
Numerical Algorithms
https://doi.org/10.1007/s11075-024-01884-y

ORIG INAL PAPER

Numerical solution of FDE-IVPs by using fractional HBVMs:
the fhbvm code

Luigi Brugnano1 · Gianmarco Gurioli1 · Felice Iavernaro2

Received: 7 March 2024 / Accepted: 8 July 2024
© The Author(s) 2024

Abstract
In this paperwedescribe the efficient numerical implementation ofFractional HBVMs,
a class of methods recently introduced for solving systems of fractional differential
equations. The reported arguments are implemented in the Matlab© code fhbvm,
which is made available on the web. An extensive experimentation of the code is
reported, to give evidence of its effectiveness.

Keywords Fractional differential equations · Fractional integrals · Caputo derivative ·
Jacobi polynomials · Fractional hamiltonian boundary value methods · FHBVMs

Mathematics Subject Classification (2010) 34A08 · 65R20 · 65-04

1 Introduction

Fractional differential equations have become a common description tool across a
variety of applications (see, e.g., the classical references [23, 36] for an introduction).
For this reason, their numerical solution has been the subject of many researches (see,
e.g. [1, 24, 25, 34, 35, 37, 38]), with the development of corresponding software (see,
e.g., [21, 27, 28]). In this context, the present contribution is addressed for solving
initial value problems for fractional differential equations (FDE-IVPs) in the form

y(α)(t) = f (y(t)), t ∈ [0, T], y(0) = y0 ∈ R
m, (1)

B Luigi Brugnano
luigi.brugnano@unifi.it

Gianmarco Gurioli
gianmarco.gurioli@unifi.it

Felice Iavernaro
felice.iavernaro@uniba.it

1 Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Florence, Italy

2 Dipartimento di Matematica, Università di Bari Aldo Moro, Bari, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01884-y&domain=pdf
https://orcid.org/0000-0002-6290-4107
https://orcid.org/0000-0003-0922-8119
https://orcid.org/0000-0002-9716-7370

Numerical Algorithms

where, for the sake of brevity, we have omitted the argument t for f . Here, for α ∈
(0, 1), y(α)(t) ≡ Dα y(t) is the Caputo fractional derivative:1

Dαg(t) = 1

Γ (1 − α)

∫ t

0
(t − x)−α

[
d

dx
g(x)

]
dx, (2)

The Riemann-Liouville integral associated to (2) is given by:

I αg(t) = 1

Γ (α)

∫ t

0
(t − x)α−1g(x)dx . (3)

Consequently, the solution of (1) can be formally written as:

y(t) = y0 + I α f (y(t)) ≡ y0 + 1

Γ (α)

∫ t

0
(t − x)α−1 f (y(x))dx, t ∈ [0, T]. (4)

The numerical method we shall consider, relies on Fractional HBVMs (FHBVMs),
a class ofmethods recently introduced in [8], as an extension ofHamiltonian Boundary
Value Methods (HBVMs), special low-rank Runge-Kutta methods originally devised
for Hamiltonian problems (see, e.g., [10, 11]), and later extended along several direc-
tions (see, e.g., [2, 4, 6, 8, 9, 12]), including the numerical solution of FDEs. A main
feature of HBVMs is the fact that they can gain spectrally accuracy, when approxi-
mating ODE-IVPs [3, 19, 20], and such a feature has been recently extended to the
FDE case [8].

With this premise, the structure of the paper is as follows: in Section 2 we recall
the main facts about the numerical solution of FDE-IVPs proposed in [8]; in Section 3
we provide full implementation details for the Matlab© code fhbvm used in the
numerical tests; in Section 4 we report an extensive experimentation of the code,
providing some comparisons with another existing one; at last, a few conclusions are
given in Section 5.

2 Fractional HBVMs

To begin with, in order to obtain a piecewise approximation to the solution of the
problem, we consider a partition of the integration interval in the form:

tn = tn−1 + hn, n = 1, . . . , N , (5)

where hn > 0, n = 1, . . . , N , and such that

t0 = 0, tN = T ≡
N∑

n=1

hn . (6)

1 As is usual, Γ denotes the Euler gamma function, such that, for x > 0, xΓ (x) = Γ (x + 1).

123

Numerical Algorithms

Further, by setting

yn(chn) := y(tn−1 + chn), c ∈ [0, 1], n = 1, . . . , N , (7)

the restriction of the solution of (1) on the interval [tn−1, tn], and taking into account
(4) and (5–6), one obtains, for t ≡ tn−1 + chn , c ∈ [0, 1],

y(t) ≡ yn(chn) = y0 + 1

Γ (α)

∫ tn−1+chn

0
(tn−1 + chn − x)α−1 f (y(x))dx

= y0 + 1

Γ (α)

n−1∑
ν=1

∫ tν

tν−1

(tn−1 + chn − x)α−1 f (y(x))dx

+ 1

Γ (α)

∫ tn−1+chn

tn−1

(tn−1 + chn − x)α−1 f (y(x))dx

= y0 + 1

Γ (α)

n−1∑
ν=1

∫ hν

0
(tn−1 − tν−1 + chn − x)α−1 f (yν(x))dx

+ 1

Γ (α)

∫ chn

0
(chn − x)α−1 f (yn(x))dx

= y0 + 1

Γ (α)

n−1∑
ν=1

hα
ν

∫ 1

0

(
tn−1 − tν−1

hν
+ c

hn

hν
− τ

)α−1
f (yν(τhν))dτ

+ hα
n

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τhn))dτ

= y0 + 1

Γ (α)

n−1∑
ν=1

hα
ν

∫ 1

0

⎛
⎝n−1∑

i=ν

hi

hν
+ c

hn

hν
− τ

⎞
⎠

α−1

f (yν(τhν))dτ

+ hα
n

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τhn))dτ, c ∈ [0, 1]. (8)

Tomakemanageable the handling of the ratios hi/hν , i = ν, . . . , n, ν = 1, . . . , n−
1, we shall hereafter consider the following choices for the mesh (5–6):

– Graded mesh. In order to cope with possible singularities in the derivative of the
vector field at the origin, we consider the graded mesh

hn = rhn−1 ≡ rn−1h1, n = 1 . . . , N , (9)

where r > 1 and h1 > 0 satisfy, by virtue of (5–6),

h1
r N − 1

r − 1
= T . (10)

123

Numerical Algorithms

As a result, one obtains that (8) becomes:

yn(chn) = y0 +
hα
1

Γ (α)

n−1∑
ν=1

rα(ν−1)
∫ 1

0

(
rn−ν − 1

r − 1
+ crn−ν − τ

)α−1

f (yν(τrν−1h1))dτ

+ hα
1 rα(n−1)

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τrn−1h1))dτ

=: φα
n−1(c; h1, r , y) + hα

1 rα(n−1)

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τrn−1h1))dτ,

c ∈ [0, 1]. (11)

– Uniform mesh. This case is equivalent to allowing r = 1 in (9). Consequently,
from (5–6) we derive

hn ≡ h1 := T

N
, n = 1, . . . , N , ⇒ tn = nh1, n = 0, . . . , N . (12)

As a result, (8) reads:

yn(chn) ≡ yn(ch1)

= y0 + hα
1

Γ (α)

n−1∑
ν=1

∫ 1

0
(n − ν + c − τ)α−1 f (yν(τh1))dτ

+ hα
1

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τh1))dτ

≡ φα
n−1(c; h1, 1, y) + hα

1

Γ (α)

∫ c

0
(c − τ)α−1 f (yn(τh1))dτ,

c ∈ [0, 1]. (13)

Remark 1 As is clear, in order to obtain an accurate approximation of the solution,
it is important to establish which kind of mesh (graded or uniform) is appropriate.
Besides this, also a proper choice of the parameters h1, r , and N in (9–10) is crucial.
Both aspects will be studied in Section 3.1.

2.1 Quasi-polynomial approximation

We now discuss a piecewise quasi-polynomial approximation to the solution of (1),

σ(t) ≈ y(t), t ∈ [0, T],

such that

σn(chn) := σ(tn−1 + chn), c ∈ [0, 1], n = 1, . . . , N , (14)

123

Numerical Algorithms

is the approximation to yn(chn), defined in (7). According to [8], such approximation
will be derived through the following steps:

1. expansion of the vector field, in each sub-interval [tn−1, tn], n = 1, . . . , N , (recall
(5–6)) along a suitable orthonormal polynomial basis;

2. truncation of the infinite expansion, in order to obtain a local polynomial approx-
imation.

Let us first consider the expansion of the vector field along the orthonormal poly-
nomial basis, w.r.t. the weight function

ω(x) = α(1 − x)α−1, s.t .
∫ 1

0
ω(x) dx = 1, (15)

resulting into a scaled and shifted family of Jacobi polynomials:2

Pj (x) :=
√
2 j + α

α
P

(α−1,0)
j (2x − 1), x ∈ [0, 1], j = 0, 1, . . . ,

such that ∫ 1

0
ω(x)Pi (x)Pj (x)dx = δi j , i, j = 0, 1, (16)

In so doing, for n = 1, . . . , N , one obtains:

f (yn(chn)) =
∑
j≥0

Pj (c)γ j (yn), c ∈ [0, 1], (17)

with (see (15))

γ j (yn) =
∫ 1

0
ω(τ)Pj (τ) f (yn(τhn))dτ, j = 0, 1, (18)

Consequently, the FDE (1), can be rewritten as:

y(α)
n (chn) =

∑
j≥0

Pj (c)γ j (yn), c ∈ [0, 1], n = 1, . . . , N , y1(0) = y0. (19)

The approximation is derived by truncating the infinite series in (17) to a finite sum
with s terms, thus replacing (19) with a series of local problems, whose vector field is
a polynomial of degree s:

σ (α)
n (chn) =

s−1∑
j=0

Pj (c)γ j (σn), c ∈ [0, 1], n = 1, . . . , N , σ1(0) = y0, (20)

2 Here, P
(a,b)
j (x) denotes the j-th Jacobi polynomial with parameters a and b, in [−1, 1].

123

Numerical Algorithms

with γ j (σn) defined similarly as in (18):

γ j (σn) =
∫ 1

0
ω(τ)Pj (τ) f (σn(τhn))dτ, j = 0, . . . , s − 1. (21)

As a consequence, (11) will be approximated as:

σn(chn) =

y0 + hα
1

Γ (α)

n−1∑
ν=1

rα(ν−1)
∫ 1

0

(
rn−ν − 1

r − 1
+ crn−ν − τ

)α−1 s−1∑
j=0

Pj (τ)γ j (σν)dτ

+ hα
1 rα(n−1)

Γ (α)

∫ c

0
(c − τ)α−1

s−1∑
j=0

Pj (τ)γ j (σn)dτ = y0 +

hα
1

n−1∑
ν=1

rα(ν−1)
s−1∑
j=0

[
1

Γ (α)

∫ 1

0

(
rn−ν − 1

r − 1
+ crn−ν − τ

)α−1

Pj (τ)dτ

]
γ j (σν)

+ hα
1 rα(n−1)

s−1∑
j=0

[
1

Γ (α)

∫ c

0
(c − τ)α−1Pj (τ)dτ

]
γ j (σn)

=: y0 + hα
1

n−1∑
ν=1

rα(ν−1)
s−1∑
j=0

Jα
j

(
rn−ν − 1

r − 1
+ crn−ν

)
γ j (σν)

+ hα
1 rα(n−1)

s−1∑
j=0

I α Pj (c) γ j (σn)

=: φ
α,s
n−1(c; h1, r , σ) + hα

1 rα(n−1)
s−1∑
j=0

I α Pj (c) γ j (σn), c ∈ [0, 1], (22)

where (see (3))

I α Pj (c) = 1

Γ (α)

∫ c

0
(c − τ)α−1Pj (τ)dτ, j = 0, . . . , s − 1, (23)

is the Riemann-Liouville integral of Pj (c), and, for x ≥ 1:

Jα
j (x) = 1

Γ (α)

∫ 1

0
(x − τ)α−1Pj (τ)dτ, j = 0, . . . , s − 1. (24)

The efficient numerical evaluation of the integrals (23) and (24) will be explained in
detail in Section 3.2.

Remark 2 We observe that, for c = x = 1, by virtue of (15–16) one has:

I α Pj (1) = Jα
j (1) = δ j0

Γ (α + 1)
, j = 0, . . . , s − 1. (25)

123

Numerical Algorithms

Similarly, when using a uniform mesh, by means of similar steps as above, (13)
turns out to be approximated by:

σn(chn) =

y0 + hα
1

n−1∑
ν=1

s−1∑
j=0

Jα
j (n − ν + c) γ j (σν) + hα

1

s−1∑
j=0

I α Pj (c) γ j (σn)

≡ φ
α,s
n−1(c; h1, 1, σ) + hα

1

s−1∑
j=0

I α Pj (c) γ j (σn), c ∈ [0, 1]. (26)

In both cases, the approximation at tn is obtained, by setting c = 1 and taking into
account (25), as:

σn(hn) = φ
α,s
n−1(1; h1, r , σ) + hα

1rα(n−1)

Γ (α + 1)
γ0(σn)

≡ φ
α,s
n−1(1; h1, r , σ) + hα

n

Γ (α + 1)
γ0(σn), (27)

which formally holds also in the case of a uniform mesh (see (12)) by setting r = 1.

2.2 The fully discrete method

Quoting Dahlquist and Björk [22], “as is well known, even many relatively simple
integrals cannot be expressed in finite terms of elementary functions, and thus must be
evaluated by numerical methods”. In our framework, this obvious statement means
that, in order to obtain a numerical method, at step n the Fourier coefficients γ j (σn) in
(21) need to be approximated by means of a suitable quadrature formula. Fortunately
enough, this can be done up to machine precision by using a Gauss-Jacobi formula
of order 2k based at the zeros of Pk(c), c1, . . . , ck , with corresponding weights (see
(15))

bi =
∫ 1

0
ω(c)�i (c)dc, �i (c) =

∏
j �=i

c − c j

ci − c j
, i = 1, . . . , k,

by choosing a value of k, k ≥ s, large enough. In other words,

γ n
j :=

k∑
i=1

bi Pj (ci) f (σn(ci hn))
.= γ j (σn), j = 0, . . . , s − 1, (28)

where
.= means equal within machine precision. Because of this, and for sake of

brevity, we shall continue usingσn to denote the fully discrete approximation (compare

123

Numerical Algorithms

with (22), or with (26), in case r = 1):3

σn(chn) = φ
α,s
n−1(c; h1, r , σ) + hα

n

s−1∑
j=0

I α Pj (c)γ
n
j , c ∈ [0, 1]. (29)

As is clear, the coefficientes γ ν
j , j = 0, . . . , s − 1, ν = 1, . . . , n − 1, needed to

evaluate φ
α,s
n−1(c; h1, r , σ), have been already computed at the previous time-steps.

We observe that, from (28), in order to compute the (discrete) Fourier coefficients,
it is enough evaluating (29) only at the quadrature abscissae c1, . . . , ck . In so doing,
by combining (28) and (29), one obtains a discrete problem in the form:

γ n
j =

k∑
i=1

bi Pj (ci) f

(
φ

α,s
n−1(ci ; h1, r , σ) + hα

n

s−1∑
�=0

I α P�(ci)γ
n
�

)
,

j = 0, . . . , s − 1. (30)

Once it has been solved, according to (27), the approximation of y(tn) is given by:

ȳn := σn(hn) = φ
α,s
n−1(1; h1, r , σ) + hα

n

Γ (α + 1)
γ n
0 . (31)

It is worth noticing that the discrete problem (30) can be cast in vector form, by
introducing the (block) vectors

γ n =
⎛
⎜⎝

γ n
0
...

γ n
s−1

⎞
⎟⎠ ∈ R

sm, φ
α,s
n−1 =

⎛
⎜⎝

φ
α,s
n−1(c1; h1, r , σ)

...

φ
α,s
n−1(ck; h1, r , σ)

⎞
⎟⎠ ∈ R

km,

and the matrices

Ps =
⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...

P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Iα

s =
⎛
⎜⎝

I α P0(c1) . . . I α Ps−1(c1)
...

...

I α P0(ck) . . . I α Ps−1(ck)

⎞
⎟⎠ ∈ R

k×s,

Ω =
⎛
⎜⎝

b1
. . .

bk

⎞
⎟⎠ ∈ R

k×k,

as:
γ n = P�

s Ω ⊗ Im f
(
φ

α,s
n−1 + hα

nIα
s ⊗ Imγ n)

, (32)

3 Hereafter, we shall use hn in place of h1rn−1.

123

Numerical Algorithms

with the obvious notation for the function f , evaluated in a vector of (block) dimension
k, of denoting the (block) vector of dimension k containing the function f evaluated
in each (block) entry. As observed in [8], the (block) vector

Y := φ
α,s
n−1 + hα

nIα
s ⊗ Imγ n ∈ R

km, (33)

appearing at the r.h.s. in (32) as argument of f , satisfies the equation

Y = φ
α,s
n−1 + hα

nIα
s P�

s Ω ⊗ Im f (Y), (34)

obtained combining (32) and (33). Consequently, it can be regarded as the stage vector
of a Runge-Kutta type method with Butcher tableau

c Iα
s P�

s Ω

b� , b = (
b1, . . . , bk

)�
, c = (

c1, . . . , ck
)�

. (35)

Remark 3 Though the two formulations (32) and (34) are equivalent each other, nev-
ertheless, the former has (block) dimension s independently of the considered value of
k (k ≥ s), which is the (block) dimension of the latter. Consequently, in the practical
implementation of the method, the discrete problem (32) is the one to be preferred,
since it is independent of the number of stages.

When α = 1, the Runge-Kutta method (35) reduces to a HBVM(k, s) method [3,
5, 9–12, 19, 20]. Consequently, we give the following definition [8].

Definition 1 The method defined by (35) (i.e., (31–32)) is called fractional HBVM
with parameters (k, s). In short, FHBVM(k, s).

The efficient numerical solution of the discrete problem (32) will be considered in
Section 3.4.

3 Implementation issues

In this section we report all the implementation details used in the Matlab© code
fhbvm, which will be used in the numerical tests reported in Section 4.

3.1 Graded or uniformmesh?

The first relevant problem to face is the choice between a graded or a uniform mesh
and, in the former case, also choosing appropriate values for the parameters r , N , and
h1 in (9–10). We start considering a proper choice of this latter parameter, i.e., h1
which, in turn, will allow us to choose the type of mesh, too. For this purpose, the
user is required to provide, in input, a convenient integer value M > 1, such that, if a
uniform mesh is appropriate, then the stepsize is given by:

h = T

M
. (36)

123

Numerical Algorithms

It is to be noted that, since the code is using a method with spectral accuracy in time,
the value of M should be as small as possible. That said, we set h0

1 = h and apply
the code on the interval [0, h0

1] both in a single step, and by using a graded mesh of
2 sub-intervals defined by a value of r := r̂ ≡ 3. As a result, the two sub-intervals,
obtained by solving (10) for h1, with

r = 3, N = 2, T = h0
1,

are 4

[0, h0
1/4], [h0

1/4, h0
1].

In so doing, we obtain two approximations to y(h0
1), say y1 and y2. According to the

analysis in [8], if 5

‖(y1 − y2)./(1 + |y2|)‖∞ ≤ tol, (37)

with tol a suitably small tolerance,6 then this means the stepsize h1 := h0
1 is appropri-

ate. Moreover, in such a case, a uniformmesh with N ≡ M turns out to be appropriate,
too.

Conversely, the procedure is repeated on the sub-interval [0, h1
1] ≡ [0, h0

1/4], and
so forth, until a convenient initial stepsize h1 is obtained. This process can be repeated
up to a suitable maximum number of times that, considering that at each iteration the
current guess of h1 is divided by 4, allows for a substantial reduction of the initial value
(36). Clearly, in such a case, a graded mesh is needed. At the end of this procedure,
we have then chosen the initial stepsize h1 which, if the procedure ends at the �-th
iteration, for a convenient � > 1, is given by:

h1 = 41−�h ≡ 41−� T

M
. (38)

We need now to appropriately choose the parameters r and N in (9–10). To simplify
this choice, we require that the last stepsize in themesh be equal to (36). Consequently,
we would ideally satisfy the following requirements:

h1
r N − 1

r − 1
= T , h1r N−1 = T

M
,

which, by virtue of (38), become

41−� r N − 1

r − 1
= M, 41−�r N−1 = 1.

4 It is to be noticed that the division by 4 is done without introducing round-off errors.
5 Here, ./ means the componentwise division between two vectors, and |y2| denotes the vector with the
absolute values of the entries of y2.
6 In view of the spectral accuracy of the method, this tolerance is only slightly larger than the machine
epsilon.

123

Numerical Algorithms

Combining the two equations then gives:

r = M − 41−�

M − 1
> 1, N = 1 + logr (4

�−1). (39)

As is clear, this value of N is not an integer, in general, so that we shall choose, instead:

N =
1 + logr (4
�−1)�. (40)

Remark 4 From (40), and considering that Nh1 < T (conversely, a uniform mesh
could have been used) and, by virtue of (38), one has:

2 ≤ N < 4�−1M . (41)

As is clear, using the value of N in (40) in place of that in (39) implies that we need
to recompute r , so that the requirement (now h1, N , and T are given)

h1
r N − 1

r − 1
= T (42)

is again fulfilled. Equation (42) can be rewritten as

r = [1 + (r − 1)β]1/N =: ψ(r), β := T

h1
> 1, (43)

thus inducing the iterative procedure

r0 > 1 (given), ri+1 = ψ(ri), i = 0, 1, (44)

As a convenient choice for r0, one can use the guess for r defined in (39). The following
result can be proved.

Theorem 1 There exists a unique r̄ > 1 satisfying r̄ = ψ(r̄), and the iteration (44)
globally converges to this value over the interval (1,+∞).

Proof A direct computation shows that:

ψ(1) = 1, ψ ′(r) > 0, for r > 1, (45)

ψ ′(1) = β

N
> 1, lim

r→+∞ ψ ′(r) = 0, ψ ′′(r) < 0, for r > 1. (46)

From (45) we deduce that the (positive) mappingψ(r) is strictly increasing and admits
(1,+∞) as invariant set, since r > 1 implies ψ(r) > ψ(1) = 1.

From (46) we additionally deduce that ψ(r) is concave and ψ(r) > r for r ∈
(1, 1+ε), with ε > 0 sufficiently small. These properties and the fact thatψ ′(r) → 0,
for r → +∞, imply that:

123

Numerical Algorithms

– the equation r = ψ(r) admits a unique solution r̄ > 1 and ψ ′(r̄) < 1;

– ψ
(
(1, r̄)

) ⊂ (1, r̄) and ψ
(
(r̄ ,+∞)

) ⊂ (r̄ ,+∞) (since ψ is increasing);

– ψ(r) > r for 1 < r < r̄ and ψ(r) < r for r > r̄ .

From the two latter propertieswe conclude that, for any r0 > 1, the sequence generated
by (44) converges monotonically to r̄ . ��

Consequently, we have derived the parameters h1 in (38), N in (40), and r satisfying
(42) of the graded mesh (9–10), the latter one obtained by a few iterations of (44).

Remark 5 In the actual implementation of the code, we allow the use of a uniform
mesh also when � = 2 steps of the previous procedure are required, provided that
M has a moderate value (say, M ≤ 5). Consequently, for the final mesh, h1 = h/4,
r = 1, and N = 4M .

3.2 Approximating the fractional integrals

The practical implementation of the method requires the evaluation of the following
integrals (recall (30) and the definitions (23–24)):

I α Pj (ci), i = 1, . . . , k, j = 0, . . . , s − 1, (47)

and

Jα
j

(
rν − 1

r − 1
+ cir

ν

)
, i = 1, . . . , k, j = 0, . . . , s − 1, ν = 1 . . . , N − 1,

(48)
in case a graded mesh is used, or

Jα
j (ν + ci), i = 1, . . . , k, j = 0, . . . , s − 1, ν = 1 . . . , N − 1, (49)

in case a uniform mesh is used.
It must be emphasized that all such integrals ((47) and (48), or (47) and (49)), can

be pre-computed once for all, for later use. For their computation, in the first version
of the software, we adapted an algorithm based on [5] which, however, required a
quadruple precision, for the considered values of k and s. In this respect, the use of the
standard vpa ofMatlab©, which is based on a symbolic computation, turned out to be
too slow. For this reason, hereafter we describe two new algorithms for computing the
above integrals, which result to be quite satisfactory, when using the standard double
precision IEEE. Needless to say that, since vpa is no more required, they turn out to
be much faster than the previous ones.

123

Numerical Algorithms

Let us describe, at first, the computation of (47). One has, by considering that k ≥ s
and ci ∈ (0, 1):

I α Pj (ci) = 1

Γ (α)

∫ ci

0
(ci − τ)α−1Pj (τ)dτ

= cα−1
i

Γ (α)

∫ ci

0

(
1 − τ

ci

)α−1

Pj (τ)dτ = cα
i

Γ (α)

∫ 1

0
(1 − ξ)α−1 Pj (ξci)dξ

= cα
i

Γ (α + 1)

∫ 1

0
α (1 − ξ)α−1 Pj (ξci)dξ ≡ cα

i

Γ (α + 1)

k∑
�=1

b� Pj (ci c�),

j = 0, . . . , s − 1,

where the last equality holds because the Jacobi quadrature formula has order 2k.
Clearly, for each i = 1, . . . , k, all the above integrals can be computed in vector
form in “one shot”, by using the usual three-term recurrence to compute the Jacobi
polynomials.

Concerning the integrals (48-49), let us now consider the evaluation of a generic
Jα

j (x), j = 0, . . . , s − 1, for x > 1. In this respect, there is numerical evidence that,
for x ≥ 1.1, a high-order Gauss-Legendre formula is able to approximate the required
integral to full machine precision. Since we will use a value of s = 20, we consider,
for this purpose, a Gauss-Legendre formula of order 60, which turns out to be fully
accurate. Instead, for x ∈ (1, 1.1), one has:

Jα
j (x) = 1

Γ (α)

∫ 1

0
(x − τ)α−1Pj (τ)dτ

= 1

Γ (α)

[∫ x

0
(x − τ)α−1Pj (τ)dτ −

∫ x

1
(x − τ)α−1Pj (τ)dτ

]

= xα−1

Γ (α)

∫ x

0

(
1 − τ

x

)α−1
Pj (τ)dτ

− (x − 1)α−1

Γ (α)

∫ x−1

0

(
1 − c

x − 1

)α−1
Pj (1 + c)dc

= xα

Γ (α)

∫ 1

0
(1 − ξ)α−1Pj (ξ x)dξ − (x − 1)α

Γ (α)

∫ 1

0
(1 − ξ)α−1Pj (1 + ξ(x − 1))dξ

= xα

Γ (α + 1)

∫ 1

0
α(1 − ξ)α−1Pj (ξ x)dξ

− (x − 1)α

Γ (α + 1)

∫ 1

0
α(1 − ξ)α−1Pj (1 + ξ(x − 1))dξ

≡ xα

Γ (α + 1)

k∑
�=1

b� Pj (c�x) − (x − 1)α

Γ (α + 1)

k∑
�=1

b� Pj (1 + c�(x − 1)),

j = 0, . . . , s − 1,

123

Numerical Algorithms

again, due to the fact that the quadrature is exact for polynomials of degree at most
s −1. Also in this case, for each fixed x > 1, all the integrals can be computed in “one
shot” by using the three-term recurrence of the Jacobi polynomials.

We observe that the previous expression is exact also for x = 1, since Jα
j (1) =

δ j0/Γ (α + 1).

3.3 Error estimation

An estimate of the global error can be derived by computing the solution on a doubled
mesh. In other words, if (see (31))

ȳn ≈ y(tn), n = 0, . . . , N ,

with tn as in (5–6), are the obtained approximations, then

en := y(tn) − ȳn ≈ ŷ2n − ȳn, n = 0, . . . , N ,

where ŷn ≈ y(t̂n), n = 0, . . . , 2N , is the solution computed on a doubled mesh.
When a uniform mesh (12) is used, the doubled mesh is simply given by:

t̂n = n
h1

2
≡ n

T

2N
, n = 0, . . . , 2N .

Conversely, when a graded mesh (9–10) is considered, the doubled mesh is given
by:

t̂n = t̂n−1 + ĥn, ĥn = r̂ ĥn−1 ≡ r̂ n−1ĥ1, n = 1, . . . , 2N ,

with t̂0 = 0, and

r̂ = √
r , ĥ1 = h1

r̂ − 1

r − 1
.

The choice of ĥ1 is done for having

ĥ1
r̂2N − 1

r̂ − 1
= ĥ1

r N − 1

r̂ − 1
≡ h1

r N − 1

r − 1
= T ,

according to (10).

3.4 The nonlinear iteration

At last, we describe the efficient numerical solution of the discrete problem (32), which
has to be solved at the n-th integration step. As is clear, the very formulation of the
problem induces a straightforward fixed-point iteration:

γ n,� = P�
s Ω ⊗ Im f

(
φ

α,s
n−1 + hα

nIα
s ⊗ Imγ n,�−1

)
, n = 1, 2, . . . , (50)

123

Numerical Algorithms

which can be conveniently started from γ n,0 = 0. The following straightforward result
holds true.

Theorem 2 Assume f be Lipchitz with constant L in in the interval [tn−1, tn]. Then,
the iteration (50) is convergent for all timesteps hn such that

hα
n L‖P�

s Ω‖‖Iα
s ‖ < 1.

Proof See [8, Theorem 2]. ��

Nevertheless, as is easily seen, also the simple equation

y(α) = −λy, t ∈ [0, T], y(0) = 1, T , λ � 1,

whose solution is almost everywhere close to 0, after an initial transient, suffers from
stepsize limitations, if the fixed-point iteration (50) is used, since it has to be every-
where proportional to λ−1/α .

In order to overcome this drawback, a Newton-type iteration is therefore needed.
Hereafter, we consider the so-called blended iteration which has been at first studied
in a series of papers [7, 14, 16, 17]. It has been implemented in the Fortran codes
BIM [15], for ODE-IVPs, and BIMD [18], for ODE-IVPs and linearly implicit DAEs,
and in the Matlab code hbvm [10, 13], for solving Hamiltonian problems. We here
consider its adaption for solving (32). By neglecting, for sake of brevity, the time-step
index n, we then want to solve the equation:

G(γ) := γ − P�
s Ω ⊗ Im f

(
φα,s + hαIα

s ⊗ Imγ
) = 0. (51)

By setting f ′
0 the Jacobian of f evaluated at the first entry of φα,s , I = Is ⊗ Im , and

Xα
s := P�

s ΩIα
s , (52)

the application of the simplified Newton method then reads:

solve : (
I − hα Xα

s ⊗ f ′
0

)
Δγ � = −G(γ �) ≡ η�,

set : γ �+1 = γ � + Δγ �, � = 0, 1, (53)

Even though this iteration has the advantage of using a coefficient matrix which is
constant at each time-step, nevertheless, its dimension may be large, when either s or
m are large. To study a different iteration, able to get rid of this problem, let us decouple
the linear system into the various eigenspaces of f ′

0, thus studying the simpler problem

solve : (
Is − hαμXα

s

)
Δγ � = −g(γ �) ≡ η�,

set : γ �+1 = γ � + Δγ �, � = 0, 1, . . . ,

123

Numerical Algorithms

with all involved vectors of dimension s, and μ ∈ σ(f ′
0) a generic eigenvalue of f ′

0,
and an obvious meaning of g(γ �). By setting q = hαμ, the iteration then reads:

solve : (
Is − q Xα

s

)
Δγ � = η�,

set : γ �+1 = γ � + Δγ �, � = 0, 1, (54)

Hereafter, we consider the iterative solution of the linear system in (54). A linear
analysis of convergence (in the case the r.h.s. is constant) is then made, as at first
suggested in [31–33], and later refined in [14, 17]. Consequently, skipping the iteration
index �, let us consider the linear system to be solved:

(
Is − q Xα

s

)
Δγ = η,

and its equivalent formulation, derived considering that matrix (52) is nonsingular,
and with ξ > 0 a parameter to be later specified,

ξ
(
(Xα

s)−1 − q Is

)
Δγ = ξ(Xα

s)−1η =: η1.

Further, we consider the blending of the previous two equivalent formulations with
weights θ(q) and Is − θ(q), where, by setting O ∈ R

s×s the zero matrix,

θ(q) := Is(1 − ξq)−1
{ ≈ Is, q ≈ 0,

→ O, q → ∞.

In so doing, one obtains the linear system

M(q)Δγ = η1 + θ(q)(η − η1) =: η(q), (55)

with the coefficient matrix,

M(q) = ξ
(
(Xα

s)−1 − q Is

)
+ θ(q)

[(
Is − q Xα

s

) − ξ
(
(Xα

s)−1 − q Is

)]
,

such that [14]:

M(q) ≈
{

Is, q ≈ 0,
−ξq Is, |q| � 1.

This naturally induces the splitting matrix

N (q) := Is(1 − ξq) ≡ θ(q)−1, (56)

defining the blended iteration

Δγi = [Is − θ(q)M(q)]Δγi−1 + θ(q)η(q), i = 1, 2, (57)

123

Numerical Algorithms

This latter iteration converges iff the spectral radius of the iteration matrix,

ρ (Is − θ(q)M(q)) =: ρ(q) < 1. (58)

The iteration is said to be A-convergent if (58) holds true for all q ∈ C
−, the left-half

complex plane, and L-convergent if, in addition, ρ(q) → 0, as q → ∞. Since [14]

θ(0)M(0) = Is, θ(q)M(q) → Is, q → ∞,

the blended iteration is L-convergent iff it is A-convergent. For this purpose, we shall
look for a suitable choice of the positive parameter ξ > 0. Considering that θ(q) is
well defined for all q ∈ C

−, the following statement easily follows from themaximum
modulus theorem.

Theorem 3 The blended iteration is L-convergent iff the maximum amplification fac-
tor,

ρ∗ := max
x>0

ρ(ix) ≤ 1.

The following result also holds true.

Theorem 4 The eigenvalues of the iteration matrix Is − θ(q)M(q) are given by:

q(λ − ξ)2

λ(1 − qξ)2
, λ ∈ σ(Xα

s).

Consequently, the maximum amplification factor is given by:

ρ∗ = max
λ∈σ(Xα

s)

|λ − ξ |2
2ξ |λ| . (59)

Proof See [14, Theorem 2 and (25)], by considering that

max
q∈C−

q(λ − ξ)2

λ(1 − qξ)2
≡ max

x>0

x |λ − ξ |2
|λ|(1 + x2ξ2)

is obtained at x = ξ−1, so that (59) follows. ��
Slightly generalizing the arguments in [14], we then consider the following choice

of the parameter ξ ,

ξ = argminμ∈σ(Xα
s) max

λ∈σ(Xα
s)

|λ − |μ||2
2|μ||λ| , (60)

which is computed once forall, and always provides, in our experiments, an L-
convergent iteration. In particular, the code fhbvm uses, at the moment, k = 22
and s = 20: the corresponding maximum amplification factor (59) is depicted in
Fig. 1, w.r.t. the order α of the fractional derivative, thus confirming this.

123

Numerical Algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

*

Fig. 1 Maximum amplification factor (59–60), k = 22 and s = 20

Coming back to the original problem (53), starting from the initial guess Δγ = 0,
and updating the r.h.s. as soon as a new approximation to γ is available, one has that
the iteration (55–57) simplifies to:

η� = −G(γ �)

η�
1 = ξ(Xα

s)−1 ⊗ Im η�

γ �+1 = γ � + Is ⊗ Θ
[
η�
1 + Is ⊗ Θ

(
η� − η�

1

)]
, � = 0, 1, . . . , (61)

with ξ chosen according to (60), and

Θ = (
Im − hαξ f ′

0

)−1
.

Consequently, only the factorization of one matrix, having the same dimension m
of the problem, is needed. Moreover, the initial guess γ 0 = 0 can be conveniently
considered in (61).

Remark 6 It is worth mentioning that, due to the properties of the Kronecker product,
the iteration (61) can be compactly cast in matrix form, thus avoiding an explicit use of
the Kronecker product. This implementation has been considered in the code fhbvm
used in the numerical tests.

Actually, according to Theorem 2, in the code fhbvm we automatically switch
between the fixed-point iteration (50) or the blended iteration (61), depending on the

123

Numerical Algorithms

fact that
hα‖ f ′

0‖‖P�
s Ω‖‖Iα

s ‖ ≤ tol,

with tol < 1 a suitable tolerance.

4 Numerical Tests

In this section we report a few numerical tests using the Matlab© code fhbvm: the
code implements a FHBVM(22,20) method using all the strategies discussed in the
previous section. The calling sequence of the code is:

[t,y,stats,err] = fhbvm(fun, y0, T, M)
In more details,

In input:

– fun is the identifier (or the function handling) of the function evaluating the
r.h.s. of the equation (also in vector mode), its Jacobian, and the order α of the
fractional derivative (see help fhbvm for more details);

– y0 is the initial condition;
– T is the final integration time;
– M is the parameter in (36) (it should be as small as possible);

In output:

– t,y contain the computed mesh and solution;
– stats (optional) is a vector containing the following time statistics:

1. the pre-processing time for computing the parameters h1, r , and N (see
Section (3.1)) and the fractional itegrals (47), and (48) or (49);

2. the time for solving the problem;
3. the pre-processing time for computing the fractional itegrals (47), and (48)

or (49) for the error estimation;
4. the time for solving the problem on the doubled mesh, for the error esti-

mation;
– err (optional), if specified, contains the estimate of the absolute error. This
estimate, obtained on a doubled mesh, is relatively costly: for this reason,
when the parameter is not specified, the solution on the doubled mesh is not
computed.

For the first two problems, we shall also make a comparison with theMatlab© code
flmm2 [27],7 in order to emphasize the potentialities of the new code. All numerical
tests have been done on a M2-Silicon based computer with 16GB of shared memory,
using Matlab© R2023b.

The comparisons will be done by using a so calledWork Precision Diagram (WPD),
where the execution time (in sec) is plotted against accuracy. The accuracy, in turn, is

7 In particular, the BDF2 method is selected (method=3), with the parameters tol=1e-15 and
itmax=1000.

123

Numerical Algorithms

measured through the mixed error significant computed digits (mescd) [39], defined,
by using the same notation seen in (37), as 8

mescd := − log10 max
i=0,...,N

‖(y(ti) − ȳi)./(1 + |y(ti)|)‖∞,

being ti , i = 0, . . . , N , the computational mesh of the considered solver, and y(ti)
and ȳi the corresponding values of the solution and of its approximation.

4.1 Example 1

The first problem [28] is given by:

y(α) = −|y|1.5 + 8!
Γ (9 − α)

t8−α − 3
Γ (5 + α/2)

Γ (5 − α/2)
t4−α/2 +

(
3

2
tα/2 − t4

)3

+ 9

4
Γ (α + 1), t ∈ [0, 1], y(0) = 0, (62)

whose solution is

y(t) = t8 − 3 t4+α/2 + 9

4
tα.

We consider the value α = 0.3, and use the codes with the following parameters, to
derive the corresponding WPD:

– flmm2 : h = 10−12−ν , ν = 1, . . . , 20;
– fhbvm : M = 2, 3, 4, 5.

Figure 2 contains the obtained results: as one may see, flmm2 reaches less than 12
mescd, since by continuing reducing the stepsize, at the 15-th mesh doubling the
error starts increasing. On the other hand, the execution time essentially doubles at
each new mesh doubling. Conversely, fhbvm can achieve full machine accuracy by
employing a uniform mesh with stepsize h1 = 1/M , with M very small, thus using
very few mesh points. As a result, fhbvm requires very short execution times.

4.2 Example 2

We now consider the following linear problem:

y(0.5) =
(−50 0

−49 − 1

)
y, t ∈ [0, 20],

y(0) = (2, 3)�, (63)

8 This definition corresponds to set atol=rtol in the definition used in [39].

123

Numerical Algorithms

2 4 6 8 10 12 14 16
mescd

10-2

10-1

100

101

102

103

se
c

flmm2
fhbvm

Fig. 2 Work-precision diagram for problem (62), α = 0.3

having solution

y(t) =
(

2 E0.5
(−50 · t0.5

)
2 E0.5

(−50 · t0.5
) + E0.5

(−t0.5
)
)

,

with E0.5 theMittag-Leffler function.9 Weuse the codeswith the followingparameters,
to derive the corresponding WPD:

– flmm2 : h = 10−12−ν , ν = 1, . . . , 20;
– fhbvm : M = 5, . . . , 10.

Figure 3 contains the obtained results, from which one deduces that flmm2 achieves
about 5 mescd (with a run time of about 85 sec), whereas fhbvm has approximately
13 mescd, with an execution time of about 1 sec. Further, in Fig. 4, we plot the true
and estimated (absolute) errors for fhbvm in the case M = 10 (corresponding to
a computational mesh made up of 251 mesh-points, with an initial stepsize h1 ≈
7.3 · 10−12, and a final stepsize h250 ≈ 2): as one may see from the figure, there is a
substantial agreement between the two errors.

9 We have used the Matlab© function ml [26] for its evaluation.

123

Numerical Algorithms

0 2 4 6 8 10 12 14
mescd

10-2

10-1

100

101

102

103

se
c

flmm2
fhbvm

Fig. 3 Work-precision diagram for problem (63)

10-12 10-10 10-8 10-6 10-4 10-2 100 102

t

10-15

10-14

10-13

er
ro

r

true
estimated

Fig. 4 True and estimated absolute errors for fhbvm solving problem (63), M = 10

123

Numerical Algorithms

4.3 Example 3

We now consider the following nonlinear problem [8]:

y(1/3)
1 (t) = t

10

(
y31 − (√

y2 + 1
)3) + Γ (5/3)

Γ (4/3)
t1/3,

y(1/3)
2 (t) = 1

3

(
y32 − (y1 − 1)6

)
+ Γ (7/3)t, t ∈ [0, 1],

y(0) = (1, 0)�, (64)

having solution

y(t) =
(

t2/3 + 1
t4/3

)
.

This problem is relatively simple and, in fact, both flmm2 and fhbvm solve it accu-
rately. We use it to show the estimated error by using fhbvm with parameter M = 2,
which produces a graded mesh with 41 mesh-points, with h1 ≈ 1.8 · 10−12 and
h40 ≈ 0.49. The absolute errors (true and estimated) for each component are depicted
in Fig. 5, showing a perfect agreement for both of them.

In this case, the evaluation of the solution requires ≈ 0.04 sec, and the error
estimation requires ≈ 0.11 sec.

10-12 10-10 10-8 10-6 10-4 10-2 100

t

10-35

10-30

10-25

10-20

10-15

10-10

er
ro

r

true, first component
true, second component
estimated, first component
estimated, second component

Fig. 5 True and estimated absolute errors for fhbvm solving problem (64), M = 2

123

Numerical Algorithms

4.4 Example 4

At last, we consider the following fractional Brusselator model:

y(0.7)
1 = 1 − 4y1 + y21 y2,

y(0.7)
2 = 3y1 − y21 y2, t ∈ [0, 5],
y(0) = (1.2, 2.8)�, (65)

By solving this problem using fhbvm with parameter M = 5, a graded mesh of 46
points is produced, with h1 ≈ 6.1 · 10−5 and h45 ≈ 0.98. The maximum estimated
error in the computed solution is less than 3.5 · 10−13, whereas the phase-plot of the
solution is depicted in Fig. 6.

In this case, the evaluation of the solution requires ≈ 0.04 sec, and the error
estimation requires ≈ 0.14 sec.

5 Conclusions

In this paper we have described in full details the implementation of theMatlab© code
fhbvm, able to solving systems of FDE-IVPs. The code is based on a FHBVM(22,20)
method, as described in [8]. We have also provided comparisons with another existing
Matlab© code, thus confirming its potentialities. In fact, due to the spectral accuracy
in time of the FHBVM(22,20) method, the generated computational mesh, which can

0.8 0.9 1 1.1 1.2 1.3
y1

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

y 2

Fig. 6 Phase-plot of the computed solution by using fhbvm solving problem (65), M = 5

123

Numerical Algorithms

be either a uniform or a graded one, depending on the problem at hand, requires
relatively few mesh points. This, in turn, allows to reduce the execution time due to
the evaluation of the memory term required at each step.

We plan to further develop the code fhbvm, in order to provide approximations at
prescribed mesh points, as well as to allow selecting different FHBVM(k, s), k ≥ s,
methods [8]. At last, we plan to extend the code to cope with values of the fractional
derivative, α, greater than 1.

Acknowledgements The authors are members of the Gruppo Nazionale Calcolo Scientifico-Istituto
Nazionale di Alta Matematica (GNCS-INdAM).

Author Contributions All authors contributed equally to this work.

Funding Open access funding provided byUniversitá degli Studi di Firenzewithin the CRUI-CAREAgree-
ment. No grants were received for conducting this study.

Data Availability All data reported in the manuscript have been obtained by the Matlab© code fhbvm,
Rel. 2024-03-06, available at the url [40].

Declarations

Conflicts of Interest/Competing Interests The authors declare no conflict of interests, nor competing inter-
ests.

Ethical Approval Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aceto, L., Magherini, C., Novati, P.: Fractional convolution quadrature based on generalized Adams
methods. Calcolo 51, 441–463 (2014). https://doi.org/10.1007/s10092-013-0094-4

2. Amodio, P., Brugnano, L., Iavernaro, F.: Spectrally accurate solutions of nonlinear fractional initial
value problems. AIP Conf. Proc. 2116, 140005 (2019). https://doi.org/10.1063/1.5114132

3. Amodio, P., Brugnano, L., Iavernaro, F.: Analysis of spectral hamiltonian boundary value methods
(SHBVMs) for the numerical solution of ODE problems. Numer. Algorithms 83, 1489–1508 (2020).
https://doi.org/10.1007/s11075-019-00733-7

4. Amodio, P., Brugnano, L., Iavernaro, F.: Arbitrarily high-order energy-conserving methods for poisson
problems. Numer. Algoritms 91, 861–894 (2022). https://doi.org/10.1007/s11075-022-01285-z

5. Amodio, P., Brugnano, L., Iavernaro, F.: A note on a stable algorithm for computing the fractional
integrals of orthogonal polynomials. Appl. Math. Lett. 134, 108338 (2022). https://doi.org/10.1016/j.
aml.2022.108338

6. Amodio, P., Brugnano, L., Iavernaro, F.: (Spectral) Chebyshev collocation methods for solving dif-
ferential equations. Numer. Algoritms 93, 1613–1638 (2023). https://doi.org/10.1007/s11075-022-
01482-w

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10092-013-0094-4
https://doi.org/10.1063/1.5114132
https://doi.org/10.1007/s11075-019-00733-7
https://doi.org/10.1007/s11075-022-01285-z
https://doi.org/10.1016/j.aml.2022.108338
https://doi.org/10.1016/j.aml.2022.108338
https://doi.org/10.1007/s11075-022-01482-w
https://doi.org/10.1007/s11075-022-01482-w

Numerical Algorithms

7. Brugnano, L.: Blended block BVMs (B3VMs): a family of economical implicit methods for ODEs. J.
Comput. Appl. Math. 116, 41–62 (2000). https://doi.org/10.1016/S0377-0427(99)00280-0

8. Brugnano, L., Burrage, K., Burrage, P., Iavernaro, F.: A spectrally accurate step-by-step method for
the numerical solution of fractional differential equations. J. Sci. Comput. 99, 48 (2024). https://doi.
org/10.1007/s10915-024-02517-1

9. Brugnano, L., Frasca-Caccia, G., Iavernaro, F., Vespri, V.: A new framework for polynomial approxi-
mation to differential equations. Adv. Comput. Math. 48, 76 (2022). https://doi.org/10.1007/s10444-
022-09992-w

10. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall/CRC,
Boca Raton, FL, USA (2016)

11. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7(2), 36 (2018).
https://doi.org/10.3390/axioms7020036

12. Brugnano, L., Iavernaro, F.: A general framework for solving differential equations. Ann. Univ. Ferrara
Sez. VII Sci. Mat. 68,243–258 (2022). https://doi.org/10.1007/s11565-022-00409-6

13. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of hamiltonianBVMs.
J. Comput. Appl. Math. 236, 375–383 (2011). https://doi.org/10.1016/j.cam.2011.07.022

14. Brugnano, L., Magherini, C.: Blended implementation of block implicit methods for ODEs. Appl.
Numer. Math. 42, 29–45 (2002). https://doi.org/10.1016/S0168-9274(01)00140-4

15. Brugnano, L., Magherini, C.: The BiM code for the numerical solution of ODEs. J. Comput. Appl.
Math. 164–165, 145–158 (2004). https://doi.org/10.1016/j.cam.2003.09.004

16. Brugnano, L., Magherini, C.: Blended implicit methods for solving ODE and DAE problems, and their
extension for second order problems. J. Comput. Appl. Math. 205, 777–790 (2007). https://doi.org/
10.1016/j.cam.2006.02.057

17. Brugnano, L., Magherini, C.: Recent advances in linear analysis of convergence for splittings for
solving ODE problems. Appl. Numer. Math. 59, 542–557 (2009). https://doi.org/10.1016/j.apnum.
2008.03.008

18. Brugnano, L., Magherini, C., Mugnai, F.: Blended implicit methods for the numerical solution of DAE
problems. J. Comput. Appl. Math. 189, 34–50 (2006). https://doi.org/10.1016/j.cam.2005.05.005

19. Brugnano, L., Montijano, J.I., Iavernaro, F., Randéz, L.: Spectrally accurate space-time solution of
hamiltonian PDEs. Numer. Algorithms 81, 1183–1202 (2019). https://doi.org/10.1007/s11075-018-
0586-z

20. Brugnano, L., Montijano, J.I., Randéz, L.: On the effectiveness of spectral methods for the numerical
solution of multi-frequency highly-oscillatory hamiltonian problems. Numer. Algorithms 81, 345–376
(2019). https://doi.org/10.1007/s11075-018-0552-9

21. Cardone, A., Conte, D., Paternoster, B.: A Matlab code for fractional differential equations based on
two-step spline collocation methods. In: Fractional Differential Equations, Modeling, Discretization,
and Numerical Solvers, Cardone, A., et al. (eds.) Springer INDAMSeries, vol. 50, pp. 121–146 (2023).
https://doi.org/10.1007/978-981-19-7716-9_8

22. Dahlquist, G., Björk, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia, PA, USA
(2008)

23. Diethelm,K.: The analysis of fractional differential equations.An application-oriented exposition using
differential operators of Caputo type. Lecture Notes in Math, 2004. Springer-Verlag, Berlin, (2010)

24. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution
of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). https://doi.org/10.1023/A:
1016592219341

25. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer.
Algorithms 36, 31–52 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

26. Garrappa, R.: Numerical evaluation of two and three parameter mittag-leffler functions. SIAM J.
Numer. Anal. 53 No. 3, 1350–1369 (2015). https://doi.org/10.1137/140971191

27. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational
aspects. Math. Comput. Simul. 110, 96–112 (2015). https://doi.org/10.1016/j.matcom.2013.09.012

28. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial.
Math. 6(2), 16 (2018). https://doi.org/10.3390/math6020016

29. Gu, Z.: Spectral collocationmethod for nonlinear riemann-liouville fractional terminal value problems.
J. Compt. Appl. math. 398, 113640 (2021). https://doi.org/10.1016/j.cam.2021.113640

30. Gu, Z., Kong, Y.: Spectral collocation method for caputo fractional terminal value problems. Numer.
Algorithms 88, 93–111 (2021). https://doi.org/10.1007/s11075-020-01031-3

123

https://doi.org/10.1016/S0377-0427(99)00280-0
https://doi.org/10.1007/s10915-024-02517-1
https://doi.org/10.1007/s10915-024-02517-1
https://doi.org/10.1007/s10444-022-09992-w
https://doi.org/10.1007/s10444-022-09992-w
https://doi.org/10.3390/axioms7020036
https://doi.org/10.1007/s11565-022-00409-6
https://doi.org/10.1016/j.cam.2011.07.022
https://doi.org/10.1016/S0168-9274(01)00140-4
https://doi.org/10.1016/j.cam.2003.09.004
https://doi.org/10.1016/j.cam.2006.02.057
https://doi.org/10.1016/j.cam.2006.02.057
https://doi.org/10.1016/j.apnum.2008.03.008
https://doi.org/10.1016/j.apnum.2008.03.008
https://doi.org/10.1016/j.cam.2005.05.005
https://doi.org/10.1007/s11075-018-0586-z
https://doi.org/10.1007/s11075-018-0586-z
https://doi.org/10.1007/s11075-018-0552-9
https://doi.org/10.1007/978-981-19-7716-9_8
https://doi.org/10.1023/A:1016592219341
https://doi.org/10.1023/A:1016592219341
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1137/140971191
https://doi.org/10.1016/j.matcom.2013.09.012
https://doi.org/10.3390/math6020016
https://doi.org/10.1016/j.cam.2021.113640
https://doi.org/10.1007/s11075-020-01031-3

Numerical Algorithms

31. van der Houwen, P.J., de Swart, J.J.B.: Triangularly implicit iteration methods for ODE-IVP solvers.
SIAM J. Sci. Comput. 18, 41–55 (1997). https://doi.org/10.1137/S1064827595287456

32. van der Houwen, P.J., de Swart, J.J.B.: Parallel linear system solvers for runge-kutta methods. Adv.
Comput. Math. 7(1–2), 157–181 (1997). https://doi.org/10.1023/A:1018990601750

33. van der Houwen, P.J., Sommeijer, B.P., de Swart, J.J.: Parallel predictor-corrector methods. J. Comput.
Appl. Math. 66, 53–71 (1996). https://doi.org/10.1016/0377-0427(95)00158-1

34. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional
differential equations. J. Comput. Phys. 316, 614–631 (2016). https://doi.org/10.1016/j.jcp.2016.04.
039

35. Lubich, Ch.: Fractional linearmultistepmethods for abel-volterra integral equations of the second kind.
Math. Comp. 45 No. 172, 463–469 (1985). https://doi.org/10.1090/S0025-5718-1985-0804935-7

36. Podlubny, I.: Fractional differential equations. An introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications. Academic Press,
Inc., San Diego, CA, (1999)

37. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes
for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017). https://doi.org/
10.1137/16M1082329

38. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for
fractional ODEs. J. Comput. Phys. 257, 460–480 (2014). https://doi.org/10.1016/j.jcp.2013.09.039

39. Mazzia, F., Magherini, C.: Test Set for Initial Value Problem Solvers. Release 2.4, February 2008,
Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, Italy, available at:
https://archimede.uniba.it/~testset/testsetivpsolvers/

40. https://people.dimai.unifi.it/brugnano/fhbvm/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/S1064827595287456
https://doi.org/10.1023/A:1018990601750
https://doi.org/10.1016/0377-0427(95)00158-1
https://doi.org/10.1016/j.jcp.2016.04.039
https://doi.org/10.1016/j.jcp.2016.04.039
https://doi.org/10.1090/S0025-5718-1985-0804935-7
https://doi.org/10.1137/16M1082329
https://doi.org/10.1137/16M1082329
https://doi.org/10.1016/j.jcp.2013.09.039
https://archimede.uniba.it/~testset/testsetivpsolvers/
https://people.dimai.unifi.it/brugnano/fhbvm/

	Numerical solution of FDE-IVPs by using fractional HBVMs: the fhbvm code
	Abstract
	1 Introduction
	2 Fractional HBVMs
	2.1 Quasi-polynomial approximation
	2.2 The fully discrete method

	3 Implementation issues
	3.1 Graded or uniform mesh?
	3.2 Approximating the fractional integrals
	3.3 Error estimation
	3.4 The nonlinear iteration

	4 Numerical Tests
	4.1 Example 1
	4.2 Example 2
	4.3 Example 3
	4.4 Example 4

	5 Conclusions
	Acknowledgements
	References

