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Abstract
Objective: Coronary microvascular dysfunction (CMD) is a key pathophysiological 
feature of hypertrophic cardiomyopathy (HCM), contributing to myocardial ischemia 
and representing a critical determinant of patients' adverse outcome. The molecular 
mechanisms underlying the morphological and functional changes of CMD are still 
unknown. Aim of this study was to obtain insights on the molecular pathways associ-
ated with microvessel remodeling in HCM.
Methods: Interventricular septum myectomies from patients with obstructive HCM 
(n = 20) and donors' hearts (CTRL, discarded for technical reasons, n = 7) were col-
lected. Remodeled intramyocardial arterioles and cardiomyocytes were microdis-
sected by laser capture and next-generation sequencing was used to delineate the 
transcriptome profile.
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1  |  INTRODUC TION

Hypertrophic cardiomyopathy (HCM) is the most common genetic 
heart disease, with a prevalence of 1:500 in the general population1 
and is mainly caused by single-gene mutations in genes encoding 
proteins of the sarcomere.2–5 The mutations lead to structurally 
and functionally altered proteins,3 generating a cascade of sec-
ondary defects in cardiomyocyte energetics, contractility, and 
structure.6

Macroscopically HCM demonstrates marked left ventricular hy-
pertrophy (LVH), often asymmetric,7–9 and ventricular dysfunction. 
Microscopically, it is characterized by cardiomyocyte hypertrophy 
and heterogeneously distributed spatial disarray, interstitial fibro-
sis and adverse remodeling of intramural coronary arterioles (i.e., 
vessel wall thickening with hypertrophy of smooth muscle cells and 
increased collagen deposition in the tunica media with variable de-
grees of intimal thickening) with local ischemia.10–12

Coronary microvascular dysfunction (CMD) represents a key patho-
physiological mechanism in HCM, contributing to myocardial ischemia 
and replacement fibrosis,13–16 pointing to CMD as a critical determinant 
of adverse outcome in HCM. Whether CMD is part of the same gene 
deregulation associated to myocardial alteration is unknown.

In the last decades, the development of laser capture microdis-
section (LCM) allowed high-resolution isolation of selected cells/
tissue portions from tissue sections, preserving the molecular com-
position for omics analyses.17–26 Recently, the coupling of LCM with 
next-generation sequencing (NGS) has been proposed as power-
ful strategy to investigate and compare the transcriptome profiles 
of different components of the same samples, but low quantities 
of starting RNA can be a severe hindrance, especially for RNA-
sequencing studies. Multiple protocols have been developed for 
transcriptome profiling from very low-quantity RNA inputs27–29 and 
recent advances in RNA-sequencing technology enable sequencing 
analysis with limited amounts of RNA obtained from selected areas 
of interest.30–32

In the current study, we applied the combined approach of 
LCM and full-length mRNA-sequencing to compare the transcrip-
tome profiling of remodeled arterioles and cardiomyocytes from 

interventricular septal tissue of HCM patients vs. controls (CTRL, 
donor hearts). Differentially expressed genes (DEGs) were identified 
and analyzed by comparative functional enrichment to obtain in-
sights on the pathways putatively associated with HCM and related 
either to cardiomyocyte alterations or CMD.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

The work described has been carried out in accordance with The 
Code of Ethics of the World Medical Association (Declaration of 
Helsinki) and conformed to Sapienza University of Rome Ethical 
Committee protocols.

Myocardial samples were obtained from patients with obstruc-
tive HCM, diagnosed according to current guidelines,7 undergo-
ing septal myectomy procedures at Careggi University Hospital, 
Florence (n = 4) and San Raffaele Hospital, Milan (n = 16). All pa-
tients gave informed consent for the procedure.

Control myocardial samples (CTRL, n = 7) from the same site of 
the septal myectomy procedure (subaortic septum) were collected at 
Sapienza University Hospital in Rome from donors' hearts discarded 
from transplantation because of noncardiac technical reasons (e.g., 
suitable recipient unavailability).

Samples were harvested immediately after surgery and cut into 
2-mm thick slices perpendicularly to the endocardium. Part of each 
specimen was embedded in KilliK (O.C.T. BioOptica) and snap-frozen 
in nitrogen-cooled isopentane for in situ gene-expression studies. 
The remaining tissue was fixed in 10% phosphate-buffered formalin 
and embedded in paraffin for histological and histomorphometric 
analyses.

2.2  |  Histological and histomorphometric analysis

Eight-μm-thick sections were obtained from each paraffin block, 
de-paraffinized, rehydrated and stained with hematoxylin-eosin 

Results: We identified 720 exclusive differentially expressed genes (DEGs) in cardi-
omyocytes and 1315 exclusive DEGs in remodeled arterioles of HCM. Performing 
gene ontology and pathway enrichment analyses, we identified selectively altered 
pathways between remodeled arterioles and cardiomyocytes in HCM patients and 
controls.
Conclusions: We demonstrate the existence of distinctive pathways between remod-
eled arterioles and cardiomyocytes in HCM patients and controls at the transcriptome 
level.

K E Y W O R D S
coronary microvascular remodeling, hypertrophic cardiomyopathy, pathway enrichment 
analyses, remodeled arterioles dissected
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(HE) and Azan Mallory stain for light microscopy. For the purpose 
of the study, small vessels were defined as intramural arterioles 
with a diameter <100 μm.13 For each case, the small vessel medial 
hypertrophy and perivascular fibrosis, as well as the presence of 
myocardial hypertrophy, myofiber disarray, interstitial fibrosis, and 
myocardial microscarring were recorded. High-resolution images 
of intramural arterioles were acquired at 20× magnification with a 
digital camera (Olympus). Images were stored as TIF files and were 
analyzed by a dedicated software (ImageJ 1.47v, Wayne Rasband 
National Institutes of Health). Lumen area (LA) and vessel area (VA) 
were manually measured. The following parameters were then de-
rived: Medial area (VA-LA); Lumen area to vessel area ratio (LA/VA); 
Lumen diameter [√(LA∕3.14)] × 2 and Vessel diameter [√(V∕3.14)] × 2 
as previously published.33

2.3  |  Statistical analysis

For the histomorphometric analysis, all data are reported as 
mean ± standard error of the mean (SEM). For direct comparison 
between HCM patients and controls, unpaired Student's t test was 
used. Significance was considered at p < .05. Numerical estimates 
were obtained with the GraphPad Prism 7 version (GraphPad Inc).

2.4  |  LCM procedure

Frozen sections from the myectomy specimens with a thickness 
of 10  μm were mounted onto PEN-membrane glass slides (Leica 
Microsystems) and stained with HE. Between 100–150 remodeled 
intramyocardial arterioles were microdissected by laser capture 
with the Leica LMD 7000 (Leica Microsystems). For each sample, 
similar amounts of dissected cardiomyocytes were also obtained 
(Figure S1).

2.5  |  RNA preparation

Total RNA from microdissected samples was isolated by miRNeasy 
Micro Kit (Qiagen) specific for purifying total RNA from small amounts 
of tissue. The concentration and purity of total RNA were determined 
using Agilent RNA 6000 Pico Assay (Agilent 2100 Bioanalyzer). Only 
the samples presenting RNA Integrity Number (RIN) ≥ 7 were selected 
for the further next-generation sequencing study.

2.6  |  RNA-sequencing

RNA was converted into RNA-seq libraries with the Clontech 
Smarter kit (specifically designed for RNA-Seq applications involv-
ing laser-captured samples)34 and sequenced on an Illumina Nextseq 
500 sequencer with a HighOutput flow cell, 1 × 75 nt, single-end 
reads.

2.7  |  RNA-seq data analysis

2.7.1  |  Pre-processing

Quality control for 75-base single-end reads of each sample was 
performed by using the FastQC tool,35 which can examine sequence 
quality, GC content, presence of adaptors, over-represented k-mers, 
and read duplication. The Trimmomatic software (v. 0.36)36 was used 
to discard low-quality reads (average quality <28), eliminate poor-
quality bases from their 3′ end, and trim adaptor sequences. Only 
reads longer than 35 bases were retained and mapped on the human 
reference genome (GRCh38) by using HISAT2 aligner (v2.1.0)37 with 
default parameter values.

2.7.2  |  Differential expression analysis (HCM versus 
CTRL) in myocardium and vessel tissue

Read counts for each human gene were estimated by using StringTie 
software (v2.1.1) with the human transcriptome from Ensembl (re-
lease 98) as reference annotation, followed by running the prepDE.
py Python script to generate the count matrix (as provided and 
suggested in the StringTie protocol).38 Mitochondrial genes were 
excluded from the analysis to avoid the introduction of significant 
biases in the differential expression analysis due to their high ex-
pression levels in the myocardium.39 Principal Component Analysis 
(PCA) and correlation coefficient analysis were performed to ex-
amine gene-expression level of HCM and CTRL samples both in 
cardiomyocytes and vessels, assessing similarities and differences 
between groups. Normalization and differential expression test 
were performed using DESeq2 R-package (v1.26).40 For each com-
parison, only genes with more than 1 count per million (cpm) in a 
minimum number of samples (the size of the group with the lowest 
number of samples under analysis) were retained. Multiple-testing 
correction to control the false discovery rate (FDR) was performed 
by applying Benjamini–Hochberg method.41 Only the genes with 
an adjusted p < .01 were marked as differentially expressed genes 
(DEGs) (significantly up- and down-regulated). As the biological im-
portance of a given change in expression level is unknown, no fold-
change cutoff was applied. Genes that were differentially expressed 
(adjusted p  < .01) between HCM versus CTRL in myocardium, but 
not in vessels (adjusted p  > .01), were marked as exclusive myo-
DEGs, and vice versa for exclusive vessel-DEGs. Gene overlaps were 
calculated using the InteractiVenn software.42

2.8  |  Functional enrichment analysis

A functional enrichment analysis was performed on each set of 
differentially expressed (protein-coding) genes between HCM 
and CTRL, both in myocardium and arterioles, keeping the up- 
and down-regulated groups. Over-represented biological pro-
cesses, functions, or pathways (terms which have more DEGs 
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than expected by chance) were identified by using DAVID web-
server43 with the entire human proteome as reference and que-
rying the following functional categories: Gene Ontology (GO) 
terms44 related to Biological Processes (BP), Molecular Functions 
(MF), and Cellular Compartment (CC); protein families as classi-
fied by InterPro database45; pathways collected in KEGG46 and 
Reactome47 databases; UniProt48 protein annotations, and pu-
tative molecular interactors as annotated in IntAct database.49 
Only biological categories with Benjamini–Hochberg corrected 
p-value40 (adjusted p-value) ≤5 × 10−2 were considered as sta-
tistically enriched. Results for each investigated group (up-  and 
down-regulated protein-coding genes, both in myocardium and 
vessel) are shown as heatmaps, with the color scale representing 
the adjusted p-values, created using the gplots R-package (https://
CRAN.R-proje​ct.org/packa​ge=gplots).

3  |  RESULTS

3.1  |  Study population

Twenty patients with a diagnosis of obstructive HCM according to 
current guidelines7 were enrolled. Baseline clinical and echocardio-
graphic data are summarized in Table 1. Seven CTRL biopsies were 
collected. Due to privacy law, only data regarding age and sex of 
donors were available. The control group consisted of 4 males and 3 
females, with a mean age of 55 ± 8 years.

3.2  |  Histologic and morphometric features

Histologic evaluation of myectomy samples was in keeping with the 
clinical diagnosis of HCM, showing myocyte hypertrophy and areas 
of myofiber disarray, characterized by bundles of myocytes cross-
ing each other with a herringbone pattern. Microscopic examina-
tion also revealed the presence of both interstitial and replacement 
fibrosis, the latter frequently surrounding remodeled coronary ar-
terioles, with medial wall thickening, mainly due to smooth muscle 
hypertrophy and increased collagen deposition and variable intimal 
thickening. Histologic analysis of control samples showed a normal 
myocardial and vessel structure (Figure S2).

Morphometric analysis showed a significant increase in mi-
crovascular medial area in HCM samples as compared to CTRL, 
(9578.59 ± 1295.76 μm2 vs 3752.03 ± 536.7 μm2, p =  .0001) paral-
leled by a decrease of the lumen- to vessel area ratio (0.10 ± 0.01 vs 
0.24 ± 0.02 in HCM patients and controls, p = .0001).

3.3  |  Detection of differentially expressed genes 
in HCM versus CTRL, common and specific to 
myocardium and vessel tissues

NGS was used to delineate the transcriptome profile of car-
diomyocytes and arterioles in HCM and CTRL samples. For these 

experiments, we dissected arterioles from 20 HCM hearts and 6 
CTRL, and cardiomyocytes from 10 HCM and 5 CTRL, selected for 
RNA quality (RIN ≥ 7).

Reads univocally mapped on the human reference genome 
(>70% of the sequenced reads) were used to estimate the gene-
expression values in all samples (Figures  S3 and S4). Exploratory 
gene-expression PCA plots (with respect to the first two compo-
nents) visualized the distribution of the samples (Figures S5 and S6), 
showing an overall separation between HCM and CTRL. The higher 
dispersion of CTRL revealed more heterogeneous expression with 
respect to clustered HCM points, indicative of inherently greater 
variability in the healthy CTRL than in HCM patients.

The Volcano Plots (Figure  1) showed a balanced (symmetrical) 
distribution of data, revealing no alterations in the results due to bias 
or artifacts between HCM and CTRL.

Our technique allowed the detection of a high number of genes 
differentially expressed between HCM and normal heart, both in 

TA B L E  1 Baseline characteristics and echocardiographic data of 
HCM patients

Patients N = 20

Demographic data

Age (years), M (SD) 59 (8)

Male gender, N (%) 14 (70)

BMI (kg/m2), M (SD) 27 (5)

Clinical data

Positive genetic screening, N (%) 7 (35)

VUS, N (%) 3 (15)

Family history of HCM, N (%) 7 (35)

NYHA class ≥ III, N (%) 8 (40)

Angina, N (%) 2 (10)

Syncope, N (%) 4 (20)

NSVT, N (%) 1 (5)

Medical therapy

Beta-blockers, N (%) 18 (90)

Antiarrhythmic drugs, N (%) 4 (20)

Diuretics, N (%) 12 (60)

RAAS-i, N (%) 12 (60)

CCB, N (%) 3 (15)

Echocardiographic data

IVS thickness (mm), M (SD) 22 (5)

LV-EDV (ml), M (SD) 141 
(62)

LV-EF (%), M (SD) 67 (9)

Moderate-to-severe mitral regurgitation, % 85

SAM-related LVOT-max gradient at rest (mm Hg), M (SD) 68 (35)

Abbreviations:aldosterone system inhibitors; angiotensin- BMI, body 
mass index; CCB, calcium channel blockers; EDV, end diastolic volume; 
EF, ejection fraction; IVS, interventricular septum; LV, left ventricular; 
LVOT, left ventricular outflow tract; M, mean; Max, maximum; N, 
number; NSVT, non-sustained ventricular tachycardia; NYHA class, 
New York Heart Association class; RAAS-i, renin- SD, standard 
deviation; VUS, variants of uncertain significance.
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cardiomyocytes and in remodeled arterioles. In fact, a total of 890 
differentially expressed genes (DEGs) were detected in cardiomyo-
cytes (387 DEGs up- and 503 DEGs down-regulated) and 1485 DEGs 
were identified in the remodeled arterioles (675 up-regulated and 
810 down-regulated, Tables S1 and S2).

Among the differentially expressed genes, 170 were altered both 
in HCM cardiomyocytes and arterioles. Of those, 25 were parallel 
up-regulated and 142 down-regulated (Figure  2). Conversely, two 
genes, the C-type lectin domain-containing 16A (CLEC16A) and 
Myeloid/lymphoid or mixed-lineage leukemia; translocated to, 11 
(MLLT11, an inducer of bad-mediated intrinsic apoptosis), were up-
regulated in cardiomyocytes and down-regulated in arterioles. Only 
one gene, the IQ domain-containing protein N (IQCN), was down-
regulated in cardiomyocytes and up-regulated in arterioles.

Interestingly, we were able to identify “exclusive DEGs” either 
for cardiomyocytes or arterioles, that is, DEGs between HCM and 
control in cardiomyocyte but not in remodeled arterioles samples 
and vice versa. Moreover, we found that the vast majority of DEGs 
are indeed exclusive: 360 (out of 387) and 360 (out of 503) up- and 
down-regulated, respectively, in cardiomyocytes, and 649 (out of 
675) and 666 (out of 810) up- and down-regulated, respectively, in 
arterioles (Figure 2, Table 2 and Tables S3 and S4).

3.4  |  Comparative functional enrichment analyses 
identify tissue-specific pathways potentially altered 
in CMD

To detect DEGs potentially involved in HCM pathogenesis, we 
performed Gene Ontology and Pathway enrichment analyses, 
two fundamental investigations exploring expression data. More 

specifically, comparative functional analyses were performed across 
up-  and down-regulated DEGs in HCM cardiomyocytes and arte-
rioles by using Gene Ontology terms (BP, CC, and MF), KEGG and 
Reactome Pathways, InterPro domains, UniProt protein annotations, 
and the IntAct molecular interaction annotations (Figures S7–S10). 
Enriched biological processes and pathways included terms such as 
proteasome (GO0005839, hsa03050), apoptosis (R-HSA-109581), 
PIP3 activates AKT signaling (R-HSA-1257604) and MAPK fam-
ily signaling cascades (R-HSA-5683057) (Figures  S7 and S8). The 

F I G U R E  1 “Volcano plot” showing statistical significance (adjusted p-values, p) versus magnitude of change (fold change, FC) of gene-
expression data between HCM and CTRL in cardiomyocytes (A) and arterioles (B). The most up-regulated genes (log2FC > 2) are towards 
the right, the most down-regulated genes (log2FC < −2) are towards the left, with the statistically significant data (−log10P > 2) highlighted in 
red, while the not significant ones in green. In blue, differential expression data with significant adjusted p-values but small fold changes are 
reported; in gray, not significant (NS) differential expression data.

F I G U R E  2 Venn diagram of differentially expressed genes 
(DEGs) identified using DESeq2. The panel shows the overlap 
between up- and down-regulated genes in cardiomyocytes 
(CM_UP, CM_DOWN) and vessels arterioles (A_UP, A_DOWN), 
highlighting the number of genes deregulated in both tissues (in 
common) or in a specific tissue (exclusive DEGs). CM_DOWN, 
cardiomyocytes_DOWN; CM_UP, cardiomyocytes_UP; A_DOWN, 
arterioles_DOWN; A_UP: arterioles_UP.
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enrichment results highlighted that the most down-regulated DEGs, 
both in cardiomyocytes and coronary arterioles, are those encoding 
phosphoproteins (Figure S9).

Among these biological pathways and functional categories, sev-
eral were enriched only by “exclusive DEGs,” and more likely altered 
in a tissue-specific way. In fact, the KEGG and Reactome pathways 
analysis (Figure  3) on “exclusive DEGs” demonstrated an evident 
separation between the contributions of cardiomyocytes and ar-
terioles in HCM and CTRLs, confirmed by corresponding GO and 
UniProt terms (Figures S11 and S12). Several pathways (Figure 3) re-
lated to the “translation process,” such as “peptide chain elongation,” 
“ribosome,” “Nonsense Mediated Decay independent of/enhanced 
by the exon junction complex” were enriched by genes up-regulated 
in arterioles, while “regulation of actin cytoskeleton” and “focal ad-
hesion” pathways, and pathways related to muscle contraction, such 
as “vascular smooth muscle contraction,” or to signal transduction, 
such as “RHO GTPases activate PAKs/PKNs/ROCKs,” were enriched 
by genes down-regulated in cardiomyocytes.

Notably, from the data stored in the IntAct database (Figure 4), 
among proteins with interactors enriched in genes exclusively down-
regulated in cardiomyocytes, we found myosin IC (Myo1c), myosin 
XIX (MYO19), and myosin heavy chain 9 (MYH9); myosins are actin-
based motor proteins that are required for multiple functions rang-
ing from cytokinesis to muscle contraction.50

Among the down-regulated genes in arterioles, we found an 
enrichment of interactors for two member of SOX family, SRY-box 
transcription factor 2 and 15 (SOX2 and SOX15). The members of 
the SOX family of transcription factors widely expressed in develop-
ment and participate in vasculogenesis and remodeling.51

4  |  DISCUSSION

Hypertrophic cardiomyopathy is the most common genetic cardio-
myopathy with a phenotype characterized by massive left ventricu-
lar hypertrophy (LVH), myocyte disarray, interstitial fibrosis, and 

F I G U R E  3 Comparison of KEGG and Reactome Pathways enriched in the list of “exclusive DEGs”. Terms statistically enriched in at least 
one of the four groups of “exclusive DEGs”: cardiomyocytes_DOWN (CM_DOWN), cardiomyocytes_UP (CM_UP), arterioles_DOWN (A_
DOWN), arterioles_UP (A_UP) are reported as a heatmap, with adjusted p-values plotted in blue-yellow scale color, where yellow indicates 
higher significant results.
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coronary microvascular disease. The latter includes abnormal wall 
thickening of intramural coronary arterioles with lumen reduction 
which correlates with the decrease in maximum myocardial blood 
flow and coronary flow reserve.10

Consistent evidence points to coronary microvascular dysfunc-
tion as a critical determinant of clinical progression and adverse out-
come in HCM.14,16 However, little is known regarding the pathogenic 
mechanisms underlying this condition.

In recent years, whole transcriptome investigations by perform-
ing focused RNA-seq experiments and/or analyzing related data-
sets available in specialized online repositories revealed altered 
gene-expression profiles in HCM. Reported gene-enriched path-
ways involve immune modulation, signal transduction, hemostasis, 
metabolism, muscle contraction, inflammation, and fibrosis (TGF-β 
pathways).52–55

Results published so far are based on the analysis of whole myo-
cardial samples, including cardiomyocytes, vessels, fibroblasts, and 
interstitial tissue, and do not provide information on the possible 
existence of expression profiles selectively related to coronary mi-
crovascular dysfunction.

In the last decade, the combination of LCM and RNA-seq has 
been proven to be a useful tool to investigate cellular pathways un-
derlying specific diseases and to identify potential therapeutic tar-
gets.56,57 Compared with other cell isolation techniques, LCM can 
precisely target and capture the cells of interest for a wide range of 
downstream assays.25,26,58,59

To gain insight into the molecular mechanisms of CMD in HCM, 
we isolated remodeled arterioles and cardiomyocytes by LCM from 
frozen myectomy samples and investigated their respective tran-
scriptome profiles by RNA-seq.

F I G U R E  4 Comparison of Interactors (IntAct database) enriched in the list of “exclusive DEGs”. Terms statistically enriched in at least one 
of the four groups of “exclusive DEGs”: cardiomyocytes_DOWN (CM_DOWN), cardiomyocytes_UP (CM_UP), arterioles_DOWN (A_DOWN), 
arterioles_UP (A_UP) are reported as a heatmap, with adjusted p-values plotted in blue-yellow scale color, where yellow indicates higher 
significant results.
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By applying this technique, we identified a total of 1485 differ-
entially expressed genes (DEGs) in remodeled arterioles of HCM, of 
which 675 were over-expressed and 810 under-expressed. A lower 
number of DEGs (890) was detected in cardiomyocytes, of which 
387 were up-regulated and 503 were down-regulated.

Interestingly, over 80% of the genes differentially expressed 
were exclusive of arterioles or cardiomyocytes (“exclusive DEGs” ie 
genes differentially expressed only in cardiomyocytes or in remod-
eled arterioles as compared to controls).

Pathway enrichment analysis of these “exclusive DEGs” rec-
ognized pathways specifically related to hypertrophic cardiomyo-
cytes. We identified a down regulation of pathways correlated to 
muscle contraction, such as “vascular smooth muscle contraction” 
and “smooth muscle contraction” and signaling transduction, such 
as “RHO GTPases activate PAKs/PKNs/ROCKs.” Rho GTPases are 
key regulators of different actomyosin-based cellular processes 
such as cell adhesion, cytokinesis, and contraction. The small GTP-
binding proteins of the Ras family, such as RhoA, stabilize the actin 
cytoskeleton and promote the formation of focal adhesions.60–62 
Accordingly, we also observed a down regulation of pathways re-
lated to “regulation of actin cytoskeleton” and “focal adhesion.”

In contrast, remodeled arteries isolated by LCM showed selec-
tive alterations of pathways related to both the translation process 
(such as “peptide chain elongation,” and “ribosome”) and RNA qual-
ity control (“Nonsense Mediated Decay independent of/enhanced 
by the exon junction complex”).

Interestingly, these pathways appear to be specific of remodeled 
arterioles in HCM since they have not been previously described in 
vascular remodeling associated with other cardiovascular diseases, 
including atherosclerosis and hypertension. Several studies, in fact, 
have highlighted the role of specific pathways related to immune/in-
flammatory process or to signaling transduction, such as Rho/ROCK 
pathways, Hippo/YAP signaling, and TGF-β pathway in vascular dys-
function associated with this condition.63–66

To the best of our knowledge, this is the first study that demon-
strates the existence of distinctive pathways modifications between 
remodeled arterioles and cardiomyocytes in HCM patients and con-
trols at the transcriptome level. The results obtained on isolated 
cardiomyocytes are overlapping, at least partially, with previous 
studies analyzing HCM myocardial homogenates.52–55 This might 
reflect the relative abundance of cardiomyocytes in the myocardial 
samples. Conversely, the association of LCM and RNA-seq allowed 
the detection of previously undescribed altered pathways, exclusive 
of remodeled arterioles and selective for HCM. This finding em-
phasizes the usefulness of this approach to analyze the molecular 
mechanisms underlying microvascular dysfunction and, possibly, to 
identify putative therapeutic targets.

4.1  |  Limitation of the study

The present study is a preliminary analysis, which requires validation 
by RT-PCR or Western blot analyses that have not yet been per-
formed since all tissue samples collected for this study were used for 

NGS experiments. However, our main aim was to look for pathways 
specifically related to microvessel remodeling in HCM.

5  |  PERSPECTIVES

Our results highlight the usefulness of LCM/RNA-seq to identify 
specific molecular pathways related to CMD in HCM. Functional 
validation is needed to identify putative target genes amenable to 
future therapeutic approaches. To this purpose, we are collecting 
additional samples to extend our preliminary results and to per-
form a functional validation of the identified genes by RT-PCR and 
Western blot analysis.
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