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Letter from the Editors

The 35th CIB W78 conference took place in Chicago in 2018, with a theme focused on
fostering, encouraging, and promoting research and development in the application of
integrated information technology (IT) throughout the life cycle of the design, construction,
and occupancy of buildings and related facilities. Organized by Professors David Arditi and
Ivan Mutis (Illinois Institute of Technology, Chicago), Timo Hartmann (Technische
Universität Berlin), Robert Amor (University of Auckland), and with special and valuable
support from Bill East (Prairie Sky Consulting, USA), it brought together more than 200
scholars from 40 countries, who presented the innovative and unique concepts and methods
featured in this collection of papers.

With the publication of these contributions, we expect to scaffold scholars’ motivations to
inspire and discover the pressing research questions that need to be answered in the coming
decade. Framed under topic clusters as described in the introductory section, the Editors
organized the responses of the 2018 worldwide, open call for submissions. Taking the number
of submissions in each focus area as an indicator of research potential, the open call elicited
the lowest response in the area of Systems of Integrated Computer and Physical Components
(Cyber-Physical-Systems), which suggests underdevelopment of initiatives for scientific
questions in this area. We look forward to seeing greater response to this area in the future.

Ultimately, the success of this event and its contribution to the field of informatics and
computing in civil and construction engineering is the result of countless hours of
investigation, development, and work from scholars across the globe. The Editors and
organizing committee thank all who have supported the effort. We thank in particular the paper
reviewers.

The research and approaches that have been developed and presented at this conference can
immediately deliver extraordinary innovations to construction practices with benefits
attributable to individuals, organizations, and the industry, as a whole. Looking forward,
the legacy of this conference will be carried not only through its influence on the construction
practice but also on research for years to come.

Ivan Mutis
Timo Hartmann
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About CIB and CIB W78

CIB, officially named International Council for Research and Innovation in Building
Construction, was established in 1953 under the name Conseil International du Bâtiment. The
foundational objectives of CIB were to stimulate and facilitate the international cooperation
and exchange of information between governmental research institutes in the building and
construction sector, with an emphasis on those engaged in technical fields of research. Since
its inception, the association has developed into a worldwide network that connects more than
5000 experts. These specialists represent the research institutes, university, and industry- and
government-related entities that constitute the approximate 500-member organizations of CIB.
Though the size and strength of the organization today has grown compared to the past, the
focus of CIB and its members remains the same: the active collection of research and
innovation information for all aspects of building and construction.

CIB W78, or work group 78, is one of the largest and most active working commissions of
CIB. The scope of W78’s work is broad, but its primary mission is to proactively encourage
the integration of Information and Communication Technologies (ICT) into a facility’s life
cycle. It achieves this goal by disseminating research and knowledge among an international
community of scholars and practitioners in a variety of means, most notably the annual
international conference.
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Introduction

A Vision for Research and Innovation in Informatics and Computing in
Civil and Construction Engineering

While we move into the first quarter of the twenty-first century, the practice of civil,
construction, and building engineering embraces an incommensurable transformation in the
way we deliver products, process data, and interact with agents and technology. New
paradigms focused on sustainable practices, and the effective use of data and information and
computing technologies, and automation have framed the trends we see in research initiatives
and fundamental problems in civil and construction engineering disciplines. The continuous
expansion of interdisciplinary work among computing, informatics, and construction and civil
engineering merges perspectives to create integrated or hybrid methods of observing,
dissecting and solving central problems and of integrating relevant theories. The 2018
conference and this related publication is an effort to register diversity of thinking to
understand a phenomenon, problem, dataset, or methods that enable value creation in practice
and expand the frontiers of new, integrated knowledge.

We view the worldwide, open call for research initiatives as a survey of innovations and
novel approaches to phenomena and problems in computing and informatics in civil and
construction engineering. The compilation is organized under seven concept clusters to align
the contributions to the forefront of trends on investment for scientific research. The selection
in clusters was decided to better capture new advancements of knowledge within the focus
areas. The conceptualization and focus were based mainly on reflections from visionary
documents [1–3]. The focus areas cover the spectrum of aims of scientific questions and the
fundamental aspects that advance understanding or solve problems. Within each area,
evolving technology may transform activities and subsequently shape research practices in the
coming decade (Fig. 1).

Ivan Mutis
Timo Hartmann
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108Building Energy Modeling in Airport
Architecture Design

Maria Antonietta Esposito and Alessandra Donato

Abstract
Energy efficiency and Building Energy Modeling are two successful approaches to architecture, engineering, construction
and operation (AECO) programs. In recent year several education initiatives focusing on buildings energy management
have been carried out to provide professional profiles with specific skills in technology, architecture, engineering,
economics, management and environmental science. It enables them to plan, design, evaluate or research energy supply
and design strategies aimed to reduce energy consumption according to sustainability concepts. Building energy
performance optimization requires an integrated design approach to explore and evaluate different strategies for building
energy saving and to assist in the decision making process along the life cycle including design, operation, management
and decommission phases. Moreover, BEM (Building Energy Modeling) is increasingly being included into architecture
and engineering curricula, introducing new methodologies and tools for architecture design to provide interdisciplinary
profiles in the professional practice. The main objective of this contribution is to report the application of BIM
technologies and BEM tools into the Environmental Design Lab training course at the School of Architecture at
University of Florence, where the authors are involved into a cross-disciplinary teaching program which students
undertake in the fourth year of their curriculum within the 5 years degree program.

Keywords
Building Energy Modeling � Multidisciplinary education � Architecture training program
Airport Terminal Design

108.1 Introducing BIM Technologies into Architecture Curriculum

Education plays a fundamental role in the development of the future sustainable society, providing training for architecture
and engineering students of the next generation [1]. Over the past decade, universities worldwide have been looking for
better ways to integrate environmental issues into architectural education.

Energy efficiency training in architecture needs to overcome many challenges that first of all include the unavailability of
well-structured and integrated curricula [2].

More recently the transition from CAD (Computer Aided Design) to BIM (Building Information Modelling) made it
possible to apply building-performance analysis methods as part of the design collaborative process.

BIM technologies have been integrated into traditional architecture and engineering university training programs,
focusing on generic topics related to sustainable architecture design, building energy efficiency, renewable energies, and
computing technologies to sustainable practices [3].
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In several countries BIM courses have successfully implemented in AEC programs but they are mainly focused on 3D
modeling skills as well as analysis tools of particular BIM software packages considering the benefits of BIM in sharing and
simulating construction information. However, this approach appears to be a barrier to the successful integration of BIM
technology in education, and students will not be able to fully understand the BIM management workflow in a construction
project [4].

BIM is a helpful teaching tool for construction estimation and quantity take-off skills and highly contribute to design
comprehension skills and understanding of construction materials, methods, and processes [5].

BIM helps stakeholders involved at different stages of the design process to interact remotely and to use real-time data
solving any conflicts since the early stage of the project, improving working efficiency, estimates accuracy, decision-making
and project schedule [6, 7]. BIM is a very complex concept, which leads to a collaborative work environment, and creates an
easier approach to the universal access of the architectural information, due to the creation of a federate model characterized
by a common data environment [8].

In Italy, BIM design process is mandatory from 2019 for all public building projects above 100 million. To satisfy the
AECO industry improved skills requirements, more and more universities are providing BIM courses within AEC programs
at different levels of implementation. Typical BIM courses offered in the Italian universities consisting in BIM training
computer Lab for students. However, this education is oriented towards the use of particular BIM software packages, with
little consideration to BIM Management (BIMM), process and methods. Few University like the University of Parma, the
University of Brescia and the University of Naples have successfully implemented BIM classes in their curriculum high-
lighting BIM information requirements, approaches, rules and regulations, workflows, building modelling, project man-
agement and execution plan using BIM.

As best practice, the Polytechnic University of Milan offers an Integrated Project Management and Design Tool with a lab
activity to help students to practice with project management activities on a BIM based project. Information are the main
value in modern construction processes and students will be shown how to manage these information starting from the very
early stage of the design process using BIM and the latest design tools.

The University of Brescia focused on Project Management practice using BIM and construction phase as well as built
augmented information.

The University of Parma implemented a BIM Lab divided in two modules within the Environmental and Land Man-
agement Engineering degree focusing on BIM methodologies and structured in a series of laboratory experiences including
Building energy analysis topics and BIM tools for the building energy certification.

The Environmental Design Lab Training Course at the School of Architecture at University of Florence developed a new
course integrating BIM contents and building performance simulation tools that aims to help students to better understand
the BIM workflow in a construction project and use BIM to manage the construction process.

The challenge for the authors is to encourage the connection between university and industry, training students who will
provide advice and assistance to future customers understanding what skills are needed in the industry to facilitate graduated
employment. This work aims to show the effects on the introduction of new BIM-teaching methods on students experience
reporting pedagogical strategies, training methods, timelines and tools with specific reference on their implication and
effectiveness on students motivation, satisfaction and performance.

108.2 Environmental Design Lab Training Course

108.2.1 Program and Topics First Section

BIM methodology, based on parametric modeling, is helpful to share knowledge resources and information with the aim to
facilitate communication between investors, professionals and contractors.

Architecture curriculum at Florence University has already integrated BIM contents in several computer application
courses focused on 3D modeling and energy simulations software, providing basic and intermediate knowledge on BIM and
energy tools. However, none of these courses introduces BIM technology as an interdisciplinary coordination process
oriented to building design, construction, use and decommissioning accordingly with the life cycle view.

As a result, the main objective of this contribution is to show how BIM technologies and BEM tools can be integrated
into architecture program as a process instead of a modeling tools or software.

The reported experience concerns the Environmental Design Laboratory Training Course (12 ECTS) at the School of
Architecture at University of Florence, which consists of two modules:
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• Building Systems Design Module
• Environmental Control Strategies Module.

The Building Systems Design Module focuses on building envelope design technologies. The study is applied to the field
of Airport Architecture Design and it has been structured with reference to some key issues in the sustainable approach both
in the airport planning and terminal design, life service in operation and looking forward it’s evolution and end of life as well
[9].

The lab adopts applicative methods and BIM tools according to European Directive 2014/24/EU and D.Lgs.560/2017
italian law, that require the use of BIM procedures and digital processes in the construction of public buildings.

Environmental Control Strategies Module aims at educate and train students in the use and development of competitive
skills and tools for energy efficiency and sustainable approach design in a life-cycle perspective focusing on building
envelope technology [10]. Furthermore, by using energy BEM technologies into an integrated approach to the design
process, students are able to evaluate alternative design solutions contributing to decision making at the early stages design
process and improving the whole building construction quality into an interdisciplinary perspective [11].

Both modules are carried out simultaneously into a cross-disciplinary teaching program with the trainers co-presence.
The course runs over a year, and topics were developed to match the objectives of both modules and were scheduled

based on 2 semesters with a 4-h class per week, mixing both short theoretical lectures and workshop sessions.
The course involved 45 students who are in the fourth year of their Architecture curriculum divided into 15 groups of 3–4

members.
As case of study, students are required to redesign extension of the Genoa Airport Passenger Terminal and to identify

design solutions for building envelope, which are appropriate to energy performance targets set by building components
technical specifications and materials certification. In order to be able to create their own project proposal, students are
required to study the construction details up to the scale of components, their properties, technical specifications and
application methods.

During the course students are introduced to different Best Practices in the field of Airport Terminal Design and to the
most innovative solutions for envelope technologies currently available within the construction market such as high per-
formance glass facades, textile and metal roofs, shading systems, integrated PV technologies, etc.

108.2.2 Industry Involvement in Architecture Education

A fundamental aspect of the course concerns the direct involvement of the industry. The course is organized in close
collaboration with experts from the civil aviation industry and managers from the Genoa Airport interested in airport
development methodologies and design verification. Furthermore Genoa airport owners are direct beneficiaries of students
design project outcomes, so they are involved at the early stage of the course providing technical documents, helpful and
informative materials to students to carry out their assignments.

This type of partnership would be valuable not only for learning integrated practices using BIM, but mainly for bringing
students in real-world projects establishing professional relationships, internships, and employment opportunities.

Professionals believe that interdisciplinary BIM processes and work-sharing and BIM-based communication are need to
integrate such AEC competencies and to prepare students for internship and collaborative experience into a professional
practice.

108.2.3 Course Objectives, Training Methods and Tools

The course objectives were developed to match the architecture curriculum needs in Building Systems Design taking into
account building energy saving issues.

The main purpose considering the learning process is to improve students understanding in real-world professional
experience, suggesting a training method applied in project-based scenarios.

Objectives course are listed below:
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• Objective 1—educate students to the concept of BIM as a process and its applications in construction management;
• Objective 2—enable students to perform model-based planning, estimating, scheduling, coordination, and teamwork

using BIM approach;
• Objective 3—carry out energy simulations analysis in project-based scenarios to solve sustainable design issues taking

into account energy, environment, economic and social aspects.

Instructors carefully design course activities and materials to help students engage in experiencing and self-construction
knowledge of BIM implementation workflows.

As a project-oriented course, instructors provided day-to-day coaching in a class to students in software use for the case
study project. This approach is similar to on-the-job trainings in which students are involved in real-world projects under
BIM experts’ supervision.

Students are strongly encouraged to use building performance analysis tools and BIM technologies which are applied on
the field to the Airport Architecture Design. As part of this work, students must to verify the existing building capacity to
present peak day needs and to evaluate building spatial units by looking at the Levels of Service Analysis (LoS Analysis)
according to IATA (International Air Transport Association) international standards. They were introduced to climate and
site analysis tools to perform several simulation on a 3D environmental analysis model to address design of their project.

In addition, they were involved in practical workshops to integrate BIM concept with energy simulation tools for building
performance analysis as contributing to decision making at the early stages design process and to improve the whole building
construction quality into an interdisciplinary perspective. This approach can be used to select the best energy efficient design
solutions and reduce the need for later design modifications that require extra time and cost.

The course program includes a series of activities which consist of lectures, presentations, computer labs and workshops.
The training approach proposes a methodology structured on five stages listed in Table 108.1.

To realize a collaborative environment and class competition, students are required to work in team to exchange
knowledge with other colleagues and to experience and learn collaboration, integration and teamwork.

Table 108.1 Summary on
course structure and training
methods

Program stage Training methods Assignments Acquired skills

Airport design
architecture and
BIM processes

Lecture sessions
Group discussion

• Case study ID
card + other 2
airports
benchmarks

• Oral presentation
on case studies

1. Know BIM regulatory
framework (national and
international)
2. Understand BIM process/
methods/tools
3. Investigate the state of the
art on Airport Architecture
Design

LoS (Level Of
Service) analysis

Lecture sessions
Step by step
instructions
Group discussion
Team work
simulating
Real-world
professional practice

• Case study LoS
analysis

• Oral presentation

1. Evaluate building spatial
quality
2. Synthesize and report
analysis results

Climate and site
analysis

Lecture sessions
Software tutoring Lab
Step by step
instructions

• Technical report
• Oral presentation

1. Analyze problems focusing
on the objectives to be
investigated
2. Learn how use software
tools for parametric analysis
and Interoperability
3. Apply BIM process/
methods/tools
4. Perform a model-based
project evaluation
5. Synthesize and report
analysis results

Building design
modeling and
energy simulation

Software tutoring
Project oriented
course
Guest Lecturer for
BIM approach
Team work
simulating real-world
professional practice
Lecture sessions
Software coaching

• BIM Project Case
Study

• Oral presentation
at final meetingTechnical solutions

evaluation for
building envelope
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During a daily session, once instructor demonstrated how to use software tools solving case-specific BIM problems and
providing a sequence of skill-building steps, then students followed step-by-step instructions to solve assignments on a series
of interdependent problems. Step-by-step instruction, handouts and reading materials, video tutorials, coaching, and inter-
active simulations have been implemented as software tutoring methods in a physical class.

Also a virtual class has been created to facilitate group discussion and peer learning opportunities, and to raise stimulating
topics for sharing knowledge and lecturing in class. Therefore students are required to sign up at Moodle online platform
useful to publish announcements, news about the course program and assignments deadlines. Students need to use com-
puters and tools, but also they need classrooms that facilitate team communication for improving interactions [12].

For integrated processes and teamwork, instructors turned classroom is a collaborative space simulating a real-world work
environment, in which all teams collect information and make presentations to share their research activities and results with
the whole class and facilitate work progress. This strategy appeared successful for modules integration and collaboration,
simulating BIM processes and roles to create a collaborative learning for students with different skill and knowledge levels.

108.2.4 Assignments

Students have been involved in several activities in classroom to acquire critical-thinking abilities and practical experience
working on a specific topic, developing a BIM execution plan through iterative design improvement cycles on a case study.
Assignments have taken many forms considering the different stages of course program. As first team assignments, students
carried out systematic analysis of Genoa Airport identifying two other benchmarks similar in terms of passengers traffic and
size. By the end of first semester, working teams were asked to planning/designing a major expansion of Genoa Airport
considering targeted LoS (Level of Service) analysis for the areas initial sizing. In order to investigate environmental issues,
working teams performed a climate analysis on project site to identify strengths and weaknesses on design project, producing
a short report to critically argue about different aspects of BIM implementation. In some cases individual assignments
includes interviews, regulatory document analysis, BIM conference participation and students were asked to report results
and observations to the classroom.

The final project, and the final presentation are useful to assess students ability to use BIM methods and sustainability
approaches in project-based scenarios to develop more energy-efficient buildings (Fig. 108.1).

108.2.5 Assessment Methods and Students Evaluation

The course uses several assessment methods to provide the most useful and relevant information on students learning
outcomes.

Direct assessments consist of tests, reports, assignments and presentations (individual or team). These methods report
exactly what knowledge and skills students have acquired as a result of training course.

A weighted grading system was used to evaluate direct assignments outcomes according on inclusive criteria such as
quality of technical contents, multidisciplinary approach, objectives achievement, clarity of work, graphics, communication
and presentation skills, answering questions, and effort spent on teamwork.

Student work products have been reviewed throughout a year for evidence of learning during the course.
Students evaluation is based upon grading criteria depending on following factors:

• teamwork performance on final project and presentation at final workshop (up to 60%)
• participation in class discussions and training labs (up to 20%)
• assignments and oral presentations during the course (up to 20%)

Team-evaluation and peer assessment methods have been also used among student groups during classroom follow up on
design project deliverables.

In addition to conventional assessment by instructors, working teams have been evaluated during a final Exam. Students
presented their project proposals at a final exhibition “Redesigning GOA”, a one-day workshop that took place at the end of
the course at the Genoa Airport (Fig. 108.2). Experts from the civil aviation industry and professionals from the Genoa
Airport have been invited to participate. Students have reported details of strategies they implemented in their project
proposals: some students only listed their strategies without discussing the reasons of some choice and their impact on design
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outcomes. Few students overcome this gap correctly interpreting client needs and showing results in a clearly and effectively
way.

Assessments by professionals improved the learning experience of students leading to constructive comments on teams
deliverables and outcomes. Authors initiative was so appreciated by the Genoa Airport General Manager, that led to
internship opportunities for interested and qualified students who want to gain a general understanding of airport man-
agement and civil aviation industry.

Fig. 108.1 Final Project: from BIM to BEM model of Genoa Airport expansion (Students: J. Amayou, G. Aspesi, D. Bufalo)
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108.3 Results

No data are available to evaluate quality course on students feedback and satisfactions before the end of the course. Students
feedbacks on performance and quality of this cross-disciplinary teaching program will be available from surveys, interviews
and online questionnaire designed for this course with rating and comments. This method includes a unified student rating of
instruction used across the University of Florence to track the course results over time and improve overall course quality,
including training methodologies and materials. Instructors monitored throughout a year percentages of students meeting the
goal for each course objective to individuate successful strategies for future quality improvements. What appears is that the
expected level of BIM competency for undergraduate students have reached intermediate levels on analysis, synthesizing,
and evaluation abilities, while they still need to refine both technical and managerial skills.

Due to the high students number attending course, the main challenge into a cross-disciplinary perspective was to create a
collaborative environment. This aspect requires more work for instructors to coordinate different tasks and to provide support
to students which had more difficulties in learning from this kind of experience.

Authors believe that teamwork and classroom follow up are successful strategies to encourage students participation and
joint-vision on final goals achievement.

108.4 Conclusions

Authors conclude that BIM competencies should be aligned with building energy efficiency and sustainability topics to
provide the best educational outcomes in AEC education. Building modeling simulation tools play a key role in architecture
design to assess overall building performances. A large literature review reported Building Information Modeling (BIM)
adoption into AEC curriculum focusing on BIM modeling skills as well as analysis energy simulation tools, without taking
into account BIM as process methodology [13, 14].

This paper proposed collaborative pedagogical methods reporting students experience within the Environmental Design
Laboratory Training Course, providing students an effective method to approach the green building design issues using BIM
and energy simulation tools to manage the overall design process. Course objectives, training methods and tools have been
detailed focusing on the specific topic of Architecture Airport Design, with the direct involvement of experts from the civil
aviation industry and managers from the Genoa Airport.

Assessment methods have been reported as well as students experience from the course and expected results for future
improvements, and lesson learnt. Future challenges consist to take advantages over other international experiences and

Fig. 108.2 “Redesigning GOA” workshop and final exam at the Genoa Airport
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teaching strategies adopted by other educators in different countries, also creating opportunities for international student
exchange programs between universities.
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