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Featured Application: The algorithm presented in this work could find useful application in
advanced toolpath definition for milling operations when non-uniform (i.e., variable) machining
allowance is desired.

Abstract: In milling, the advancement of CAM strategies has increased the need for tailored algo-
rithms for semi-finished phase computation. In some cases (e.g., thin-wall milling), variable radial
engagement of the tool during the toolpath is desired, leading to the need of non-uniform machining
allowance on the component that could be achieved only with a non-uniform offset algorithm, i.e., off-
set where the distance to the initial contour varies along that input. This work presents a general
algorithm for non-uniform offset of polyline curves. The approach is based on 2D polygons and
Boolean union operation, following these steps: (i) projection segments are generated, (ii) polygons
(trapezoids and circular sectors) are created, (iii) Boolean union of all the polygons is performed,
(iv) boundary of interest is extracted. The proposed algorithm is able to handle both internal and
external offset and is robust for complexity of both the polyline and variable offset magnitude along
that line, as proven by several examples and two applications to thin-wall milling provided.

Keywords: milling; toolpath; non-uniform offset

1. Introduction

Milling is one of the most used technologies to achieve the final shape of mechanical
components due to its flexibility and accuracy. Process productivity has been increased
during the last decades by exploiting the advancements in tooling system, machine struc-
ture and numerical control (NC). The latter, in synergy with modern CAD/CAM software,
allows for the implementation of advanced toolpath strategies [1]. Traditionally, in 2.5-axis
milling, two main strategies are used: direction-parallel and contour-parallel [2]. In pocket
milling, other approaches can be pursued, such as zig-zag milling, or component-offset
pattern [3]. All these strategies require algorithms to offset the final geometry to both
compute the position of the center of the tool and, in case of multiple passes, to update
the stock geometry. Several algorithms have been developed with the aim of improving
efficiency and solve specific issues [4–8]. Liu et al. [4] obtained the offset curve by trimming
and jointing the raw curve, resulting from just projecting the points of the polyline. A
similar approach was proposed by Seong et al. [5] that exploits distance maps to trim local
and global self-intersections, which are the main sources of errors in offset computation.
Omirou [6] proposed to use a locus tracing concept for cutting radius offset and provides
some applications to CNC machining. Choi and Park [7] developed a method based on
intersections of sculptured surfaces for offsetting point-sequence curves (PS- curves), while
Wicklin computed offset regions by using circles at each vertex and rectangles along each
edge [8]. Contour offset can also be obtained by using a straight skeleton, but this could
lead to sharp corners [9]. Linear axis is an interesting alternative as a means to compute
such offsets, reducing the sharp corners issue, as investigated by Palfrader and Held [9].

Appl. Sci. 2023, 13, 208. https://doi.org/10.3390/app13010208 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010208
https://doi.org/10.3390/app13010208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3634-9995
https://orcid.org/0000-0002-0165-5821
https://doi.org/10.3390/app13010208
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010208?type=check_update&version=1


Appl. Sci. 2023, 13, 208 2 of 13

However, all the presented techniques are dedicated to uniform offset of a polyline curve,
characterized by a constant distance of each offset element (i.e., segments) from the initial
contour elements.

Uniform offset is fundamental for most of the traditional toolpath approaches based on
a geometric basis [10]. Nevertheless, in the case of advanced CAM strategies increasingly
adopted, the limitation of constant value offset, i.e., uniform machining/stock allowance,
could be critical. Indeed, in some cases variable radial engagement of the tool during the
toolpath could be preferred, leading to the need of a non-uniform stock allowance on the
component that could be achieved only with a non-uniform offset algorithm, i.e., offset
where the distance to the initial contour varies along that input. Generally, such an approach
is required when the toolpaths are not only calculated on a geometric basis (i.e., considering
only the removal of the material), but also involving technological aspects. For example, in
thin-wall milling, if stiffness of the part is considered in selecting the optimal engagement,
non-uniform machining allowance on the components could be desired. This is the case of
the approach proposed by Wang et al. [11] that developed a cutting sequence algorithm
to reduce workpiece deformation, suggesting the use of different depths of cut during
the cutting cycle, depending on the changing stiffness of the part. Starting from such a
concept, Grossi et al. [12] developed a method to compute the toolpath for milling thin-wall
components. In their work, in each pass, the radial depth of cut changes continuously to
achieve the desired quality without compromising productivity. To achieve this variable
radial depth of cut, variable machining allowance on the component is required, and
to implement such machining allowance on the final component a non-uniform offset
algorithm is needed. Few works were dedicated to non-uniform offset, known also as
variable-radius offset. Yan et al. [13] proposed the so called “uneven offset” method, but
the method is very specific and focuses on the elimination of materials remaining left on the
corners. Qun and Rokne’s [14] and Zhuo and Rossignac’s [15] works are dedicated to the
geometrical definition of the different offsets; however, they do not provide efficient and
robust algorithms. Variable offset can be constructed based on sampling, using rendering-
based methods [16]; however, computational efficiency and accuracy in extracting the
actual offset from the rendered images are still open issues. Recently, Held et al. [17,18]
computed a variable offset exploiting the new variable-radius Voronoi diagrams. Although
interesting, their works require several steps, increased effort in the implementation and
are specific, since they do not apply to external offset.

This limitation is common to most of the proposed approaches for non-uniform
offset that are designed on specific cases and they lack generality. This work presents a
general algorithm for non-uniform offset of polyline curves, inspired by the uniform offset
algorithm proposed by Wicklin [8]. The method, based on 2D polygons and Boolean union
operation, is robust for complexity of both the polyline and variable offset magnitude along
that line. Indeed, the main contribution of the proposed approach is the generality: the
algorithm can be applied to both external and internal offset and it is effective for any type
of contour and variable offset desired, not returning ambiguities or intersections in the
resulting contour. In addition, another novel aspect characterizing the proposed approach is
its implementation: the method is not based on specific complex algorithms (e.g., rendering-
based, straight skeleton or Voronoi diagrams), which generally not easy to implement,
but only on simple basic steps, exploiting traditional operations (i.e., projections, Boolean
operations). Such operations are already adopted in CAM software, but in the proposed
approach they are adapted to be used to compute non-uniform offset and achieve a desired
variable machining allowance on the part.

In Section 2, the scope of the algorithm and the working principle is proposed, then in
Section 3 results on several examples and applications to thin-wall milling cases are shown.
Finally, in Section 4 some conclusions are drawn.
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2. Materials and Methods
2.1. Scope

The proposed technique is designed to compute the non-uniform offset of a polyline
curve. There are two main inputs of the method:

• The initial contour: a closed polyline curve, composed by several sequential points in
2D space;

• The offset array, including the offset values for each point; since the offset is non-
uniform, the offset value could be different for each point (if the offset array is com-
posed by all the same value a uniform offset is achieved).

The output is a new polyline curve generated by offsetting the initial contour points,
internally or externally, by the values specified in the offset array.

Such offsets should be directed normally to the initial contour (when this operation
is possible), and the sign depends on the selection of internal/external direction. In the
2.5 axis milling application, this offset procedure applied to contour, internal (pocket)
or external, results in adding a non-uniform machining allowance to the geometry. An
example of the desired new polyline is provided in Figure 1, where two different offsets
of the initial contour are presented, i.e., small and high magnitude (Figure 1a) applied to
external (Figure 1b) and internal (Figure 1c) directions. As is clear from Figure 1, the result
of a non-uniform offset on a contour is a new polyline that can be seen as the initial contour
with the addition of a machining allowance. The start point is highlighted as a red dot in
the figure and the same is provided in the offset evolution plot (Figure 1a), where offset
values in the offset array are shown. As a convention, the points move clockwise in the
case of an internal offset and counterclockwise in the case of an external offset. The offset
result is similar to the one of a classical (i.e., uniform) offset approach, except from the fact
that the machining allowance is non-uniform. Such desired polylines cannot be achieved
by just projecting the initial contour points along the normal to the contour by the required
allowance, especially in the internal scenarios. Indeed, in the external scenario, the resulting
points are part of the new contour and a strategy to connect them as in traditional offset
can be pursued. In concave scenarios such an approach fails since intersections appear, as
shown in Figure 1e.

A uniform offset example is provided in Figure 2, where the same initial contour is
offset by a constant value (two different values are presented, Figure 2a). In the uniform
allowance scenario, the intersections are regular (Figure 2) and approaches to remove
them can be pursued, as it is described the uniform offset methods based on trimming [5].
Differently in non-uniform offset, such intersections could be very complex since the
offset points could be found in several different configurations depending on the arbitrary
different values of allowance (i.e., distance along the normal). Such degrees of freedom
could generate complex offset polylines, even with a simple initial contour. An example is
provided in Figure 3. In this example, the same initial contour should be offset internally
with a variable sinusoidal machining allowance (Figure 3a), the idea is to generate thin
walls in two zones, while thick walls are required in the other regions. The desired offset
polyline is provided in Figure 3b, while the points projection is in Figure 3c. In this case,
the non-uniform offset generates ambiguities. First, the intersections at the center lead to a
polyline with three zones, but the center one should be removed, and two polylines must
be considered. The second aspect is even more complex, indeed, the fillets between lines
generate projected points that affect the actual offset of other points. It is hence clear the
need of a general method for an arbitrary non-uniform offset of a contour. The scope of the
presented study is detailed in the next section.
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2.2. Proposed Approach

The proposed approach aims at overcoming the previous presented issues and, starting
from a generic polyline curve, generates a new polyline using a non-uniform offset array.
The approach, based on 2D polygons and Boolean union operation, can be summarized in
five steps:

1. Projection: each point of the initial contour is projected (internally or externally as
defined) at the assigned offset value along the two normal vectors of the two adjacent
segments it belongs to, generating two projecting points.

2. Trapezoid: a trapezoid is created for each segment by connecting the initial contour
segment and the offset segment composed by the two projecting points. Since the
same normal is considered (i.e., same starting segment) a trapezoid is always created
(two right angles).

3. Circular sector: a circle arc is created connecting the two projected points generated
by the same initial contour point, the center of the arc. This circle arc along with
the projecting lines creates the circular sector. In the case of a multi-point straight
line, since projected points of the initial contour point overlap, circular sectors are
not computed.

4. Union: Boolean union operation is performed on all the polygons (i.e., trapezoids and
circular sectors), and a single polygon is hence created.

5. Offset contour: internal or external boundaries of the Boolean union polygon are then
extracted, thus achieving the offset polyline.

To highlight the working principle of the method, two examples of three points of
initial contour are provided for internal (Figure 4) and external (Figure 5) cases. Figure 4a
shows the first step of projection for an internal offset: each segment of the initial contour
generates two additional projected points, the normal is the same while the magnitude
could be different.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 13 
 

2. Trapezoid: a trapezoid is created for each segment by connecting the initial contour 

segment and the offset segment composed by the two projecting points. Since the 

same normal is considered (i.e., same starting segment) a trapezoid is always created 

(two right angles). 

3. Circular sector: a circle arc is created connecting the two projected points generated by 

the same initial contour point, the center of the arc. This circle arc along with the 

projecting lines creates the circular sector. In the case of a multi-point straight line, since 

projected points of the initial contour point overlap, circular sectors are not computed. 

4. Union: Boolean union operation is performed on all the polygons (i.e., trapezoids and 

circular sectors), and a single polygon is hence created. 

5. Offset contour: internal or external boundaries of the Boolean union polygon are then 

extracted, thus achieving the offset polyline. 

To highlight the working principle of the method, two examples of three points of 

initial contour are provided for internal (Figure 4) and external (Figure 5) cases. Figure 4a 

shows the first step of projection for an internal offset: each segment of the initial contour 

generates two additional projected points, the normal is the same while the magnitude 

could be different. 

Therefore, starting from an internal point (in this case only the middle one) two points 

are generated. Figure 4b shows the polygon’s generations at step 2 and 3. Trapezoids are 

created directly connecting the projected points with the original points, while circular 

sectors are the results of the rotation of one projection segment on the other originating from 

the same point of the initial contour. Such polygons are merged in the union polygon of 

Figure 4c using a Boolean union operation. Finally, this last united polygon is used to extract 

the non-uniform offset as its internal boundary. Such an approach is robust, returns 

continuous contours and allows for consideration of the generation of multiple contours 

starting from the initial one, as shown in the examples (Section 3.1). The same procedure is 

described for the external offset in Figure 5. In this case, at the end of the procedure, after 

the union polygon is computed (Figure 5c), the external boundary is extracted (Figure 5d). 

  
(a) (b) 

  
(c) (d) 

Figure 4. Proposed approach for concave example: (a) points (b) trapezoid and circle arc (c) Boolean 

union (d) results. 
Figure 4. Proposed approach for concave example: (a) points (b) trapezoid and circle arc (c) Boolean
union (d) results.



Appl. Sci. 2023, 13, 208 6 of 13Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 13 
 

  
(a) (b) 

  

(c) (d) 

Figure 5. Proposed approach for convex example: (a) points (b) trapezoid and circle arc (c) Boolean 

union (d) results. 

The proposed approach has been developed in MathWorks MATLAB using 

polyshape objects. In variable offset, several points could be needed even for straight lines 

to achieve the desired non-uniform offset (i.e., each point could require to be offset by a 

different value). To improve efficiency, in such cases (i.e., same normal points), a single 

trapezoid-like polygon (i.e., curvilinear trapezoid) is created to be merged subsequently. 

It is worth pointing out that the proposed method does not aim at computing the 

machining toolpath, but its goal is to generate the contour of the semi-finished workpiece 

required to achieve a non-uniform allowance on the part, crucial in case a variable depth 

of cut is desired (e.g., thin-wall). The machining toolpath to achieve such semi-finished 

workpiece can be obtained by offsetting the resulting contour (e.g., using a general 

uniform offset) of the tool radius. 

3. Results 

In this section, the proposed algorithm is applied to different scenarios. First, 

different examples are provided to show how the algorithm could deal with complexity 

both in terms of initial contour and offset array. Then, two case studies are provided to 

show the potential application of the proposed approach. 

3.1. Examples 

In Table 1 six examples are shown, in the first column the initial contour and the 

algorithm results are provided, while in the other two columns the polygon phase and the 

offset values applied are shown. 

  

Figure 5. Proposed approach for convex example: (a) points (b) trapezoid and circle arc (c) Boolean
union (d) results.

Therefore, starting from an internal point (in this case only the middle one) two points
are generated. Figure 4b shows the polygon’s generations at step 2 and 3. Trapezoids are
created directly connecting the projected points with the original points, while circular
sectors are the results of the rotation of one projection segment on the other originating
from the same point of the initial contour. Such polygons are merged in the union polygon
of Figure 4c using a Boolean union operation. Finally, this last united polygon is used to
extract the non-uniform offset as its internal boundary. Such an approach is robust, returns
continuous contours and allows for consideration of the generation of multiple contours
starting from the initial one, as shown in the examples (Section 3.1). The same procedure is
described for the external offset in Figure 5. In this case, at the end of the procedure, after
the union polygon is computed (Figure 5c), the external boundary is extracted (Figure 5d).

The proposed approach has been developed in MathWorks MATLAB using polyshape
objects. In variable offset, several points could be needed even for straight lines to achieve
the desired non-uniform offset (i.e., each point could require to be offset by a different
value). To improve efficiency, in such cases (i.e., same normal points), a single trapezoid-
like polygon (i.e., curvilinear trapezoid) is created to be merged subsequently. It is worth
pointing out that the proposed method does not aim at computing the machining toolpath,
but its goal is to generate the contour of the semi-finished workpiece required to achieve
a non-uniform allowance on the part, crucial in case a variable depth of cut is desired
(e.g., thin-wall). The machining toolpath to achieve such semi-finished workpiece can be
obtained by offsetting the resulting contour (e.g., using a general uniform offset) of the
tool radius.
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3. Results

In this section, the proposed algorithm is applied to different scenarios. First, different
examples are provided to show how the algorithm could deal with complexity both in
terms of initial contour and offset array. Then, two case studies are provided to show the
potential application of the proposed approach.

3.1. Examples

In Table 1 six examples are shown, in the first column the initial contour and the
algorithm results are provided, while in the other two columns the polygon phase and the
offset values applied are shown.

As is clear from the results, the proposed algorithm is able to handle both internal
and external offset of complex initial contours and offset arrays. The first example shows
how the algorithm works in an internal simple geometry with a triangle-shape offset
array (same example in Figure 1) and how self-intersection is intrinsically managed by
the proposed approach. In the second, a sinusoidal offset array with high frequency is
imposed to the same initial contour. The fluctuations generate a sinusoidal allowance on
straight lines and asymmetrical intersections at the vertices, accurately represented by using
the proposed algorithm. A sinusoidal offset array is provided to a more complex shape
featuring convex and concave angles. Applying this offset externally (example 3) leads to
variable thicknesses of the straight lines and edge rotation with different radii on the four
convex vertices, while the intersection is computed in the concave angle. Example 4 shows
the same complex shape with an internal sinusoidal offset and similar considerations can be
drawn. The algorithm correctly computes both circular edge rotation at the convex vertex
and the four intersections at the concave angles. In example 5, an offset array causing the
creation of two different polylines is applied to the same initial contour of the previous
two examples, while in example 6 an external offset to a curve (i.e., airfoil-shape) using a
complex offset array is shown.

3.2. Application to Thin-Wall Components

In addition to the previous examples, which represent more theoretical applications
rather than real case scenarios, more practical case studies are proposed.

Indeed, the proposed algorithm is dedicated to contouring operations in 2.5 axis
milling considering a flat endmill as the cutter. In this context, the proposed algorithm
starting from the polyline, which represents the finished part of the contour, produces the
shape of the machining allowance to be left on the part based on the offset values assigned
to each point of the starting polyline (i.e., semi-finished contour). These offset values
identify the amount of allowance to be left on each point of the finished contour. Then,
the actual toolpath could be obtained by applying an offset algorithm to the semi-finished
contour previously obtained using the same offset value (i.e., endmill radius) for each
point. Therefore, in 2.5 axis milling contouring operations, the proposed algorithm creates
a toolpath able to achieve a variable radial depth of cut along the part contour. These
conditions are particularly interesting in contouring operations in which both the tool and
the workpiece are characterized by low stiffness. This type of operation is referred to as
thin-wall milling, and it is a challenging topic in the manufacturing field. In detail, thin-wall
components are increasingly adopted in modern industries for their favorable stiffness to
weight ratio, but precision milling on these components is still a complicated task because
unstable vibrations and large surface errors are inevitable during the process, limiting
productivity. To ensure the required surface quality without compromising productivity, it
is important to identify the potential of each portion of the thin-wall component in terms
of stiffness so that the most profitable cutting parameters, which each portion can handle,
are selected. In this regard, two applications for the definition of the semi-finished part
in 2.5 milling are provided. It must be noted that, in the context of milling operations,
the proposed method does not create the actual toolpath, but the desired semi-finished
contour, which must be offset uniformly by the tool radius to obtain the effective toolpath.
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As already mentioned above as well as in the introduction, one potential application of
the proposed algorithm is the definition of a variable machining allowance on the finished
thin wall part to achieve a variable radial depth of cut during the finishing operation.
Indeed, the possibility to adopt a different radial depth of cut during the finishing cycle
allows for removal of more material on the stiffer zones, reducing the actual material
removal only in the critical portions of the part. As shown in [11], this allows an increase in
productivity in comparison to the traditional constant engagement approach, in which the
most conservative (i.e., minimum) radial depth of cut during the entire machining cycle
must be used. Firstly, the proposed algorithm was applied to the case study proposed
in [12]: 2.5 milling of a NACA 0005 airfoil profile 60 mm long and 20 mm high (Figure 6).
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Figure 6. Blade 2D profile.

In the cited work, the authors aimed at identifying, from a static point of view, the
highest value of the radial depth of cut in each portion of the airfoil so that the form error
caused by the static deflection of the tool-workpiece couple does not fail the commanded
tolerance. Workpiece deflection is predicted, including the effect of the material removal
through finite elements methods. In detail, the method proposed by the authors starts by
finding the stiffest portion of the airfoil. It evaluates the highest radial depth of cut possible
within the imposed constraints, it updates accordingly the airfoil stiffness in the analyzed
portion, and, following this practice, it continues analyzing the rest of the airfoil profile in
reverse order with respect to the classic milling cycle. In this way the output of the method
is the “desired” machining allowance to be left on the workpiece stock to obtain an airfoil
which respects the commanded tolerance in each portion.

In the mentioned work, radial depth of cut was optimized to achieve a commanded
tolerance (±0.02 mm) leading to a variable depth of cut. Indeed, since the blade presents
significant differences in terms of local stiffness, in the thicker zones of the profile a higher
depth of cut can be achieved, while in the critical points (e.g., trailing edge) a more conser-
vative depth should be used. The resulting radial depth of cut is presented in Figure 7. As
expected, the figure shows the minimum radial depth of cut (i.e., offset of the contour) at
the trailing edge, the most flexible portion of the blade. The starting point was set on the
stiffest portion and discontinuity on this point is found between the beginning and the end
of the cycle. This result is caused by the fact that during the operation, the thickness of the
blade changes, affecting the stiffness and hence the allowable radial depth of cut. Please
refer to [12] for additional details on radial depth of cut computation.
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Table 1. Examples (measures in mm).
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Figure 7. Desired radial depth of cut for the blade, i.e., offset values to be applied.

To achieve the desired radial depth of cut during the finishing operation, the semi-
finished stock should be computed based on the initial contour adding the defined radial
depth of cut as a machining allowance. This procedure was carried out using the proposed
algorithm, and results are shown in Figure 8. Results show that the proposed algorithm is
able to perform the non-uniform offset of the blade contour, dealing with the discontinuity
and returning the desired semi-finished profile.
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Figure 8. Blade results: (a) Initial contour and proposed algorithm results (b) polygons of the
proposed approach.

Since the blade application was dedicated to an external offset, generally easier to
manage, an application to an internal offset in pocket 2.5 milling operations is also provided.
The case study is a Pylon Bracket for aerospace application, such components often entail
thin-wall structures and pocket milling. In our case, the pocket analyzed is the one in
the middle, as highlighted in the 2D representation of Figure 9. The 2.5 milling of the
investigated pocket is not affected by the flexibility of the workpiece (thin-wall structure)
for most of the operation, except for one of the sides that is characterized by a very thin wall
(3 mm). Therefore, in this portion a variable radial depth of cut could be profitable: constant
and standard radial depth of cut should be used in the thick portions, while drastically
reduced radial depth of cut must be adopted in the thin-wall portion. An example of such
possible depth of cut variation is provided in Figure 10.
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Figure 10. Desired radial depth of cut for the pocket, i.e., offset values to be applied.

The desired radial depth of cut is applied through the developed offset algorithm to
the initial contour to obtain the semi-finished pocket and results are shown in Figure 11.
The algorithm produces what is required: a constant offset in the thick portions and a
reduced offset in the critical one. Milling the resulting offset contour to obtain the initial
contour will entail a high radial depth of cut in all the regions, except for the thin zone
where such depth of cut will be more conservative, as desired. As already mentioned, it is
worth pointing out that since the offset polyline should be obtained by a milling operation,
sharp edges cannot be achieved, and the real machining allowance will depend on the tool
geometry (i.e., diameter) used for the roughing operation. This consideration is valid in
general, the offset algorithm could result in sharp edge contours if such a contour represents
the semi-finished component. As in the applications provided in this section, the diameter
of the tool will affect the actual machined contour.
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Figure 11. Pocket results (a) Initial contour and proposed algorithm results (b) polygons of the
proposed approach.

4. Discussion

In this work, a non-uniform offset (i.e., variable-radius offset) algorithm for CNC
milling toolpath generation is proposed. This algorithm computes the non-uniform offset
contour of a polyline both internally and externally. Basically, the proposed approach
requires two inputs: (i) the initial contour, a closed 2D polyline curve and (ii) an offset
array, including the offset values for each point. The method is based on Boolean union of
2D polygons and follows five simple steps: (i) projection segments of the initial contour
are generated, (ii) a trapezoid for each initial segment is created, (iii) a circular sector is
generated by rotating one projection segment on the other originating from the same point
of the initial contour, (iv) Boolean union of all the polygons is performed, (v) boundary of
interest (i.e., internal or external) is extracted. Results show the effectiveness of the proposed
approach in several examples. In addition, the potential application to thin-wall 2.5 milling
toolpath definition is shown using two different case studies: the external milling of a blade
profile and the internal milling of a pylon bracket pocket. The efficiency of this algorithm
needs further investigations requiring the implementation in a more suitable programming
language (e.g., C++). Moreover, improvements to the implementation could be considered
to increase the robustness of the approach. In addition, as a future development the
algorithm applicability could be extended to be used in path planning, which is achieving
a growing interest in the world of automation. This involves the generation of a route
in presence of obstacles that must be avoided to achieve a collision-free operation of
robots or entities moving in a certain scene. A promising tool widely used in this filed is
the Minkowski sum algorithm, which is the point-wise sum of two sets [19]. In motion
planning, the first of the two sets could be the obstacle, while the second the end effector or,
in general, moving entity. A similar result could be achieved with the algorithm proposed
in the present paper where, point by point along the perimeter of the obstacle, the shape of
the moving entity could be added to the one of the obstacles taking into account also the
orientation of the moving entity itself, thus allowing for rotation. To achieve such a goal,
further investigation and implementations of the proposed concept are needed.
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