33)

Finally, by equations (6.3.32) and (6.3.33), we have

Vσ 6 Φ(ω) − Ĥ(σ) =
k− 6

4
(3U− 2∆) + 2U. (6.3.34)

Thus, we find V∗Z1 = maxσ∈Z1 Vσ by choosing k = 2(2r∗ + 1), i.e.,

V∗Z1 6 3∆− 2U. (6.3.35)

Next, we analyze the set Z2. For any configuration σ ∈ Z2 we construct a path ω ∈
Ω(σ, Iσ ∩ (Z2 ∪ { })). Starting from σ ≡ ω0 ∈ Z2, define ω1 by adding a free particle in Λ.
Let us define ω2 in the following way. Consider a corner in one of the longest sides of the
cluster in EBm(r) and let j be a site belonging to this corner. Let j1 be the site at distance one
from j such that σ(j1) = 0. We define ω2 by moving the free particle in ω1 until it reaches the
site j1. We observe that ω1 and ω2 are not connected via one step of the dynamics, but there
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exist some configurations ξ1, ..., ξn such that (ω1, ξ1, ..., ξn,ω2) is a path with Ĥ(ξi) = Ĥ(ξj)
for all i, j ∈ {1, ..., n}. Moreover, we have

Ĥ(ω1) − Ĥ(ω0) = ∆,

Ĥ(ω2) − Ĥ(ω1) = −U.

We consider j2 the site at distance one from j1 such that σ(j2) = 0 and d(j2, j ′) = 2 where
j ′ 6= j is another site of the initial cluster. The configuration ω3 is obtained from ω2 by adding
a free particle, and ω4 is obtained from ω3 by moving the free particle until it reaches the
site j2. Again, we have

Ĥ(ω3) − Ĥ(ω2) = ∆,

Ĥ(ω4) − Ĥ(ω3) = −U.

Let us define ω5 and ω6. The configuration ω5 is obtained from ω4 by adding a free particle,
and ω6 is obtained from ω5 by moving the free particle until it reaches the site j3, where j3
is the site at distance one from j2 such that σ(j3) = 0 and d(j3, j ′) = 1 where j ′ 6= j is another
site of the initial cluster. We have

Ĥ(ω5) − Ĥ(ω4) = ∆,

Ĥ(ω6) − Ĥ(ω5) = −2U.

We note that the energy has decreased by 2U, since the particle has covered an internal angle
of 53π. By iterating this procedure along the considered side, a bar is added to the initial
cluster. We obtain the configuration η ≡ ωk such that η = EBm+1

(r) for m 6= 5, otherwise
η = E(r+ 1) for m = 5. Note that the length of the path k is equal to twice the cardinality of
the bar.

In order to determine where the maximum is attained, we observe that Ĥ(ω2j) <
Ĥ(ω2j+1) for every j = 0, ..., k−22 and Ĥ(ωk) < Ĥ(ωk−1). Thus, we will find the maxi-
mum over the configuration with odd index. By (1.3.56), we have

Ĥ(ω1) − Ĥ(ω0) = ∆,

Ĥ(ω3) − Ĥ(ω0) = 2∆−U,

Ĥ(ω5) − Ĥ(ω0) = 3∆− 2U

and for every s = 3, ..., k−22 we have

Ĥ(ω2s+1) − Ĥ(ω2s−3) = 2∆− 3U.

It follows that for n > 5 odd, n = 2s̃+ 1, we obtain

Ĥ(ωn) − Ĥ(ω0) =



∑
s=3,..,s̃
s odd

[Ĥ(ω2s+1) − Ĥ(ω2s−3)] + [Ĥ(ω5) − Ĥ(ω0)] if s̃ odd,

∑
s=4,..,s̃
s even

[Ĥ(ω2s+1) − Ĥ(ω2s−3)] + [Ĥ(ω3) − Ĥ(ω0)] if s̃ even,

=

 s̃−22 (2∆− 3U) + (3∆− 2U) if n = 2s̃+ 1 with s̃ even,
s̃−1
2 (2∆− 3U) + (2∆−U) if n = 2s̃+ 1 with s̃ odd.

(6.3.36)

Since 2∆−3U < 0 and therefore the result is a decreasing function of n, the absolute maximum
is attained in ω5. Thus, we have

Φ(ω) − Ĥ(ω0) = Ĥ(ω5) − Ĥ(ω0) = 3∆− 2U. (6.3.37)
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Finally, let us check that ωk ∈ Iσ ∩ (Z2 ∪ { }). If σ ∈ Z2 \ E(r∗ + 1), then the cardinality
of the smallest bar among those of the quasi–regular hexagon in a configuration in Z2 is

kmin = 2(r∗ + 1) + 1. Since r∗ =
⌊

U
2(3U−2∆) −

1
2

⌋
and by using (6.3.36), we have

Ĥ(ω0) − Ĥ(ωk) = [Ĥ(ω0) − Ĥ(ωk−2)] + [Ĥ(ωk−2) − Ĥ(ωk)] =

=
[
k−1
2 (2∆− 3U) + (2∆−U)

]
+U−∆

= (r∗ + 1)(2∆− 3U) + (2∆−U) +U−∆ =

= −2U+ 2∆ > 0,

since ∆ > U. Thus, we deduce that

Vσ 6 Φ(ω) − Ĥ(σ) = 3∆− 2U. (6.3.38)

Now we consider E(r∗ + 1) and we note that Ĥ(E(r∗ + 1)) < Ĥ(EB1(r
∗ + 1)). Thus our path

ω is the composition of the path we have previously defined, which connects E(r∗ + 1) to
EB1(r

∗ + 1), and an additional part depending on the value of δ (recall that δ ∈ (0, 1) is such
that r∗ = U

2(3U−2∆) −
1
2 − δ). If 0 < δ < 1

2 , then we add the bar B2 as we have done above
for B1 obtaining that ω connects E(r∗ + 1) to EB2(r

∗ + 1) passing through EB1(r
∗ + 1). If

1
2 < δ < 1, then in the same manner we add the bars B2, B3, B4, B5, B6 obtaining that ω
conncets E(r∗ + 1) to EB6(r

∗ + 1) ≡ E(r∗ + 2) passing through EBi(r
∗ + 1) for any i = 2, ..., 5.

In both cases the last configuration of the new paths belongs to IE(r∗+1), indeed

Ĥ(E(r∗ + 1)) > Ĥ(EB2(r
∗ + 1)), if δ ∈ (0, 12 ),

Ĥ(E(r∗ + 1)) > Ĥ(E(r∗ + 2)), if δ ∈ (12 , 1).

Thus, using equations (6.3.36), (6.3.37) and (6.3.38), we obtain

Vσ 6

3∆− 2U+ Ĥ(EB1(r
∗ + 1)) − Ĥ(E(r∗ + 1)), for δ ∈

(
0, 12

)
,

3∆− 2U+ Ĥ(EB5(r
∗ + 1)) − Ĥ(E(r∗ + 1)), for δ ∈

(
1
2 , 1
)
,

=

3∆− 2U+ δ(3U− 2∆) < 2∆− U
2 , for δ ∈

(
0, 12

)
,

3∆− 2U+ (2δ− 1)(3U− 2∆) < ∆+U, for δ ∈
(
1
2 , 1
)

.

Thus, we find

V∗Z2 = max
σ∈Z2

Vσ 6 ∆+U. (6.3.39)

In conclusion, we have that V∗Z = max{V∗Z1 , V
∗
Z2

} 6 ∆+U.

Stability level of R. Consider the set R1. For any configuration σ ∈ R1 we construct
a path ω ∈ Ω(σ, Iσ ∩ (R1 ∪ Z1)). Starting from σ ≡ ω0 ∈ R1, let us define ω1 as follows.
Consider the corner in one of the shortest sides of the cluster and let j be a site belonging to
it. Define the configuration ω1 starting from ω0 by moving the particle in j to the nearest
empty site. Since with this move two bonds are broken, we have Ĥ(ω1) − Ĥ(ω0) = 2U. Then,
consider ω2 as the configuration obtained from ω1 by moving the same particle outside Λ.
We observe that ω1 and ω2 are not connected via one step of the dynamics, but there exist
some configurations ξ1, ..., ξn such that (ω1, ξ1, ..., ξn,ω2) is a path with Ĥ(ξi) = Ĥ(ξj) for
all i, j ∈ {1, ..., n}. We have Ĥ(ω2) − Ĥ(ω1) = −∆. Then, analogously define ω3 and ω4 by
considering the site j ′, where j ′ is the other site belonging to the same corner. In this case,
when a particle is detached from the cluster defining ω3, only one bond is loss. Thus, we
have that Ĥ(ω3) − Ĥ(ω2) = U and Ĥ(ω4) − Ĥ(ω3) = −∆. By iterating this procedure along
the shortest side, a bar of the cluster is erased and we obtain the configuration η ≡ ωl, where
l is twice the cardinality of the considered bar. We observe that the greatest value of l is
always smaller than k, where k is twice the cardinality of the greatest bar of the quasi-regular
hexagon contained in the cluster. Analogously to the case ω ∈ Z1, we have that ωl ∈ Iσ.
Thus, Vσ < 3∆− 2U and therefore

V∗R1 = max
σ∈R1

Vσ < 3∆− 2U. (6.3.40)
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Next, we consider the set R2. For any configuration σ ∈ R2 we construct a path ω ∈
Ω(σ, Iσ ∩ (R2 ∪Z2 ∪ { })). Starting from σ ≡ ω0 ∈ R2, let us define ω1 as follows. Consider
a corner in one of the shortest sides of the cluster and let j be a site belonging to it. We
distinguish two cases depending on the length of the bar ` of the shortest side.

— If the cardinality of the bar ` is smaller than 2(r∗ + 1) − 1, we define ω1 by detaching
the particle in j from the cluster. Then, we define ω2 by moving the free particle
outside Λ. Next, we consider the other site j ′ belonging to the corner of the cluster and
define ω3 and ω4 by detaching and moving the particle in j ′ outside Λ. By iterating
this procedure along the shortest side, a bar of the cluster is erased and we obtain
the configuration η ≡ ω ˜̀ , where ˜̀ = 2` is twice the cardinality of the considered bar.
Since ` < 2(r∗ + 1) − 1, we observe that the greatest value of ˜̀ is always smaller than
k, where k is twice the cardinality of the greatest bar of the quasi–regular hexagon
contained in the cluster, that is ˜̀ < k. Analogously to the case σ ∈ Z1, we have that
ω ˜̀ ∈ Iσ. Thus, Vσ < 3∆− 2U.

— If the cardinality of the bar ` is at least 2(r∗ + 1) − 1, consider the site j1 at distance one
from j and such that σ(j1) = 0. We define the configuration ω1 starting from ω0 and
by adding a free particle. Then, we define ω2 by moving the free particle in ω1 until
it reaches the site j1. Next, we consider j2 the site at distance one from j1 such that
σ(j2) = 0 and d(j2, j ′) = 2, where j ′ 6= j is another site of the initial cluster. We define
ω3 and ω4 in the following way. The configuration ω3 is obtained from ω2 by adding
a free particle in Λ, and ω4 is obtained from ω3 by moving the free particle until it
reaches the site j2. Let j3 be the site at distance one from j2 such that σ(j3) = 0 and
d(j3, j

′) = 1, where j ′ 6= j is another site of the initial cluster. We define ω5 and ω6
in the same way used before. The configuration ω5 is obtained from ω4 by adding
a free particle in Λ, and ω6 is obtained from ω5 by moving the free particle until it
reaches the site j3. By iterating this procedure along the considered side, a bar is added
to the initial cluster. Analogously to the case ω ∈ Z2, we have that ω2` ∈ Iσ since
` > 2(r∗ + 1) − 1. Thus, Vσ < ∆+U and

V∗R2 < ∆+U. (6.3.41)

In conclusion, we have that V∗R = max{V∗R1 , V
∗
R2

} < ∆+U.

Stability level of Y. First, consider the set Y1. For every configuration σ in Y1, all clusters
are non–interacting and are of the same type of those in Z1 or R1. If σ contains a cluster
that is not a quasi-regular hexagon, then we take our path to be the path that cuts a bar,
analogously to what has been done for R1. We get a configuration in Iσ ∩ Y1. Otherwise, if all
clusters are quasi-regular hexagons, then we take our path to be the path that cuts a bar of the
cluster, analogously to what has been done for Z1. We get a configuration in Iσ ∩ (Y1 ∪Z1).
So, we have

V∗Y1 = max{V∗R1 , V
∗
Z1

} < 3∆− 2U. (6.3.42)

Next, consider the set Y2. For every configuration σ in Y2, there exists at least a cluster of
the same type of those in Z2 or R2. If σ contains a cluster of the type of those in R2, i.e.,
σ contains a cluster that is not a quasi–regular hexagon, we take our path to be the path
that either cuts or adds a bar as it has been done for R2. We get a configuration in Iσ ∩ Y2.
Otherwise, if the cluster is like those in Z2, i.e., the cluster is a quasi-regular hexagon, then
we take the path that adds a bar to the quasi-regular hexagon, alike the cases encountered
when considering Z2. We get a configuration in Iσ ∩ (Y2 ∪ { }). So, we have

V∗Y2 = max{V∗R2 , V
∗
Z2

} < ∆+U. (6.3.43)

We conclude that

V∗Y = max{V∗Y1 , V
∗
Y2
} = V∗Z.
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6.3.4 Proof of Theorem 6.1.1

In this section, we identify stable and metastable states by proving Theorem 6.1.1.

Proof of Theorem 6.1.1. First, by direct computation we deduce that Ĥ( ) < Ĥ( ) if L is
sufficiently large, say L > 2r∗ + 3. Moreover, we know that Xs ⊆ XV for any V > 0. Thus,
using Theorem 6.1.3 and Proposition 6.3.1, we conclude that Xs = { }. To show that Xm = { },
we need to prove that V = Φ( , ) = Γ∗H > V

∗, with V∗ = ∆+U. This part of the proof is
analogue to that of [90, equation (3.86)].

6.3.5 Proof of Theorems 6.1.2 and 6.1.4

In this section, we give the proof of the main Theorems 6.1.2 and 6.1.4.

Proof of Theorem 6.1.2. Combining [85, Theorem 4.1], [85, Theorem 4.9], [85, Theorem 4.15],
Theorem 6.1.1 and Corollary 6.2.26, we get the claim.

Proof of Theorem 6.1.4. It follows by Proposition 6.2.27.

6.3.6 Proof of Theorem 6.1.5

We refer to (1.3.34) for the definition of cycle. To prove Theorem 6.1.5 we need [92,
Theorem 3.2], which states that every state in a cycle is visited by the process before the
exit with high probability. Using this result, to prove Theorem 6.1.5 we need to prove the
following:

1. if 0 < δ < 1
2 , then

(i) if η is a quasi–regular hexagon contained in EB4(r
∗), then there exists a cycle

C (Γ∗H) containing η and and not containing ;
(ii) if η is a quasi–regular hexagon containing EB0(r

∗ + 1), then there exists a cycle
C (Γ∗H − Ĥ( )) containing η and and not containing ;

2. if 12 < δ < 1, then
(i) if η is a quasi-regular hexagon contained in EB0(r

∗ + 1), then there exists a cycle
C (Γ∗H) containing η and and not containing ;

(ii) if η is a quasi-regular hexagon containing EB2(r
∗ + 1), then there exists a cycle

C (Γ∗H − Ĥ( )) containing η and and not containing .

Case 1. Let us start with (i). Let C (Γ∗H) be the maximal connected set containing such
that

max
η ′∈C (Γ∗H)

Ĥ(η ′) < Γ∗H.

Note that by definition C (Γ∗H) is a cycle containing and not containing since Φ( , ) =

Γ∗H. It remains to prove that η belongs to C (Γ∗H). The proof goes as follows. We construct

a path ωη, going from η to keeping the energy less than Γ∗H. This path is obtained by
erasing site by site each bar of η, as explain in the first case of the proof of Lemma 6.3.8. Let
η ∈ EBi(r) with r 6 r∗ and 0 6 i 6 5. If η /∈ EB0(r), i.e., if η is not a regular hexagon, consider

the sequence of configurations {ω̄
η,
i }i=−ī,...,−1 connecting η to the regular hexagon EB0(r)

by erasing site by site each bar. If η ∈ EB0(r), we consider this path empty. From now on, let

{ω̄
η,
i }i=0,...,r be a sequence of configurations that contain regular hexagons, starting from

EB0(r) and ending in , with radius r− i. To complete the construction we can use the same
idea applied in the construction of the reference path. More precisely, between each pair

(ω̄η,i , ω̄
η,
i+1) we can add a sequence of configurations ω̃η,i = {ω̃

η,
i,j }j=0,...,12r−6 such that

ω̃
η,
i,0 = ω̄η,i and ω̃η,i,j is obtained from ω̄

η,
i by erasing j sites for j > 0. Again, as in the

reference path, the last interpolation consists in inserting between every pair of configurations
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in ω̃η,i a sequence of configurations with a free particle in a suitable sequence of sites
connecting the boundary of Λ to the site previously occupied by the erased particle. Either
for any r < r∗ and 1 6 i 6 6 or r = r∗ and 1 6 i 6 5, we have that Ĥ(EBi−1(r)) < Ĥ(EB5(r

∗)).

Thus, by Proposition 6.2.17 for the path ωη, we obtain

max
i
Ĥ(ωη,i ) = max

r6r∗
Ĥ(EBi−1(r)) + 3∆− 2U < Γ∗H. (6.3.44)

The proof of (ii) is similar. Let C (Γ∗H − Ĥ( )) be the maximal connected set containing
such that

max
η ′∈C (Γ∗H−Ĥ( ))

Ĥ(η ′) < Γ∗H.

Again C (Γ∗H − Ĥ( )) is a cycle containing and not containing since Φ( , ) = Γ∗H. To

prove that C (Γ∗H − Ĥ( )) contains η we define a path ωη, going from η to as follows. It
is obtained first by reaching a regular hexagon shape and, from there, following the reference
path ω∗ defined in Section 6.2.2. Suppose that η ∈ EBi(r), with r > r∗ and 0 6 i 6 5. If η is
a regular hexagon, then we define ωη, as the part of the reference path going from η to

. Otherwise, we add bars to η with a mechanism similar to the time–reversal of the one
used in the construction of ωη, , until the path reaches a configuration in η ∈ EB0(r+ 1).
The remaining part of the path follows the part of the reference path ω∗ from EB0(r+ 1) to .
Since for any r > r∗, 0 6 i 6 5 and 0 < δ < 1

2 , we have that Ĥ(EBi(r)) < Ĥ(EB5(r
∗)), for the

path ωη, we obtain

max
i
Ĥ(ωη,i ) = max

r>r∗
Ĥ(EBi(r)) + 3∆− 2U < Γ∗H. (6.3.45)

Case 2. The proof is analogue to that of case 1 with the following changes. In the proof of
(i), since 12 < δ < 1, and either for any r < r∗ + 1 and 1 6 i 6 6 or for r = r∗ + 1 and i = 1, we
have that Ĥ(EBi−1(r)) < Ĥ(EB1(r

∗ + 1)). Thus, by Proposition 6.2.17 for the path ωη, we
obtain

max
i
Ĥ(ωη,i ) = max

r6r∗+1
Ĥ(EBi−1(r)) + 3∆− 2U < Γ∗H. (6.3.46)

In the proof of (ii), since either for any r > r∗ + 1 and 0 6 i 6 5 or for r = r∗ + 1 and any
2 6 i 6 5, we have that Ĥ(EBi(r)) < Ĥ(EB1(r

∗ + 1)), for the path ωη, we obtain

max
i
Ĥ(ωη,i ) = max

r>r∗+1
Ĥ(EBi(r)) + 3∆− 2U < Γ∗H. (6.3.47)

This concludes the proof.
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Part II

K AWA S A K I D Y N A M I C S : T O WA R D S T H E F U L LY
C O N S E RVAT I V E M O D E L





7D R O P L E T D Y N A M I C S O N T H E 2 – D S Q UA R E L AT T I C E

The content of this chapter is the second work in a series of three papers in which we study
a lattice gas subject to Kawasaki conservative dynamics in a large finite box Λβ ⊂ Z2 whose
volume depends on β. The initial configuration is drawn from the grand–canonical ensemble
restricted to the set of configurations where all the droplets are subcritical. Our goal is to
describe, in the metastable regime ∆ ∈ (U, 2U) and in the limit as β→∞, how and when the
system nucleates, i.e., grows a supercritical droplet somewhere in Λβ. In the first paper [62]
we showed that subcritical droplets behave as quasi–random walks. Here we use the results in
the first paper to analyse how subcritical droplets form and dissolve on multiple space–time
scales when the volume is moderately large, namely, |Λβ| = eΘβ with ∆ < Θ < 2∆−U. In the
third paper [12] we consider the setting where the volume is very large, namely, |Λβ| = eΘβ

with ∆ < Θ < Γ∗ − (2∆−U), where Γ∗ is the energy of the critical droplet in the local model
with fixed volume, and use the results in the first two works to identify the nucleation time.
We will see that in a very large volume critical droplets appear more or less independently
in boxes of moderate volume, a phenomenon referred to as homogeneous nucleation. Since
Kawasaki dynamics is conservative, we need to control non–local effects in the way droplets
are formed and dissolved. This is done via a deductive approach: the tube of typical trajectories
leading to nucleation is described via a series of events, whose complements have negligible
probability, on which the evolution of the gas consists of droplets wandering around on multiple
space-time scales in a way that can be captured by a coarse-grained Markov chain on a space of
droplets.

The outline of the chapter is as follows. In Section 7.1 we state our main theorems. Section
7.2 collects certain key tools that are needed throughout the chapter. In particular, in Section
7.2.1 we introduce key notation, in Section 7.2.2 we formulate certain regularity properties for
the initial configuration that we can impose because their failure is extremely unlikely, while
in Section 7.2.3 we group the configurations into a sequence of subsets of configurations of
increasing regularity and prove a recurrence property to these sets on an increasing sequence
of time scales. In Section 7.3.1 we state three key propositions (Propositions 7.3.1–7.3.3) that
are needed along the way. The proof of Theorems 7.1.2, 7.1.3, 7.1.5 and 7.1.6 are given in
Sections 7.3.2, 7.3.3, 7.3.4 and 7.3.5, respectively, subject to these propositions. The three
propositions are proved in Sections 7.4.1–7.4.3. The proof is based on a number of key lemmas
(Lemmas 7.4.1, 7.4.3, 7.4.5) whose proof is given in Section 7.5. This section, which uses two
more key lemmas (Lemmas 7.5.1–7.5.2), is long and difficult because it contains the main
technical hurdles of the work. These hurdles are organised into what we call the deductive
approach: the tube of typical trajectories leading to nucleation is described via a series of
events, whose complements have negligible probability, on which the evolution of the gas
consists of droplets wandering around on multiple space-time scales in a way that can be captured
by a coarse-grained Markov chain on a space of droplets. Finally, Appendices 7.A and 7.B
provide additional computations that are needed in the chapter: environment estimates that
exclude non-regular configurations, respectively, large deviation estimates for certain events
that come up in the deductive approach.

7.1 main results

7.1.1 Definitions and notations

In order to state our main results, we need to introduce some definitions and notations.
First, recall (1.3.74) and (1.3.76) for the definition of the set R ′ and the time horizon T? we are
interested in, respectively. To rigorously define the collection of local boxes, we proceed as
follows. We denote by dist(·, ·) the distance associated with the `∞–norm on R2:

‖ · ‖∞ : (x, y) ∈ R2 7→ |x| ∨ |y|. (7.1.1)

219



220 droplet dynamics on the 2–d square lattice

Following [64], we introduce a map g5 as an iterative map that merges into single rectangles
those rectangles that have distance < 5 between them, while we leave the other rectangles
unchanged. (We refer to (7.2.6) for the precise definition.) At any time t > 0, we require that
the collection of the k(t) local boxes Λ̄(t) = (Λ̄i(t))16i6k(t) satisfy the following conditions
associated with ηt = X(t):

b1 . Λ(t) = ∪16i6k(t)Λ̄i(t) contains all the sleeping particles.

b2 . For all 1 6 i 6 k(t), Λ̄i(t) contains at least one sleeping particle.

b3 . For all 1 6 i 6 k(t), all particles in the restriction η̄i(t) of ηt to Λ̄i(t) are either free or at
distance > 1 from the internal border of Λ̄i(t).

b4 . For all 1 6 i, j 6 k(t) with i 6= j, dist(Λ̄i(t), Λ̄j(t)) > 5.

Definition 7.1.1. The collection of boxes Λ̄(t) = (Λ̄i(t))16i6k(t) is constructed as follows. At time
t = 0, consider the collection S̄(0) of 5× 5 boxes centered at the clusterised particles, and define
Λ̄(0) = g5(S̄(0)) \ Λ̄

∗(0), where Λ̄∗(0) denotes the collection of boxes belonging to g5(S̄(0)) that
contain active particles only. Let B be the set of special times associated to boxes, refer to as boxes
special times, defined by

B =
{
t > 0 : at time t at least one of the conditions B1–B4 above is violated by Λ̄(t−)

}
. (7.1.2)

For t > 0, define Λ̄(t) as follows:
— If t ∈ B, then define the collection S̄(t) of 5× 5 boxes centered at the clusterised particles,

and define Λ̄(t) = g5(S̄(t)) \ Λ̄∗(t), where Λ̄∗(t) denotes the collection of boxes belonging to
g5(S̄(t)) that contain active particles only.

— If t /∈ B, then define Λ̄(t) = Λ̄(t−).
We will suppress the dependence on t from the notation whenever it is not relevant. See Fig. 1.30 for
an example of local boxes.

7.1.2 Key theorems: Theorems 7.1.2–7.1.3 and 7.1.5–7.1.6

• Sets and hitting times. Recall that we defined X∆+ as the set of configurations without
droplets or with droplets that are quasi–squares with `1 > 2 (and with additional regularity
conditions on the gas surrounding droplets to be specified in Definition 7.2.9). Moreover,
recall that XE is the set of configurations in X∆+ without droplets (see (7.3.1) and Definition
7.2.9). Define (τ̄k)k∈N0

as the sequence of return times in X∆+ after an active particle is seen
in Λ. Define the hitting time of the set A ⊂ Xβ for the process X as

τA(X) = inf{t > 0 : X(t) ∈ A}. (7.1.3)

Put τ̄0 = τX∆+ and, for i ∈N0, define

σ̄i+1 =

inf
{
t > τ̄i : there is an active particle in Λ(t) at time t

}
, if X(τ̄i) ∈ X∆+ \ XE,

e∆β, if X(τ̄i) ∈ XE,

(7.1.4)

and

τ̄i+1 = inf {t > σ̄i+1 : X(t) ∈ X∆+ } . (7.1.5)

Recall (1.3.78) and (1.3.79) for the definition of a quasi–square and of the parameter γ,
respectively.

• Key theorems. Theorems 7.1.2–7.1.3 and 7.1.5–7.1.6 below control the transitions between
configurations consisting of quasi–squares and free particles, the times scales on which these
transitions occur, and the most likely trajectories they follow.

(I) Our first theorem describes the typical return times to the set X∆+ .
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Theorem 7.1.2. [Typical return times] If ∆ < Θ 6 θ, then for any δ > 0, and any d and α small
enough,

PµR

(
τ̄0 > e(∆+α+δ)β, τ̄0 6 T?

)
= SES(β) (7.1.6)

and

PµR

(
e(∆−α−δ)β 6 τ̄i+1 − τ̄i 6 e(∆+α+δ)β ∀ i ∈N0 : τ̄i+1 6 T?

)
= 1− SES(β). (7.1.7)

(II) Our second theorem describes the typical update times for a configuration in X∆+ . Recall
the definition of the projection π from X∆+ to the finite space defined in (1.3.81). See Fig. 1.32.
We can define a dynamics on the space X̄∆ of sizes of quasi–squares, arranged for example
in increasing lexicographic order. For i ∈N0, we denote by (`1,i, `2,i) in QS, with `1,i > 2,
the sizes of the smallest quasi–square at time τ̄i, if any, and otherwise we set `1,i = `2,i = 0.
Define

τ̄c,i = min{τ̄k > τ̄i : π(X(τ̄k)) 6= π(X(τ̄i))}, (7.1.8)

recall (1.3.78), and recall the resistance of a configuration in XE given in (1.3.82).

Theorem 7.1.3. [Typical update times] If ∆ < Θ 6 θ, then for any δ > 0, any d and α small
enough, and any i ∈N0,

PµR

(
if τ̄c,i 6 T?, then τ̄c,i − τ̄i 6 e(r(`1,i,`2,i)+δ)β

or a coalescence occurs between τ̄i and τ̄c,i

)
= 1− SES(β) (7.1.9)

and

lim
β→∞PµR

(
if τ̄c,i 6 T?, then τ̄c,i − τ̄i > e(r(`1,i,`2,i)−δ)β

or a coalescence occurs between τ̄i and τ̄c,i

)
= 1. (7.1.10)

Remark 7.1.4. Theorem 7.1.3 states that, starting from µR and unless a coalescence occurs, for any
i ∈ N0 the projected dynamics typically remains in π(X(τ̄i)) through successive visits in X∆+ for
a time of order er(`1,i,`2,i)β. The SES error in (7.1.9) is related to an anomalously large realisation
of a geometric random variable, while an anomalously small realisation leads to an error that is only
exponentially small in (7.1.10). Note that for `1,i > `c all the quasi-squares have the same resistance
2∆−U. For the case in which X(τ̄i) has no quasi-square, its resistance r(0, 0) involves the resistance
of the empty configuration in the local model and a spatial entropy that comes from the position in Λβ
where the new droplet can appear.

(III) Our third theorem describes the typical transition of the system between two successive
visits to X∆+ conditional on the dynamics not returning to the same configuration at time
τ̄i+1. Given a configuration X(τ̄i) ∈ X∆+ , recall the definition of the typical transition π ′i
given in (1.3.83) and below. define the typical transition π ′i as follows.

Theorem 7.1.5. [Typical transitions] If ∆ < Θ 6 θ, then for any d and α small enough, and any
i ∈N0,

lim
β→∞PµR

(
if τ̄i+1 6 T?, then π(X(τ̄i+1)) ∈ π ′i

or a coalescence occurs between τ̄i and τ̄i+1

∣∣∣∣∣π(X(τ̄i+1)) 6= π(X(τ̄i))
)

= 1.

(7.1.11)

(IV) Our fourth and last theorem characterises the atypical transitions of the system, starting
from a subcritical configuration consisting of a single quasi–square, between two successive
visits to X∆+ , with no creation of new boxes and conditional on the dynamics not returning
to the same configuration at time τ̄i. To this end, given X(τ̄i) ∈ X∆+ with 2 6 `1,i < `c, we
recall that π ′′i = (`2,i, `1,i + 1) and that a box creation occurs at time t if there exists an active
particle at time t− that does not belong to Λ(t−) and falls asleep at time t.
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Theorem 7.1.6. [Atypical transitions] If ∆ < Θ 6 θ, then for any d and α small enough, and any
i ∈N0 such that X(τ̄i) ∈ X∆+ consists of a single quasi-square with 2 6 `1,i < `c,

PµR

(
if τ̄i+1 6 T?, then π(X(τ̄i+1)) = π ′′i and

no box creation occurs between τ̄i and τ̄i+1

∣∣∣∣∣π(X(τ̄i+1)) 6= π(X(τ̄i))
)

> e−[(2∆−U)−r(`1,`2)+δ]β.

(7.1.12)

Remark 7.1.7. Theorem 7.1.6 provides a lower bound for the atypical transition of ‘going against the
drift’ in the case of a subcritical quasi-square. As we will show in the follow-up paper [12], the escape
from metastability occurs via nucleation of a supercritical droplet somewhere in the box Λβ. Indeed, we
will characterise the time the dynamics needs to exit R, as well as the typical paths of configurations
visited by the wandering cluster until the formation of a large droplet. The results of the present thesis,
which are limited to the case Θ < 2∆−U− γ, will allow us to accomplish this task for larger values of
Θ, namely, Θ < Γ − (2∆−U), where Γ is the energy of the critical droplet in the local model.

Remark 7.1.8. The techniques developed in the present chapter make it possible to prove that, for any
quasi-square configuration of size `1 × `2 in X∆+ , the cluster exits any finite box centered around the
cluster with a volume that does not depend on β within a time of order er(`1,`2)β. This is the reason
why we speak of a wandering cluster. We will not state this result as a formal theorem. It is similar
to the study performed in [22], with the notable difference that the transition time in that paper is
of order e2Uβ, which is the time needed to detach a corner from a square droplet in the absence of a
surrounding gas, while in our case it is of order e∆β, which is the time needed for the arrival of a free
particle in our local boxes.

Remark 7.1.9. Kawasaki dynamics in large volumes at low temperatures was studied earlier in [36].
There, the average nucleation time was computed for a specific starting distribution called the last–
exit–biased distribution for the transition from subcritical to supercritical. The techniques employed
in that paper rely on potential theory, which is tailored to deal with hitting probabilities and hitting
times. It does not provide information on how the nucleation takes place. Since the last–exit–biased
distribution is not a good description of the metastable equilibrium, the resulting average nucleation
time is not necessarily physically realistic. However, by controlling the droplet dynamics with the
tools of the present chapter, we can show that the last–exit–biased distribution falls into the basin of
attraction of the metastable equilibrium, and that therefore the average nucleation time computed in
[36] provides an accurate description, including prefactors.

Remark 7.1.10. Kawasaki dynamics in large volumes at low temperature was also studied in [68]
(with the help of techniques developed in [22]). There, the transitions between the different ground
states are analysed in a regime where there is no pure–gas metastable state 1 and the process is started
from a large square droplet with no surrounding gas. In that setting the interaction between the gas
and the droplet, which is at the core of the present work, is largely avoided. Both [22] and [68] are
closely related to the aforementioned wandering droplet issue, about which we will say more later on.

Remark 7.1.11. It remains a challenge to describe what happens after the exit from metastability,
i.e., when the system has grown a large supercritical droplet that subsequently grows, moves around,
absorbs smaller droplets, thereby depleting the surrounding gas, etc. The fact that Kawasaki lattice-
gas dynamics is conservative represents a major hurdle. For Glauber spin-flip dynamics, which is
non-conservative, this phase of the dynamics, which is beyond metastability, has been completely
elucidated at low temperatures in [53] and partially elucidated at all subcritical temperatures in [106].
While at low temperatures the escape from metastability and the successive growth of supercritical
droplets occurs along increasingly larger Wulff shapes (up to fluctuations), these are used in [106] only
as a mathematical tool to control the average transition time via monotonicity, i.e., attractiveness. The
description of the typical transition paths for the non-conservative Glauber spin-flip dynamics at all
subcritical temperatures is still an open problem: only the Wulff shape of the critical configurations
is known, and simulations suggest that subcritical configurations are “rounder” and supercritical
configurations are “straighter”. Since the techniques used in [66] to control local relaxation times and
show the absence of memory of the transition time for Glauber dynamics at all subcritical temperatures

1. The condition n4L2e−β� 1 in [68], in the notation introduced in Section 1.3.1, reads 2(Θ−∆)+Θ−U < 0,
which, together with Θ > ∆, implies that ∆ < U: particles immediately aggregate up to gas depletion.
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do not rely on monotonicity, we might hope to be able to extend our understanding of the gas-droplet
interaction and thereby extend our control of the transition time for non-monotone Kawasaki dynamics
at higher temperatures. However, this will not be sufficient to describe the shape of evaporating
subcritical clusters in a depleted gas where critical clusters can still grow. It is also beyond the scope
of the present work, in which we analyse the gas-droplet interaction in the much simpler context of
low-temperature dynamics and are able to fully characterise the typical escape paths from metastability,
while the metastable state of Kawasaki dynamics in large volume does not look like a ground state of a
restricted dynamics.

7.2 key tools

In this section we provide some tools that are needed to prove the theorems. These tools
rely on the notion of QRWs (Quasi-Random Walks). In [62] it was shown that the active
particles of a two-dimensional lattice gas under Kawasaki dynamics at low density evolve in
a way that is close to an ideal gas. The results in [62] are formulated in the general context of
QRWs for a large class of initial conditions having no anomalous concentration of particles
for time horizons that are much larger than the typical collision time. More precisely, the
process of QRWs used to describe the ideal gas approximation consists of N labelled particles
that can be coupled to a process of N Independent Random Walks (IRWs) in such a way that
the two processes follow the same paths outside rare time intervals, called pause intervals, in
which the paths of the QRWs remain confined to small regions.

For the definition of QRWs and their construction, we refer to [62, Sections 2.2-2.4]. We
note that for the notion of sleeping and active particles to be well defined, we need to label
the particles and not work with a dynamics of configurations η ∈ Xβ only, as defined in (1.3.4).
There is flexibility in associating a particle dynamics with a configuration dynamics. In
particular, as in [62] we can allow instantaneous permutation of particles inside a given cluster.
Later we will use this flexibility by specifying a local permutation rule (see Section 7.4.3.1).
For now we only assume that such a rule has been chosen. We encourage the reader to inspect
the main properties of QRWs, which will be a key tool in the remaining part of the chapter.
In particular, we refer to [62, Theorems 3.2.3, 3.2.4, 3.2.5, 3.3.1] for the non-superdiffusivity
property and for upper and lower bounds on the spread-out property, respectively.

7.2.1 Definitions and notations

In this section we introduce some definitions and notations that will be needed throughout
the sequel.

Definition 7.2.1.
1. As in [62], α and d are two positive parameters that can be chosen as small as desired, and
λ(β) is an unbounded but slowly increasing function of β that satisfies (1.3.75). Moreover, C?

is a positive parameter that can be chosen as large as desired. Once chosen, α, d, λ and C?

are fixed. We write O(δ), O(α) and O(d) for quantities with an absolute value that can be
bounded by a constant times |δ|, |α| and |d|, for small enough values of these parameters. We
write O(δ, α, d) for the sum of three such quantities.

2. We use short-hand notation for a few quantities that depend on the old parameters∆ ∈ (32U, 2U)

and Θ ∈ (∆, 2∆−U), and on the new parameters α, d. Recall that

ε = 2U−∆, `c =
⌈U
ε

⌉
, γ = ∆−U− (`c − 2)ε, θ = 2∆−U− γ,

and
D = U+ d, ∆+ = ∆+α,

and abbreviate

S =
4∆− θ

3
−α. (7.2.1)

For C > 0, write TC for the time scale TC = eCβ.
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3. For convenience we identify a configuration η ∈ Xβ with its support supp(η) = {z ∈ Λβ :

η(z) = 1} and write z ∈ η to indicate that η has a particle at z. For η ∈ Xβ, denote by ηcl the
clusterised part of η:

ηcl = {z ∈ η : ‖ z− z ′ ‖= 1 for some z ′ ∈ η}. (7.2.2)

Call clusters of η the connected components of the graph drawn on ηcl obtained by connecting
nearest-neighbour sites that are not a singleton.

4. Denote by B(z, r), z ∈ R2, r > 0, the open ball with center z and radius r in the norm defined
in (7.1.1). The closure of A ⊂ R2 is denoted by A.

5. For A ⊂ Z2, denote by ∂−A the internal boundary of A, i.e.,

∂−A = {z ∈ A : ‖ z− z ′ ‖= 1 for some z ′ ∈ Z2 \A}. (7.2.3)

For s > 0, put

[A, s] =
⋃

z∈A
B(z, e

s
2β)∩Z2. (7.2.4)

Call A a rectangle on Z2 if there are a, b, c, d ∈ R such that

A = [a, b]× [c, d]∩Z2. (7.2.5)

Write RC(A), called the circumscribed rectangle of A, to denote the intersection of all the
rectangles on Z2 containing A. Moreover, denote by R the set of all finite sets of rectangles on
Z2.

6. Given σ > 0 and S̄ = {R1, . . . , R|S|} ∈ R, two rectangles R and R ′ in S̄ are said to be in the
same equivalence class if there exists a finite sequence R1, . . . , Rk of rectangles in S̄ such that

R = R1, R ′ = Rk, dist(Rj, Rj+1) < σ ∀ 1 6 j < k.

Let C indicate the set of equivalent classes, define the map

ḡσ : S̄ ∈ R 7→
{

RC

( ⋃

j∈c
Rj

)}
c∈C

∈ R,

and let (ḡ(k)σ )k∈N0
∈ RN be the sequence of iterates of ḡσ. Define

gσ(S̄) = lim
k→∞ ḡ(k)σ (S̄). (7.2.6)

As discussed in [64], the sequence (ḡ(k)σ (S̄))k∈N0
ends up being a constant, so the limit is well

defined.

7.2.2 Environment estimates

In this section we introduce a subset of configurations X∗ ⊂ Xβ, to which we refer as
the typical environment, with the property that if our system is started from the restricted
ensemble, then it can escape from X∗ within any time scale that is exponential in β with a
negligible probability only. Boxes are square boxes, and we require that Θ > ∆. Recall (7.2.1)
for the definition of the parameter S.

Remark 7.2.2. The choice of S comes from the fact that we require the probability to have 4 particles
anywhere in a box of volume eSβ to tend to zero under the measure µR as β→∞.

Definition 7.2.3. Define

X∗ =
5⋂

j=1

X∗j , (7.2.7)
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where, for λ satisfying (1.3.75) and S given by (7.2.1),

X∗1 =
{
η ∈ Xβ : in any box of volume eθβ the number of clusters is at most λ(β)

}
,

X∗2 =

{
η ∈ Xβ :

in any box of volume eθβ the number of 4-tuples of particles in different

connected components with diameter smaller than
√

eSβ is at most λ(β)

}
,

X∗3 =

η ∈ Xβ :

in any box of volume eθβ the number of 4-tuples of particles in

different connected components with diameter smaller than
√

eAβ

is at most e(3A−4∆+θ+4α)β for any S < A < ∆+

 ,

X∗4 =

{
η ∈ Xβ :

in any box of volume e(∆+α)β the number of particles is at most e
3
2αβ

and at least e
1
2αβ

}
,

X∗5 =
{
η ∈ Xβ : in any box of volume e(∆−α

4 )β the number of particles is at most 14λ(β)
}

.

Remark 7.2.4. The exit time of X∗5 coincides with the first time Tα,λ when an anomalous concentration
event occurs ([62]). Since the QRW-estimates of [62] hold up to this time, we can use them as long as
the system stays in X∗ ⊂ X∗5.

Remark 7.2.5. The reason why we define X∗ for any Θ > ∆ (i.e., without the restriction Θ 6 θ) is
that in [12] we will need Proposition 7.2.6, which says that starting from µR the system exits X∗

within any given exponential time with SES(β) probability only. The main theorems of the present
thesis, which hold for the dynamics in a box of volume at most eθβ, with periodic boundary conditions,
immediately extend to the case where such a small box is embedded into a larger box of volume eΘβ,
with open boundary conditions, as long as the system remains in the typical environment X∗.

Recall the definition of the set R given in (1.3.71), of the set R ′ ⊃ R given in (1.3.74) and
of the time T? given in (1.3.76).

Proposition 7.2.6. PµR
(τXβ\X∗ 6 T

?) = SES(β).

Proof. Denote by At the event that the dynamics exits X∗ at time t, and by AR ′
t the event At

when the dynamics is restricted to R ′ (by ignoring jumps that would lead the dynamics out of
R ′). Given a Poisson process on R+ with rate eΘβ, denote by M(t) the number of times the
clock rings up to time t > 0, and write P to denote its law. Let (X̌k)k∈N be the the embedded
discrete-time process such that the original process (X(t))t>0 can be written as X(t) = X̌M(t).
Estimate, for δ > 0,

PµR
(∃ t < T?, At) =

∑
η∈R

µ(η)

µ(R)
Pη(∃ t < T?, At)

6 µ(R
′)

µ(R)

∑
η∈R ′

µ(η)

µ(R ′)
Pη(∃ t < T?, At)

6 µ(R
′)

µ(R)
PµR ′

(
∃ t < eC

?β, AR ′
t

)

6 µ(R
′)

µ(R)

[
P
(
M(eC

?β) > e(Θ+C?+δ)β
)

+
∑

16k<e(Θ+C?+δ)β

PµR ′ (X̌k ∈ Xβ \ X∗)
]

6 µ(R
′)

µ(R)

[
SES(β) + e(Θ+C?+δ)β

5∑
i=1

µR ′((Xi
∗)c)

]
,

where the term SES(β) comes from the Chernoff bound for a Poisson random variable, and
µR ′ stands for the grand-canonical Gibbs measure conditioned to R ′. To get the claim, note
that, because µ(R ′)/µ(R) 6 eC̄β for some C̄ > 0, it suffices to prove that µR ′((X∗i )

c) = SES(β)

for any i. This is done in Appendix 7.A.
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Remark 7.2.7. Proposition 7.2.6 allows us to work with configurations in X∗. Replacing the original
dynamics by the dynamics restricted to X∗, we can couple the two dynamics in such a way that they
have the same trajectories up to any time that is exponential in β with probability 1− SES(β).

7.2.3 Recurrence properties

In this section we group the configurations in Xβ into a sequence of subsets of configu-
rations of increasing regularity, and we prove a recurrence property of the associated Markov
processes restricted to these sets on an increasing sequence of time scales. To that end, denote by

H̄i(η̄i) = −U
∑

{x,y}∈Λ̄i(t)∗
η(x)η(y) +∆

∑
x∈Λ̄i(t)

η(x)

the local energy of η̄i = η|Λ̄i at time t inside the box Λ̄i(t), where Λ̄i(t)∗ denotes the set of
bonds in Λ̄i(t). We emphasise that, alongside the local model, we need to introduce two
additional sets, XD and XS, to control the regularity of the gas surrounding the droplets.

Remark 7.2.8. With each particle i we can associate, at any time t > 0, the time

si(t) = inf
{
s ∈ [0, t) : particle i is not free during the entire time interval [s, t]

}
, (7.2.8)

so that s∗i (t) = eDβ − (t− si(t)) is the time that particle i needs to remain not free in order to fall
asleep. By convention, for a sleeping (respectively, free) particle at time t we put s∗i (t) = 0 (respectively,
s∗i (t) = ∞). In this way we are able to characterise active and sleeping particles at any time t. In
addition, the process Y = (X(t), (s∗i (t))

N
i=1, Λ̄(t))t>0 is Markovian. In the sequel we will simply

refer to this process as the original process X = (X(t))t>0. In Section 7.4.3.1 we will consider a slight
generalisation of the process Y in which more information about particles is included, again referring to
it as the original process X.

Definition 7.2.9. For any time t > 0, given a configuration ηt = X(t) ∈ Xβ and the collection
Λ̄(t) = (Λ̄i(t))16i6k(t) of finite boxes in Λβ as in Definition 7.1.1, we say that ηt is 0-reducible
(respectively, U-reducible) if for some i the local energy of η̄i can be reduced along the dynamics with
constant Λ̄(t) without exceeding the energy level H̄i(η̄i) + 0 (respectively, H̄i(η̄i) +U). If ηt is not
0-reducible or U-reducible, then we say that ηt is 0-irreducible or U-irreducible, respectively. We define

X0 = {ηt ∈ X∗ : ηt is 0-irreducible},

XU = {ηt ∈ X0 : ηt is U-irreducible},

XD = {ηt ∈ XU : all the particles in Λ(t) are sleeping},

XS = {ηt ∈ XD : each box of volume eSβ contains three active particles at most},

X∆+ =

ηt ∈ XS :

η̄t is a union of at most λ(β) quasi-squares with

no particle inside
⋃
i[Λ̄i(t), ∆−α] except for those

in the quasi-squares, one for each local box Λ̄i(t)

 ,
where [Λ̄i(t), ∆−α] are the boxes of volume e(∆−α)β with the same center as Λ̄i(t).

Remark 7.2.10. Note that if η ∈ X∆+ and `2 = 2, then `1 = 2. Indeed, a 1× 2 dimer does not belong
to XU and therefore is not in X∆+ .

Recall that TA = eAβ for A ∈ {0,U,D, S, ∆+}. Note that we have used the index ∆+ to
define the set X∆+ , despite the fact that it explicitly depends on the quantity ∆− α. This
is needed to provide an upper bound for the return times in X∆+ , namely, the recurrence
property stated in the following proposition, which uses the usual shift operator ϑs, s > 0,
defined by ϑs(X) = X(s+ ·), so that s+ τXA ◦ ϑs = min{t > s : X(t) ∈ XA}.

Proposition 7.2.11. For all A ∈ {0,U,D, S, ∆+}, all δ > 0 and any stopping time τ,

PµR

(
τXA ◦ ϑτ > TAeδβ, τ+ τXA ◦ ϑτ 6 T?

)
= SES(β).
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To prove Proposition 7.2.11, we need the following lemma, whose proof is postponed until
after the proof of Proposition 7.2.11.

Lemma 7.2.12. Let t > 0 be the time at which an active particle p joins a cluster C with at most two
particles, and let t∗ = t+ (t1 ∧ t2) ◦ ϑt, where t1 (respectively, t2) is the first time when the cluster
C contains at least four particles (respectively, does not contain particle p anymore). The probability
that particle p falls asleep during the time interval [t, t∗] is SES(β).

Proof of Proposition 7.2.11. Let A ∈ {0,U,D, S, ∆+}. Divide the time interval [0, TAeδβ] into
e
3
4δβ intervals Ij of length TAe

δ
4β. We have

sup
η∈X∗

Pη(τXA ∧ τXβ\X∗ > TAeδβ) 6
∏

16j<e
3
4
δβ

sup
η∈X∗

Pη(τXA , τXβ\X∗ /∈ Ij)

=
(
1− inf

η∈X∗
Pη(τXA ∧ τXβ\X∗ 6 TAe

δ
4β)
)e
3
4
δβ

,

(7.2.9)

where we use the strong Markov property for the stopping time τXA . By Proposition 7.2.6, it
suffices to prove that

inf
η∈X∗

Pη(τXA ∧ τXβ\X∗ 6 TAe
δ
4β) > e−

δ
4β. (7.2.10)

In other words, for each η in X∗ we have to build a dynamical event on time scale TAe(δ/4)β

and with probability at least e−(δ/4)β such that the final configuration is in XA, provided
our system does not exit X∗. This is a standard estimate for metastable systems at low
temperature, which has been carried out in full detail for a simplified version of our model
[75]. Here we indicate the differences with respect to the earlier work.

To build XA, we used Λ(t) = ∪16i6k(t)Λ̄i(t), the connected components of which
form our box collection Λ̄(t). For A 6 S we use another box collection Λ̄ ′(t) such that
Λ ′(t) = ∪16i6k ′(t)Λ̄ ′i(t), for which Λ̄ ′i(t), 1 6 i 6 k ′(t), are the connected components of
Λ ′(t), and such that Λ(t) ⊂ Λ ′(t) for all t. As a consequence, the associated X ′A is contained
in XA. We need to consider this new collection Λ̄ ′(t) in order to avoid the creation of new local
boxes when some particle outside of Λ̄(t) falls asleep before time TAeδβ. The construction of
Λ̄ ′(t) is analogous to that in Definition 7.1.1, but now without removing the collection Λ̄∗(t),
t > 0, i.e., the boxes without sleeping particles, and by redefining the boxes at time t when
at least one of the conditions B1’, B3 and B4 is violated by Λ̄ ′(t−), with B1’ being defined
as B1 but referring to clusterised particles instead of sleeping particles. In this way the new
collection satisfies conditions B1’, B3 and B4 for any t > 0.

• Case A = 0: Consider Λ ′(0), which contains all the clusterised particles at time 0 and is such
that all particles outside Λ ′(0) are initially free. Let τc be the first time when two of these
free particles collide, or one of them enters Λ ′(0). By [64, Proposition 3.1.1 and Theorem 1],
the probability that τc > eδβ when starting from a configuration in X∗ is larger than e−δβ for
β large enough. Conditionally on this event, and as long as no clusterised particle in Λ ′(0) is
at distance one from the internal border of Λ ′(0), the dynamics inside Λ ′(0) is independent
from that outside. By construction, there are at least two particles in each Λ̄i(0). By grouping
them we can perform within time eδβ the 0-reduction in Λ̄ ′(0) with a non-exponentially
small probability, as in [75]: the only difference is that we are not working with a box Λ̄(0) of
a bounded size but of a slowly growing size. However, we can deal with this box as in [62,
Appendix A].

• Case A = U: We can proceed in the same way, except for the fact that to reach a U-irreducible
configuration we may have to move some particle outside Λ ′(0). This happens for example
when starting with a protuberance on a quasi-square (see [75]). We set

Λ̃ = {ζ ∈ Λβ : ∃ x ∈ Λ ′(0), ||ζ− x|| 6 2}

and to build the reduction event we ask that each free particle in Λβ \ Λ̃ remains free, without
entering Λ̃, for a time TUeδβ. We also ask that each free particle in Λ̃ \Λ ′(0) moves to
Λβ \ Λ̃ without visiting Λ ′(0) or forming a new cluster. Conditionally on this event, the local
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configuration in Λ ′(0) can be U-reduced, with respect to Λ ′(0), within time TUeδβ with a
non-exponentially small probability. Since no more than λ(β) particles can leave Λ ′(0) on the
described event, [64, Theorem 1] gives the desired bound.

• Case A = D: We can simply use the same event as in the case A = U, but built on the
slightly longer time scale TDeδβ: all clusterised particles in our U-reduced configuration fall
asleep.

• Case A = S: We use again the same event, but built on the longer time scale TSeδβ. By the
coupling of QRWs and IRWs, the probability that a given quadruple of free particles at time
TDeδβ has a diameter at most eSβ/2 at time TSeδβ is smaller than e−δβ/2, as a consequence
of the spread-out property of the simple random walk given by the difference between the
position of two of the four particles. By the non-superdiffusivity property, assuming that our
process is in XD ⊂ X∗ at time TDeδβ, we only have to consider λ(β) quadruples to check that
by time TSeδβ we have reached XS: the probability that a particle exits Λ ′(0) within time
TSeδβ � e2Uβ, and before the entrance of a new particle in Λ ′(0), is exponentially small in β.
Consequently,

Pη(X(TSeδβ) ∈ XS or τX∗ < TSeδβ) > e−
δ
4β − e−(2U−S−δ)β − λ(β)e−

δ
2β > e−

δ
3β

for β large enough.

• Case A = ∆+α: We have shown that within time TSeδβ the dynamics reaches XS or exits
X∗ with probability 1− SES(β). To build the event, we let particles enter the local boxes in
order to form quasi-squares, before emptying the annulus between [Λ(t), ∆−α] and Λ(t) for
a large enough t, while going to XS, all without the occurrence of a box creation. To control
this event, we provide an upper bound for the probability that a box creation occurs after
reaching XS. A box creation can occur with a non-SES(β) probability only when four particles
are in a box of volume e(D+δ)β at the same time t < T∆+e(δ/4)β. Indeed, starting from a
cluster consisting of two or three particles only, the probability that a particle falls asleep is
SES(β) by Lemma 7.2.12. We estimate from above the probability to have four particles in a
box of volume e(D+δ)β at the same time t < T∆+e(δ/4)β. For S < A ′ < ∆+ we can estimate
the probability that a given quadruple of particles with diameter eA

′β/2 arrives in a box of
volume e(D+δ)β within time T∆+eδβ, as follows. Divide the time interval [eA

′β, T∆+eδβ]
into intervals of length eDβ, and divide at each initial time ieDβ of such a time interval the
volume ie(D+δ)β centered at one of the particles into boxes of volume e(D+δ)β. Then, by
the non-superdiffusivity property and the spread-out property of the QRWs, we get that the
required probability is at most

eδβ
∑

eA ′β6ieDβ6e(∆+α+δ)β

(
ie(D+δ)β

e(D+δ)β

)(
e(D+δ)βeδβ

ie(D+δ)β

)4
6 e2(D−A ′)β+O(δ)β.

When X(TSeδβ) ∈ X∗, this implies that the probability to have four particles in a box of
volume e(D+δ)β within time T∆+eδβ is at most e(A

′+2D−4∆+θ+4α)βeO(δ)β, which is an
increasing function of A ′. Since A ′ < ∆+, we have that the required probability is less than
eθβe(2D−3∆)βe(4α+O(δ))β, which implies that

P
(
a box creation occurs within time T∆+eδβ

)
6 e−(3∆−2U−θ−2d)β. (7.2.11)

This is exponentially small, so that we can work with a constant number of boxes.
We can now proceed as in [75] to bring in particles from the gas in order to build quasi-

squares. One additional difficulty and one additional simplification occurs. While in [75] the
local box was fixed, which makes motion of large droplets inside impossible, here our local
boxes move with the droplets, so that there are no lacunary configuration issues. However,
we cannot use the simple random walk estimates to give lower bounds on the probability of
bringing particles from the gas into the local boxes: these have to be replaced by the strong
lower bounds of [62, Theorem 3.3.1]. Once we have obtained quasi-squares only in Λ(τ) for
some stopping time τ 6 T∆+eδβ/2, we can build the same event that was used to deal with
A = S to empty the annulus [Λ(τ), ∆− α] \Λ(τ) without moving the boxes anymore while
going back to XS.
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Proof of Lemma 7.2.12. Suppose that two active particles join together. Divide the time interval
[0, eDβ] into e

3
4dβ intervals of length e(U+d

4 )β. We have

P
(
a particle is detached within time e(U+d

4 )β
)
> e−

d
4β

and so by the Markov property the probability to have a particle falling asleep is at most

(1− e−
d
4β)e

3
4
dβ

= SES(β). The case in which three active particles join together can be treated
similarly.

7.3 proof of theorems

Section 7.3.1 lists three key propositions that provide bounds on the probability of transi-
tions between configurations consisting of a single quasi-square and free particles. The proofs
of these propositions are deferred to Section 7.4. Sections 7.3.2–7.3.5 use the propositions to
prove Theorems 7.1.2–7.1.6, respectively.

The pure gas state is defined as

XE := {η ∈ X∆+ : η has no quasi-square}. (7.3.1)

7.3.1 Key propositions: Propositions 7.3.1–7.3.3

Recall the definition of π(η0) ∈ X̄∆, η0 ∈ X∆+ , given in Section 7.1. Denote by (`1, `2) ∈ QS
with `1 > 2 the dimensions of the smallest quasi-square, if any, otherwise set `1 = `2 = 0.
Define the projections π ′, π ′′ ∈ X̄∆ similarly to the projections π ′i, π

′′
i defined in Section 7.1.

We start by giving a lower bound for the probability that the dynamics, starting from η0 ∈
X∆+ , has a projection that is distinct from π(η0) at time τ̄1 without exiting the environment
X∗.

Proposition 7.3.1. Assume that ∆ < Θ 6 θ. If η0 ∈ X∆+ , then for any δ > 0,

Pη0

(
π(X(τ̄1)) 6= π(η0) or a coalescence

occurs before τ̄1 or τ̄1 > τXβ\X∗

)
> e−[r(`1,`2)−∆+O(α,d,δ)]β.

The proof of Proposition 7.3.1 is given in Section 7.4.1.
We next give a lower bound on the probability that the dynamics, starting from η0 ∈ X∆+

consisting of a single subcritical quasi-square, at time τ̄1 reaches a configuration X(τ̄1) such
that π(X(τ̄1)) = π ′′ without exiting the environment X∗ and no box creation occurs before τ̄1.

Proposition 7.3.2. Assume that ∆ < Θ 6 θ. If η0 ∈ X∆+ consists of a single `1 × `2 quasi-square
with 2 6 `1 < `c, then for any δ > 0,

Pη0

(
π(X(τ̄1)) = π

′′ and no box creation

occurs before τ̄1, or τ̄1 > τXβ\X∗

)
> e−[∆−U+O(α,d,δ)]β.

The proof of Proposition 7.3.2 is given in Section 7.4.2.
We finally provide upper bounds on the probability that typical and atypical transitions

occur.

Proposition 7.3.3. Assume that ∆ < Θ 6 θ.
(1) If η0 ∈ X∆+ , then

lim sup
β→∞ sup

π(η0)

1

β
logPη0



π(X(τ̄1)) 6= π(η0) and a

coalescence does not occur

before τ̄1, or τ̄1 > τXβ\X∗


 6 −[r(`1, `2)−∆−O(α, d)]. (7.3.2)

(2) If η0 ∈ X∆+ \ XE, then

lim sup
β→∞ sup

π(η0)

1

β
logPη0



π(X(τ̄1)) /∈ {π(η0)}∪ π ′ and

a coalescence does not occur

before τ̄1, or τ̄1 > τXβ\X∗


 < −[r(`1, `2)−∆−O(α, d)]. (7.3.3)

The proof of Proposition 7.3.3 is given in Section 7.4.3.
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7.3.2 Proof of Theorem 7.1.2

Fix δ > 0. From Proposition 7.2.11 we deduce that the event {τ̄0 > e(∆+α+δ)β, τ̄0 6 T?}
has probability SES(β). Consider any i ∈ N0 such that τ̄i+1 6 T?. The event {τ̄i+1 − τ̄i >
e(∆+α+δ)β} has probability SES(β). Indeed, this event would imply that either σ̄i+1 or τ̄i+1
exceed T∆+eδβ, and both have probability SES(β). Indeed, in the former case, we have to
control the probability that none of the particles inside the volume [Λ̄, ∆+α] enters Λ̄ within
a time T∆+eδβ. These particles are at least e

1
2αβ in number, since the dynamics is in X∗

because of the condition τ̄i+1 6 T?. Hence this probability is SES(β) by the strong lower
bounds associated with the spread-out property of QRWs (see [62, Theorem 3.3.1]). In the
latter case, we conclude by using Proposition 7.2.11. Also the event {τ̄i+1 − τ̄i < e(∆−α−δ)β}

has probability SES(β). Indeed, this event would imply that σ̄i+1 is at most e(∆−α−δ)β. This
event has probability SES(β) by the non-superdiffusivity property if the configuration at time
τ̄i is in X∆+ \ XE, otherwise it has probability zero by the condition σ̄i+1 = e∆β.

7.3.3 Proof of Theorem 7.1.3

For i ∈ N0, define

Ki = min
{
k ∈N : π(X(τ̄i+k)) 6= π(X(τ̄i))

}
.

Up to coalescence and exit from X∗, Proposition 7.3.1 and the first part of Proposition 7.3.3
show that Ki dominates and is dominated by a geometric random variable with success
probability of order e−(r(`1,`2)−∆)β. Together with Theorem 7.1.2, which gives uniform lower
and upper bounds on the return times τ̄j+1 − τ̄j, j ∈N0, this proves Theorem 7.1.3: the SES

error in (7.1.9) is related to an anomalously large realisation of a geometric random variable,
while an anomalously small realisation leads to an error that is only exponentially small in
(7.1.10).

7.3.4 Proof of Theorem 7.1.5

Proposition 7.3.1 and the second part of Proposition 7.3.3 prove Theorem 7.1.5 for any
i ∈ N0 such that X(τ̄i) ∈ X∆+ \ XE: these propositions provide the necessary lower and
upper bounds on the denominator and numerator of the conditional probability. Otherwise,
if X(τ̄i) ∈ XE, then instead of using Proposition 7.3.3 we conclude by using Remark 7.2.10

and arguing as in (7.2.11) to show that the probability to have more than 4 particles in a box
with volume of order eDβ is exponentially smaller than the bound obtained in Proposition
7.3.1.

7.3.5 Proof of Theorem 7.1.6

Proposition 7.3.2 and the first part of Proposition 7.3.3 prove Theorem 7.1.6: they give the
necessary upper and lower bounds on the denominator and numerator of the conditional
probability.

7.4 proof of propositions

In Section 7.4.1–7.4.3 we prove Propositions 7.3.1–7.3.3, respectively. The proof of Proposi-
tion 7.3.3 relies on three additional lemmas, whose proof is deferred to Section 7.5.

7.4.1 Proof of Proposition 7.3.1

Fix δ > 0. Since
Pη0(π(X(τ̄1)) 6= π(η0)) > Pη0(π(X(τ̄1)) = π ′),

we need to bound from below the probability that a typical transition of the dynamics on
X∆+ occurs.
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1. We start by considering the supercritical case `1 > `c. Since in this case r(`1, `2) = 2∆−U,
it suffices to exhibit a mechanism to grow within time T∆+eδβ with probability at least
e−(∆−U+O(α,d,δ))β. Within time T∆+eδβ/2 bring two particles from the gas inside one of
the volumes [Λ̄i, D− δ]. Attach the two particles in time e(D+δ)β. Complete the quasi-square
with particles from the gas. Let τ be the first time at which there are two active particles
inside one of these volumes. On the time scale we are interested in, particles can arrive inside
the box Λ, but before time τ only one can be active. Thus, by using the recurrence property
to XU, we know that this active particle can attach itslef to the quasi-square inside Λ, but it
does not feel asleep with probability 1− SES. Moreover, via the interaction with this active
particle the cluster can move, but in such a way that Λ(t) ⊂ [Λ(0), D− δ] for any t. Indeed,
any redefinition of the local box, implied by the movement of the cluster, is related to a free
particle that moves in Λ. We show that the probability that the number of these box special
times exceeds eO(α,δ)β is SES.

Since the dynamics belongs to the environment X∗, by the non-superdiffusivity property
of the QRWs we know that at most e3αβ/2 particles can interact with Λ within time T∆+eδβ.
Each particle no longer visits Λ after each box special time associated with it with a probability
lat least 1/(log exp(∆+O(α, δ))β).Thus,

P(there are more than eO(α,δ)β visits in Λ) 6
(
1−

1

(∆+O(α, δ))β

)eO(α,δ)β

= SES(β).

Thus, up to an event of probability SES, we deal with the fixed target volume [Λ(0), D− δ]. In
addition, we deal with a constant number of local boxes, since we can control the probability
that a box creation occurs within time T∆+eδβ via the estimate derived in the proof of
Proposition 7.2.11. To check that the resulting order of probability is correct, we proceed as
follows. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + e(D+δ)β], with 1 6 i <
e(∆+α−D)β. By considering Ti = ie(D+δ)β, and using the non-superdiffusivity property and
the lower bound associated with the spread-out property of the QRWs (see [62, Theorem
3.2.5(ii)]), we get

P(τ < e(∆+α+δ)β) >
∑

e(∆+α−δ)β6ie(D+δ)β6e(∆+α+δ)β

(
e(D−δ)β

ie(D+δ)βeδβ

)2
> e−[∆−U+O(α,d,δ)]β.

(7.4.1)

Let these two active particles inside [Λ(0), D− δ] at time τ attach themselves to the quasi-
square. By using the non-superdiffusivity property and the stronger, higher resolution, lower
bounds associated with the spread-out property of the QRWs, we get that this probability
is at least e−O(δ)β. Arguing in the same way, we obtain an analogous lower bound for the
probability to complete the quasi-square with particles from the gas in time T∆+eδβ/2. We
conclude by using the strong Markov property at times τ and those corresponding to each
attachment of the particles to the cluster in Λ.

2. Next consider the subcritical case `1 < `c. We start with η0 ∈ XE. Since in this case
r(`1, `2) = 4∆− 2U− θ, it suffices to exhibit a mechanism to create a 2× 2 droplet within
time T∆+eδβ with probability at least e−(3∆−2U−θ+O(α,d,δ))β. Within time T∆+eδβ/2 bring
four particles from the gas inside a box of volume e(D−δ)β. Attach two of these particles
within time e(D+δ)β. Move the other two particles at a finite distance from the dimer within
time e(U−δ/2)β. Given a fixed site x ∈ Λβ, let τ be the first time at which there are four
active particles in a box of volume e(D−δ)β centered at x. To check that the resulting order
of probability is correct, we proceed as follows. Divide the time interval [0, T∆+eδβ] into
intervals [ti, ti + e(D+δ)β] with 1 6 i < e(∆+α−D)β. By considering Ti = ie(D+δ)β, and
using the non-superdiffusivity property and the lower bound associated with the spread-out
property of the QRWs (see [62, Theorem 3.2.5(ii)]), we get

P(τ < e(∆+α+δ)β) >
∑

e(∆+α−δ)β6ie(D+δ)β6e(∆+α+δ)β

(
e(D−δ)β

ie(D+δ)βeδβ

)4
> e−3[∆−U+O(α,d,δ)]β.
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(7.4.2)

Let σ be the first time at which two among these four active particles form a dimer for the
first time at a finite distance from the site x. By using the non-superdiffusivity property and
the stronger lower bounds associated with the spread-out property of the QRWs, we get

P(σ < e(D+δ)β) >
∫ e(D+δ)β

e(D−δ)β

(
1

teδβ

)2
dt > e−[U+O(δ,d)]β. (7.4.3)

Now let the other two active particles attach themselves to the dimer formed at time σ within
time e(U−δ/2)β, so that the dimer is still present with probability 1− SES. Arguing as before,
we deduce that this probability is at least e−O(δ)β. Finally we observe that these creations
of a first cluster of sleeping particles around a given site x are disjoint events up to an event
with negligible probability, the probability of which is controlled as in (7.2.11). By summing
over all the sites x ∈ Λβ and applying the strong Markov property at the times τ, σ and those
corresponding to the attachment of the third particle to the dimer, we get the claim.

3. Finally, consider the case `1 > 2. It suffices to exhibit a mechanism to shrink within
time e(∆−α+δ)β with a probability at least e−(r(`1,`2)−∆+O(α,d,δ))β. The mechanism to
shrink is the following: detach a row of `1 particles and bring each particle outside the
volume [Λ,∆− α] within time e(∆−α/2)β. Note that at time t = 0 there are at most λ(β)/4
particles inside the volume [Λ,∆− α/4] because the dynamics starts in X∗. Thus, by the
non-superdiffusivity property it follows that, up to an event of probability SES, these are the
only particles that can enter [Λ,∆− α] within time e(∆−α/2)β. We can therefore argue as
in the proof of Proposition 7.2.11 for A = U with the following differences. For the first
`1 − 1 particles we obtain that the probability for each one of them to be detached is at
least e(−(2U−∆)−O(α,δ))β. Indeed, divide the time interval [0, e(∆−α/2)β] into intervals Si of
length eDβ, with 1 6 i < e(∆−D−α/2)β. Then the probability to detach one of these particles
is at least

e−δβ
∑

16i<e(∆−D−α/2)β

P(there is a move of cost 2U between ieDβ and (i+ 1)eDβ)

> e[−(2U−∆)−O(α,δ)]β.

After applying the strong Markov property at each of the detaching times and observing
that the probability of detaching the last particle at cost U within time e(∆−α/2)β is at
least e−O(δ)β, and also the probability that no particle is inside the annulus [Λ,∆− α] \Λ

because of the lower bounds associated with the spread-out property of the QRWs, we get
the claim.

7.4.2 Proof of Proposition 7.3.2

Fix δ > 0. Since in this case π ′′ = (`2 × (`1 + 1)), in order to get the claim it suffices to
exhibit a mechanism to grow with a probability at least e−[∆−U+O(α,d,δ)]β. The mechanism
is the same as for the supercritical case used in the proof of Proposition 7.3.1. Since now we
are interested in not having a box creation before time τ̄1, we obtain the desired lower bound
after using the estimate in (7.2.11).

7.4.3 Proof of Proposition 7.3.3

Since we need to control all the possible mechanisms to grow and shrink, the proof of
Proposition 7.3.3 is much more involved than the proofs of Propositions 7.3.1–7.3.2, and is
organised into steps. We start by considering the case η0 ∈ XE. We assume that there is a
single finite box for the starting configuration η0, namely, η0 ∈ X∆+ consisting of a single
quasi-square of size `1 × `2. Abusing notation, we refer to the current box Λ = Λ̄0 as Λ̄
instead of Λ̄0. This is needed in order to make the proof clearer. We will see later how to
derive the statement for general boxes.

The key steps in the proof are the following:



7.4 proof of propositions 233

step 1 : Introduce coloration and permutation rules (Section 7.4.3.1).

step 2 : Consider the case η0 ∈ XE (Section 7.4.3.2).

step 3 : Consider the case η0 ∈ X∆+ \ XE and `2 > 3 (Section 7.4.3.3).

step 4 : Consider the case η0 ∈ X∆+ \ XE and `2 = 2 (Section 7.4.3.4).

step 5 : Derive the statement for a general collection of finite boxes Λ̄ = (Λ̄i)i∈I (Section
7.4.3.5).

In step 1 we introduce the notion of colours for particles and their permutation rules, which are
needed in steps 2–5. In each of steps 2–4 we state a key lemma and explain how to derive the
statement of interest from it. The proofs of the lemmas are deferred to Section 7.5, which is
the technical core of the present work.

Recall that we are considering the case in which there is a single finite local box Λ̄. We
call I(n) the set of configurations η such that η̄ is of size |η̄| = n and is the solution of the
associated isoperimetric problem. We use the notation I(n)fp to indicate the presence of a
free particle in Λ̄. Moreover, we call I(0) the set of configurations for which there is no local
box Λ̄. We introduce the sequence (τk)k∈N0

of return times in XD after seeing an active
particle in Λ̄ as follows. Put τ0 = 0 and, for i ∈N0, define

σi+1 = inf
{
t > τi : there is an active particle inside Λ̄(t) at time t

}
(7.4.4)

and

τi+1 = inf {t > σi+1 : X(t) ∈ XD} . (7.4.5)

Note the difference between (7.4.4)-(7.4.5) and (7.1.4)-(7.1.5). Let ϕk be the finite-time Markov
chain ϕk = (X(τi))06i6k, and put

n = max
{
k > 0 : τk < T∆+eδβ

}
.

Finally, set ι = `c −U/ε ∈ (0, 1).

7.4.3.1 Step 1: Coloration and permutation rules

Divide the particles into active particles and sleeping particles: a notion that is related to
free particle. Define

X̂N := {(z1, . . . , zN) : zi 6= zj ∀ i, j ∈ {1, ..., N}, i 6= j},

a set of N labelled particles. We say that a particle i ∈ {1, . . . ,N} is free at time t0 > 0 if there
exists a trajectory η̂ : t ∈ [t0, t0 + T ] 7→ η̂(t) ∈ X̂N that respects the rules of the dynamics and
satisfies (see the construction carried out in [62, Section 2.2] and recall that Tα = e(∆−α)β

with α > 0)
(i) ||η̂i(t0 + T) − η̂i(t0)||2 > T

1/2
α .

(ii) ∀ t ∈ [t0, t0 + T ] : U(η̂(t))
cl = U(η̂(t0))

cl.
For t > eDβ, a particle is said to be sleeping at time t if it was not free during the entire time
interval [t− eDβ, t]. A non-sleeping particle is said to be active. By convention, prior to time
eDβ all particles are active.

• Coloration rules. These are for active particles only: sleeping particles have no color.

1. All particles in [Λ̄, ∆− δ]c are green and remain green when entering [Λ̄, ∆− δ]. Any
particle that leaves [Λ̄, ∆− δ] is colored green.

2. When a particle wakes up in Λ̄ at some time t it is colored red if the following rules are
satisfied:
(i) t = σi for some i > 0.
(ii) The particle is the only one that is active in Λ̄ at time t.
(iii) There was a move of cost 2U or two “δ-close moves” of cost U, i.e., both in the time

interval [t− eδβ, t].

3. Color yellow any particle that wakes up without being colored red.
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It follows from these rules that at time t = 0 all clusterized particles are without color, all
active particles are green, a green particle cannot change color but can only loose color, any
particle can loose its color by falling asleep, an awaking particle cannot be colored green at
a wake-up time, and a colored particle can change color (from red or yellow to green) only
when leaving [Λ̄, ∆− δ].

• Permutation rules. We couple the color rules with labelling rules by building a hierarchy
on clusterized particles in the same cluster. The higher particles in this hierarchy are the
sleeping ones, followed by yellow, then red, and finally green particles. To compare two
sleeping particles or two particles with the same color, we say that the lower one in the
hierarchy is the last aggregated particle in their shared cluster, and we break ties by some
random rule. At each time t when some particle has to be freed from a cluster, we set particle
positions to ensure that this particle is the lowest one in the cluster hierarchy at time t−. This
is compatible with the local permutation rule associated with quasi-random walks.

The reason why we prefer to release green and red particles rather than yellow particles
is that we have much less control on the latter. We also want to have to control the smallest
possible number of active particles, which is why we place sleeping particles at the highest
rank in the hierarchy, and we introduce the time aggregation rule to give more chance to fall
asleep to any particle that was about to do so.

7.4.3.2 Step 2: Starting configuration has no square: Lemma 7.4.1

Consider the case in which the starting configuration η0 ∈ X∆+ has no quasi-square,
i.e., η0 ∈ XE (recall Definition 7.2.9 and (7.3.1)). Then we need to prove the first part of
Proposition 7.3.3 only. The following lemma controls the exit of the dynamics from the pure
gas state, which corresponds to the creation of the first droplet and therefore to the creation
of a new local box.

Lemma 7.4.1. Assume that ∆ < Θ 6 θ. For η0 in XE,

lim sup
β→∞

1

β
logPη0 (a box creation occurs within time τ̄1) 6 −[3∆− 2U− θ−O(α, d)]. (7.4.6)

Remark 7.4.2. Starting from η0 ∈ XE, reaching at time τ̄1 a configuration such that π(X(τ̄1)) 6=
π(η0) implies that a box creation has occurred. Hence the first part of Proposition 7.3.3 follows from
Lemma 7.4.1.

7.4.3.3 Step 3: Starting configuration has a single large quasi-square: Lemma 7.4.3

Recall that we are considering a starting configuration η0 ∈ X∆+ consisting of a single
quasi-square of size `1 × `2 with `1 6 `2 and `2 > 3. Recall (7.4.4)-(7.4.5) and (1.3.78) for the
definition of resistance for a quasi-square of size `1 × `2.

Lemma 7.4.3. Assume that ∆ < Θ 6 θ. Let η0 ∈ X∆+ be such that its restriction η̄0 to Λ̄ is a
quasi-square of size `1 × `2 with `1 6 `2 and `2 > 3. If η0 is subcritical, i.e., `1 < `c, then we set
m = `1 − 2 and

a = γ
(1
2

1{`1<`c−1} +
1

2
1
{`1=`c−1,ι<

1
2 }

+ (1− ι)1
{`1=`c−1,ι> 12 }

)
> 0.

Let G1 be the graph represented in Fig. 7.1 and G2 the graph represented in Fig. 7.2. If η0 is
supercritical,i.e., `1 > `c, instead set m = `c − 2 and

a = (ε− γ)1
{ι< 12 }

+ γ1
{ι> 12 }

> 0.

Define the same G1 (associated with a different m), and let G2 be the graph represented in Fig. 7.3.
Then

lim sup
β→∞

1

β
logPη0 (ϕ

n escapes from G1) 6 −[r(`1, `2) −∆−O(α, d)] (7.4.7)

and

lim sup
β→∞

1

β
logPη0 (ϕ

n escapes from G2) 6 −[r(`1, `2) −∆+ a−O(α, d)]. (7.4.8)
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I(`1`2 −m+ 1)
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Figure 7.1 – The graph G1 in both the subcritical and the supercritical case.
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Figure 7.2 – The graph G2 in the subcritical case.
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Figure 7.3 – The graph G2 in the supercritical case.

The proof of Lemma 7.4.3 is given in Section 7.5.

Remark 7.4.4. Proposition 7.3.3 follows from Lemma 7.4.3 when η0 consists of a single quasi-square
with size `1× `2 and `2 > 3. First, Lemma 7.4.3 gives us information at the return times to X∆+ after
seeing an active particle in Λ̄. Indeed, note that such a return time can occur only in the time intervals
of type [τk, σk+1], because during the time intervals of type [σk, τk] the configurations that are visited
are not in XD and therefore not even in X∆+ (recall Definition 7.2.9). It is clear that a return time in
X∆+ does not necessarily coincide with a time τk, but during the time interval [τk, σk+1] the number
of particles of the isoperimetric configuration is conserved, and so the system reaches X∆+ in the same
configuration visited at time τk. Second, (7.4.7) implies the first part of Proposition 7.3.3. Starting
from η0, if π(X(τ̄1)) 6= π(η0), then ϕn has escaped from G1. Hence the chain of inequalities holds
due to (7.4.7) and we get the claim. Finally, the second part of Proposition 7.3.3 follows in the same
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way. Starting from η0, if π(X(τ̄1)) /∈ {π(η0), π
′}, then ϕn has escaped from G2. Hence the chain of

inequalities holds due to (7.4.8).

7.4.3.4 Step 4: Starting configuration has a single small quasi-square: Lemma 7.4.5

We recall that we are considering a starting configuration η0 ∈ X∆+ consisting of a single
quasi-square of size `1 × `2 with `1 6 `2 = 2. Thus, we need to consider only the case in
which η contains a 2× 2 square droplet (recall Remark 7.2.10).

Lemma 7.4.5. Assume that ∆ < Θ 6 θ. Let η0 ∈ X∆+ be such that its restriction η̄0 to Λ̄ is a 2× 2
square. Let G1 be the graph consisting of the vertex I(4) only, and define the graph G2 as

I(4)

/

I(0).

Then

lim sup
β→∞

1

β
logPη0 (ϕ

n escapes from G1) 6 −[r(2, 2) −∆−O(α, d)] (7.4.9)

and

lim sup
β→∞

1

β
logPη0 (ϕ

n escapes from G2) 6 −[r(2, 2) −∆+ 1
2γ−O(α, d)]. (7.4.10)

The proof of Lemma 7.4.5 is deferred to Section 7.5.3.

Remark 7.4.6. In order to deduce Proposition 7.3.3 from Lemma 7.4.5 in case η0 consists of a single
2× 2 square, we can argue as in Remark 7.4.4.

7.4.3.5 Step 5: Result for a general collection of finite boxes

We close by explaining how to derive Lemmas 7.4.3 and 7.4.5 when the starting con-
figuration is not such that Λ̄(0) = Λ̄0(0). First, we need to extend the definition of the
set I(n). Given a collection Λ̄(t) = (Λ̄i(t))16i<k(t) of finite boxes in Λβ, we call I(n) the
set of configurations η such that η̄ is of size

∑
16i<k(t) |η̄i| = n and is the solution of the

isoperimetric problem for a configuration with n particles and k(t) connected components.
We use the notation I(n)fp to indicate the presence of a free particle in one of the boxes.
Moreover, in Lemma 7.4.5 we need to replace the set I(0) by the set Ī(n− 4), defined as the
set of configurations for which the collection Λ̄(t) has one local box less than Λ̄(t−), and
there are n particles inside Λ̄(t−) and n− 4 particles inside Λ̄(t). This set takes into account
the dissolution of a 2× 2 square droplet at time t leading to the disappearance of one of
the local boxes. Up to any coalescence between local boxes, we can argue as in the proof of
Lemmas 7.4.3 and 7.4.5.

7.5 proof of lemmas : from large deviations to deductive approach

Section 7.5.1 shows that the proof of Lemma 7.4.1 has already been achieved. Section 7.5.2,
which is long and constitutes the main technical hurdle of the work, contains the proof of
Lemma 7.4.3 and is divided into several parts: Section 7.5.2.1 outlines the structure of the
proof, while Sections 7.5.2.2–7.5.2.4 work out the details of this proof for three cases. The
latter rely on two further lemmas, whose proof is deferred to Sections 7.5.4–7.5.5.

The structure of the argument used to achieve the proof of Lemma 7.4.3 and Lemma 7.4.5
is common. Indeed, we follow a deductive approach, in the sense that we consider a family
of large deviation events and use their intricate interrelation to estimate their respective
probabilities. In particular, starting from these large deviation events we will prove, by
induction in k, a claim P(k) of the form “if none of these events occurs, then the dynamics
does not escape from the graph in the first k steps”. This way of going about is inspired by
the point of view that the tube of typical paths is the skeleton for the metastable crossover.
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Indeed, the role of the different graphs introduced below is that they describe the temporal
configurational environment from which the dynamics cannot escape. We will control the
evolution of the dynamics in this environment via large deviation a priori estimates, and we
will need a detailed case study to be able to proceed.

7.5.1 Proof of Lemma 7.4.1

The claim is the same as the one derived in (7.2.11).

7.5.2 Proof of Lemma 7.4.3

7.5.2.1 Structure of the proof

By using the coloration and permutation rules introduced in Section 7.4.3.1, we build a
list of large deviation events, each having a cost

c(·) = − lim sup
β→∞

1

β
logP(·),

to prove by contradiction that if ϕn escapes from G1, then the union Z1 of these large
deviation events has to occur. We define another event Z2 by removing from Z1 some of
these large deviation events, resulting in a larger cost, and adding new large deviation events,
which also have a larger cost than Z1. While dealing with Z1 and G1, we can consider the
subcritical and the supercritical case simultaneously, but we must separate when dealing with
Z2 and G2. Finally, we prove that if ϕn escapes from G2, then Z2 has to occur.

In the sequel we consider three cases for escaping G1 and G2:
(I) Escape from G1.
(II) Escape from G2 in the subcritical case.
(III) Escape from G2 in the supercritical case.

7.5.2.2 Escape case (I)

• Large deviation events. Here is a list of bad events that can lead to ϕn escaping from G1
or G2, together with a lower bound on their cost. We call entrance time and exit time all times t
at which a free particle enters or leaves Λ̄(t). A special time is an entrance time, an exit time,
a wake up time, a return time τi or a boxes special time (recall (7.1.2)). Note that each σi
defined in (7.4.4) is a special time, since it is either an entrance time or a wake-up time. As
above, we say that two times t1 < t2 are δ-close if t2 − t1 < eδβ.

A : A recurrence or non-superdiffusivity property is violated within time T∆+eδβ. This event
has an infinite cost, i.e., its probability is SES.

B : There are more than e(2α+δ)β special times within time T∆+eδβ. This event has an infinite
cost.

C : Within time T∆+eδβ there is a time interval of length eδβ that contains a special time
followed by a move of cost larger than or equal to U. This event costs at least U−O(δ).

C ′ : Within time T∆+eδβ there is a time interval I of length at most eδβ that contains a move
of cost larger than or equal to U and ends with the entrance in Λ̄ of a free particle that
was outside Λ̄ during I. This event costs at least U−O(δ).

D : Within time T∆+eδβ there is a time interval of length eDβ that contains a special time
followed by a move of cost larger than or equal to 2U or two δ-close moves of cost larger
than or equal to U. This event costs at least 2U−D−O(δ).

D ′ : Within time T∆+eδβ there is a time interval I of length at most eDβ that contains a move
of cost larger than or equal to 2U or two δ-close moves of cost larger than or equal to
U, and ends with the entrance in Λ̄ of a free particle that was outside Λ̄ during I. This
event costs at least 2U−D−O(δ).

E : Within time T∆+eδβ there is a time interval [t1, t2] such that |X̄| is constant on [t1, t2],
the local energy difference H̄(η(t2)) − H̄(η(t1)) is larger than or equal to 3U, and t1 is
δ-close to some earlier special time. This event costs at least 3U−∆−α−O(δ).
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Fm+1 : There are m+ 1 times t1 < · · · < tm+1 < T∆+eδβ at which some particle is colored
red. This event costs at least (m+ 1)(2U−∆−α) −O(δ).

G : There are two red particles at a same time t < T∆+eδβ in [Λ̄,D+ δ]. This event costs at
least U− d+ ε−α−O(δ).

G ′ : There are a red and a green particles at a same time t < T∆+eδβ in [Λ̄,D+ δ]. This event
costs at least U− d−α−O(δ).

G ′4 : There are four active particles, red or green, at a same time t < T∆+eδβ in a box of
volume e(D+δ)β, or a particle that belongs to a cluster consisting of two or three active
particles only falls asleep. This event costs at least 3∆− 2U− θ+ 3α− 2d−O(δ).

H2 : There are two green particles at a same time t < T∆+eδβ in [Λ̄,D+ δ]. This event costs
at least ∆−D+α−O(δ).

Set

Z1 = A∪B∪C∪C ′ ∪D∪D ′ ∪ E∪ Fm+1 ∪G∪G ′ ∪G ′4 ∪H2, (7.5.1)

so that Zc1 implies Ac,Bc, . . . , G ′c4 , Hc2. We will prove by induction that, for all 0 6 k 6 n,

Claim P(k)P(k)P(k). If Z1 does not occur, then
(i) ϕk does not escape from G1.
(ii) A particle is painted red each time ϕk climbs along an 2U-edge of G1.
(iii) No particle is painted yellow within τk.
(iv) No box creation occurs within τk.

Property (iv) avoids the creation of new boxes within time t 6 τk. Since the cost of Z1 is
given by the smallest cost of its components A, B, . . . , we obtain

c(Z1) =

{
c(Fm+1) > r(`1, `2) −∆−O(α) −O(δ) if `1 < `c,

c(H2) > r(`1, `2) −∆−O(α, d) −O(δ) if `1 > lc,

and this will prove (7.4.7).

• Proof of P(k)P(k)P(k), 0 6 k 6 n0 6 k 6 n0 6 k 6 n. P(0) obviously holds because τ0 = 0. We prove P(k+ 1) by
assuming P(k). Let us assume that Zc1 occurs. We have to control the process X on the time
interval

[τk, τk+1] = [τk, σk+1]∪ [σk+1, τk+1].
We analyse these two intervals separately.

I The time interval [τk, σk+1]: Consider the process

∆H̄ : t ∈ [τk, σk+1) 7→ H̄(X(t)) − H̄(X(τk)).

It follows from the definition of σk+1 that |X̄(t)| does not change during the time interval
[τk, σk+1). P(k) implies, in particular,

X(τk) ∈ I(`1`2 − i) (7.5.2)

for some 1 6 i 6 m, so that X̄(τk) is a solution of the isoperimetric problem, and this implies
that ∆H̄ cannot go down below 0. Then Ec implies that ∆H̄ cannot go above 2U, and it follows
that

∆H̄(t) ∈ {0,U, 2U}, τk 6 t < σk+1.

The process ∆H̄ can therefore be seen as a succession of increases and decreases of the local
energy to some of these three values. We claim that Zc1 implies:

(i) Each increase of ∆H̄ to 2U is followed by a δ-close decrease to U or 0.
(ii) Each increase of ∆H̄ to U is followed by a δ-close decrease to 0 or a δ-close increase to
2U.

(iii) After each decrease to U, ∆H̄ has to increase to 2U within a time e(U+δ)β or to
decrease to 0 within a time eδβ.
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Indeed, (i) and (ii) follow from the recurrence property to X0 implied by Ac, while (iii) follows
from the recurrence properties to XU and X0 implied by the same event.

Now, σk+1 can be reached either via the entrance of a free particle in Λ̄ or by freeing some
particle in Λ̄. We will refer to these as the entrance and wake-up case, and we analyse them
separately.

entrance case : In this case properties (i)–(iii), C ′c and D ′c imply that ∆H̄(σ−k+1) = 0,
hence X(σ−k+1) ∈ I(`1`2 − i) with 1 6 i 6 m defined by (7.5.2). X̄(σk+1) is then made
up of an isoperimetric configuration of size `1`2 − i and a free particle, for which we
use the short-hand notation X(σk+1) ∈ I(`1`2 − i)

fp.

wake–up case : Recall (7.5.2) again, and use that Ec and i 6 m < `1 − 1 imply

H̄(X(σk+1)) 6 H̄(I(`1`2 − i)) + 2U = H̄(I(`1`2 − i− 1)) +∆.

Since a free particle has perimeter 4, we also have the reverse inequality

H̄(X(σk+1)) > H̄(I(`1`2 − i− 1)) +∆,

and so we conclude that

H̄(X(σk+1)) = H̄(I(`1`2 − i− 1)) +∆. (7.5.3)

Together with properties (i)–(iii) this implies that the waking-up particle is colored
red: the requested move of cost 2U, or two δ-close move of cost U, do not have to
be δ-close to σk+1, and it is not possible that a particle wakes up from a U-reducible
configuration that is reached without waking up from a configuration in XD. Indeed, it
is impossible to obtain an isoperimetric configuration with a free particle by detaching a
particle from an isoperimetric configuration in X0 \ XU: if the free particle is detached
from the external boundary of the configuration, then the starting configuration is not
isoperimetric, while if the particle is detached from the internal boundary, then it is not
in X0. Equation (7.5.3) also implies that X(σk+1) ∈ I(`1`2 − i− 1)

fp.

The above analysis of the time interval [τk, σk+1] requires a few concluding remarks. First,
we proved that no yellow particle can be produced during this time interval. Second, Fcm+1
together with P(k) and X(0) ∈ I(`1`2) imply that the wake-up case has to be excluded when
i = m. Third, we can conclude

X(σk+1) ∈

 I(`1`2 − j)
fp for some j ∈ {i, i+ 1} if i < m,

I(`1`2 − j)
fp with j = i if i = m.

(7.5.4)

I The time interval [σk+1, τk+1]: Ac implies that τk+1 − σk+1 < e(D+δ/2)β. From P(k)

and our previous analysis we also know that we have a red or a green particle in Λ̄ and
that no yellow particle was produced during the time interval [0, σk+1]. Therefore the non-
superdiffusivity property, Gc, G ′c and Hc2 imply that no other (colored) particle can enter Λ̄
before time τk+1.

Let us next consider the process

∆H̄ : t ∈ [σk+1, τk+1] 7→ H̄(X(t)) − H̄(X(σk+1))

and make two preliminary observations:
(i) Since there is a free particle in Λ̄, the recurrence property to X0, Cc, C ′c and the fact

that no other active particle can enter Λ̄ before τk+1 imply that ∆H̄ first has to decrease
within a time eδβ.

(ii) The recurrence property to XU, Dc and D ′c imply that before time τk+1 there will be
neither a move of cost larger than or equal to 2U, nor a succession of δ-close moves of
cost larger than or equal to U.

We now separate two complementary events, to which we will refer as the good attachment
and the exit.
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I good attachment : This occurs when ∆H̄ reaches the level −2U before the free particle
leaves Λ̄. With 1 6 j 6 m defined in (7.5.4), the local energy is equal to

H̄(I(`1`2 − j)
fp) − 2U = H̄(I(`1`2 − (j− 1)))

because j− 1 6 m− 1 < `1 − 1 and j > 0: good attachment is excluded when j = 0

because
H̄(I(`1`2)

fp) − 2U < H̄(I(`1`2 + 1)).

The recurrence property to X0, observation (ii) and the fact that no other free particle
can enter Λ̄ before time τk+1 imply that ∆H̄ can only oscillate between the levels −2U

and −U. This excludes any possibility for the active particle to leave Λ̄ before time τk+1,
and X has to reach XD by reaching XU and making the active particle fall asleep. Since
they are reached from level −2U, configurations at level −U are U-reducible. It follows
that X reaches XD at the level −2U, i.e., in I(`1`2 − (j− 1)).

I exit : This occurs when ∆H̄ does not reach the level −2U before the free particle leaves Λ̄.
Observation (i) implies that ∆H̄ first decreases to −∆ or −U. In the first case X reaches
XD in I(`1`2 − j) with j defined in (7.5.4). In the second case the recurrence property to
X0, observation (ii) and the fact that no other free particle can enter Λ̄ before τk+1 imply
that ∆H̄ can only oscillate between the levels −U and 0 before possibly going down to
−∆. Since configurations at levels −U and 0 are all U-reducible (consider the reverse
path to X(σ−k+1)), ∆H̄ must eventually go down to −∆: X reaches XD in I(`1`2 − j).

Our permutation rules now imply that no yellow particle can be produced during the time
interval [σk+1, τk+1], and we conclude that

X(τk+1) ∈

 I(`1`2 − i
′) for some i ′ ∈ {j− 1, j} if j > 0,

I(`1`2 − i
′) with i ′ = j if j = 0.

Combined with (7.5.4) and the fact that a red particle was produced if j = i+ 1, it remains
to prove P(k+ 1)-iv). But this follows from the event G ′c4 and P(k+ 1)(iii), and ends our
induction.

• Cost estimates. To complete the proof of (7.4.7), we only need to check the lower bounds for
the cost of each event that makes up Z1, for which we refer to Appendix 7.B. This concludes
Case (I).

7.5.2.3 Escape case (II): Lemmas 7.5.1–7.5.2

• Special times and large deviation events in the subcritical case. In the subcritical case,
the cost of Z1 equals the cost of Fm+1. We build Z2 by removing Fm+1 from Z1, before
adding new large deviation events. With

` ′1 = `2 − 1, ` ′2 = `1,

the proof of (7.4.7) shows that (Z1 \ Fm+1)
c implies that either ϕn does not escape from G1,

or there is a first return time τk0 such that X(τk0) ∈ I(` ′1`
′
2 + 2), and an (m+ 1)th particle is

colored red at time σk0+1. The following formula is a definition of k0:

σk0+1 is the (m+ 1)th attribution time of the red color. (7.5.5)

Note that before time τk0 no particle can be colored yellow and there are at least ` ′1`
′
2 sleeping

particles for any t ∈ [0, τk0 ]. In proving (7.4.8) we will therefore have to deal with yellow
particles. These cannot be controlled by their too low energetic cost, but they are closely
related to the notion of U-reducibility. A careful analysis of the possible trajectories between
U-reducible clusterized configurations and configurations in XD will be the key tool to control
the yellow particles. To that end we set τ̃k0 = τk0 and, for k > k0,

σ̃k+1 = inf
{
t > τ̃k : there is a free particle inside Λ̄ at time t

}
,
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and
τ̃k+1 = inf

{
t > σ̃k+1 : X(t) ∈ XD or X(t) ∈ I(` ′1`

′
2 + 1) \ XU

}
.

Note the difference between these definitions and those of the special times σi+1 and τi+1:
they are related to free particles and XD ∪ (I(` ′1` ′2 + 1) \ XU), rather than to active particles
and XD. However, (Z1 \ Fm+1)

c implies that σ̃k0+1 = σk0+1. To prove (7.4.8) we must
analyze the time intervals [τ̃k, σ̃k+1] and [σ̃k+1, τ̃k+1], just like we analyzed the time intervals
[τi, σi+1] and [σi+1, τi+1] to prove (7.4.7). We needed such an analysis for all 1 6 i < n, but
now it will turn out that it will be enough to consider 1 6 k < ñ with

ñ = min{ñ1, ñ2} (7.5.6)

and

ñ1 = max{k > k0 : τ̃k 6 T∆+eδβ},

ñ2 = min{k > k0 : X(τ̃k) ∈ I(` ′1`
′
2 + 2)}.

We will add σ̃k and τ̃k, 1 6 k 6 ñ to our set of special times.

I The main obstacle: With a pair of particles {i, j} we associate a family of special times θijk ,
k ∈ N0. Before giving the definition of these stopping times, let us explain what they will
be used for. In proving (7.4.7), we could exclude the simultaneous presence of two free
particles in Λ̄. This was done by excluding the simultaneous presence of two active particles
in [Λ̄,D+ δ] by the means of large deviation events to control red and green particles and the
inductive hypothesis to control yellow particles. In proving (7.4.8), we still need to exclude
the simultaneous presence of two free particles in Λ̄, but we have to allow the simultaneous
presence of two active particles in Λ̄. We will face this obstacle by using large deviation events
and some inductive hypothesis to exclude, on the one hand, the simultaneous presence of
three active particles in [Λ̄,D+ δ], and showing, on the other hand, that the first simultaneous
presence of two free particles i and j in Λ̄ at a time T ij would imply some large deviation
event Jij that involves the two particles i and j during a time interval [θijk , T

ij] in which i and
j are the only active particles in [Λ̄,D+ δ].

Let us now give the precise definitions for θijk and Jij. We call θij0 < θ
ij
1 < · · · the ordered

sequence of times t such that one of the following events occurs:
(i) i is clusterized in Λ̄, j is freed inside Λ̄, and there was at t− a single cluster in Λ̄ that

contained i and j.
(ii) i enters [Λ̄,D+ δ] and j is in [Λ̄,D+ δ], so that i was outside [Λ̄,D+ δ] at time t−.
(iii) i is clusterized in Λ̄, j is free in [Λ̄,D+ δ], a third particle k leaves [Λ̄,D+ δ] and there

is no other free particle in [Λ̄,D+ δ], so that k was inside [Λ̄,D+ δ] at time t−.
We call T ij the first time when particles i and j are both free in Λ̄. We say that Jij occurs if
T ij 6 T∆+eδβ and there is some θijk < T

ij such that any active particle in [Λ̄,D+ δ] during
the time interval [θijk , T

ij] is either i or j. The following lemma expresses one of the main
properties of the large deviation event Jij.

Lemma 7.5.1. If T ij 6 T:∆+eδβ, then either Jij occurs or there is a time t 6 T ij at which there are
at least three active particles inside [Λ̄,D+ δ].

The proof of Lemma 7.5.1 is deferred to Section 7.5.4.

• Large deviations events. The event B̃ in the following list contains B because we enlarge
our set of special times by adding the σ̃k, τ̃k and θijk . In the same way, C̃ and D̃ contain C and
D. The event F̃m+1 is instead contained in Fm+1 and has a larger cost.

B̃ : There are more than e(2α+δ)β special times within time T∆+eδβ. This event has an infinite
cost.

C̃ : Within time T∆+eδβ there is a time interval of length eδβ that contains a special time
followed by a move of cost larger than or equal to U. This event costs at least U−O(δ).

D̃ : Within time T∆+eδβ there is a time interval of length eDβ that contains a special time
followed by a move of cost larger than or equal to 2U or two δ-close moves of cost larger
than or equal to U. This event costs at least 2U−D−O(δ).
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G ′3 : There are three active particles, red or green, together with a particle from a cluster at
a same time t < T∆+eδβ in a box of volume e(D+δ)β, or a particle that belongs to a
cluster consisting of two or three active particles only falls asleep. This event costs at
least 3∆− 2U− θ+ 3α− 2d−O(δ).

F̃m+1 : Within time T∆+eδβ there are m+ 1 attributions of red color and there are either
an extra move of cost larger than or equal to 2U or two δ-close moves of cost larger
than or equal to U, or else the occurrence of one of the events Jij. Note that F̃m+1 =

Fm+1 ∩ (F1 ∪
⋃
i,j J

ij). This event costs at least (m+ 3
2 )(2U−∆−α) −O(δ).

I(` ′1`
′
2)

I(` ′1`
′
2)
fp

y

I(` ′1`
′
2 + 1) \ XU I(` ′1`

′
2 + 1)∩XU

I(` ′1`
′
2 + 1)

fp

2U

I(` ′1`
′
2 + 2)

Figure 7.4 – The graph G̃.

Set

Z2 = A∪ B̃∪ C̃∪C ′ ∪ D̃∪D ′ ∪ E∪ F̃m+1 ∪G∪G ′ ∪G ′3 ∪G ′4 ∪H2. (7.5.7)

Let G̃ be the graph in Fig. 7.4. Recall (7.5.5) and (7.5.6), and set

ϕ̃k = (X(τ̃k0), X(σ̃k0+1), X(τ̃k0+1), . . . , X(σ̃k), X(τ̃k)), k0 6 k 6 ñ.

We will prove by induction that, for all k0 6 k 6 ñ,

Claim P̃(k)P̃(k)P̃(k). If Z2 does not occur, then
(i) ϕ̃k does not escape from G̃.
(ii) Some particle can be colored yellow during the time interval [τ̃k0 , τ̃k], but only during the

climbing of the y-edge of G̃.
(iii) There is at most one yellow particle at each time t 6 τ̃k.
(iv) Each time 0 6 t 6 τ̃k a particle falls asleep there is no yellow particle at the first τ̃j, 1 6 j 6 k,

larger than or equal to t.
(v) For all k0 < j 6 k, if X visits XU during the time interval [σ̃j, τ̃j), then there is no red or

green particle in Λ̄ at time τ̃j.
(vi) At each time 0 6 t 6 τ̃k there are at least ` ′1`

′
2 sleeping particles.

(vii) No box creation occurs within time τ̃k.

Property (i) is the main one we are interested in. Property (iv) implies that if a particle falls
asleep when there is a yellow particle, then it is the yellow particle that falls asleep. Property
(vi) is easy to check and simplifies a few steps of the proof. We will use properties (ii)–(iv)
to control inductively the yellow particles, in particular, property (iii) will be used to prove
property (vii). Property (v) will be used to prove property (iv) with the help of the following
lemma, whose proof is deferred to Section 7.5.5.

Lemma 7.5.2. If Z2 does not occur, then, for all k 6 ñ, either X(τ̃k) ∈ XU or X(t) 6∈ XU for all
t ∈ [τ̃k, σ̃k+1).

D Before proving P̃(k), k0 6 k 6 ñ, let us show that P̃(ñ) implies for both cases ñ = ñ1 and
ñ = ñ2 that if Zc2 occurs, then ϕn cannot escape from G2.

For ñ = ñ1, since Zc2 implies that ϕ̃ñ does not escape from G̃, it suffices to prove, for all
k0 6 l 6 n, that τl = τ̃k for some k 6 ñ. We prove prove by induction on l > k0. The claim is
obvious for l = k0. If this is true for some l < n, then σ̃k+1 = σl+1 and, since ñ = ñ1, there
is a last time τ̃m∗ > σl+1 before τl+1:

τ̃m∗ = max{τ̃m 6 τl+1 : τ̃m > σl+1}.
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If X(τ̃m∗) 6∈ XU, then, by Lemma 7.5.2, τl+1 > σ̃m∗+1 and τ̃m∗ cannot be the last time
τ̃m smaller than or equal to τl+1. It follows that X(τ̃m∗) ∈ XD and, since τ̃m∗ > σl+1,
τ̃m∗ > τl+1 > τ̃m∗: the two times coincide.

For ñ = ñ2, like for ñ = ñ1, we prove that there is some k1 > k0 such that τk1 = τ̃ñ and

{τk0 , τk0+1, . . . , τk1 } ⊂ {τ̃k0 , τ̃k0+1, . . . , τ̃ñ}.

It follows that Zc2 implies that ϕk1 does not escape from G2. Since ñ = ñ2, X reaches XD at
time τ̃ñ and, since P̃(ñ)-i) implies that it does so by making some particle fall asleep, P̃(ñ)(iv)
implies that there is no yellow particle at time τk1 = τ̃ñ. Using that F̃cm+1 excludes any
(m+ 2)th attribution of the red color, we can show by induction, as in the proof of (7.4.7),
that ϕk, for k > k1, cannot escape anymore from G1, the subgraph of G2.

Since the cost of Z2 is given by the smallest cost of its components, we obtain

c(Z2) =


c(F̃m+1) > r(`1, `2) −∆+ γ

2 −O(α, d) −O(δ) if `1 < `c − 1,

c(F̃m+1) > r(`1, `2) −∆+ γ
2 −O(α, d) −O(δ) if `1 = `c − 1 and ι < 1/2,

c(H2) > r(`1, `2) −∆+ (1− ι)γ−O(α, d) −O(δ) if `1 = `c − 1 and ι > 1/2.

To prove (7.4.8) in the subcritical case, it only remains to prove P̃(ñ) and check the given cost
estimates .

• Proof of P̃(k)P̃(k)P̃(k), k0 6 k 6 ñk0 6 k 6 ñk0 6 k 6 ñ. P̃(k0)(iii) and P̃(k0)(vi) follow from the argument explained
below (7.5.5), while the other items are obvious. For k > k0, we assume P̃(k) to prove P̃(k+ 1).
We consider four cases, depending on the configuration at time τ̃k in one of the sets of G̃
ordered from right to left.

Case 1: X(τ̃k) ∈ I(` ′1`
′
2 + 2)X(τ̃k) ∈ I(` ′1`
′
2 + 2)X(τ̃k) ∈ I(` ′1`
′
2 + 2). If k 6= k0, then ñ = ñ2 = k and there is nothing to prove. We

only need to consider the case k = k0, for which σ̃k+1 = σk0+1 and the definition of σk0+1
gives X(σk0+1) ∈ I(` ′1`

′
2 + 1)

fp. The analysis of the time intervals [τk, σk+1] we gave to prove
(7.4.7) also shows that in this case no yellow particle can be produced during the time interval
[τ̃k0 , σ̃k0+1], and that there are ` ′1`

′
2 + 2 sleeping particles all along [τ̃k0 , σ̃k0+1], and ` ′1`

′
2 + 1

sleeping particles at time σ̃k0+1.
Since the free particle is colored red at time σ̃k0+1 and no yellow particle was produced

during the time interval [0, σ̃k0+1], the analysis of the time intervals [σk+1, τk+1] we gave to
prove (7.4.7) can be reproduced to prove P̃(k0 + 1). There are two differences. One difference
is that we have to distinguish between two cases at the end of the “exit case”, when reaching
an isoperimetric configuration of sleeping particles: if this configuration is U-irreducible, then
X reaches XD in I(` ′1`

′
2+ 1)∩XU, while if not, then X reaches I(` ′1`

′
2+ 1) \XU. Still, no yellow

particle was produced during the time interval [σ̃k0+1, τ̃k0+1], in which we always have
` ′1`
′
2 + 1 sleeping particles at least. The other difference is that we have to check P(k0 + 1)(v).

To do so it suffices to note that the only case for which X(τ̃k0+1) 6∈ XD is the “exit case”
for which X does not visit XU during the whole time interval [σ̃k0+1, τ̃k0+1). Property
P̃(k+ 1)(vii) follows from the events G ′c4 , G ′c3 and P̃(k+ 1)-iii).

Case 2: X(τ̃k) ∈ I(` ′1`
′
2 + 1)∩XUX(τ̃k) ∈ I(` ′1`
′
2 + 1)∩XUX(τ̃k) ∈ I(` ′1`
′
2 + 1)∩XU. In this case the main part of the analysis is that of the time

interval [τ̃k, σ̃k+1]. In particular, we will prove that X(σ̃k+1) belongs to I(` ′1`
′
2 + 1)

fp, with a
cluster made up of sleeping particles only, and there is no yellow particle at time σ̃k+1. After
that we can conclude as in Case 1.

We first note that, by the definition of τ̃k, there are only sleeping particles in Λ̄ at time τ̃k.
Therefore we study once again the process

∆H̄ : t ∈ [τ̃k, σ̃k+1) 7→ H̄(X(t)) − H̄(X(τ̃k)).

Similarly to the analysis we gave to prove (7.4.7), the events F̃cm+1 and Ac imply that the
process can only oscillate between the energy levels 0 and U, and has to go back to 0 within
a time eδβ after each increase to U. Since X(τ̃k) ∈ XU, there is no way to free any particle
without going above the energy level U. We therefore only have to consider the entrance
case. The event C ′c implies that X reaches I(` ′1`

′
2 + 1)

fp, with a cluster made up of sleeping
particles only.
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Now, if there were some yellow particle at time σ̃k+1, then by P̃(k)(ii) this should have
been produced at some earlier time σ̃k ′ < τ̃k, leaving ` ′1`

′
2 sleeping particles. Since at time τ̃k

there are ` ′1`
′
2 + 1 sleeping particles, we would get a contradiction with P̃(k)(iv). It therefore

remains to prove P̃(k+ 1)(vii), for which we can argue as before.

Case 3: X(τ̃k) ∈ I(` ′1`
′
2 + 1) \ XUX(τ̃k) ∈ I(` ′1`
′
2 + 1) \ XUX(τ̃k) ∈ I(` ′1`
′
2 + 1) \ XU. In this case, the same analysis for the time interval

[τ̃k, σ̃k+1] can be reproduced with a different conclusion. On the one hand, it is now
possible to free some particle with a move of cost U, leading to I(` ′1`

′
2)
fp at time σ̃k+1, with a

cluster of ` ′1`
′
2 sleeping particles. One yellow particle, but no more than one, can subsequently

be produced. On the other hand, it is still possible to reach I(` ′1`
′
2+ 1)

fp at time σ̃k+1, without
producing any new yellow particle, but in this case too there is a difference with respect to Case
2: it is not true anymore that all the clusterized particles in Λ̄ are necessarily sleeping at time
σ̃k+1. Indeed, we cannot exclude anymore the presence of an active particle in Λ̄ at time
τ̃k. Also we cannot exclude with the same argument the possibility of having, at time σ̃k+1,
l ′1l
′
2 + 1 sleeping particles together with a yellow free particle. We will first prove that Zc2

implies that an eventual red or green particle at time τ̃k cannot fall asleep during the time
interval [τ̃k, σ̃k+1]. Afterwards we will study the time interval [σ̃k+1, τ̃k+1] in the two cases
X(σ̃k+1) ∈ I(` ′1`

′
2 + 1)

fp and X(σ̃k+1) ∈ I(` ′1`
′
2)
fp, with a cluster of ` ′1`

′
2 sleeping particles.

A red or a green particle cannot fall asleep in the first time interval. We only have to consider
the case when there is some red or green particle i in Λ̄ at time τ̃k. Let us call τ̃l∗ the last time
τ̃l before τ̃k such that X(τ̃l) ∈ XD. Lemma 7.5.2 implies that X could not visit XU during any
time interval [τ̃j, σ̃j+1) for 1 6 l∗ < j 6 k. Let us call [σ̃j∗ , τ̃j∗) the last time interval [σ̃j, τ̃j)
after τ̃l∗ and before τ̃k in which X visited XU. We consider separately the cases in which such
an index j∗ exists or not. If j∗ exists, then by P̃(k)-v) there was no red or green particle at
time τ̃j∗ , in particular, j∗ < k and, by construction, X did not visit XU during the time interval
[τ̃j∗ , σ̃k+1). The recurrence property to XU, which is described by Ac, then implies

σ̃k+1 − τ̃j∗ 6 TUeδβ. (7.5.8)

Since at time τ̃j∗ there was no red or green particle in Λ̄, if our red or green particle i at time
τ̃k was already in Λ̄ at time τ̃j∗ , then it was sleeping and there must have been some time
tf in [τ̃j∗ , τ̃k) at which i was free. If i was not in Λ̄ at time τ̃k, then it had to enter Λ̄ during
the time interval [τ̃j∗ , τ̃k) and, in this case too, it had to be free at some time tf in [τ̃j∗ , τ̃k).
Inequality (7.5.8) implies that

σ̃k+1 − tf 6 TUeδβ < eDβ,

so that i cannot fall asleep before time σ̃k+1.
If j∗ does not exist, then by construction we deduce that l∗ < k and

σ̃k+1 − σ̃l∗+1 6 TUeδβ. (7.5.9)

Since all the clusterized particle in Λ̄ at time σ̃l∗+1 were sleeping particles, if i was among
them, then there was some time tf between σ̃l∗+1 and τ̃k when i was free. The same
conclusion obviously holds if i was the free particle at time σ̃l∗+1. Finally, if i was not in Λ̄ at
time σ̃l∗+1, then it had to enter Λ̄ between times σ̃l∗+1 and τ̃k. But in this case also it had to
be free at some time tf between σ̃l∗+1 and τ̃k. It follows from (7.5.9) that

σ̃k+1 − tf 6 TUeδβ < eDβ,

and i cannot fall asleep before time σ̃k+1.

I The case X(σ̃k+1) ∈ I(` ′1`
′
2 + 1)

fp. If all the clusterized particles in Λ̄ are sleeping at time
σ̃k+1, then we can conclude as in Case 2: the entrance at σ̃k+1 of a yellow particle would
imply either the presence of another yellow particle in Λ̄ at time τ̃k, which would contradict
P̃(k)(iii), or the fact that there were only sleeping particles at τ̃k, which as before would
contradict either P̃(k)(ii) or P̃(k)(iv). Let us therefore assume that the isoperimetric cluster
at time σ̃k+1 contains an active particle. Since there is also a free particle at time σ̃k+1 in
Λ̄, we have two active particles in Λ̄. The events Gc, G ′c and Hc2 imply that at least one of
them has to be yellow. Since at time τ̃k there was one yellow particle at most and we did
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not produce any new yellow particle during the time interval [τ̃k, σ̃k+1], there is at most one
yellow particle. The events Gc, G ′c and Hc2 imply that, among the two active particles in Λ̄,
one is yellow and the other is either red or green, there is no other yellow particle in Λ̄c,
and no other active particles in [Λ̄,D+ δ] \ Λ̄. In particular, as a consequence of Ac, no other
particle can enter Λ̄ before time τ̃k+1.

Let us consider the process

∆H̄ : t ∈ [σ̃k+1, τ̃k+1] 7→ H̄(X(t)) − H̄(X(σ̃k+1)).

As a consequence of Ac, C̃c and the fact that no other particle can enter Λ̄, this process has
to decrease within a time eδβ. We then have a flow of alternatives organised as follows. We
consider three distinct cases a, b, c: the first two will be conclusive, while the last can either be
conclusive in three different ways or bring us to a similar but simpler and binary alternative
b ′/c ′. Once again the first case will be conclusive, while the last case can either be conclusive
in three different ways or bring us back to the same binary alternative b ′/c ′. It will be clear
later that Zc2 will prevent us from running into an infinite loop.

(a) The free particle at time σ̃k+1 leaves Λ̄ without interacting with any other particle in Λ̄. In this
case ∆H̄ first decreases to −∆, which occurs at time τ̃k+1: X reaches I(` ′1`

′
2 + 1) \ XU

without having time to make the other active particle fall asleep. Indeed, with the same
argument as used before, it is possible to prove that the eventual red or green particle
cannot fall asleep during the time interval [τ̃k, σ̃k+1 + eδβ]. If the yellow particle was
free at time σ̃k+1, then at time τ̃k+1 it is outside Λ̄. If the yellow particle was clusterized
at time σ̃k+1, then at time τ̃k+1 it is in Λ̄. In this case the system does not visit XU
during the time interval [σ̃k+1, τ̃k+1].

(b) ∆H̄ reaches the energy level −2U before a free particle leaves Λ̄. In this case we can reproduce
the analysis of the good attachment case described to prove (7.4.7). X reaches XD in
I(` ′1`

′
2 + 2) at time τ̃k+1 by making fall asleep the two active particles of time σ̃k+1.

(c) The free particle at time σ̃k+1 interacts with the clusterized particles and ∆H̄ does not reach the
energy level −2U before a free particle leaves Λ̄. In this case we can reproduce the analysis
of the exit case described to prove (7.4.7), ∆H̄ will reach the energy level −∆ with the
exit of a free particle from Λ̄ and an isoperimetric configuration in Λ̄. We note that our
permutation rules ensure that at each time t whenever there is a free particle after the
first interaction time and before reaching the energy level −∆, it cannot be yellow. At
the time t of the red or green particle exit we distinguish between three cases.
(i) If X(t) ∈ I(` ′1`

′
2 + 1) \ XU, then τ̃k+1 = t. If some particle fell asleep before time t,

then it was the yellow one and there is no yellow particle anymore at time t. If there
is still some active particle in Λ̄ at time t, then it is the yellow one: there is no green
or red particle in Λ̄ at time t.

(ii) If X(t) ∈ I(` ′1`
′
2 + 1)∩XU and all particles in Λ̄ are sleeping at time t, then τ̃k+1 = t.

There is no yellow particle anymore at time t. There is no green or red particle in Λ̄
at time t.

(iii) If X(t) ∈ I(` ′1`
′
2 + 1) ∩ XU and the yellow particle is still active at time t, then

τ̃k+1 > t. As in the good attachment case studied to prove (7.4.7), where ∆H̄ could
eventually only oscillate between the two energy levels −2U and −U, ∆H̄ can only
oscillate between the energy levels −∆ and −∆+U until the first time t ′ > t when
either the yellow particle falls asleep or the red or green particle comes back in Λ̄. In
the former case, to which we will refer as the conclusive case, τ̃k+1 = t ′, there is no
yellow particle anymore at time t ′, and there is no red or green particle in Λ̄ at time
t ′. In the latter case, considering in the same way

∆H̄ : s ∈ [t ′, τ̃k+1] 7→ H̄(X(s)) − H̄(X(t ′)),

we are led to repeat the same kind of analysis, with one more hypothesis with
respect to time σ̃k+1: we know that the free particle at time t ′ is either red or green
and that the clusterized active particle is the yellow one. We can then define a single
alternative (c ′) to a similar case (b ′).

(b ′) ∆H̄ reaches the energy level −2U before a free particle leaves Λ̄. There is no difference
in this case with the previous case (b).
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(c ′) ∆H̄ does not reach the energy level −2U before a free particle leaves Λ̄. This case
includes a possible absence of interaction between the clusterized particles in Λ̄
and the green or red free particle before it exits. The same conclusions hold as
in the previous case c, with the possibility of going back to the same alternative
(b ′)/(c ′) after a similar time t ′ when the green or red particle comes back in Λ̄.

Since each time we go back to the alternative (b ′)/(c ′) the green or red particle enters again
Λ̄, B̃c implies that it can happen a finite number of times only. Ultimately, no yellow particle
can be produced during the time interval [σ̃k+1, τ̃k+1]: if the red or the green particle falls
asleep (cases (b) and (b ′)), then so does the yellow one, and if the yellow particle falls asleep
(cases (b), (b ′), (c)(ii), (c ′)(ii), conclusive (c)(iii) and (c ′)(iii), or (a), (c)(i) and (c ′)(i)), then
there is no yellow particle anymore at time τ̃k+1, while if X visited XU, then a is excluded,
which is the only case with a possible green or red particle in Λ̄ at time τ̃k. We also had at
least ` ′1`

′
2 sleeping particles in the whole time interval. For the proof of P̃(k+ 1)(vii) we can

argue as before.

I The case X(σ̃k+1) ∈ I(` ′1`
′
2)
fp, with a cluster of ` ′1`

′
2 sleeping particles. Let us first show by

contradiction that there cannot be two yellow particles at time σ̃k+1. Indeed, =in this case
P̃(k)(iii) would imply that we just reached I(` ′1`

′
2)
fp by producing a yellow particle i during

the time interval [τ̃k, σ̃k+1]. This is possible only if we had ` ′1`
′
2 + 1 sleeping particles at time

τ̃k. We note that we could not produce more than one yellow particle in this time interval.
Hence there should have been another yellow particle j produced at an earlier time t < τ̃k,
and we can assume that t was the last emission time of a yellow particle before time τ̃k. Since
our hypothesis P̃(k)(ii) implies that there were at most ` ′1`

′
2 sleeping particles at time t, some

particle fell asleep between times t and τ̃k and this would contradict P̃(k)(iv).
Note that Gc, G ′c and Hc2 imply that there is either 0 or 1 particle in [Λ̄,D+ δ] \ Λ̄. We

also note that the sleeping particles in Λ̄ at time σ̃k+1 form a quasi-square: this is the only
isoperimetrical configuration of size ` ′1`

′
2.

If there is no particle in [Λ̄,D+ δ] \ Λ̄, then, once again, Ac and C̃c imply that the local
energy first has to decrease within a time eδβ.This can be realized in two ways only: waiting
either for the attachment of the free particle to the cluster or for the free particle to leave Λ̄ at
some time t. In both cases τ̃k+1 = t. In the former case X goes back to I(` ′1`

′
2 + 1) without

making any particle fall asleep and without visiting XU. In the latter case X reaches XD in
I(` ′1`

′
2).

If there is another active particle in [Λ̄,D+ δ] \ Λ̄, then the events Ac and C̃c together with
Lemma 7.5.1 and F̃cm+1 lead to the same conclusion. The free particle at time σ̃k+1 indeed
has to either leave Λ̄ or join the cluster before the second active particle can enter Λ̄. For the
proof of P̃(k+ 1)(vii) we can argue as before.

Case 4: X(τ̃k) ∈ I(` ′1`
′
2)X(τ̃k) ∈ I(` ′1`
′
2)X(τ̃k) ∈ I(` ′1`
′
2). In this case we have a quasi-square of sleeping particles at time

τ̃k, and any move before the entrance of a free particle would cost 2U at least. Such a
move is excluded by F̃cm+1. It follows that X reaches I(` ′1`

′
2)
fp with a cluster made up of

sleeping particles only at time σ̃k+1, and we conclude like in the previous case. This ends
our induction.

• Cost estimates. To complete the proof of (7.4.7) in the subcritical case, we only need to
check the given lower bounds for the cost of each event that compounds Z2, for which we
refer to Appendix 7.B. This concludes Case (II).

7.5.2.4 Escape case (III)

• Large deviation events in the supercritical case. In the supercritical case, the cost of Z1 is
that of H2. We will build Z2 by removing H2 from Z1 before adding new large deviation
events. The event H̃2 in the following list is contained in H2 and has a larger cost.

H3 : There are three green particles at a same time t < T∆+eδβ in [Λ̄,D+ δ]. This event costs
at least 2(∆−D+α) −O(δ).

H ′3 : There are two times t1 < t2 < T∆+eδβ at which there is a pair of green particles in
[Λ̄,D+ δ] at time t1 and a different pair of green particles in [Λ̄,D+ δ] at time t2. This
event costs at least 2(∆−D+α) −O(δ).
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I : Within time T∆+eδβ there are two green particles at a same time in [Λ̄,D+ δ], and there is
one attribution of the red color, or else the occurrence of one of the events Jij. (Note
that I = H2 ∩ (F1 ∪

⋃
i,j J

ij).) This event costs at least U− 1
2ε+

1
2α− d−O(δ).

H̃2 : H3 ∪H ′3 ∪ I. This event costs at least U− 1
2ε+

1
2α− d−O(δ).

• Z and the escape from G in the supercritical case. Set

Z2 = A∪ B̃∪ C̃∪C ′ ∪ D̃∪D ′ ∪ E∪ Fm+1 ∪G∪G ′ ∪G ′4 ∪G ′3 ∪ H̃2. (7.5.10)

Define

Z ′c2 = Zc2 ∩ {no red particles are produced}

and

Z ′′c2 = Zc2 ∩ {red particles can be produced},

so that Zc2 = Z ′c2 ∪̇Z ′′c2 . If Zc2 occurs, then either Z ′c2 or Z ′′c2 occurs. If Z ′′c2 occurs, then, by
using the event Ic and arguing in a similar way as in the proof of (7.4.7), we obtain that ϕk

does not escape from G1. If Z ′c2 occurs, then we define τ̃0 = τ0 and σ̃k, τk with k > 0, as
before. If there exists 1 6 k1 6 ñ such that at time σ̃k1 there are two green particles in Λ̄, then
we define k0 = k1 − 1, otherwise we put k0 = ñ. We will analyze separately the behavior of
the process X up to and after time τ̃k0 , because before the appearance of two green particles
in Λ̄ no particle can be painted yellow, otherwise this is possible.

Let G̃ ′ be the graph in Fig. 7.5.

I(`1`2)

I(`1`2)
fp

I(`1`2 + 1) \ XU

Figure 7.5 – The graph G̃ ′.

Recall (7.5.5) and (7.5.6), and set

ϕ̃ ′k = (X(τ̃0), X(σ̃1), X(τ̃1), . . . , X(σ̃k), X(τ̃k)), k 6 k0.

We will prove by induction that, for all k 6 k0,

Claim P̃ ′(k)P̃ ′(k)P̃ ′(k). If Z2 does not occur, then
(i) ϕ̃ ′k does not escape from G̃ ′.
(ii) There is no yellow particle at each time t 6 τ̃k.
(iii) For all 0 < j 6 k, if X visited XU during the time interval [σ̃j, τ̃j), then there is no green

particle in Λ̄ at time τ̃j.
(iv) At each time t 6 τ̃k there are `1`2 sleeping particles.
(v) No box creation occurs within time τ̃k.

• Proof of P̃ ′(k), 0 6 k 6 k0P̃ ′(k), 0 6 k 6 k0P̃ ′(k), 0 6 k 6 k0. Note that P̃ ′(0) is trivial. For k ∈N0 we assume P̃ ′(k) to prove
P̃ ′(k+ 1). If k = k0, then there is nothing to prove, so assume that k 6= k0. We separate two
cases, depending on the configuration at time τ̃k in one of the bottom sets of G̃ ′, ordered from
left to right.

Case 1: X(τ̃k) ∈ I(`1`2)X(τ̃k) ∈ I(`1`2)X(τ̃k) ∈ I(`1`2). In this case we have a quasi-square of sleeping particles at time τ̃k,
and any move before the entrance of a free particle would cost 2U at least. Such a move is
excluded by the fact that no red particles can be produced. It follows that X reaches I(`1`2)

fp

with a cluster made up of sleeping particles only at time σ̃k+1. By the fact that no red
particles are created and by the event Hc3, we know that there are at most two active particles
in [Λ̄,D+ δ]. In particular, the active particles can be green only.
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If there is no particle in [Λ̄,D+ δ] \ Λ̄, then by the events Ac and C̃c we know that the
local energy must decrease within a time eδβ. This can be realized in two ways only: waiting
either for the attachment of the free particle to the cluster or for the free particle to leave Λ̄ at
some time t. In both cases τ̃k+1 = t. In the former case X goes back to I(`1`2 + 1) without
making any particle fall asleep and without visiting XU. In the latter case X reaches XD in
I(`1`2).

If there is one active particle in [Λ̄,D+ δ] \ Λ̄, then we argue as in the subcritical case
by using the events Ac, C̃c, Ic and Lemma 7.5.1, and the fact that no red particles can be
produced. Indeed, the free particle at time σ̃k+1 has to either leave Λ̄ or join the cluster before
the second active particle enters Λ̄. Property P̃ ′(k+ 1)(v) follows from the event G ′c4 and
P̃ ′(k+ 1)(ii).

Case 2: X(τ̃k) ∈ I(`1`2 + 1) \ XUX(τ̃k) ∈ I(`1`2 + 1) \ XUX(τ̃k) ∈ I(`1`2 + 1) \ XU. We can repeat the analysis given in the subcritical case. In
particular, with the same arguments we prove that the possible green particle at time τ̃k
cannot feel asleep during the time interval [τ̃k, σ̃k+1]. Note that P̃ ′(k) implies that at time
τ̃k there is a green particle in Λ̄. We have to analyze the time interval [σ̃k+1, τ̃k+1] in the
case X(σ̃k+1) ∈ I(`1`2)

fp, with a cluster of `1`2 sleeping particles: it is not possible that
X(σ̃k+1) ∈ I(`1`2 + 1)

fp because k 6 k0, and therefore two green particles cannot be in Λ̄.
We can therefore argue as in the subcritical case. For the proof of P̃ ′(k+ 1)(v) we can argue
as before.

Let G̃ be the graph in Fig. 7.6.

I(`1`2)

I(`1`2)
fp

y

I(`1`2 + 1) \ XU I(`1`2 + 1)∩XU

I(`1`2 + 1)
fp

2U

I(`1`2 + 2)

Figure 7.6 – The graph G̃.

Recall (7.5.5) and (7.5.6), and set

ϕ̃k = (X(τ̃k0), X(σ̃k0+1), X(τ̃k0+1), . . . , X(σ̃k), X(τ̃k)), k0 < k 6 ñ.

We will prove by induction that, for all k0 < k 6 ñ,

Claim P̃(k)P̃(k)P̃(k). If Z2 does not occur, then
(i) ϕ̃k does not escape from G̃.
(ii) Some particle can be colored yellow during the time interval [τ̃k0 , τ̃k], but only during the

climbing of the y-edge of G̃.
(iii) There is at most one yellow particle at each time t 6 τ̃k.
(iv) At each time 1 6 t 6 τ̃k when a particle falls asleep there is no yellow particle at the first τ̃j,
1 6 j 6 k, larger than or equal to t.

(v) For all 0 < j 6 k, if X visited XU during the time interval [σ̃j, τ̃j), then there is no red or
green particle in Λ̄ at time τ̃j.

(vi) At each time t 6 τ̃k there are at least `1`2 sleeping particles.
(vii) Each particle that is yellow at time t1 6 τ̃k was green at time σ̃k1 in Λ̄.
(viii) If a green particle falls asleep at time t 6 τ̃k, then it was green at time σ̃k1 in Λ̄.
(ix) No box creation occurs within τ̃k.

Properties (i)-(vi) are the same as considered in the subcritical case, while we will use
property (vii) to control inductively the yellow particles. In particular, we cannot exclude
anymore the presence of two green particles, but we will exclude the simultaneous presence
of two green particles and a yellow particle with the help of property (vii). Property (viii) will
be used to prove property (vii). Property (iii) helps us to prove property (ix).

D Before proving P̃(k), k0 6 k 6 ñ, let us show that P̃(ñ) implies that if Zc2 occurs, then
ϕn cannot escape from G2. We argue as in the subcritical case, but for ñ = ñ2 there is one
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difference: the attribution of the red color is excluded by the event Z ′c2 ,and therefore ϕk,
k > k1, cannot escape from G2.

Since the cost of Z2 is given by the smallest cost of its constituent components, we obtain

c(Z2) =

{
c(Fm+1) > r(`1, `2) −∆+ ε− γ−O(α, d) −O(δ) if ι < 1/2,

c(G ′4) > r(`1, `2) −∆+ γ−O(α, d) −O(δ) if ι > 1/2.

To prove (7.4.8) in the supercritical case, it remains to prove P̃(ñ) and check the given cost
estimates .

• Proof of P̃(k)P̃(k)P̃(k), k1 6 k 6 ñk1 6 k 6 ñk1 6 k 6 ñ. We have to prove P̃(k1), and so we consider the time interval
[τ̃k0 , τ̃k1 ]. By P̃ ′(k0), either X(τ̃k0) ∈ I(`1`2) or X(τ̃k0) ∈ I(`1`2 + 1) \ XU. We show by
contradiction that X(τ̃k0) /∈ I(`1`2). Indeed, if X(τ̃k0) ∈ I(`1`2), then repeating the analysis
in the proof of P̃ ′(k) we obtain that X(σ̃k1) ∈ I(`1`2)

fp, with a cluster made up of sleeping
particles only, and the free particle is green. This is in contradiction with the definition of
the time σ̃k1 . Hence X(τ̃k0) ∈ I(`1`2 + 1) \ XU with `1`2 sleeping particles and one active
particle, which has to be green. We can repeat the analysis for in the subcritical case to prove
that the green particle at time τ̃k0 cannot fall asleep during the time interval [τ̃k0 , σ̃k1 ]. By
the definition of σ̃k1 , we know that X(σ̃k1) ∈ I(`1`2 + 1)

fp, with `1`2 sleeping particles and
two green particles. During the time interval [τ̃k0 , σ̃k1 ] no yellow particle is produced, an
so there is no other particle in [Λ̄,D+ δ] at time σ̃k1 . This implies that no other particle can
enter Λ̄ before time τ̃k1 . Property P̃ ′(k+ 1)(ix) follows from the event G ′c4 , P̃ ′(k0)(ii) and the
fact that no yellow particle is produced during the time interval [τ̃k0 , τ̃k1 ]. From now on we
can argue as in the subcritical case with two differences only: we do not care about yellow
particles and have to verify P̃(k1)(viii), which is trivial. For k > k1 we assume P̃(k) to prove
P̃(k+ 1). We distinguish between four cases, depending on the configuration at time τ̃k in
one of the bottom sets of G̃, ordered from left to right.

Case 1: X(τ̃k) ∈ I(`1`2)X(τ̃k) ∈ I(`1`2)X(τ̃k) ∈ I(`1`2). In this case, as in the proof of P̃ ′(k), we have that X(σ̃k+1) ∈
I(`1`2)

fp, with a cluster made up of sleeping particles only. Note that no yellow particle is
produced during the time interval [τ̃k, σ̃k+1]. By the fact that no red particle is produced
and by the event Hc3, we know that there are at most three active particles in [Λ̄,D+ δ]. In
particular, the free particle in Λ̄ at time σ̃k+1 is green.

If there is at most one particle in [Λ̄,D+ δ] \ Λ̄, then we can argue as in the subcritical
case by using the events Ac, C̃c, Ic and Lemma 7.5.1, and the fact that no red particles can
be produced. If there are two particles in [Λ̄,D+ δ] \ Λ̄, then there are two green particles
and one yellow particle i. Since no yellow particle is produced in [τ̃k, σ̃k+1], we know that
particle i was yellow at a time t 6 τ̃k. Thus, by P̃(k)(vii) we know that i was green at time
σ̃k1 in Λ̄. This is in contradiction with the event H ′c3 , so this case is not admissible.

P̃(k+ 1)(i)–(vi) follow by applying the same argument as in the subcritical case. We do
not need to check P̃(k+ 1)(vii)–(viii), because during the time interval [τ̃k, τ̃k+1] no yellow
particle is produced and no green particle falls asleep. Property P̃ ′(k+ 1)(ix) follows from the
events G ′c4 , G ′c3 and P̃ ′(k+ 1)(iii).

Case 2: X(τ̃k) ∈ I(`1`2 + 1) \ XUX(τ̃k) ∈ I(`1`2 + 1) \ XUX(τ̃k) ∈ I(`1`2 + 1) \ XU. We can repeat the analysis given for the subcritical case. In
particular, with the same argument we are able to prove that the eventual green particle at
time τ̃k cannot fall asleep during the time interval [τ̃k, σ̃k+1], and we have to study the time
interval [σ̃k+1, τ̃k+1] in the two cases X(σ̃k+1) ∈ I(`1`2)

fp, with a cluster of `1`2 sleeping
particles, and X(σ̃k+1) ∈ I(`1`2 + 1)

fp.

The case X(σ̃k+1) ∈ I(`1`2)
fp, with a cluster of `1`2 sleeping particles. As in the subcritical

case, we can prove by contradiction that there cannot be two yellow particles at time σ̃k+1.
By the fact that no red particle can be produced and by the event Hc3, we know that there
are at most three active particles in [Λ̄,D+ δ], and so we can conclude as in the previous
case. P̃(k+ 1)(i)–(vi) follow by applying the same argument carried out in the subcritical
case. We do not need to check P̃(k+ 1)(viii), because no particle falls asleep during the time
interval [τ̃k, τ̃k+1]. To check P̃(k+ 1)(vii), we may suppose that at time σ̃k+1 a particle i is
colored yellow, because otherwise there is nothing to prove. By the permutation rules, it
follows that particle i was sleeping before being colored yellow. Since no particle falls asleep
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during the time interval [τ̃k, σ̃k+1], particle i was sleeping at τ̃−k . By P̃(k) and the fact that
X(σ̃k+1) ∈ I(`1`2 + 1)

fp with two green particles, we know that particle i fell asleep when
it was green. Thus, P̃(k+ 1)(vii) follows by P̃(k)(viii). For the proof of P̃ ′(k+ 1)(ix) we can
argue as before.

The case X(σ̃k+1) ∈ I(`1`2 + 1)
fp. We can argue as in the subcritical case with two differences

only: we do not care about red particles and have to check P̃(k+ 1)(viii): P̃(k+ 1)(vii) is trivial
because no particle is colored yellow during the time interval [σ̃k+1, τ̃k+1]. We distinguish
between the two following cases: If at time σ̃k+1 the two active particles in Λ̄ are green, then
P̃(k+ 1)(viii) follows by the event H ′c3 . If at time σ̃k+1 there is one green and one yellow
particles in Λ̄, then P̃(k+ 1)(viii) follows by P̃(k+ 1)(vii) and the event H ′c3 . For the proof of
P̃ ′(k+ 1)(ix) we can argue as before.

Case 3: X(τ̃k) ∈ I(`1`2 + 1)∩XUX(τ̃k) ∈ I(`1`2 + 1)∩XUX(τ̃k) ∈ I(`1`2 + 1)∩XU. In this case we can be repeated the analysis in the subcritical
case with two differences only: no particle can be colored red and we do not need to check
P̃(k+ 1)(vii), because no yellow particle is produced during the time interval [τ̃k, τ̃k+1].
P̃(k+ 1)(viii) can be checked as in the previous case. For the proof of P̃ ′(k+ 1)(ix) we can
argue as before.

Case 4: X(τ̃k) ∈ I(`1`2 + 2)X(τ̃k) ∈ I(`1`2 + 2)X(τ̃k) ∈ I(`1`2 + 2). In this case k 6= k0, so ñ = ñ2 = k, and there is nothing to prove.
This ends our induction.

• Cost estimates. To complete the proof of (7.4.8) in the supercritical case, we only need to
check the given lower bounds for the cost of each event that compounds Z2, for which we
refer to Appendix 7.B. This concludes case (III).

7.5.3 Proof of Lemma 7.4.5

Recall the definition of the union of events Z1 and Z2 in the subcritical case given in (7.5.1)
and (7.5.7). We can check that for the escape from G1 we can argue as in the general case
`2 > 3: the cost is given by c(F1) > 2U−∆− α−O(δ). For the escape from G2, again the
proof of (7.4.7) shows that (Z1 \ F1)c implies that either ϕn does not escape from G1 or there
is a first return time τk0 such that X(τk0) ∈ I(4) and a particle is colored red at time σk0+1.
Set

Z̄2 = Z2 ∪K1 ∪K2,
where K1 and K2 are the following new large deviation events:

K1 : There are three active particles, which can be green or red, together with one yellow
particle in a box of volume eDβ inside the box [Λ̄, ∆+ δ] at a same time t ∈ [t∗, T∆+eδβ]
such that X(t∗) ∈ I(0) and at time t∗ the yellow particle is inside [Λ̄,D+ δ]. This event
costs at least ∆−D+α−O(δ).

K2 : There are two active particles, which can be green or red, together with two yellow
particles in a box of volume eDβ inside [Λ̄, ∆+ δ] at a same time t ∈ [t∗, T∆+eδβ] such
that X(t∗) ∈ I(0) and at time t∗ the two yellow particles are inside [Λ̄,D+ δ]. This event
costs at least ∆−D+α−O(δ).

By defining

n̄ = min{n,n∗} (7.5.11)

with

n∗ = min{k > k0 : X(τk) ∈ I(4)} (7.5.12)

and
ϕ̄k = (X(τk0), X(τk0+1), . . . , X(τk)), k0 6 k 6 n̄,

we will prove by induction that, for all k0 6 k 6 n̄,

Claim P̄(k)P̄(k)P̄(k). If Z̄2 does not occur, then
(i) ϕ̄k does not escape from G2.
(ii) There are at most three yellow particles at each t 6 τk.
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(iii) If X(τk) ∈ I(4), then at time τk there is no yellow particle.
(iv) If X(τk) ∈ I(0), then at time τk there are three yellow and one red particles in [Λ̄,D+ δ],

with two yellow particles at distance two from each other.

Property (i) is the main property we are interested in. We will use properties (ii)–(iv) to
control inductively the yellow particles, in particular, property (iii) implies that X reaches I(4)

by putting tosleep all the yellow particles created during the time interval [τk0 , τk], while
property (iv) implies that I(0) is reached by breaking a dimer.

D Before proving P̄(k), k0 6 k 6 n̄, let us show that P̄(n̄) implies in the two cases n̄ = n and
n̄ = n∗ that if Z̄c2 occurs, then ϕn cannot escape from G2. If n̄ = n, then the claim is trivial. If
n̄ = n∗, then P̄(n)(iii) implies that there is no yellow particle at time τn∗ . Using F̃c1, which
excludes any 2nd attribution of the red color, we can show by induction, as in the proof of
(7.4.7), that ϕk, for k > n∗, cannot escape anymore from G1, subgraph of G2.

• Proof of P̄(k)P̄(k)P̄(k), k0 6 k 6 n̄k0 6 k 6 n̄k0 6 k 6 n̄. P̄(k0)(i)-(iii) follow from the definition of k0. Since X(τk0) ∈ I(4),
we do not need to check P̄(k0)(iv). For k > k0 we assume P̄(k) to prove P̄(k + 1). We
distinguish between the two following cases.

Case 1: X(τk) ∈ I(4)X(τk) ∈ I(4)X(τk) ∈ I(4). If k 6= k0, then n̄ = n∗ = k and there is nothing to prove. We only have
to consider the case k = k0. The definition of σk0+1 gives X(σk0+1) ∈ I(3)fp with the free
particle colored red. Suppose that X does not return to I(4) within time τk0+1. By arguing as
in the general case, we deduce that the following moves occur: the red particle exits from Λ̄,
a particle is detached at cost U and therefore is colored yellow, leading to the configuration
I(2)fp. Since we are considering the time interval [σk0+1, τk0+1] and the times τi are return
times to XD, by the recurrence property to XD implied by Ac we deduce that no particle
can exit from [Λ̄,D+ δ] before time τk0+1, in particular, this holds for the red particle. Thus,
by the event G ′c, no green particle can enter [Λ̄,D+ δ]. Afterwards, the free particle exits
from Λ̄ and two yellow particles are created after breaking the dimer at time t: X reaches I(0)

at time t = τk0+1. By the previous observations it easy to check P̄(k0 + 1)(i),(ii),(iv), while
we do not need to check P̄(k0 + 1)(iii). If X returns in I(4) at time t, then we have to prove
that t = τk0+1 because we are analyzing the time interval [τk0 , τk0+1]. By arguing as in the
general case, we deduce that the only possibility, possibly after visiting I(2) and I(3) several
times, is to reach XD in I(4). Since no particle can enter and exit from [Λ̄,D+ δ] within time
τk0+1, P̄(k0 + 1)(ii),(iii) follow.

Case 2: X(τk) ∈ I(0)X(τk) ∈ I(0)X(τk) ∈ I(0). This part of the proof is directly related to P̄(k)(iv) and the new events
K1 and K2. Indeed, P̄(k)(iv) gives us control on the distance between the two nearest yellow
particles in [Λ̄,D+ δ] and the green particles, which are outside the box [Λ̄,D+ δ] by the
event G ′c. By P̄(k)(iv) and the events Kc1 and Kc2, we deduce that, if a cluster is formed, then
it has to be created by attaching the three yellow particles together with one red or green
particle, so X(τk+1) ∈ I(4) and properties (ii) and (iii) follow. The claim follows after checking
the given cost estimate for the events K1 and K2, for which we refer to Appendix 7.B.

7.5.4 Proof of Lemma 7.5.1

Let us assume that T ij 6 T∆+eδβ and there is no such time t 6 T ij with three active
particles inside [Λ̄,D+ δ]. Since at time t = 0 either both particles i and j belong to a same
unique cluster in Λ̄ or at least one is outside [Λ̄,D+ δ], by setting

T0 = sup{t 6 T ij : i or j is outside [Λ̄,D+ δ] or both

are in a same unique cluster in Λ̄ at time t},

we see that 0 6 T0 6 T ij. We distinguish between two cases.
(i) If there are no active particles, but i or j are inside [Λ̄,D+ δ] during the whole time

interval [T0, T ij], then T0 is the last θijk before T ij.
(ii) If there is some other active particle inside [Λ̄,D+ δ] at some time t in [T0, T

ij], then
we set

T1 = sup{t 6 T ij : there is an active particle distinct

from i and j inside [Λ̄,D+ δ] at time t}.
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Since we assumed that there is no time t 6 T ij at which three active particles are inside
[Λ̄,D+ δ], i or j must be sleeping at time T1 and T1 6 T ij. T1 is then the last θijk before
T ij.

In both cases there is a last θijk > 0 before T ij such that any active particle in [Λ̄,D+ δ] during
the time interval [θijk , T

ij] is either i or j.

7.5.5 Proof of Lemma 7.5.2

We prove the claim by contradiction. Assume that X(τ̃k) 6∈ XU andthat there is a t ∈
[τ̃k, σ̃k+1) such that X(t) ∈ XU. Then there is a constant-cluster-size path from X̄(t) to the
isoperimetric configuration X̄(τ̃k). By the recurrence property to XU implied by Ac, we may
also assume that t− τ̃k 6 TUeδβ. Then D̃c implies that the local energy along this path does
not exceed H̄(X(τ̃k)) +U. Since X̄(τ̃k) is isoperimetric, we also have H̄(X(t)) > H̄(X(τ̃k)).
Since X̄(τ̃k) is U-reducible, we get a contradiction with the fact that X̄(t) is U-irreducible.

appendix

7.a environment estimates

In this appendix we prove that µR ′((X∗i )
c) = SES(β) for i = 1, . . . , 5, where, for η ∈ Xβ,

µR ′(η) =
e−β[H(η)+∆|η|]

ZR ′
1R ′(η), ZR ′ =

∑
η∈R ′

e−β[H(η)+∆|η|].

First, we consider the case ∆ < Θ 6 θ. Given a configuration η ∈ Xβ, we denote by C = C(η)

its connected component with maximal volume when it is unique. Otherwise, we pick the
component containing the highest particle in the lexicographic order. For C ⊂ Λβ, we set
C̄ = C∪ ∂+C, where ∂+C denotes the external boundary of C. We start by showing that there
exists a c > 0 such that

µR ′(Xβ \ X∗i ) 6 ecβµR(Xβ \ X∗i ).

To this end, given a finite set Λ ⊂ Λβ and two configurations ηΛ ∈ {0, 1}Λ and ηΛβ\Λ ∈
{0, 1}Λβ\Λ, we denote by η = ηΛ · ηΛβ\Λ ∈ {0, 1}Λβ the configuration defined by

η(x) =

ηΛ(x) if x ∈ Λ,
ηΛβ\Λ(x) if x ∈ Λβ \Λ.

Given a configuration σ ∈ {0, 1}Λβ , we introduce the measure µR,Λ,σ on {0, 1}Λ defined by

µR,Λ,σ(ηΛ) =
1

ZR,Λ,σ
e
−β[H(ηΛ·σΛβ\Λ)+∆(|ηΛ|+|σΛβ\Λ|)]1R(ηΛ · σΛβ\Λ),

where ZR,Λ,σ is the normalizing constant. For any finite Λ ⊂ Λβ and any configuration
η ∈ {0, 1}Λβ , the DLR equation for the measure µR reads

µR(η) =
∑
σ∈Λβ

µR(σ)µR,Λ,σ(η|Λ).
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Since a cluster with volume at most λ(β)/8 has perimeter at most λ(β), and therefore is
contained in a box of volume λ2(β), it can be arranged inside Λβ in at most 2λ

2(β) different
ways and in at most eΘβ different location. Hence

µR ′(Xβ \ X∗i ) =

∑
η∈R ′\X∗i

e−β[H(η)+∆|η|]

∑
η∈R ′

e−β[H(η)+∆|η|]
6

∑
C⊂Λβ

|C|6λ2(β)

∑
η∈R ′\X∗i

C=C

e−β[H(η)+∆|η|]

∑
η∈R ′
C=C

e−β[H(η)+∆|η|]

6
∑
C⊂Λβ

|C|6λ2(β)

e−β[H(C)+∆|C|]
∑

η∈R\X∗i

e−β[H(η)+∆|η|]

e−β[H(C)+∆|C|]
∑
η∈R

|η|C̄|=0

e−β[H(η)+∆|η|]

6 2λ2(β)eΘβ
µR(Xβ \ X∗i )

min
C⊂Λβ

|C|6λ2(β)

1

ZR

∑
η∈R

|η|C̄|=0

e−β[H(η)+∆|η|]
6 ecβµR(Xβ\X

∗
i )
,

where in the last step we use the DLR equation and the fact that, for any configuration η ∈ R,
the probability of having |η|C̄| = 0 is at least 1− e−(∆−δ)β for any δ > 0 and β large enough,
uniformly in the boundary conditions.

• i = 1. Recall that, for η ∈ Xβ, ηcl is the union of the connected components of size at least
two, so that |η \ ηcl| denotes the number of connected components that are reduced to single
particles. We get

µR(Xβ \ X∗1) 6
1

ZR

eθβ∑
k=0

∑
η∈R\X∗1
|η\ηcl|=k

e−β[H(η)+∆|η|] (7.A.1)

6 1

ZR

(
e−(2∆−U)βeθβ

)λ(β) eθβ∑
k=0

∑
η∈R

ηcl=∅,|η|=k

e−β[H(η)+∆|η|]

6 ZR

ZR
e−(2∆−U−θ)βλ(β) = SES(β),

where we use that θ < 2∆−U.

• i = 2. Note that Xβ \ X∗2 implies that the number of disjoint quadruples of particles with
diameter smaller than

√
eSβ is at least (λ1/4(β))/4. Given k = λ1/4(β)/4 and a collection

x = (xji)i<4,j<k ∈ Λ
4×k
β , we define the set

Λx =
⋃

i<4
j<k

B(xji, `
2
c).

Using the DLR equation, we obtain

µR(Xβ \ X∗2) 6
∑

x00,...,x
0
3∈Λβ

diam{x0i ,i<4}<eSβ/2

· · ·
∑

xk−10 ,...,xk−13 ∈Λβ
diam{xk−1i ,i<4}<eSβ/2∑

σ∈{0,1}Λβ
µR(σ)µR,Λx,σ

(
the sites in x

are occupied

)
6
(

e(3S−4∆+θ)β
)λ1/4(β)

4
= SES(β),

where S = 4∆−θ
3 −α.
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• i = 3. Let S < A < ∆ and divide the box Λβ into e(3A−4∆+Θ+3α)β boxes of volume
e(4∆−3A−3α)β. Note that Xβ \ X∗3 implies that there exists one box containing at least
(eαβ/4)/4 disjoint quadruples of particles with diameter smaller than

√
eAβ. Using the DLR

equation and arguing as above, we get

µR(Xβ \ X∗3) 6 e(3A−4∆+Θ+3α)β
(

e−4∆βe(4∆−3A−3α)β
3∏
i=1

(eAβ − 5i)
) e

αβ
4
4

6 e(3A−4∆+θ+3α)βe−
3
4αβe

αβ
4 = SES(β).

• i = 4. Note that Xβ \X∗4 implies that there exists a box of volume e(∆+α)β containing either
at least e

3
2αβ or at most e

1
2αβ particles. We consider these cases separately. Concerning the

former case, by dividing the box of volume e(∆+α)β into e
5
4αβ boxes of volume e(∆−α

4 )β, we
have that there exists a box containing at least e

α
4β particles. Concerning the latter case, by

dividing the box of volume e(∆+α)β into e
α
2β boxes of volume e(∆+α

2 )β, we have that there
exists a box containing no particle. We proceed to estimate the denominator in this latter case
by considering all the configurations with one particle in each box of volume e(∆+α

4 )β inside
a box of volume e(∆+α

2 )β, namely, these boxes are e
α
4β. Using the DLR equation and arguing

as above, we get

µR(Xβ \ X∗4) 6 e
5
4αβ

(
e−∆βe(∆−α

4β)
)e
α
4
β

+ e
α
2β

1
(

e−∆βe(∆+α
4 )β
)e
α
4 β

= SES(β).

• i = 5. Using the DLR equation and arguing as above, we get

µR(Xβ \ X∗5) 6 e−∆β
λ(β)
4

∏
i<

λ(β)
4

(e(∆−α
4 )β − 5i) 6 e−

α
4β

λ(β)
4 = SES(β).

To conclude, consider the case Θ > θ. Dividing Λβ into boxes of volume eθβ and arguing
as above with the help of the DLR equation, we get the claim.

7.b cost of large deviation events

Event A. The cost of event A follows from Proposition 7.2.11 and [62, Theorem 3.2.3].

Event B. Each special time except τk is related to a free particle that moves in Λ̄, but the
number of special times τk is equal to the one of σk by definition. The claim follows after
arguing as in the proof of Proposition 7.3.1: at each special time each free particle has a non
exponentially small probability to avoid the box after leaving it, so that it visits this box eδβ

times with a super-exponentially small probability. Since, by non-superdiffusivity, the special
times are associated with no more than e(3α/2+δ)β particles up to a SES(β)-event, B occurs
with probability 1− SES(β).

Event C. Let K denote the number of special times. By the event B, we have K 6 eδβ

with probability 1 − SES(β). Let S0, . . . , SK−1 be the special times. Divide the time in-
terval [0, T∆+eδβ] into intervals [ti, ti + eδβ] of length eδβ, with 1 6 i < e(∆+α)β. In-
troduce the following events: Ci1 = {∃j ∈ {0, . . . , K − 1} such that Sj ∈ [ti, ti + eδβ]} and
Ci2 = {there is a move of cost > U in [Sj, ti + eδβ]}. Using the strong Markov property at the
stopping time Sj, we obtain

P(C) 6
∑

i<e(∆+α)β

P(Ci2|C
i
1)P(C

i
1) 6 e−Uβeδβ

∑
i<e(∆+α)β

P(Ci1) 6 e−UβeO(δ)β

and therefore c(C) > U−O(δ).

Event C ′. We control the cost of this event as for the event C by using, instead of the strong
Markov property, the independence of the dynamics of particles outside Λ̄ from the marks
used in Λ̄.
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Event D. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ, with
1 6 i < e(∆+α−D)βeδβ and argue as for the event C.

Event D ′. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ, with
1 6 i < e(∆+α−D)βeδβ and argue as for the event C.

Event E. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eδβ] of length eδβ, with
1 6 i < e(∆+α)β. For t1, t2 and k = |η̄0| fixed, by defining X̄k = {η̄ ∈ {0, 1}Λ̄| |η̄| = k} and
using the reversibility of the measure µ, we obtain

Pη0(H̄(X̄(t2 − t1)) > H̄(X̄(η̄0)) + 3U) 6 Pη̄0(H̄(X̄(t2 − t1)) > H̄(X̄(η̄0)) + 3U)
6 e−3Uβ

∑
η̄∈X̄k

H(η̄)>H(η̄0)+3U

Pη(X̄
k(t) = η̄0) 6 e−3Uβeδβ.

Because the temporal entropy is eδβ for t1 and ∆+ for t2, we get follows c(E) > 3U−∆−

α−O(δ).

Event Fm+1. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ,
with 1 6 i < e(∆+α−D)βeδβ. First consider the event F1, to obtain

P(F1) 6
∑

16i<e(∆+α−D)βeδβ

[
P(move of cost 2U in [si, si + eDβ]) + P(move of cost U

at time t ∈ [si, si + eDβ] and at time t’ such that t < t ′ are δ-close)
]

6 e(∆+α−2U)βeO(δ)β,

which implies c(F1) > 2U−∆−α−O(δ). We can easily compute the cost of the event Fm+1

by applying the strong Markov property at the stopping times related to each attribution of
the red color.

Event H2. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ, with
1 6 i < e(∆+α−D)βeδβ. We obtain

P(H2) 6
∑

16i<e(∆+α−D)βeδβ

P(there are 2 green particles in [Λ̄,D+ 2δ] at time (i+ 1)eDβ)

6
∑

16i<e(∆+α−D)βeδβ

(
e(D+2δ)βeδβ

e(∆+α)β

)2
6 e(D−∆−α)βeO(δ)β,

which implies c(H2) > ∆−D+α−O(δ). Note that we use the spread-out property on time
scale T∆+ for the green particle because this cannot reach [Λ̄,D+ 2δ] on time scale eDβ.

Event G. For a particle i that is colored red at time Sj, applying the spread-out property and
the strong Markov property at time Sj, we get

P(ξi(t) ∈ [Λ̄,D+ δ]) 6 E
[e(D+δ)β

t− Sj
∧ 1
]
6 eO(δ)β

∫t
0

ds e−2Uβ
( eDβ

t− s
∧ 1
)

6 e−(2U−D−O(δ))β.

Dividing the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ, with 1 6 i <
e(∆+α−D)βeδβ, we get c(G) > U− d+ ε−α−O(δ).

Event G ′. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ,
with 1 6 i < e(∆+α−D)βeδβ. Arguing as for the events H2 and G, we deduce that c(G ′) >
U− d−α−O(δ).

Event G ′4. In case the four particles do not come from a cluster, namely, at time t = 0 they
are outside the box [Λ̄, ∆− α], the cost of this event has already been computed in (7.2.11).
Consider the case in which the four particles come from a cluster. In particular, we consider
the case in which all four particles are green, otherwise the cost of the event is larger. Dividing
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Λβ into boxes of volume e(D+δ)β and the time interval [0, T∆+eδβ] into intervals of length
eDβ, we obtain

P(G ′4) 6
∑

i<e(θ−D−δ)β

∑
j<e(∆+α−D+δ)β

(e(D+δ)βeδβ

e(∆+α)β

)4
6 e−(3∆−2U−θ+3α−2d)βeO(δ)β,

where we use the spread-out property on time scale e(∆+α)β, because particles cannot be
colored green on a shorter time scale. The cases in which there is at least one green particle
and one particle not coming from a cluster can be treated in a similar way.

Event B̃. The cost of this event can be computed similarly as the cost of the event B.

Event C̃. The cost of this event can be computed similarly as the cost of the event C.

Event G ′3. We only need to consider the case concerning the presence of one yellow particle
from a cluster, otherwise we reduce to a case already taken into account by G ′4. We can argue
in a similar way as for the event G ′4.

Event D̃. The cost of this event can be computed similarly as the cost of the event D.

Event F̃m+1. We need to estimate the cost of the occurrence of one of the events Jij. By
Proposition 7.2.6 and the event Bc, we have P(∪i,jJij) 6 eO(δ)βP(Jij). In order to estimate
the probability that one of the events Jij occurs, we need the following observations:

(i) If the particles i and j are both free in Λ̄, then the cluster cannot move. Indeed, an
(m+ 2)th attribution of the red color is not allowed.

(ii) In the time intervals in which the particles i and j are both free in Λ̄, they evolve as
independent random walks with simultaneous stops.

Suppose that the cluster does not move via interactions with the free particles. The dynamics
of the ` ′1`

′
2 + 2 particles can be seen as the dynamics of two independent simple random

walks ξ = (ξt)t>0 and ξ ′ = (ξ ′t)t>0 with a trap at the origin: the jump rate is 4e−Uβ at the
origin and 4 at the other sites, towards a nearest-neighbor site chosen uniformly at random.
Thus it suffices to prove that, if at least one particle starts either in the origin or at distance
e(D+δ)β from the origin, then

P(∃t 6 T∆+eδβ, ξt, ξ ′t ∈ Λ̄ \ {0}) 6 e−
1
2 (2U−∆−α−O(δ))β. (7.B.1)

To this end, note that we can associate to ξ a simple random walk ξ̃ = (ξ̃t)t>0 during every
time interval in which ξt /∈ 0. Denoting s(t) = max{s 6 t| ξs = 0} for t 6 T∆+eδβ, we obtain

P0(ξt ∈ Λ̄ \ {0}) =
∑

x∈Λ̄\{0}

P0(ξt = x) =
∑

x∈Λ̄\{0}

∫t
0
P0(s(t) ∈ ds, ξt = x)

6
∑

x∈Λ̄\{0}

∫t
0

ds 4e−UβP0(ξ̃t−s = x) 6
∑

x∈Λ̄\{0}

∫t
0

ds 4e−Uβ
( cst

1+ t− s

)

6 C|Λ̄|(log t+ 1)e−Uβ 6 C|Λ̄|((∆+α+ δ)β+ 1)e−Uβ.
(7.B.2)

Hence, by (7.B.2),

P(0,0)(∃ t 6 T∆+eδβ, ξt, ξ ′t ∈ Λ̄ \ {0}) 6
∫T∆+eδβ

0
dt P0(ξt ∈ Λ̄ \ {0})2 6 e(∆+α−2U)βeO(δ)β.

Suppose that x ∈ [Λ̄,D+ δ] \ {0}. Letting τ the first time at which a particle detaches from the
origin and τ ′0 the first time at which ξ ′ reaches the origin, we get

P(0,x)(∃t 6 T∆eδβ, ξt, ξ ′t ∈ Λ̄ \ {0}) 6
∫T∆+eδβ

0
dt P(0,0)(ξt, ξ

′
t ∈ Λ̄ \ {0})

+

∫T∆+eδβ

0
dt P(0,x)(ξt, ξ

′
t ∈ Λ̄ \ {0}, τ ′0 > τ).
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To prove (7.B.1), by the non-superdiffusivity property we can bound the second integral from
above as∫T∆+eδβ

0
dt

∫t
0

ds e−Uβe−se−UβP1(ξt−s ∈ Λ̄ \ {0})
∑

y∈B(x,√seδβ)\{0}

cst

1+ s
Py(ξ

′
t−s ∈ Λ̄ \ {0}).

Dividing the integral from 0 to t into the integral from 0 to e(U− 1
2 (ε−α))β and from

e(U− 1
2 (ε−α))β to t, we obtain the desired lower bound. Indeed, the former integral gives

e(∆+α)β(e−Uβ/e(U− 1
2 (ε−α))β) = e−

1
2 (ε−α)βeO(δ)β as upper bound, while the second inte-

gral gives e−(ε−α)βeO(δ)β as upper bound arguing as in (7.B.2). This concludes the proof of
(7.B.1).

It remains to consider the case in which the cluster can move after interacting with the
free particles. We observe that if each time the cluster moves we translate it to the origin, then
it remains fixed during the whole time interval and there is a resulting perturbation to the
remaining free particle. By arguing as before, we get the same result.

Event H3. We can argue as for the event H2.

Event H ′3. Divide the time interval [0, T∆+eδβ] into intervals [ti, ti + eDβ] of length eDβ, with
1 6 i < e(∆+α−D)βeδβ. If H ′3 occurs, then there are two possible situations: either the two
different pairs of green particles are (l, j) and (r, k) with j 6= k, which we refer to as H ′,13 , or
(l, j) and (l, k) with l, j, r, k are all different from each other, which we refer to as H ′,23 . Using
an argument similar to the one used for the event H2, we obtain

P(H ′,13 ) 6 e2Dβe−2(∆+α)eO(δ)β,

P(H ′,23 ) 6 e2Dβe−2(∆+α)eO(δ)β,

which imply that c(H ′3) > 2(∆−D+α) −O(δ).

Event I. We can argue as for the event F̃m+1.

Event H̃2 We have c(H̃2) = min{c(H3), c(H ′3), c(I)} > U− 1
2ε−

3
2α− d−O(δ).

Event K1 Use time scale e(∆+α)β for the green particles, because of the condition on X∆+ and
the fact that the yellow particle is inside the box [Λ̄,D+ δ]. Using the spread-out property for
green/red and yellow particles, we obtain

P(K1 ∩G ′c ∩Hc2) 6
∑

t∗6ieDβ6e(∆+α+δ)β

∑
j<i

(
eDβeδβ

e(∆+α)β

)3(
eDβeδβ

(i+ 1)eDβ

)

6 e(2(D−∆)−2α)βeO(δ)β.

This implies that

P(K1) 6 P(K1 ∩G ′c ∩Hc2) + P(H2)eδβ 6 e−(∆−D+α−O(δ))β

and therefore c(K1) > ∆−D+α−O(δ).

Event K2. We argue as for the event K1.
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Part III

G L AU B E R D Y N A M I C S





8I S I N G M O D E L O N C L U S T E R E D N E T W O R K S

In this chapter we study opinion dynamics on networks with a nontrivial community
structure, assuming individuals can update their binary opinion as the result of the interactions
with an external influence with strength h ∈ [0, 1] and with other individuals in the network.
To model such dynamics, we consider the Ising model with an external magnetic field
on a family of finite networks with a clustered structure. Assuming a unit strength for
the interactions inside each community, we assume that the strength of interaction across
different communities is described by a scalar ε ∈ [−1, 1], which allows a weaker but possibly
antagonistic effect between communities. We are interested in the stochastic evolution of this
system described by a Glauber-type dynamics parameterized by the inverse temperature β.
We focus on the low-temperature regime β→∞, in which homogeneous opinion patterns
prevail and, as such, it takes the network a long time to fully change opinion. We investigate
the different metastable and stable states of this opinion dynamics model and how they
depend on the values of the parameters ε and h. More precisely, using the framework of the
pathwise approach [85, 92], we derive rigorous estimates in probability, expectation, and law
for the first hitting time between metastable (or stable) states and (other) stable states, together
with tight bounds on the mixing time and spectral gap of the Markov chain describing the
network dynamics. Lastly, we provide a full characterization of the critical configurations
for the dynamics, i.e., those which are visited with high probability along the transitions of
interest.

This chapter is structured as follows. In Section 8.1, we outline the main results for
the transition time and the critical configurations for the dynamics and we present some
preliminary results concerning the energy of the configurations. In Section 8.2, we prove the
main results in absence of a external magnetic field, whereas Section 8.3 is devoted to the
proofs for the case of a positive external magnetic field.

8.1 main results and preliminaries

For all values of the external magnetic field h ∈ [0, 1], the considered Ising model exhibits
a metastable behavior. In this section, we state our main results, which concern the analysis
of the transition either from a metastable to a stable state, or between two stable states, and
the description of the corresponding critical configurations (see Section 3.1.1 for the precise
definitions of a stable state and a metastable state).

Throughout this chapter we refer to the model–independent definitions and notations
of Section 3.1.1, since we can simply adapt them to Glauber dynamics by replacing the
Hamiltonian Ĥ with H̃ defined in (1.4.4). The energy landscape we consider in this chapter
is therefore a 4–tuple (X,Q, H̃, ∆), where X is the state space, Q ⊂ X×X is the connectivity
relation defined in (1.4.2), H̃ is the energy function defined in (1.4.4), and the cost function
∆ : Q→ R+ is defined as ∆(x, y) := [H̃(y) − H̃(x)]+.

In Section 8.1.1, we state our main results for the case h = 0, while in Section 8.1.2 those for
the case h > 0. Our results concern the asymptotic behavior of the transition times between
metastable and stable configurations in the limit as β→∞, as well as the identification of the
gate of critical configurations (cf. point 4 in Section 3.1.1 for the precise definition).

8.1.1 Case h = 0

In this section we focus on the case h = 0, namely there is no external magnetic field. The
first result we provide is the identification of metastable and stable states, which is the subject
of the following theorem.

261
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Theorem 8.1.1 (Stable and metastable states). Let (X, Q, H̃, ∆) be the energy landscape correspond-
ing to the Ising model on G(2, n). Then, the lowest possible energy is equal to

min
σ∈X

H̃(σ) = −n2 +n− |ε|n. (8.1.1)

The set of stable states is

Xs =


{+,−} if ε > 0,

{+,−,±,∓} if ε = 0,

{±,∓} if ε < 0,

(8.1.2)

and the set of metastable states is

Xm =

{±,∓} if ε > 0,

{+,−} if ε < 0.
(8.1.3)

The next theorem investigates the asymptotic behavior as β→∞ of the tunneling time
for the system started at the stable state s1 to reach for the first time the other stable state s2,
which we denote by τs1s2 . Recall (3.1.1) for the precise definition. In order to state the theorem,
we need to define

Γ0s :=

n
2

2 + |ε|n if n is even,
n2−1
2 + |ε|(n+ 1) if n is odd,

(8.1.4)

that represents the maximal value of the energy barrier between two stable states.

Theorem 8.1.2 (Asymptotic behavior of the tunneling time). For any δ > 0 and for any
s1, s2 ∈ Xs, the following statements hold:

(i) lim
β→∞P(eβ(Γ

0
s−δ) < τ

s1
s2 < eβ(Γ

0
s+δ)) = 1;

(ii) lim
β→∞ 1β log Eτ

s1
s2 = Γ

0
s ;

(iii)
τ
s1
s2

Eτ
s1
s2

d→ Exp(1) as β→∞;

(iv) there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓ0s 6 ρ 6 c2e−βΓ

0
s , (8.1.5)

where ρ is the spectral gap of the Markov process (recall (1.3.55)).

Remark 8.1.3. We note that Theorem 8.1.2(iv) implies that

lim
β→∞ 1β log tmix(ε) = Γ0s = lim

β→∞−
1

β
log ρ, (8.1.6)

where tmix(ε) is the mixing time of the Markov process, which quantifies how long it takes for the
empirical distribution of the process to get close to the stationary distribution (recall (1.3.54)).

The last result of this section concerns the description of a gate for the transition between
the stable states s1 and s2. To this end, if n is odd, we define

C∗odd :=

C
(
n+1
2 , 0, 0

)
∪C

(
0, n+12 , 0

)
∪C

(
n, n−12 , n−12

)
∪C

(
n−1
2 , n, n−12

)
if ε > 0,

C
(
n−1
2 , 0, 0

)
∪C

(
0, n−12 , 0

)
∪C

(
n, n+12 , n+12

)
∪C

(
n+1
2 , n, n+12

)
if ε < 0,

(8.1.7)

otherwise if n is even, we define

C∗even := C
(n
2
, 0, 0

)
∪C

(
0,
n

2
, 0
)
∪C

(
n,
n

2
,
n

2

)
∪C

(n
2
, n,

n

2

)
. (8.1.8)

Theorem 8.1.4 (Gate for the tunneling transition). If n is even (resp. odd), the set C∗even (resp.
C∗odd) is a gate for the transition from s1 to s2 for any s1, s2 ∈ Xs.
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8.1.2 Case h > 0

In this section, we focus on the case h > 0, which describes the situation in which there is
a positive external magnetic field that favors plus spins. Moreover, we assume that 0 < h 6 1
in order to avoid the energetical contribution of the external magnetic field prevails over
the binding energies associated with internal edges. As it will be clear later, the dynamical
behavior of the system is different in the two cases 0 < h 6 |ε| 6 1 and 0 6 |ε| < h 6 1,
especially when ε < 0. Indeed, this corresponds to a different “importance" given to cross-
edges and external magnetic field. The first result we provide is the identification of metastable
and stable states, which is the subject of the following theorem.

Theorem 8.1.5 (Stable and metastable states). Let (X, Q, H̃, ∆) be the energy landscape correspond-
ing to the Ising model on G(2, n). Then, the lowest possible energy is equal to

min
σ∈X

H̃(σ) =

−n2 +n− εn− 2hn if 0 6 ε 6 1 or 0 < −ε < h 6 1,

−n2 +n+ εn if 0 < h 6 −ε 6 1.
(8.1.9)

The set of stable states is

Xs =


{+} if 0 6 ε 6 1 or 0 < −ε < h 6 1,

{+,±,∓} if h = −ε,

{±,∓} if 0 < h < −ε 6 1,

(8.1.10)

and the set of metastable states is

Xm =


{−} if 0 6 ε 6 1 or h = −ε,

{±,∓} if 0 < −ε < h 6 1,

{+} if 0 < h < −ε 6 1.

(8.1.11)

The next theorems investigate the asymptotic behavior as β→∞ of the tunneling time
(resp. transition time to the stable state) for the system started at the stable state s1 (resp.
metastable state m) to reach for the first time the other stable state s2 (resp. the stable state
s) if 0 < h < −ε 6 1 (resp. if 0 6 ε 6 1 or 0 < −ε < h 6 1). Recall (3.1.1) for the precise
definition. In order to state the theorems, we need to define:

Γ1m :=


n2

2 +n(ε− h) if n is even,
n2−1
2 + (n+ 1)(ε− h) if n is odd and 0 < h 6 ε 6 1,

n2−1
2 + (n− 1)(ε− h) if n is odd and 0 6 ε < h 6 1,

(8.1.12)

Γ2m :=

n
2

2 −n(ε+ h) if n is even,
n2−1
2 − (n− 1)(ε+ h) if n is odd,

(8.1.13)

Γhs :=


n2

2 +n(h− ε) if n is even and 0 < h− ε < 1,

n2−4
2 + (n+ 2)(h− ε) if n is even and 1 6 h− ε < 2,

n2−1
2 + (n+ 1)(h− ε) if n is odd.

(8.1.14)

that represent the maximal values of the energy barrier between the set of metastable states
to the set of stable states or between two stable states.

Theorem 8.1.6 (Asymptotic behavior of the tunneling time). If 0 < h < −ε 6 1, for any δ > 0
and for any s1, s2 ∈ Xs, the following statements hold

(i) lim
β→∞P(eβ(Γ

h
s −δ) < τ

s1
s2 < eβ(Γ

h
s +δ)) = 1;

(ii) lim
β→∞ 1β log Eτ

s1
s2 = Γ

h
s ;
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(iii)
τ
s1
s2

Eτ
s1
s2

d→ Exp(1) as β→∞;

(iv) there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓhs 6 ρ 6 c2e−βΓ

h
s , (8.1.15)

where ρ is the spectral gap of the Markov process.

If 0 6 ε 6 1 we set Γ∗m = Γ1m, whereas if 0 < −ε < h 6 1 we set Γ∗m = Γ2m.

Theorem 8.1.7 (Asymptotic behavior of the transition time). If 0 6 ε 6 1 or 0 < −ε < h 6 1,
for any δ > 0, for m ∈ Xm and s ∈ Xs, the following statements hold

(i) lim
β→∞P(eβ(Γ

∗
m−δ) < τms < eβ(Γ

∗
m+δ)) = 1;

(ii) lim
β→∞ 1β log Eτms = Γ∗m;

(iii)
τms

Eτms

d→ Exp(1) as β→∞;

(iv) there exist two constants 0 < c1 6 c2 <∞ independent of β such that for every β > 0

c1e
−βΓ∗m 6 ρ 6 c2e−βΓ

∗
m , (8.1.16)

where ρ is the spectral gap of the Markov process.

Remark 8.1.8. We note that Theorem 8.1.6(iv) implies that

lim
β→∞ 1β log tmix(ε) = Γhs = lim

β→∞−
1

β
log ρ, (8.1.17)

where tmix(ε) is the mixing time of the Markov process. Analogously, a similar result can be also
derived for Γ∗m from Theorem 8.1.7(iv).

The last main result of this section concerns the description of a gate for the transition
between the stable states s1 and s2 (resp. between the metastable state m and the stable state
s) if 0 < h < −ε 6 1 (resp. if 0 6 ε 6 1 or 0 < −ε < h 6 1). To this end, we need the following
definitions.
If 0 6 ε 6 1, we define

C∗1 :=


C
(
n+1
2 , 0, 0

)
∪C

(
0, n+12 , 0

)
if n is odd and 0 < h 6 ε 6 1,

C
(
n−1
2 , 0, 0

)
∪C

(
0, n−12 , 0

)
if n is odd and 0 6 ε < h 6 1,

C
(
n
2 , 0, 0

)
∪C

(
0, n2 , 0

)
if n is even.

(8.1.18)

If 0 < −ε < h 6 1, we define

C∗2 :=

C
(
n, n−12 , n−12

)
if n is odd,

C
(
n, n2 ,

n
2

)
if n is even.

(8.1.19)

If 0 < h < −ε 6 1, we define

C∗3 :=


C
(
n−1
2 , 0, 0

)
∪C

(
0, n−12 , 0

)
if n is odd,

C
(
n
2 , 0, 0

)
∪C

(
0, n2 , 0

)
if n is even and 0 < h− ε < 1,

C
(
n−2
2 , 0, 0

)
∪C

(
0, n−22 , 0

)
if n is even and 1 6 h− ε < 2.

(8.1.20)

Theorem 8.1.9 (Gate for the transition). If 0 6 ε 6 1 (resp. 0 < −ε < h 6 1), the set C∗1 (resp.
C∗2) is a gate for the transition from the metastable state m to the stable state s. If 0 < h < −ε 6 1,
the set C∗3 is a gate for the transition from s1 to s2 for any s1, s2 ∈ {±,∓}.
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8.1.3 Energetical properties of the configurations

In this section, we provide some useful lemmas concerning the energetical properties of
the configurations in C(p1, p2, a), which will be used in the rest of the chapter. Note that all
the configurations in C(p1, p2, a) are identical, modulo permutation of the vertices in each cluster,
since:

— the first cluster gets n− p1 minus spins,
— the second cluster gets n− p2 minus spins,
— p1 − a is the number of cross edges between plus spins in the first cluster and minus

spins in the second cluster,
— p2 − a is the number of cross edges between minus spins in the first cluster and plus

spins in the second cluster,
— n+ a− p1 − p2 is the number of cross edges between minus spins in the first cluster

and minus spins in the second cluster.

Lemma 8.1.10 (Energy of the configurations). For any σ ∈ C(p1, p2, a), it holds that

H̃(σ) = n− εn− 2
(
p1 −

n

2

)2
− 2

(
p2 −

n

2

)2
− 2ε(2a−p1−p2)− 2h(p1+p2−n). (8.1.21)

Proof. Let σ ∈ C(p1, p2, a). Note that in the first cluster there are
(
p1
2

)
(resp.

(
n−p1
2

)
) internal

edges between plus (resp. minus) spins, whereas there are p1(n− p1) internal edges between
plus and minus spins. By symmetry, analogous relations can be derived for the second cluster.
Moreover, there are n+ 2a− p1 − p2 (resp. p1 + p2 − 2a) cross edges between spins of the
same (resp. different) type and p1 + p2 plus spins in G(2, n). Thus, by using (1.4.4) we deduce

H(σ) = −
(n− p1)(n− p1 − 1)

2
−
p1(p1 − 1)

2
−

(n− p2)(n− p2 − 1)

2
−
p2(p2 − 1)

2

+p1(n− p1) + p2(n− p2) − ε(n+ 4a− 2p1 − 2p2) − 2h(p1 + p2 −n)

= n− εn− 2
(
p1 −

n

2

)2
− 2

(
p2 −

n

2

)2
− 2ε(2a− p1 − p2) − 2h(p1 + p2 −n).

(8.1.22)

From now on, we define up–flip (resp. down–flip) as the move consisting in flipping a
minus (resp. plus) spin in a plus (resp. minus) spin.

Lemma 8.1.11 (Energy difference for an up–flip). Let σ1 ∈ C(p1, p2, a1) and let σ2 ∈ C(p1 +
i, p2 + j, a2), with i, j ∈ {0, 1} such that i 6= j. Then,

H̃(σ2) − H̃(σ1) =



2(n− 1− 2p1 + ε− h) if i = 1, p1 6 n− 1 and a2 = a1,

2(n− 1− 2p1 − ε− h) if i = 1, p1 6 n− 1 and a2 = a1 + 1,

2(n− 1− 2p2 + ε− h) if j = 1, p2 6 n− 1 and a2 = a1,

2(n− 1− 2p2 − ε− h) if j = 1, p2 6 n− 1 and a2 = a1 + 1.
(8.1.23)

Proof. In the case i = 1 and p1 6 n− 1, by using (8.1.21), we directly get

H̃(σ2) − H̃(σ1) = 2(n− 1− 2p1 + 2εa1 − 2εa2 + ε− h)

=

2(n− 1− 2p1 + ε− h) if a2 = a1,

2(n− 1− 2p1 − ε− h) if a2 = a1 + 1.

(8.1.24)

By symmetry, we get the claim also in the case j = 1 and p2 6 n− 1.
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Lemma 8.1.12 (Energy difference for a down–flip). Let σ1 ∈ C(p1, p2, a1), σ2 ∈ C(p1− i, p2−
j, a2), with i, j ∈ {0, 1} such that i 6= j. Then,

H̃(σ2) − H̃(σ1) =



−2(n+ 1− 2p1 + ε− h) if i = 1, p1 > 1 and a2 = a1,

−2(n+ 1− 2p1 − ε− h) if i = 1, p1 > 1 and a2 = a1 − 1,

−2(n+ 1− 2p2 + ε− h) if j = 1, p2 > 1 and a2 = a1,

−2(n+ 1− 2p2 − ε− h) if j = 1, p2 > 1 and a2 = a1 − 1.

(8.1.25)

Proof. By proceeding as in the proof of Lemma 8.1.11, we get the claim.

Since the configurations in C(p1, p2, a) have all the same energy, see Lemma 8.1.10, with a
slight abuse of notation in the rest of the chapter we denote their energy value by H̃(p1, p2, a).

8.2 proof of the main results : case h = 0

8.2.1 Reference paths

If ε > 0, we define a reference path ω̄ from − to +, while if ε < 0 we define a path
ω̂ from ± to ∓. In words, these paths are constructed in the following way. The path ω̄,
which starts from −, consists in flipping one by one the minus spins in one community until
the path reaches either ± or ∓ and afterward the remaining minuses are flipped one by
one until the path reaches + (see Figure 1.39). The construction of the path ω̂ is made in a
similar way (see Figure 1.40).

Definition 8.2.1 (Reference paths). If ε > 0, we define ω̄ : −→ + as the path (ω̄k)
2n
k=0 such

that

ω̄k ∈ C(k, 0, 0) and ω̄n+k ∈ C(n, k, k), for any k = 0, . . . , n. (8.2.1)

If ε < 0, we define ω̂ : ±→ ∓ as the path (ω̂k)
2n
k=0 such that

ω̂k ∈ C(n, k, k) and ω̂n+k ∈ C(n− k, n, n− k), for any k = 0, . . . , n. (8.2.2)

Lemma 8.2.2 (Maximal energy on the reference paths). Let ω̄ : −→ + and ω̂ : ±→ ∓

be the paths given in Definition 8.2.1. Then,

Φω̄ =

H̃(ω̄n
2
) = H̃(ω̄n+n

2
) = n− n2

2 if n is even,

H̃(ω̄n+1
2

) = H̃(ω̄
n+n−1

2
) = n− n2+1

2 + ε if n is odd,
(8.2.3)

and

Φω̂ =

H̃(ω̂n
2
) = H̃(ω̂n+n

2
) = n− n2

2 − εn if n is even,

H̃(ω̂n+1
2

) = H̃(ω̂
n+n−1

2
) = n− n2+1

2 − ε if n is odd.
(8.2.4)

Proof. Since H̃(C(n−k, n, n−k)) = H̃(C(k, 0, 0)), it suffices to study the maxima of the energy
along the path ω̄ connecting − and +. From (8.1.21) and (8.2.1), we have

H̃(ω̄k) = −n2 +n+ 2kn− 2k2 + 2kε−nε

H̃(ω̄n+k) = −n2 +n+ 2kn− 2k2 − 2kε+nε
(8.2.5)

for any k = 0, . . . , n. By deriving both equations in (8.2.5) with respect to k, we have that the
maxima of the energy along the path ω̄ are H̃(ω̄n+ε

2
) and H̃(ω̄n+n−ε

2
). This means that on

the first part of the path (ω̄k)
n
k=0 the maximum is reached at the critical value k∗1 = n+ε

2 ,
while on the second part of the path (ω̄k+n)

n
k=0 the maximum is reached at the critical value

k∗2 = n−ε
2 .
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Let us focus on the value k∗1. Note that H̃(ω̄k) is a concave parabola in k, which is
symmetric with respect to k∗1. Since we are interested in finding the integer value of k in
which this maximum is achieved, we need to compare the distances k∗1 − bk∗1c and dk∗1e− k∗1.
The minimal distance indicates the value we are interested in. Consider now the case ε > 0,
thus

bk∗1c =


n
2 if n is even,
n−1
2 if n is odd and 0 6 ε < 1,
n+1
2 if n is odd and ε = 1,

dk∗1e =


n
2 + 1 if n is even,
n+1
2 if n is odd and 0 6 ε < 1,
n+3
2 if n is odd and ε = 1,

(8.2.6)

and

bk∗2c =

n2 − 1 if n is even,
n−1
2 if n is odd,

dk∗2e =

n2 if n is even,
n+1
2 if n is odd.

(8.2.7)

Assume n even. Since bn+ε2 c = n
2 and dn+ε2 e = n

2 + 1, we have that k∗1 − bk∗1c = ε
2 6 1−

ε
2 =

dk∗1e− k∗1 and therefore the maximum is achieved in H̃(ω̄n
2
). By arguing similarly for n odd

and k∗2, we get the claim for ε > 0. Since H̃(ω̄k) = H̃(ω̂n+k) and H̃(ω̄n+k) = H̃(ω̂k) for any
k = 0, ..., n, the case ε < 0 can be studied in a similar way. Note that for ε < 0 the values bk∗i c
and dk∗i e, with i = 1, 2, are different from the case ε > 0.

Proposition 8.2.3 (Upper bounds). Let (X, Q, H̃, ∆) be the energy landscape corresponding to the
Ising model on G(2, n), then Γs 6 Γ0s , where Γ0s is defined in (8.1.4).

Proof. By using (8.1.1) and Lemma 8.2.2, we get the claim.

8.2.2 Lower bounds

For every p ∈ {0, . . . , 2n}, define the manifold C(p) ⊂ X as the subset of configurations
in X with exactly p plus spins, that is C(p) := {σ ∈ X :

∑
i∈V 1{σi=+1} = p}. By fixing the

number of plus spins in each of the two clusters, the manifold C(p) can be decomposed as

C(p) =
⋃

06p1,p26n
p1+p2=p

C(p1, p2, a).

Assuming the current state σ ∈ C(p) for some p, since we consider a single-flip dynamics,
every nontrivial update will lead to new state σ ′ that belongs to either C(p− 1) or C(p+ 1).

Proposition 8.2.4 (Local minima). For every n > 2 and |ε| 6 1, regardless of the sign of ε, the
minimum value of the energy H̃ on the manifold C(p) is given by

H̃(p) := min
σ∈C(p)

H̃(σ) =

n− (p−n)2 − p2 − ε(n− 2p) if 0 6 p 6 n,

n− (2n− p)2 − (p−n)2 − ε(2p− 3n) if n 6 p 6 2n.
(8.2.8)

Furthermore, if 0 6 p 6 n, the minimum is achieved on the subsets C(p, 0, 0) and C(0, p, 0), while if
n 6 p 6 2n, the minimum is achieved on the subsets C(n, p−n, p−n) and C(p−n,n, p−n).
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Proof. For every fix p, one has consider all the subsets C(p1, p2, a) which partition C(p). In
view of (8.1.21), we need to solve the quadratic optimization problem:

min
σ∈C(p)

H̃(σ) = n+ ε(2p−n)+ min
p1,p2,a

06p1, p26n
p1+p2=p

max{0,p−n}6a6min{p1,p2}

−2
(
p1 −

n

2

)2
− 2
(
p2 −

n

2

)2
− 4εa.

(8.2.9)

If ε > 0, it is clear from (8.2.9) that a should be as large as possible to achieve a possibly
lower energy. Without loss of generality, we may assume that p1 6 p2 and substituting
a = min{p1, p2} = p1 and then p2 = p− p1, we have

min
σ∈C(p)

H̃(σ) = n− ε(n− 2p)+ min
p1

max{0,p−n}6p16p/2
−2
(
p1 −

n

2

)2
− 2
(
p− p1 −

n

2

)2
− 4εp1.

(8.2.10)

Let us define f(p1) := −2
(
p1 −

n
2

)2
− 2

(
p− p1 −

n
2

)2
− 4εp1. Recall that p is only a fixed

parameter, so f(p1) single-variable concave function of p1, which will then achieve its mini-
mum value at the boundary points. The inequality p1 6 p/2 follows from the assumptions
p1 + p2 = p and p1 6 p2. Recall that p 6 2n and let us distinguish two cases:

(a) If 0 6 p 6 n, then the boundary points to consider are p1 ∈ {0, bp/2c}, at which the
function f(p1) attains the following values

f(0) = −n2 − 2p2 + 2np,

f(bp2 c) =

−n2 − p2 + 2np− 2εp if p is even,

−n2 − p2 + 2np− 2εp+ 2ε− 1 if p is odd.

(8.2.11)

By a direct computation, it follows that f(0) 6 f(bp2 c) either whenever ε 6 p
2 if p is

even, or whenever ε 6 p+1
2 if p is odd. From now on, we consider separately the three

following cases.
If p = 0, we obtain that f(bp2 c) = f(0) and therefore, by using (8.2.10),

min
σ∈C(0)

H̃(σ) = n−n2 − εn. (8.2.12)

If p = 1, we obtain that f(bp2 c) = f(0) and therefore, by using (8.2.10),

min
σ∈C(1)

H̃(σ) = 3n−n2 − εn+ 2ε− 2. (8.2.13)

If 2 6 p 6 n, since |ε| 6 1, we have that f(0) 6 f(bp2 c). Thus, by using (8.2.10),

min
σ∈C(p), 26p6n

H̃(σ) = n− (p−n)2 − p2 − ε(n− 2p). (8.2.14)

(b) If n 6 p 6 2n, then the boundary points to consider are p1 ∈ {p−n, bp/2c}, at which
the function f(p1) attains the following values

f(p−n) = −5n2 − 2p2 + 6np− 4εp+ 4εn,

f(bp2 c) =

−n2 − p2 + 2np− 2εp if p is even,

−n2 − p2 + 2np− 2εp+ 2ε− 1 if p is odd.

(8.2.15)

By a direct computation, it follows that f(p−n) 6 f(bp2 c) either whenever ε 6 n− p
2 if

p is even, or whenever ε 6 n− p−1
2 if p is odd. From now on, we consider separately

the three following cases.
If n 6 p 6 2n− 2, since |ε| 6 1, we have that f(p−n) 6 f(bp2 c). Thus, by using (8.2.10),

min
σ∈C(p), n6p62n−2

H̃(σ) = n− (2n− p)2 − (p−n)2 − ε(2p− 3n). (8.2.16)
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If p = 2n− 1, we obtain that f(bp2 c) = f(n− 1). Thus, by using (8.2.10),

min
σ∈C(2n−1)

H̃(σ) = 3n−n2 − εn+ 2ε− 2. (8.2.17)

If p = 2n, we obtain that f(bp2 c) = f(n). Thus, by using (8.2.10),

min
σ∈C(2n)

H̃(σ) = n−n2 − εn. (8.2.18)

From the calculations above, it is easy to deduce that if 0 6 p 6 n, the minimum is achieved
on the subsets C(p, 0, 0) and C(0, p, 0), while if n 6 p 6 2n, the minimum is achieved on the
subsets C(n, p−n, p−n) and C(p−n,n, p−n).

If ε < 0, it is clear from (8.2.9) that a should be as small as possible to achieve a possibly
lower energy. As before, without loss of generality, we assume that p1 6 p2 and we substitute
p2 = p− p1 in (8.2.9). We need to distinguish two cases depending on the value of p.

(a) If 0 6 p 6 n, then a = max{0, p−n} = 0 and (8.2.9) becomes

min
σ∈C(p)

H̃(σ) = n− ε(n− 2p)+ min
p1

06p16p/2
−2
(
p1 −

n

2

)2
− 2

(
p− p1 −

n

2

)2
. (8.2.19)

The objective function g(p1) := −2
(
p1 −

n
2

)2
− 2

(
p− p1 −

n
2

)2 is concave in p1, so
again we search the minimum among the boundary points p1 ∈ {0, bp/2c}, at which
the function g(p1) attains the following values

g(0) = −n2 − 2p2 + 2np,

g(bp2 c) =

−n2 − p2 + 2np if p is even,

−n2 − p2 + 2np− 1 if p is odd.

(8.2.20)

By a direct computation, it follows that g(0) 6 g(bp2 c) in both cases p even and p odd
and, thus,

min
σ∈C(p), 06p6n

H̃(σ) = n− (p−n)2 − p2 − ε(n− 2p). (8.2.21)

(b) If n 6 p 6 2n, then a = max{0, p−n} = p−n and (8.2.9) becomes

min
σ∈C(p)

H̃(σ) = n− ε(2p− 3n) + min
p1

p−n6p16p/2
g(p1). (8.2.22)

The objective function g(p1) is concave in p1, so again we search the minimum among
the boundary points p1 ∈ {p − n, bp/2c}, at which the function g(p1) attains the
following values

g(p−n) = −5n2 − 2p2 + 6pn,

g(bp2 c) =

−n2 − p2 + 2pn if p is even,

−n2 − p2 + 2pn− 1 if p is odd.

(8.2.23)

By a direct computation, it follows that g(p−n) 6 g(bp2 c) in both cases p even and p
odd and, thus,

min
σ∈C(p),n6p62n

H̃(σ) = n− (2n− p)2 − (p−n)2 − ε(2p− 3n). (8.2.24)

From the calculations above, it is easy to deduce that if 0 6 p 6 n, the minimum is achieved
on the subsets C(p, 0, 0) and C(0, p, 0), while if n 6 p 6 2n, the minimum is achieved on the
subsets C(n, p−n, p−n) and C(p−n,n, p−n).

In order to analyze the manifold C(p) with maximal energy, we need to define

p∗left :=


n
2 if n is even,
n+1
2 if n is odd and ε > 0,
n−1
2 if n is odd and ε < 0,

(8.2.25)
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and

p∗right :=


n+ n

2 if n is even,

n+ n−1
2 if n is odd and ε > 0,

n+ n+1
2 if n is odd and ε < 0.

(8.2.26)

For any 0 6 p 6 2n, let Mp ∈ C(p) be the set of configurations with minimal energy.

Proposition 8.2.5 (Lower bounds). Let (X, Q, H̃, ∆) be the energy landscape corresponding to the
Ising model on G(2, n). The following statements hold:

— The maximum of the energy on
⋃
06p6nMp is realized by the configurations in C(p∗left, 0, 0)∪

C(0, p∗left, 0);
— The maximum of the energy on

⋃
n6p62nMp is realized by the configurations in C(n, p∗right −

n, p∗right −n)∪C(p∗right −n,n, p
∗
right −n).

Moreover, we have that Γs > Γ0s , where Γ0s is defined in (8.1.4).

Proof. The idea of the proof is to identify, depending on the parity of n and the value of ε, the
correct manifold that would give the desired lower bound.

Treating H̃(p) as a function of a continuous variable, we see that is concave and, solving
for d

dp H̃(p) = 0, we obtain two stationary points pleft =
n
2 + ε

2 and pright =
3n
2 − ε

2 . They
both yield the value

max
06p62n

H̃(p) = −
1

2

(
n2 − 2n− ε2

)
. (8.2.27)

Since pleft and pright can only take integer values, we deduce that the possible integer optimal
values are

p∗1 ∈
{⌊n
2
+
ε

2

⌋
,
⌈n
2
+
ε

2

⌉}
, p∗2 ∈

{⌊3n
2

−
ε

2

⌋
,
⌈3n
2

−
ε

2

⌉}
. (8.2.28)

By performing the same computations as in the proof of Lemma 8.2.2, we obtain that
p∗1 = p∗left and p∗2 = p∗right, where p∗left (resp. p∗right) is defined in (8.2.25) (resp. (8.2.25)).
Furthermore, by Proposition 8.2.4 we have that the minimum of the energy on the manifold
C(p∗left) is realized in Mp∗left

≡ C(p∗left, 0, 0) ∪ C(0, p∗left, 0) and on the manifold C(p∗right) in
Mp∗right

≡ C(n, p∗right −n, p
∗
right −n)∪C(p∗right −n,n, p

∗
right −n).

Corollary 8.2.6 (Maximal energy barrier). We have that

Γs =

n
2

2 + |ε|n if n is even,
n2−1
2 + |ε|(n+ 1) if n is odd.

(8.2.29)

Proof. We get the claim by combining Propositions 8.2.3 and 8.2.5.

8.2.3 Identification of stable and metastable states

In this section, we provide the proof of Theorem 8.1.1. To this end, we give two propositions
that allow us to accomplish this task. The proof of Propositions 8.2.7 and 8.2.8 are postponed
after the proof of Theorem 8.1.1.

Proposition 8.2.7 (Identification of stable states). Let (X, Q, H̃, ∆) be the energy landscape cor-
responding to the Ising model on G(2, n). Then, the lowest possible value of the energy is equal to

min
σ∈X

H̃(σ) = −n2 +n− |ε|n, (8.2.30)
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and the set of stable states is

Xs =


{+,−} if ε > 0,

{+,−,±,∓} if ε = 0,

{±,∓} if ε < 0.

(8.2.31)

Proposition 8.2.8 (Identification of metastable states). Let σ ∈ X \ {+,±,∓,−}, then the
stability level of σ is zero, i.e., Vσ = 0. The set of metastable states is

Xm =

{±,∓} if ε > 0,

{+,−} if ε < 0.
(8.2.32)

Moreover, we have that

Γs =

n
2

2 − |ε|n if n is even,
n2−1
2 − |ε|(n− 1) if n is odd,

(8.2.33)

and

Γm =

n
2

2 − |ε|n if n is even,
n2−1
2 − |ε|(n− 1) if n is odd.

(8.2.34)

Proof of Theorem 8.1.1. Combining Corollary 8.2.6, Propositions 8.2.7 and 8.2.8 we get the
claim.

Proof of Proposition 8.2.7. Recalling that max{p1 + p2 −n, 0} 6 a 6 min{p1, p2}, we note that
a is a function of p1 and p2. In view of the partition

X =
⋃

06p1,p26n
max{0,p1+p2−n}6a6min{p1,p2}

C(p1, p2, a) (8.2.35)

and (8.1.21), we can calculate the minimum energy as

min
p1, p2

H̃(p1, p2, a) = n−nε+ 2 min
p1, p2

(
−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+ ε(p1 + p2) − 2εa

)

=: n−nε+ 2 min
p1, p2

f(p1, p2).

(8.2.36)

If ε > 0, we have that

min
p1, p2

f(p1, p2) = min
p1, p2

(
−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+ ε(p1 + p2) − 2εmin{p1, p2}

)
, (8.2.37)

so the function f(p1, p2) is concave in both variables. Thus, we expect the minimum (p∗1, p
∗
2)

to be achieved at the boundary of the feasible region. This immediately implies that (p∗1, p
∗
2) ∈

{(0, 0), (0, n), (n, 0), (n,n)}. By direct computation, we obtain:

f(0, 0) = f(n,n) = −
n2

2
; f(0, n) = f(n, 0) = −

n2

2
+nε. (8.2.38)

This implies that the minimum is achieved at (p∗1, p
∗
2) = (0, 0) and (p∗1, p

∗
2) = (n,n), which

correspond to the configuration C(0, 0, 0) ≡ − and C(n,n, n) ≡ +, respectively.
If ε < 0, we have that

min
p1, p2

f(p1, p2) = min
p1, p2

(
−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+ ε(p1 + p2) − 2εmax{p1 + p2 −n, 0}

)
,

so the function f(p1, p2) is concave in both variables as before. Thus, we deduce that the
possible configurations in which the minimum is achieved are the same as in (8.2.38). By
direct computation, the minimum is attained at (p∗1, p

∗
2) = (n, 0) and (p∗1, p

∗
2) = (0, n), which

correspond to the configuration C(n, 0, 0) ≡ ± and C(0, n, 0) ≡ ∓, respectively.
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Proof of Proposition 8.2.8. Consider a configuration σ ∈ C(p1, p2, a), with 0 6 p1, p2 6 n and
max{p1 + p2 − n, 0} 6 a 6 min{p1, p2}. Note that such a configuration σ can communicate
via one step of the dynamics with a configuration σ ′ such that

σ ′ ∈



C(p1 + 1, p2, a) if p1 6= n and a > max{p1 + p2 −n, 0},

C(p1, p2 + 1, a) if p2 6= n and a > max{p1 + p2 −n, 0},

C(p1 + 1, p2, a+ 1) if p1 6= n and a = max{p1 + p2 −n, 0},

C(p1, p2 + 1, a+ 1) if p2 6= n and a = max{p1 + p2 −n, 0},

C(p1 − 1, p2, a) if p1 6= 0 and a < min{p1, p2} or p1 > p2 and a = min{p1, p2},

C(p1, p2 − 1, a) if p2 6= 0 and a < min{p1, p2} or p2 > p1 and a = min{p1, p2},

C(p1 − 1, p2, a− 1) if p1 6= 0, p1 6 p2 and a = min{p1, p2},

C(p1, p2 − 1, a− 1) if p2 6= 0, p2 6 p1 and a = min{p1, p2}.

(8.2.39)

In other words, σ ′ is a configuration obtained from σ via either an up–flip or a down–flip in
one of the two clusters. First, we will prove that if σ ∈ C(p1, p2, a) \ {−,∓,±,+}, then
H̃(σ ′) − H̃(σ) < 0, with σ ′ one of the configurations described in (8.2.39). To this end, we
consider the following cases.

A. p1 = n and a > max{p1 + p2 −n, 0};
B. p1 6= n and a > max{p1 + p2 −n, 0};
C. p1 6= n and a = max{p1 + p2 −n, 0}.

Case A. Since it is not possible to have p1 = n and a > max{p1 + p2 −n, 0}, we note that now
σ ∈ C(n, p2, p2). Since σ /∈ {+,±}, it follows that 0 < p2 < n. By using Lemma 8.1.11, we
deduce that

H̃(C(n, p2 + 1, p2 + 1)) − H̃(C(n, p2, p2)) < 0 ⇐⇒ p2 >
⌈n− 1

2
−
ε

2

⌉
. (8.2.40)

Thus, if p2 satisfies (8.2.40), then we are done. Otherwise, by using Lemma 8.1.12 we deduce
that H̃(C(n, p2 − 1, p2 − 1)) − H̃(C(n, p2, p2)) < 0.
Case B. By using Lemma 8.1.11, we deduce that

H̃(C(p1 + 1, p2, a)) − H̃(C(p1, p2, a)) < 0 ⇐⇒ p1 >
⌈n− 1

2
+
ε

2

⌉
. (8.2.41)

Thus, if p1 satisfies (8.2.41), then we are done. Otherwise, we argue as follows. First, we note
that the case p1 = 0 implies a = 0, but this case is not allowed since a > max{p1 + p2 −n, 0}.

If p1 > p2, we get H̃(σ ′) − H̃(σ) < 0 with σ ′ belonging to C(p1 − 1, p2, a). Indeed, by
using Lemma 8.1.12, we have that

H̃(C(p1 − 1, p2, a)) − H̃(C(p1, p2, a)) < 0, (8.2.42)

since p1 6
⌊
n−1
2 + ε

2

⌋
.

If p1 6 p2, we get H̃(σ ′) − H̃(σ) < 0 with σ ′ belonging to C(p1 − 1, p2, a− 1). Indeed, by
using Lemma 8.1.12, we have that

H̃(C(p1 − 1, p2, a− 1)) − H̃(C(p1, p2, a)) < 0 (8.2.43)

since p1 6
⌊
n−1
2 + ε

2

⌋
.

Case C. First of all, we note that if p2 = n then we repeat the argument as in case A. Thus,
we assume p2 6= n. By using Lemma 8.1.11, we deduce that

H̃(C(p1 + 1, p2, a+ 1)) − H̃(C(p1, p2, a)) < 0 ⇐⇒ p1 >
⌈n− 1

2
−
ε

2

⌉
, (8.2.44)

H̃(C(p1, p2 + 1, a+ 1)) − H̃(C(p1, p2, a)) < 0 ⇐⇒ p2 >
⌈n− 1

2
−
ε

2

⌉
. (8.2.45)
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Thus, if p1 satisfies (8.2.44) or p2 satisfies (8.2.45), then we are done. Otherwise, a =

max{p1 + p2 − n, 0} = 0 and we have p1 6= 0 or p2 6= 0 since σ 6= −. Without loss of
generality, we suppose p1 6= 0 and we apply Lemma 8.1.12. We obtain

H̃(C(p1 − 1, p2, a)) − H̃(C(p1, p2, a)) < 0, (8.2.46)

since p1 6
⌊
n−1
2 − ε

2

⌋
.

Thus, we proved that the stability level for every configuration different from −, ∓, ±

and + is zero. It remains to show that Xm = {±,∓} (resp. Xm = {−,+}) if 0 < ε 6 1
(resp. −1 6 ε < 0) and to compute the maximal stability level Γm. In the case ε = 0, all these
states have the same energy and therefore there is no metastable state.

In the case ε > 0, we have Xs = {−,+}. By considering the part of the path ω̄ : −→ +

defined in (8.2.1) connecting ± to +, and by using (8.2.3), we deduce that

Γm 6

n
2

2 − εn if n is even,
n2−1
2 − ε(n− 1) if n is odd.

In order to prove also the reverse inequality, we argue as in the proof of [90, eq. (3.86)]. The
case ε < 0 can be treated in a similar way. Thus, we get the claim.

8.2.4 Asymptotic behavior of the tunneling time

In this section, we prove Theorem 8.1.2. Recalling (8.2.34), we observe that in all above
cases Γs − Γm = 2n|ε| > 0 in the case ε 6= 0, which means that the corresponding energy
landscape exhibits the absence of deep cycles. In the case ε = 0, we deduce that Γs − Γm = 0,
indeed all the states {+,±,∓,−} are stable. Thanks to [92, Lemma 3.6], we deduce
that for our model the quantity Γ̃(B), with B ( X, defined in [92, eq. (21)] is such that
Γ̃(X \ {s2}) = Γs. Moreover, thanks to the property of absence of deep cycles, [92, Proposition
3.18] implies that Θ(s1, s2) = Γs for s1, s2 ∈ Xs. Thus, Theorem 8.1.2(i) follows from [92,
Corollary 3.16]. Moreover, Theorem 8.1.2(ii) follows from [92, Theorem 3.17] provided
that [92, Assumption A] is satisfied: this is implied by the absence of deep cycles and [92,
Proposition 3.18]. Finally, Theorem 8.1.2(iii) follows from [92, Theorem 3.19] provided that
[92, Assumption B] is satisfied: this is implied by the absence of deep cycles and the argument
carried out in [92, Example 4]. theorem 8.1.2(iv) follows from [92, Proposition 3.24] with
Γ̃(X \ {s2}) = Γs for any s2 ∈ Xs.

8.2.5 Gate for the tunneling transition

In this section, we prove Theorem 8.1.4. If 0 6 ε 6 1 (resp. −1 6 ε < 0), consider an
optimal path ω ∈ (− → +)opt (resp. ω ∈ (± → ∓)opt). Since any path from − to
+ (resp. from ± to ∓) has to cross each manifold C(p), with 0 6 p 6 2n (resp. either
0 6 p 6 n or n 6 p 6 2n), and due to the optimality of the path ω, by Propositions 8.2.4 and
8.2.5 we get the claim.

8.3 proof of the main results : case h > 0

8.3.1 Reference paths

If ε > 0, consider the path ω̄ defined in Definition 8.2.1.

Definition 8.3.1 (Reference paths). If 0 < h < −ε 6 1, we define ω̌ : ± → ∓ as the path
(ω̌k)

2n
k=0, with

ω̌k ∈ C(n− k, 0, 0) and ω̌n+k ∈ C(0, k, 0), for any k = 0, . . . , n. (8.3.1)

If 0 < −ε < h 6 1, we define ω̃ : ±→ + as the path (ω̃k)
n
k=0, with

ω̃k ∈ C(n, k, k), for any k = 0, . . . , n. (8.3.2)
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See Figure 1.42 (resp. Figure 1.43) to visualize the reference path ω̌ (resp. ω̃).

Lemma 8.3.2 (Maximal energy along the reference paths). If ε > 0, let ω̄ : −→ + the path
defined in Definition 8.2.1. Then

Φω̄ =


H̃(ω̄n

2
) = n− n2

2 + hn if n is even,

H̃(ω̄n+1
2

) = n− n2+1
2 + ε+ h(n− 1) if n is odd and 0 < h 6 ε 6 1,

H̃(ω̄n−1
2

) = n− n2+1
2 − ε+ h(n+ 1) if n is odd and 0 6 ε < h 6 1.

(8.3.3)

If 0 < h < −ε 6 1, let ω̌ : ±→ ∓ be the path given in (8.3.1). Then,

Φω̌ =


H̃(ω̌n

2
) = H̃(ω̌ 3n

2
) = n− n2

2 + hn if n is even and 0 < h− ε < 1,

H̃(ω̌n+2
2

) = H̃(ω̌ 3n−2
2

) = n− n2+4
2 − 2ε+ h(n+ 2) if n is even and 1 6 h− ε < 2,

H̃(ω̌n+1
2

) = H̃(ω̌ 3n−1
2

) = n− n2+1
2 − ε+ h(n+ 1) if n is odd.

(8.3.4)

If 0 < −ε < h 6 1, let ω̃ : ±→ + be the path given in (8.3.2). Then,

Φω̃ =

H̃(ω̃n
2
) = n− n2

2 − hn if n is even,

H̃(ω̃n−1
2

) = n− n2+1
2 + ε− h(n− 1) if n is odd.

(8.3.5)

Proof. From (8.1.21) and (8.2.1), we have

H̃(ω̄k) = −n2 +n+ 2kn− 2k2 + 2kε−nε− 2h(k−n),

H̃(ω̄n+k) = −n2 +n+ 2kn− 2k2 − 2kε+nε− 2hk,
(8.3.6)

for any k = 0, . . . , n. By deriving both equations in (8.3.6) with respect to k, we have that
the maxima of the energy along the path ω̄ are H̃(ω̄n+ε−h

2
) and H̃(ω̄

n+n−ε−h
2

). This means
that on the first part of the path (ω̄k)

n
k=0 the maximum is reached at the critical value

k∗1 = n+ε−h
2 , while on the second part of the path (ω̄k+n)

n
k=0 the maximum is reached at

the critical value k∗2 = n−ε−h
2 .

First, consider the case 0 < h 6 ε 6 1. Let us focus on the value k∗1. Note that H̃(ω̄k) is
a concave parabola in k, which is symmetric with respect to k∗1. Since we are interested in
finding the integer value of k in which this maximum is achieved, we need to compare the
distances k∗1 − bk∗1c and dk∗1e− k∗1. The minimal distance indicates the value we are interested
in. Since 0 6 ε− h < 1, we have that

bk∗1c =

n2 if n is even,
n−1
2 if n is odd,

dk∗1e =

n2 + 1 if n is even,
n+1
2 if n is odd,

(8.3.7)

and

bk∗2c =


n
2 − 1 if n is even,
n−1
2 if n is odd and 0 < ε+ h 6 1,
n−3
2 if n is odd and 1 < ε+ h 6 2,

dk∗2e =


n
2 if n is even,
n+1
2 if n is odd and 0 < ε+ h 6 1,
n−1
2 if n is odd and 1 < ε+ h 6 2.

(8.3.8)
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Assume n even. Since bn+ε−h2 c = n
2 and dn+ε−h2 e = n

2 + 1, we have that k∗1 − bk∗1c = ε−h
2 6

1− ε−h
2 = dk∗1e− k∗1 and therefore the maximum is achieved in H̃(ω̄n

2
). By arguing similarly

for n odd and for k∗2, we get the claim.
Consider now the case 0 6 ε < h 6 1. By arguing as before, we get the claim.
Consider now the case 0 < h < −ε 6 1. From (8.1.21) and (8.3.1), we have

H̃(ω̌k) = −n2 +n+ 2kn− 2k2 − 2kε+nε+ 2hk,

H̃(ω̌n+k) = −n2 +n+ 2kn− 2k2 + 2kε−nε− 2h(k−n),
(8.3.9)

for any k = 0, . . . , n. By deriving both equations in (8.3.9) with respect to k, we have that
the maxima of the energy along the path ω̌ are H̃(ω̌n−ε+h

2
) and H̃(ω̌

n+n+ε−h
2

). This means
that on the first part of the path (ω̌k)

n
k=0 the maximum is reached at the critical value

k∗1 = n−ε+h
2 , while on the second part of the path (ω̌k+n)

n
k=0 the maximum is reached at

the critical value k∗2 = n+ε−h
2 . We have that

bk∗1c =


n
2 if n is even,
n−1
2 if n is odd and 0 < h− ε < 1,

n+1
2 if n is odd and 1 6 h− ε < 2,

dk∗1e =


n+2
2 if n is even,
n+1
2 if n is odd and 0 < h− ε < 1,

n+3
2 if n is odd and 1 6 h− ε < 2,

(8.3.10)

and

bk∗2c =


n−2
2 if n is even,
n−1
2 if n is odd and 0 < h− ε 6 1,
n−3
2 if n is odd and 1 6 h− ε < 2,

dk∗2e =


n
2 if n is even,
n+1
2 if n is odd and 0 < h− ε 6 1,
n−1
2 if n is odd and 1 6 h− ε < 2.

(8.3.11)

By arguing as above, we get the claim.
Consider now the case 0 < −ε < h 6 1. From (8.1.21) and (8.3.2), we have

H̃(ω̃k) = −n2 +n+ εn− 2k2 + 2nk− 2εk− 2hk. (8.3.12)

By deriving the equation in (8.3.12) with respect to k, we have that the maximum of the
energy along the path ω̃ is H̃(ω̃n−ε−h

2
). By arguing as before, we get the claim.

Proposition 8.3.3 (Upper bounds). Let (X, Q, H̃, ∆) be the energy landscape corresponding to the
Ising model on G(2, n). In the case 0 6 ε 6 1, we have Γm 6 Γ1m, where Γ1m is defined in (8.1.12).
In the case 0 < −ε < h 6 1, we have Γm 6 Γ2m, where Γ2m is defined in (8.1.13). In the case
0 < h < −ε 6 1, we have Γs 6 Γhs , where Γhs is defined in (8.1.14).

Proof. By using (8.1.9) and Lemma 8.3.2, we get the claim.

8.3.2 Lower bounds

Proposition 8.3.4 (Local minima). For every n > 2 and |ε| 6 1, regardless the sign of ε, the
minimum value of the energy H̃ on the manifold C(p) is given by

H̃(p) := min
σ∈C(p)

H̃(σ) =

n− (p−n)2 − p2 − ε(n− 2p) − 2h(p−n) if 0 6 p 6 n,

n− (2n− p)2 − (p−n)2 − ε(2p− 3n) − 2h(p−n) if n 6 p 6 2n.



276 ising model on clustered networks

Furthermore, if 0 6 p 6 n, the minimum is achieved on the subsets C(p, 0, 0) and C(0, p, 0), while if
n 6 p 6 2n, the minimum is achieved on the subsets C(n, p−n, p−n) and C(p−n,n, p−n).

Proof. Note that on the manifold C(p), with 0 6 p 6 2n, the energy contribution of the
external magnetic field is equal to −2h(p− n), which is constant. Thus the claim simply
follows by Proposition 8.2.4 by adding this further term to the energy.

In order to analyze the manifold C(p) with maximal energy, we need to define

p∗1 :=


n
2 if n is even,
n+1
2 if n is odd and 0 < h 6 ε 6 1,
n−1
2 if n is odd and 0 6 ε < h 6 1,

(8.3.13)

and

p∗2 :=

3n2 if n is even,
3n−1
2 if n is odd,

(8.3.14)

and

p∗3 :=


n
2 if n is even and 0 < h− ε < 1,

n−2
2 if n is even and 1 6 h− ε < 2,

n−1
2 if n is odd.

(8.3.15)

In the following proposition, depending on the values of the parameters ε and h, we
calculate the maximum of the energy over different collections of manifolds Mp, since the
relevant starting and target configurations are not always + and −.

Proposition 8.3.5 (Lower bounds). Let (X, Q, H̃, ∆) be the energy landscape corresponding to the
Ising model on G(2, n). The following statements hold:

— If 0 6 ε 6 1, the maximum of the energy on
⋃
06p62nMp is realized by the configurations in

C(p∗1, 0, 0)∪C(0, p∗1, 0). Moreover, we have that Γm > Γ1m, where Γ1m is defined in (8.1.12);
— If 0 < −ε < h 6 1, the maximum of the energy on

⋃
n6p62nMp is realized by the

configurations in C(n, p∗2 − n, p
∗
2 − n) ∪ C(p∗2 − n,n, p∗2 − n). Moreover, we have that

Γm > Γ2m, where Γ2m is defined in (8.1.13);
— If 0 < h < −ε 6 1, the maximum of the energy on

⋃
06p62nMp is realized by the

configurations in C(p∗3, 0, 0) ∪ C(0, p∗3, 0). Moreover, we have that Γs > Γhs , where Γhs is
defined in (8.1.14).

Proof. The idea of the proof is to identify, depending on the parity of n and the values of ε
and h, the correct manifold that would give the desired lower bound.

Treating H̃(p) as a function of a continuous variable, we see that is concave and, solving
for d

dp H̃(p) = 0, we obtain two stationary points pleft = n
2 + ε−h

2 and pright = 3n
2 − ε+h

2 .
Since pleft and pright can only take integer values, we deduce that the possible integer optimal
values are

p∗left ∈
{⌊n
2
+
ε− h

2

⌋
,
⌈n
2
+
ε− h

2

⌉}
, p∗right ∈

{⌊3n
2

−
ε+ h

2

⌋
,
⌈3n
2

−
ε+ h

2

⌉}
.

If 0 6 ε 6 1 (resp. 0 < h < −ε 6 1), since the path from m ∈ Xm to s ∈ Xs (resp. from
s1 ∈ Xs to s2 ∈ Xs) has to cross each manifold C(p), with 0 6 p 6 2n, we need to take into
account both p∗left and p∗right. We have that

H̃(C(n2 + ε−h
2 )) = n− n2

2 +nh+ 1
2 (ε− h)

2,

H̃(C(3n2 − ε+h
2 )) = n− n2

2 −nh+ 1
2 (ε+ h)

2.

By direct computation, we deduce that the maximum is reached in H̃(C(n2 + ε−h
2 )). By

performing the same computations in the proof of Lemma 8.3.2, we obtain that p∗left = p∗1
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(resp. p∗left = p
∗
3) in the case 0 6 ε 6 1 (resp. 0 < h < −ε 6 1), where p∗1 (resp. p∗3) is defined

in (8.3.13) (resp. (8.3.15)). Furthermore, by Proposition 8.3.4 we have that the minimum of
the energy on the manifold C(p∗1) (resp. C(p∗3)) is realized in Mp∗1

≡ C(p∗1, 0, 0)∪C(0, p∗1, 0)
(resp. in Mp∗3

≡ C(p∗3, 0, 0)∪C(0, p∗3, 0)) if 0 6 ε 6 1 (resp. 0 < h < −ε 6 1).
Consider now the case 0 < −ε < h 6 1. In this case, since for any m ∈ {±,∓} we are

interested in the transition from m to +, we have that every path connecting these two states
crosses the foliations C(p) with n 6 p 6 2n. Thus in this case we have that the critical value
of p is

p∗right ∈
{⌊3n

2
−
ε+ h

2

⌋
,
⌈3n
2

−
ε+ h

2

⌉}
.

By performing the same computations in the proof of Lemma 8.3.2, we obtain that p∗right = p
∗
2,

where p∗2 is defined in (8.3.14). Furthermore, by Proposition 8.3.4 we have that the minimum
of the energy on the manifold C(p∗2) is realized in Mp∗2

≡ C(n, p∗2 − n, p
∗
2 − n) ∪ C(p∗2 −

n,n, p∗2 −n). Thus, we get the claim.

Corollary 8.3.6 (Maximal energy barrier). Let (X, Q, H̃, ∆) be the energy landscape corresponding
to the Ising model on G(2, n). If 0 6 ε 6 1, we have that

Γm =


n2

2 +n(ε− h) if n is even,
n2−1
2 + (n+ 1)(ε− h) if n is odd and 0 < h 6 ε 6 1,

n2−1
2 + (n− 1)(ε− h) if n is odd and 0 6 ε < h 6 1.

(8.3.16)

If 0 < −ε < h 6 1, we have that

Γm =

n
2

2 −n(ε+ h) if n is even,
n2−1
2 − (n− 1)(ε+ h) if n is odd.

(8.3.17)

If 0 < h < −ε 6 1, we have that

Γs =

n
2

2 −n(ε+ h) if n is even,
n2−1
2 − (n+ 1)(ε+ h) if n is odd.

(8.3.18)

Proof. We get the claim by combining Propositions 8.3.3 and 8.3.5.

8.3.3 Identification of metastable and stable states

In this section, we provide the proof of Theorem 8.1.5. To this end, we give two propositions
that allow us to accomplish this task. The proof of Propositions 8.3.7 and 8.3.8 are postponed
after the proof of Theorem 8.1.5.

Proposition 8.3.7 (Identification of stable states). Let (X, Q, H̃, ∆) be the energy landscape cor-
responding to the Ising model on G(2, n). If 0 6 ε 6 1, Then, the lowest possible energy is equal to

min
σ∈X

H̃(σ) =

−n2 +n− εn− 2hn if 0 6 ε 6 1 or 0 < −ε < h 6 1,

−n2 +n+ εn if 0 < h 6 −ε 6 1,
(8.3.19)

and the set of stable states is

Xs =


{+} if 0 6 ε 6 1 or 0 < −ε < h 6 1,

{+,±,∓} if h = −ε,

{±,∓} if 0 < h < −ε 6 1.
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Proposition 8.3.8 (Identification of metastable states). Let (X, Q, H̃, ∆) be the energy landscape
corresponding to the Ising model on G(2, n). Let σ ∈ X \ {+,±,∓,−}, then the stability level of
σ is zero, i.e., Vσ = 0. Furthermore, the set of metastable states is

Xm =


{−} if 0 6 ε 6 1 or h = −ε,

{±,∓} if 0 < −ε < h 6 1,

{+} if 0 < h < −ε 6 1.

Moreover, in the case 0 6 ε 6 1, we have that

Γm =


n2

2 +n(ε− h) if n is even,
n2−1
2 + (n+ 1)(ε− h) if n is odd and 0 < h 6 ε 6 1,

n2−1
2 + (n− 1)(ε− h) if n is odd and 0 6 ε < h 6 1,

(8.3.20)

whereas in the case 0 < −ε < h 6 1, we have that

Γm =

n
2

2 −n(ε+ h) if n is even,
n2−1
2 − (n− 1)(ε+ h) if n is odd,

(8.3.21)

and in the case 0 < h < −ε 6 1, we have that

Γs =


n2

2 +n(h− ε) if n is even and 0 < h− ε < 1,

n2−4
2 + (n+ 2)(h− ε) if n is even and 1 6 h− ε < 2,

n2−1
2 + (n+ 1)(h− ε) if n is odd,

(8.3.22)

and

Γm =

n
2

2 +n(ε+ h) if n is even,
n2−1
2 + (n− 1)(ε+ h) if n is odd.

(8.3.23)

Proof of Theorem 8.1.5. Combining Corollary 8.3.6, Propositions 8.3.7 and 8.3.8 we get the
claim.

Proof of Proposition 8.3.7. Recalling that max{p1 + p2 −n, 0} 6 a 6 min{p1, p2}, we note that
a is a function of p1 and p2. In view of the partition

X =
⋃

06p1,p26n
max{0,p1+p2−n}6a6min{p1,p2}

C(p1, p2, a)

and (8.1.21), we can compute the minimum energy as

minp1, p2 H(p1, p2, a) = n−n(ε− 2h)

+2 min
p1, p2

(
−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+ (ε− h)(p1 + p2) − 2εa

)

=: n−n(ε− 2h) + 2 min
p1, p2

f(p1, p2).

(8.3.24)

If ε > 0, we have that

min
p1, p2

f(p1, p2) = min
p1, p2

(
−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+ (ε− h)(p1 + p2) − 2εmin{p1, p2}

)
,

so the function f(p1, p2) is concave in both variables. Thus, we expect the minimum (p∗1, p
∗
2)

to be achieved at the boundary of the feasible region. This immediately implies that (p∗1, p
∗
2) ∈

{(0, 0), (0, n), (n, 0), (n,n)}. By direct computation, we obtain:

f(0, 0) = −
n2

2
; f(0, n) = f(n, 0) = −

n2

2
+n(ε− h); f(n,n) = −

n2

2
− 2hn. (8.3.25)
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This implies that the minimum is achieved at (p∗1, p
∗
2) = (n,n), which corresponds to the

configuration C(n,n, n) ≡ +, as claimed.
If ε < 0, we have that

min
p1, p2

f(p1, p2) = min
p1, p2

−
(
p1 −

n

2

)2
−
(
p2 −

n

2

)2
+(ε−h)(p1+p2)−2εmax{p1+p2−n, 0},

so the function f(p1, p2) is concave in both variables as before. Thus, we deduce that the
possible configurations in which the minimum is achieved are the same as in (8.3.25). By direct
computation, the minimum is attained either at (p∗1, p

∗
2) = (n,n) whenever h > −ε, which

corresponds to the configuration C(n,n, n) ≡ +, or at (p∗1, p
∗
2) = (n, 0) and (p∗1, p

∗
2) = (0, n)

whenever h < −ε, which corresponds to the configurations C(n, 0, 0) ≡ ± and C(0, n, 0)∓ .
In the special case h = −ε, all these configurations realize the minimum of the energy. This
concludes the proof.

Proof of Proposition 8.3.8. Let 0 < ε 6 1. Consider a configuration σ ∈ C(p1, p2, a), with
0 6 p1, p2 6 n and max{p1 + p2 − n, 0} 6 a 6 min{p1, p2}. Note that such a configuration
σ can communicate via one step of the dynamics with a configuration σ ′ as in (8.2.39). In
other words, σ ′ is a configuration obtained from σ via either an up-flip or a down-flip in
one of the two clusters. First, we will prove that if σ ∈ C(p1, p2, a) \ {−,∓,±,+}, then
H̃(σ ′) − H̃(σ) < 0, with σ ′ one of the configurations described in (8.2.39). To this end, we
consider the following cases.

A. p1 = n and a > max{p1 + p2 −n, 0};
B. p1 6= n and a > max{p1 + p2 −n, 0};
C. p1 6= n and a = max{p1 + p2 −n, 0}.

Case A. Since it is not possible to have p1 = n and a > max{p1 + p2 −n, 0}, we note that now
σ ∈ C(n, p2, p2). Since σ /∈ {+,±}, it follows that 0 < p2 < n. By using Lemma 8.1.11, we
deduce that

H̃(C(n, p2 + 1, p2 + 1)) − H̃(C(n, p2, p2)) < 0 ⇐⇒ p2 >
⌈n− 1

2
−
ε+ h

2

⌉
. (8.3.26)

Thus, if p2 satisfies (8.3.26), then we are done. Otherwise, by using Lemma 8.1.12 we deduce
that H̃(C(n, p2 − 1, p2 − 1)) − H̃(C(n, p2, p2)) < 0.
Case B. By using Lemma 8.1.11, we deduce that

H̃(C(p1 + 1, p2, a)) − H̃(C(p1, p2, a)) < 0 ⇐⇒ p1 >
⌈n− 1

2
+
ε− h

2

⌉
. (8.3.27)

Thus, if p1 satisfies (8.3.27), then we are done. Otherwise, we argue as follows. First, we note
that the case p1 = 0 implies a = 0, but this case is not allowed since a > max{p1 + p2 −n, 0}.

If p1 > p2, we get H̃(σ ′) − H̃(σ) < 0 with σ ′ belonging to C(p1 − 1, p2, a). Indeed, by
using Lemma 8.1.12, we have that

H̃(C(p1 − 1, p2, a)) − H̃(C(p1, p2, a)) < 0, (8.3.28)

since p1 6 bn−12 + ε−h
2 c.

If p1 6 p2, we get H̃(σ ′) − H̃(σ) < 0 with σ ′ belonging to C(p1 − 1, p2, a− 1). Indeed, by
using Lemma 8.1.12, we have that

H̃(C(p1 − 1, p2, a− 1)) − H̃(C(p1, p2, a)) < 0, (8.3.29)

since p1 6 bn−12 + ε−h
2 c.

Case C. First of all, we note that if p2 = n, then we repeat the argument as in case A. Thus,
we assume p2 6= n. By using Lemma 8.1.11, we deduce that

H̃(C(p1 + 1, p2, a+ 1)) − H̃(C(p1, p2, a)) < 0 ⇐= p1 6
⌈n− 1

2
−
ε+ h

2

⌉
, (8.3.30)

H̃(C(p1, p2 + 1, a+ 1)) − H̃(C(p1, p2, a)) < 0 ⇐= p2 6
⌈n− 1

2
−
ε+ h

2

⌉
. (8.3.31)
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Thus, if p1 satisfies (8.3.30) or p2 satisfies (8.3.31), then we are done. Otherwise, a =

max{p1 + p2 − n, 0} = 0 and we have p1 6= 0 or p2 6= 0, since σ 6= −. Without loss of
generality, we suppose p1 6= 0 and we apply Lemma 8.1.12. We obtain

H̃(C(p1 − 1, p2, a)) − H̃(C(p1, p2, a)) < 0, (8.3.32)

since p1 6 bn−12 − ε+h
2 c.

Thus, we have proven that the stability level for every configuration σ /∈ {−,∓,±,+}

is zero. It remains to identify the set of metastable states and to compute their stability level
Γm.

In the case 0 6 ε 6 1, we have that Xs = {+}. By considering the path ω̄ : − → +

defined in (8.2.1), by using (8.2.3), we deduce that

Φω̄(±,+) − H̃(±) < Φω̄(−,+) − H̃(−) 6 Γm, (8.3.33)

where Γm is as in (8.3.20). In order to prove also the reverse inequality, we argue as in the
proof of [90, eq. (3.86)]. Thus, Xm = {−}.

In the case 0 < −ε < h 6 1, we have that Xs = {+}. By arguing as above, we deduce that
now

Φω̄(−,+) − H̃(−) < Φω̄(±,+) − H̃(±) 6 Γm, (8.3.34)

where Γm is as in (8.3.21). Thus, Xm = {±,∓}.
In the case 0 < h < −ε 6 1, we have that Xs = {±,∓}. By considering the part of the

path ω̌ defined in (8.3.1) connecting − to ∓, and defining the path ω∗ = (ω∗1, ...,ω
∗
n) :

+→ ∓ as ω∗k ∈ C(n− k, n, n− k) for k = 0, ..., n, we deduce that

Φω̌(−,∓) − H̃(−) < Φω∗(+,∓) − H̃(+) 6 Γm, (8.3.35)

where Γm is as in (8.3.23). To prove also the reverse inequality, we argue as in the proof of [90,
eq. (3.86)]. Thus, Xm = {+}.

8.3.4 Asymptotic behavior of the tunneling time

In this section, we prove Theorem 8.1.6. We recall (8.3.23). Note that in the case 0 < h <
−ε 6 1, for which we are interested in studying the tunneling time for the transition from s1
to s2, where s1, s2 ∈ {±,∓}, we have that

Γs − Γm =


−2nε if n is even and 0 < h− ε < 1,

−2(1+nε− h+ ε) if n is even and 1 6 h− ε < 1,

−2(nε− h) if n is odd.

In all the above cases we have that Γs − Γm > 0 since ε < 0, which means that the correspond-
ing energy landscape exhibits the absence of deep cycles.

Here we are interested in the tunneling time from s1 to s2 for any s1, s2 ∈ Xs. Thanks to
[92, Lemma 3.6], we deduce that for our model the quantity Γ̃(B), with B ( X, defined in [92,
eq. (21)] is such that Γ̃(X \ {s2}) = Γs. Moreover, thanks to the property of absence of deep
cycles, [92, Proposition 3.18] implies that Θ(s1, s2) = Γs for s1, s2 ∈ Xs. Thus, Theorem 8.1.6(i)
follows from [92, Corollary 3.16]. Moreover, Theorem 8.1.6(ii) follows from [92, Theorem
3.17] provided that [92, Assumption A] is satisfied: this is implied by the absence of deep
cycles and [92, Proposition 3.18]. Finally, Theorem 8.1.6(iii) follows from [92, Theorem 3.19]
provided that [92, Assumption B] is satisfied: this is implied by the absence of deep cycles and
the argument carried out in [92, Example 4]. Theorem 8.1.6(iv) follows from [92, Proposition
3.24] with Γ̃(X \ {s2}) = Γs for any s2 ∈ Xs.

8.3.5 Asymptotic behavior of the transition time

In this section, we prove Theorem 8.1.7. Here we are interested in studying the transition
from a metastable to a stable state. Thus, Theorem 8.1.7 follows from [85, Theorems 4.1, 4.9
and 4.15] together with Theorem 8.1.5 and Corollary 8.3.6. Theorem 8.1.7(iv) follows from [92,
Proposition 3.24] with Γ̃(X \ {s}) = Γm for any s ∈ Xs.
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8.3.6 Gate for the transition

In this section, we prove Theorem 8.1.9. If 0 6 ε 6 1, consider ω ∈ (−→ +)opt. Since
any path from − to + has to cross each manifold C(p) with 0 6 p 6 2n, and due to the
optimality of the path ω, by Propositions 8.3.4 and 8.3.5 we get the claim.

If 0 < −ε < h 6 1, consider either ω ∈ (±→ +)opt or ω ∈ (∓→ +)opt. Since any
path from either ±, or ∓, to + has to cross each manifold C(p) with n 6 p 6 2n, and due
to the optimality of the path ω, by Propositions 8.3.4 and 8.3.5 we get the claim.

If 0 < h < −ε 6 1, consider ω ∈ (± → ∓)opt. Since any path from ± to ∓ has to
cross each manifold C(p) with 0 6 p 6 n, due to the optimality of the path ω, by Propositions
8.3.4 and 8.3.5 we get the claim.
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Part IV

A S Y M P T O T I C P R O P E RT I E S O F R A N D O M G R A P H S





9N O R M A L I T Y O F D E G R E E C O U N T S I N A PA M O D E L

In this chapter, we consider the preferential attachment model. This is a growing random
graph such that at each step a new vertex is added and forms m connections. The neighbors
of the new vertex are chosen at random with probability proportional to their degree. It
is well known that the proportion of nodes with a given degree at step n converges to a
constant as n → ∞. The goal of this chapter is to investigate the asymptotic distribution
of the fluctuations around this limiting value. We prove a central limit theorem for the
joint distribution of all degree counts. In particular, we give an explicit expression for the
asymptotic covariance. This expression is rather complex, so we compute it numerically for
various parameter choices. We also use numerical simulations to argue that the convergence
is quite fast. The proof relies on the careful construction of an appropriate martingale.

The outline of the chapter is as follows. In Section 9.1, we state our main result and in
Section 9.2 we prove it.

9.1 main result

Our main result is the following theorem.

Theorem 9.1.1. As s→∞,
(
√
s
(Nk(s, i)

s
− pk

)
, k = m,m+ 1, ...

)
⇒ (Zk, k = m,m+ 1, ...), (9.1.1)

where (Zk, k = m,m+ 1, ...) is a mean zero Gaussian process with covariance function RZ given by

RZ(r, `) =
(−1)r+`

Γ(r+ `+ 2m+ 1+ 3δ)

∞∑
q=m

(q+ δ)pq

(
b
(`)
m b

(r)
m Γ(4m+ 3δ)(`+ r− 2m)!

+(−1)m+q+1(b
(`)
m b

(r)
q + b

(r)
m b

(`)
q )Γ(q+ 3m+ 3δ)(`+ r− q−m)!

+(−1)m+q+1(b
(`)
m b

(r)
q+1 + b

(r)
m b

(`)
q+1)Γ(q+ 3m+ 1+ 3δ)(`+ r−m− q− 1)!

+mb
(`)
q b

(r)
q Γ(2q+ 2m+ 3δ)(r+ `− 2q)!

+m(b
(`)
q b

(r)
q+1 + b

(r)
q b

(`)
q+1)Γ(2q+ 2m+ 1+ 3δ)(`+ r− 2q− 1)!

+mb
(`)
q+1b

(r)
q+1Γ(2q+ 2m+ 2+ 3δ)(`+ r− 2q− 2)!

)

−
(2m+ δ)Γ(`+ δ)Γ(r+ δ)

(Γ(m+ δ))2

∑̀
t1=m

r∑
t2=m

(−1)t1+t2

× (t1 + t2 + 2m+ 3δ)−1(t1 + 2+ δ− t1/m)(t2 + 2+ δ− t2/m)

(t1 −m)!(t2 −m)!(`− t1)!(r− t2)!(t1 + 2+ δ+ δ/m)(t2 + 2+ δ+ δ/m)

−
(2m+ δ)(m− 1)Γ(`+ δ)Γ(r+ δ)

m2(Γ(m+ δ))2

∑̀
t1=m

r∑
t2=m

(−1)t1+t2

× (δ+ t1)(δ+ t2)(t1 + t2 + 2m+ 3δ)−1

(t1 −m)!(t2 −m)!(`− t1)!(r− t2)!(t1 + 2+ δ+ δ/m)(t2 + 2+ δ+ δ/m)
,

(9.1.2)

for r, ` > m. Here Γ(·) is the Gamma function and b(k)j are given by

b
(k)
j =

k−1∏
t=j

t+ δ

t− k
= (−1)k−j

Γ(k+ δ)

(k− j)!Γ(j+ δ)
, 1 6 j 6 k. (9.1.3)

When m = 1, (9.1.2) reduces to [103, (4.28)], but their covariance functions contains a few
minor mistakes. More precisely, in the double sum the term (2+ δ)2 should be (2+ δ)3

285
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and the terms Γ(`1 + 2 + 2δ) and Γ(`2 + 2 + 2δ) should be (`1 + 2 + 2δ) and (`2 + 2 + 2δ),
respectively.

Since the expression in (9.1.2) is remarkably complicated, we plot it for various parameter
choices to help the understanding. In particular, we refer to Figures 1.46–1.49.

Following the argument carried out in [88], we are able to prove a central limit theorem
for the vector composed by the rescaled number of vertices with degree greater than k. The
argument is explained at the end of Section 1.5.

9.2 proof of the main result

In order to prove Theorem 9.1.1, we apply the following martingale central limit theorem.

Theorem 9.2.1. [103] Let {Xn,m,Fm,n, 1 6 m 6 n}, Xn,m = (Xn,m,1, ..., Xn,m,d)T be a d–
dimensional square–integrable martingale difference array. Consider the d× d non–negative definite
random matrices

Gn,m = (E[Xn,m,iXn,m,j|Fn,m−1], i, j = 1, .., d), Vn =

n∑
m=1

Gn,m, (9.2.1)

and suppose (An) is a sequence of `× d matrices with bounded supremum norm. Assume that

(1) AnVnATn
P→ Σ as n→∞ for some non–random (hence non–negative definite) matrix Σ;

(2)
∑
m6nE[X21{|Xn,m,i|>ε}|Fn,m−1]

P→ 0 as n→∞ for all i = 1, ..., d and ε > 0.
Then,

n∑
m=1

AnXn,m ⇒ X as n→∞, (9.2.2)

in R`, where X is a mean zero `-dimensional Gaussian vector with covariance matrix Σ.

We aim at constructing a martingale by appropriate rescaling of the process

Nk(1), Nk(2, 1), ..., Nk(2,m− 1), Nk(2,m), Nk(3, 1), ...,

for all k > m. We have the recursion, for s > 2 and 0 6 i 6 m− 1,

Nk(s, i+ 1) = Nk(s, i) − 1{Ds,i+1=k} + 1{k=m}1{i+1=m} + 1{k6=m}1{Ds,i+1=k−1}. (9.2.3)

The second term on the r.h.s. of (9.2.3) accounts for the possibility that the edge being
connected at time i+ 1 connects with some vertex of degree k. The third term on the r.h.s. of
(9.2.3) takes into account the new vertex joining at time s, after all of its m edges have been
connected, while the fourth term accounts for the possibility that the edge being connected at
time i+ 1 might connect with some vertex of degree k− 1.

If we do not update the degrees during the attachment of a new vertex, but simply at the
end of the construction of PAs starting from PAs−1, it is clear that the relation (9.2.3) changes
into
Nk(s, i+ 1) = Nk(s, i), i = 0, ..,m− 2

Nk(s,m) = Nk(s− 1,m) +

m−2∑
i=0

[
1{k=m}1{i+1=m} + 1{k6=m}1{Ds,i+1=k−1} − 1{Ds,i+1=k}

]
.

(9.2.4)
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For s > 2 and 0 6 i 6 m− 1, let us compute

E[Nj(s, i+ 1)|Fs,i] = Nj(s, i) − P(Ds,i+1 = j|Fs,i) + 1{j=m}1{i+1=m}

+1{j6=m}P(Ds,i+1 = j− 1|Fs,i)

= Nj(s, i) −
j+ δ

s(2m+ δ) − 2m+ i
Nj(s, i)

+1{j=m}1{i+1=m} + 1{j6=m}

j− 1+ δ

s(2m+ δ) − 2m+ i
Nj−1(s, i)

= Nj(s, i)

(
1−

j+ δ

s(2m+ δ) − 2m+ i

)

+1{j6=m}

j− 1+ δ

s(2m+ δ) − 2m+ i
Nj−1(s, i) + 1{j=m}1{i+1=m}.

(9.2.5)

We set

M
(k)
s,i := a

(k)
s,i

k∑
j=m

b
(k)
j (Nj(s, i) − E[Nj(s, i)]), s > 2, 0 6 i 6 m. (9.2.6)

We will show that, for each k > m, the process (M
(k)
s,i ) is a martingale with respect to the

same filtration. To this end, we compute

E[M
(k)
s,i+1|Fs,i] = E

[
a
(k)
s,i+1

k∑
j=m

b
(k)
j (Nj(s, i+ 1) − E[Nj(s, i+ 1)])

∣∣∣∣∣Fs,i
]

= a
(k)
s,i+1b

(k)
m

((
1−

m+ δ

s(2m+ δ) − 2m+ i

)
Nm(s, i) + 1{i+1=m}

−
(
1−

m+ δ

s(2m+ δ) − 2m+ i

)
E[Nm(s, i)] − 1{i+1=m}

)

+a
(k)
s,i+1

k∑
j=m+1

b
(k)
j

(
Nj(s, i)

(
1−

j+ δ

s(2m+ δ) − 2m+ i

)

+
j− 1+ δ

s(2m+ δ) − 2m+ 1
Nj−1(s, i) +

(
1−

j+ δ

s(2m+ δ) − 2m+ i

)
E[Nj(s, i)]

−
j− 1+ δ

s(2m+ δ) − 2m+ i
E[Nj−1(s, i)]

)

= a
(k)
s,i+1

k∑
j=m

(
b
(k)
j

(
1−

j+ δ

s(2m+ δ) − 2m+ 1

)

+b
(k)
j+1

j+ δ

s(2m+ δ) − 2m+ 1

)
(Nj(s, i) − E[Nj(s, i)])

+b
(k)
k

(
1−

k+ δ

s(2m+ δ) − 2m+ i

)
(Nk(s, i) − E[Nk(s, i)]).

(9.2.7)

This is the same as the right–hand side of (9.2.6) if the following holds:a
(k)
s,i+1

[
b
(k)
j

(
1− j+δ

s(2m+δ)−2m+1

)
+b

(k)
j+1

j+δ
s(2m+δ)−2m+i

]
= a

(k)
s,i b

(k)
j , j = m, ..., k− 1,

a
(k)
s,i+1b

(k)
k

(
1− k+δ

s(2m+δ)−2m+i

)
= a

(k)
s,i b

(k)
k .

(9.2.8)

Let

a
(k)
s,i :=

s−1∏
t=k−m+1

m−1∏
r=0

(
1−

k+ δ

t(2m+ δ) − 2m+ r

)−1i−1∏
r=0

(
1−

k+ δ

s(2m+ δ) − 2m+ r

)−1

. (9.2.9)
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Let also

b
(k)
j :=

k−1∏
t=j

t+ δ

t− k
= (−1)k−j

Γ(k+ δ)

(k− j)!Γ(j+ δ)
, 1 6 j 6 k. (9.2.10)

We adopt the usual convention that b(k)k = 1 and b(k)j = 0 for all j > k. Direct calculations
show that (9.2.9) and (9.2.10) satisfy the conditions in (9.2.8).

Note that

a
(k)
s,i+1 = a

(k)
s,i

(
1−

k+ δ

s(2m+ δ) − 2m+ i

)−1

. (9.2.11)

Moreover, by the Stirling formula, as s→∞,

a
(k)
s,i =

m−1∏
r=0

Γ
(
s+ r−2m

2m+δ

)/
Γ
(
k−m+ 1+ r−2m

2m+δ

)

Γ
(
s+ r−k−δ−2m

2m+δ

)/
Γ
(
k−m+ 1+ r−k−δ−2m

2m+δ

)

×
i−1∏
r=0

(
1−

k+ δ

s(2m+ δ) − 2m+ r

)−1

∼ s

k+ δ

2m+ δ
m−1∏
r=0

Γ
(
k−m+ 1+

r− k− δ− 2m

2m+ δ

)

Γ
(
k−m+ 1+

r− 2m

2m+ δ

) ,

(9.2.12)

so that s → a
(k)
s,i is regularly varying with index (k+ δ)/(2m+ δ), where ∼ means that the

ratio of the left–hand and the right–hand side tends to 1 as s→∞.
Thus, we have proved that the process (M

(k)
s,i ) is a martingale with respect to the filtration

(Fs,i−1).

Remark 9.2.2. Note that there is not a unique set of coefficients a(k)s,i and b(k)j that satisfies (9.2.8).

For example, if a(k)s,i , b
(k)
j is a solution of (9.2.8), then also αa(k)s,i , b

(k)
j is a solution for any α ∈ R.

However, if we require that the boundary conditions for M(k)
s,i are satisfied, i.e., M(k)

s,m =M
(k)
s+1,0 for

any k > m, then (9.2.8) admits a unique solution. This implies that the indexing notations for the
processes Nj(s, i) and M(k)

s,i are consistent.

There exists a probability mass function {pk, k > m} such that as s→∞ [69, Chapter 8]

Nk(s, i)

s
→ pk, k > m, (9.2.13)

almost surely, uniformly over i ∈ {0, ...,m− 1}.
For k = m,m+ 1, ... and i ∈ {0, ...,m− 1}, define a k-variate triangular array of martingale

differences by

X
(`)
s,h,j :=

M
(`)
h,j −M

(`)
h,j−1

a
(`)
s,js

1/2
, h = k+ 1, .., s; ` = m, .., k; j = 0, .., i. (9.2.14)

In order to use the multivariate martingale central limit theorem, we compute the asymptotic
form of the quantities

Gs,h,j(r, `) := E[X
(r)
s,h,jX

(`)
s,h,j|Fh,i−1]

= (a
(r)
s,ja

(`)
s,js)

−1E
[
(M

(r)
h,j −M

(r)
h,j−1)(M

(`)
h,j −M

(`)
h,j−1)

∣∣∣Fh,j−1
]
.

(9.2.15)
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By the martingale property we get

E
[
(M

(r)
h,j −M

(r)
h,j−1)(M

(`)
h,j −M

(`)
h,j−1)

∣∣∣Fh,j−1
]

= E

[
r∑

d=m

b
(r)
d (a

(r)
h,jNd(h, j)) − a

(r)
h,j−1Nd(h, j− 1))

×
∑̀
t=m

b
(`)
t (ah,jNt(h, j) − ah,j−1Nt(h, j− 1))

∣∣∣∣∣Fh,j−1
]

−

r∑
d=m

b
(r)
d (a

(r)
h,jE[Nd(h, j)] − a

(r)
h,j−1E[Nd(h, j− 1)])

×
∑̀
t=m

b
(`)
t (a

(`)
h,jE[Nt(h, j)] − a

(`)
h,j−1E[Nt(h, j− 1)]).

(9.2.16)

We begin by analyzing the behaviour of the deterministic term on the right–hand side of
(9.2.16). When d = m, by (9.2.11) we obtain

a
(`)
s,jE[Nm(s, j)] − a

(`)
s,j−1E[Nm(s, j− 1)]

= a
(`)
s,j

[
1{j=m} +

(
1−

m+ δ

s(2m+ δ) − 2m+ j− 1

)
E[Nm(s, j− 1)]

]
−a

(`)
s,j−1E[Nm(s, j− 1)]

= a
(`)
s,j

[
1{j=m} + E[Nm(s, j− 1)]

`−m

s(2m+ δ) − 2m+ j− 1

]

∼ a
(`)
s,j−1

(
1{j=m} + pm

`−m

2m+ δ

)
,

(9.2.17)

almost surely as s→∞, since a(`)s,j ∼ a
(`)
s,j−1.

Now consider the case d > m+ 1:

a
(`)
s,jE[Nd(s, j)] − a

(`)
s,j−1E[Nd(s, j− 1)]

= a
(`)
s,j

((
1− d+δ

s(2m+δ)−2m+j−1

)
E[Nd(s, j− 1)] +

d−1+δ
s(2m+δ)−2m+j−1E[Nd−1(s, j− 1)]

)

−a
(`)
s,j−1E[Nd(s, j− 1)]

= a
(`)
s,j

(
d−1+δ

s(2m+δ)−2m+j−1E[Nd−1(s, j− 1)] +
`−d

s(2m+δ)−2m+j−1E[Nd(s, j− 1)]
)

∼
a
(`)
s,j−1

2m+ δ

(
(`− d)pd + (d− 1+ δ)pd−1

)
,

(9.2.18)

almost surely as s→∞. Recall that pd is given by [69, (8.42)].
In conclusion, we get

lim
s→∞ 1

a
(`)
s,j−1

∑̀
d=m

b
(`)
d

(
a
(`)
s,jE[Nd(s, j)] − a

(`)
s,j−1E[Nd(s, j− 1)]

)

= b
(`)
m 1{j=m} +

1

2m+ δ

∑̀
d=m

b
(`)
d [(`− d)pd + (d− 1+ δ)pd−1].

(9.2.19)

Let us focus on the second term of the right-hand side of (9.2.19). Rearranging the terms in
the sum, we get

∑̀
d=m

b
(`)
d [(`− d)pd + (d− 1+ δ)pd−1] =

`−1∑
d=m

pd[(`− d)b
(`)
d + (d+ δ)b

(`)
d+1]

=

`−1∑
d=m

pdb
(`)
d

(
`− d+ (d+ δ)

b
(`)
d+1

b
(`)
d

)
= 0,

(9.2.20)
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since by (9.2.10) it follows that

b
(`)
d+1

b
(`)
d

=
d− `

d+ δ
. (9.2.21)

Summarizing, we get

lim
s→∞ 1

a
(`)
s,j−1

∑̀
d=m

b
(`)
d

(
a
(`)
s,jE[Nd(s, j)] − a

(`)
s,j−1E[Nd(s, j− 1)]

)
= b

(`)
m 1{j=m}. (9.2.22)

Next, we look at the first term on the right-hand side of (9.2.16). By (9.2.3) we obtain:

a
(r)
s,jNd(s, j) − a

(r)
s,j−1Nd(s, j− 1)

= a
(r)
s,j

(
Nd(s, j− 1) + 1{d=m}1{j=m} + 1{d6=m}1{Ds,j=d−1} − 1{Ds,j=d}

)

−a
(r)
s,j−1Nd(s, j− 1)

= a
(r)
s,j

(
Nd(s, j− 1)

r+δ
s(2m+δ)−2m+j−1 − 1{Ds,j=d} + 1{d=m}1{j=m}

+1{d6=m}1{Ds,j=d−1}

)
:= a

(r)
s,j

(
Nd(s, j− 1)

r+δ
s(2m+δ)−2m+j−1 +B

(j)
s (d)

)
,

(9.2.23)

where

B
(j)
s (d) := −1{Ds,j=d} + 1{d=m}1{j=m} + 1{d6=m}1{Ds,j=d−1}. (9.2.24)

Thus, we get

E

[
1

a
(r)
s,ja

(`)
s,j

r∑
d=m

b
(r)
d (a

(r)
s,jNd(s, j) − a

(r)
s,j−1Nd(s, j− 1))

×
∑̀
t=m

b
(`)
t (a

(`)
s,jNt(s, j) − a

(`)
s,j−1Nt(s, j− 1))

∣∣∣∣∣Fs,j−1
]

= E

[
r∑

d=m

b
(r)
d

(
Nd(s, j− 1)

r+ δ

s(2m+ δ) − 2m+ j− 1
+B

(j)
s (d)

)

×
∑̀
t=m

b
(`)
t

(
Nt(s, j− 1)

`+ δ

s(2m+ δ) − 2m+ j− 1
+B

(j)
s (t)

)∣∣∣∣∣Fs,j−1
]

.

(9.2.25)

By direct calculations, the r.h.s of (9.2.25) becomes

r∑
d=m

b
(r)
d (r+ δ)

Nd(s, j− 1)

s(2m+ δ) − 2m+ j− 1

∑̀
t=m

b
(`)
t (`+ δ)

Nt(s, j− 1)

s(2m+ δ) − 2m+ j− 1

+

r∑
d=m

b
(r)
d (r+ δ)

Nd(s, j− 1)

s(2m+ δ) − 2m+ j− 1

∑̀
t=m

b
(`)
t E[B

(j)
s (t)|Fs,j−1]

+
∑̀
t=m

b
(`)
t (`+ δ)

Nt(s, j− 1)

s(2m+ δ) − 2m+ j− 1

r∑
d=m

b
(r)
d E[B

(j)
s (d)|Fs,j−1]

+

r∑
d=m

∑̀
t=m

b
(r)
d b

(`)
t E[B

(j)
s (d)B

(j)
s (t)|Fs,j−1]

:= S
(j)
1,s(r, `) + S

(j)
2,s(r, `) + S

(j)
3,s(r, `) + S

(j)
4,s(r, `).

(9.2.26)

We are interested in the behaviour of the terms S(j)1,s(r, `), S
(j)
2,s(r, `), S

(j)
3,s(r, `) and S(j)4,s(r, `) as

s→∞. We first deal with the terms S(j)1,s(r, `), S
(j)
2,s(r, `), S

(j)
3,s(r, `). To this end, note that with

probability 1 as s→∞
r∑

d=m

b
(r)
d (r+ δ)

Nd(s, j− 1)

s(2m+ δ) + j− 1
∼
r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd (9.2.27)
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and that
r∑

d=m

b
(r)
d E[B

(j)
s (d)|Fs,j−1] = b

(r)
m E[1{j=m} − 1{Ds,j=m}|Fs,j−1]

+

r∑
d=m+1

b
(r)
d E[1{Ds,j=d−1} − 1{Ds,j=d}|Fs,j−1]

= b
(r)
m 1{j=m} − b

(r)
m P(Ds,j = m|Fs,j−1)

+

r∑
d=m+1

b
(r)
d (P(Ds,j = d− 1|Fs,j−1) − P(Ds,j = d|Fs,j−1))

= b
(r)
m

(
1{j=m} −

m+ δ

s(2m+ δ) − 2m+ j− 1
Nm(s, j− 1)

)

+

r∑
d=m+1

b
(r)
d

( d− 1+ δ

s(2m+ δ) − 2m+ j− 1
Nd−1(s, j− 1)

−
d+ δ

s(2m+ δ) − 2m+ j− 1
Nd(s, j− 1)

)
.

(9.2.28)

Thus, we obtain
r∑

d=m

b
(r)
d E[B

(j)
s (d)|Fs,j−1]

∼ b
(r)
m 1{j=m} +

1

2m+ δ

r∑
d=m

b
(r)
d ((d− 1+ δ)pd−1 − (d+ δ)pd)

= b
(r)
m 1{j=m} −

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd,

(9.2.29)

almost surely as s → ∞, where at the last step we used (9.2.20). Summarizing, with high
probability

S
(j)
1,s(r, `)→

(r+ δ)(`+ δ)

(2m+ δ)2

r∑
d=m

b
(r)
d pd

∑̀
t=m

b
(`)
t pt,

S
(j)
2,s(r, `)→

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd

(
b
(`)
m 1{j=m} −

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)
,

S
(j)
3,s(r, `)→

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

(
b
(r)
m 1{j=m} −

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd

)
,

(9.2.30)

as s→∞. Finally, we consider the term S4,s(r, `). Note that, by (9.2.24), we haveB
(j)
s (m) = 1{j=m} − 1{Ds,j=m},

B
(j)
s (d) = 1{Ds,j=d−1} − 1{Ds,j=d}, d > m+ 1.

(9.2.31)

We separate the analysis of these terms according to the following two events:

a) {Ds,j = m},
b) {Ds,j = h}, h > m+ 1.

On the event {Ds,j = m}, by (9.2.24), we get

E[B
(j)
s (d)B

(j)
s (t)|Fs,j−1] = 1{d=t=m}1{j6=m} + 1{d=t=m+1} − 1{d=m}

×1{t=m+1}1{j6=m} − 1{t=m}1{d=m+1}1{j6=m}.
(9.2.32)

On {Ds,j = h}, h > m+ 1, we get

E[B
(j)
s (d)B

(j)
s (t)|Fs,j−1]

= 1{d=t=m}1{j=m} + 1{d=m}1{j=m}

(
1{t=h+1} − 1{t=h}

)

+1{t=m}1{j=m}

(
1{d=h+1} − 1{d=h}

)
+ 1{t=d=h} + 1{t=d=h+1}

−1{d=h}1{t=h+1} − 1{d=h+1}1{t=h}.

(9.2.33)
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By (9.2.26), combining (9.2.32) and (9.2.33) we obtain

S
(j)
4,s(r, l) =

m+ δ

s(2m+ δ) − 2m+ j− 1
Nm(s, j− 1)

[
1{j 6=m}(b

(r)
m b

(`)
m − b

(r)
m b

(`)
m+1

−b
(r)
m+1b

(`)
m ) + b

(r)
m+1b

(`)
m+1

]
+

s∑
h=m+1

h+ δ

s(2m+ δ) − 2m+ j− 1

×Nh(s, j− 1)
[
1{j=m}(b

(r)
m b

(`)
m + b

(r)
m (b

(`)
h+1 − b

(`)
h )

+b
(`)
m (b

(r)
h+1 − b

(r)
h )) + b

(r)
h b

(`)
h + b

(r)
h+1b

(`)
h+1 − b

(r)
h b

(`)
h+1 − b

(r)
h+1b

(`)
h

]

∼
m+ δ

2m+ δ
pm

[
1{j6=m}(b

(r)
m b

(`)
m − b

(r)
m b

(`)
m+1 − b

(r)
m+1b

(`)
m ) + b

(r)
m+1b

(`)
m+1

]

+

∞∑
h=m+1

h+ δ

2m+ δ
ph

[
1{j=m}(b

(r)
m b

(`)
m + b

(r)
m (b

(`)
h+1 − b

(`)
h )

+b
(`)
m (b

(r)
h+1 − b

(r)
h )) + b

(r)
h b

(`)
h + b

(r)
h+1b

(`)
h+1 − b

(r)
h b

(`)
h+1 − b

(r)
h+1b

(`)
h

]
,

(9.2.34)

almost surely as s→∞.
Replacing in (9.2.26) the expressions derived in (9.2.30) for the terms S(j)1,s(r, `), S

(j)
2,s(r, `)

and S(j)3,s(r, `) and in (9.2.34) for S(j)4,s(r, `), we conclude that, with high probability, as s→∞,

E

[
1

a
(r)
s,ja

(`)
s,j

(M
(r)
s,j −M

(r)
s,j−1)(M

(`)
s,j −M

(`)
s,j−1)

∣∣∣Fs,j−1
]
→ a(j)(r, `)

:=
m+ δ

2m+ δ
pm

(
1{j 6=m}(b

(r)
m b

(`)
m − b

(r)
m b

(`)
m+1 − b

(r)
m+1b

(`)
m ) + b

(r)
m+1b

(`)
m+1

)

+

∞∑
h=m+1

h+ δ

2m+ δ
ph

(
1{j=m}(b

(r)
m b

(`)
m + b

(r)
m (b

(`)
h+1 − b

(`)
h ) + b

(`)
m (b

(r)
h+1

−b
(r)
h )) + b

(r)
h b

(`)
h + b

(r)
h+1b

(`)
h+1 − b

(r)
h b

(`)
h+1 − b

(r)
h+1b

(`)
h

)
−
(
b
(r)
m 1{j=m}

−
r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd

)(
b
(`)
m 1{j=m} −

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)
.

(9.2.35)

Now we consider the quantity

a(r, `) :=

m−1∑
j=0

a(j)(r, `)

=
m+ δ

2m+ δ
pm

(
(m− 1)(b

(r)
m b

(`)
m − b

(r)
m b

(`)
m+1 − b

(r)
m+1b

(`)
m ) +mb

(r)
m+1b

(`)
m+1

)

+

∞∑
h=m+1

h+ δ

2m+ δ
ph

(
b
(r)
m b

(`)
m + b

(r)
m (b

(`)
h+1 − b

(`)
h )

+b
(`)
m (b

(r)
h+1 − b

(r)
h ) +m(b

(r)
h b

(`)
h + b

(r)
h+1b

(`)
h+1 − b

(r)
h b

(`)
h+1 − b

(r)
h+1b

(`)
h )
)

−
(
b
(r)
m −

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd

)(
b
(`)
m −

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)

−(m− 1)
(r+ δ)(`+ δ)

(2m+ δ)2

r∑
d=m

b
(r)
d pd

∑̀
t=m

b
(`)
t pt

=

∞∑
h=m

h+ δ

2m+ δ
ph[(b

(r)
m + b

(r)
h+1 − b

(r)
h )(b

(`)
m + b

(`)
h+1 − b

(`)
h )

+(m− 1)(b
(`)
h+1 − b

(`)
h )(b

(r)
h+1 − b

(r)
h )]

−
(
b
(r)
m −

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd

)(
b
(`)
m −

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)

−(m− 1)
(r+ δ)(`+ δ)

(2m+ δ)2

r∑
d=m

b
(r)
d pd

∑̀
t=m

b
(`)
t pt.

(9.2.36)
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By [69, Section 8], we can write

pd =

(
(2+ δ/m)

Γ(m+ 2+ δ+ δ/m)

Γ(m+ δ)

)
Γ(d+ δ)

Γ(d+ 3+ δ+ δ/m)
:= c(δ)

Γ(d+ δ)

Γ(d+ 3+ δ+ δ/m)
.

(9.2.37)

Then, by (9.2.10) and (9.2.37), we get

r−1∑
d=m

pdb
(r)
d = c(δ)(−1)rΓ(r+ δ)

r−1∑
d=m

(−1)d
1

(r− d)!Γ(d+ 3+ δ+ δ/m)

= c(δ)
(−1)rΓ(r+ δ)

r+ 2+ δ+ δ/m
r−1∑
d=m

(−1)d

[
1

(r− d)!Γ(d+ 2+ δ+ δ/m)
+

1

(r− d− 1)!Γ(d+ 3+ δ+ δ/m)

]

= c(δ)
(−1)rΓ(r+ δ)

r+ 2+ δ+ δ/m

[
(−1)m

1

(r−m)!Γ(m+ 2+ δ+ δ/m)
+ (−1)r−1

1

Γ(r+ 2+ δ+ δ/m)

]
,

(9.2.38)

where at the last step we used the telescoping property of the sum. Thus, by (9.2.38), we get

b
(r)
m −

r+ δ

2m+ δ

r∑
d=m

b
(r)
d pd = b

(r)
m −

r+ δ

2m+ δ
pr −

r+ δ

2m+ δ

r−1∑
d=m

b
(r)
d pd

= (−1)r−m
Γ(r+ δ)

(r−m)!Γ(m+ δ)
− (−1)r−m

(r+ δ)(2+ δ/m)Γ(r+ δ)

(2m+ δ)(r−m)!Γ(m+ δ)(r+ 2+ δ+ δ/m)

=
(−1)r−mΓ(r+ δ)

(r−m)!Γ(m+ δ)

r+ 2+ δ− r/m

r+ 2+ δ+ δ/m
.

(9.2.39)

9.2.1 First condition of Theorem 9.2.1

In this section we check that the first condition of Theorem 9.2.1 holds. We know from
(9.2.35) that

sGs,s,j(r, `)→ a(j)(r, `), (9.2.40)

almost surely as s→∞. From definition (9.2.15) we have

Gs,h,j(r, `) =
a
(r)
h,ja

(`)
h,j

sa
(r)
s,ja

(`)
s,j

hGh,h,j(r, `). (9.2.41)

From the regular variation property (9.2.12), the function

h→ u(h) := a
(r)
h,ja

(`)
h,jhGh,h,j(r, `) (9.2.42)

is regularly varying with index (r+ `+ 2δ)/(2m+ δ). Therefore, from (9.2.41) and Karamata’s
theorem on integration of regularly varying functions [102, page 25]

m−1∑
j=0

Vs,j(r, `) =

m−1∑
j=0

s∑
h=k+1

Gs,h,j(r, `) =

m−1∑
j=0

s∑
h=k+1

a
(r)
h,ja

(`)
h,j

sa
(r)
s,ja

(`)
s,j

hGh,h,j(r, `)

=

m−1∑
j=0

s∑
h=k+1

u(h)

sa
(r)
s,ja

(`)
s,j

∼

m−1∑
j=0

u(s)
(r+ `+ 2δ
2m+ δ

+ 1
)
a
(r)
s,ja

(`)
s,j

∼ a(r, `)
2m+ δ

r+ `+ 2m+ 3δ
,

(9.2.43)

for r, ` = m,m+ 1, ..., k.
This verifies the first condition the martingale central limit theorem of Proposition 9.2.1

(with each An being a (k−m+ 1)× (k−m+ 1) identity matrix).
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9.2.2 Second condition of Theorem 9.2.1

Next we show that the second condition of Theorem 9.2.1 holds as well. By (9.2.3), we
deduce that

|(N`(s, i) − E[N`(s, i)]) − (N`(s, i− 1) − E[N`(s, i− 1)])| 6 2 for all `. (9.2.44)

Hence the events {|X
(`)
s,i,j,h| > ε} are empty for all `, for all h 6 s and for all j 6 i as s→∞,

indeed

{|X
(l)
s,i,j,h| > ε} = {|M

(`)
h,j −M

(`)
h,j−1| > a

(`)
s,js

1/2ε}

=
{
|a

(`)
h,j

∑̀
t=m

b
(`)
t (Nt(h, j) − E[Nt(h, j)]) − a

(`)
h,j−1

×
∑̀
t=m

b
(`)
t (Nt(h, j− 1) − E[Nt(h, j− 1)]) > a

(`)
s,js

1/2ε
}

⊂
{
C1h

`+δ
2m+δ > εs

`+δ
2m+δ s1/2

}
⊂
{
C1 > εs

1/2
}
,

(9.2.45)

where C1 > 0 is a large constant independent of s. Thus, we obtain

1
{|X

(`)
s,i,j,h|>ε}

6 1{C1>εs1/2}
→ 0, (9.2.46)

as s→∞. This implies that the second condition of Proposition 9.2.1 holds.

9.2.3 The limit process for degree counts

We conclude that
(

1

s1/2

k∑
j=m

b
(k)
j (Nj(s, i) − E[Nj(s, i)]), k > m

)
⇒ (Yk, k > m) (9.2.47)

in RN, where (Yk, k = m,m+ 1, ...) is a mean zero Gaussian process with covariance function
RY given by

RY(r, `) =
2m+ δ

r+ `+ 2m+ 3δ
a(r, `), r, ` > m. (9.2.48)

We use this covariance function to define the (k−m+ 1)× (k−m+ 1) matrix with entries

RY,k = (RY(r, `), m 6 r 6 k,m 6 ` 6 k). (9.2.49)

The convergence in (9.2.47) means that for all k = m,m+ 1, ...

Ck

(
Nr(s, i) − E[Nr(s, i)]

s1/2
, r = m, ..., k

)T
⇒ (Yr, r = m, ..., k), (9.2.50)

where Ck is a (k−m+ 1)× (k−m+ 1) matrix with entries

cr,` =

b
(r)
` if ` 6 r,

0 if ` > r.
(9.2.51)

We are able to conclude that
(
Nr(s, i) − E[Nr(s, i)]

s1/2
, r = m, ..., k

)
⇒ Dk(Yr, r = m, .., k)T , (9.2.52)

and the covariance matrix of the limiting Gaussian vector is given by

Σk = DkRY,kD
T
k . (9.2.53)
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Using the following identity,

r∑
t=`

xt−`b
(r)
t b

(t)
` = b

(r)
` (1+ x)r−`, 1 6 ` 6 r, x ∈ R, (9.2.54)

it can be shown that Dk = C−1
k has entries

dr,` =

(−1)r−`b
(r)
` if ` 6 r,

0 if ` > r.
(9.2.55)

In order to facilitate the computation of the entries of the matrix Σk, by (9.2.36) we can
write RY,k in the form

RY,k =

∞∑
q=0

hq

∫+∞
0

(2m+ δ)e−(2m+3δ)xR1q,xdx

+

∞∑
q=m

hq

∫+∞
0

(2m+ δ)e−(2m+3δ)xR2q,xdx,
(9.2.56)

where

hq =

−1 if q = 0, 1, ...m− 1,
q+ δ

2m+ δ
pq if q > m,

(9.2.57)

and the matrix Rm,x is the (k−m+ 1)× (k−m+ 1) matrix with entries

R1q,x = (C1q,x)
T (C1q,x), R2q,x = (C2q,x)

T (C2q,x). (9.2.58)

The vector C1q,x has the entries

C1q,x(`) =



(
b
(`)
m −

`+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)
e−`x, ` > m if q = 0,

( `+ δ

2m+ δ

∑̀
t=m

b
(`)
t pt

)
e−`x, ` > m if q = 1, ...,m− 1,

(b
(`)
m − b

(`)
q + b

(`)
q+1)e

−`x, ` > m if q > m.

(9.2.59)

and

C2q,x(`) =

0 if q = 0, 1, ...,m− 1,
√
m− 1(b

(`)
q+1 − b

(`)
q )e−`x if q > m.

(9.2.60)

Therefore

Σk =

∞∑
q=0

hq

∫+∞
0

(2m+ δ)e−(2m+3δ)x(Dk(C
1
q,x)

T )C1q,xD
T
kdx

+

∞∑
q=m

hq

∫+∞
0

(2m+ δ)e−(2m+3δ)x(Dk(C
2
q,x)T)C

2
q,xD

T
kdx.

(9.2.61)
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We compute separately the terms in the sum for q < m and q > m. We begin with C1q,x. For

q > m and ` = m,m+ 1, ..., since b(k)j = 0 for all j > k, by (9.2.54) and (9.2.55) we have

(Dk(C
1
q,x)

T )(`) =
∑̀
t=m

(−1)`−tb
(`)
t (b

(t)
m − b

(t)
q + b

(t)
q+1)e

−tx

=
∑̀
t=m

(−1)`−tb
(`)
t b

(t)
m e−tx −

∑̀
t=q

(−1)`−tb
(`)
t b

(t)
q e−tx

+
∑̀
t=q+1

(−1)`−tb
(`)
t b

(t)
q+1e−tx

= (−1)`−me−mxb(`)m (1− e−x)`−m

−(−1)`−qe−qxb(`)q (1− e−x)`−q

+(−1)`−q−1e−(q+1)xb
(`)
q+1(1− e−x)`−q−1.

(9.2.62)

Therefore, for q > m and r, ` = m,m+ 1, ..., we have

(Dk(C
1
q,x)

T )(`)(Dk(C
1
q,x)

T )(r)

= (−1)`+rb
(`)
m b

(r)
m e−2mx(1− e−x)`+r−2m

−(−1)`+r−m−q(b
(`)
m b

(r)
q + b

(r)
m b

(`)
q )e−(m+q)x(1− e−x)`+r−m−q

+(−1)`+r−q−m−1(b
(`)
m b

(r)
q+1 + b

(r)
m b

(`)
q+1)e

−(m+q+1)x(1− e−x)`+r−m−q−1

+(−1)`+rb
(`)
q b

(r)
q e−2qx(1− e−x)r+`−2q

+(−1)`+r(b
(`)
q b

(r)
q+1 + b

(r)
q b

(`)
q+1)e

−(2q+1)x(1− e−x)`+r−2q−1

+(−1)`+rb
(`)
q+1b

(r)
q+1e−2(q+1)x(1− e−x)`+r−2q−2

:=

6∑
t=1

θ
(t)
q,x(r, `).

(9.2.63)

We have∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(1)
q,x(r, `)dx

= (−1)`+r(2m+ δ)b
(`)
m b

(r)
m

∫+∞
0

e−(4m+3δ)x(1− e−x)`+r−2mdx

= (−1)`+r(2m+ δ)b
(`)
m b

(r)
m B(4m+ 3δ, `+ r− 2m+ 1)

= (−1)`+r(2m+ δ)b
(`)
m b

(r)
m
Γ(4m+ 3δ)(`+ r− 2m)!
Γ(`+ r+ 2m+ 1+ 3δ)

,

(9.2.64)

where

B(α,β) =
Γ(α)Γ(β)

Γ(α+β)
(9.2.65)

is the Beta function. Similarly,∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(2)
q,x(r, `)dx

= (−1)`+r−m−q+1(2m+ δ)(b
(`)
m b

(r)
q + b

(r)
m b

(`)
q )

Γ(3m+ q+ 3δ)(`+ r−m− q)!
Γ(`+ r+ 2m+ 1+ 3δ)

,

(9.2.66)∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(3)
q,x(r, `)dx

= (−1)`+r−m−q−1(2m+ δ)(b
(`)
m b

(r)
q+1 + b

(r)
m b

(`)
q+1)

× Γ(3m+ q+ 1+ 3δ)(`+ r−m− q− 1)!
Γ(`+ r+ 2m+ 1+ 3δ)

, (9.2.67)
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∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(4)
q,x(r, `)dx

= (−1)r+`(2m+ δ)b
(`)
q b

(r)
q
Γ(2q+ 2m+ 3δ)(r+ `− 2q)!
Γ(r+ `+ 2m+ 1+ 3δ)

, (9.2.68)∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(5)
q,x(r, `)dx

= (−1)`+r(2m+ δ)(b
(`)
q b

(r)
q+1 + b

(r)
q b

(`)
q+1)

Γ(2q+ 2m+ 1+ 3δ)(`+ r− 2q− 1)!
Γ(`+ r+ 2m+ 1+ 3δ)

,

(9.2.69)∫+∞
0

(2m+ δ)e−(2m+3δ)xθ
(6)
q,x(r, `)dx

= (−1)`+r(2m+ δ)b
(`)
q+1b

(r)
q+1

Γ(2q+ 2m+ 2+ 3δ)(`+ r− 2q− 2)!
Γ(`+ r+ 2m+ 1+ 3δ)

. (9.2.70)

By (9.2.39) and (9.2.55), for q = 0 and ` = m,m+ 1, ... we have

(Dk(C
1
0,x)

T )(l) =
∑̀
t=m

(−1)`−tb
(`)
t

(
b
(t)
m −

t+ δ

2m+ δ

t∑
h=m

b
(t)
h ph

)
e−tx

=
Γ(`+ δ)

Γ(m+ δ)

∑̀
t=m

(−1)t−me−tx
t+ 2+ δ− t/m

(t−m)!(`− t)!(t+ 2+ δ+ δ/m)
.

(9.2.71)

Therefore, by (9.2.71), for r, ` > m and q = 0, we obtain∫+∞
0

(2m+ δ)e−(2m+3δ)x(Dk(C
1
0,x)

T )(r)(C10,xD
T
k)(`)dx

= (2m+ δ)
Γ(`+ δ)Γ(r+ δ)

(Γ(m+ δ))2

∑̀
t1=m

r∑
t2=m

(−1)t1+t2

× (t1 + t2 + 2m+ 3δ)−1(t1 + 2+ δ− t1/m)(t2 + 2+ δ− t2/m)

(t1 −m)!(t2 −m)!(`− t1)!(r− t2)!(t1 + 2+ δ+ δ/m)(t2 + 2+ δ+ δ/m)
.

(9.2.72)

Consider now the case q = 1, ...,m− 1 and ` = m,m+ 1, .... By (9.2.39) and (9.2.55), we
have

(Dk(C
1
q,x)

T )(l) =
∑̀
t=m

(−1)`−tb
(`)
t

(
t+ δ

2m+ δ

t∑
h=m

b
(t)
h ph

)
e−tx

= Γ(`+ δ)
∑̀
t=m

e−tx

(`− t)!Γ(t+ δ)

×
(
b
(t)
m − (−1)t−m

Γ(t+ δ)(t+ 2+ δ− t/m)

(t−m)!Γ(m+ δ)(t+ 2+ δ+ δ/m)

)
.

(9.2.73)

Therefore, by (9.2.73), for r, ` > m and q = 1, ...,m− 1, we have∫+∞
0

(2m+ δ)e−(2m+3δ)x(Dk(C
1
q,x)

T )(r)(C1q,xD
T
k)(`)dx

= (2m+ δ)Γ(`+ δ)Γ(r+ δ)
∑̀
t1=m

r∑
t2=m

(t1 + t2 + 2m+ 3δ)−1

(`− t1)!Γ(t1 + δ)(r− t2)!Γ(t2 + δ)

×
(
b
(t1)
m − (−1)t1−m

Γ(t1 + δ)(t1 + 2+ δ− t1/m)

(t1 −m)!Γ(m+ δ)(t1 + 2+ δ+ δ/m)

)

×
(
b
(t2)
m − (−1)t2−m

Γ(t2 + δ)(t2 + 2+ δ− t2/m)

(t2 −m)!Γ(m+ δ)(t2 + 2+ δ+ δ/m)

)
.

(9.2.74)
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By using (9.2.10), we deduce that∫+∞
0

(2m+ δ)e−(2m+3δ)x(Dk(C
1
q,x)

T )(r)(C1q,xD
T
k)(`)dx

=
(2m+ δ)Γ(`+ δ)Γ(r+ δ)

m2(Γ(m+ δ))2

∑̀
t1=m

r∑
t2=m

(−1)t1+t2

× (δ+ t1)(δ+ t2)(t1 + t2 + 2m+ 3δ)−1

(t1 −m)!(t2 −m)!(`− t1)!(r− t2)!(t1 + 2+ δ+ δ/m)(t2 + 2+ δ+ δ/m)
.

(9.2.75)

Now we investigate the behavior of the term C2q,x. For q > m, using (9.2.54), we get

(Dk(C
2
q,x)

T )(`) =
∑̀
t=m

√
m− 1(−1)`−tb

(`)
t (b

(t)
q+1 − b

(t)
q )e−tx

=
√
m− 1

(
(−1)q+1−`e−(q+1)xb

(`)
q+1(1− e−x)`−q−1

−(−1)q−`e−qxb(`)q (1− e−x)`−q.

(9.2.76)

Thus, we obtain

(Dk(C
2
q,x)

T )(r)(Dk(C
2
q,x)

T )(`)

= (m− 1)
(
(−1)r+`e−2(q+1)xb(`)q+1b

(r)
q+1(1− e−x)`+r−2q−2

+(−1)r+`e−2qxb(`)q b
(r)
q (1− e−x)`+r−2q

+(−1)r+`e−(2q+1)x(b
(`)
q+1b

(r)
q + b

(`)
q b

(r)
q+1)(1− e−x)`+r−2q−1

)

= (m− 1)(θ
(4)
q,x(r, `) + θ

(5)
q,x(r, `) + θ

(6)
q,x(r, `)),

(9.2.77)

where θ(t)q,x(r, `), t = 4, 5, 6, are defined in (9.2.63).
Using (9.2.64)-(9.2.72), (9.2.75) and (9.2.77), we conclude that the covariance function

RZ(r, `) of the limiting Gaussian process (Zk, k = m,m+ 1, ...) in (9.1.1) is given by (9.1.2).
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