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Abstract
We consider nonnegative 𝜎-finite measure spaces cou-
pled with a proper functional 𝑃 that plays the role of
a perimeter. We introduce the Cheeger problem in this
framework and extend many classical results on the
Cheeger constant and on Cheeger sets to this setting,
requiring minimal assumptions on the pair measure
space perimeter. Throughout the paper, the measure
space will never be asked to be metric, at most topo-
logical, and this requires the introduction of a suitable
notion of Sobolev spaces, induced by the coarea formula
with the given perimeter.
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1 INTRODUCTION

In the Euclidean framework, the Cheeger constant of a given set Ω ⊂ ℝ𝑛 is defined as

ℎ(Ω) = inf

{
𝑃(𝐸)

ℒ𝑛(𝐸)
∶ 𝐸 ⊂ Ω,ℒ𝑛(𝐸) > 0

}
,
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where ℒ𝑛(𝐸) and 𝑃(𝐸), respectively, denote the 𝑛-dimensional Lebesgue measure of 𝐸 and the
variational perimeter of 𝐸. The constant was first introduced by Jeff Cheeger in a Riemannian
setting as a way to bound from below the first eigenvalue of the Laplace–Beltrami operator [62].
The argument proposed is sound and robust, as noticed even earlier by Maz’ya [102, 103] (an
English translation is available in [80]).
In the past decades, theCheeger constant has been extensively studied in view of itsmany appli-

cations: the lower bounds on the first eigenvalue of theDirichlet𝑝-Laplacian operator [88] and the
equivalence of such an inequality with Poincaré’s one [104] (up to some convexity assumptions);
the relation with the torsion problem [32, 33]; the existence of sets with prescribed mean curva-
ture [5, 95]; the existence of graphs with prescribed mean curvature [77, 94]; the reconstruction of
noisy images [46, 60, 73, 113]; the minimum flow-maximum cut problem [79, 117]; and its medical
applications [16]. In addition, the Cheeger constant has been employed in elastic-plastic models
of plate failure [90] and (its Euclidean-weighted variant) has found applications to Bingham flu-
ids [83] and landslide models [84]. Moreover, the Cheeger constant of a square has been recently
used to provide an elementary proof of the Prime Number Theorem [17]. For more literature and
a general overview of the problem, we refer the interested reader to the two surveys [91, 112].
Because of its numerous applications, several authors have been drawn to the subject and

started to investigate the constants and the above-mentioned links with other problems in sev-
eral frameworks: weighted Euclidean spaces [7, 26, 96, 114]; finite-dimensional Gaussian spaces
[51, 86]; anisotropic Euclidean and Riemannian spaces [8, 21, 49, 89]; the fractional perimeter [28]
or nonsingular nonlocal perimeter functionals [100]; Carnot groups [108]; 𝖱𝖢𝖣-spaces [70, 71];
and lately smooth metric-measure spaces [1].
In the settingsmentioned above, the proofsmostly follow those available in the usual Euclidean

space. In the present paper, we are interested in pinpointing the minimal assumptions needed
on the space and on the perimeter functional in order to establish the fundamental properties
of Cheeger sets, as well as the links to other problems. In the following, we shall be interested
in nonnegative 𝜎-finite measure spaces endowed with a perimeter functional satisfying some
suitable assumptions.
Our approach fits into a broader current of research that has gained popularity in the past

decade, aiming to study variational problems, well known in the Euclidean setting, in general
spaces under the weakest possible assumptions. Quite often, the ambient space is a (metric) mea-
sure spaces. For example, such a general point of view has been adopted for the variational mean
curvature of a set [19], for shape optimization problems [37], for Anzellotti–Gauss–Green formu-
las [78], for the total variation flow [34, 35], and, very recently, for the existence of isoperimetric
clusters [111].

1.1 Structure of the paper and results

In Section 2, we introduce the basic setting of perimeter 𝜎-finite measure spaces, that is, non-
negative 𝜎-finite measure spaces (𝑋,𝒜,𝔪) endowed with a proper functional 𝑃∶ 𝒜 → [0,+∞]

possibly satisfying suitable properties (P.1)–(P.7) that we shall require from time to time.
A considerable effort goes toward defining 𝐵𝑉 functions in measure spaces, where a metric is

not available. Indeed, usually, the perimeter functional is induced by the metric. In our setting,
instead, only a perimeter functional is at disposal, so we use it to define 𝐵𝑉 functions by defining
the total variation via the coarea formula with the given perimeter.
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To properly define Sobolev functions, we need a slightly richer structure, requiring themeasure
space to be endowed with a topology, and the perimeter functional 𝑃(⋅) to arise from a relative
(with respect to open sets 𝐴) perimeter functional 𝑃( ⋅ ; 𝐴). By using the relative perimeter, we
refine the notion of 𝐵𝑉 function by requiring that the variation is a finite measure. This, in turn,
allows us to define𝑊1,1 functions as 𝐵𝑉 functions whose variation is absolutely continuous with
respect to the reference measure. Afterward, via relaxation, we can define𝑊1,𝑝 functions for any
𝑝 ∈ (1, +∞). For a more detailed overview, we refer the reader to Section 1.1.3 and Section 1.1.4.
Once the general framework is set, we then shall start to tackle the problem of our interest.

1.1.1 Definition and existence

In Section 3, we define the Cheeger constant of a set Ω in terms of the ratio of the perimeter
functional and the measure the space is endowed with. Actually, in a more general vein similar
to that of [48], we shall define the 𝑁-Cheeger constant as

ℎ𝑁(Ω) = inf

{
𝑁∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) ∶  = {(𝑖)}𝑁

𝑖=1
⊂ Ω is an 𝑁-cluster

}
,

where, as usual, an𝑁-cluster is an𝑁-tuple of pairwise disjoint subsets ofΩ, called chambers, each
of which with positive finite measure and finite perimeter.
In Theorem 3.6, we provide a general existence result. Unsurprisingly, the key assumptions on

the perimeter are the lower semicontinuity and the compactness of its sublevelswith respect to the
𝐿1 norm, besides an isoperimetric-type property that prevents minimizing sequences to converge
toward sets with null𝔪-measure.
Further, we provide inequalities between the 𝑁-Cheeger and𝑀-Cheeger constants and prove

some basic properties of 𝑁-Cheeger sets, with a particular attention to the case 𝑁 = 1.

1.1.2 Link to sets with prescribed mean curvature

In Section 4, we introduce the notion of 𝑃-mean curvature in the spirit of [19]. With this notion
at our disposal, we show that any 1-Cheeger set has ℎ1(Ω) as one of its 𝑃-mean curvatures, see
Corollary 4.3. An analogous result holds for the chambers of an𝑁-cluster minimizing ℎ𝑁(Ω), see
Corollary 4.4.
In Theorem 4.5, we investigate the link between ℎ1(Ω) and the existence of nontrivial

minimizers of the prescribed 𝑃-curvature functional

𝜅[𝐹] = 𝑃(𝐹) − 𝜅𝔪(𝐹),

where 𝜅 is a fixed positive constant, among subsets 𝐹 ⊂ Ω. Such a functional, again requiring the
lower semicontinuity and the 𝐿1 compactness of sublevel sets of the perimeter, has minimizers.
If, additionally, one assumes that the perimeter functional satisfies 𝑃(∅) = 0, then ℎ1(Ω) acts as a
threshold for the existence of nontrivial minimizers, that is, for 𝜅 < ℎ1(Ω), negligible sets are the
only minimizers, while for 𝜅 > ℎ1(Ω), nontrivial minimizers exist.
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4 of 55 FRANCESCHI et al.

1.1.3 Link to the first eigenvalue of the Dirichlet 1-Laplacian

In the Euclidean space, one defines the first eigenvalue of the Dirichlet 1-Laplacian in a variational
way as the infimum

𝜆1,1(Ω) = inf

⎧⎪⎨⎪⎩
∫Ω |∇𝑢|d𝑥

‖𝑢‖1 ∶ 𝑢 ∈ C1
𝑐(Ω), ‖𝑢‖1 > 0

⎫⎪⎬⎪⎭ . (1.1)

In Section 5, we investigate the relation between the 1-Cheeger constant and a suitable
reformulation of the constant 𝜆1,1(Ω) in our abstract context.
In the Euclidean setting [88] and, actually, in the more general anisotropic central-symmetric

Euclidean setting [89], the constant 𝜆1,1(Ω) coincides with ℎ1(Ω), provided that the boundary
of the set Ω is sufficiently smooth (e.g., Lipschitz regular). In particular, one can equivalently
consider either smooth functions or 𝐵𝑉-regular functions. Moreover, because of the smoothness
of the boundary of Ω, it holds that 𝐵𝑉(Ω) = 𝐵𝑉0(Ω), where

𝐵𝑉0(Ω) = {𝑢 ∈ BV(ℝ𝑛) ∶ 𝑢 = 0 a.e. on ℝ𝑛 ⧵ Ω} ,

see, for example, [48, Rem. 1.1] or [46]. Thus, under some regularity assumptions on Ω, one can
equivalently restate the problem in (1.1) as

𝜆1,1(Ω) = inf

⎧⎪⎨⎪⎩
∫ℝ𝑛

d|Du|
‖𝑢‖1 ∶ 𝑢 ∈ 𝐵𝑉0(ℝ

𝑛), ‖𝑢‖1 > 0

⎫⎪⎬⎪⎭ . (1.2)

On a general set Ω in the Euclidean space, the infimum in (1.2) is less than or equal to that
in (1.1), since one only has the inclusion 𝐵𝑉(Ω) ⊂ 𝐵𝑉0(Ω).
In a (possibly nonmetric) perimeter-measure space, the constant 𝜆1,1(Ω) has to be suitably

defined, since neither a notion of derivative (needed to state (1.1)) nor integration-by-parts formu-
las (needed to define 𝐵𝑉 functions and thus state (1.2)) are at disposal. To overcome this difficulty,
we adopt the usual point of view [59, 122, 123] and define the total variation of a function via the
(generalized) coarea formula

Var(𝑢) = ∫ℝ

𝑃({𝑢 > 𝑡}) d𝑡, (1.3)

provided that the function 𝑡 ↦ 𝑃({𝑢 > 𝑡}) isℒ1-measurable, and define the relevant 𝐵𝑉 space as
that of those 𝐿1 functions with finite total variation. For more details, we refer the reader to our
Section 2.2.
This approach allows us to consider problem (1.2) without any underlying metric structure. In

addition, no regularity of the set Ω is required, since there is no need for the problem (1.2) to be
equivalent to its regular counterpart (1.1) that, in the present abstract framework, cannot be even
formally stated.
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CHEEGER PROBLEM IN MEASURE SPACES 5 of 55

With this notion of total variation at hand, we prove that the constant 𝜆1,1(Ω) coincides with
the 1-Cheeger constant ℎ1(Ω) under minimal assumptions on the perimeter, that is, we require
that the perimeter of negligible sets and of the whole space is zero, the perimeter is lower semi-
continuous with respect to the 𝐿1 norm, and that the perimeter of a set coincides with that of its
complement set, see Theorem 5.4. Moreover, we prove some inequalities relating the 𝑁-Cheeger
constant ℎ𝑁(Ω)with a cluster counterpart of (1.2). As observed in Remark 5.9, if one slightly mod-
ifies the definition of 𝜆1,1(Ω) by considering nonnegative functions as the only competitors, then
one can obtain the relation with the Cheeger constant even for perimeter functionals that are not
symmetric with respect to the complement-set operation.

1.1.4 Link to the Dirichlet 𝑝-Laplacian and the 𝑝-torsion

In the Euclidean space, the 1-Cheeger constant comes into play in estimating some quantities
related to the Laplace equation and to the torsional creep equation. More precisely, it provides
lower bounds on the first eigenvalue of the Dirichlet 𝑝-Laplacian for 𝑝 > 1 and to the 𝐿1 norm of
the𝑝-torsional creep function. In Section 6,we extend these results to ourmore general framework.
Both these problems require an extensive preliminary work to define Sobolev spaces in our

general (nonmetric) context. In order to do so, we need a little more structure on the perimeter-
measure space: we require it to be endowed with a topology, we require the class of measurable
sets to be that of Borel sets, and we require the perimeter 𝑃(⋅) to stem from a relative perimeter
when evaluated relatively to the whole space 𝑋.
We here quickly sketch how we construct these Sobolev spaces, and we refer the interested

reader to Section 2.3. A relative perimeter functional allows, again via the relative coarea formula
in a similar fashion to (1.3), to define the relative variation of an 𝐿1 function 𝑢 with respect to
a measurable set. When this happens to define a measure, we shall say that the function is in
𝖡𝖵(𝑋,𝔪), and this extends the notion briefly discussed in Section 1.1.3 and formally introduced
in Section 2.2.When thismeasure happens to be absolutely continuouswith respect to𝔪, we shall
say that the function is in𝖶1,1(𝑋,𝔪) and that the density of the measure with respect to𝔪 is the
1-slope of 𝑢. Via approximation arguments, one can then define the 𝑝-slope of a function and the
associated 𝖶1,𝑝(𝑋,𝔪) spaces. In turn, the approximation properties allow to define the Sobolev
space𝖶1,𝑝

0
(Ω,𝔪), refer to Definition 6.1.

Summing up, Sobolev spaces can be built as induced by a relative perimeter on the topological
perimeter-measure space. Once this notion is available, one can define the first eigenvalue of the
Dirichlet 𝑝-Laplacian for 𝑝 > 1 in an analogous manner to the standard, Euclidean one. In the
classical setting, similarly to (1.1), one defines

𝜆1,𝑝(Ω) = inf

⎧⎪⎨⎪⎩
∫Ω |∇𝑢|𝑝d𝑥

‖𝑢‖𝑝𝑝 ∶ 𝑢 ∈ C1
𝑐(Ω), ‖𝑢‖𝑝 > 0

⎫⎪⎬⎪⎭ . (1.4)

In our setting,we cannot directly consider (1.4), since nonotion of derivative is available.However,
the natural space of competitors of such a problem is the classical space of 𝑊1,𝑝

0
(Ω) functions,

and we do have an analogous notion of Sobolev space at our disposal, and thus, such a way is
viable.
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6 of 55 FRANCESCHI et al.

In Euclidean settings [88, 89], it is known that the inequality(
ℎ1(Ω)

𝑝

)𝑝

⩽ 𝜆1,𝑝(Ω)

holds. In Theorem 6.3 and Corollary 6.4, we prove that this inequality naturally extends
to our general framework, provided that the relative perimeter satisfies some general
assumptions.
Finally, we recall that the 𝑝-torsional creep function is the solution of the PDE with

homogeneous Dirichlet boundary datum{
−Δ𝑝𝑢 = 1, in Ω,

𝑢 = 0, on 𝜕Ω,
(1.5)

where−Δ𝑝 is the𝑝-Laplace operator. It is known [32] that the solution𝑤𝑝 of the PDE (1.5) satisfies

ℎ1(Ω) ⩽ 𝑝

(
ℒ𝑛(Ω)‖𝑤𝑝‖1

) 𝑝−1

𝑝

. (1.6)

As usual, we cannot directly consider (1.5), but we can work with the underlying Euler–
Lagrange energy among functions in the Sobolev spaces we defined. In particular, we can prove
that minimizers of the energy, if they exist, satisfy (1.6) up to a slightly worse prefactor of

𝑝
1+ 1

𝑝 , refer to Theorem 6.5, provided that the relative perimeter satisfies some very general
properties.

1.1.5 Examples

In the last section of the paper, we collect several examples of spaces that meet our hypotheses. In
particular, our very general approach basically covers all results known so far about the existence
of Cheeger sets in finite-dimensional spaces, and the relation of the constant with the first eigen-
value of the Dirichlet 𝑝-Laplacian in numerous contexts. In some of the frameworks presented in
Section 7, the results are new, up to our knowledge.
Unfortunately, our approach does not cover the case of the infinite-dimensional Wiener space.

In this case, one can suitably define the Cheeger constant and prove the existence of Cheeger sets.
Nonetheless, this requires ad hoc notions of 𝐵𝑉 function and of perimeter that are quite different
from the ones adopted in the present paper. We refer the interested reader to [51, Sect. 6] for a
more detailed exposition about this specific framework.

2 PERIMETER-MEASURE SPACES

The basic setting is that of nonnegative 𝜎-finite measure spaces (𝑋,𝒜,𝔪). We set that, for any
𝐴, 𝐵 ∈ 𝒜, by 𝐴 ⊂ 𝐵, we mean that𝔪(𝐴 ⧵ 𝐵) = 0. We also let 𝐿0(𝑋,𝔪) be the vector space of𝔪-
measurable functions, and, for𝑝 ⩾ 1, we let 𝐿𝑝(𝑋,𝔪) be the usual space of𝑝-integrable functions,
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CHEEGER PROBLEM IN MEASURE SPACES 7 of 55

that is,

𝐿𝑝(𝑋,𝔪) =

{
𝑢 ∈ 𝐿0(𝑋,𝔪) ∶ ∫𝑋 |𝑢|𝑝 d𝔪 < +∞

}
.

As usual, we identify𝔪-measurable functions coinciding𝔪-a.e. on 𝑋. In case 𝑋 is endowed with
a topology𝒯 ⊂ 𝒫(𝑋), we letℬ(𝑋) be the Borel 𝜎-algebra generated by𝒯 and, in this case, we
shall assume that𝒜 = ℬ(𝑋).

2.1 Perimeter functional

In the same spirit of [19, Sect. 3], we introduce the following definition.

Definition 2.1. A perimeter functional 𝑃(⋅) is any map

𝑃∶ 𝒜 → [0,+∞], (2.1)

which is proper, that is, 𝑃(𝐴) < +∞ for some𝐴 ∈ 𝒜. In this case, we call (𝑋,𝒜,𝔪, 𝑃) a perimeter-
measure space.

Throughout the paper, we will assume that the perimeter will satisfy some of the following
properties:

(P.1) 𝑃(∅) = 0;
(P.2) 𝑃(𝑋) = 0;
(P.3) 𝑃(𝐸 ∩ 𝐹) + 𝑃(𝐸 ∪ 𝐹) ⩽ 𝑃(𝐸) + 𝑃(𝐹) for all 𝐸, 𝐹 ∈ 𝒜;
(P.4) 𝑃 is lower semicontinuous with respect to the 𝐿1(𝑋,𝔪) convergence;
(P.5) for any Ω ∈ 𝒜 with𝔪(Ω) < +∞, the family

{𝜒𝐸 ∶ 𝐸 ∈ 𝒜, 𝐸 ⊂ Ω, 𝑃(𝐸) ⩽ 𝑐}

is compact in 𝐿1(𝑋,𝔪) for all 𝑐 ⩾ 0;
(P.6) there exists a function 𝑓∶ (0, +∞) → (0, +∞) such that

lim
𝜀→0+

𝑓(𝜀) = +∞

with the following property: if 𝜀 > 0 and 𝐸 ∈ 𝒜 with𝔪(𝐸) ⩽ 𝜀, then 𝑃(𝐸) ⩾ 𝑓(𝜀)𝔪(𝐸);
(P.7) 𝑃(𝐸) = 𝑃(𝑋 ⧵ 𝐸) for all 𝐸 ∈ 𝒜.

Assuming property (P.7) true, properties (P.1) and (P.2) become equivalent. Throughout the
paper, we often refer to (P.6) as an isoperimetric property. Notice that, in case an isoperimetric
inequality 𝑃(𝐸) ⩾ 𝐶𝔪(𝐸)

𝑄−1
𝑄 holds true for suitable 𝑄 > 1 and 𝐶 > 0, and for all 𝐸 ∈ 𝒜 with

𝔪(𝐸) < +∞, then (P.6) clearly follows. Depending on the situation, it could be more convenient
to prove (P.6) directly or to rely on a finer isoperimetric-type inequality, see Section 7. We remark
that all the properties listed above will appear every now and then throughout the paper, but they
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8 of 55 FRANCESCHI et al.

are not enforced throughout — every statement will precisely contain the bare minimum for its
validity.

Remark 2.2 (𝑃 is invariant under 𝔪-negligible modifications). Let property (P.4) be in force. If
𝐴, 𝐵 ∈ 𝒜 are such that𝔪(𝐴△ 𝐵) = 0, then𝑃(𝐴) = 𝑃(𝐵). To see this, consider anymeasurable set
𝐸 and any𝔪-negligible set𝑁, look at the constant sequence {𝐸 ∪ 𝑁}𝑘 converging to𝐸 in 𝐿1(𝑋,𝔪),
and at the constant one {𝐸}𝑘 converging to 𝐸 ∪ 𝑁 and exploit (P.4).

Remark 2.3. Let property (P.6) be in force. If 𝑃(𝐸) = 0, then the set 𝐸 is 𝔪-negligible, that is,
𝔪(𝐸) = 0. Conversely, if𝔪(𝐸) > 0, then 𝑃(𝐸) ∈ (0, +∞]. Thus, property (P.6) says that the only
sets with finite measure that could possibly have zero perimeter are𝔪-negligible sets. Moreover,
if properties (P.1) and (P.4) are in force as well, then𝔪-negligible sets have zero perimeter, thanks
to Remark 2.2.

2.2 Variation and 𝑩𝑽 functions

We define the variation of a function 𝑢 ∈ 𝐿0(𝑋,𝔪) as

Var(𝑢) =

⎧⎪⎨⎪⎩
∫ℝ

𝑃({𝑢 > 𝑡})d𝑡, if 𝑡 ↦ 𝑃({𝑢 > 𝑡}) isℒ1-measurable,

+∞, otherwise.
(2.2)

With this notation at hand, we let

𝐵𝑉(𝑋,𝔪) =
{
𝑢 ∈ 𝐿1(𝑋,𝔪) ∶ Var(𝑢) < +∞

}
(2.3)

be the set of 𝐿1 functions with bounded variation.
We begin with the following result, proving that assuming the validity of properties (P.1)

and (P.2), the variation coincides with the perimeter functional on characteristic functions.

Lemma 2.4 (Total variation of sets). Let properties (P.1) and (P.2) be in force. If 𝐸 ∈ 𝒜, then
Var(𝜒𝐸) = 𝑃(𝐸).

Proof. By definition, (P.1), and (P.2), the function

𝑡 ↦ 𝑃({𝜒𝐸 > 𝑡}) =

⎧⎪⎨⎪⎩
𝑃(𝑋), 𝑡 ⩽ 0,

𝑃(𝐸), 0 < 𝑡 ⩽ 1,

𝑃(∅), 𝑡 > 1,

isℒ1-measurable, so that

Var(𝜒𝐸) = ∫ℝ

𝑃({𝜒𝐸 > 𝑡}) d𝑡 = ∫
1

0

𝑃(𝐸) d𝑡 = 𝑃(𝐸),

in virtue of (P.1) and (P.2). □
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CHEEGER PROBLEM IN MEASURE SPACES 9 of 55

Remark 2.5. As an immediate consequence of Lemma 2.4, if (P.1) and (P.2) are in force, then
Var∶ 𝐿0(𝑋,𝔪) → [0, +∞] is a proper functional and 𝜒𝐸 ∈ 𝐵𝑉(𝑋,𝔪) whenever 𝐸 ∈ 𝒜 is such
that𝔪(𝐸) < +∞ and 𝑃(𝐸) < +∞. In particular, 0 ∈ 𝐵𝑉(𝑋,𝔪) with Var(0) = 0.

The following result rephrases [59, Prop. 3.2] in the present context.

Lemma 2.6 (Basic properties of total variation). The following hold:

(i) Var(𝜆𝑢) = 𝜆 Var(𝑢) for all 𝜆 > 0 and 𝑢 ∈ 𝐿0(𝑋,𝔪);
(ii) Var(𝑢 + 𝑐) = Var(𝑢) for all 𝑐 ∈ ℝ and 𝑢 ∈ 𝐿0(𝑋,𝔪);
(iii) if (P.1) and (P.2) are in force, then Var(𝑐) = 0 for all 𝑐 ∈ ℝ;
(iv) if (P.4) is in force, then Var∶ 𝐿1(𝑋,𝔪) → [0, +∞] is lower semicontinuous with respect to the

(strong) convergence in 𝐿1(𝑋,𝔪).

Proof. The proofs of the first three points are natural consequences of the definition.
Proof of (iv). Let 𝑢𝑘, 𝑢 ∈ 𝐿1(𝑋,𝔪) be such that 𝑢𝑘 → 𝑢 in 𝐿1(𝑋,𝔪) as 𝑘 → +∞. Without loss of

generality, we can assume that

lim inf
𝑘→+∞

Var(𝑢𝑘) < +∞,

so that, up to possibly passing to a subsequence (which we do not relabel for simplicity), we have
Var(𝑢𝑘) < +∞ for all 𝑘 ∈ ℕ. Following [98, Rem. 13.11], one has

‖𝑢𝑘 − 𝑢‖1 = ∫ℝ

𝔪({𝑢𝑘 > 𝑡}△ {𝑢 > 𝑡}) d𝑡,

thus, we immediately deduce that 𝜒{𝑢𝑘>𝑡}
→ 𝜒{𝑢>𝑡} in 𝐿1(𝑋,𝔪) as 𝑘 → +∞ for ℒ1-a.e. 𝑡 ∈ ℝ.

Thanks to property (P.4), we have that

𝑃({𝑢 > 𝑡}) ⩽ lim inf
𝑘→+∞

𝑃({𝑢𝑘 > 𝑡})

for ℒ1-a.e. 𝑡 ∈ ℝ, and the map 𝑡 ↦ 𝑃({𝑢 > 𝑡}) is also ℒ1-measurable. Therefore, by Fatou’s
lemma, we conclude that

Var(𝑢) = ∫ℝ

𝑃({𝑢 > 𝑡}) d𝑡 ⩽ ∫ℝ

lim inf
𝑘→+∞

𝑃({𝑢𝑘 > 𝑡}) d𝑡

⩽ lim inf
𝑘→+∞

Var(𝑢𝑘) < +∞,

proving (iv). □

The following result, which can be proved as in [59] up to minor modifications, states that the
variation functional is convex as soon as the perimeter functional is sufficiently well behaved.

Proposition 2.7 (Convexity of variation). Let properties (P.1), (P.2), (P.3), and (P.4) be in force. Then,
Var∶ 𝐿1(𝑋,𝔪) → [0, +∞] is convex. As a consequence, 𝐵𝑉(𝑋,𝔪) is a convex cone in 𝐿1(𝑋,𝔪).
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10 of 55 FRANCESCHI et al.

2.3 Relative perimeter and relative variation

In this subsection, we assume that the set 𝑋 is endowed with a topology𝒯 such that𝒜 = ℬ(𝑋),
the Borel 𝜎-algebra generated by𝒯.

Definition 2.8. A relative perimeter functional 𝖯 is any map

𝖯∶ ℬ(𝑋) ×ℬ(𝑋) → [0, +∞]. (2.4)

Throughout the paper,wewill assume that a relative perimeterwill satisfy someof the following
properties:

(RP.1) 𝖯(∅; 𝐴) = 0 for all 𝐴 ∈ 𝒯;
(RP.2) 𝖯(𝑋;𝐴) = 0 for all 𝐴 ∈ 𝒯;
(RP.3) 𝖯(𝐸 ∩ 𝐹;𝐴) + 𝖯(𝐸 ∪ 𝐹;𝐴) ⩽ 𝖯(𝐸;𝐴) + 𝖯(𝐹;𝐴) for all 𝐸, 𝐹 ∈ ℬ(𝑋) and 𝐴 ∈ 𝒯;
(RP.4) for each 𝐴 ∈ 𝒯, 𝖯(⋅ ; 𝐴) is lower semicontinuous with respect to the (strong) convergence

in 𝐿1(𝑋,𝔪).

We stress that in the properties above, the perimeter is relative to an open set 𝐴, and not to a
general element of the Borel 𝜎-algebra.
Moreover, following the same idea of Section 2.2, we let

𝖵𝖺𝗋(𝑢; 𝐴) =

⎧⎪⎨⎪⎩
∫ℝ

𝖯({𝑢 > 𝑡}; 𝐴) d𝑡, if 𝑡 ↦ 𝖯({𝑢 > 𝑡}; 𝐴) isℒ1-meas.,

+∞, otherwise,
(2.5)

be the variation of 𝑢 ∈ 𝐿0(𝑋,𝔪) relative to𝐴 ∈ ℬ(𝑋). In analogy with the approach developed in
the previous sections, for each 𝐴 ∈ 𝒯, one can regard the map

𝖯(⋅ ; 𝐴)∶ ℬ(𝑋) → [0, +∞]

as a particular instance of the perimeter functional introduced in (2.1). Specifically, we use the
notation

𝑃(𝐸) = 𝖯(𝐸; 𝑋), Var(𝑢) = 𝖵𝖺𝗋(𝑢; 𝑋), (2.6)

for all𝐸 ∈ ℬ(𝑋) and 𝑢 ∈ 𝐿0(𝑋,𝔪), andwe consider𝑃(𝐸) as the perimeter of𝐸 in the sense of Sec-
tion 2.1. Analogously,Var(𝑢) stands as the variation of 𝑢 in the sense of Section 2.2. Consequently,
the space

𝐵𝑉(𝑋,𝔪) =
{
𝑢 ∈ 𝐿1(𝑋,𝔪) ∶ 𝖵𝖺𝗋(𝑢; 𝑋) < +∞

}
is the space defined in (2.3).
Below, we rephrase Lemma 2.4, Lemma 2.6, and Proposition 2.7 in the present setting. Their

proofs are omitted, because they are similar to those already given or referred to.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12840 by G

iorgio Saracco - C
ochraneItalia , W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHEEGER PROBLEM IN MEASURE SPACES 11 of 55

Lemma 2.9 (Relative variation of sets). Let properties (RP.1) and (RP.2) be in force. If 𝐸 ∈ ℬ(𝑋),
then 𝖵𝖺𝗋(𝜒𝐸; 𝐴) = 𝖯(𝐸;𝐴) for all 𝐴 ∈ 𝒯.

Lemma 2.10 (Basic properties of relative variation). The following hold:

(i) 𝖵𝖺𝗋(𝜆𝑢;𝐴) = 𝜆𝖵𝖺𝗋(𝑢; 𝐴) for all 𝜆 > 0, 𝐴 ∈ 𝒯, and 𝑢 ∈ 𝐿0(𝑋,𝔪);
(ii) 𝖵𝖺𝗋(𝑢 + 𝑐; 𝐴) = 𝖵𝖺𝗋(𝑢; 𝐴) for all 𝐴 ∈ 𝒯, 𝑐 ∈ ℝ, and 𝑢 ∈ 𝐿0(𝑋,𝔪);
(iii) if (RP.1) and (RP.2) are in force, then 𝖵𝖺𝗋(𝑐; 𝐴) = 0 for all 𝑐 ∈ ℝ and 𝐴 ∈ 𝒯;
(iv) if (RP.4) is in force, then, for each𝐴 ∈ 𝒯, the relative variation𝖵𝖺𝗋(⋅ ; 𝐴)∶ 𝐿1(𝑋,𝔪) → [0, +∞]

is lower semicontinuous with respect to the (strong) convergence in 𝐿1(𝑋,𝔪).

Proposition 2.11 (Convexity of relative variation). Let properties (RP.1), (RP.2), (RP.3),
and (RP.4) be in force. Then, for each 𝐴 ∈ 𝒯, the functional 𝖵𝖺𝗋(⋅ ; 𝐴)∶ 𝐿1(𝑋,𝔪) → [0, +∞] is
convex.

2.3.1 Variation measure

We now define the perimeter and variation measures by rephrasing the validity of the relative
coarea formula (2.5) in a measure-theoretic sense.

Definition 2.12 (Perimeter and variation measures). We say that a set 𝐸 ∈ ℬ(𝑋) has finite
perimeter measure if its relative perimeter

𝖯(𝐸; ⋅ )∶ ℬ(𝑋) → [0, +∞]

defines a finite outer regular Borel measure on 𝑋. We hence say that a function 𝑢 ∈ 𝐿0(𝑋,𝔪) has
finite variation measure if the set {𝑢 > 𝑡} has finite perimeter for ℒ1-a.e. 𝑡 ∈ ℝ and its relative
variation

𝖵𝖺𝗋(𝑢; ⋅ )∶ ℬ(𝑋) → [0, +∞)

defines a finite outer regular Borel measure on 𝑋.

Adopting the usual notation, if 𝐸 ∈ ℬ(𝑋) has finite perimeter measure, then we write
𝖯(𝐸;𝐴) = |𝖣𝜒𝐸|(𝐴) for all𝐴 ∈ ℬ(𝑋). Similarly, if𝑢 ∈ 𝐿0(𝑋,𝔪)has finite variationmeasure, then
we write 𝖵𝖺𝗋(𝑢; 𝐴) = |𝖣𝑢|(𝐴) for all 𝐴 ∈ ℬ(𝑋).
It is worth noticing that Definition 2.12 is well posed in the following sense. As soon

as properties (RP.1) and (RP.2) are in force, if 𝐸 ∈ ℬ(𝑋) has finite perimeter measure,
then 𝜒𝐸 ∈ 𝐿0(𝑋,𝔪) has finite variation measure with 𝖵𝖺𝗋(𝜒𝐸; ⋅ ) = 𝖯(𝐸; ⋅ ), since they are
outer regular Borel measures on 𝑋 agreeing on open sets. This is a simple consequence of
Lemma 2.9.
By Definition 2.12, if 𝑢 ∈ 𝐿0(𝑋,𝔪) has finite variation measure, then, for each 𝐴 ∈ ℬ(𝑋), we

have 𝖵𝖺𝗋(𝑢; 𝐴) < +∞, and thus,

𝑡 ↦ 𝖯({𝑢 > 𝑡}; 𝐴) ∈ 𝐿1(ℝ),
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12 of 55 FRANCESCHI et al.

so that we can write

|𝖣𝑢|(𝐴) = 𝖵𝖺𝗋(𝑢; 𝐴) = ∫ℝ

𝖯({𝑢 > 𝑡}; 𝐴) d𝑡 = ∫ℝ

|𝖣𝜒{𝑢>𝑡}|(𝐴) d𝑡.
Inmore general terms, we get the following extension of the relative coarea formula (2.5). Its proof
follows from a routine approximation argument (see [12], e.g.) and is thus omitted.

Corollary 2.13 (Generalized coarea formula). If 𝑢 ∈ 𝐿0(𝑋,𝔪) has finite variation measure, then

∫𝐴 𝜑 d|𝖣𝑢| = ∫ℝ ∫𝐴 𝜑 d|𝖣𝜒{𝑢>𝑡}| d𝑡
for all 𝜑 ∈ 𝐿0(𝑋,𝔪) and 𝐴 ∈ ℬ(𝑋).

Keeping the same notation used in the previous sections, we let

BV(𝑋,𝔪) =
{
𝑢 ∈ 𝐿1(𝑋,𝔪) ∶ 𝑢 has finite variation measure

}
.

Notice that although 𝖡𝖵(𝑋,𝔪) ⊂ 𝐵𝑉(𝑋,𝔪) and 𝐵𝑉(𝑋,𝔪) is a convex cone in 𝐿1(𝑋,𝔪), the set
𝖡𝖵(𝑋,𝔪)may not be a convex cone in 𝐿1(𝑋,𝔪) as well, since the validity of the implication

𝑢, 𝑣 ∈ 𝖡𝖵(𝑋,𝔪) ⇒ 𝑢 + 𝑣 has finite variation measure

is not automatically granted. For an example of such a phenomenon, we refer the interested
reader to the variation of intrinsic maps between subgroups of sub-Riemannian Carnot groups
[116, Rem. 4.2], but we will not enter into the details of this issue because it is out of the scope of
the present paper.
This being said, we introduce the following additional property for the relative perimeter 𝖯

in (2.4) requiring the closure of 𝖡𝖵(𝑋,𝔪) with respect to the sum of functions:

(RP.+) 𝑢, 𝑣 ∈ 𝖡𝖵(𝑋,𝔪) ⇒ 𝑢 + 𝑣 ∈ 𝖡𝖵(𝑋,𝔪).

We now outline some consequences of Lemma 2.10 and Proposition 2.11, and leave the simple
proofs of these statements to the interested reader, see also the proof of Lemma 2.6.

Corollary 2.14 (Basic properties of variation measure). Let properties (RP.1), (RP.2), (RP.3),
and (RP.4) be in force. The following hold:

(i) if 𝑢 ∈ 𝐿0(𝑋,𝔪) has finite variation measure, then 𝜆𝑢 has finite variation measure, with|𝖣(𝜆𝑢)| = 𝜆|𝖣𝑢|, for all 𝜆 > 0;
(ii) if 𝑢 ∈ 𝐿0(𝑋,𝔪) has finite variation measure, then 𝑢 + 𝑐 has finite variation measure, with|𝖣(𝑢 + 𝑐)| = |𝖣𝑢|, for all 𝑐 ∈ ℝ;
(iii) constant functions have finite variation measure and |𝖣𝑐| = 0 for all 𝑐 ∈ ℝ (in particular, 0 ∈

𝖡𝖵(𝑋,𝔪));
(iv) if {𝑢𝑘}𝑘∈ℕ ⊂ 𝖡𝖵(𝑋,𝔪) and 𝑢𝑘 → 𝑢 in 𝐿1(𝑋,𝔪) as 𝑘 → +∞ for some 𝑢 ∈ 𝖡𝖵(𝑋,𝔪), then

|𝖣𝑢|(𝐴) ⩽ lim inf
𝑘→+∞

|𝖣𝑢𝑘|(𝐴)
for all 𝐴 ∈ 𝒯;
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CHEEGER PROBLEM IN MEASURE SPACES 13 of 55

(v) if also property (RP.+) is in force and 𝑢, 𝑣 ∈ 𝖡𝖵(𝑋,𝔪), then

|𝖣(𝑢 + 𝑣)| ⩽ |𝖣𝑢| + |𝖣𝑣|
as outer regular Borel measures on 𝑋.

2.3.2 Chain rule

We now establish a chain rule for the variation measure of continuous functions. To this aim, we
need to assume the following locality property of the relative perimeter functional in (2.4):

(RP.L) 𝐸 ∈ 𝒯 ⇒ P(𝐸;𝐴) = 0 for all 𝐴 ∈ ℬ(𝑋) with P(𝐸;𝐴 ∩ 𝜕𝐸) = 0.

Loosely speaking, property (RP.L) states that, for any open set 𝐸 ⊂ 𝑋, the relative perimeter func-
tional 𝐴 ↦ 𝑃(𝐸;𝐴) is supported (in a measure-theoretic sense) on the topological boundary 𝜕𝐸
of the set 𝐸.

Theorem 2.15 (Chain rule). Let properties (RP.1), (RP.2), and (RP.L) be in force and let 𝜑 ∈ C1(ℝ)

be a strictly increasing function. If 𝑢 ∈ C0(𝑋) has finite variation measure, then also 𝜑(𝑢) ∈ C0(𝑋)

has finite variation measure, with

|𝖣𝜑(𝑢)| = 𝜑′(𝑢)|𝖣𝑢| (2.7)

as finite outer regular Borel measures on 𝑋.

Proof. Since 𝜑 is strictly increasing, its inverse function 𝜑−1 ∶ 𝜑(ℝ) → ℝ is well defined,
continuous and strictly increasing, and we can write

{𝜑(𝑢) > 𝑡} =

⎧⎪⎨⎪⎩
𝑋, if 𝑡 ⩽ inf 𝜑(ℝ),{
𝑢 > 𝜑−1(𝑡)

}
, if 𝑡 ∈ 𝜑(ℝ),

∅, if 𝑡 ⩾ sup𝜑(ℝ).

Therefore, the set {𝜑(𝑢) > 𝑡} has finite perimeter measure forℒ1-a.e. 𝑡 ∈ ℝ, with

|𝖣𝜒{𝜑(𝑢)>𝑡}| =
{|𝖣𝜒{𝑢>𝜑−1(𝑡)}|, if 𝑡 ∈ 𝜑(ℝ),

0, if 𝑡 ∉ 𝜑(ℝ).

Hence, given 𝐴 ∈ ℬ(𝑋), we have

𝑡 ↦ |𝖣𝜒{𝜑(𝑢)>𝑡}|(𝐴) = |𝖣𝜒{𝑢>𝜑−1(𝑡)}|(𝐴) 𝜒𝜑(ℝ)(𝑡) ∈ 𝐿1(ℝ),

and so,

𝖵𝖺𝗋(𝜑(𝑢); 𝐴) = ∫ℝ

|𝖣𝜒{𝜑(𝑢)>𝑡}|(𝐴) d𝑡 = ∫𝜑(ℝ) |𝖣𝜒{𝑢>𝜑−1(𝑡)}|(𝐴) d𝑡.
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14 of 55 FRANCESCHI et al.

Performing a change of variables, we can write

∫𝜑(ℝ) |𝖣𝜒{𝑢>𝜑−1(𝑡)}|(𝐴) d𝑡 = ∫ℝ

|𝖣𝜒{𝑢>𝑠}|(𝐴) 𝜑′(𝑠) d𝑠.
Now, since 𝑢 ∈ C0(𝑋), we know that {𝑢 > 𝑠} ∈ 𝒯 and 𝜕{𝑢 > 𝑠} ⊂ {𝑢 = 𝑠} for all 𝑠 ∈ ℝ. Therefore,
because of (RP.L), we have |𝖣𝜒{𝑢>𝑠}|(𝐵) = 0 for all 𝐵 ∈ ℬ(𝑋) such that |𝖣𝜒{𝑢>𝑠}|(𝐵 ∩ {𝑢 = 𝑠}) = 0.
Thus, letting 𝐵 = 𝐴 ∩ {𝑢 ≠ 𝑠}, we have that |𝖣𝜒{𝑢>𝑠}|(𝐴 ∩ {𝑢 ≠ 𝑠}) = 0 for all 𝑠 ∈ ℝ; hence, the

following equalities hold:

∫ℝ

|𝖣𝜒{𝑢>𝑠}|(𝐴) 𝜑′(𝑠) d𝑠 = ∫ℝ

𝜑′(𝑠)∫𝐴 d|𝖣𝜒{𝑢>𝑠}| d𝑠
= ∫ℝ ∫𝐴 𝜑′(𝑢) d|𝖣𝜒{𝑢>𝑠}| d𝑠.

By Corollary 2.13, we can write

∫ℝ ∫𝐴 𝜑′(𝑢) d|𝖣𝜒{𝑢>𝑠}| d𝑠 = ∫𝐴 𝜑′(𝑢) d|𝖣𝑢|,
so that, by combining all the above equalities, we conclude that

𝖵𝖺𝗋(𝜑(𝑢); 𝐴) = ∫𝐴 𝜑′(𝑢) d|𝖣𝑢|
for all 𝐴 ∈ ℬ(𝑋), proving (2.7) and completing the proof. □

2.3.3 𝑝-Slope and Sobolev functions

As customary, we let

W1,1(𝑋,𝔪) = {𝑢 ∈ BV(𝑋,𝔪) ∶ |D𝑢| ≪ 𝔪}

be the set of Sobolev𝖶1,1 functions on 𝑋.
If 𝑢 ∈ 𝖶1,1(𝑋,𝔪), then we let |∇𝑢| ∈ 𝐿1(𝑋,𝔪), |∇𝑢| ⩾ 0 𝔪-a.e. in 𝑋, be the 1-slope of 𝑢, that

is, the unique 𝐿1(𝑋,𝔪) function such that

|𝖣𝑢|(𝐴) = ∫𝐴 |∇𝑢| d𝔪 for all 𝐴 ∈ ℬ(𝑋).

From Corollary 2.14, we immediately deduce the following simple properties of 1-slopes of 𝖶1,1

functions.

Corollary 2.16 (Basic properties of 1-slope). Let properties (RP.1), (RP.2), (RP.3), (RP.4), and (RP.+)
be in force. The following hold:

(i) if 𝑢 ∈ 𝖶1,1(𝑋,𝔪), then 𝜆𝑢 ∈ 𝖶1,1(𝑋,𝔪), with |∇(𝜆𝑢)| = 𝜆|∇𝑢|, for all 𝜆 > 0;
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CHEEGER PROBLEM IN MEASURE SPACES 15 of 55

(ii) 0 ∈ 𝖶1,1(𝑋,𝔪), with |∇0| = 0;
(iii) if 𝑢, 𝑣 ∈ 𝖶1,1(𝑋,𝔪), then 𝑢 + 𝑣 ∈ 𝖶1,1(𝑋,𝔪) with

|∇(𝑢 + 𝑣)| ⩽ |∇𝑢| + |∇𝑣|.
As a consequence,𝖶1,1(𝑋,𝔪) is a convex cone in 𝐿1(𝑋,𝔪).

Having the notion of 1-slope at our disposal, following the standard approach about slopes (see
[13], e.g.), we can introduce the notion of 𝑝-relaxed 1-slope, for 𝑝 ∈ (1, +∞).

Definition 2.17 (𝑝-Relaxed 1-slope). Let 𝑝 ∈ (1, +∞). We shall say that a function g ∈ 𝐿𝑝(𝑋,𝔪)

is a 𝑝-relaxed 1-slope of 𝑢 ∈ 𝐿𝑝(𝑋,𝔪) if there exist a function g̃ ∈ 𝐿𝑝(𝑋,𝔪) and a sequence
{𝑢𝑘}𝑘∈ℕ ⊂ 𝖶1,1(𝑋,𝔪) ∩ 𝐿𝑝(𝑋,𝔪) such that:

(i) 𝑢𝑘 → 𝑢 in 𝐿𝑝(𝑋,𝔪);
(ii) |∇𝑢𝑘| ∈ 𝐿𝑝(𝑋,𝔪) for all 𝑘 ∈ ℕ and |∇𝑢𝑘| ⇀ g̃ weakly in 𝐿𝑝(𝑋,𝔪);
(iii) g̃ ⩽ g 𝔪-a.e. in 𝑋.

Clearly, according to Definition 2.17 and thanks to the sequential compactness of weak
topologies, if {𝑢𝑘}𝑘∈ℕ ⊂ 𝖶1,1(𝑋,𝔪) ∩ 𝐿𝑝(𝑋,𝔪) is such that

sup
𝑘∈ℕ ∫𝑋 |∇𝑢𝑘|𝑝 d𝔪 < +∞,

then any 𝐿𝑝(𝑋,𝔪)-limit of {𝑢𝑘}𝑘∈ℕ has at least one 𝑝-relaxed 1-slope. Given any 𝑢 ∈ 𝐿𝑝(𝑋,𝔪), we
define

Slope𝑝(𝑢) = {g ∈ 𝐿𝑝(𝑋,𝔪) ∶ g is a 𝑝-relaxed 1-slope of 𝑢} .

Following the point of view of [13], one can prove the following basic properties of 𝑝-relaxed 1-
slopes that will be useful in the sequel.

Lemma 2.18 (Basic properties of 𝑝-relaxed 1-slope). Let properties (RP.1), (RP.2), (RP.3), (RP.4),
and (RP.+) be in force and let 𝑝 ∈ (1, +∞). The following hold:

(i) 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢) is a convex subset (possibly empty) for all 𝑢 ∈ 𝐿𝑝(𝑋,𝔪);
(ii) if 𝑢 ∈ 𝐿𝑝(𝑋,𝔪) and g ∈ 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢), then there exist a sequence {𝑢𝑘}𝑘 ⊂ 𝖶1,1(𝑋,𝔪) ∩

𝐿𝑝(𝑋,𝔪), a sequence {g𝑘}𝑘 ⊂ 𝐿𝑝(𝑋,𝔪), and a function g̃ ∈ 𝐿𝑝(𝑋,𝔪), such that 𝑢𝑘 → 𝑢 and
g𝑘 → g̃ both in 𝐿𝑝(𝑋,𝔪), with |∇𝑢𝑘| ⩽ g𝑘 for all 𝑘 ∈ ℕ and g̃ ⩽ g ;

(iii) if {𝑢𝑘}𝑘 and {g𝑘} are sequences in 𝐿𝑝(𝑋,𝔪), with g𝑘 ∈ 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢𝑘) for all 𝑘 ∈ ℕ, such that 𝑢𝑘 ⇀
𝑢 and g𝑘 ⇀ g weakly in 𝐿𝑝(𝑋,𝔪), then g ∈ 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢).

Under the assumptions of the above Lemma 2.18, for each 𝑢 ∈ 𝐿𝑝(𝑋,𝔪), the set 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢) is
a (possibly empty) closed convex subset of 𝐿𝑝(𝑋,𝔪), and thus, the following definition is well
posed.

Definition 2.19 (Weak 𝑝-slope). Let 𝑝 ∈ (1, +∞) and let properties (RP.1), (RP.2), (RP.3), (RP.4),
and (RP.+) be in force. If 𝑢 ∈ 𝐿𝑝(𝑋,𝔪) is such that 𝖲𝗅𝗈𝗉𝖾𝑝(𝑢) ≠ ∅, we let |∇𝑢|𝑝 be the element of
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16 of 55 FRANCESCHI et al.

𝖲𝗅𝗈𝗉𝖾𝑝(𝑢) of minimal 𝐿𝑝(𝑋,𝔪)-norm and we call it the weak 𝑝-slope of 𝑢. Finally, we let

W1,𝑝(𝑋,𝔪) =
{
𝑢 ∈ 𝐿𝑝(𝑋,𝔪) ∶ ∃|∇𝑢|𝑝 ∈ 𝐿𝑝(𝑋,𝔪)

}
.

Following the same line of [13], one can show that the weak 𝑝-slope can be actually
approximated in 𝐿𝑝(𝑋,𝔪) in the strong sense.

Corollary 2.20 (Strong approximation of weak 𝑝-slope). Let 𝑝 ∈ (1, +∞) and let properties (RP.1),
(RP.2), (RP.3), (RP.4), and (RP.+) be in force. If 𝑢 ∈ 𝖶1,𝑝(𝑋,𝔪), then there exists a sequence {𝑢𝑘}𝑘 ⊂
𝖶1,1(𝑋,𝔪) ∩ 𝐿𝑝(𝑋,𝔪) such that |∇𝑢𝑘| ∈ 𝐿𝑝(𝑋,𝔪) for all 𝑘 ∈ ℕ and

𝑢𝑘 → 𝑢 and |∇𝑢𝑘| → |∇𝑢|𝑝 both in 𝐿𝑝(𝑋,𝔪) as 𝑘 → +∞.

3 CHEEGER SETS IN PERIMETER-MEASURE SPACES

In this section, wework in ameasure space endowedwith a perimeter functional as in Section 2.1.

3.0.1 𝑁-Cheeger constant and 𝑁-Cheeger sets

We begin by introducing the central notions of the present paper.

Definition 3.1. Let𝑁 ∈ ℕ. An𝑁-cluster  is a collection of𝑁measurable sets  = {(𝑖)}𝑁
𝑖=1

⊂ 𝒜
satisfying:

∙ 0 < 𝔪((𝑖)) < +∞ for all 𝑖 = 1, … ,𝑁;
∙ 𝔪((𝑖) ∩ (𝑗)) = 0 for all 𝑖, 𝑗 = 1, … ,𝑁 with 𝑖 ≠ 𝑗;
∙ 𝑃((𝑖)) < +∞ for all 𝑖 = 1, … ,𝑁.

Each of the (𝑖), 𝑖 = 1, … ,𝑁, is called a chamber.

Definition 3.2 (𝑁-admissible set). Let 𝑁 ∈ ℕ. We say that Ω ∈ 𝒜 is N-admissible if there exists
an 𝑁-cluster  = {(𝑖)}𝑁

𝑖=1
⊂ Ω.

Remark 3.3. Let𝑁 ∈ ℕ. Trivially, ifΩ ∈ 𝒜 is𝑁-admissible, then it is𝑀-admissible for all integers
𝑀 ⩽ 𝑁.

Definition 3.4 (𝑁-Cheeger constant and 𝑁-Cheeger sets). Let 𝑁 ∈ ℕ and let Ω ∈ 𝒜 be an 𝑁-
admissible set. The 𝑁-Cheeger constant of Ω is

ℎ𝑁(Ω) = inf

{
𝑁∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) ∶  = {(𝑖)}𝑁

𝑖=1
⊂ Ω is an 𝑁-cluster

}
.

If 𝒞 = {𝒞(𝑖)}𝑁
𝑖=1

is an 𝑁-cluster realizing the above infimum, we call it an 𝑁-Cheeger set (or
cluster) of Ω. We let𝒞𝑁(Ω) be the collection of all 𝑁-Cheeger sets of Ω.
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CHEEGER PROBLEM IN MEASURE SPACES 17 of 55

Remark 3.5. By definition, as Ω is required to be 𝑁-admissible, the 𝑁-Cheeger constant of Ω is
finite. Moreover, by Remark 3.3, so it is ℎ𝑀(Ω) for all integers𝑀 such that𝑀 ⩽ 𝑁. We also refer
to Proposition 3.10.

3.1 Existence of𝑵-Cheeger sets

We prove that the existence of 𝑁-Cheeger clusters of Ω is ensured whenever the perimeter
functional possesses properties (P.4), (P.5), and (P.6), and the set Ω ∈ 𝒜 is 𝑁-admissible with
finite𝔪-measure. These requests are not necessary though, as some examples at the end of this
section show.

Theorem 3.6. Let properties (P.4), (P.5), and (P.6) be in force. Let 𝑁 ∈ ℕ, and let Ω ∈ 𝒜 be an
𝑁-admissible set with𝔪(Ω) ∈ (0, +∞). Then there exists an𝑁-Cheeger set ofΩ.

Proof. On the one hand, since Ω is 𝑁-admissible, there exists an 𝑁-cluster  ⊂ Ω, which imme-
diately implies that ℎ𝑁(Ω) < +∞. On the other hand, for any 𝑁-cluster  = {(𝑖)}𝑁

𝑖=1
of Ω,

property (P.6) gives

𝑁∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) ⩾ 𝑁𝑓(𝔪(Ω)) ,

hence

ℎ𝑁(Ω) ⩾ 𝑁𝑓(𝔪(Ω)) > 0 .

Now let {𝑘}𝑘∈ℕ ⊂ Ω be a minimizing sequence, that is,

lim
𝑘→+∞

𝑁∑
𝑖=1

𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) = ℎ𝑁(Ω).

Clearly, for any 𝑘 ∈ ℕ sufficiently large and any 𝑖 = 1, … ,𝑁, we have

𝑃(𝑘(𝑖)) ⩽ 𝔪(Ω)

𝑁∑
𝑖=1

𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) ⩽ 2𝔪(Ω)ℎ𝑁(Ω),

and thus,

sup
𝑘

{
max

𝑖
{𝑃(𝑘(𝑖))}

}
⩽ 2𝔪(Ω)ℎ𝑁(Ω),

which is finite, having assumed𝔪(Ω) < +∞.
By (P.4) and (P.5) (recall also Remark 2.2), possibly passing to a subsequence, for each

𝑖 = 1, … ,𝑁, there exists (𝑖) ∈ 𝒜 such that (𝑖) ⊂ Ω, with 𝔪((𝑖)) ∈ [0,𝔪(Ω)], 𝑃((𝑖)) ⩽
2𝔪(Ω)ℎ𝑁(Ω), and𝔪(𝑘(𝑖)△ (𝑖)) → 0+ as 𝑘 → +∞. Now, using (P.6), for all 𝑘 ∈ ℕ sufficiently
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18 of 55 FRANCESCHI et al.

large and any 𝑖 ∈ {1, … ,𝑁}, we get

𝑓(𝔪(𝑘(𝑖))) ⩽ 𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) . (3.1)

The behavior of 𝑓 near zero prescribed by (P.6) immediately implies that𝔪((𝑖)) ≠ 0 for all 𝑖 ∈
{1, … ,𝑁}, as otherwise a contradiction would arise with ℎ𝑁(Ω) < +∞. Indeed, on the one hand,
being {𝑘(𝑖)}𝑘 aminimizing sequence, and owing to (3.1), there exists �̄� ≫ 1 such that for all 𝑘 ⩾ �̄�,
we have

𝑓(𝔪(𝑘(𝑖))) ⩽ 2ℎ𝑁(Ω).

On the other hand, the isoperimetric property (P.6) implies that there exists 𝛿 > 0 such that𝑓(𝑥) >
2ℎ𝑁(Ω) for all 𝑥 ⩽ 𝛿. Hence, we deduce that𝔪(𝑘(𝑖)) ⩾ 𝛿 for all 𝑖 = 1, … ,𝑁 and all 𝑘 ⩾ �̄�.
It remains to be proved that  = {(𝑖)}𝑁

𝑖=1
is an 𝑁-cluster contained in Ω, that is, that the

chambers (𝑖) are pairwise disjoint, and the reader can easily check it on its own.
Consequently, thanks to (P.4), we find that

ℎ𝑁(Ω) ⩽

𝑁∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) ⩽

𝑁∑
𝑖=1

lim inf
𝑘→+∞

𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) ⩽ lim inf

𝑘→+∞

𝑁∑
𝑖=1

𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) = ℎ𝑁(Ω),

and the conclusion follows. □

Let us point out that properties (P.4), (P.5), and (P.6) are all crucial in the above proof. Among
them (P.6) looks as the “most artificial”; nevertheless, it is essential in the reasoning: an example
where existence fails when (P.6) ismissing is given in Example 3.7 below. It is also relevant to point
out that these properties provide a sufficient but in no way a necessary condition, as Example 3.8
and Example 3.9 show.

Example 3.7. Consider themeasure space (𝑋,𝒜,𝔪) = (ℝ2,ℬ(ℝ2), 𝑤ℒ2), whereℬ(ℝ2) denotes
the Borel 𝜎-algebra, 𝑤 ∈ 𝐿1(ℝ2) is defined by

𝑤(𝑥) =

{‖𝑥‖−3
2 ‖𝑥‖ ⩽ 1,

𝑒−‖𝑥‖ ‖𝑥‖ > 1,

and 𝑃(⋅) is the Euclidean perimeter. In this setting, properties (P.1) through (P.5) hold, but (P.6)
does not.
Within this framework, one has ℎ1(Ω) = 0, for any set Ω containing an open neighborhood of

the origin. Indeed, it is enough to consider the sequence of balls centered at the origin 𝐵𝑟 ⊂ Ω (for
𝑟 sufficiently small), for which we have

𝑃(𝐵𝑟) = 2𝜋𝑟,

and

𝔪(𝐵𝑟) = ∫𝐵𝑟 𝑤(𝑥) d𝑥 = 2𝜋 ∫
𝑟

0

𝜚−
3
2 𝜚 d𝜚 = 4𝜋𝑟

1
2 .
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CHEEGER PROBLEM IN MEASURE SPACES 19 of 55

Were to exist 𝐸 ∈ 𝒞1(Ω), then 𝑃(𝐸) = 0, and by the Euclidean isoperimetric inequality, we would
have |𝐸| = 0. Being the weight 𝑤 ∈ 𝐿1(ℝ2), this would eventually lead to

𝔪(𝐸) = ∫𝐸 𝑤(𝑥) d𝑥 = 0,

contradicting the fact that 𝔪(𝐸) > 0. This shows that Cheeger sets do not exist. In more gen-
erality, the same happens in any measure space (𝑋,𝒜,𝔪) and in any 1-admissible set Ω ∈

𝒜 such that ℎ1(Ω) = 0 and the only measurable subsets 𝐸 of Ω with 𝑃(𝐸) = 0 have zero
𝔪-measure.
For the sake of completeness, we shall note that, in the situation depicted in this remark, 𝑁-

Cheeger sets exist in any open setΩnot containing the origin, since theweight𝑤would be 𝐿∞(Ω),
refer to [19, Prop. 3.3] or to [114, Prop. 3.2].

We now present two simple examples in which the existence of Cheeger sets is ensured even if
properties (P.5) and (P.6) do not hold.

Example 3.8. Consider any nonnegative (𝜎-finite)measure space (𝑋,𝒜,𝔪), and consider𝑃(𝐸) =
𝔪(𝐸), for all 𝐸 ∈ 𝒜, as perimeter functional. For this choice, while (P.4) holds, neither prop-
erty (P.5) nor (P.6) hold, the latter because any isoperimetric function 𝑓 is bounded from above by
1. Nevertheless, fixed anyΩ ∈ 𝒜, we have ℎ𝑁(Ω) = 𝑁, for any integer𝑁, and any𝑁-cluster is an
𝑁-Cheeger set.

Example 3.9. Consider any nonnegative (𝜎-finite)measure space (𝑋,𝒜,𝔪), and consider𝑃(𝐸) =
0, for all 𝐸 ∈ 𝒜, as perimeter functional. While (P.4) holds, neither property (P.5) nor (P.6) hold.
Nevertheless, fixed any Ω ∈ 𝒜, we have ℎ𝑁(Ω) = 0, for any integer 𝑁, and any 𝑁-cluster is an
𝑁-Cheeger set.

3.2 Inequalities between the𝑵- and𝑴-Cheeger constants

Proposition 3.10. LetΩ ∈ 𝒜 be an𝑁-admissible set. Then, for all𝑀 ∈ ℕ with𝑀 < 𝑁, one has

ℎ𝑀(Ω) + ℎ𝑁−𝑀(Ω) ⩽ ℎ𝑁(Ω). (3.2)

Proof. Let𝑀 and𝑁 be fixed integers, with𝑀 < 𝑁. Let  be any fixed𝑁-cluster. For any subset 𝐽𝑀
of {1, … ,𝑁} of cardinality𝑀, the𝑀-cluster {(𝑖)}𝑖∈𝐽𝑀 provides an upper bound toℎ𝑀(Ω), whereras
the (𝑁 −𝑀)-cluster {(𝑖)}𝑖∉𝐽𝑀 to ℎ𝑁−𝑀(Ω).
Hence, no matter how we choose 𝐽𝑀 , we have

𝑁∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) =

∑
𝑖∈𝐽𝑀

𝑃((𝑖))
𝔪((𝑖)) +

∑
𝑖∉𝐽𝑀

𝑃((𝑖))
𝔪((𝑖)) ⩾ ℎ𝑀(Ω) + ℎ𝑁−𝑀(Ω).

By taking the infimum among all 𝑁-clusters, the desired inequality follows. □
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20 of 55 FRANCESCHI et al.

Corollary 3.11. Let Ω ∈ 𝒜 be an 𝑁-admissible set. Then, for all𝑀 ∈ ℕ such that for some integer
𝑘 one has𝑁 = 𝑘𝑀, one has

𝑘ℎ𝑀(Ω) ⩽ ℎ𝑁(Ω). (3.3)

Remark 3.12. The inequalities (3.2) and (3.3) hold as equalities in some cases, as, for instance, it
happens anytime a set has multiple disjoint 1-Cheeger sets. A trivial example of this behavior is
given by 𝑁 disjoint and equal balls in the usual Euclidean space.
One can also build connected sets that have this feature. For 𝑁 = 2, it is enough to con-

sider a standard dumbbell in the usual two-dimensional Euclidean space, that is, the set given
by two disjoint equal balls, spaced sufficiently far apart, and connected via a thin tube. Such
a set has two connected 1-Cheeger sets (1) and (2) given by small perturbations of the two
balls, and the 2-cluster  = {(𝑖)} is necessarily a 2-Cheeger set, refer, for instance, to [93,
Ex. 4.5].
An easy connected example for 𝑁 > 2 is instead given by an (𝑁 + 2)-dumbbell in the usual

two-dimensional Euclidean space, that is, a set formed by𝑁 + 2 disjoint equal balls and linked by
a thin tube, say

𝑁+2⋃
𝑖=1

𝐵1((4𝑖, 0)) ∪ ((4, 4(𝑁 + 2)) × (−𝜀, +𝜀)),

where 𝐵1((4𝑖, 0)) denotes the two-dimensional Euclidean ball of radius 1 centered at the point
(4𝑖, 0) ∈ ℝ2. For 𝜀 sufficiently small, and arguing as in [93, Ex. 4.5], it can be shown that such a set
has𝑁 connected and disjoint 1-Cheeger sets, each corresponding to a small perturbation of the𝑁
balls with two neighboring ones.

3.3 𝑴-subclusters of𝑵-Cheeger sets

Given an 𝑁-Cheeger set of Ω, consider any of its𝑀-subcluster. It is natural to imagine that such
an 𝑀-cluster is an 𝑀-Cheeger set in the ambient space given by Ω minus the 𝑁 −𝑀 chambers
not belonging to the subcluster. In this short section, we prove that this is true.
For the sake of clarity of notation, we let |𝐽| ∈ ℕ ∪ {0} ∪ {+∞} be the cardinality of a set 𝐽 ⊂ ℕ.

Proposition 3.13. Let Ω ∈ 𝒜 be an 𝑁-admissible set, and assume that it has an 𝑁-Cheeger set
 = {(𝑖)}𝑁

𝑖=1
∈ 𝒞𝑁(Ω). For any proper subset 𝐽 ⊂ {1, … ,𝑁}, let

Ω𝐽 = Ω ⧵
⋃
𝑗∉𝐽

(𝑗), (3.4)

and let 𝐽 be the |𝐽|-cluster given by
𝐽 = {(𝑗)}𝑗∈𝐽.

Then, 𝐽 is a |𝐽|-Cheeger set ofΩ𝐽 .

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12840 by G

iorgio Saracco - C
ochraneItalia , W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHEEGER PROBLEM IN MEASURE SPACES 21 of 55

Proof. It is enough to prove the claim for a subset 𝐽 of cardinality 𝑁 − 1, and then to reason by
induction. In particular, up to relabeling, we can assume 𝐽 to be the proper subset {1, … ,𝑁 − 1}.
As both Ω and (𝑁) are measurable, so it is the set Ω𝐽 . Moreover, this latter is (𝑁 −

1)-admissible because there exists at least the (𝑁 − 1)-cluster {(𝑖)}𝑁−1
𝑖=1

.
By contradiction, assume that {(𝑖)}𝑁−1

𝑖=1
is not an (𝑁 − 1)-Cheeger set of Ω𝐽 . Then, for 𝜀 small

enough, we find a different (𝑁 − 1)-cluster {(𝑖)}𝑁−1
𝑖=1

with

𝑁−1∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) < ℎ𝑁−1(Ω) + 𝜀 <

𝑁−1∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) .

It is then immediate that the 𝑁-cluster

{(𝑖)}𝑁
𝑖=1

= {(1), … ,(𝑁 − 1), (𝑁)}

contradicts the minimality of the 𝑁-cluster {(𝑖)}𝑁
𝑖=1

in Ω. □

3.4 Properties of𝑵-Cheeger sets

Proposition 3.14 (Basic properties of 𝑁-Cheeger sets). Let {Ω𝑘}𝑘 ⊂ 𝒜 be a collection of
𝑁-admissible sets. The following hold for all integers𝑀 ⩽ 𝑁:

(i) ifΩ1 ⊂ Ω2, then ℎ𝑀(Ω1) ⩾ ℎ𝑀(Ω2);
(ii) if (P.6) is in force, and𝔪(Ω𝑘) → 0+, then ℎ𝑀(Ω𝑘) → +∞;
(iii) if (P.4), (P.5), and (P.6) are in force, andΩ𝑘 → Ω in 𝐿1(𝑋,𝔪), with𝔪(Ω) ∈ (0, +∞), then

ℎ𝑀(Ω) ⩽ lim inf
𝑘

ℎ𝑀(Ω𝑘).

Moreover, if also (P.3) is in force, 𝑃(Ω) is finite, and 𝑃(Ω𝑘) → 𝑃(Ω), then

ℎ𝑀(Ω) = lim
𝑘

ℎ𝑀(Ω𝑘).

Proof. Recall that an 𝑁-admissible set Ω is also 𝑀-admissible for all integers 𝑀 ⩽ 𝑁, see
Remark 3.3.
Proof of (i). For any two fixed 𝑁-admissible sets with Ω1 ⊂ Ω2, any 𝑀-cluster of Ω1 is also an

𝑀-cluster of Ω2. The inequality immediately follows by definition of𝑀-Cheeger constant.
Proof of (ii). In virtue of (3.3) and the positivity of ℎ𝑀(Ω), it is enough to prove the claim for

𝑀 = 1. Fix 𝜀 > 0, and for all 𝑘, let 𝐶𝑘 ⊂ Ω𝑘 be such that

ℎ1(Ω𝑘) + 𝜀 ⩾
𝑃(𝐶𝑘)

𝔪(𝐶𝑘)
.

Then, by (P.6), we have

ℎ1(Ω𝑘) + 𝜀 ⩾ 𝑓(𝔪(𝐶𝑘)),
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22 of 55 FRANCESCHI et al.

and the claim follows by the monotonicity of the measure paired with the hypothesis that the
𝔪-measure ofΩ𝑘 vanishes, that is,𝔪(𝐶𝑘) ⩽ 𝔪(Ω𝑘) → 0, and the behavior of𝑓 prescribed by (P.6).
Proof of (iii). Without loss of generality, we can assume that there exists a constant 𝐶1 < +∞

independent of 𝑘 such that

lim inf
𝑘

ℎ𝑀(Ω𝑘) ⩽ 𝐶1,

as otherwise there is nothing to prove. Let us consider the (not relabeled) sequence realizing the
lim inf . Since Ω𝑘 is converging in 𝐿1(𝑋,𝔪) to a set of finite𝔪-measure, we can also assume that
𝔪(Ω𝑘) is equibounded, independent of 𝑘, that is,

𝔪(Ω𝑘) ⩽ 𝐶2.

Thus, by Theorem 3.6 for each 𝑘, there exists an 𝑀-Cheeger set 𝑘 for Ω𝑘. Moreover, for any 𝑘,
we have

𝑀∑
𝑖=1

𝑃(𝑘(𝑖)) ⩽ ℎ𝑀(Ω𝑘)𝔪(Ω𝑘) ⩽ 𝐶. (3.5)

Hence, by (P.5), we can extract a (not relabeled) subsequence {𝑘(𝑖)}𝑘 such that for all indexes 𝑖,
the chamber 𝑘(𝑖) converges in 𝐿1(𝑋,𝔪) to a limit set (𝑖) necessarily contained in Ω up to𝔪-
null sets. Moreover, by (P.6), one necessarily has 𝔪((𝑖)) > 0 as otherwise a contradiction with
the finiteness of lim inf𝑘 ℎ𝑀(Ω𝑘)would arise. Hence,  is an𝑀-cluster ofΩ. Thus, owing to (P.4)
and the fact that 𝑘 is an𝑀-Cheeger cluster of Ω𝑘, we have

ℎ𝑀(Ω) ⩽

𝑀∑
𝑖=1

𝑃((𝑖))
𝔪((𝑖)) ⩽ lim inf

𝑘

𝑀∑
𝑖=1

𝑃(𝑘(𝑖))
𝔪(𝑘(𝑖)) = lim inf

𝑘
ℎ𝑀(Ω𝑘),

that is, the first part of the claim.
To show the second part, let us pick an 𝑀-Cheeger cluster  of Ω, which exists since we are

under the assumptions of Theorem 3.6. Let us consider the collections

{𝑘(𝑖) = (𝑖) ∩ Ω𝑘},

which are 𝑀-clusters of Ω𝑘 for 𝑘 sufficiently large. Clearly, for each fixed 𝑖, we have that 𝑘(𝑖)
converges in 𝐿1(𝑋,𝔪) to (𝑖), while 𝑘(𝑖) ∪ Ω𝑘 to Ω. Therefore, by (P.3), for each 𝑖, we have

𝑃(𝑘(𝑖)) ⩽ 𝑃((𝑖)) + 𝑃(Ω𝑘) − 𝑃((𝑖) ∪ Ω𝑘).

Taking the lim sup𝑘, using the assumption of the convergence of 𝑃(Ω𝑘), we have

lim sup
𝑘

𝑃(𝑘(𝑖)) ⩽ 𝑃((𝑖)) + 𝑃(Ω) − lim inf
𝑘

𝑃((𝑖) ∪ Ω𝑘) ⩽ 𝑃((𝑖)).

Together with (P.4) this implies that, for each 𝑖, lim𝑘 𝑃(𝑘(𝑖)) exists and equals 𝑃((𝑖)). Combin-
ing this fact with the minimality of  for ℎ𝑀(Ω) and the first part of the claim, we conclude the
proof. □
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CHEEGER PROBLEM IN MEASURE SPACES 23 of 55

Remark 3.15. Notice that to prove point (iii), all requests come into play. Indeed, a priori, one can
work with an “almost-infimizing”𝑀-cluster for ℎ𝑀(Ω𝑘) and find an analogous of (3.5) up to an
additive factor 𝜀𝔪(Ω𝑘). Then, the compactness granted by (P.5) is needed, but in order to ensure
that the limiting collection  is indeed a cluster, the isoperimetric property (P.6) is needed. Finally,
when talking about a lim inf property, we cannot avoid enforcing (P.4).

Lemma 3.16. LetΩ ∈ 𝒜 be an𝑁-admissible set with𝔪(Ω) ∈ (0, +∞), and assume that𝒞𝑁(Ω) ≠
∅. If (P.6) is in force, then for every 𝑁-Cheeger set {(𝑖)}𝑁

𝑖=1
∈ 𝒞𝑁(Ω), and for every 𝑖 = 1, … ,𝑁, we

have

𝔪((𝑖)) ⩾ 𝑐,

where 𝑐 > 0 is a constant depending only on ℎ𝑁(Ω) and the isoperimetric function 𝑓 appearing
in (P.6).

Proof. Let {(𝑖)}𝑁
𝑖=1

∈ 𝒞𝑁(Ω), then owing to (P.6), for every 𝑖, we have

+∞ > ℎ𝑁(Ω) ⩾
𝑃((𝑖))
𝔪((𝑖)) ⩾ 𝑓(𝔪((𝑖))).

By the assumptions on 𝑓 given in (P.6), 𝑓(𝜀) → +∞ as 𝜀 → 0+. Thus, there exists a threshold
𝑐 = 𝑐(ℎ𝑁(Ω), 𝑓) > 0 such that

𝑓(𝔪(𝐸)) > ℎ𝑁(Ω) for all 𝐸 ∈ 𝒜, with𝔪(𝐸) < 𝑐.

Hence, for any𝑁-Cheeger set, the lower bound on the volume of each of its chambers follows. □

3.5 Additional properties of 1-Cheeger sets

For 1-Cheeger sets, something more can be said in general, as we show in the next proposition.

Proposition 3.17. Let Ω ∈ 𝒜 be a 1-admissible set, and assume that 𝒞1(Ω) is not empty. If (P.3) is
in force, for any 𝐸, 𝐹 ∈ 𝒞1(Ω), the following hold:

(i) 𝐸 ∪ 𝐹 ∈ 𝒞1(Ω);
(ii) 𝐸 ∩ 𝐹 ∈ 𝒞1(Ω), provided that𝔪(𝐸 ∩ 𝐹) > 0.

Moreover, if also (P.4) is in force, then 𝒞1(Ω) is closed with respect to countable unions and
𝔪-nonnegligible intersections, that is, given any countable family {𝐸𝑗}𝑗 of 1-Cheeger sets, one has:

(iii)
⋃

𝑗 𝐸𝑗 ∈ 𝒞1(Ω);
(iv)

⋂
𝑗 𝐸𝑗 ∈ 𝒞1(Ω), provided that𝔪(

⋂
𝑗 𝐸𝑗) > 0.

Proof. First, notice that we have the equalities

𝑃(𝐸) = ℎ1(Ω)𝔪(𝐸), 𝑃(𝐹) = ℎ1(Ω)𝔪(𝐹).
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24 of 55 FRANCESCHI et al.

Hence, owing to (P.3), the following chain of inequalities holds:

ℎ1(Ω)(𝔪(𝐸 ∪ 𝐹) +𝔪(𝐸 ∩ 𝐹)) = ℎ1(Ω)(𝔪(𝐸) +𝔪(𝐹))

= 𝑃(𝐸) + 𝑃(𝐹)

⩾ 𝑃(𝐸 ∪ 𝐹) + 𝑃(𝐸 ∩ 𝐹)

⩾ ℎ1(Ω)(𝔪(𝐸 ∪ 𝐹) +𝔪(𝐸 ∩ 𝐹)),

and thus, they are all equalities. This implies that

𝑃(𝐸 ∩ 𝐹) = ℎ1(Ω)𝔪(𝐸 ∩ 𝐹),

𝑃(𝐸 ∪ 𝐹) = ℎ1(Ω)𝔪(𝐸 ∪ 𝐹),

thus 𝐸 ∪ 𝐹 is a 1-Cheeger set, and so it is 𝐸 ∩ 𝐹, provided that it has positive 𝔪-measure. This
settles points (i) and (ii).
Now, concerning the proof of (iii) and (iv), let {𝐸𝑗}𝑗 be any countable family of 1-Cheeger sets.

Then, the sequences

𝐹𝑘 =

𝑘⋃
𝑗=1

𝐸𝑗, 𝐺𝑘 =

𝑘⋂
𝑗=1

𝐸𝑗,

are sequences of 1-Cheeger sets by points (i) and (ii) previously established (the second one, under
the additional assumption that the intersections are𝔪-nonnegligible). Moreover, they converge,
respectively, in 𝐿1(𝑋,𝔪) to the sets

𝐹 =
⋃
𝑗

𝐸𝑗, 𝐺 =
⋂
𝑗

𝐸𝑗.

The lower semicontinuity of 𝑃 granted by (P.4) implies that these sets are 1-Cheeger sets
themselves, and this concludes the proof. □

Proposition 3.18 (Maximal Cheeger set). Let Ω ∈ 𝒜 be a 1-admissible set, with𝔪(Ω) ∈ (0, +∞),
and assume that 𝒞1(Ω) is not empty. If (P.4) and (P.5) are in force, then there exist 1-Cheeger sets
with maximal measure, and we shall call them maximal 1-Cheeger sets. If also (P.3) holds, then
there exists a unique (up to𝔪-negligible sets) maximal 1-Cheeger set 𝐸+ ∈ 𝒞1(Ω), and it is such that
𝐸 ⊂ 𝐸+ for all 𝐸 ∈ 𝒞1(Ω).

Proof. Take a sequence {𝐶𝑘}𝑘 in 𝒞1(Ω) supremizing the 𝐿1(𝑋,𝔪) norm. The following uniform
upper bound on the perimeters of {𝐶𝑘}𝑘 holds

𝑃(𝐶𝑘) = ℎ1(Ω)𝔪(𝐶𝑘) ⩽ ℎ1(Ω)𝔪(Ω).

Thus, by (P.5), up to extracting a subsequence, 𝐶𝑘 converge to some limit set 𝐶, which, by (P.4), is
readily proven to be a 1-Cheeger set itself, provided that𝔪(𝐶) > 0, which holds true as we look
for sets maximizing the 𝐿1(𝑋,𝔪) norm.
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CHEEGER PROBLEM IN MEASURE SPACES 25 of 55

Now additionally, assume (P.3), and let 𝐶0 be amaximal 1-Cheeger set. For any other 1-Cheeger
set 𝐶, if one were not to have 𝐶 ⊂ 𝐶0, a contradiction would immediately ensue, since 𝐶 ∪ 𝐶0 is
itself a 1-Cheeger set by Proposition 3.17 (i). This same reasoning also yields the uniqueness of
such a set. □

Example 3.19. An example of metric-measure space (𝑋,𝒜,𝔪) where existence of maximal
1-Cheeger sets fails is the following one. Consider (𝑋,𝒜,𝔪) as the probability measure space
(ℝ2,ℬ(ℝ2), (2𝜋)−

1
2 𝑒−‖⋅‖ℒ2), and consider the perimeter functional given by 𝑃(𝐸) = 0 for all

𝐸 ∈ 𝒜 excluded ℝ2 itself, and 𝑃(ℝ2) = 1. In such a setting, neither (P.4) nor (P.5) hold. If we
choose Ω = ℝ2, all𝔪-nonnegligible sets are 1-Cheeger sets, but for the whole space ℝ2. No max-
imal 1-Cheeger set exists, as the supremum of their norms is 1, and this is the measure of the
lone ℝ2.

Proposition 3.20 (Minimal Cheeger set). Let Ω ∈ 𝒜 be a 1-admissible set with finite𝔪-measure,
and assume that𝒞1(Ω) is not empty. If (P.4) and (P.5), and (P.6) are in force, then there exist 1-Cheeger
sets with minimal 𝐿1(𝑋,𝔪) norm, and we shall call themminimal 1-Cheeger sets.

Proof. The proof is exactly the same as the one of Proposition 3.18, except that we now need
to ensure that the limit set 𝐶 is a viable competitor, that is, 𝔪(𝐶) > 0. This is exactly why we
need to require (P.6). The uniform lower bound on the volume of any 1-Cheeger set provided by
Lemma 3.16 immediately allows to conclude. □

Example 3.21. An example of measure space (𝑋,𝒜,𝔪) where existence of minimal 1-Cheeger
sets fails is the one of Example 3.19. Chosen any Ω, all of its subsets but 𝔪-negligible ones are
1-Cheeger sets. Hence, minimal 1-Cheeger sets do not exist, being the infimum of the measures
of 1-Cheeger sets equal to zero.

4 SETSWITH PRESCRIBEDMEAN CURVATURE

In this section, wework in ameasure space endowedwith a perimeter functional as in Section 2.1.
We show that the Cheeger constant acts as a threshold to determine whether nontrivial minimiz-
ers exist for the so-called prescribed mean curvature functional, under some suitable assumptions
on the perimeter functional. In order to do so, the first result we need to prove is the following
lemma.

Lemma 4.1. Let Ω ∈ 𝒜 be a 1-admissible set. An𝔪-nonnegligible set 𝐶 is a 1-Cheeger set of Ω if
and only if it is a minimizer of

ℎ1(Ω)
[𝐹] = 𝑃(𝐹) − ℎ1(Ω)𝔪(𝐹) (4.1)

among {𝐹 ∈ 𝒜 ∶ 𝐹 ⊂ Ω}.

Proof. It is sufficient to note that the inequality ℎ1(Ω)
[𝐹] ⩾ 0 holds true, and that the only 𝔪-

nonnegligible sets that can saturate it are 1-Cheeger sets. The nonnegativity of ℎ1(Ω)
is trivial
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26 of 55 FRANCESCHI et al.

for𝔪-negligible sets, while for all𝔪-nonnegligible sets, it follows by the definition of 1-Cheeger
constant. □

4.1 The 𝑷-mean curvature

Lemma 4.1 allows us to infer that any 1-Cheeger set has a 𝑃-mean curvature, defined as follows.

Definition 4.2. Let (𝑋,𝒜,𝔪) be a measure space, and let Ω ∈ 𝒜. A function 𝐻 ∈ 𝐿1(Ω,𝔪) is
said to be a 𝑃-mean curvature in Ω of a set 𝐸 ⊂ Ω if 𝐸 minimizes the functional

𝐹 ↦ 𝑃(𝐹) − ∫𝐹 𝐻 d𝔪,

among all𝔪-measurable 𝐹 ⊂ Ω.

A similar definition was first given in measure spaces in [19] under some assumptions on the
perimeter functional, and only when Ω = 𝑋, with the additional request that𝔪(𝑋) < +∞.
Given Definition 4.2, a direct consequence of Lemma 4.1 is that 1-Cheeger sets of Ω, if they

exist, have ℎ1(Ω) as one of their 𝑃-mean curvatures in Ω— and this without assuming anything
on the perimeter, apart from the nonnegativity.

Corollary 4.3. Let (𝑋,𝒜,𝔪) be a nonnegative 𝜎-finite measure space and let Ω ∈ 𝒜 be a 1-
admissible set. If 𝐶 ∈ 𝒞1(Ω) is a 1-Cheeger set in Ω, then ℎ1(Ω) is a 𝑃-mean curvature in Ω of
𝐶.

A similar result can be inferred on each chamber of an 𝑁-Cheeger cluster, by simply using
Proposition 3.13.

Corollary 4.4. Let (𝑋,𝒜,𝔪) be a nonnegative 𝜎-finite measure space and let Ω ∈ 𝒜 be an 𝑁-
admissible set. If  = {(𝑖)}𝑁

𝑖=1
∈ 𝒞𝑁(Ω), then, letting 𝐽𝑖 = {𝑖}, for every 𝑖 = 1, … ,𝑁, ℎ1(Ω𝐽𝑖

) is a 𝑃-
mean curvature inΩ𝐽𝑖

of the chamber (𝑖), whereΩ𝐽𝑖
is as in (3.4).

Proof. Let 𝑖 be fixed. By Proposition 3.13, the chamber (𝑖) is a 1-Cheeger set ofΩ𝐽𝑖
. The conclusion

now directly follows from Corollary 4.3. □

4.2 Relation with sets with prescribed 𝑷-mean curvature

Let now Ω ∈ 𝒜 be fixed, and consider the functional

𝜅[𝐹] = 𝑃(𝐹) − 𝜅𝔪(𝐹), (4.2)

that is, the same functional introduced in (4.1) but with a general positive constant 𝜅 ∈ ℝ+ in
place of ℎ1(Ω). The reason why this functional is referred to as the prescribed 𝑃-mean curvature
functional, is that 𝜅 is a 𝑃-mean curvature of any minimizer 𝐸𝜅 of the functional 𝜅 in (4.2).
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CHEEGER PROBLEM IN MEASURE SPACES 27 of 55

The next theorem states that if there exists a 1-Cheeger set, and properties (P.1), (P.4), and (P.5)
are in force, then (4.2) has𝔪-nonnegligible minimizers if and only 𝜅 ⩾ ℎ1(Ω).

Theorem 4.5. Let (𝑋,𝒜,𝔪) be a nonnegative 𝜎-finite measure space, and let Ω ∈ 𝒜 with finite
𝔪-measure. For 𝜅 > 0, let 𝜅 be the functional

𝜅[𝐹] = 𝑃(𝐹) − 𝜅𝔪(𝐹),

defined over𝔪-measurable subsets ofΩ.
Then, if properties (P.4) and (P.5) are in force, minimizers of 𝜅 exist. In addition, if property (P.1)

is also in force, the following hold true:

(i) if 𝜅 has𝔪-nonnegligible minima, then 𝜅 ⩾ ℎ1(Ω);
(ii) if 𝜅 > ℎ1(Ω), then 𝜅 has𝔪-nonnegligible minima.

Moreover,

(iii) if Ω has a 1-Cheeger set 𝐶 ∈ 𝒞1(Ω), then 𝜅 has 𝔪-nonnegligible minima if and only if 𝜅 ⩾

ℎ1(Ω).

Proof. First, we show that assumptions (P.4) and (P.5) and the finiteness of 𝔪(Ω) imply the
existence of minimizers of 𝜅.
Indeed, since the perimeter functional is nonnegative, and by the monotonicity of measures,

we have the trivial lower bound 𝜅 ⩾ −𝜅𝔪(Ω). Therefore, we can take an infimizing sequence
{𝐸𝑘}𝑘, for whose perimeters (for 𝑘 large enough) we have the uniform upper bound

𝑃(𝐸𝑘) ⩽ 𝜅𝔪(Ω) + inf 𝜅 + 1,

which is finite by the finiteness of𝔪(Ω).
By (P.5), we can extract a converging subsequence in 𝐿1(𝑋,𝔪) to some limit set 𝐸, and by (P.4),

we have

𝑃(𝐸) − 𝜅𝔪(𝐸) ⩽ lim inf
𝑘

(𝑃(𝐸𝑘) − 𝜅𝔪(𝐸𝑘)) = inf 𝜅.

Hence, 𝐸 is a minimizer of the problem.
Let us now turn our attention to points (i)–(iii). First, note that requiring (P.1) implies that

the minimum of 𝜅 is nonpositive. Indeed, owing also to (P.4), Remark 2.2 gives that 𝜅 is zero
whenever evaluated on an𝔪-negligible set.
Suppose that there exists an𝔪-nonnegligible minimizer 𝐸𝜅. Necessarily, by comparing with an

𝔪-negligible set, we have

𝑃(𝐸𝜅) − 𝜅𝔪(𝐸𝜅) ⩽ 0,

which, rearranged, gives 𝜅 ⩾ 𝑃(𝐸𝜅)𝔪(𝐸𝜅)
−1, and this ratio has to be greater than or equal to ℎ1(Ω)

by definition; thus, point (i) is settled.
Conversely, let 𝜅 > ℎ1(Ω), and let 𝜀 > 0 be such that 𝜅 = ℎ1(Ω) + 2𝜀. Since Ω has finite 𝔪-

measure, just as in the proof of Theorem 3.6, we can find an infimizing sequence {𝐶𝑗}𝑗 for the
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28 of 55 FRANCESCHI et al.

1-Cheeger constant ℎ1(Ω). For 𝑗 ≫ 1, we have 𝑃(𝐶𝑗)𝔪(𝐶𝑗)
−1 ⩽ ℎ1(Ω) + 𝜀. Hence,

min𝜅 ⩽ 𝑃(𝐶𝑗) − 𝜅𝔪(𝐶𝑗) < 𝑃(𝐶𝑗) − (ℎ1(Ω) + 𝜀)𝔪(𝐶𝑗) ⩽ 0,

which yields the claim since 𝜅 is zero when evaluated on 𝔪-negligible sets. This establishes
point (ii).
Finally, assuming the existence of a 1-Cheeger set, point (iii) follows directly from (i), (ii), and

Lemma 4.1. □

5 RELATIONWITH FIRST 1-EIGENVALUE

In this section, we work in the setting of Section 2.2, where we introduced 𝐵𝑉 functions starting
from a given perimeter functional 𝑃 on a measure space (𝑋,𝒜,𝔪).

5.1 First 1-eigenvalue for𝑵-clusters

For a given𝔪-measurable subset Ω ⊂ 𝑋, we let

𝐵𝑉0(Ω,𝔪) =
{
𝑢 ∈ BV(𝑋,𝔪) ∶ 𝑢|𝑋⧵Ω = 0

}
.

Here and in the following, we write 𝑢|𝑋⧵Ω = 0 whenever

∫𝑋⧵Ω |𝑢| d𝔪 = 0.

Thanks to Lemma 2.6 (iii), under the validity of assumptions (P.1) and (P.2), we have 𝐵𝑉0(Ω,𝔪) ≠
∅.

Definition 5.1 (First 1-eigenvalue). Let properties (P.1) and (P.2) be in force. Let Ω ∈ 𝒜 be a 1-
admissible set with𝔪(Ω) ∈ (0, +∞). We call

𝜆1,1(Ω) = inf

{
Var(𝑢)‖𝑢‖1 ∶ 𝑢 ∈ 𝐵𝑉0(Ω,𝔪), ‖𝑢‖1 > 0

}
∈ [0, +∞)

the first 1-eigenvalue relative to the variation on Ω.

Analogously, we can define the first 1-eigenvalue in the case of 𝑁-clusters as follows.

Definition 5.2 (First 1-eigenvalue for 𝑁-clusters). Let properties (P.1) and (P.2) be in force. Let
Ω ∈ 𝒜 be an𝑁-admissible set with𝔪(Ω) ∈ (0, +∞).We define the first 1-eigenvalue for𝑁-clusters
relative to the variation on Ω as the quantity

Λ𝑁(Ω) = inf

𝑁∑
𝑖=1

Var(𝑢𝑖)‖𝑢𝑖‖1 , (5.1)
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CHEEGER PROBLEM IN MEASURE SPACES 29 of 55

where the infimum is sought among the 𝑁-tuples {𝑢𝑖}𝑁𝑖=1 such that

𝑢𝑖 ∈ 𝐵𝑉0(Ω,𝔪), with ‖𝑢𝑖‖1 > 0 and supp(𝑢𝑖) ∩ supp(𝑢𝑗) = ∅,

for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … ,𝑁.

Clearly, we have thatΛ1(Ω) = 𝜆1,1(Ω) for all 1-admissible setsΩ ∈ 𝒜 with𝔪(Ω) ∈ (0, +∞). In
Theorem 5.4 below, we prove the relation 𝜆1,1(Ω) = ℎ1(Ω), also see [88, Cor. 6], under the addi-
tional (P.7), as a consequence of amore general inequality involving ℎ𝑁(Ω) andΛ𝑁(Ω) in the spirit
of [48, Thm. 3.3].

5.2 Relation with first 1-eigenvalue for𝑵-clusters

We need the following preliminary result, which can be seen as a symmetric version of the coarea
formula (2.2). Note that, in Lemma 5.3, we assume the validity of the symmetry property (P.7).

Lemma 5.3 (Symmetric coarea formula). Let properties (P.1), (P.2), (P.4), and (P.7) be in force. If
𝑢 ∈ 𝐵𝑉(𝑋,𝔪) and

𝐹𝑡 =

{
{𝑢 > 𝑡}, if 𝑡 ⩾ 0,

{𝑢 < 𝑡}, if 𝑡 < 0,

then

‖𝑢‖1 = ∫ℝ

𝔪(𝐹𝑡) d𝑡, (5.2)

and

Var(𝑢) = ∫ℝ

𝑃(𝐹𝑡) d𝑡. (5.3)

In particular, 𝜒𝐹𝑡
∈ 𝐵𝑉(𝑋,𝔪) for a.e. 𝑡 ∈ ℝ. In addition, if 𝑢 ∈ 𝐵𝑉0(Ω,𝔪), then 𝐹𝑡 ⊂ Ω for all 𝑡.

Proof. Equation (5.2) is a simple consequence of Cavalieri’s principle, being

‖𝑢‖1 = ∫𝑋 |𝑢| d𝔪 = ∫𝑋(𝑢
+ + 𝑢−) d𝔪

= ∫
+∞

0

𝔪({𝑢+ > 𝑡}) d𝑡 + ∫
+∞

0

𝔪({𝑢− > 𝑡}) d𝑡

= ∫ℝ

𝔪(𝐹𝑡) d𝑡,

where 𝑢+ and 𝑢− are the positive and negative parts of 𝑢, respectively.
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30 of 55 FRANCESCHI et al.

To prove (5.3), we first observe that, by property (P.7),

Var(𝑢) = ∫ℝ

𝑃({𝑢 > 𝑡}) d𝑡

= ∫
0

−∞

𝑃({𝑢 > 𝑡}) d𝑡 + ∫
+∞

0

𝑃({𝑢 > 𝑡}) d𝑡

= ∫
0

−∞

𝑃({𝑢 ⩽ 𝑡}) d𝑡 + ∫
+∞

0

𝑃({𝑢 > 𝑡}) d𝑡.

Therefore, we just need to show that 𝑃({𝑢 ⩽ 𝑡}) = 𝑃({𝑢 < 𝑡}) for a.e. 𝑡 < 0. Since clearly {𝑢 ⩽ 𝑡} =

{𝑢 < 𝑡} ∪ {𝑢 = 𝑡}, thanks to property (P.4) andRemark 2.2, it is enough to prove that𝔪({𝑢 = 𝑡}) = 0

for a.e. 𝑡 < 0. This is an immediate consequence of the fact that the function 𝑡 ↦ 𝔪({𝑢 ⩽ 𝑡}) is
monotone nondecreasing for 𝑡 < 0, so that the set of its discontinuity points {𝑡 < 0 ∶ 𝔪({𝑢 = 𝑡}) >

0} is at most countable.
Now, the fact that 𝜒𝐹𝑡 ∈ 𝐵𝑉(𝑋,𝔪) for a.e. 𝑡 ∈ ℝ directly follows from (5.3) and (5.2). Finally, if

𝑡 > 0, then 𝐹𝑡 = {𝑢 > 𝑡} ⊂ Ω by definition of 𝐵𝑉0(Ω,𝔪). In a similar way, if 𝑡 < 0, then

𝐹𝑡 = {𝑢 < 𝑡} = 𝑋 ⧵ {𝑢 ⩾ 𝑡} ⊂ 𝑋 ⧵ {𝑢 ⩾ 0} ⊂ Ω.

The proof is complete. □

Theorem 5.4 (Relation with first 1-eigenvalue for 𝑁-clusters). Let properties (P.1) and (P.2) be in
force. IfΩ ∈ 𝒜 is an𝑁-admissible set with𝔪(Ω) ∈ (0, +∞), then

Λ𝑁(Ω) ⩽ ℎ𝑁(Ω).

Moreover, if also properties (P.4) and (P.7) hold, then

𝑁ℎ1(Ω) ⩽ Λ𝑁(Ω),

and thus, in particular, ℎ1(Ω) = 𝜆1,1(Ω).

Proof. Thanks to Lemma 2.4, asΩ is𝑁-admissible, given any𝑁-cluster  = {(𝑖)}𝑁
𝑖=1

inΩ, the𝑁-
tuple {𝜒(𝑖) ∶ 𝑖 = 1, … ,𝑁} is a viable competitor in the definition of Λ𝑁(Ω). Hence, the inequality

Λ𝑁(Ω) ⩽ ℎ𝑁(Ω)

immediately follows.
We now assume the validity of properties (P.4) and (P.7), so that we can use Lemma 5.3, and

focus on the lower bound on Λ𝑁(Ω).
We begin with the case 𝑁 = 1. By contradiction, start by assuming that Λ1(Ω) < ℎ1(Ω). Fixed

any 𝜀 > 0 such that Λ1(Ω) + 𝜀 ⩽ ℎ1(Ω), we let 𝑢 ∈ 𝐵𝑉0(Ω,𝔪) be a competitor in the definition of
Λ1(Ω) such that

Var(𝑢)‖𝑢‖1 ⩽ Λ1(Ω) + 𝜀. (5.4)
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Let {𝐹𝑡 ∶ 𝑡 ∈ ℝ} be the family of sets introduced in Lemma 5.3 relatively to the function 𝑢. We
claim that there exists 𝑡 ∈ [0, +∞) such that

𝔪(𝐹𝑡) > 0 either for all 𝑡 > 𝑡 or for all 𝑡 < −𝑡. (5.5)

Indeed, if either 𝑡1 < 𝑡2 < 0 or 𝑡1 > 𝑡2 > 0, then 𝐹𝑡1 ⊂ 𝐹𝑡2 by definition. Thus, it is enough to find
𝑡 such that either 𝔪(𝐹𝑡) > 0 or 𝔪(𝐹−𝑡) > 0. If no such 𝑡 exists, then Cavalieri’s principle (5.2)
implies that ‖𝑢‖1 = 0, against our initial choice of 𝑢. Hence, claim (5.5) follows, and so, up to
possibly replacing 𝑢 with −𝑢, we can suppose that𝔪(𝐹𝑡) > 0 for 𝑡 > 𝑡. Now, by Lemma 5.3, we
can rewrite (5.4) as

∫ℝ

(
𝑃(𝐹𝑡) − (Λ1(Ω) + 𝜀)𝔪(𝐹𝑡)

)
d𝑡 ⩽ 0. (5.6)

Recalling that Λ1(Ω) + 𝜀 ⩽ ℎ1(Ω) according to our initial assumption, from inequality (5.6), we
immediately get that

0 ⩽ ∫ℝ

(
𝑃(𝐹𝑡) − ℎ1(Ω)𝔪(𝐹𝑡)

)
d𝑡 ⩽ ∫ℝ

(
𝑃(𝐹𝑡) − (Λ1(Ω) + 𝜀)𝔪(𝐹𝑡)

)
d𝑡 ⩽ 0.

Therefore, we must have that

𝑃(𝐹𝑡) − ℎ1(Ω)𝔪(𝐹𝑡) = 0

for a.e. 𝑡 ∈ ℝ. Thus, taking into account that 𝐹𝑡 ⊂ Ω for all 𝑡 ∈ ℝ, we get that

Λ1(Ω) + 𝜀 ⩾
𝑃(𝐹𝑡)

𝔪(𝐹𝑡)
⩾ ℎ1(Ω) (5.7)

for a.e. 𝑡 > 𝑡, that is, Λ1(Ω) + 𝜀 = ℎ1(Ω) for all choices of 𝜀 > 0 suitably small, which is clearly
impossible. Therefore, Λ1(Ω) ⩾ ℎ1(Ω), as desired.
We now conclude the proof with the case𝑁 > 1. Let 𝜀 > 0 and let {𝑢𝑖 ∶ 𝑖 = 1, … ,𝑁} be a viable

𝑁-tuple for the definition of Λ𝑁(Ω) such that

𝑁∑
𝑖=1

Var(𝑢𝑖)‖𝑢𝑖‖1 ⩽ Λ𝑁(Ω) + 𝜀.

For each 𝑖 = 1, … ,𝑁, the function 𝑢𝑖 provides a viable competitor in the definition of Λ1(Ω).
Consequently, using the inequality proved for the case 𝑁 = 1, we get that

Λ𝑁(Ω) + 𝜀 ⩾ 𝑁Λ1(Ω) = 𝑁ℎ1(Ω).

The conclusion thus follows by letting 𝜀 → 0+. □

We end the present section with the following simple consequence of Theorem 5.4, and refer
to [5, 20] for the Euclidean case, and some final remarks.
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32 of 55 FRANCESCHI et al.

Corollary 5.5. Let properties (P.1), (P.4), and (P.7) be in force. LetΩ ∈ 𝒜 be a 1-admissible set with
𝔪(Ω) ∈ (0, +∞). A function 𝑢 ∈ 𝐵𝑉0(Ω,𝔪) attains Λ1(Ω) if and only if the sets 𝐹𝑡 introduced in
Lemma 5.3 are 1-Cheeger sets ofΩ for a.e. 𝑡 ∈ ℝ such that𝔪(𝐹𝑡) > 0. Moreover, there exists a unique
(up to a multiplicative factor) eigenfunction of the variational problem for Λ1(Ω) if and only if there
exists a unique 1-Cheeger set.

Proof. Recalling that (P.1) and (P.7) imply the validity of (P.2), we can argue as in the proof of
Theorem 5.4, with the exception that we can now choose a minimizer 𝑢 ∈ 𝐵𝑉0(Ω,𝔪) for Λ1(Ω),
with no need to work with some given 𝜀 > 0. In particular, in place of (5.7), we obtain

Λ1(Ω) =
𝑃(𝐹𝑡)

𝔪(𝐹𝑡)
= ℎ1(Ω)

for all 𝑡 ∈ ℝ such that𝔪(𝐹𝑡) > 0, proving the first implication. On the other hand, owing again
to Lemma 5.3, if all the level sets {𝐹𝑡 ∶ 𝑡 ∈ ℝ} of a viable competitor 𝑢 ∈ 𝐵𝑉0(Ω,𝔪) with positive
𝔪-measure are 1-Cheeger sets, then

Λ1(Ω)‖𝑢‖1 = ℎ1(Ω)∫ℝ

𝔪(𝐹𝑡) d𝑡 = ∫ℝ

𝑃(𝐹𝑡) d𝑡 = Var(𝑢),

so that 𝑢must be a minimizer attaining Λ1(Ω).
Now, exploiting the first part of the claim, it is easy to show the part regarding uniqueness.

First, notice that, given any 1-Cheeger set 𝐶, the function 𝑢 = 𝑐𝜒𝐶 is a 1-eigenfunction for any
𝑐 ≠ 0. Thus, two different Cheeger sets must provide two different 1-eigenfunctions. Conversely,
if 𝑢1 and 𝑢2 are two distinct 1-eigenfunctions such that 𝑢1 ≠ 𝑐𝑢2 for all 𝑐 ≠ 0, then we can find
𝑡 ∈ ℝ such that the two level sets {𝑢1 > 𝑡} and {𝑢2 > 𝑡} have positive𝔪-measure and are distinct,
hence identifying two different 1-Cheeger sets. □

Remark 5.6. Let properties (P.1), (P.4), and (P.7) be in force. Whenever a 1-Cheeger set 𝐶 exists
(e.g., under the assumptions of Theorem 3.6), Corollary 5.5 yields the existence of eigenfunctions
of the variational problem defining Λ1(Ω), by setting 𝑢 = 𝑐𝜒𝐶 , with 𝑐 ≠ 0.

Remark 5.7. In Section 3.2, we already discussed some examples of sets Ω for which 𝑁ℎ1(Ω) =

ℎ𝑁(Ω) (recall Remark 3.12). Thus, whenever Theorem 5.4 applies, we obtain that Λ𝑁(Ω) equals
these values for such sets Ω.

Remark 5.8. We point out that, in [48, Thm. 3.1], the authors define Λ𝑁(Ω) as the infimum of
a different variational problem, and prove that it coincides with ℎ𝑁(Ω). The adaptation of the
approach of [48] to the present more general framework will be discussed in the forthcoming
paper [115].

Remark 5.9. A key tool for the proof of Theorem 5.4 is the symmetric coarea formula of Lemma 5.3,
which holds provided that also (P.7) is enforced. In particular, this excludes anisotropic Euclidean
settings where the Wulff shape is not central symmetric. A workaround would be to tweak the
variational problem (5.1) by instead considering

Λ̃1(Ω) = inf
{

Var(𝑢)‖𝑢‖1 ∶ 𝑢 ∈ 𝐵𝑉0(Ω,𝔪), ‖𝑢‖1 > 0, 𝑢 ⩾ 0
}
.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12840 by G

iorgio Saracco - C
ochraneItalia , W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHEEGER PROBLEM IN MEASURE SPACES 33 of 55

In such a way, in the proof of Theorem 5.4, the symmetric coarea formula would not be needed
(as 𝑢 ⩾ 0), and one could then establish the equality Λ̃1(Ω) = ℎ1(Ω).

6 RELATIONWITH FIRST 𝒑-EIGENVALUE AND 𝒑-TORSION

In this section, we work in a topological nonnegative 𝜎-finite measure space endowed with a
relative perimeter functional as in Section 2.3. We discuss the relations between the 1-Cheeger
constant and two other variational quantities, the first 𝑝-eigenvalue and the 𝑝-torsion function,
extending to the present more general setting the results obtained in [88, 89] and [32].

6.1 Relation with first 𝒑-eigenvalue

The following definition is motivated by the strong approximation proved in Corollary 2.20.

Definition 6.1 (The set𝖶1,𝑝
0

(Ω,𝔪) for 𝑝 ∈ (1, +∞)). Let properties (RP.1), (RP.2), (RP.3), (RP.4),
and (RP.+) be in force. Let 𝑝 ∈ (1, +∞) and let Ω ⊂ 𝑋 be a nonempty open set. We say that 𝑢 ∈

𝖶
1,𝑝
0

(Ω,𝔪) if 𝑢 ∈ 𝖶1,𝑝(𝑋,𝔪) and there exists a sequence {𝑢𝑘}𝑘∈ℕ ⊂ 𝖶1,1(𝑋,𝔪) ∩ 𝐿𝑝(𝑋,𝔪) as in
Corollary 2.20 such that, in addition,

𝑢𝑘 ∈ C0(𝑋) and supp 𝑢𝑘 ⊂ Ω for all 𝑘 ∈ ℕ.

Under the validity of properties (RP.1), (RP.2), (RP.3), (RP.4), and (RP.+), since 0 ∈ 𝖶1,1(𝑋,𝔪)

by Corollary 2.16, we know that 0 ∈ 𝖶
1,𝑝
0

(Ω,𝔪).
The following definition is focused on open sets for which𝖶

1,𝑝
0

(Ω,𝔪) ≠ {0}.

Definition 6.2 (𝑝-Regular open set and first 𝑝-eigenvalue). Let properties (RP.1), (RP.2), (RP.3),
(RP.4), and (RP.+) be in force. Let 𝑝 ∈ (1, +∞). A nonempty open set Ω ⊂ 𝑋 is 𝑝-regular if
𝖶

1,𝑝
0

(Ω,𝔪) ≠ {0}. In this case, we let

𝜆1,𝑝(Ω) = inf

{‖|∇𝑢|𝑝‖𝑝𝑝‖𝑢‖𝑝𝑝 ∶ 𝑢 ∈ W
1,𝑝
0

(Ω,𝔪), ‖𝑢‖𝑝 > 0

}
∈ [0, +∞)

be the first 𝑝-eigenvalue relative to the𝖶1,𝑝-energy on Ω. Here, |∇𝑢|𝑝 denotes the weak 𝑝-slope
of 𝑢 defined in Definition 2.19.

According to Definition 6.2, if Ω is 𝑝-regular, then we can find a nonzero function 𝑢 ∈

𝖶
1,𝑝
0

(Ω,𝔪). As a consequence, by Definition 6.1, we can also find a function 𝑣 ∈ 𝖶1,1(𝑋,𝔪) ∩

C0(𝑋) with supp 𝑣 ⊂ Ω. Consequently, 𝑣 ∈ 𝐵𝑉0(Ω,𝔪) with ‖𝑣‖1 > 0. Therefore, the first 1-
eigenvalue 𝜆1,1(Ω) relative to the variation 𝖵𝖺𝗋 on Ω introduced in Definition 5.1 is well posed.
In addition, thanks to Theorem 5.4, 𝜆1,1(Ω) coincides with ℎ1(Ω) whenever Ω is 1-admissible
(with respect to the variation functional Var( ⋅ ) = 𝖵𝖺𝗋( ⋅ ; 𝑋)), it satisfies 𝔪(Ω) ∈ (0, +∞), and
the perimeter in (2.6) satisfies (P.7).
As a corollary of the following result, we prove that the 1-Cheeger constant ℎ1(Ω) provides a

lower bound on the first 𝑝-eigenvalue.
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34 of 55 FRANCESCHI et al.

Theorem 6.3 (Relation with first 𝑝-eigenvalue). Let the properties (RP.1), (RP.2), (RP.3), (RP.4),
(RP.+), and (RP.L) be in force and let 𝑝 ∈ (1, +∞). IfΩ ⊂ 𝑋 is a 𝑝-regular open set, then

𝜆1,𝑝(Ω) ⩾

(
𝜆1,1(Ω)

𝑝

)𝑝

. (6.1)

Proof. Let 𝑢 ∈ 𝖶
1,𝑝
0

(Ω,𝔪) be such that ‖𝑢‖𝑝 > 0. Then, according to Definition 6.1, we can find
𝑢𝑘 ∈ 𝖶1,1(𝑋,𝔪) ∩ 𝐿𝑝(𝑋,𝔪) ∩ C0(𝑋) with |∇𝑢𝑘| ∈ 𝐿𝑝(𝑋,𝔪) and supp 𝑢𝑘 ⊂ Ω for all 𝑘 ∈ ℕ such
that 𝑢𝑘 → 𝑢 and |∇𝑢𝑘| → |∇𝑢|𝑝 both in 𝐿𝑝(𝑋,𝔪) as 𝑘 → +∞. Now let𝜑(𝑟) = 𝑟|𝑟|𝑝−1 for all 𝑟 ∈ ℝ

and note that 𝜑 ∈ C1(ℝ) is strictly increasing, with 𝜑′(𝑟) = 𝑝|𝑟|𝑝−1 for all 𝑟 ∈ ℝ. By Theorem 2.15,
we get that 𝜑(𝑢𝑘) ∈ 𝖶1,1(𝑋,𝔪) ∩ C0(𝑋) with supp𝜑(𝑢𝑘) ⊂ Ω and |∇𝜑(𝑢𝑘)| = 𝑝|𝑢𝑘|𝑝−1|∇𝑢𝑘|𝔪-
a.e. in𝑋 for all 𝑘 ∈ ℕ. In particular,𝜑(𝑢𝑘) ∈ 𝐵𝑉0(Ω,𝔪) for all 𝑘 ∈ ℕ. Thus, byHölder’s inequality,
we can estimate

𝖵𝖺𝗋(𝜑(𝑢𝑘); 𝑋) = ‖|∇𝜑(𝑢𝑘)|‖1 = 𝑝 ∫𝑋 |𝑢𝑘|𝑝−1|∇𝑢𝑘| d𝔪
⩽ 𝑝‖|𝑢𝑘|𝑝−1‖ 𝑝

𝑝−1
‖|∇𝑢𝑘|‖𝑝 = 𝑝‖𝑢𝑘‖𝑝−1𝑝 ‖|∇𝑢𝑘|‖𝑝 .

Thus,

𝜆1,1(Ω) ⩽
𝖵𝖺𝗋(𝜑(𝑢𝑘); 𝑋)‖𝜑(𝑢𝑘)‖1 ⩽

𝑝‖𝑢𝑘‖𝑝−1𝑝 ‖|∇𝑢𝑘|‖𝑝‖𝑢𝑘‖𝑝𝑝 =
𝑝‖|∇𝑢𝑘|‖𝑝‖𝑢𝑘‖𝑝

for all 𝑘 ∈ ℕ. Letting 𝑘 → +∞, we obtain

𝜆1,1(Ω) ⩽ 𝑝
‖|∇𝑢|𝑝‖𝑝‖𝑢‖𝑝

for 𝑢 ∈ 𝖶
1,𝑝
0

(Ω,𝔪) with ‖𝑢‖𝑝 > 0 and the proof is complete. □

Assuming (P.7), we can combine Theorem 6.3 with Theorem 5.4 obtaining the following
corollary.

Corollary 6.4. Let the assumptions of Theorem 6.3 be in force. If the perimeter in (2.6) also satis-
fies (P.7) andΩ ⊂ 𝑋 is 1-admissible with respect to the variation in (2.6) with𝔪(Ω) ∈ (0, +∞), then

𝜆1,𝑝(Ω) ⩾

(
ℎ1(Ω)

𝑝

)𝑝

.

6.2 Relation with 𝒑-torsional creep function

Assume properties (RP.1), (RP.2), (RP.3), (RP.4), and (RP.+) to be in force. Let 𝑝 ∈ (1, +∞) and let
Ω ⊂ 𝑋 be a nonempty 𝑝-regular open set with𝔪(Ω) < +∞. We let 𝐽𝑝 ∶ 𝖶

1,𝑝
0

(Ω,𝔪) → ℝ,

𝐽𝑝(𝑢) =
1

𝑝 ∫Ω |∇𝑢|𝑝𝑝 d𝔪 − ∫Ω 𝑢 d𝔪,
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CHEEGER PROBLEM IN MEASURE SPACES 35 of 55

be the 𝑝-torsional creep energy functional, see [87]. When enough structure is available on the
ambient space, the Euler–Lagrange equation associated to the functional 𝐽𝑝 is given by{

−Δ𝑝𝑢 = 1, in Ω,

𝑢 = 0, on 𝜕Ω.
(6.2)

Thanks to Lemma 2.18 (i), the functional 𝐽𝑝 is strictly convex on the convex set 𝖶
1,𝑝
0

(Ω,𝔪).
Hence, the torsional creep problem

𝑇𝑝(Ω) = inf
{
𝐽𝑝(𝑢) ∶ 𝑢 ∈ W

1,𝑝
0

(Ω,𝔪)
}

has at most one minimizer. If this exists, we denote it by 𝑤𝑝 ∈ 𝖶
1,𝑝
0

(Ω,𝔪). In particular, since
0 ∈ 𝖶

1,𝑝
0

(Ω,𝔪), we immediately see that

𝐽𝑝(𝑤𝑝) ⩽ 𝐽𝑝(0) = 0,

so that

∫Ω |∇𝑤𝑝|𝑝𝑝 d𝔪 ⩽ 𝑝 ∫Ω 𝑤𝑝 d𝔪 ⩽ 𝑝 ∫Ω |𝑤𝑝| d𝔪. (6.3)

Under the assumptions of Corollary 6.4, and assuming the existence of a nontrivial minimizer
𝑤𝑝 of 𝐽𝑝, we can show that the 1-Cheeger constant of Ω provides a bound on the 𝐿1(𝑋,𝔪) norm
of 𝑤𝑝, in a similar fashion to [32].

Theorem 6.5 (Relation with the 𝑝-torsional creep function). Let the properties (RP.1), (RP.2),
(RP.3), (RP.4), (RP.+), (RP.L), and (P.7) be in force and let 𝑝 ∈ (1, +∞). IfΩ ⊂ 𝑋 is a 𝑝-regular open
set that is also 1-admissible with respect to the variation in (2.6) with𝔪(Ω) ∈ (0, +∞), and 𝐽𝑝 has a
nontrivial minimizer 𝑤𝑝 ≠ 0, then

ℎ1(Ω) ⩽ 𝑝
1+ 1

𝑝

(
𝔪(Ω)‖𝑤𝑝‖1

) 𝑝−1

𝑝

. (6.4)

Proof. UsingCorollary 6.4, the (nontrivial) torsional creep function𝑤𝑝 as a competitor for 𝜆1,𝑝(Ω),
the inequality (6.3), and Hölder’s inequality, we get

(
ℎ1(Ω)

𝑝

)𝑝

⩽ 𝜆1,𝑝(Ω) ⩽
∫Ω |∇𝑤𝑝|𝑝𝑝 d𝔪
∫Ω |𝑤𝑝|𝑝 d𝔪

⩽

𝑝 ∫Ω |𝑤𝑝| d𝔪
∫Ω |𝑤𝑝|𝑝 d𝔪 ⩽

𝑝𝔪(Ω)𝑝−1(
∫Ω |𝑤𝑝| d𝔪)𝑝−1

.

Rearranging, the claimed inequality follows. □
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36 of 55 FRANCESCHI et al.

Remark 6.6. If the weak formulation of the torsional creep PDE (6.2) is available, then one can
test it against the solution 𝑤𝑝 itself, finding that

∫Ω |∇𝑤𝑝|𝑝𝑝 d𝔪 = ∫Ω 𝑤𝑝 d𝔪.

Using this equality in place of inequality (6.3), one gets the analog of (6.4) with a prefactor of 𝑝

in place of 𝑝1+
1
𝑝 . Under additional structural hypotheses on the space, which allow to identify

the 𝑝-slope with the 𝑝th power of the 1-slope, one can altogether remove the prefactor from the
inequality, similarly to [32, Thm. 2].

Remark 6.7. In the statement of Theorem 6.5, we need to assume that 𝐽𝑝 has a minimizer (which
in case is the unique one, by strict convexity) and that this is nontrivial. This can be ensured in
suitable spaces, where a Poincaré inequality holds, allowing to see that 𝐽𝑝 is coercive.

7 APPLICATIONS

In this section, we apply the general results presented above to specific settings. In each of the
following examples, we will consider the natural topology of the ambient space.

7.1 Metric-measure spaces

Let (𝑋, 𝑑) be a complete and separable metric space and let 𝔪 be a nonnegative Borel measure
(on the 𝜎-algebra induced by the distance 𝑑) that is finite on bounded Borel sets and such that
supp𝔪 = 𝑋. In particular,𝔪 is a 𝜎-finite measure on 𝑋.
Given 𝑢∶ 𝑋 → ℝ, we define the slope of 𝑢 (also called the local Lipschitz constant of 𝑢) the

function |∇𝑢|∶ 𝑋 → [0,+∞] defined as

|∇𝑢|(𝑥) = lim sup
𝑦→𝑥

|𝑢(𝑦) − 𝑢(𝑥)|
𝑑(𝑦, 𝑥)

for all 𝑥 ∈ 𝑋.
For an open set 𝐴 ⊂ 𝑋, we say that 𝑢 ∈ Liploc(𝐴) if for each 𝑥 ∈ Ω, there is 𝑟 > 0 such that

𝐵𝑟(𝑥) ⊂ 𝐴 and the restriction 𝑢|𝐵𝑟(𝑥) is a Lipschitz function, where 𝐵𝑟(𝑥) ⊂ 𝑋 denotes the 𝑑-ball
centered at 𝑥 ∈ 𝑋 with radius 𝑟 ∈ (0, +∞).
In the presentmetric-measure setting, one has the following natural definition of𝐵𝑉 functions,

see [10, 11, 107].

Definition 7.1 (𝐵𝑉 functions in metric spaces). We say that 𝑢 ∈ 𝐵𝑉(𝑋, 𝑑,𝔪) if 𝑢 ∈ 𝐿1(𝑋,𝔪) and
there exists a sequence {𝑢𝑘}𝑘∈ℕ ⊂ Liploc(𝑋) such that

𝑢𝑘 → 𝑢 in 𝐿1(𝑋,𝔪) and sup
𝑘∈ℕ ∫𝑋 |∇𝑢𝑘| d𝔪 < +∞.
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CHEEGER PROBLEM IN MEASURE SPACES 37 of 55

Moreover, we let

|𝐷𝑢|(𝐴) = inf

{
lim inf
𝑘→+∞ ∫𝑋 |∇𝑢𝑘| d𝔪 ∶ 𝑢𝑘 ∈ Liploc(𝐴), 𝑢𝑘 → 𝑢 in 𝐿1(𝐴,𝔪)

}
(7.1)

be the variation of 𝑢 relative to the open set 𝐴 ⊂ 𝑋. As usual, if 𝑢 = 𝜒𝐸 for some measurable set
𝐸 ⊂ 𝑋, then we let 𝑃(𝐸;𝐴) = |𝐷𝜒𝐸|(𝐴) be the perimeter of 𝐸 relative to 𝐴.

If 𝑢 ∈ 𝐵𝑉(𝑋, 𝑑,𝔪), then the set function 𝐴 ↦ |𝐷𝑢|(𝐴) is the restriction to open sets of a finite
Borel measure, for which we keep the same notation. This result was originally proved in [107]
for locally compactmetric spaces, and then generalized to the possibly nonlocally compact setting
in [10]. Actually, as done in [107], the convergence in 𝐿1(𝐴,𝔪) in (7.1) may be replaced with the
convergence in 𝐿1

loc
(𝐴,𝔪) without affecting the overall approach.

In the present setting, the (total) perimeter functional 𝑃(𝐸) = |𝐷𝜒𝐸|(𝑋) given by (7.1) in Defini-
tion 7.1 satisfies the properties (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7). Indeed, properties (P.1), (P.2),
and (P.7) immediately follow fromDefinition 7.1. For property (P.3), we refer to [107, Prop. 4.7(3)].
Finally, property (P.4) is a consequence of [107, Prop. 3.6] and property (P.5) follows from [107,
Thm. 3.7].
For what concerns the variation measure introduced in (7.1), from [107, Prop. 4.2] and the

discussion in [10, Sect. 1], we can infer that

|𝐷𝑢|(𝐴) = ∫ℝ

|𝐷𝜒{𝑢>𝑡}|(𝐴) d𝑡 = ∫
0

−∞

|𝐷𝜒{𝑢<𝑡}|(𝐴) d𝑡 + ∫
+∞

0

|𝐷𝜒{𝑢>𝑡}|(𝐴) d𝑡
whenever 𝑢 ∈ 𝐵𝑉(𝑋, 𝑑,𝔪), for every Borel set 𝐴 ⊂ 𝑋.
In virtue of the properties listed above, we easily deduce the validity of the relation between

the 1-Cheeger constant of an open set Ω ⊂ 𝑋 with𝔪(Ω) ∈ (0, +∞) and the first 1-eigenvalue as
in Theorem 5.4, meaning that

ℎ1(Ω) = inf

{|𝐷𝑢|(𝑋)‖𝑢‖1 ∶ 𝑢 ∈ 𝐵𝑉(𝑋, 𝑑,𝔪), 𝑢|𝑋⧵Ω = 0, ‖𝑢‖1 > 0

}
.

Incidentally, we refer the reader to [10, Sect. 6] for the definition of the 1-Laplacian operator in
this general context.
Concerning the isoperimetric-type property (P.6), we can state the following result (inspired by

[12, Thm. 3.46]). Notice that inequality (7.2) serves as a prototype in the present setting. In fact,
as discussed in the examples below, if the ambient metric-measure space (𝑋, 𝑑,𝔪) has a richer
structure, then finer results are available. Nonetheless, the isoperimetric-type inequality (7.2) is
sufficient to replace (P.6) in the present context.

Proposition 7.2. Let (𝑋, 𝑑,𝔪) be a geodesic Poincaré metric-measure space as in [107, Def. 2.5].
LetΩ ⊂ 𝑋 be an open set with𝔪(Ω) ∈ (0, +∞). Assume that there exists a countable family of open
balls 𝐵𝑖 = 𝐵𝑟𝑖 (𝑥𝑖), 𝑖 ∈ ℕ, with the following properties:

(i) Ω ⊂
⋃

𝑖∈ℕ 𝐵
𝑖;

(ii) there exists𝑁 ∈ ℕ such that
∑

𝑖∈ℕ 𝜒𝐵𝑖 ⩽ 𝑁;
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38 of 55 FRANCESCHI et al.

(iii) there exists 𝑐0 > 0 such that 𝔪(𝐵𝑖) ⩾ 𝑐0𝑟
𝑄
𝑖
for all 𝑖 ∈ ℕ, where 𝑄 > 0 is the homogeneous

dimension as in [107, Rem. 2.2];
(iv) 𝜀0 = inf {𝑟𝑖 ∶ 𝑖 ∈ ℕ} > 0.

Then, there exists a constant 𝐶 > 0 such that

𝔪(𝐸)
𝑄−1
𝑄 ⩽ 𝐶 𝑃(𝐸) (7.2)

whenever 𝐸 ⊂ Ω is an𝔪-measurable set with𝔪(𝐸) <
𝑐0
2
𝜀𝑄
0
.

Proof. Due to (iv), we can estimate

𝔪(𝐸 ∩ 𝐵𝑖) ⩽ 𝔪(𝐸) <
𝑐0
2
𝜀𝑄
0
⩽
1

2
𝔪(𝐵𝑖)

for all 𝑖 ∈ ℕ. Consequently, by [107, Thm. 4.5] (since (𝑋, 𝑑) is geodesic by assumption) and (iii),
we get

𝔪(𝐸 ∩ 𝐵𝑖)
𝑄−1
𝑄 = min

{
𝔪(𝐸 ∩ 𝐵𝑖), 𝔪(𝐸𝑐 ∩ 𝐵𝑖)

}𝑄−1
𝑄

⩽
𝑐𝑟𝑖

𝔪(𝐵𝑖)1∕𝑄
𝑃(𝐸; 𝐵𝑖) ⩽ 𝑐 𝑐

−1∕𝑄

0
𝑃(𝐸; 𝐵𝑖)

for all 𝑖 ∈ ℕ, where 𝑐 > 0 is the constant appearing in [107, Thm. 4.5]. Hence, thanks to (i) and (ii),
we conclude that

𝔪(𝐸)
𝑄−1
𝑄 ⩽

∑
𝑖∈ℕ

𝔪(𝐸 ∩ 𝐵𝑖)
𝑄−1
𝑄 ⩽ 𝑐 𝑐

−1∕𝑄

0

∑
𝑖∈ℕ

𝑃(𝐸; 𝐵𝑖) ⩽ 𝑐 𝑐
−1∕𝑄

0
𝑁 𝑃(𝐸),

yielding (7.2) with 𝐶 = 𝑐 𝑐
−1∕𝑄

0
𝑁. □

Remark 7.3. Note that, if (𝑋, 𝑑,𝔪) is as in the statement of Proposition 7.2 andΩ ⊂ 𝑋 is a bounded
open set such that𝔪(Ω) > 0, thenΩ is a compact set, and thus, for any 𝑟 > 0, we can find𝑁(𝑟) ∈ ℕ

open balls 𝐵𝑟(𝑥𝑖), 𝑥𝑖 ∈ Ω, 𝑖 = 1, … ,𝑁(𝑟), satisfying (i), (ii) with𝑁 = 𝑁(𝑟) (in fact, the assumption
that (𝑋, 𝑑) is geodesic is not needed), and (iv) with 𝜀0 = 𝑟. The validity of (iii) holds thanks to
[107, Eq. 2 in Rem. 2.2], since Ω ⊂ 𝐵𝑅(�̄�) for some �̄� ∈ Ω and some 𝑅 ∈ (0, +∞). Consequently,
Proposition 7.2 always applies to bounded open sets Ω ⊂ 𝑋 with positive measure.

In the metric-measure framework, the definition of 𝑊1,1(𝑋, 𝑑,𝔪) is not completely under-
stood, see the discussion in [10, Sect. 8]. As usual, one possibility is to say that 𝑢 ∈ 𝑊1,1(𝑋, 𝑑,𝔪)

if 𝑢 ∈ 𝐵𝑉(𝑋, 𝑑,𝔪) and |𝐷𝑢| ≪ 𝔪, and then to proceed as in Section 2.3.3 in order to work out
the machinery needed to establish the relation between the 1-Cheeger constant and the first 𝑝-
eigenvalue in Corollary 6.4. However, one can exploit the richer structure of the ambient space to
get a more direct and plainer approach to the relation with the first 𝑝-eigenvalue. Let us briefly
detail the overall idea. In the spirit of [63] and in an analogous way of Definition 7.1 (see the dis-
cussion at the end of [107, Sect. 2]), we say that 𝑢 ∈ 𝑊1,𝑝(𝑋, 𝑑,𝔪) for some 𝑝 ∈ (1, +∞) if there
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CHEEGER PROBLEM IN MEASURE SPACES 39 of 55

exists a sequence {𝑢𝑘}𝑘∈ℕ ⊂ Liploc(𝑋) such that

𝑢𝑘 → 𝑢 in 𝐿𝑝(𝑋,𝔪) and sup
𝑘∈ℕ ∫𝑋 |∇𝑢𝑘|𝑝 d𝔪 < +∞. (7.3)

Therefore, we can consider the Cheeger 𝑝-energy of 𝑢, defined by

Ch𝑝(𝑢) = inf

{
lim inf
𝑘→+∞

1

𝑝 ∫𝑋 |∇𝑢𝑘|𝑝 d𝔪 ∶ 𝑢𝑘 ∈ Liploc(𝑋), 𝑢𝑘 → 𝑢 in 𝐿𝑝(𝑋,𝔪)

}
, (7.4)

as the natural replacement of the Dirichlet 𝑝-energy in this framework.
Accordingly, for a given nonempty open set Ω ⊂ 𝑋, we say that 𝑢 ∈ 𝑊

1,𝑝
0

(Ω, 𝑑,𝔪) if there
exists a sequence {𝑢𝑘}𝑘∈ℕ ⊂ Liploc(𝑋) as in (7.3) (so that, in particular, 𝑢 ∈ 𝑊1,𝑝(𝑋, 𝑑,𝔪)) with
the additional property that supp 𝑢𝑘 ⋐ Ω for all 𝑘 ∈ ℕ. Therefore, coherently with what was done
in Definition 6.2, we let

𝜆1,𝑝(Ω, 𝑑,𝔪) = inf

{
𝑝 Ch𝑝(𝑢)‖𝑢‖𝑝𝑝 ∶ 𝑢 ∈ 𝑊

1,𝑝
0

(𝑋, 𝑑,𝔪), ‖𝑢‖𝑝 > 0

}
. (7.5)

Now, it is not difficult to see that, in virtue of the definition of the Cheeger 𝑝-energy in (7.4),
the infimum in (7.5) can be actually restricted to functions 𝑢 ∈ 𝐿𝑝(𝑋,𝔪) ∩ Liploc(𝑋) such that

∫𝑋 |∇𝑢|𝑝 d𝔪 < +∞ and supp 𝑢 ⋐ Ω. (7.6)

Now, if 𝑢 ∈ 𝐿𝑝(𝑋,𝔪) ∩ Liploc(𝑋) satisfies (7.6), then the function 𝑣 = 𝑢|𝑢|𝑝−1 is such that 𝑣 ∈

𝐿1(𝑋,𝔪) ∩ Liploc(𝑋) with supp 𝑣 ⋐ Ω and

|∇𝑣| ⩽ 𝑝|𝑢|𝑝−1|∇𝑢|.
Consequently, by the definition in (7.1) and Hölder’s inequality, we can estimate

|𝐷𝑣|(𝑋) ⩽ ∫𝑋 |∇𝑣| d𝔪 ⩽ 𝑝 ∫𝑋 |𝑢|𝑝−1|∇𝑢| d𝔪 ⩽ 𝑝‖𝑢‖𝑝−1𝑝 ‖|∇𝑢|‖𝑝.
Therefore,

ℎ1(Ω) ⩽
|𝐷𝑣|(𝑋)‖𝑣‖1 ⩽

𝑝‖𝑢‖𝑝−1𝑝 ‖|∇𝑢|‖𝑝‖𝑢‖𝑝𝑝 =
𝑝‖|∇𝑢|‖𝑝‖𝑢‖𝑝 , (7.7)

and thus,

𝜆1,𝑝(Ω, 𝑑,𝔪) ⩾

(
ℎ1(Ω)

𝑝

)𝑝

by the arbitrariness of 𝑢 in the right-hand side of (7.7), proving Corollary 6.4.
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40 of 55 FRANCESCHI et al.

Similar considerations can be done for the relation of the 1-Cheeger constant with the 𝑝-
torsional creep function as in Theorem 6.5.We leave the analogous details to the interested reader.

7.2 Euclidean spaces with density

Let 𝒜 = ℬ(ℝ𝑛) be the Borel 𝜎-algebra in ℝ𝑛 and consider two lower semicontinuous density
functions

g ∈ 𝐿∞(ℝ𝑛; [0, +∞)), and ℎ ∈ 𝐿∞(ℝ𝑛 × 𝕊𝑛−1; (0, +∞)),

so that ℎ is convex in the second variable and locally bounded away from zero, that is, for any
bounded set Ω ⊂ ℝ𝑛, there exists 𝐶 > 0 such that

1

𝐶
⩽ ℎ(𝑥, 𝜈) ⩽ 𝐶, ∀𝑥 ∈ Ω, ∀𝜈 ∈ 𝕊𝑛−1 . (7.8)

For any 𝐸 ∈ 𝒜, we let the weighted volume and perimeter of 𝐸 to be defined, respectively, by

𝔪g (𝐸) = ∫𝐸 g(𝑥) d𝑥 ,

𝑃ℎ(𝐸) =

⎧⎪⎨⎪⎩
∫𝜕∗𝐸 ℎ(𝑥, 𝜈𝐸(𝑥)) d

𝑛−1(𝑥), if𝜒𝐸 ∈ 𝐵𝑉loc(ℝ
𝑛),

+∞ , otherwise.

Here, we let 𝜕∗𝐸 be the reduced boundary of 𝐸 and, for every 𝑥 ∈ 𝜕∗𝐸, 𝜈𝐸(𝑥) ∈ 𝕊𝑛−1 be the outer
unit normal vector to 𝐸 at 𝑥 (see [12] for definitions and properties of sets of finite perimeter).
If g and ℎ are identically equal to 1,𝔪g = ℒ𝑛 is the Lebesgue measure, and 𝑃ℎ = 𝑃Eucl is the

standard Euclidean perimeter that satisfies all properties (P.1)–(P.6) and (P.7) in themeasure space
(ℝ𝑛,𝒜,ℒ𝑛). In particular, (P.6) holds with 𝑓(𝜀) = 𝑛𝜔

1∕𝑛
𝑛 𝜀−1∕𝑛, and follows from the standard

isoperimetric inequality

𝑃Eucl(𝐸) ⩾ 𝑛𝜔
1∕𝑛
𝑛 ℒ𝑛(𝐸)1−

1
𝑛 , (7.9)

holding for any 𝐸 ∈ 𝒜. The Cheeger problem in this setting is standard, see [91, 112], and its
minimizers are now completely characterized for a large class of planar sets [41, 88, 92, 95, 114],
and reasonably well-understood for convex𝑁-dimensional bodies [5, 26]. Recently, Cheeger clus-
ters have been introduced and studied in [47], see also [30, 31, 48], and in [25, 115] in relation to
more general combinations than the sum of their Cheeger constants. Interestingly, the Euclidean
Cheeger problem plays a role in the Rudin–Osher–Fatemi (ROF)model for regularization of noisy
images, as highlighted in [5], see also [91, Sect. 2.3], and this is also linked to our Section 4 and to
our Corollary 5.5.
We now turn to the case of volume and perimeter with general densities, for which the Cheeger

problem has been considered for𝑁 = 1, for example, in [50, 84, 89, 96, 114]. We discuss properties
(P.1)–(P.7) for the general densities ℎ, g above. Notice that (7.8) implies that sets with locally finite
perimeter 𝑃ℎ are all and only those with locally finite Euclidean perimeter. Properties (P.1) and
(P.2) are immediate from the definitions. Given 𝐸, 𝐹 ∈ 𝒜, (P.3) follows from the validity of the
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CHEEGER PROBLEM IN MEASURE SPACES 41 of 55

following relations between reduced boundaries and sets operations:

𝜕∗(𝐸 ∩ 𝐹) ⊆ (𝐹(1) ∩ 𝜕∗𝐸) ∪ (𝐸(1) ∩ 𝜕∗𝐹),

𝜕∗(𝐸 ∪ 𝐹) ⊆ (𝐹(0) ∩ 𝜕∗𝐸) ∪ (𝐸(0) ∩ 𝜕∗𝐹).

Here, 𝐸(𝑡) denotes the set of points of density 𝑡 ⩾ 0 for 𝐸 and we recall that ℒ𝑛(ℝ𝑛 ⧵ (𝐸(0) ∪

𝐸(1))) = 0, see, for example, [98, Thm. 16.3] for more details. Property (P.4) holds true thanks to
Reshetnyak lower semicontinuity theorem, see [12, Thm. 2.38], and uses the lower semicontinuity
and the convexity assumptions on ℎ. Property (P.5) follows from the standard compactness the-
orem for sets with equibounded perimeter and from (7.8). Property (P.7) is equivalent to assume
that ℎ is even in the second variable.
Finally, we discuss (P.6). If (7.8) also holds onΩ = ℝ𝑛, the isoperimetric inequality (7.9) extends

to this setting by observing that, for any 𝜀 > 0 and 𝐸 ∈ 𝒜 such that𝔪(𝐴) ⩽ 𝜀, we have

𝑃ℎ(𝐸) ⩾
𝑃Eucl(𝐸)

𝐶
⩾
𝑛𝜔

1∕𝑛
𝑛 ℒ𝑛(𝐸)1−

1
𝑛

𝐶

⩾
𝑛𝜔

1∕𝑛
𝑛 𝔪g (𝐸)

1− 1
𝑛

𝐶(sup g)
𝑛−1
𝑛

⩾ 𝑓(𝜀)𝔪g (𝐸),

(7.10)

with 𝑓(𝜀) = 𝑛𝜔
1∕𝑛
𝑛 ∕[𝐶𝜀1∕𝑛(sup g)

𝑛−1
𝑛 ]. In this case, Theorem 3.6 implies existence of Cheeger

𝑁-clusters of any admissible setΩ ⊂ ℝ𝑛 for perimeter and volume with double (anisotropic) den-
sities. Observe that, in order for Ω to be admissible, it is needed that g > 0 on a Borel set of
positive measure contained in Ω. This covers the existence results already present in the liter-
ature for 𝑁 = 1 [50, 89, 114] and double densities, or for Euclidean densities and 𝑁 > 1 [47, 48],
and generalize it to the case of double density and 𝑁 > 1.
In the general case where (7.8) does not extend to a global bound, (P.6) might not hold. Some

specific examples of this type are discussed in the following subsections.Nonetheless, Theorem4.5
applies to general densities, establishing the relation between the 1-Cheeger constant with the
curvature functional, as previously discussed, for example, in [8, 50]. Assuming the symmetry
assumption (P.7), Theorem 5.4 shows that the 1-Cheeger constant ℎ1(Ω) corresponds to the first
1-eigenvalue 𝜆1,1(Ω) defined in Definition 5.1.
Estimates of the first 𝑝-eigenvalue in terms of the 1-Cheeger constant are proved in [89] for

anisotropic (symmetric) perimeterswhose density does not depend on the position, andEuclidean
volume. In this setting, we observe that 𝑃ℎ admits the following distributional formulation:

𝑃ℎ(𝐸;𝐴) = sup

{
∫𝐸 div 𝜑 d𝑥 ∶ 𝜑 ∈ C1

𝑐(𝐴;ℝ
𝑛), sup

𝑥∈𝐴
ℎ∗(𝜑) ⩽ 1

}
,

where ℎ∗ denotes the norm dual to ℎ. The latter yields the validity of (RP.L) and (RP.+), thus
allowing to apply Theorem 6.3 and to establish a relation between the 1-Cheeger constant and
the first 𝑝-eigenvalue defined in Definition 6.2, in the same spirit of [89]. As far as we know, the
relation between the 1-Cheeger constant for more general densities ℎ = ℎ(𝑥, 𝜈) and the spectrum
of specific “𝑝-Laplace” operators in the spirit of [89] is an open question.
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42 of 55 FRANCESCHI et al.

7.2.1 Gaussian space

When (7.8) does not extend to Ω = ℝ𝑛, property (P.6) cannot be deduced as in (7.10). A specific
setting where this happens is the Gaussian space, corresponding to the choice g = ℎ = 𝛾, where

𝛾(𝑥) =
1

(2𝜋)𝑛∕2
𝑒−

‖𝑥‖2
2 . (7.11)

Let us notice that (7.8) only holds locally and that (ℝ𝑛,𝔪𝛾) is a probability space, that is,

𝔪𝛾(ℝ
𝑛) =

1

(2𝜋)𝑛∕2 ∫ℝ𝑛
𝑒−

‖𝑥‖2
2 d𝑥 = 1.

Similarly to the Euclidean case, we can define the Gaussian perimeter of a Borel set 𝐸 inside an
open set Ω ⊂ ℝ𝑛 as

𝑃𝛾(𝐸,Ω) = sup

{
∫𝐸(div 𝜑 − 𝜑 ⋅ 𝑥) d𝔪𝛾(𝑥) ∶ 𝜑 ∈ C∞

𝑐 (Ω;ℝ𝑛), ‖𝜑‖∞ ⩽ 1

}
. (7.12)

It is easy to see that if a set 𝐸 has finite Gaussian perimeter, then it also has locally finite Euclidean
perimeter and

𝑃𝛾(𝐸) =
1

(2𝜋)𝑛∕2 ∫𝜕∗𝐸 𝑒
−

‖𝑥‖2
2 d𝑛−1(𝑥).

Properties (P.1)–(P.5) and (P.7) follow as above. We discuss the isoperimetric property (P.6). For
every Borel set 𝐸 ⊂ ℝ𝑛, the following isoperimetric inequality holds (see [18, 27, 120]):

𝑃𝛾(𝐸) ⩾  (𝔪𝛾(𝐸)),

where ∶ ℝ → ℝ is theGaussian isoperimetric function defined as (𝑡) = Φ′◦Φ−1(𝑡), 𝑡 ∈ ℝ, with

Φ(𝑡) =
1√
2𝜋 ∫

𝑡

−∞

𝑒−
𝑠2

2 d𝑠,

and it has the following asymptotic behavior [51]:

lim
𝑠→0

 (𝑠)

𝑠| ln(𝑠)| 12 = 1.

We deduce (P.6) by setting 𝑓∶ (0, +∞) → (0, +∞) as

𝑓(𝜀) =
 (𝜀)

𝜀
.

Moreover, using the distributional formulation (7.12), one can deduce the validity of (RP.+) and
(RP.L). Therefore, all of our results apply in this setting. While the existence of 1-Cheeger sets was
already known, see [51, 86], and the clustering isoperimetric problem has been recently addressed
in [106], the Cheeger cluster problem for 𝑁 > 1 had never been treated. The relation with the
prescribed curvature functional had been studied in [51], while, up to our knowledge, the relation
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CHEEGER PROBLEM IN MEASURE SPACES 43 of 55

with the first eigenvalue of the Dirichlet 𝑝-Laplacian had never been proved, but only quickly
observed in [86] for 𝑝 = 2 (the Ornstein–Uhlenbeck operator).

7.2.2 Monomial and radial weights

Further settings where (P.6) cannot be deduced from (7.8) are those of monomial and radial den-
sities. Given 𝐴 = (𝑎1, … , 𝑎𝑛) ∈ ℝ𝑛, with 𝑎𝑖 ⩾ 0, for 𝑖 = 1, … , 𝑛, a monomial weight is g(𝑥) = 𝑥𝐴,
where we used the notation 𝑥𝐴 = |𝑥1|𝑎1 ⋯ |𝑥𝑛|𝑎𝑛 . A radial weight, instead, is of the type g(𝑥) =‖𝑥‖𝑞, 𝑞 ⩾ 0.
We have already shown that properties (P.1)–(P.5) and (P.7) hold true. The isoperimetric prop-

erty is discussed (for Lipschitz sets) formonomialweights in [2, 7, 38, 39, 64], and for radialweights
in [6, 68, 69]. The Cheeger problem in the monomial setting has also been considered in [7, 26].

7.3 Nonlocal perimeters

In this section, we discuss applications to nonlocal perimeters.

7.3.1 Classical nonlocal perimeters

We focus on the nonlocal perimeters considered in [57, 101, 121]. Let 𝐾 ∶ ℝ𝑛 → (0, +∞) be such
that

min{|𝑥|, 1}𝐾(𝑥) ∈ 𝐿1(ℝ𝑛) and 𝐾(𝑥) = 𝐾(−𝑥) ∀𝑥 ∈ ℝ𝑛. (7.13)

For a measurable set 𝐸 ⊂ ℝ𝑛, we let

𝑃𝐾(𝐸) =
1

2 ∫ℝ𝑛 ∫ℝ𝑛
𝐾(𝑥 − 𝑦)|𝜒𝐸(𝑥) − 𝜒𝐸(𝑦)| d𝑦 d𝑥. (7.14)

We now discuss the properties of the 𝐾-perimeter on the measure space (ℝ𝑛,ℬ(ℝ𝑛),ℒ𝑛).
Under the general assumptions (7.13), properties (P.1), (P.2), and (P.7) are direct consequences
of (7.14), whereas for the validity of (P.3) and (P.4), we refer to [57, Prop. 2.2]. As a consequence,
Theorem 5.4 applies, establishing the link between 𝜆1,1(Ω) and ℎ1(Ω), already proved in [28] for
the fractional 𝑠-perimeter and [100, Thm. 5.3] for kernels satisfying 𝐾 ∈ 𝐿1(ℝ𝑛).
The validity of (P.5) holds provided that, besides (7.13), one assumes that 𝐾 ∈ 𝐿1(ℝ𝑛 ⧵ 𝐵𝑟) for

all 𝑟 > 0, see [24, Thm. 2.11]. This yields Theorem 3.6 and Theorem 4.5, also see the discussion in
[24, Sect. 3].
The isoperimetric property (P.6) holds, provided that 𝐾 is radially symmetric decreasing, see

[57, Prop. 3.1] and [24, Thm. 2.19]. Moreover, the function

𝑓(𝜀) =
𝑃𝐾(𝐵

𝜀)

𝜀
, 𝜀 > 0 ,

where𝐵𝜀 is the Euclidean ball centered at the originwith volume 𝜀, satisfies𝑓(𝜀) → +∞ as 𝜀 → 0+,
provided that 𝐾 ∉ 𝐿1(ℝ𝑛), see [57, Lem. 3.2] and [24, Lem. 2.22], thus yielding (P.6).
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44 of 55 FRANCESCHI et al.

For a study of the Cheeger problem for the nonlocal perimeter functional𝑃𝐾 and the (weighted)
Lebesgue measure, as well as for the relation between this nonlocal Cheeger problem with the
associated nonlocal 𝐿1 denoising model and the prescribed mean curvature functional, see [24,
Sects. 3 and 6.3].
The most relevant example of nonlocal perimeter functional satisfying all the aforementioned

properties is the fractional 𝑠-perimeter, 𝑠 ∈ (0, 1),

𝑃𝑠(𝐸) = ∫ℝ𝑛 ∫ℝ𝑛

|𝜒𝐸(𝑥) − 𝜒𝐸(𝑦)||𝑥 − 𝑦|𝑛+𝑠 d𝑦 d𝑥, (7.15)

corresponding to the choice 𝐾𝑠(𝑥) = |𝑥|−𝑛−𝑠. We mention that the Cheeger problem for 𝑃𝑠 has
been introduced and studied in [28], where existence of 𝑁-Cheeger sets of a bounded open set
Ω ⊂ ℝ𝑛 is proved for 𝑁 = 1. Up to our knowledge, for 𝑁 > 1, the 𝑁-Cheeger problem has never
been considered in this setting, whereas the clustering isoperimetric problem has been treated in
[58]. We also refer to [23, Thm. 1.5] for a discussion of the fractional Cheeger constant with respect
to the existence of minimizers of the prescribed mean curvature functional.

7.3.2 Fractional Gaussian spaces

For 𝑥, 𝑦 ∈ ℝ𝑛, 𝑡 > 0, let 𝑀𝑡(𝑥, 𝑦) ⩾ 0 be the Mehler kernel, see [43–45] for the precise definition.
For 𝑠 ∈ (0, 1), we set

𝐾𝜎(𝑥, 𝑦) = ∫
+∞

0

𝑀𝑡(𝑥, 𝑦)

𝑡
𝑠
2
+1

d𝑡,

and we let

𝑃
𝛾
𝑠 (𝐸) = ∫𝐸 ∫𝐸𝑐

𝐾𝑠(𝑥, 𝑦) d𝛾(𝑦) d𝛾(𝑥) (7.16)

be the fractional Gaussian 𝑠-perimeter of the measurable set 𝐸 ⊂ ℝ𝑛, where the measure 𝛾 is as in
(7.11). Properties (P.1) and (P.2) directly follow from the definition, whereas (P.7) is a consequence
of the symmetry of the kernel 𝐾𝑠(𝑥, 𝑦). For the validity of (P.4) and (P.5), we refer to [43–45].
Therefore, Theorem 4.5 and Theorem 5.4 hold true. Property (P.3) can be proved exactly as in [57,
Prop. 2.2].
Concerning (P.6), the following isoperimetric inequality

𝑃
𝛾
𝑠 (𝐸) ⩾ 𝐼

𝛾
𝑠 (𝛾(𝐸))

is proved for every measurable set 𝐸 ⊂ ℝ𝑛 in [110]. Here, 𝐼𝛾𝑠 ∶ (0, 1) → (0, +∞) is the fractional
Gaussian isoperimetric function, that is, 𝐼𝛾𝑠 (𝑣) is the fractional Gaussian 𝑠-perimeter of any halfs-
pace 𝐻 such that 𝛾(𝐻) = 𝑣. As far as we know, the asymptotic behavior of 𝐼𝑠(𝑣) as 𝑣 → 0+ is not
known, and hence, (P.6) cannot be guaranteed.

Remark 7.4. Let (𝑋,𝒜,𝔪) be a nonnegative 𝜎-finite measure space and let 𝐾∶ 𝑋 × 𝑋 → [0,+∞]

be a symmetric (𝔪⊗𝔪)-measurable function. For 𝐴, 𝐵 ∈ 𝒜, we set

𝐿𝐾,𝔪(𝐴, 𝐵) = ∫𝐴 ∫𝐵 𝐾(𝑥, 𝑦) d𝔪(𝑥) d𝔪(𝑦)
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CHEEGER PROBLEM IN MEASURE SPACES 45 of 55

and, given 𝐸,Ω ∈ 𝒜, we let

𝑃𝐾,𝔪(𝐸;Ω) = 𝐿𝐾,𝔪(𝐸 ∩ Ω, 𝐸𝑐 ∩ Ω) + 𝐿𝐾,𝔪(𝐸 ∩ Ω, 𝐸𝑐 ∩ Ω𝑐)

+ 𝐿𝐾,𝔪(𝐸 ∩ Ω𝑐, 𝐸𝑐 ∩ Ω)

be the nonlocal (𝐾,𝔪)-perimeter of𝐸 relative toΩ. Arguing exactly as in the proof of [72, Lem. 2.4],
if Ω1,Ω2 ∈ 𝒜 are such that𝔪(Ω1 ∩ Ω2) = 0, then

𝑃𝐾,𝔪(𝐸;Ω1 ∪ Ω2) − 𝑃𝐾,𝔪(𝐸;Ω1) − 𝑃𝐾,𝔪(𝐸;Ω2)

= −𝐿𝐾,𝔪(𝐸
𝑐 ∩ Ω1, 𝐸 ∩ Ω𝑐

1 ∩ Ω2) − 𝐿𝐾,𝔪(𝐸
𝑐 ∩ Ω2, 𝐸 ∩ Ω1 ∩ Ω𝑐

2)

for any 𝐸 ∈ 𝒜. In particular, if 𝐾(𝑥, 𝑦) > 0 for (𝔪⊗𝔪)-a.e. (𝑥, 𝑦) ∈ 𝑋 × 𝑋,𝔪(𝐸 ∩ Ω𝑐
1
∩ Ω2) > 0,

and𝔪(𝐸 ∩ Ω1 ∩ Ω𝑐
2
) > 0, then

𝑃𝐾,𝔪(𝐸;Ω1 ∪ Ω2) < 𝑃𝐾,𝔪(𝐸;Ω1) + 𝑃𝐾,𝔪(𝐸;Ω2),

and thus, in particular, the map Ω ↦ 𝑃𝐾,𝔪(𝐸;Ω) is not finitely additive. The reader can easily
check that this, in fact, occurs for the nonlocal perimeters (7.14) (assuming that𝐾 > 0) and (7.16).
Hence, Definition 2.12, and consequently the subsequent construction of the Sobolev spaces (in
particular, see Section 2.3.3), cannot be applied to such nonlocal perimeter functionals.

7.3.3 Distributional fractional perimeters

In [65], a new space 𝐵𝑉𝑠(ℝ𝑛) of functions with bounded fractional variation on ℝ𝑛 of order 𝑠 ∈
(0, 1) is introduced via a distributional approach exploiting suitable notions of fractional gradient
and divergence. More precisely, the fractional 𝑠-variation of a function 𝑢 ∈ 𝐿1(ℝ𝑛) is defined as

|𝐷𝑠𝑢|(ℝ𝑛) = sup

{
∫ℝ𝑛

𝑢 div𝑠 𝜑 d𝑥 ∶ 𝜑 ∈ C∞
𝑐 (ℝ𝑛; ℝ𝑛), ‖𝜑‖∞ ⩽ 1

}
,

where

div𝑠 𝜑(𝑥) = 𝜇𝑛,𝑠 ∫ℝ𝑛

(𝑦 − 𝑥) ⋅ (𝜑(𝑦) − 𝜑(𝑥))|𝑦 − 𝑥|𝑛+𝑠+1 d𝑦, 𝑥 ∈ ℝ𝑛,

and 𝜇𝑛,𝑠 is a renormalization constant. The distributional fractional 𝑠-perimeter of a Lebesgue
measurable set𝐸 ⊂ ℝ𝑛 is then defined as the total fractional variation of its characteristic function|𝐷𝑠𝜒𝐸|(ℝ𝑛). In [65], the authors show that

|𝐷𝑠𝜒𝐸|(ℝ𝑛) ⩽ 𝜇𝑛,𝑠𝑃𝑠(𝐸)

whenever 𝐸 is a measurable set, where 𝑃𝑠 is as in (7.15), thus showing that the distributional
approach allows to extend the usual notion of fractional perimeter and enlarge the class of sets
with finite fractional perimeter.
Following [65], the functional 𝐸 ↦ |𝐷𝑠𝜒𝐸|(ℝ𝑛) enjoys several properties on measurable sets of

ℝ𝑛. In fact, (P.1) and (P.2) are direct consequences of the definition, yielding the validity of the
first part of Theorem 5.4. Moreover, properties (P.4), (P.5), and (P.6) are, respectively, proved in
[65, Prop. 4.3], [65, Thm. 3.16], and [65, Thm. 4.4] (provided that 𝑛 ⩾ 2, see [66, Thm. 3.8] for the
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46 of 55 FRANCESCHI et al.

case 𝑛 = 1). In addition, property (P.7) trivially follows from the definition. In particular, we can
apply Theorem 3.6 and Theorem 4.5. Finally, the validity of (P.3) is open, whereas it is known
that (RP.L) is false in general, see [65, Rem. 4.9]; thus, we cannot apply the results concerning the
first eigenvalue of the general Dirichlet 𝑝-Laplacian. It is also worth noticing that the local form
of the chain rule in this context is false [67], so a direct adaptation of the proof of Theorem 6.3 in
this framework is not clear.
We remark that the aforementioned results have never been proved before in this specific

nonlocal setting.

7.3.4 Nonlocal perimeter of Minkowski type

Following [61], given 𝑟 > 0, for any 𝑢 ∈ 𝐿1
loc
(ℝ𝑛), we let

𝑟(𝑢) = 1

2𝑟 ∫ℝ𝑛
osc𝐵𝑟(𝑥)(𝑢) d𝑥,

where

osc𝐴(𝑢) = ess sup
𝐴

𝑢 − ess inf
𝐴

𝑢

denotes the essential oscillation of 𝑢 on the measurable set 𝐴 ⊂ ℝ𝑛. The functional 𝐸 ↦ 𝑟(𝜒𝐸)

is the nonlocal perimeter of Minkowski type of the measurable set 𝐸 ⊂ ℝ𝑛. As discussed in [61],
such perimeter functional meets properties (P.1), (P.2), (P.3), (P.4), and (P.7), and naturally satis-
fies a coarea formula [61, Eq. (2.3)]. Property (P.6) can be easily deduced from the isoperimetric
inequality proved in [56, Lem. 1.12(i)]. Finally, as observed in [56, Rem. 1.5], property (P.5) does not
hold. As a consequence, our results allow to infer several properties of 𝑁-Cheeger sets for 𝑁 ⩾ 1

(if they exist) in the perimeter-measure space (ℝ𝑛,ℬ(ℝ𝑛),ℒ𝑛, 𝑟).

7.4 Riemannian manifolds

Let (𝑀, g) be a complete Riemannian manifold of dimension 𝑛 ∈ ℕ. When endowed with its dis-
tance, it is a separable metric space and its volume measure is a nonnegative Borel measure that
is finite on bounded Borel sets, so that one can rely on the discussion made in Section 7.1 to
obtain the validity of (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7). Concerning (P.6), the basic result
contained in Proposition 7.2 can be refined in several ways. If 𝑀 has nonnegative Ricci curva-
ture, then property (P.6) is a consequence of the sharp isoperimetric inequality recently obtained
in [29] for noncompact manifolds with Euclidean volume growth, also see [3]. If 𝑀 is compact,
then property (P.6) can be deduced from the celebrated Lévy–Gromov isoperimetric inequality,
see [81, App. C]. If the Ricci curvature bound is negative, no global isoperimetric inequality can
be derived without further assumptions on the manifold, such as lower bounds on the diameter
of𝑀, see [105] and the references therein for a more detailed discussion.
Following the strategy presented in Section 7.1, the results contained in our paper then allow

to recover Cheeger inequalities in Riemannian manifolds with nonnegative curvature, in the
spirit of the original appearance of Cheeger inequalities in compact Riemannian manifolds, due
to Cheeger [62] for 𝑝 = 2. The results of our paper also cover the existence of Cheeger sets,
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CHEEGER PROBLEM IN MEASURE SPACES 47 of 55

originally proved in [36] for compact Riemannian manifolds (see also [22]), and the links with
the prescribed mean curvature. We refer to [40] for the relation between the Cheeger constant
and the torsion problem (6.2) for 𝑝 = 2 in compact Riemannian manifolds.

7.5 𝗖𝗗-spaces

𝖢𝖣-spaces are metric-measure spaces generalizing Riemannian manifolds with Ricci curvature
bounded from below, via assumptions on a synthetic notion of curvature, encoded in the so-called
curvature-dimension condition 𝖢𝖣(𝐾, 𝑛) for 𝐾 ∈ ℝ and 𝑛 ⩾ 1, see the cornerstones [97, 118, 119].
Geometric analysis on these nonsmooth spaces is subject to a great interest in the recent years,
see [9, 13, 52, 53].
As 𝖢𝖣(𝐾, 𝑛) spaces for 𝐾 ∈ ℝ and 𝑛 ⩾ 1 are complete metric spaces endowed with a Borel

measure 𝔪 that is finite on bounded Borel sets, the discussion made in Section 7.1 applies to
this framework, yielding the validity of properties (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7). Con-
cerning (P.6), the simple inequality provided by Proposition 7.2 can be refined in several ways.
For 𝐾 ⩾ 0, a sharp isoperimetric inequality has been recently proved in [15] for the subclass
of 𝖱𝖢𝖣(0, 𝑛)-spaces with Euclidean volume growth, when 𝔪 = 𝑛, yielding (P.6) with 𝑓(𝜀) =

𝑛𝜔
1∕𝑛
𝑛 AVR(𝑋)1∕𝑛𝜀−1∕𝑛. Here, AVR(𝑋) stands for the asymptotic volume ratio, assumed to be in

(0,1]. We also refer to [14, Thm. 3.19 and Rem. 3.20], where the validity of property (P.6) is dis-
cussed in more general metric-measure spaces with particular attention to the case of 𝖢𝖣(𝐾, 𝑛)
spaces for 𝐾 ∈ ℝ and 1 < 𝑛 < +∞, and to the celebrated Lévy–Gromov isoperimetric inequality
proved in [53, 55] holding for essentially nonbranching 𝖢𝖣(𝐾, 𝑛) spaces with finite diameter.
The equivalence of the Cheeger constant and the first 1-eigenvalue of the Laplacian was previ-

ously pointed out in [54, Sect. 5] for more general metric-measure spaces including nonbranching
𝖢𝖣(𝐾, 𝑛) spaces. Lower bounds on the Cheeger constant for (essentially nonbranching)𝖢𝖣∗(𝐾, 𝑛)

spaces are proved in [53–55].

7.6 Carnot–Carathéodory spaces

Let 𝜔 ⊂ ℝ𝑛 be a nonempty connected open set and let  = {𝑋1, … , 𝑋𝑘} be vector fields in 𝜔 with
real C∞-smooth coefficients. An absolutely continuous curve 𝛾∶ [0, 𝑇] → 𝜔 is admissible if there
exists 𝑢 = (𝑢1, … , 𝑢𝑘) ∈ 𝐿1([0, 𝑇]) such that

�̇�(𝑡) =

𝑘∑
𝑖=1

𝑢𝑖(𝑡)𝑋𝑖(𝛾(𝑡)).

Given two points 𝑥, 𝑦 ∈ 𝜔, we let 𝑑𝑐𝑐(𝑥, 𝑦) be the Carnot–Carathéodory distance between 𝑥 and
𝑦, defined as the shortest length of admissible curves connecting them. We assume that the
Hörmander condition

rank(Lie) = 𝑛

on the Lie algebra Lie generated by holds true. Then, 𝑑cc(𝑥, 𝑦) < +∞ for any couple of points
𝑥, 𝑦 ∈ 𝜔 thanks to Chow–Rashewski Theorem, see [4] for the details. The metric space (𝜔, 𝑑𝑐𝑐)
is called a Carnot–Carathéodory space, and it is separable. Assuming (𝜔, 𝑑𝑐𝑐) to be also complete

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12840 by G

iorgio Saracco - C
ochraneItalia , W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



48 of 55 FRANCESCHI et al.

and endowing it with the Lebesgue measure ℒ𝑛, one is then allowed to rely on the discussion
of Section 7.1 to guarantee the validity of properties (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7) for the
distributional perimeter of Definition 7.1. One can see that this actually corresponds to the so-
called -perimeter, introduced in [42] and then systematically studied in [75, 76].
We discuss the validity of (P.6). We first observe that, as summarized in [82, Sect. 11.4], up to

taking a smaller 𝜔, we are ensured (globally in 𝜔) the validity of a doubling property for metric
balls and of a (1,1)-Poincaré inequality for the horizontal gradient ∇𝑢 =

∑𝑘
𝑖=1 𝑋𝑖𝑢𝑋𝑖 , thanks to

the celebrated works [85, 109]. This allows to rely on the results of [76, Thm. 1.18], guaranteeing
the validity of the following isoperimetric inequality for any Lebesgue measurable set 𝐸 ⊂ 𝜔

𝑃 (𝐸) ⩾ 𝐶ℒ𝑛(𝐸)
𝑄−1
𝑄 .

Here, 𝐶 is a positive constant depending on 𝜔 and  , and 𝑄 ⩾ 𝑛 is the so-called homogeneous
dimension. Property (P.6) then followswith𝑓(𝜀) = 𝐶 𝜀−1∕𝑄. This refines the basic inequality given
by Proposition 7.2.
All the results contained in our paper then apply to this setting, establishing existence of

Cheeger sets (Theorem 3.6), relations with the prescribed curvature functional (Theorem 4.5),
and Cheeger inequalities following the strategy presented in Section 7.1. We observe that, follow-
ing [74, Cor. 11], and recalling that the topology induced by 𝑑𝑐𝑐 is equivalent to the Euclidean one
[4, Thm. 3.31], the Sobolev spaceW1,𝑝(𝜔,ℒ𝑛) introduced in Definition 2.19 is given by

𝖶1,𝑝(𝜔,ℒ𝑛) = {𝑢 ∈ 𝐿𝑝(𝜔,ℒ𝑛) ∶ |∇𝑢| ∈ 𝐿𝑝(𝜔,ℒ𝑛)},

where |∇𝑢| = √∑𝑘
𝑖=1(𝑋𝑖𝑢)

2. In particular, a sub-Riemannian version of Green’s identity
ensures that, for an admissible bounded open set Ω and 𝑢 ∈ 𝑊1,2(Ω) with Dirichlet boundary
conditions on Ω, we have

∫Ω |∇𝑢|2 d𝑥 d𝑦 = −∫Ω 𝑢Δ𝑢 d𝑥 d𝑦,

where Δ𝑢 =
∑𝑘

𝑖=1𝑋
∗
𝑖
𝑋𝑖𝑢 is the so-called hypoelliptic sub-Laplacian associated with  and 𝑋∗

𝑖
the formal adjoint of 𝑋𝑖 . In particular, (6.1) gives a lower bound for the bottom of the spectrum of
−Δ onΩ. Cheeger’s inequalities of this type have already been investigated in [108] in the context
of Carnot groups. This paper extends them to more general Carnot–Carathéodory structures.

7.7 Metric graphs

Let 𝐺 = (𝑉, 𝐸) be a connected compact graph (for simplicity, with no loops or multiple edges).
We identify each edge 𝑒 ∈ 𝐸 with an ordered pair (𝑖𝑒, 𝑓𝑒), denoting the initial and the final

vertices of 𝑒, and we assume the existence of an increasing bijection 𝑐𝑒 ∶ 𝑒 → [0,𝓁𝑒], for some
length 𝓁𝑒 ∈ (0, +∞], such that 𝑐𝑒(𝑖𝑒) = 0 and 𝑐𝑒(𝑓𝑒) = 𝓁𝑒, and we let 𝑥𝑒 = 𝑐𝑒(𝑥) be the coordinate
of the point 𝑥 ∈ 𝑒. In this case, 𝐺 is said ametric graph.
A function on 𝐺 is identified with a collection of functions defined on (0,𝓁𝑒) for each 𝑒 ∈ 𝐸, so

that

∫𝐺 𝑢(𝑥) d𝑥 =
∑
𝑒∈𝐸

∫
𝓁𝑒

0

[𝑢]𝑒(𝑥) d𝑥,
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where [𝑢]𝑒 is the function 𝑢 defined on the edge 𝑒 ∈ 𝐸. Following [99, Def. 2.9], the total variation
of 𝑢 ∈ 𝐵𝑉(𝐺) is defined as

Var𝐺(𝑢) = sup

{
∫𝐺 𝑢(𝑥) 𝑧′(𝑥) d𝑥 ∶ 𝑧 ∈ (𝐺), ‖𝑧‖∞ ⩽ 1

}
, (7.17)

where

(𝐺) =

{
𝑧 ∶

∑
𝑒∈𝐸

‖[𝑧]𝑒‖𝑊1,2(0,𝓁𝑒)
< +∞,

∑
𝑒∈𝐸𝑣

[𝑧]𝑒(𝑣) 𝜈
𝑒(𝑣) = 0, ∀𝑣 ∈ int 𝑉

}
,

being𝐸𝑣 the set of edges incident to 𝑒, 𝜈𝑒(𝑖𝑒) = −1 and 𝜈𝑒(𝑓𝑒) = 1, and int 𝑉 the set of vertices with
more than one incident edge. Accordingly, the perimeter of 𝐸 ⊂ 𝐺 is given by 𝑃𝐺(𝐸) = Var𝐺(𝜒𝐸).
Properties (P.1) and (P.2) directly follow from the definition in (7.17), whereas (P.4), (P.5), (P.6),

and (P.7) are established in [99, Prop. 2.12], [99, Thm. 2.6], and [99, Rem. 2.10], respectively.
Finally, (P.3) can be proved arguing as in [12, Prop. 3.38] using the coarea formula given by [99,
Thm. 2.13]. As a consequence, Theorem 3.6 ensures existence of 𝑁-Cheeger sets for any 𝑁 ∈ ℕ,
thus generalizing [99, Thm. 3.2] to the case of 𝑁-Cheeger sets.
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