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for a PDE model of fluid-solid interactions1
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Abstract: We study the finite-horizon optimal control problem with quadratic functionals for

an established fluid-structure interaction model. The coupled PDE system under investigation

comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling occurs

at the interface between the regions occupied by the fluid and the solid. We establish several

trace regularity results for the fluid component of the system, which are then applied to show

well-posedness of the Differential Riccati Equations arising in the optimization problem. This

yields the feedback synthesis of the unique optimal control, under a very weak constraint on the

observation operator; in particular, the present analysis allows general functionals, such as the

integral of the natural energy of the physical system. Furthermore, this work confirms that the

theory developed in Acquistapace et al. [Adv. Differential Equations, 2005]—crucially utilized

here—encompasses widely differing PDE problems, from thermoelastic systems to models of

acoustic-structure and, now, fluid-structure interactions.

2000 Mathematics Subject Classification. 35B37, 49J20, 74F10, 49N10, 35B65, 35M20, 93C20.

Key words and phrases. Fluid-solid interaction, boundary control, Linear-Quadratic problem,

Riccati equations, gain operator, optimal synthesis.

1 Introduction

In this paper we consider the optimal control problem with quadratic functionals for
a fluid-structure interaction model. Of major concern is well-posedness of the Riccati
equations arising in the minimization problem, along with the feedback synthesis of
the (unique) optimal control. The fluid-structure interaction is modeled by a system of
coupled partial differential equations (PDE) comprising a Stokes system (the fluid) and
a three-dimensional system of dynamic elasticity (the solid). The coupling occurs at

1 This research was started while the second author was visiting the Centro di Ricerca Matematica

Ennio De Giorgi of the Scuola Normale Superiore in Pisa, whose support is acknowledged.
The first author acknowledges partial support of the Università degli Studi di Firenze, within the 2008
Project “Calcolo delle variazioni e teoria del controllo”, as well as partial support of the Italian MIUR,
under the (PRIN 2007) Project “Regolarità, proprietà qualitative e controllo di soluzioni di equazioni
alle derivate parziali non lineari”.
The second author acknowledges support of the National Science Foundation under Grant DMS-
060666882.
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an interface separating two regions occupied, respectively, by the fluid and the solid. It
is worth mentioning at the outset that it is assumed that the motion of the solid is due
to infinitesimal displacements. Accordingly, the fluid-solid interface is stationary; this
and other modeling issues are discussed, e.g., in [17]. The mathematical description
of the PDE system, that is the boundary control problem (2.1), as well as further
literature will be given in the next Section. Our main goal is to establish the validity
of a Riccati theory that would allow to control the structure, via boundary controls,
acting as forces applied to the interface.

It is well known that—even in the case of a single PDE—one of the main difficulties
in a rigorous derivation of the feedback synthesis of the optimal control is the presence
of boundary controls (or, more generally, unbounded control actions), combined with
the lack of smoothing effects propagated by the dynamics (see, e.g., [10] and [23]).
In fact, while the linear-quadratic control problem with unbounded control operator
has a complete solution in the case of PDE models whose free dynamics is governed
by an analytic semigroup, this solution may be out of reach in the case of other kind
of dynamics. In particular, the case of purely hyperbolic PDE with boundary/point
control is peculiarly different2 from the parabolic case: it would suffice to recall that in
finite time horizon problems the Riccati operator (or optimal cost operator) P (t) does
not satisfy the differential Riccati equations, unless the observation operator possesses
a suitable smoothing property.

On the other hand, certain interconnected PDE systems combining parabolic and
hyperbolic effects may give rise to an abstract control system y′ = Ay + By which
yields a singular estimate for the operator eAtB, near t = 0. This property—which
is an intrinsic feature of control systems ruled by analytic semigroups—has been first
identified in the analysis of an acoustic-structure interaction (where the overall semi-
group was not analytic); see [3]. The essence of such estimates is the following: the
parabolic component does induce a singular estimate (as a consequence of analyticity
of the corresponding semigroup), while hyperbolicity ‘transports’ this estimate across
the system through the coupling. Thus, if one can show that a singular estimate is valid
for the entire system, then the theory in [21, 22] ensures a feedback control law with
bounded (in the state space) gain operator, along with well-posed Riccati equations.
This theory has been successfully applied to diverse composite PDE models, including
some thermoelastic systems, beside to various acoustic-structure interactions. Several
illustrations are contained in [22] and [24]; see also [15], [14], and the recent [12].

For the fluid-structure interaction under investigation, which comprises a parabolic
and a hyperbolic PDE, it was shown in [26] that a singular estimate (for the corre-
sponding abstract evolution) is satisfied in the finite energy space, as long as the penal-
ization in the quadratic functional does not involve the mechanical energy at a truly
energy level. More precisely, the study in [26] established specific singular estimates
and hence well-posedness of the Riccati equations in the special case of penalization
of the mechanical variables below the energy level (say, sub-critial penalization), yet

2 In the infinite time horizon case the so called gain (or feedback) operator B∗

P is intrinsically un-
bounded and the analysis of the algebraic Riccati equations is subtle; see [19], [33], and the subsequent
improvements in [32], [9].
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allowing full penalization of the fluid variable.
The situation becomes much more difficult when the mechanical variables are pe-

nalized at the critical level of the energy (see the functional (2.9)). In fact, not only
the regularity results of [25] do not apply, but the theory pertaining to control systems
which yield singular estimates ([24], [25]) is no longer valid. (Indeed, if it were so, the
gain operator would be bounded on the state space, while we will show that this is
not the case; see Remark 2.8.)

The present work addresses the issue of solvability of the optimal control problem
with general quadratic functionals (i.e. including critical penalization) for the PDE
model (2.1). As we shall see, we provide (a positive) answer to the question remained
open in [26, Remark 6.1]. This will follow in light of the theory introduced in [2],
which is shown to cover the present case in view of the set of trace regularity results
established and collected in Theorem 2.9. The theory developed in [2] is more effective
in capturing the relevant properties of the dynamics, especially the ones which emanate
from hyperbolicity. These ultimately allow to define the gain operator as an unbounded
operator on a suitable functional space. In this respect, the variational aspect of
the minimization process is critical in order to justify the arguments leading to well-
posedness of Riccati equations.

Let us recall that the optimal control theory in [2], while relaxing the ‘singular
estimate requirement’, postulates other regularity conditions of global nature. This
makes it possible to obtain meaningful solutions to the differential Riccati equations,
despite the gain operator is not bounded on the state space. This, however, does
not affect the synthesis, as the optimal solution still belongs to the domain of the
gain operator. Originally arisen in the study of boundary control problems for an
established system of thermoelasticity ([1]), so far this theory has been shown to apply
as well in the case of certain acoustic-structure interaction model including thermal
effects ([13]).

The paper is organized as follows. In Section 2 we introduce the boundary control
problem under investigation, along with the statements of our main results, namely
Theorem 2.6 and Theorem 2.9. Moreover, we briefly record some necessary notation
and the fundamental well-posedness result pertaining to the uncontrolled counterpart
of the PDE system. Section 3 is entirely devoted to the proof of Theorem 2.9, which
establishes the novel, distinct boundary regularity properties (of the solutions to the
PDE system) which will ultimately result in solvability of the optimization problem, i.e.
Theorem 2.6. Section 4 contains the proof of Theorem 2.6, based upon the application
of the theory in [2]. Finally, a short Appendix collects the statements of the regularity
results pertaining to the elastic component of the system—recently obtained in [7] and
[26]—which are crucially utilized in the proof of Theorem 2.9.

2 The PDE model, statement of main results

The PDE model. The PDE model under investigation describes the interaction of
a (very slow) viscous, incompressible fluid, with an elastic body in a three dimensional
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bounded domain. Although the introduction of such models dates back to [27], their
PDE analysis has increased significantly only in the past decade. A mathematical
description of the composite PDE system is given below. By Ωf and Ωs we denote the
open smooth domains occupied by the fluid and the solid, respectively. Then Ω ⊂ R

3

denotes the entire solid-fluid region, that is Ω is the interior of Ωf ∪Ωs. The boundary
of Ωs is the interface between the fluid and the solid, and is denoted by Γs = ∂Ωs. We
finally denote by Γf the outer boundary of Ωf , namely Γf = ∂Ωf \ ∂Ωs. It is assumed
that the motion of the solid is entirely due to infinitesimal displacements, and hence
that the interface Γs is fixed.

The velocity field of the fluid is represented by a vector-valued function u, which
satisfies a Stokes system in Ωf ; the scalar function p represents, as usual, the pressure.
In the solid region Ωs the displacement w satisfies the equations of linear elasticity.
(The density and the kinematic viscosity which usually appear in the Navier-Stokes
equation are set equal to one, just to simplify the notation). The coupling takes place
on the interface Γs. We recall from [17] that the interface condition u = wt on Γs

(in place of the usual no-slip boundary condition u = 0) accounts for the fact that
although the displacement of the elastic body is small, its velocity is not (small, yet
rapid oscillations). Thus, the PDE system is given by







ut − div ǫ(u) +∇p = 0 in Qf := Ωf × (0, T )

div u = 0 in Qf

wtt − div σ(w) = 0 in Qs := Ωs × (0, T )

u = 0 on Σf := Γf × (0, T )

wt = u on Σs := Γs × (0, T )

σ(w) · ν = ǫ(u) · ν − pν − g on Σs

u(0, ·) = u0 in Ωf

w(0, ·) = w0 , wt(0, ·) = w1 in Ωf .

(2.1)

In the above coupled PDE system, σ and ǫ denote the elastic stress tensor and the
strain tensor, respectively, that are

σij(u) = λ
3∑

k=1

ǫkk(u)δij + 2µǫij(u) , ǫij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)

, (2.2)

where λ, µ are the Lamé constants and δij is the Kronecker symbol.

Since the present work is focused on the optimization problem, the subtle ques-
tions related to the modeling of fluid-structure interaction phenomena, as well as to
the analysis of well-posedness of the corresponding coupled PDE systems, will not be
discussed here. Yet, well-posedness of the boundary value problem (2.1), with g ≡ 0
(that is the uncontrolled system (2.3) below), is a prerequisite for the study of the
associated optimal control problems. Thus, although many authors have contributed
to the PDE analysis of nonlinear fluid-structure interaction models (where the dynam-
ics of the fluid is ruled by a Navier-Stokes equation), existence of finite energy weak
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solutions—even for the simpler Stokes-Lamé system (2.3)—has been an open question
until [7, Theorem 2.2]. The reader is referred to [7, 8] for the analysis of well-posedness
of the coupled PDE system (2.3); in addition, [8] includes a very clear introduction
to the (nonlinear) fluid-structure interaction problem, along with a technical compar-
ison with the previous mathematical literature. In Section 2.1 we shall recall, for the
reader’s convenience, the theory in [7] that is needed for our purposes.

We finally note that while the present study follows the variational approach of
[7], exploiting the novel boundary regularity results established therein, semigroup
well-posedness and stability properties of the linear model have been investigated in
[4]; see the survey paper [5] and its references. For the uniform stabilization problem,
see [6].

Further references. There is a large literature on coupled fluid-structure evolution
problems. Most works address the issue of developing models for specific physical
problems and/or their numerical simulation. Two main different scenarios arise from
the applications: the case in which the fluid is flowing in a tube with elastic walls,
such as the blood through arteries, and the case where one or more elastic bodies are
immersed in a fluid flow. The PDE model under investigation pertains to a physical
situation falling under the latter category.

A very nice introduction to fluid-structure interaction problems is provided by [17].
Recent treatises with focus on modeling and numerical analysis are [30] and [29]. An
in-depth PDE analysis of well-posedness of these nonlinear models has indeed appeared
only recently. Relevant contributions to this problem are given (without any claim of
completeness) by [31], [18], the aforesaid [17], [16], [11], [7, 8] and, lastly, [20]. For
more information on this subject, see the bibliography therein.

2.1 Variational and semigroup formulation

Before giving the statement of our main results, let us preliminarly recall from [7]
some basic notation, and the chief facts which pertain to the uncontrolled problem,
that is system (2.1) with g ≡ 0. Further technical results obtained in [7] and [26] will
be needed in the proof of our main result; these will be recorded in an Appendix for
convenience.
The uncontrolled model. Let us introduce the free system corresponding to (2.1),
namely







ut − div ǫ(u) +∇p = 0 in Qf := Ωf × (0, T )

div u = 0 in Qf

wtt − div σ(w) = 0 in Qs := Ωs × (0, T )

u = 0 on Σf := Γf × (0, T )

wt = u on Σs := Γs × (0, T )

σ(w) · ν = ǫ(u) · ν − pν on Σs

u(0, ·) = u0 in Ωf

w(0, ·) = w0 , wt(0, ·) = w1 in Ωf .

(2.3)
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The energy space for the PDE problem (2.3) is

Y = H ×H1(Ωs)× L2(Ωs) ,

where H is defined as follows:

H :=
{
u ∈ L2(Ωf ) : div u = 0 , u · ν|Γf

= 0
}
.

In addition, we denote by V the space defined as follows:

V :=
{
v ∈ H1(Ωf ) : div u = 0 , u|Γf

= 0
}
;

we shall use the following distinct notation for the various inner products which will
occurr throughout the paper:

(u, v)f :=

∫

Ωf

uv dΩf , (u, v)s :=

∫

Ωs

uv dΩs , 〈u, v〉 :=

∫

Γs

uv dΓs .

The space V is topologized with respect to the inner product given by

(u, v)1,f :=

∫

Ωf

ǫ(u)ǫ(v)dΩf ;

the corresponding (induced) norm | · |1,f is equivalent to the usual H1(Ωf ) norm, in
view of Korn inequality and the Poincaré inequality.

Remark 2.1. The norm ‖·‖Hr(D) in the Sobolev space Hr(D) will be shortly denoted
by | · |r,D throughout the paper. Note that all the Sobolev spaces Hr related to u and
w are actually (Hr)3: the exponent is omitted just for the sake of simplicity.

Let us recall from [7] the definition of weak solutions to the (uncontrolled) PDE
system (2.3).

Definition 2.2 (Weak solution). Let (u0, w0, w1) ∈ H and T > 0. We say that a triple
(u,w,wt) ∈ C([0, T ],H×H1(Ωs)×L2(Ωs)) is a weak solution to the PDE system (2.1)
if

• (u(·, 0), w(·, 0), wt(·, 0)) = (u0, w0, w1),

• u ∈ L2(0, T ;V ),

• σ(w) · ν ∈ L2(0, T ;H
−1/2(Γs)),

d
dtw|Γs = u|Γs ∈ L2(0, T ;H

1/2(Γs)), and

• the following variational system holds a.e. in t ∈ (0, T ):

{
d
dt(u, φ)f + (ǫ(u), ǫ(φ))f − 〈σ(w) · ν + g, φ〉 = 0

d
dt(wt, ψ)s + (σ(w), ǫ(ψ))s − 〈σ(w) · ν, ψ〉 = 0 ,

(2.4)

for all test functions φ ∈ V and ψ ∈ H1(Ωs).
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Remark 2.3. It is important to emphasize that the regularity properties of the normal
stresses (see the third item of Definition 2.2) do not follow from the interior regularity
of the fluid-structure variables. It is an independent regularity result, showing the ex-
ceptional behavior of hyperbolic traces. This regularity property is necessary in order
to justify the variational definition of weak solutions (see (2.4)). While there are other
definitions of solutions to nonlinear PDE models of fluid-structure interactions which
do not require additional regularity on the boundary (see, e.g., [27], [17], [4]), yet these
definitions are not adequate to variationally decouple the (finite energy) weak solu-
tions of the two equations. On the other hand, this decoupling is crucially important
in the present analysis, aimed at identifying the distinctive regularity properties of the
overall dynamics, that play a major role in the study of the associated optimal con-
trol problems. Exploiting the distinct features (analyticity and hyperbolicity) of the
decoupled dynamics makes it possible to establish the sharpest results for the coupled
PDE system. (This fact was recently utilized in [20], as well.) Consequently, the issue
of “hidden” regularity of the hyperbolic component is central to the problem studied
and its solution.

Existence of weak (global) solutions of a nonlinear generalization of the PDE prob-
lem (2.3) has been established in [7].

Theorem 2.4 (Existence of weak solutions, [7]). Given any initial datum (u0, w0, w1) ∈
Y and any T > 0, there exists a weak solution (u,w,wt) to the system (2.3) such that

∇w
∣
∣
Γs

∈ L2(0, T ;H
−1/2(Γs)) ,

d

dt
w
∣
∣
∣
Γs

= wt

∣
∣
Γs

∈ L2(0, T ;H
1/2(Γs)) .

The control system, semigroup formulation. Aiming to apply the optimal
control theory pertaining to a general class of evolutions—in the present case, the one
developed in [2]—it is convenient to recast the boundary value problem (2.1) as an
abstract control system in a Hilbert space. Accordingly, let us introduce the fluid
dynamic operator A : V → V ′, defined by

(Au, φ) = −(ǫ(u), ǫ(φ)) ∀φ ∈ V ,

and the (Neumann) map N : L2(Γs) → H defined as follows:

Ng = h⇐⇒ (ǫ(h), ǫ(φ)) = 〈g, φ〉 ∀φ ∈ V .

The chief properties of the operators A and N are recalled in the Appendix.
Then, if we set y = (u,w,wt), the boundary value problem (2.1) reduces to the

linear control system {

y′ = Ay + Bg in [D(A∗)]′

y(0) = y0
(2.5)

where the (dynamic) operator A : D(A) ⊂ Y → Y is defined by

A =





A ANσ( · ) · ν 0
0 0 I
0 div σ(·) 0



 , (2.6)
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with domain

D(A) =
{
y = (u,w, z) ∈ H : u ∈ V, A(u+Nσ(w) · ν) ∈ H , z ∈ H1(Ωs) ,

div σ(w) ∈ L2(Ωs) , z|Γs = u|Γs

}
,

and the (control) operator B : L2(Γs) = U → [D(A)]′ reads as

B =





AN
0
0



 . (2.7)

Given a quadratic functional

J(g) =

∫ T

0

(
|Ry(t)|2Z + |g(t)|2U

)
dt , (2.8)

the optimal linear-quadratic (LQ) control problem is to minimize the functional (2.8),
over all control functions g ∈ L2(0, T ;U), with y solution to (2.5) corresponding to g.
As already pointed out in the Introduction, we aim to include in the present analysis
non-smoothing observation operators R, such as the identity operator; hence, R is
initially assumed to satisfy just R ∈ L(Y,Z). By doing so we admit natural quadratic
functionals such as the following,

J(g) =
1

2

∫ T

0

{

|u(t)|20,Ωf
+ (σ(w(t)), ǫ(w(t)))s + |wt(t)|

2
0,Ωs

+ |g(t)|20,Γs

}

dt (2.9)

which penalizes the full quadratic energy E(t) of the system.

Remark 2.5. We already emphasized that the study performed in [26] did not pro-
vide solvability of optimal control problems with general quadratic functionals: in
particular, it did not cover the case of natural functionals such as (2.9). On the other
hand, the analysis carried out in [26]—despite the final constraint on the observation
operator R—included the case of Bolza problems, where the penalization affects also
the state at the final time T < ∞, namely, when the functional to be minimized is
given by

J(g) =

∫ T

0

(
|Ry(t)|2Z + |g(t)|2U

)
dt+ (Gy(T ), y(T ))W . (2.10)

Note that the LQ-problem with Bolza-type quadratical functionals is not discussed
here. In fact, the LQ-problem with quadratic functionals of the form (2.10) (with
G 6= 0) for the class of control systems (2.5) described by the Assumptions 4.1, has
not been investigated yet.

2.2 Statement of the main results

The main result of the present work is the proof of well-posedness of the (differential)
Riccati equations corresponding to the optimal control problems associated with the
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fluid-structure model (2.1), along with all the inherent assertions about solvability of
the optimization problem; see Theorem 2.6. This variational result, however, critically
relies on the novel trace regularity results established specifically for the (uncontrolled)
PDE system (2.3) in Theorem 2.9, which thus constitute the major technical contri-
bution of the present work. As we shall see, the proof of this set of regularity results
is based on the interplay between the maximal parabolic regularity of the fluid com-
ponent with the ‘hidden’ regularity of the traces of the hyperbolic (solid) component.
Indeed, the fact that the coupling is of hyperbolic/parabolic type will be critically
utilized.

2.2.1 The solution to the optimization problem

With reference to the PDE model introduced in the previous section, let us consider
the optimal control problem (2.5)–(2.8), that is

Minimize the functional J(g) in (2.8), over all g ∈ L2(0, T ;L2(Γs)), where y(·) =
y(·; y0, g) solves the control system (2.5).

Then we have the following.

Theorem 2.6. Consider the optimal control problem (2.5)–(2.8), with A and B given
by (2.6) and (2.7), respectively. If the observation operator satisfies

R∗R ∈ L(D(Aǫ),D(A∗ǫ)) (2.11)

for some ǫ ∈ (0, 1/4), then the following assertions hold true.

1. For any initial state y0 ∈ Y there exists a unique optimal control g0(·) ∈ L2(0, T ;L2(Γs)
such that

J(g0) = min
g∈L2(0,T ;L2(Γs)

J(g) .

The optimal pair (g0(·), y0(·)) has the following additional regularity:

y0(·) = [u0(·), w0(·), w0
t (·)] ∈ C([0, T ];H ×H1(Ωs)× L2(Ωs)) ;

g0(·) ∈
⋂

1≤p<∞

Lp(0, T ;L2(Γs)) . (2.12)

2. There exists a non-negative, selfadjoint operator (the Riccati operator) P (t) ∈
L(Y ), t ∈ [0, T ], defined explicitly in terms of the data, such that

J(g0) = (P (0)y0, y0)Y ;

more precisely, P (·) ∈ L(Y,C([0, T ], Y )).

3. The gain operator B∗P (·) satisfies B∗P (·) ∈ L(D(Aǫ), C([0, T ], L2(Γs))); more-
over, one has (the feedback synthesis of the optimal control) a.e. in [0, T ]:

g0(t) = −B∗P (t)y0(t) , ∀y0 ∈ Y . (2.13)

9



4. The operator P (t) is the unique solution of the Differential Riccati Equation
satisfied for 0 ≤ t < T and x = (x1, x2, x3), y = (y1, y2, y3) ∈ D(A),

d

dt
(P (t)x, y)Y +(A∗P (t)x, y)Y +(P (t)Ax, y)Y +(Rx,Ry)Y = (B∗P (t)x,B∗P (t)y) ,

(2.14)
with

lim
t→T−

(P (t)x, x) = 0 ∀x ∈ Y .

Remark 2.7. Since here the dynamics operator A is the generator of a s.c. contraction
semigroup with A−1 ∈ L(Y ), then the domains of fractional powers D(Aǫ) in (2.11)
may be computed as intermediate spaces between D(A) and Y . The same holds for
D(A∗ǫ). (For a comprehensive list of cases where the identity [D(A), Y ]1−θ = D(Aθ)
holds true, see, e.g., [23, § 0.2.1]). Then, it is not difficult to show that in the present
case D(A∗ǫ) ≡ D(Aǫ), provided ǫ is sufficiently small. Therefore, assumption (2.11)
is satisfied, with a non-smoothing observation operator, such as R = I. This natural
situation was indeed left as an open problem in [26].

Remark 2.8. Observe that the optimal pair does not display the typical regularity (in
time) exhibited in the case of control systems whose underlying semigroup is analytic
(or, more in general, when singular estimates are satisfied). In particular, the optimal
control is not continuous. This is not surprising, in view of the influence of both
hyperbolic and parabolic effects on the overall behavior of the solutions.

Moreover, the gain operator B∗P (t) is no longer bounded on the state space Y ,
but just densely defined. However, this does not affect the final result, as the feedback
formula holds for any initial state in the finite energy space. Thus, the observation
operator R need not have regularizing effects, and R can be critical.

The above observations also explain why the previous Riccati theories are intrinsin-
cally unapplicable in the critical case, as they lead to bounded gain operators, in con-
trast with the case under examination.

2.2.2 Trace estimates

The fundamental analytic tool which will enable us to show Theorem 2.6 is a complex
of boundary regularity results pertaining to the fuid component of the PDE problem
(2.3). These traces’ regularity estimates of u (and ut) on the interface Γs are the
“PDE counterpart” of the abstract regularity properties of the (unbounded) operator
B∗eA

∗t needed to invoke the optimal control theory of [2]. These regularity estimates
are, however, also of independent interest.

Theorem 2.9 (Traces’ regularity). Consider the uncontrolled Stokes-Lamé system,
namely the PDE system (2.3). Let y(t) = (u(t), w(t), wt(t)) be the solution corre-
sponding to initial data y0 = (u0, w0, w1). Then the fluid component u admits a de-
composition u(t) = u1(t)+u2(t), and the following statements pertain to the regularity
of the traces of u1, u2 and ut on Γs, respectively.
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(i) The component u1 satisfies a pointwise (in time) “singular estimate”, namely
there exists a positive constant CT such that

|u1(t)|L2(Γs) ≤
CT

t1/4+δ
|y0|Y ∀y0 ∈ Y , ∀t ∈ (0, T ] (2.15)

(with arbitrarily small δ > 0).

(ii) The component u2 satisfies the following regularity:

(iia) if y0 ∈ Y , then u2|Γs ∈ Lp(0, T ;L2(Γs)) for all (finite) p ≥ 1;

(iib) if y0 ∈ D(Aǫ), ǫ ∈ (0, 14), then u2|Γs ∈ C([0, T ], L2(Γs)).

(iii) Let now y0 ∈ D(A1−θ), with θ ∈ (0, 14 ). Then, the fluid component u of corre-
sponding solution satisfies, for some q ∈ (1, 2),

ut|Γs ∈ Lq(0, T ;L2(Γs)) (2.16)

continuously with respect to y0, that is there exists a constant CT such that

‖ut‖Lq(0,T ;L2(Γs)) ≤ CT ‖y0‖D(A1−θ) . (2.17)

The exponent q will depend on θ: more precisely, given θ ∈ (0, 14), one has

1 < q <
4

3 + 4θ
. (2.18)

The remainder of the paper is devoted to the proof of the two main results stated
in Theorem 2.6 and Theorem 2.9. Section 3 deals with the above boundary regularity
results, which will be next utilized in Section 4 to establish Theorem 2.6.

3 Proof of the trace regularity results

This section is entirely devoted to the proof of our main contribution, that is Theo-
rem 2.9.

Proof of Theorem 2.9 Our starting point is the equation satisfied by u(·), namely
ut = Au+ANσ(w) · ν, whose solutions are given by

u(t) = eAtu0 +

∫ t

0
eA(t−s)ANσ(w)(s, ·)ν ds ; (3.1)

the above expression yields the natural splitting u(t) = u1(t) + u2(t), with

u1(t) := eAtu0 , u2(t) :=

∫ t

0
eA(t−s)ANσ(w)(s, ·)ν ds . (3.2)

11



In view of N∗Au = −u|Γs (see Lemma A.1), the corresponding traces on Γs read as

u1|Γs = −N∗Au1(t) = −N∗AeAtu0 ,

u2|Γs = −N∗Au2(t) = −N∗A

∫ t

0
eA(t−s)ANσ(w)(s, ·)ν ds , (3.3)

respectively.
(i) The singular estimate in (2.15) follows as an immediate consequence of the well
known estimates pertaining to analytic semigroups:

∣
∣u1(t)|Γs

∣
∣
U
= |N∗AeAtu0| = |N∗A3/4−δA1/4+δeAtu0|

≤ ‖N∗A3/4−δ‖ |A1/4+δeAtu0|Y ∼ CT t
−1/4−δ|u0| .

(3.4)

This shows the validity of assertion (i).

(ii) Let initially y0 = (u0, w0, w1) ∈ Y . In view of (3.3), it is clear that the sharp
regularity theory pertaining to the the wave component will play a central role in the
study of the regularity of the traces of u2(t) on Γs. More precisely, we shall utilize
the recent trace results obtained in [7, Theorem 3.3] and refined in [26, Lemma 5.2];
see Lemma A.2 in the Appendix. Accordingly, following the decomposition of σ(w) · ν
established in Lemma A.2, it is convenient to introduce a further splitting, namely

u2(t) =

∫ t

0
eA(t−s)ANσ(w1)(s, ·)ν ds

︸ ︷︷ ︸

u21(t)

+

∫ t

0
eA(t−s)ANσ(w2)(s, ·)ν ds

︸ ︷︷ ︸

u22(t)

. (3.5)

Thus, one has first

N∗Au21(t) = N∗A

∫ t

0
eA(t−s)ANσ(w1)(s) · ν ds

= [N∗A3/4−ǫ]A1/4+ǫ+1/2

∫ t

0
eA(t−s) A1/2Nσ(w1)(s) · ν

︸ ︷︷ ︸

f(s)

ds

where f ∈ C([0, T ], L2(Ωs)) in view of Lemma A.2 and Lemma A.1. Consequently,
∫ t

0
eA(t−s)f(s) ds ∈ C([0, T ],D(A1−σ)) , (3.6)

with arbitrarily small σ > 0; see, e.g., [23, Proposition 0.1, p. 4]. Therefore N∗Au21 ∈
C([0, T ], L2(Γs)), and a fortiori we obtain

N∗Au21 ∈ Lp(0, T ;U) ∀p ≥ 1 . (3.7)

As for the second summand N∗Au22(t), because of the different regularity of
σ(w2)(s) · ν we rewrite in a different fashion:

N∗Au22(t) =
[
N∗A3/4−ǫ

]
A1/2+2ǫ

∫ t

0
eA(t−s) [A3/4−ǫNσ(w2)(s) · ν]

︸ ︷︷ ︸

ϕ(s)

ds .
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Notice now that the above integral is the convolution

∫ t

0
K(t− s)ϕ(s) ds ,

with ϕ ∈ L2(0, T ;U) and the kernel K such that ||K(s)|| ∼ 1
s1/2+2ǫ , where ǫ can be

taken arbitrarily small. Hence K ∈ L2−σ(0, T ;U) for arbitrarily small σ > 0. Thus,
the Young inequality yields

N∗Au22 ∈ Lp(0, T ;U) ∀p ≥ 1 . (3.8)

Thus, (3.8) combined with (3.7) shows the validity of assertion (iia).

Let now y0 ∈ D(Aǫ), ǫ > 0. In this case we have

D(Aǫ) ⊂ H ×H1+ǫ(Ω2)×Hǫ(Ω2)

and by Lemma A.3 it follows u|Γs ∈ Hǫ(Σs), provided that ǫ < 1
4 . This enables us to

apply the second part of Lemma A.2, which gives

σ(w1) · ν ∈ C([0, T ],H−1/2(Γs)) , σ(w2) · ν ∈ Hǫ(Σs) . (3.9)

Now, the analysis of N∗Au21 follows closely the one in item (iia), yielding the conclu-
sion N∗Au21 ∈ C([0, T ], L2(Γs)) (this is justified by the membership (3.6)). Instead,
on the basis of the novel regularity of σ(w2) ·ν in (3.9), from parabolic theory it follows
that

u22 ∈ Hǫ+3/2,ǫ/2+3/4(Qf ) ,

so that

N∗Au22 ∈ Hǫ+1,ǫ/2+1/2(Σs) ⊂ H1/2+ǫ/2(0, T ;L2(Γs)) ⊂ C([0, T ], L2(Γs)) .

As bothN∗Au21 andN
∗Au22 belong to C([0, T ], L2(Γs)), thenN

∗Au2 ∈ C([0, T ], L2(Γs))
and (iib) is proved.

(iii) In this last step we aim to ascertain the regularity of the boundary traces of the
time derivative ut on Γs. We return to the mild solution (3.1) and compute

ut(t) = AeAtu0
︸ ︷︷ ︸

v1(t)

+

v2a
︷ ︸︸ ︷

A

∫ t

0
eA(t−s)ANσ(w)(s, ·)ν ds+

v2b
︷ ︸︸ ︷

ANσ(w)(t, ·)ν

︸ ︷︷ ︸

v2(t)

(3.10)

which can also be rewritten as

ut(t) = AeAtu0
︸ ︷︷ ︸

v1(t)

+

v21(t)
︷ ︸︸ ︷
∫ t

0
eA(t−s)ANσ(ws)(s, ·)ν ds+

v22(t)
︷ ︸︸ ︷

AeAtNσ(w)(0, ·)ν

︸ ︷︷ ︸

v2(t)

. (3.11)
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The plan we aim to carry out is to discuss first the regularity of the function v2 :=
∂u2

∂t
when y0 ∈ D(A) by using its expression in (3.11). Next, when y0 ∈ Y , we would
rather utilize (3.10), and then use interpolation arguments to establish the regularity
corresponding to initial data in D(A1−ǫ). Only subsequently we shall derive the trace
regularity of v2 by applying the operator −N∗A.

When y0 ∈ D(A), by standard semigroup arguments we known that σ(wt) · ν
exhibits the same regularity as that of σ(w) · ν when y0 ∈ Y , i.e. (invoking once again
Lemma A.2)

σ(wt) · ν = σ1 + σ2 ∈ C([0, T ],H−1/2(Γs))⊕L2(0, T ;L2(Γs)) .

To pinpoint the regularity of v21, we now utilize the above splitting and follow the
analysis carried out in the proof of (ii). More precisely, combining elliptic regularity
(in particular, Lemma A.1), with the analyticity of the semigroup eAt, along with the
(singular) estimates pertaining to AαeAt, we first obtain, for any t and any δ < 1/2,

∣
∣A1/2−δ

∫ t

0
eA(t−s)ANσ1(s) ds

∣
∣ =

∣
∣A1−δ

∫ t

0
eA(t−s)A1/2Nσ1(s) ds

∣
∣

≤ C

∫ t

0

1

(t− s)1−δ
ds ‖σ1‖C([0,T ],H−1/2(Γs)) ≤ C‖σ1‖C([0,T ],H−1/2(Γs)) . (3.12)

As for the latter term, we apply as well A1/2−δ and rewrite as follows:

A1/2−δ

∫ t

0
eA(t−s)ANσ2(s) ds =

∫ t

0
[A3/4−δ/2eA(t−s)] [A3/4−δ/2N ]σ2(s) ds , (3.13)

where it is clear now that the integral is the convolution of L4/3 and L2 (in time)
functions, respectively. On the strength of the Young’s inequality, we get L4-regularity
in time, so that

v21 ∈ C([0, T ],D(A1/2−δ))⊕L4(0, T ;D(A1/2−δ)) , 0 < δ <
1

2
.

This implies the membership

v21 ∈ L4(0, T ;D(A1/2−δ)) , 0 < δ <
1

2
. (3.14)

On the other hand, still with y0 ∈ D(A), one has just σ(w) · ν ∈ C([0, T ],H−1/2(Γs))
which suggests us to rewrite v22 as follows:

v22(t) = A1/2eAt
(
A1/2Nσ(w)(0, ·)ν

)
;

then, again in view of Lemma A.1 and of the usual singular estimates pertaining to
analytic semigroups, it follows

v22 ∈ Lq(0, T ;D(A1/2−δ)) , (3.15)
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provided that q(1 − δ) < 1. Therefore, (3.14) combined with (3.15) yields, for any
0 < δ1 <

1
2

y0 ∈ D(A) =⇒ v2 ∈ Lq1(0, T ;D(A1/2−δ1)) ≡ Lq1(0, T ;H
1−2δ1(Ωf )) , (3.16)

where q1 ∈ (1, 2) depends on δ1; more precisely,

q1 <
1

1− δ1
. (3.17)

Let now y0 ∈ Y . In this case we use the decomposition (3.10), and begin with the
analysis of v2a. Setting w = w1 + w2 (according with Lemma A.2), one has

A

∫ t

0
eA(t−s)ANσ(w1)(s, ·)ν ds =

A1/2+ǫ1A1−ǫ1

∫ t

0
eA(t−s)A1/2Nσ(w1)(s, ·)ν ds ∈ C([0, T ], [D(A1/2+ǫ1)]′) ,

while

A

∫ t

0
eA(t−s)ANσ(w2)(s, ·)ν ds =

A1/4+ǫ2A

∫ t

0
eA(t−s)A3/4−ǫ2Nσ(w2)(s, ·)ν ds ∈ L2(0, T ; [D(A1/4+ǫ2)]′)

where both ǫ1 and ǫ2 can be taken arbitrarily small. As a result,

v2a ∈ L2(0, T ; [D(A1/2+ǫ)]′) , 0 < ǫ <
1

2
. (3.18)

As for the term v2b, readily

ANσ(w1)(t, ·)ν = A1/2A1/2Nσ(w1)(t, ·)ν ∈ C([0, T ], [D(A1/2)]′)

while

ANσ(w2)(t, ·)ν = A1/4+ǫ[A3/4−ǫN ]σ(w2)(t, ·)ν ∈ L2(0, T ; [D(A1/4+ǫ)]′) ,

and since ǫ can be taken arbitrarily small, we deduce as well

v2b = ANσ(w)(t, ·)ν ∈ L2(0, T ; [D(A1/2)]′) . (3.19)

On the basis of (3.18) and (3.19), we obtain

y0 ∈ Y =⇒ v2 = v2a + v2b ∈ L2(0, T ; [D(A1/2+δ2 )]′) ≡ L2(0, T ; [H
1+2δ2(Ωf )]

′) , (3.20)

if 0 < δ2 <
1
4 .

Thus, (3.20), combined with (3.16), gives by interpolation

y0 ∈ D(A1−θ) =⇒ v2 ∈ Lq1(0, T ;W ) , (3.21)
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where q1 is as in (3.17) and W is the interpolation space

W = (H1−2δ1(Ωf ), [H
1+2δ2(Ωf )]

′)θ ≡ Hs(Ωf ) ,

if
s = (1− 2δ1)(1− θ)− θ(1 + 2δ2) = 1− 2δ1 − 2θ(1 + δ2 − δ1) ≥ 0 ;

see [28, Theorem 12.5]. Notice that by taking, for instance, δ1 = δ2 =: δ, one has
s ≥ 1/2 provided that

θ + δ ≤
1

4
. (3.22)

In this case v2 ∈ Hs(Ωf ) with s ≥ 1/2 and hence its trace on Γs is well defined. Notice
that, in view of the constraint (3.22), we need to require 0 < θ < 1

4 . Consequently,
given any θ such that 0 < θ < 1

4 , choosing, e.g., δ = 1/4 − θ in view of (3.22), from
(3.21) it follows

y0 ∈ D(A1−θ)) =⇒ N∗Av2 ∈ Lq1(0, T ;L2(Γs)) ∀q1 <
4

3 + 4θ
. (3.23)

It remains to establish the regularity of the first summandN∗Av1(t) = N∗AeAtAu0
when y0 ∈ D(A1−θ). In this case u0 ∈ (H1(Ωf ), L2(Ωf ))θ = H1−θ(Ωf ), and from

N∗Av1(t) := N∗AeAtAu0 = [N∗A3/4−ǫ]A1/4+ǫ+1/2+θ/2eAtA(1−θ)/2u0 ,

it immediately follows

y0 ∈ D(A1−θ) =⇒ N∗Av1 ∈ Lq2(0, T ;L2(Γs)) ∀q2 <
4

3 + 2θ + 4ǫ
. (3.24)

Notice that in the above membership the Sobolev exponent q2 belongs to (1, 2), as
well. In conclusion, since ǫ in (3.24) can be taken arbitrarily small, the regularity
Lq1(0, T ;L2(Γs)) combined with Lq2(0, T ;L2(Γs)) (in (3.23) and (3.24), respectively)
imply the membership

y0 ∈ D(A1−θ) =⇒ ut|Γs =: v|Γs ∈ Lq(0, T ;L2(Γs)) ∀q <
4

3 + 4θ
, (3.25)

which concludes the proof.

4 Proof of Theorem 2.6

The conclusions stated in Theorem 2.6 will follow from [1, Theorem 2.3], once we verify
the standing assumptions, which are recorded below for the reader’s convenience.

Assumptions 4.1. For each t ∈ [0, T ], the operator B∗etA
∗

can be represented as

B∗eA
∗ty0 = F (t)y0 +G(t)y0, t ≥ 0, y0 ∈ D(A∗) , (4.1)

where F (t) : Y → U and G(t) : D(A∗) → U , t > 0, are bounded linear operators
satisfying the following assumptions:
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1. there is γ ∈ (12 , 1) such that ‖F (t)‖L(Y,U) ≤ C t−γ for all t ∈ (0, T ];

2. the operator G(·) belongs to L(Y,Lp(0, T ;U)) for all p ∈ [1,∞), with

‖G(·)‖L(Y,Lp(0,T ;U)) ≤ cp <∞ ∀p ∈ [1,∞) ; (4.2)

3. there is ε > 0 such that:

(a) the operator G(·)A∗−ε belongs to L(Y,C([0, T ], U)), with

‖A−εG(t)∗‖L(U,Y ) ≤ c <∞ ∀t ∈ [0, T ] ; (4.3)

(b) the operator R∗R belongs to L(D(Aε),D(A∗ε));

(c) there is q ∈ (1, 2) (depending, in general, on ε) such that the operator
B∗eA

∗·R∗RAε has an extension belonging to L(Y,Lq(0, T ;U)).

Remark 4.2. Note that the set of requirements in Assumptions 4.1 involves the
regularity (in time) of the operator B∗eA

∗t, both locally at the origin (with singularity
controlled by γ), and globally (in Lp sense).

We now prove that the regularity results established in Theorem 2.9 imply all the
requirements in Assumptions 4.1, with suitable values of γ, ǫ and q.

Verification of Assumptions 4.1. Following [26, Proof of Theorem 5.1], it is not
difficult to verify that given any initial state y0 = (u0, w0, w1) ∈ D(A∗), one has
B∗eA

∗ty0 = N∗Aû(t) = −û(t)|Γs , where û(t) is the first component of the solution
ŷ := (û, ŵ, ŵt) to the (homogeneous) adjoint system

{

ŷ′(t) = A∗ŷ(t)

ŷ(0) = y0 .

The abstract adjoint system yields a system of coupled PDE which is essentially the
same as the original boundary value problem (2.3), except for few changes of sign in
the equations. As a consequence, the regularity results established by Lemma A.2
and Lemma A.3 readily produce analogues, by replacing D(A) and y = (u,w,wt) by
D(A∗) and ŷ = (û, ŵ, ŵt), respectively. Similarly, the fluid component û of the solution
ŷ to the dual PDE system satisfies—mutatis mutandis—the regularity properties in
Theorem 2.9.
1. In light of the decomposition of û found in Theorem 2.9, let us set

F (t)y0 := û1(t)
∣
∣
Γs
, G(t)y0 := û2(t)

∣
∣
Γs
.

Then, the first statement in Theorem 2.9, along with the estimate (2.15), provides us
with the soughtafter singular estimate, with (optimal) exponent γ = 1/4 + δ, and the
first of Assumptions 4.1 is satisfied.
2. Assertion (iia) in Theorem 2.9 is nothing but the regularity condition 2. of the
Assumptions 4.1, valid for all p ∈ [1,∞).
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3. Condition (iib) of Theorem 2.9 translates into G(t)A∗−ǫy0 ∈ C([0, T ], L2(Γs)),
which in turn gives the assertion (3a) of the Assumptions 4.1, with no constraints
on ǫ. It remains to verify the tricky assertion (3c) of Assumptions 4.1. This will be
implied by condition (iii) in Theorem 2.9. We first claim that the estimate (2.17) in
(iii) of Theorem 2.9 yields, for any θ ∈ (0, 1/4), the following one:

‖B∗eA
∗tA∗θy0‖Lq(0,T ;L2(Γs)) ≤ C|y0|Y , y0 ∈ D(A∗θ) , 1 < q <

4

3 + 4θ
. (4.4)

This is easily seen if one just observes that if y0 ∈ D(A∗θ) one has

B∗eA
∗tA∗θy0 = B∗eA

∗tA∗ (A∗θ−1y0) = B∗ d

dt
eA

∗tz0 = ût|Γs ,

where now z0 := A∗θ−1y0 ∈ D(A∗1−θ). Then, in view of the assumption (3b) on the
observation operator R, one concludes

‖B∗eA
∗tRR∗Aθy0‖Lq(0,T ;L2(Γs)) = ‖B∗eA

∗tA∗θA∗−θRR∗Aθy0‖Lq(0,T ;L2(Γs))

≤ C|y0|Y , y0 ∈ D(Aθ) ,

i.e. condition (3c) is satisfied with ǫ = θ, 0 < θ < 1/4, for any q such that 1 < q <
4/(3 + 4θ). This completes the proof of Theorem 2.6.

A Appendix

For completeness’ sake and for the reader’s convenience we record some results shown
in [7] and in [26], which are used frequently or critically in the proof of our main result.

Lemma A.1 ([26]). The Green (Neumann) map N : L2(Γs) → H satisfies the follow-
ing regularity results.
(i) One has N∗Au = −u|Γs , u ∈ V , where the adjoint is computed with respect to the
L2-topology.
(ii) N ∈ L(L2(Γs),D(A3/4−δ)) ∩ L(H−1/2(Γs),D(A1/2)) for any δ, 0 < δ < 3

4 .

Lemma A.2 ([7, 26]). Let (w0, w1) ∈ Hα+1(Ωs) ×Hα(Ωs), with 0 ≤ α ≤ 1
4 , and let

f ∈ L2(0, T ;H
1/2(Γs)). Then, the solution of the initial/boundary value problem







wtt − div σ(w) = 0 in Qs

d
dtw|Γs = f on Σs

w(0, ·) = w0 , wt(0, ·) = w1 in Ωs

(A.1)

can be decomposed as w = w1 + w2, where σ(w1) · ν ∈ C([0, T ],H−1/2(Γs)), while
σ(w2) · ν ∈ L2(0, T ;L2(Γs)). If, in addition, f ∈ Hα(Σs), then σ(w2) · ν ∈ Hα(Σs).
Moreover, the following estimates hold true.

‖σ(w1) · ν‖
2
C([0,T ],H−1/2(Γs))

≤ C1

(
|w0|

2
1,Ωs

+ |w1|
2
0,Ωs

+ |f |L2(0,T ;H1/2(Γs))

)

‖σ(w2) · ν‖
2
Hα(Σs))

≤ C2

(
|w0|

2
1+α,Ωs

+ |w1|
2
α,Ωs

+ |f |Hα(Σs))

)
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Lemma A.3 ([26]). Consider the uncontrolled counterpart of the PDE problem (2.1),
that is (2.1) with g ≡ 0. Let initial data satisfy (u0, w0, w1) ∈ L2(Ωf ) ×H1+α(Ωs) ×
Hα(Ωs), 0 ≤ α ≤ 1

4 . Then, for any T < ∞ we have u|Γs ∈ Hα(Σs) and the following
estimate holds true:

|u|2Hα(Σs)
≤ C

(
|u0|

2
0,Ωf

+ |w0|
2
1+α,Ωs

+ |w1|
2
α,Ωs

)
. (A.2)

Remark A.4. It it important to emphasize that the original proof of Lemma A.3
(given in [26, Lemma 5.3]) established local (in time) regularity for any T ≤ T0, with
sufficiently small T0. However, a slight variant of the proof yields the estimate (A.2)
without any constraint on T (provided it is finite). Indeed, it is sufficient to observe
that the inequality (58) in the original proof, that is

|U3|Hα(Σs) ≤ K
(
|u|Hα(Σs)T

1+2ǫ ++|w0|1+α,Ωs + |w1|α,Ωs

)
, (A.3)

can be actually improved to

|U3|Hα(Σs) ≤ ǫ|u|Hα(Σs) + Cǫ|u|L2(Σs) +K
(
|w0|1+α,Ωs + |w1|α,Ωs

)
.

The above estimate follows as a consequence of the following interpolation inequality,

∫ T

0
|Dα−ǫ

t u|2L2(Γs)
dt ≤ ǫ

∫ T

0
|Dα

t u|
2
L2(Γs)

dt+Cǫ|u|
2
L2(Γs)

dt ,

which makes it possible to avoid the use of T 1/p in order to control the size of the
principal term in the estimates preceding (A.3).

References

[1] Acquistapace P., Bucci F., Lasiecka I.: A trace regularity result for thermoelastic
equations with application to optimal boundary control. J. Math. Anal. Appl.
310(1, 262–277) (2005).

[2] Acquistapace P., Bucci F., Lasiecka I.: Optimal boundary control and Riccati
theory for abstract dynamics motivated by hybrid systems of PDEs. Adv. Differ-
ential Equations 10(12), 1389–1436 (2005).

[3] Avalos G., Lasiecka I.: Differential Riccati equation for the active control of a
problem in structural acoustics. J. Optim. Theory Appl. 91(3), 695–728 (1996).

[4] Avalos G., Triggiani R.: The coupled PDE system arising in fluid/structure in-
teraction, I. Explicit semigroup generator and its spectral properties. Contemp.
Math. 440, 15–54 (2007).

[5] Avalos G., Triggiani R.: Mathematical analysis of PDE systems which govern
fluid-structure interactive phenomena. Bol. Soc. Paran. Mat. 25, 17–36 (2007).

19



[6] Avalos G., Triggiani R.: Uniform stabilization of a coupled PDE system arising
in fluid-structure interaction with boundary dissipation at the interface. Discrete
Contin. Dyn. Syst. 22(4), 817–833 (2008).
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