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Abstract: In this paper, we study centroids, orthocenters, circumcenters, and incenters of geodesic
triangles in non-Euclidean geometry, and we discuss the existence of the Euler line in this context.
Moreover, we give simple proofs of the existence of a totally geodesic 2-dimensional submanifold
containing a given geodesic triangle in the hyperbolic or spherical 3-dimensional geometry.
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1. Introduction

Let T be a triangle in the Euclidean plane, the medians of T intersect in the centroid,
the altitudes of T intersect in the orthocenter, and the perpendicular bisectors of the sides of
T intersect in the circumcenter; if T is not equilateral, then these points define the Euler line.
Also, the bisectors of the interior angles intersect in the incenter. Moreover, any triangle
in Euclidean space is contained in a plane, that is, in a totally geodesic 2-dimensional
submanifold of the Euclidean space. In the first part of this paper, we investigate previous
geometrical properties in the context of non-Euclidean geometry. We first consider the
hyperbolic setting. Starting from the results of [1] about the existence of centroid, ortho-
center, circumcenter and incenter, in Section 2, we give algebraic conditions under which
the three perpendicular bisectors of the sides, or the three altitudes, have a finite common
point, or are asymptotically parallel, or are ultra-parallel geodesics. We describe explicit
examples in the hyperbolic setting, where the analogue of the Euler line does not exist.
In Section 3, we prove that every geodesic triangle in the hyperbolic 3-dimensional space is
contained in a totally geodesic hypersurface. Sections 4 and 5 are devoted to the study of
geodesic triangles of the sphere. Specifically, in Section 4, we first compute the circumradius
and the inradius of a spherical geodesic triangle and describe relationships with the same
geometrical quantities of the polar triangle. Then, we prove that the circumcenter, the or-
thocenter, and the centroid of a spherical geodesic triangle belong to a common geodesic of
the 2-dimensional sphere if and only if the triangle is isosceles. Moreover, starting from the
well-known property that, in Euclidean geometry, the distance between the orthocenter and
the centroid of a triangle is twice the distance between the circumcenter and the centroid, we
prove that this is no longer true in non-Euclidean geometry, and we compute formulas for
the distance of these points for some special spherical triangle. In Section 5, we prove that,
as in the hyperbolic case, every geodesic triangle in the 3-dimensional sphere is contained
in a totally geodesic hypersurface. The main purpose of this paper is to provide a simple
and organic treatment of some similarities and differences between geometrical properties
of geodesic triangles in Euclidean and non-Euclidean geometry. Indeed, to the best of
our knowledge, the mathematical literature in this area, in particular regarding notable
points of a geodesic triangle in non-Euclidean geometry, is lacking. In this sense, good
references are [1–4]. This paper is a sort of extension of the results in [1,3]. Nevertheless,
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we would like to remark that many interesting papers describe the general framework of
non-Euclidean geometry and its applications; in particular, for applications to physics, a
good reference is [5].

2. On Geodesic Triangles of the Hyperbolic Plane
2.1. Preliminaries

(a) Let (M, g) be a complete, simply connected n-dimensional Riemannian manifold,
n ≥ 2, with constant sectional curvature equal to −1; then, we say that (M, g) is an n-
dimensional hyperbolic space . It is well known that n-dimensional hyperbolic space is unique
up to isometries. Therefore, in statements that are invariant under isometries, we can refer
to a generic n-dimensional hyperbolic space Hn , rather than to any Riemannian model
(M, g).

When n = 2, the 2-dimensional hyperbolic space H2 is called a hyperbolic plane.
As is known, it is possible to intrinsically define the boundary ∂Hn of Hn, whose

elements are called points at infinity of Hn (see, for instance, [6], (pp. 29–30)).
The geodesics of Hn are also more simply called (hyperbolic) lines. It is possible to

associate every (hyperbolic) line of Hn with exactly two points at infinity in ∂Hn; moreover,
given p, q ∈ ∂Hn, p ̸= q, there exists one and only one line of Hn with p and q as points at
infinity. Recall that two distinct lines of Hn are

⋄ Incident if they intersect in Hn (necessarily in a single point);
⋄ Asymptotically parallel if they have one common point at infinity (and therefore do not

intersect in Hn);
⋄ Ultra-parallel if they are neither incident nor asymptotically parallel.

(b) Let ∆ := {z ∈ C : |z| < 1} be the complex unitary disk, and let h :=
4 dzdz̄

(1 − |z|2)2 be

the Poincaré metric on ∆. It is well known that the Riemannian surface (∆, h) is a model for
the hyperbolic plane H2. We will often refer to this model during the calculations necessary
for the proofs of theorems.

The boundary (i.e., the set of points at infinity) of (∆, h) can be naturally identified
with S1 := {z ∈ C : |z| = 1}. The geodesics of (∆, h) are the curves γ of the form γ = γ̂∩∆,
where γ̂ is any Euclidean line or any Euclidean circle in both cases perpendicular to S1.
The points at infinity of the geodesic γ are the two points of γ̂ ∩ S1. The distance d, defined
by the Poincaré metric h, is given by

d(z, w) = ln
(

1 + |φw(z)|
1 − |φw(z)|

)
, for every z, w ∈ ∆, where φw(z) :=

z − w
1 − wz

.

In particular, for every z ∈ ∆, we have

d(z, 0) = ln
(

1 + |z|
1 − |z|

)
; from this : |z| = ed(z,0) − 1

ed(z,0) + 1
==

√
cosh

(
d(z, 0)

)
− 1

cosh
(
d(z, 0)

)
+ 1

.

It is well known that the hyperbolic circles of (∆, h) are exactly the Euclidean circles of
C contained in ∆, although, obviously, the hyperbolic center and radius do not agree with
the Euclidean center and radius.

If we denote by I+(∆, h) the group of isometries that preserve the orientation of (∆, h),
we have I+(∆, h) = { f : ∆ → ∆ : f (z) = eθi · φw(z), with θ ∈ R, w ∈ ∆}.

It is also well known that, given z1, z2, w1, w2 ∈ ∆, with z1 ̸= z2, w1 ̸= w2, and
d(z1, z2) = d(w1, w2), there exists a unique f ∈ I+(∆, h) such that f (z1) = w1 and
f (z2) = w2.

(c) Given a geodesic triangle T of the hyperbolic plane H2 with A, B, C ∈ H2 as vertices,
in the following we will denote by a = d(B, C), b = d(A, C), c = d(A, B), the hyperbolic
lengths of the sides BC, AC, AB, respectively. Moreover, we will denote by α, β, γ the
hyperbolic measures of the interior angles of T in the vertices A, B, C, respectively. We also
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need to define the following symmetric functions of a, b, c and α, β, γ, respectively, which
will appear in some later theorems:

Φ(a, b, c) :=
2(cosh(a)− 1)(cosh(b)− 1)(cosh(c)− 1)

1 − cosh2(a)− cosh2(b)− cosh2(c) + 2 cosh(a) cosh(b) cosh(c)
;

Θ(a, b, c) := 3 cosh2(a) cosh2(b) cosh2(c) + cosh2(a) cosh2(b) + cosh2(a) cosh2(c) +
cosh2(b) cosh2(c)− 2 cosh(a) cosh(b) cosh(c)

(
cosh2(a) + cosh2(b) + cosh2(c)

)
;

Ω(α, β, γ) := cos2(α) + cos2(β) + cos2(γ) + 2 sin(β) sin(γ) cos(α) +
2 sin(α) sin(γ) cos(β) + 2 sin(α) sin(β) cos(γ)− 3 ;

Ψ(α, β, γ) := 3 cos2(α) cos2(β) cos2(γ) + 2 cos3(α) cos(β) cos(γ)+
2 cos(α) cos3(β) cos(γ) + 2 cos(α) cos(β) cos3(γ) + cos2(α) cos2(β)+

cos2(α) cos2(γ) + cos2(β) cos2(γ) ;

Υ(α, β, γ) :=
cos2(α) + cos2(β) + cos2(γ) + 2 cos(α) cos(β) cos(γ)− 1

2
(
1 + cos(α)

)(
1 + cos(β)

)(
1 + cos(γ)

) .

(d) As in Euclidean geometry, for each geodesic triangle T of the hyperbolic plane, it is
possible to define particular geodesics, which are, respectively, the three bisectors of the
interior angles, the three altitudes, the three medians, and the three perpendicular bisectors
of the sides of T. Furthermore, in hyperbolic geometry, the following theorem holds.

Theorem 1 ([1], (Teorema, p. 68)). Let T be a geodesic triangle of the hyperbolic plane H2. Then,

(a) the three bisectors of the interior angles of T meet at a common point of H2, called hyperbolic
incenter of T;

(b) for the three perpendicular bisectors of the sides of T, the following events occur: either they
meet at a common point of H2 (that is, T has a finite hyperbolic circumcenter), or they
are asymptotically parallel with a point at infinity common to the three lines, or they are
ultra-parallel with a perpendicular line common to all three;

(c) for the three altitudes of T the following events occur: either they meet at a common point of
H2 (that is, T has a finite hyperbolic orthocenter), or they are asymptotically parallel with a
point at infinity common to the three lines, or they are ultra-parallel with a perpendicular line
common to all three;

(d) the three medians of T meet at a common point of H2, called hyperbolic centroid of T.

2.2. On the Circumcenter of a Hyperbolic Triangle

Theorem 2. Let T be a geodesic triangle of the hyperbolic plane H2, and let a, b, c be the hyperbolic
lengths of its three sides. Let Φ(a, b, c) be the function defined in Preliminaries 2.1(c).

Then,

(i) the three perpendicular bisectors of the sides of T meet at a common point of H2 (that is, T has
a finite hyperbolic circumcenter) if and only if Φ(a, b, c)) < 1 ;

(ii) the three perpendicular bisectors of the sides of T are asymptotically parallel with a point at
infinity common to the three lines if and only if Φ(a, b, c) = 1 ;

(iii) the three perpendicular bisectors of the sides of T are ultra-parallel with a perpendicular line
common to all three if and only if Φ(a, b, c) > 1 ;

(iv) if Φ(a, b, c) < 1, denoted by r0 the hyperbolic radius of the circle passing through the vertices
of T (i.e., r0 is the hyperbolic circumradius of T), we have

r0 =
1
2

ln
(

1 +
√

Φ(a, b, c)
1 −

√
Φ(a, b, c)

)
.

Proof. Without loss of generality, we can assume that the hyperbolic plane H2 is the
Poincaré disk (∆, h). The Poincaré metric h is conformally equivalent to the Euclidean
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metric on ∆ ⊂ C; then, the hyperbolic measure of each interior angle of T coincides with its
Euclidean measure. Up to hyperbolic isometries of (∆, h), we can suppose that the vertices
A, B, C of T are A = 0, B = t, C = ξ + η i, where t, ξ, η ∈ R, with t ∈ (0, 1), η > 0,
0 < ξ2 + η2 < 1. We denote the measures of the sides and interior angles of T as in
Preliminaries 2.1(c).

We denote the function Φ(a, b, c) more simply by Φ. We recall that

Φ =
2(cosh(a)− 1)(cosh(b)− 1)(cosh(c)− 1)

1 − cosh2(a)− cosh2(b)− cosh2(c) + 2 cosh(a) cosh(b) cosh(c)
.

From the law of cosines for hyperbolic triangles ([7], (Formula (21) p. 85)), we deduce

cos(α) =
cosh(b) cosh(c)− cosh(a)

sinh(b) sinh(c)
=

cosh(b) cosh(c)− cosh(a)√
(cosh2(b)− 1)(cosh2(c)− 1)

;

hence:

sin2(α) =
1 − cosh2(a)− cosh2(b)− cosh2(c) + 2 cosh(a) cosh(b) cosh(c)

(cosh2(b)− 1)(cosh2(c)− 1)
.

Furthermore we have

|C| =

√
cosh(b)− 1
cosh(b) + 1

, t = |B| =

√
cosh(c)− 1
cosh(c) + 1

,

ξ = |C| · cos(α) =
cosh(b) cosh(c)− cosh(a)

(cosh(b) + 1) ·
√

cosh2(c)− 1
,

t2 + |C|2 − 2t|C| cos(α) =
2(cosh(a)− 1)

(cosh(b) + 1) · (cosh(c) + 1)
;

so we obtain
t2 + |C|2 − 2t|C| cos(α)

sin2(α)
= Φ.

The midpoint of the hyperbolic segment of extremes A = 0 and an arbitrary z ∈ ∆ is

the point ẑ =
1 −

√
1 − |z|2
|z|2 z . It follows that the midpoint of AB is the point

t̂ =
1 −

√
1 − t2

t
, while the midpoint of AC is the point

Ĉ =
1 −

√
1 − |C|2
|C|2 C =

1 −
√

1 − |C|2
|C|

(
cos(α) + sin(α) i

)
.

In particular, the perpendicular bisector of the hyperbolic segment AB (that is, the
geodesic perpendicular to AB through t̂ ) has the following equation:

t(x2 + y2)− 2x + t = 0 ;

while the equation of the perpendicular bisector of the hyperbolic segment AC is

|C|(x2 + y2)− 2 cos(α) x − 2 sin(α) y + |C| = 0 .

In these equations, x and y denote the real and imaginary parts of an arbitrary z ∈ C,
respectively. Direct computation shows that the two Euclidean circles corresponding to the
perpendicular bisectors of the hyperbolic segments AB and BC intersect in the complex
plane C if and only if



Foundations 2024, 4 472

t2 + |C|2 − 2t|C| cos(α)
sin2(α)

= Φ ≤ 1.

When Φ ≤ 1, the real coordinates of intersection points are the following:

x± =
t
(
1 ±

√
1 − Φ

)
Φ

, y± =
( |C| − t cos(α)

t sin(α)
)[ t

(
1 ±

√
1 − Φ

)
Φ

]
,

and so

x2
± + y2

± =

[
1 ±

√
1 − Φ

]2

Φ
.

From Φ ≤ 1, we obtain

x2
+ + y2

+ =

[
1 +

√
1 − Φ

]2

Φ
≥ 1, x2

− + y2
− =

[
1 −

√
1 − Φ

]2

Φ
≤ 1 ;

in both cases equality holds if and only if Φ = 1.
Then, the perpendicular bisectors of the hyperbolic segments AB and AC are incident

lines of (∆, h) if and only if Φ < 1, they are asymptotically parallel lines of (∆, h) if and
only if Φ = 1, and they are ultra-parallel lines of (∆, h) if and only if Φ > 1. So, taking
Theorem 1 (b) into account, we obtain statements (i), (ii) and (iii).

If Φ < 1, as seen, the circumcenter is

Z0 = x− + y− i =
t
(
1 −

√
1 − Φ

)
Φ

+
( |C| − t cos(α)

t sin(α)
)[ t

(
1 −

√
1 − Φ

)
Φ

]
i,

whose modulus is

|Z0| =
1 −

√
1 − Φ√
Φ

.

Hence, the circumradius of T is

r0 = d(Z0, A) = ln
(

1 + |Z0|
1 − |Z0|

)
= ln

(√
1 +

√
Φ

1 −
√

Φ

)
=

1
2

ln
(

1 +
√

Φ

1 −
√

Φ

)
.

This proves (iv).

The previous theorem can be stated in terms of angles instead of sides as follows.

Theorem 3. Let T be a geodesic triangle of the hyperbolic plane H2, and let α, β, γ be the measures
of its three interior angles. Let Ω(α, β, γ) be the function defined in Preliminaries 2.1(c). Then,

(i) the geodesic triangle T has a finite hyperbolic circumcenter if and only if Ω(α, β, γ) > 0 ;
(ii) the three perpendicular bisectors of the sides of T are asymptotically parallel with a point at

infinity common to the three lines if and only if Ω(α, β, γ) = 0 ;
(iii) the three perpendicular bisectors of the sides of T are ultra-parallel with a perpendicular line

common to all three if and only if Ω(α, β, γ) < 0 .

Proof. We recall that

Ω(α, β, γ) = cos2(α) + cos2(β) + cos2(γ) +
2 sin(β) sin(γ) cos(α) + 2 sin(α) sin(γ) cos(β) + 2 sin(α) sin(β) cos(γ)− 3.

Denoted by a, b, c the hyperbolic lengths of the three sides of T, from the hyperbolic
law of cosines for angles ([7], (Formula (22) p. 85)), we obtain
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cosh(a) =
cos(β) cos(γ) + cos(α)

sin(β) sin(γ)
,

cosh(b) =
cos(α) cos(γ) + cos(β)

sin(α) sin(γ)
,

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β)
.

Now, we denote

Ξ = 2 cos(α) cos(β) cos(γ) + cos2(α) + cos2(β) + cos2(γ)− 1,

and
ℵ = 1 − cosh2(a)− cosh2(b)− cosh2(c) + 2 cosh(a) cosh(b) cosh(c) .

From

1 < cosh2(c) =

(
cos(α) cos(β) + cos(γ)

)2(
1 − cos2(α)

)(
1 − cos2(β)

) ,

we easily obtain Ξ > 0, while from sin2(α) =
ℵ

(cosh2(b)− 1)(cosh2(c)− 1)
(see the proof

of Theorem 2), we also obtain ℵ > 0.
By means of tedious but elementary calculations, the following equality is proven:

sin2(α) sin2(β) sin2(γ) · ℵ ·
(
1 − Φ(a, b, c)

)
= Ξ · Ω(α, β, γ) .

Since Ξ > 0, ℵ > 0, from Theorem 2, we obtain statements (i), (ii), and (iii).

We remark that, following the suggestion of one referee of this paper, Theorem 2 can
be stated in the following form. Before restating the theorem, we take the opportunity to
thank the anonymous referee. We did not know this interesting result; however, we have
been able to produce a proof that we describe below, improving the structure of our paper.

Theorem 4. Let T be a geodesic triangle of the hyperbolic plane H2, and let a, b, c be the hyperbolic
lengths of its three sides.

Let a ≥ b ≥ c and F(a, b, c) := sinh
( b

2
)
+ sinh

( c
2
)
− sinh

( a
2
)
. Then,

(i) the three perpendicular bisectors of the sides of T meet at a common point of H2 (that is, T has
a finite hyperbolic circumcenter) if and only if F(a, b, c) > 0 ;

(ii) the three perpendicular bisectors of the sides of T are asymptotically parallel with a point at
infinity common to the three lines if and only if F(a, b, c) = 0 ;

(iii) the three perpendicular bisectors of the sides of T are ultra-parallel with a perpendicular line
common to all three if and only if F(a, b, c) < 0 .

Proof. As before, without loss of generality, we assume that the hyperbolic plane H2 is the
Poincaré disk (∆, h) and that the vertices A, B, C of T are

A = 0, B = t, C = ξ + η i,

where t, ξ, η ∈ R, with t ∈ (0, 1), η > 0, 0 < ξ2 + η2 < 1.
We denote the measures of the sides and interior angles of T as in Preliminaries 2.1(c).

Condition b ≥ c is equivalent to |C| ≥ t, while, by the law of cosines for hyperbolic
triangles, condition a ≥ b is equivalent to

cosh(b) cosh(c)− sinh(b) sinh(c) cos(α) ≥ cosh(b).

In particular we obtain
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cos(α) ≤ cosh(b)(cosh(c)− 1)
sinh(b) sinh(c)

.

From b = ln
(

1 + |C|
1 − |C|

)
and c = ln

(
1 + t
1 − t

)
, we obtain

cosh(b) =
1 + |C|2
1 − |C|2 , sinh(b) =

2|C|
1 − |C|2 , and cosh(c) =

1 + t2

1 − t2 , sinh(c) =
2t

1 − t2 .

From these equalities, we easily obtain the following expressions:

cosh
(b

2
)
=

1√
1− |C|2

, sinh
(b

2
)
=

|C|√
1− |C|2

, cosh
( c

2
)
=

1√
1− t2

,

sinh
( c

2
)
=

t√
1− t2

.

Moreover, the conditions a ≥ b ≥ c are equivalent to

(†) cos(α) ≤ t
2|C| +

t|C|
2

, t ≤ |C|.

By the law of cosines for hyperbolic triangles, we obtain

sinh
( a

2
)
=

√
cosh(b) cosh(c)− sinh(b) sinh(c) cos(α)− 1

2
=

√
t2 + |C|2 − 2t|C| cos(α)√

1 − |C|2
√

1 − t2
.

So, if F(a, b, c) is the function defined in the statement, we obtain

F(a, b, c) =
|C|

√
1 − t2 + t

√
1 − |C|2 −

√
t2 + |C|2 − 2t|C| cos(α)√

1 − |C|2
√

1 − t2
,

hence

F(a, b, c) ·
(
|C|

√
1 − t2 + t

√
1 − |C|2 +

√
t2 + |C|2 − 2t|C| cos(α)

)√
1 − |C|2

√
1 − t2

= 2t|C| ·
(

cos(α)− t|C|+
√

1 − t2
√

1 − |C|2
)
.

As a consequence, the functions F(a, b, c) and
(

cos(α)− t|C|+
√

1 − t2
√

1 − |C|2
)

have the same sign.
Remembering the proof of Theorem 2, we have

sin2(α) ·
(
1 − Φ(a, b, c)

)
=

sin2(α)− t2 − |C|2 + 2t|C| cos(α) = −
(

cos2(α)− 2t|C| cos(α) + t2 + |C|2 − 1
)
=(

t|C|+
√

1 − t2
√

1 − |C|2 − cos(α)
)
·
(

cos(α)− t|C|+
√

1 − t2
√

1 − |C|2
)
.

From (†), we easily obtain
(
t|C|+

√
1 − t2

√
1 − |C|2 − cos(α)

)
≩ 0. So the functions

(1 − Φ(a, b, c)) and
(

cos(α)− t|C|+
√

1 − t2
√

1 − |C|2
)

also have the same sign.
As an immediate consequence, we obtain the result that the functions F(a, b, c) and

(1 − Φ(a, b, c)) have the same sign; so, from Theorem 2, we obtain the statement.

Remark 1. By using previous notations, let us define the function

G(α, b, c) := cos(α)−
sinh

( b
2
)

sinh
( c

2
)
− 1

cosh
( b

2
)

cosh
( c

2
) .

Direct computation gives G(α, b, c) = cos(α)− t|C|+
√

1 − t2
√

1 − |C|2.
In the proof of Theorem 4 we saw that, if a ≥ b ≥ c, the functions F(a, b, c), (1−Φ(a, b, c))

and G(α, b, c) have the same sign.
This implies that Theorem 4 can be formulated by replacing the function F(a, b, c) with the

function G(α, b, c) to express the condition on the existence of the hyperbolic circumcenter in terms
of the measure of the largest interior angle of the triangle T and the lengths of the sides adjacent to it.
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2.3. On the Incenter of a Hyperbolic Triangle

Theorem 5. Let T be a geodesic triangle of the hyperbolic plane H2, and let α, β, γ be the measures
of its three interior angles. Let Υ(α, β, γ) be the function defined in Preliminaries 2.1 (c). Then
the hyperbolic radius s0 of the inscribed circle of T (i.e., the hyperbolic inradius of T) is given by

s0 =
1
2

ln
(

1 +
√

Υ(α, β, γ)

1 −
√

Υ(α, β, γ)

)
.

Proof. Let A, B, C be the three vertices of the triangle T and denote the measures of the
sides and interior angles of T as in Preliminaries 2.1 (c); also, remember that the function
Υ := Υ(α, β, γ) is given by

Υ =
cos2(α) + cos2(β) + cos2(γ) + 2 cos(α) cos(β) cos(γ)− 1

2
(
1 + cos(α)

)(
1 + cos(β)

)(
1 + cos(γ)

) .

The existence of the hyperbolic incenter I as the point of intersection of the three bisectors
of the interior angles of T is guaranteed by the Theorem 1 (a).

Let H be the intersection between side AB of T and the hyperbolic line perpendicular to
side AB passing through the incenter I. Therefore, the inradius s0 is equal to the hyperbolic
distance between I and H, and so, from a classical formula of hyperbolic trigonometry

applied to both right triangles
△

AHI and
△

BHI (see [7], (Formula (16) p. 83)), we obtain

tanh(s0) = tan
(α

2
)

sinh(x) = tan
( β

2
)

sinh(c − x) =

tan
( β

2
)(

sinh(c) cosh(x)− cosh(c) sinh(x)
)

where x and c − x = d(A, B)− x are the hyperbolic lengths of sides AH and HB, respec-

tively. From the equality tan
(α

2
)

sinh(x) = tan
( β

2
)(

sinh(c) cosh(x)− cosh(c) sinh(x)
)
,

we easily obtain

sinh(x) =
tan

( β

2
)√

cosh2(c)− 1√
tan2

(α

2
)
+ tan2

( β

2
)
+ 2 cosh(c) tan

(α

2
)

tan
( β

2
) ,

and so, from this,

tanh(s0) =
tan

(α

2
)

tan
( β

2
)√

cosh2(c)− 1√
tan2

(α

2
)
+ tan2

( β

2
)
+ 2 cosh(c) tan

(α

2
)

tan
( β

2
) .

It is well known that

tan
(α

2
)
=

√
1 − cos(α)
1 + cos(α)

, tan
( β

2
)
=

√
1 − cos(β)

1 + cos(β)
(being 0 < α, β < π).

Therefore, substituting these expressions into the formula obtained for tanh(s0) and
using the hyperbolic law of cosines for angles, through elementary calculations, we obtain

tanh(s0) =

√
cos2(α) + cos2(β) + cos2(γ) + 2 cos(α) cos(β) cos(γ)− 1

2
(
1 + cos(α)

)(
1 + cos(β)

)(
1 + cos(γ)

) =
√

Υ.

From this, the formula s0 =
1
2

ln
(

1 +
√

Υ

1 −
√

Υ

)
is easily deduced.
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2.4. On the Orthocenter of a Hyperbolic Triangle

Theorem 6. Let T be a geodesic triangle of the hyperbolic plane H2, and let a, b, c be the hyperbolic
lengths of its three sides. Let Θ(a, b, c) be the function defined in Preliminaries 2.1 (c). Then,

(i) the geodesic triangle T has a finite hyperbolic orthocenter if and only if
Θ(a, b, c) > 0 ;

(ii) the three altitudes of T are asymptotically parallel with a point at infinity common to the three
lines if and only if Θ(a, b, c) = 0 ;

(iii) the three altitudes of T are ultra-parallel with a perpendicular line common to all three if and
only if Θ(a, b, c) < 0 .

Proof. As in the proof of Theorem 2, we can assume that the hyperbolic plane H2 is the
Poincaré disk (∆, h) and that the vertices A, B, C of the hyperbolic triangle T are A = 0,
B = t, C = ξ + η i, where t, ξ, η ∈ R, with t ∈ (0, 1), η > 0, 0 < ξ2 + η2 < 1; furthermore,
we denote the measures of the sides and interior angles of T as in Preliminaries 2.1 (c). We
recall that

Θ(a, b, c) = 3 cosh2(a) cosh2(b) cosh2(c) + cosh2(a) cosh2(b) + cosh2(a) cosh2(c) +
cosh2(b) cosh2(c)− 2 cosh(a) cosh(b) cosh(c)

(
cosh2(a) + cosh2(b) + cosh2(c)

)
.

First, we note that, in the case α =
π

2
(so that cosh(b) cosh(c) = cosh(a)), we obtain

Θ(a, b, c) = cosh2(b) cosh2(c)
(

cosh2(b)− 1)(cosh2(c)− 1) > 0, and clearly, by Theorem 1
(c), the three altitudes of T intersect in A.

Therefore, when α =
π

2
, the statement is proved.

Assume now that α ̸= π

2
. Denoting by x and y, respectively, the real and imaginary parts

of any z ∈ C, the equation of the Euclidean circle that extends the hyperbolic side BC is

t|C| sin(α)(x2 + y2)− (1 + t2)|C| sin(α)x +(
(1 + t2)|C| cos(α)− t(1 + |C|2)

)
y + t|C| sin(α) = 0 ;

the Euclidean center of this circle is the point

P =
1 + t2

2t
+

( 1 + |C|2
2|C| sin(α)

− (1 + t2) cos(α)
2t sin(α)

)
i .

The altitude hA relative to side BC passes through A and P; therefore, the Euclidean
line ĥA which extends hA has the equation:(

(1 + t2)|C| cos(α)− t(1 + |C|2)
)
x + (1 + t2)|C| sin(α)y = 0 .

From b = ln
(

1 + |C|
1 − |C|

)
, we easily obtain 2b = ln

(1 + 2|C|
1+|C|2

1 − 2|C|
1+|C|2

)
, and so

2|C|
1 + |C|2 =

e2b − 1
e2b + 1

= tanh(b) and coth(b) =
1 + |C|2

2|C| .

Analogously, we obtain tanh(c) =
2t

1 + t2 . Therefore the equation of ĥA can be rewrit-

ten as follows:
(cos(α)− tanh(c) coth(b))x + sin(α)y = 0 .

The altitude hC relative to side AB is hC = ∆ ∩ ĥC , where ĥC is the Euclidean circle
perpendicular to S1, with the center on the real axis {y = 0} and passing through the
vertex C = |C| cos(α) + |C| sin(α)i . By elementary calculations, it is easy to prove that

the Euclidean center of ĥC is the point Q =
1 + |C|2

2|C| cos(α)
=

coth(b)
cos(α)

, while its radius is

s =
√( 1+|C|2

2|C| cos(α)

)2 − 1 =
√( coth(b)

cos(α)

)2 − 1 .
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Now, if we denote by δ(ĥA , Q) the Euclidean distance between the Euclidean line ĥA

and the point Q, we have

s2 − δ(ĥA , Q)2 =
(coth(b)

cos(α)
)2 − 1 −

(
cos(α)− tanh(c) coth(b)

)2(coth(b)
cos(α)

)2

(
cos(α)− tanh(c) coth(b)

)2
+ sin2(α)

=

tan2(α)− tanh2(b)− tanh2(c) + 2 tanh(b) tanh(c) cos(α)

tanh2(b)
[(

cos(α)− tanh(c) coth(b)
)2

+ sin2(α)
] =

Λ

tanh2(b)
[(

cos(α)− tanh(c) coth(b)
)2

+ sin2(α)
] ,

where we denote

Λ := tan2(α)− tanh2(b)− tanh2(c) + 2 tanh(b) tanh(c) cos(α) =

1
cos2(α)

− 3 +
1

cosh2(b)
+

1
cosh2(c)

+
2 cos(α)

√
(cosh2(b)− 1)(cosh2(c)− 1)

cosh(b) cosh(c)
.

Since cos(α) =
cosh(b) cosh(c)− cosh(a)√
(cosh2(b)− 1)(cosh2(c)− 1)

, substituting we obtain

Λ =
(cosh2(b)− 1)(cosh2(c)− 1)(

cosh(b) cosh(c)− cosh(a)
)2 − 3 +

1
cosh2(b)

+
1

cosh2(c)
+

2
(

cosh(b) cosh(c)− cosh(a)
)

cosh(b) cosh(c)
.

Elementary calculations allow us to obtain:

Θ(a, b, c) =
(

cosh(b) cosh(c)− cosh(a)
)2 cosh2(b) cosh2(c) · Λ

The hypothesis α ̸= π

2
implies cosh(b) cosh(c) ̸= cosh(a), so we deduce that the

three functions s2 − δ(ĥA , Q)2, Λ , Θ(a, b, c) have the same sign.
Remember that Euclidean circles ĥC and S1 are perpendicular; that Q and s are,

respectively, Euclidean center and Euclidean radius of ĥC ; and that ĥA passes through the
center 0 of S1. We conclude that the following conditions are equivalent:

(i)’ the altitudes hA and hC are incident in the hyperbolic plane ∆;
(ii)’ the Euclidean line ĥA intersects the Euclidean circle ĥC at two distinct points of the

complex plane C;
(iii)’ s2 − δ(ĥA , Q)2 > 0;
(iv)’ Θ(a, b, c) > 0.

Likewise, the following conditions are equivalent to each other:

(i)” the altitudes hA and hC are asymptotically parallel in the hyperbolic plane ∆ ;
(ii)” the Euclidean line ĥA is tangent to the Euclidean circle ĥC at a point of S1;
(iii)” s2 − δ(ĥA , Q)2 = 0;
(iv)” Θ(a, b, c) = 0;

just as the following conditions are equivalent to each other:

(i)”’ the altitudes hA and hC are ultra-parallel in the hyperbolic plane ∆ ;
(ii)”’ the Euclidean line ĥA does not intersect the Euclidean circle ĥC in C;
(iii)”’ s2 − δ(ĥA , Q)2 < 0;
(iv)”’ Θ(a, b, c) < 0.

Taking Theorem 1 (c) into account, we obtain statements (i), (ii) and (iii).
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Theorem 6 can be stated in terms of interior angles as follows:

Theorem 7. Let T be a geodesic triangle of the hyperbolic plane H2, and let α, β, γ be the measures
of its three interior angles. Let Ψ(α, β, γ) be the function defined in Preliminaries 2.1(c). Then,

(i) the geodesic triangle T has a finite hyperbolic orthocenter if and only if Ψ(α, β, γ) > 0 ;
(ii) the three altitudes of T are asymptotically parallel with a point at infinity common to the three

lines if and only if Ψ(α, β, γ) = 0 ;
(iii) the three altitudes of T are ultra-parallel with a perpendicular line common to all three if and

only if Ψ(α, β, γ) < 0 .

Proof. As usual, we denote by a, b, c the hyperbolic lengths of the three sides of T. As in
the proof of Theorem 3, we can use the hyperbolic law of cosines for angles to express the
function Θ(a, b, c) of Preliminaries 2.1(c) as a function of the interior angles α, β, γ of T. So
we obtain

sin4(α) sin4(β) sin4(γ) · Θ(a, b, c) =
3
(

cos(β) cos(γ) + cos(α)
)2( cos(α) cos(γ) + cos(β)

)2( cos(α) cos(β) + cos(γ)
)2

+(
cos(β) cos(γ) + cos(α)

)2( cos(α) cos(γ) + cos(β)
)2(1 − cos2(α)

)(
1 − cos2(β)

)
+(

cos(β) cos(γ) + cos(α)
)2( cos(α) cos(β) + cos(γ)

)2(1 − cos2(α)
)(

1 − cos2(γ)
)
+(

cos(α) cos(γ) + cos(β)
)2( cos(α) cos(β) + cos(γ)

)2(1 − cos2(β)
)(

1 − cos2(γ)
)
+

−2
(

cos(β) cos(γ) + cos(α)
)3( cos(α) cos(γ) + cos(β)

)(
cos(α) cos(β) + cos(γ)

)
·
(
1 − cos2(α)

)
+

−2
(

cos(β) cos(γ) + cos(α)
)(

cos(α) cos(γ) + cos(β)
)3( cos(α) cos(β) + cos(γ)

)
·
(
1 − cos2(β)

)
+

−2
(

cos(β) cos(γ) + cos(α)
)(

cos(α) cos(γ) + cos(β)
)(

cos(α) cos(β) + cos(γ)
)3 ·

(
1 − cos2(γ)

)
.

By means of elementary but very tedious calculations, it is possible to check that the
expression on the right side of this equality is equal to

Ξ 2 ·
(
3 cos2(α) cos2(β) cos2(γ) + 2 cos3(α) cos(β) cos(γ) +

2 cos(α) cos3(β) cos(γ) + 2 cos(α) cos(β) cos3(γ) + cos2(α) cos2(β) +
cos2(α) cos2(γ) + cos2(β) cos2(γ)

)
= Ξ 2 · Ψ(α, β, γ),

where Ξ = 2 cos(α) cos(β) cos(γ) + cos2(α) + cos2(β) + cos2(γ)− 1, so that

sin4(α) sin4(β) sin4(γ) · Θ(a, b, c) = Ξ 2 · Ψ(α, β, γ).

In the proof of Theorem 3, we saw that Ξ > 0 . Therefore we deduce that the
functions Θ(a, b, c) and Ψ(α, β, γ) have the same sign; hence, by Theorem 6 , we obtain the
statements (i), (ii) and (iii).

Corollary 1. If all interior angles of a geodesic triangle T of H2 are acute, then T has a finite
hyperbolic orthocenter.

Proof. If the three angles of T are acute, we have cos(α), cos(β), cos(γ) > 0 ; so clearly
we have Ψ(α, β, γ) > 0 and we conclude by means of Theorem 7 (i).

Remark 2. Corollary 1 is already known. In fact it can be deduced from a classic Fagnano theorem
on the orthic triangle, which is also valid in hyperbolic geometry (see, for instance, [8], (p. 129)).

2.5. On the Euler Line in Hyperbolic Geometry

In Euclidean geometry, for every given triangle T, there exists a line that contains the
circumcenter, the orthocenter, and the centroid of T. This line is called Euler line of T. It is
easy to verify that the Euler line does not exist for every geodesic triangle of H2 with finite
circumcenter, orthocenter, and centroid. In this sense, we describe the following:
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Example 1. Let us consider the triangle T of the Poincaré disk (∆, h) with vertices A = 0,
B = t, C = ηi, where 0 < t, η < 1 and t2 + η2 < 1. Since α = π

2 , the (finite) orthocenter of T
exists and is the vertex A = 0. On the other hand, since t2 + η2 < 1, the (finite) circumcenter of T

also exists and is the point W0 =
1 −

√
1 − t2 − η2

t2 + η2 (t + ηi). We deduce that, if the Euler line of

T exists, it is the geodesic passing trough A and W0; hence its equation is ηx − ty = 0. Now, we
compute the centroid.

Let t̂ =
1 −

√
1 − t2

t
be the midpoint of the side AB and let Ĉ =

1 −
√

1 − η2

η
i be the

midpoint of the side AC. The median of the side AB is the geodesic passing through C = ηi and t̂, so

its equation is as follows: x2 + y2 − 2
t x− (1+η2)

η y+ 1 = 0. The median of the side AC is the geodesic

passing through B = t and Ĉ, and its equation is as follows: x2 + y2 − (1+t2)
t x − 2

η y + 1 = 0.
From Theorem 1 (d), we obtain the result that the centroid G0 of T is obtained by intersecting the
two medians. In particular, it belongs to the geodesic of equation η(t2 − 1)x − t(η2 − 1)y = 0. Let
G0 = x0 + y0i; so, if the Euler line of T exists, we necessarily have

ηx0 − ty0 = 0 and η(t2 − 1)x0 − t(η2 − 1)y0 = 0;

this implies the condition η = t; that is, the triangle T must be isosceles.
We can easily verify that, in this case, the Euler line of T exists, and it is the perpendicular

bisector (also altitude and median) of the side BC of T.

Remark 3. We remark that in [9], it is proved that the orthocenter, the circumcenter, and the
centroid of a geodesic triangle T of H2 are collinear (i.e., the Euler line of T exists) if and only if the
triangle T is isosceles.

3. On Geodesic Triangles of the Hyperbolic 3-Dimensional Space

Let us consider the hyperbolic 3-dimensional space, H3, given by the upper half space

with the Poincaré metric, h: H3 =

(
x

y
z

 ∈ R3|z > 0

, h = 1
z2 I

)
. It is well known

that the geodesics of H3 are the half lines and half circles perpendicular to the Euclidean
plane {z = 0}. Therefore, all Euclidean half planes perpendicular to the Euclidean plane
{z = 0} and all Euclidean half spheres with their center on {z = 0} are totally geodesic
hypersurfaces of H3. Moreover, each of these hypersurfaces, equipped with the restriction
of the metric h, is a hyperbolic plane.

Proposition 1. Every geodesic triangle T of H3 is contained in a totally geodesic hypersurface of
H3, and so T is contained in a hyperbolic plane H2 ⊂ H3.

Proof. Let T be a geodesic triangle of H3 with vertices A, B, C. It is sufficient to prove
that there exists at least one totally geodesic hypersurface of H3 passing through the three
distinct points A, B, C ∈ H3. Let ∧ be the standard vector product of R3. If
(B − A) ∧ (C − A) = 0, then the three points are aligned in the Euclidean sense and,
obviously, there exists a half plane perpendicular to the plane {z = 0} passing trough A, B,
and C. If the vector (B − A) ∧ (C − A) is different from 0 and parallel to {z = 0}, then
the half plane passing through A and perpendicular to (B − A) ∧ (C − A) is the required
hypersurface. Finally, let us now consider the case where the vector (B − A)∧ (C − A) ̸= 0
is not parallel to the plane {z = 0}. Let πC be the Euclidean plane passing through
A+B

2 and perpendicular to (B − A), and let πB be the Euclidean plane passing through
A+C

2 and perpendicular to (C − A). Then πC ∩ πB = r is a Euclidean line parallel to
(B − A) ∧ (C − A). Let r ∩ {z = 0} = {P}; we have that P is equidistant (in the Euclidean
sense) from A, B and C. Then, the half sphere with its center in P and radius the Euclidean
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distance between A and P contains A, B and C; so this half sphere is a totally geodesic
hypersurface of H3 containing T. Then, the proof is complete.

4. On Geodesic Triangles of the Sphere
4.1. Preliminaries

(a) Let (M, g) be a complete and simply connected n-dimensional Riemannian man-
ifold, n ≥ 2, with constant sectional curvature equal to +1; then, as is known, (M, g) is
isometric to the standard sphere Sn of Rn+1.

Consider first the case n = 2. Denote by
〈
,
〉

the Euclidean scalar product and
by ∧ the vector (or cross) product of the 3-dimensional Euclidean space R3. Let S2 =
{X ∈ R3 : ||X||2 =

〈
X, X

〉
= 1} be the unitary sphere and let g be the Riemannian

metric on S2 induced by
〈
,
〉
. As is well known, the geodesics of (S2, g) are the great

circles of S2, while the spherical distance, d = dS2 , induced by the metric g , is given by
d(P, Q) = arccos

〈
P, Q

〉
, for every P, Q ∈ S2.

If P, Q are two distinct non-antipodal points of S2, there exists a unique geodesic arc
joining P and Q, whose length is equal to the spherical distance d(P, Q). We will then say
that this geodesic arc is the spherical segment with endpoints P and Q, and we will denote it
simply by PQ.

Note also that, given three points A, B, C of S2, there are no geodesics of (S2, g) passing
through them if and only if A, B, C are linearly independent as vectors of R3, i.e., if and
only if

〈
A ∧ B, C

〉
̸= 0.

Let us now consider three points A, B, C of S2 through which no geodesic of (S2, g)
passes. Therefore, in the set {A, B, C}, there are no pairs of antipodal points, and thus,
the three spherical segments AB, AC, BC are uniquely defined. Then, the union T of
these three spherical segments will be called the spherical triangle of S2 with vertices A, B, C
and sides AB, AC, BC. As in the hyperbolic case, in the following, we will denote by
a = d(B, C), b = d(A, C), c = d(A, B), the spherical lengths of the sides BC, AC, AB of T,
respectively, and by α, β, γ the spherical measures of the interior angles of T at the vertices
A, B, C, respectively. Clearly, we have 0 < a, b, c, α, β, γ < π. Of course, the number
a + b + c is the perimeter of the triangle T, while, by Girard’s well-known theorem, the area
of T is the number α + β + γ − π. We also remember the well-known spherical law
of cosines:

cos(γ) =
cos(c)− cos(a) cos(b)

sin(a) sin(b)

(and similar formulas for the other interior angles α, β).
Finally, note that we can assume that the three vertices A, B, C of the spherical triangle

T are ordered in such a way that
〈

A ∧ B, C
〉
> 0 . From now on, we will always assume

that this last condition is satisfied.
(b) For the convenience of the reader, we recall some elementary algebraic properties

regarding the Euclidean scalar product and the vector product of R3.
(b.1) The map (P, Q, R) 7→

〈
P ∧ Q, R

〉
defines an alternating 3-linear form on R3.

Moreover, if P, Q, R, S ∈ R3, the following identities hold:
(b.2)

〈
P ∧ Q, R ∧ S

〉
=

〈
P, R

〉〈
Q, S

〉
−

〈
P, S

〉〈
Q, R

〉
(Binet–Cauchy identity);

(b.3) P ∧ (Q ∧ R) =
〈

P, R
〉

Q −
〈

P, Q
〉

R (vector triple product formula).
Let T be a spherical triangle of S2 with vertices A, B, C (which satisfy the condition〈

A ∧ B, C
〉
> 0). We define the following points of S2:

A′ =
B ∧ C

||B ∧ C|| , B′ =
C ∧ A

||C ∧ A|| , C′ =
A ∧ B

||A ∧ B|| .

Using (b.1) and (b.3), it is easy to check that we have

(b.4)
〈

A′ ∧ B′, C′ 〉 =

〈
A ∧ B, C

〉2

||B ∧ C|| · ||C ∧ A|| · ||A ∧ B|| > 0 .

Therefore the three points A′, B′, C′ are the vertices of a spherical triangle T′ of S2.
Keeping (b.1) in mind, it is easy to realize that the triangle T′ is uniquely determined; i.e., it
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is independent of the order of the vertices A, B, C of T as long as
〈

A ∧ B, C
〉
> 0. Then T′

is called polar triangle of T.
Furthermore, from (b.4), (b.1) and (b.3), vice versa we easily obtain that the polar

triangle of T′ is the triangle T (see, for instance, [3], (Proposizione 6.3.4 p. 80)).
In spherical geometry, the following theorem holds.

Theorem 8 ([3], (Teorema, p. 92)). Let T be a spherical triangle of S2 with vertices A, B, C. As in
Preliminaries 4.1 (b), denote by A′, B′, C′ the vertices of the polar triangle T′ of T. Then,

(a) the three bisectors of the interior angles of T pass through a common point Q ∈ S2, called
spherical incenter of T;

(b) the three perpendicular bisectors of the sides of T pass through a common point Z ∈ S2, called
spherical circumcenter of T;

(c) if A ̸= A′, B ̸= B′, C ̸= C′, the three altitudes of T pass through a common point H ∈ S2,
called spherical orthocenter of T;

(d) the three medians of T pass through a common point G ∈ S2, called spherical centroid of T.

Remark 4. We remark that two geodesics of S2 intersect in two antipodal points; then, a priori,
incenter, circumcenter, orthocenter (when A ̸= A′, B ̸= B′, C ̸= C′), and centroid, defined in
the previous theorem, are a couple of antipodal points. However, we will select and consider the
following points, respectively ([3]):

Q =
sin(a)A + sin(b)B + sin(c)C

|| sin(a)A + sin(b)B + sin(c)C|| ,

Z =
B ∧ C + C ∧ A + A ∧ B

||B ∧ C + C ∧ A + A ∧ B|| ,

H =
cos(b) cos(c) B ∧ C + cos(a) cos(c)C ∧ A + cos(a) cos(b) A ∧ B

|| cos(b) cos(c) B ∧ C + cos(a) cos(c)C ∧ A + cos(a) cos(b) A ∧ B|| ,

G =
A + B + C

||A + B + C|| .

(c) We also need to define the following symmetric functions of a, b, c, which will
appear in the next theorems:

Λ̃(a, b, c) := 1 − cos2(a)− cos2(b)− cos2(c) + 2 cos(a) cos(b) cos(c);
Γ̃(a, b, c) := sin(a)(sin(a) + 2 sin(b) cos(c)) + sin(b)(sin(b) + 2 sin(c) cos(a))+
+ sin(c)(sin(c) + 2 sin(a) cos(b));
Ξ̃(a, b, c) := 4 − (cos(a) + cos(b) + cos(c)− 1)2.

4.2. On the Circumscribed Circle

The following will be useful.

Lemma 1. Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c. Then,〈
A ∧ B, C

〉
=

√
Λ̃(a, b, c).

Proof. By (b.3), we have

A ∧ (B ∧ C) = cos(b) B − cos(c)C,

hence
||A ∧ (B ∧ C)|| =

√
cos2(b) + cos2(c)− 2 cos(a) cos(b) cos(c) .

On the other hand,
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||A ∧ (B ∧ C)|| = sin(a) sin(Â(B ∧ C)) ;

then

sin(Â(B ∧ C)) =
√

cos2(b) + cos2(c)− 2 cos(a) cos(b) cos(c)
sin(a)

,

and therefore

cos(Â(B ∧ C)) = ±
√

1 − cos2(a)− cos2(b)− cos2(c) + 2 cos(a) cos(b) cos(c)
sin(a)

.

Consequently, taking into account (b.1) and the assumption
〈

A∧ B, C
〉
> 0, we obtain〈

A ∧ B, C
〉
=

√
Λ̃(a, b, c).

Proposition 2. Let T be a spherical triangle of S2 with a, b, c sides; then, the radius, R, of the

circumscribed circle to T is defined by cos(R) =

√
Λ̃(a, b, c)√
Ξ̃(a, b, c)

.

Proof. Let A, B, C be the vertices of T. We have cos(R) = d(Z, A) = d(Z, B) = d(Z, C),
where Z is the spherical circumcenter of T. From (b.1) and from the expression of Z we

obtain cos(d(Z, A)) =
〈

Z, A
〉
=

〈
A ∧ B, C

〉
||B ∧ C + C ∧ A + A ∧ B|| . Keeping (b.2) in mind, a direct

computation gives ||B ∧ C + C ∧ A + A ∧ B||2 =
4 − (cos(a) + cos(b) + cos(c)− 1)2 = Ξ̃(a, b, c). Hence, by using Lemma 1, we obtain the
statement.

4.3. On the Inscribed Circle

Proposition 3. Let T be a spherical triangle of S2 with a, b, c sides; then, the radius, r, of the

inscribed circle of T is defined by sin(r) =

√
Λ̃(a, b, c)√
Γ̃(a, b, c)

.

Proof. Let A, B, C be the vertices of T. We have r = d(Q, sideAB) = d(Q, sideAC) =
d(Q, sideBC), where Q is the spherical incenter of T. From the expression of Q we obtain

(see [3]): d(Q, sideAB) = arcsin

〈
A ∧ B, C

〉
|| sin(a) A + sin(b) B + sin(c)C|| . Direct computation

gives || sin(a)A+ sin(b)B+ sin(c)C||2 = sin2(a) + sin2(b) + sin2(c)+ 2 sin(a) sin(b) cos(c) +
2 sin(a) sin(c) cos(b) + 2 sin(b) sin(c) cos(a). Then, by using Lemma 1, we obtain the state-
ment.

4.4. On Geometrical Properties of the Polar Triangle

The polar triangle T′ of a spherical triangle T of S2 is a very important tool in spherical
geometry. We recall the main properties of polar triangles, and we refer to [3] for details.
Let T be a spherical triangle of S2 with vertices A, B, C, whose lengths of the sides and
measures of the interior angles are denoted, as in Preliminaries 4.1 (a), by a, b, c and α, β, γ,
respectively. Denote with the same letters with apex ′ the corresponding vertices, lengths
of the sides, and measures of interior angles of the polar triangle T′ of T. With these
agreements, the following theorem holds:

Theorem 9 ([3], (Teorema 6.3.5, pp. 80–81)). The following equalities hold:
a′ = π − α, b′ = π − β, c′ = π − γ, α′ = π − a, β′ = π − b, γ′ = π − c.

Furthermore, the following laws of cosines for angles are true::
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cos(c) =
cos(γ) + cos(α) cos(β)

sin(α) sin(β)
,

cos(b) =
cos(β) + cos(α) cos(γ)

sin(α) sin(γ)
,

cos(a) =
cos(α) + cos(β) cos(γ)

sin(β) sin(γ)
.

Proposition 4. Let T be a spherical triangle of S2, and let T′ be its polar triangle. We have
perimeter ( T ) + area ( T′ ) = perimeter ( T′ ) + area ( T ) = 2π.

Proof. From Theorem 9, we have perimeter ( T ) + area ( T′ ) = a + b + c + α′ + β′ + γ′ −
π = a + b + c + π − a + π − b + π − c − π = 2π. Analogously, we obtain perimeter ( T′ ) +
area ( T ) = 2π.

Proposition 5 ([3], (Proposizione 7.3.1, p. 96)). Let T be a spherical triangle of S2, and let T′ be
its polar triangle. Let Q and Z be, respectively, the incenter and the circumcenter of T, and denote
by Q′ and Z′, respectively, the incenter and the circumcenter of T’; then, we have

(a) Q′ = Z;
(b) Z′ = Q.

By using this previous result, we can prove the following.

Proposition 6. Let T be a spherical triangle of S2, and let T′ be its polar triangle. Let r and R be,
respectively, the radius of the inscribed circle (inradius) and the radius of the circumscribed circle
(circumradius) of T, and denote by r′ and R′, respectively, the inradius and the circumradius of T’.
Then, r + R′ = r′ + R =

π

2
.

Proof. We have R′ = d(Z′, A′); then,

cos(R′) =〈
Z′, A′〉 = 〈

Q, A′〉 = 〈 sin(a)A + sin(b)B + sin(c)C
|| sin(a)A + sin(b)B + sin(c)C|| ,

B ∧ C
||B ∧ C||

〉
=

sin(a)
〈

A ∧ B, C
〉

sin(a) · || sin(a)A + sin(b)B + sin(c)C|| = sin(d(Q, sideAB)) = sin(r).

As the polar triangle of T′ is T, we immediately obtain cos(R) = sin(r′).
Hence, from the identity arcsin(x) + arccos(x) =

π

2
, x ∈ R, we have

π

2
= arcsin

(
sin(r)

)
+ arccos

(
sin(r)

)
= r + arccos

(
cos(R′)

)
= r + R′,

π

2
= arcsin

(
sin(r′)

)
+ arccos

(
sin(r′)

)
= r′ + arccos

(
cos(R)

)
= r′ + R. Then the proof

is complete.

4.5. On the Euler Line in Spherical Geometry

As in the hyperbolic setting, we can prove the following.

Theorem 10. The circumcenter, the orthocenter and the centroid of a spherical triangle T of S2

belong to a geodesic of S2 if and only if the triangle T is isosceles. This geodesic will be called the
Euler geodesic of T.

Proof. As noted in Preliminaries 4.1 (a), the points Z, H, G ∈ S2 belong to the same geodesic
of S2 if and only if

〈
G, Z ∧ H

〉
= 0 or, equivalently, if and only if〈

A + B + C, (B ∧ C + C ∧ A + A ∧ B) ∧ (cos(b) cos(c)B ∧ C + cos(a) cos(c)C ∧ A+
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cos(a) cos(b)A ∧ B)
〉
= 0. Direct computation gives the result that the above condition is

satisfied if and only if
〈

A + B + C, cos(a)(cos(b)− cos(c))A + cos(b)(cos(c)− cos(a))B+
cos(c)(cos(a) − cos(c))C

〉
= 0 or cos2(a)(cos(c) − cos(b)) + cos2(b)(cos(a) − cos(c)) +

cos2(c)(cos(b) − cos(a)) = (cos(c) − cos(b))(cos(a) − cos(b))(cos(a) − cos(c)) = 0. As
0 < a, b, c < π, we obtain the statement.

Proposition 7. If T is isosceles, its incenter belongs to its Euler geodesic.

Proof. If we suppose a = b, then, by direct computation, we obtain
〈

G, Z ∧ Q
〉
= 0; from

this, the statement follows.

Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c as before. Let
T′ be the polar triangle of T with vertices A′, B′, C′ and sides a′, b′, c′. We can prove the
following.

Proposition 8. T is isosceles if and only if T′ is isosceles. In particular, the Euler geodesic exists
on T if and only if it exists on T′.

Proof. We have
cos(a) =

〈
B, C

〉
, cos(b) =

〈
A, C

〉
, cos(c) =

〈
A, B

〉
,

cos(a′) =
〈

B′, C′〉, cos(b′) =
〈

A′, C′〉 cos(c′) =
〈

A′, B′〉.

Direct computation gives cos(a′) =
cos(b) cos(c)− cos(a)

sin(b) sin(c)
,

cos(b′) =
cos(a) cos(c)− cos(b)

sin(a) sin(c)
, cos(c′) =

cos(b) cos(a)− cos(c)
sin(b) sin(a)

.

If we suppose a = b, then we immediately obtain the result that a′ = b′.
Since the polar triangle of T′ is T, the proof is complete.

It is well known that in Euclidean geometry, the distance between the orthocenter and
the centroid of a triangle is twice the distance between the circumcenter and the centroid.
This is no longer true in non-Euclidean geometry; however, in some special cases, we can
compute a relation between the distance of the points H, G, Z, Q.

Lemma 2. Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c as before. Let
us suppose A ̸= A′, B ̸= B′, C ̸= C′, a = b. Let H, G, Z, Q be, respectively, the orthocenter,
the centroid, the circumcenter, and the incenter of T; then,

cos(d(Z, G)) = 3
√

1−2 cos2(a)−cos2(c)+2 cos2(a) cos(c)
(3+4 cos(a)+2 cos(c))(3−cos2(c)−4 cos(a)+4 cos(a) cos(c)) ,

cos(d(H, G)) = (2 cos(a) cos(c) + cos2(a))·√
1−2 cos2(a)−cos2(c)+2 cos2(a) cos(c)

(3+4 cos(a)+2 cos(c)) cos2(a)(1−cos(c))(2 cos2(c)+6 cos2(a) cos(c)+cos2(a)) ,

cos(d(Q, G)) = 2 sin(a)(1+cos(c)+cos(a))+2 cos(a) sin(c)+sin(c)√
3+4 cos(a)+2 cos(c)

√
2 sin(a)(2 cos(a) sin(c)+sin(a)+sin(a) cos(c))+sin2(c)

,

cos(d(H, Q)) = cos(a)(2 sin(a) cos(c)+cos(a) sin(c))√
2 sin(a)(sin(a)+sin(a) cos(c)+2 cos(a) sin(c))+sin2(c)

·√
1−2 cos2(a)−cos2(c)+2 cos2(a) cos(c)

cos2(a)(2 cos2(c)−2 cos3(c)+3 cos2(a) cos2(c)−4 cos2(a) cos(c)+cos2(a)) ,

cos(d(H, Z)) = cos(a)√
cos2(a)(1−cos(c))(2 cos2(c)+6 cos(c) cos2(a)+cos2(a))

·
2 cos(c)(1−cos(a)−cos(c)+cos(a) cos(c))+cos(a)(2 cos(a) cos(c)−2 cos(a)+1−cos2(c))√

3−4 cos(a)+4 cos(a) cos(c)−2 cos(c)−cos2(c)
,
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cos(d(Z, Q)) = (sin(c) + 2 sin(a))
√

1−2 cos2(a)−cos2(c)+2 cos2(a) cos(c)
3−4 cos(a)−cos2(c)−2 cos(c)+4 cos(a) cos(c) ·

1√
2 sin(a)(sin(a)+sin(a) cos(c)+2 cos(a) sin(c))+sin2(c)

.

Proof. Direct computation gives

||A + B + C||2 = 3 + 4 cos(a) + 2 cos(c)
||A ∧ B + B ∧ C + C ∧ A||2 = 3 − cos2(c)− 2 cos(c)− 4 cos(a) + 4 cos(a) cos(c),
|| sin(a)(A + B) + sin(c)C||2 = 2 sin(a)(sin(a)(1 + cos(c)) + 2 cos(a) sin(c)),

|| cos(a) cos(c) B ∧ C + cos(a) cos(c)C ∧ A + cos2(a) A ∧ B||2 =
cos2(a)(2 cos2(c)− 2 cos3(c) + 3 cos(a) cos2(c)− 4 cos2(a) cos(c) + cos2(a)),〈

G, Z
〉
=

3·
〈

A∧B, C
〉

||A+B+C|| ||A∧B+B∧C+C∧A|| ,〈
H, G

〉
=

cos(a)(cos(a)+2 cos(c))
〈

A∧B, C
〉

||A+B+C|| || cos(a) cos(c) B∧C+cos(a) cos(c)C∧A+cos2(a) A∧B|| ,〈
Q, G

〉
= 2 sin(a)(1+cos(a)+cos(c))+2 sin(c) cos(a)+sin(c)

||A+B+C|| || sin(a)(A+B)+sin(c)C|| ,〈
H, Q

〉
=

cos(a)(2 cos(c) sin(a)+cos(a) sin(c))
〈

A∧B, C
〉

|| sin(a)(A+B)+sin(c)C|| || cos(a) cos(c)B∧C+cos(a) cos(c)C∧A+cos2(a)A∧B|| ,〈
H, Z

〉
=〈

cos(a) cos(c)(C∧A+B∧C)+cos2(a) A∧B, B∧C+C∧A+A∧B
〉

|| cos(a) cos(c)B∧C+cos(a) cos(c)C∧A+cos2(a)A∧B|| ||A∧B+B∧C+C∧A|| ,

〈
Z, Q

〉
=

(2 sin(a)+sin(c))
〈

A∧B, C
〉

||A∧B+B∧C+C∧A|| || sin(a)(A+B)+sin(c)C|| .

By substituting, we obtain the statement.

Corollary 2. Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c as before.
Let us suppose A ̸= A′, B ̸= B′, C ̸= C′, a = b and c = π

2 . Let H, G, Z, Q be, respectively, the
orthocenter, the centroid, the circumcenter, and the incenter of T. Then,

cos(d(Z, G)) = 3
√

1−2 cos2(a)
9−16 cos2(a) ,

cos(d(H, G)) =

√
1−2 cos2(a)
3+4 cos(a) ,

cos(d(Q, G)) = 1+2 sin(a)+2 cos(a)+2 sin(a) cos(a)√
3+4 cos(a)

√
2 sin(a)(2 cos(a)+sin(a))+1

,

cos(d(H, Q)) =

√
1−2 cos2(a)

2 sin(a)(sin(a)+2 cos(a))+1 ,

cos(d(H, Z)) = 1−2 cos(a)√
3−4 cos(a)

,

cos(d(Z, Q)) = (1 + 2 sin(a))
√

1−2 cos2(a)
(3−4 cos(a))(2 sin(a)(sin(a)+2 cos(a))+1) .

Proof. The formulas are obtained by substituting into previous formulas cos(c) = 0 and
sin(c) = 1.

Proposition 9. Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c as before.
Let us suppose A ̸= A′, B ̸= B′, C ̸= C′, a = b and c = π

2 . Let H, G, Z, Q be, respectively, the
orthocenter, the centroid, the circumcenter and the incenter of T. Then,



Foundations 2024, 4 486

(1 + 2 sin(a))(cos(d(G, Z)) cos(d(H, Q))) = 3 cos(d(H, G)) cos(d(Z, Q)),
(1 − 2 cos(a)) cos(d(G, Z)) = 3 cos(d(Z, H)) cos(d(G, H)).

Proof. The formulas are obtained directly by the previous corollary.

Corollary 3. Let T be a spherical triangle of S2 with vertices A, B, C and sides a, b, c as before.
Let us suppose A ̸= A′, B ̸= B′, C ̸= C′, a = b, and c = π

2 . Let H, G, Z, Q be, respectively, the
orthocenter, the centroid, the circumcenter, and the incenter of T. Then,(

3
2

cos(d(H, G)) cos(d(Z, Q))

cos(d(G, Z)) cos(d(H, Q))
− 1

2

)2

+

(
− 3

2
cos(d(H, G)) cos(d(Z, H))

cos(d(G, Z))
+

1
2

)2

= 1.

Proof. From Proposition 9, we obtain sin(a) =
3
2

cos(d(H, G)) cos(d(Z, Q))

cos(d(G, Z)) cos(d(H, Q))
− 1

2
and

cos(a) = −3
2

cos(d(H, G)) cos(d(Z, H))

cos(d(G, Z))
+

1
2

, and then we obtain the statement.

5. On Geodesic Triangles of the 3-Dimensional Sphere

Let us consider R4 with the standard scalar product,
〈
,
〉
.

Let S3 = {X ∈ R4 | ||X||2 =
〈

X, X
〉
= 1} be the unitary sphere, and let g be the

Riemannian metric on S3 induced by
〈
,
〉
. In coordinates, we have

S3 =




x
y
z
t

 ∈ R4 | x2 + y2 + z2 + t2 = 1

, g =
〈
,
〉
|S3 .

It is well known that the totally geodesic submanifolds of (S3, g) are the greatest
spheres ([10]).

Proposition 10. Every geodesic triangle in (S3, g) is contained in a totally geodesic hypersurface.

Proof. Let T be a geodesic triangle in (S3, g) with vertices A, B, C. As A, B, C are linearly
independent, then there exists a Euclidean hyperplane, π, passing through A, B, C and the

center of the 3-sphere. Specifically, if A =


x1
y1
z1
t1

, B =


x2
y2
z2
t2

, C =


x3
y3
z3
t3

, then π is given

by ax + by + cz + dt = 0, where a, b, c, d ∈ R are non-trivial solutions of the following linear

system:


ax1 + by1 + cz1 + dt1 = 0
ax2 + by2 + cz2 + dt2 = 0
ax3 + by3 + cz3 + dt3 = 0.

Then, S3 ∩ π is the totally geodesic surface containing the given geodesic triangle,
and the proof is complete.

We close this section with an example where geodesic triangles are not contained in a
totally geodesic surface.

Example 2. The 3-dimensional Heisenberg group, H, with a suitable left-invariant Riemannian
metric has no totally geodesic surfaces ([11]). Then, geodesic triangles in H are not contained in a
totally geodesic surface.

6. Discussion and Conclusions

We study notable points for a geodesic triangle in non-Euclidean geometry, and we
discuss the existence of the Euler line in this context. Moreover, we give simple proofs of
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the existence of a totally geodesic 2-dimensional submanifold containing a given geodesic
triangle in the hyperbolic or spherical 3-dimensional geometry.

We give algebraic conditions under which the three perpendicular bisectors of the
sides, or the three altitudes, have a finite common point, or are asymptotically parallel,
or are ultra-parallel geodesics. We describe explicit examples, in the hyperbolic setting,
where the analogue of the Euler line does not exist. We prove that every geodesic triangle
in the hyperbolic 3-dimensional space is contained in a totally geodesic hypersurface.
We compute the circumradius and the inradius of a spherical triangle, and we describe
relationships with the same geometrical quantities of the polar triangle. We prove that the
circumcenter, the orthocenter, and the centroid of a spherical triangle belong to a common
geodesic of the 2-dimensional sphere if and only if the triangle is isosceles. We prove that,
as in the hyperbolic case, every geodesic triangle in the 3-dimensional sphere is contained
in a totally geodesic hypersurface. The main purpose of this paper is to provide a simple
and organic treatment of some similarities and differences between geometrical properties
of geodesic triangles in Euclidean and non-Euclidean geometry. This paper extends the
results of [1,3].
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