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r é s u m é

Nous prouvons une borne inférieure pour la constante de Cheeger d’un cylindre 
Ω × (0, L), où Ω est un ensemble ouvert et borné. En conséquence, nous obtenons 
l’existence de minimiseurs pour la fonctionnelle de forme définie comme le rapport 
entre la première valeur propre de Dirichlet du p-Laplacien et la p-ième puissance de 
la constante de Cheeger, dans la classe des ensembles convexes bornés dans tout RN . 
Ceci résout positivement des conjectures ouvertes soulevées par Parini (J. Convex 
Anal. (2017)) et par Briani–Buttazzo–Prinari (Ann. Mat. Pura Appl. (2023)).

© 2024 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The Cheeger constant of an open, bounded set Ω ⊆ RN is defined as

h(Ω) := inf
{

P (E)
|E| : E ⊆ Ω, |E| > 0

}
.

The constant owes its name to Cheeger, who in [5] used its Riemannian counterpart to provide a lower 
bound to the first eigenvalue of the Dirichlet Laplace–Beltrami operator.
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We recall that, in the Euclidean setting, the first eigenvalue of the Dirichlet p-Laplacian (p > 1), for an 
open, bounded set Ω ⊆ RN is variationally characterized as

λp(Ω) := inf

⎧⎨⎩
∫
Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω) and ‖u‖p = 1

⎫⎬⎭ ,

where W 1,p
0 (Ω) is taken as the closure of C∞

c (Ω) with respect to the Sobolev norm ‖ · ‖p + ‖∇(·)‖p. Using 
this notation, one has

λp(Ω) ≥
(
h(Ω)
p

)p

, (1.1)

refer to [2, Theorem 3.1] and [15, Appendix]. Further, assuming Ω to be regular enough (Lipschitz suffices), 
limp→1+ λp(Ω) = h(Ω) holds, as first proved in [11]. Inequality (1.1) is very robust, as noticed even earlier 
than Cheeger in the linear case p = 2 by Maz’ya [19,20], and can be extended to the abstract setting 
of perimeter-(topological) measure spaces for Borel sets, see, e.g., [7] and the references therein. For an 
overview of the Cheeger problem, we refer the interested reader to the surveys [16,21]. Rearranging (1.1), 
one obtains

Fp[Ω] := λ
1/p
p (Ω)
h(Ω) ≥ 1

p
. (1.2)

Hence, one has a lower bound to the spectral operator Fp[ · ]. It is therefore natural to wonder whether this 
bound is attained and in general if the minimization of Fp[ · ] has solutions in some suitable class of subsets 
of RN . Here, we shall focus on the class of convex subsets of RN .

In the convex case, the bound is known not to be sharp, as tighter bounds have been proved in some 
special cases. Namely, for p = 2 and general N , it holds

F2[Ω] ≥ π

2N , (1.3)

as proved in [22, Proposition 5.1] for N = 2 and later noticed to hold for any N in [8, Introduction]. This 
provides a tighter bound in dimension N = 2, 3. In dimension N = 2, a further refinement was given in [8, 
Theorem. 1.1], where it was shown that

F2[Ω] ≥ πj01
2j01 + π

,

where j01 denotes the first zero of the first Bessel function. An inequality similar in spirit to (1.3) holds for 
general p, refer to [4, Proposition 3.2], namely,

Fp[Ω] ≥ max

⎧⎨⎩ 1
p
; π(p− 1)

1
p

Np sin
(

π
p

)
⎫⎬⎭ .

Hence, for dimensions N ≤ N̄(p) one gets a tighter bound than the one in (1.2). As a side result of this 
paper, we shall obtain that (1.2) is not sharp in any dimension N and for any p. For the sake of completeness, 
we mention that in the recent preprint [6, Remark 4.2] it was provided an improvement (depending on N
and p) on (1.1) under the lone openness of Ω, so that one gets again that (1.2) is not sharp for dimensions 
N smaller than some N̄(p) when restricting competitors to open sets.
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Regarding existence of minimizers, the first step in this direction was made in [22, Proposition 5.2], where 
Parini proved existence among the class of convex subsets of the plane R2, in the case p = 2. Later on, 
Ftouhi [8, Theorem 1.2] provided a different proof of existence, along with a sufficient criterion to determine 
whether minimizers among convex subsets of RN exist. Recently, Briani, Buttazzo and Prinari extended 
this criterion to general p, and proved existence for p ≥ 2 among convex subsets of the plane R2, see [4, 
Theorem 3.6]. To the best of our knowledge, the existence of minimizers among open subsets of RN is 
completely open (except for N = 1 which is trivial, see [4, Proposition 2.1]).

In this paper, by exploiting the above-mentioned criteria, we are able to show existence of minimizers of 
Fp[ · ] among convex subsets of RN , for any N ≥ 2 and p > 1, see Theorem 3.3. The proof relies on some 
cylindrical estimates on the Cheeger constant. The key one, see Theorem 2.1, is the following: given an open 
and bounded subset Ω of RN , not necessarily convex, and given L ≥ 1, we show that

h(Ω) + c(Ω)
L

≤ h(ΩL) < h(Ω) + 2
L
, (1.4)

where ΩL := Ω × (0, L) and c(Ω) > 0 is a constant depending only on Ω. In other words, we can estimate 
both from above and from below the Cheeger constant of the (N + 1)-dimensional cylinder ΩL with the 
Cheeger constant of its cross-section plus a non-zero term that goes like the inverse of the height of the 
cylinder. The proof of Theorem 3.3 essentially follows from the combination of (1.4) and the criteria proved 
in [4,8].

The paper is organized as follows: in Section 2, we prove the cylindrical estimates, refer to Theorem 2.1; 
in Section 3, we use them to obtain Theorem 3.3.

Acknowledgments. The authors wish to thank Giuseppe Buttazzo for making them aware of the prob-
lem and the two referees for their valuable comments which, in particular, pointed us how to remove the 
assumption L ≥ 1 of Theorem 2.1, up to assuming the convexity of the cross-section, see Remark 2.4. Both 
authors are members of INdAM–GNAMPA.

2. Estimates

This section is devoted to show the key estimate (1.4) for cylinders. First of all, we recall some standard 
notation, see for instance [1]. Given any M ∈ N, we let H M be the standard M -dimensional Hausdorff 
measure. Given a set of finite perimeter A ⊂ RM+1, we denote by ∂∗A its reduced boundary, and we recall 
that P (A; B), the perimeter of A relative to a Borel set B, equals H M (∂∗A ∩ B). Finally, if B = RM+1, 
one writes P (A) in place of P (A; RM+1).

Second, we fix a quick notation that will be used through the rest of the paper. Given any set Ω ⊆ RN , 
for any L > 0 the cylinder Ω × (0, L) ⊆ RN+1 will be denoted by ΩL. Moreover, for any subset C ⊆ ΩL and 
t ∈ [0, L] we will denote by Ct the horizontal section of C at height t, that is,

Ct :=
{
C ∩ (Ω × {t}), t ∈ (0, L) ,
∂C ∩ (Ω × {t}), t ∈ {0, L} .

Moreover, with some abuse of notation we shall write Ct ⊆ Ω, in place of ΠN (Ct) ⊆ Ω, being ΠN the restric-
tion to the first N coordinates. Notice also that, by the well-known Vol’pert Theorem (see for instance [9, 
Theorem 6.2]), if C is a set of finite perimeter in ΩL then for a.e. t ∈ [0, L] the section Ct is a well-defined 
set with finite perimeter in RN , where, from now on, by well-defined we mean uniquely defined up to sets 
of zero H N -measure.

The main result of the section reads as follows.
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Theorem 2.1. Let Ω ⊆ RN be open and bounded. There exists a constant c(Ω) > 0 such that for any L ≥ 1
one has

h(Ω) + c(Ω)
L

≤ h(ΩL) ≤ h(Ω) + 2
L
. (1.4)

Before proving this result, we need to show the following preliminary lemma. As recalled, by Vol’pert 
Theorem, if D ⊂ ΩL is a set of finite perimeter, then almost every section Dt is well-defined. The lemma 
states that for those values t ∈ [0, L] for which the section is not well-defined, one can however “identify” it 
either as the unique limit of sections above it (i.e., for s ↘ t) or as the unique limit (possibly different from 
the previous one) of sections below it (i.e., for s ↗ t).

Lemma 2.2. Let D be any set of finite perimeter contained in the cylinder ΩL. Then, for every 0 ≤ t < L, 
there exists a (unique up to negligible sets) set D+

t ⊆ Ω such that

lim
s↘t

∣∣Ds�D+
t

∣∣ = 0 . (2.1)

Analogously, for every 0 < t ≤ L there exists a (unique up to negligible sets) set D−
t ⊆ Ω such that

lim
s↗t

∣∣Ds�D−
t

∣∣ = 0 .

Moreover, D+
t = D−

t (H N -a.e.) for t ∈ (0, L) except at most countably many t.

Proof. Let us fix 0 ≤ t < L, and let sj ↘ t be any monotone decreasing sequence converging to t and such 
that the section Dsj is well-defined for every j. Notice that

P
(
D; Ω ×

(
sj+1, sj

))
= H N

(
∂∗D ∩

(
Ω × (sj+1, sj)

))
,

and that, calling ΠN : RN+1 → RN the projection on the first N coordinates, we have

ΠN

(
∂∗D ∩

(
Ω × (sj+1, sj)

))
⊇ Dsj+1�Dsj .

Since the projection is 1-Lipschitz, we deduce that

P
(
D; Ω ×

(
sj+1, sj

))
≥

∣∣Dsj+1�Dsj

∣∣ . (2.2)

As a consequence, taking the sum on j, and recalling that D has finite perimeter, we have that

+∞ > P (D) ≥
∑
j∈N

P
(
D; Ω ×

(
sj+1, sj

))
≥

∑
j∈N

∣∣Dsj+1�Dsj

∣∣ . (2.3)

We now extract a subsequence {σn} of {sj} as follows. By the finiteness of the sum in (2.3), for any integer 
n ≥ 1 there exists an index jn such that the tail of the series is bounded from above as

∑
j≥jn

∣∣Dsj+1�Dsj

∣∣ < 1
2n . (2.4)

Moreover, we can also assume that {jn} is strictly monotone, and that

jn and n have the same parity for each n. (2.5)
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We let the sequence {σn} := {sjn}, and we notice that, owing to (2.4) and the set-wise triangular inequality 
A�B ⊆ A�C ∪ C�B, the sections of D individuated by the sequence of heights {σn} satisfy

∣∣Dσn+1�Dσn

∣∣ ≤ jn+1−1∑
j=jn

∣∣Dsj+1�Dsj

∣∣ < 1
2n , ∀n ∈ N . (2.6)

Calling now, for every k ∈ N,

Fk :=
⋂
n≥k

Dσn
, Gk :=

⋃
n≥k

Dσn
,

we trivially have that Fk ⊆ Dσk
⊆ Gk. Moreover, one can easily prove the set equality

Gk \ Fk =
⋃
n≥k

(
Dσn+1�Dσn

)
,

which combined with (2.6) yields the estimate 
∣∣Gk \ Fk

∣∣ ≤ 21−k. Notice that the set equality⋃
k∈N

Fk =
⋂
k∈N

Gk , (2.7)

holds up to sets of measure zero, since the sets Fk are monotonically increasing, the sets Gk monotonically 
decreasing, Fk ⊂ Gk, and 

∣∣Gk \ Fk

∣∣ ≤ 21−k. We then let D+
t be the set in (2.7), which is well-defined. We 

have that

lim
k→∞

∣∣Dσk
�D+

t

∣∣ = lim
k→∞

∣∣Dσk
\D+

t

∣∣ +
∣∣D+

t \Dσk

∣∣
≤ lim

k→∞

∣∣Dσk
\ Fk

∣∣ +
∣∣Gk \Dσk

∣∣ = lim
k→∞

∣∣Gk \ Fk

∣∣ = 0 ,
(2.8)

where the second-to-last equality comes from the fact that Fk ⊆ Dσk
⊆ Gk. This property is in principle 

weaker than (2.1), because the set D+
t might depend on the particular choice of the sequence {sj} and of 

the subsequence {σn}. Therefore, it suffices to show that any choice of the sequence and of the relative 
subsequence yields the same limit set D+

t . Consider two monotone sequences s′j ↘ t and s′′j ↘ t satisfying

lim
j→∞

∣∣Ds′j
�D′∣∣ = lim

j→∞

∣∣Ds′′j
�D′′∣∣ = 0

for two different sets D′, D′′, and define a monotone sequence sj ↘ t in such a way that {s2j} is a 
subsequence of {s′j} and {s2j+1} is a subsequence of {s′′j }, which is clearly possible. Reasoning as before, 
one can find a subsequence {σn} of {sj} and a set D+

t such that (2.8) holds, but by construction and thanks 
to (2.5) we deduce that D+

t must coincide both with D′ and D′′, which is impossible since D′ and D′′

are different. The contradiction shows that actually D+
t does not depend on the sequence, so that we have 

obtained (2.1).
The existence of the set D−

t can be of course obtained exactly in the same way. To conclude the proof, 
we only have to check that there can be at most countably many t ∈ (0, L) for which D+

t �= D−
t in a 

measure-theoretic sense, that is, |D+
t �D−

t | > 0. By the same projection argument around (2.2), looking at 
the perimeter of D in the strip RN × (t − ε, t + ε), and then letting ε to zero, we get that the perimeter of 
D relative to the hyperplane RN × {t} is at least |D+

t �D−
t |. Since D has finite perimeter, this can happen 

at most countably many times. �
We are now ready to present the proof of the main estimate of this section.
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Proof of Theorem 2.1. The proof will be divided in some steps.
Step I. A weaker inequality.
In this first step, we prove an estimate which is weaker than (1.4), namely,

h(Ω) ≤ h(ΩL) ≤ h(Ω) + 2
L
. (2.9)

We start by proving the upper bound. We let F be a Cheeger set for Ω, that is, a set realizing the infimum 
in the definition of the Cheeger constant, and whose existence is ensured by the boundedness of Ω, refer 
to [16, Proposition 3.5(iii)]. It is then enough to notice that

h(ΩL) ≤
P
(
F × [0, L]

)∣∣F × [0, L]
∣∣ = LP (F ) + 2|F |

L|F | = P (F )
|F | + 2

L
= h(Ω) + 2

L
,

so that the right inequality in (2.9) is proved, and so it also is the right one in (1.4).
We now turn our attention to the lower bound. This estimate is very easy to prove and it is not needed 

to prove the stronger one (1.4), yet it contains the basic ideas we shall exploit to prove our main result. Let 
D ⊆ ΩL be any set of finite perimeter. Then, as previously mentioned, by Vol’pert Theorem the section Dt

is a well-defined set with finite perimeter in RN for a.e. t ∈ [0, L]. Furthermore, one has that (∂∗D)t = ∂∗Dt

(H N−1-a.e.) for a.e. t. Trivially, since D has finite perimeter in RN+1, its reduced boundary ∂∗D is H N -
rectifiable [1, Theorem 3.59]. Thus, by the coarea formula for rectifiable sets (see [1, Theorem 2.93 and 
Remark 2.94]), we have that

P (D) =
∫

∂∗D

1 dH N ≥
∫

∂∗D

√
1 − ‖νD · eN+1‖2 dH N

=
∫
R

∫
∂∗Dt

1 dH N−1 dt =
L∫

0

∫
∂∗Dt

1 dH N−1 dt =
L∫

0

P (Dt) , (2.10)

where by P (Dt) we denote the perimeter of Dt in RN , that is, H N−1(∂∗Dt). Since Dt ⊆ Ω, we have 
P (Dt) ≥ h(Ω)|Dt|, where by |Dt| we denote the measure of Dt in RN , that is, H N (Dt). Therefore,

P (D) ≥
L∫

0

P (Dt) dt ≥
L∫

0

h(Ω)|Dt|dt = h(Ω)
L∫

0

|Dt|dt = h(Ω)|D| , (2.11)

thus P (D)/|D| ≥ h(Ω) for every D ⊆ ΩL and then the left inequality in (2.9) is proved.
We remark that the inequality in (2.10) remains true adding on the right the measure of the section 

D+
0 given by Lemma 2.2. This simple observation will be the starting point of the proof of the stronger 

inequality.
Step II. The “minimal volume” v, the gap ε, the height τ and the volume up to τ , V .
This step is devoted to define two positive quantities v and ε, which depend only on Ω, and two other 
quantities τ and V that depend on the choice of one Cheeger set of the cylinder ΩL.

As recalled in the previous step, in view of the boundedness of Ω, there exist Cheeger sets for Ω. In 
general there might be several different Cheeger sets, but their measure cannot be too small. In particular, 
given any Cheeger set C of Ω, one has

|C| ≥ ωN

(
N

)N

, (2.12)

h(Ω)
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where ωN is the N -dimensional Lebesgue measure of a unit-radius ball in RN , refer to [16, Proposi-
tion 3.5(v)]. We now let

v := inf { |C| : C is a Cheeger set for Ω } ,

and we have that v = v(Ω) > 0 in view of (2.12). We then let

ε := inf
{

P (E)
|E| , E ⊆ Ω, |E| ≤ v/2

}
− h(Ω) .

It is clear that ε = ε(v(Ω), h(Ω)) and thus, definitively, ε = ε(Ω). It is simple to notice that ε > 0. Indeed, 
let E be any subset of Ω with |E| ≤ v/2. By definition of v, E is not a Cheeger set for Ω, and then

P (E)
|E| > h(Ω) .

This only shows that ε ≥ 0. Argue now by contradiction and assume the existence of a sequence of sets 
Ej ⊆ Ω such that |Ej | ≤ v/2 for every j, and

P (Ej)
|Ej |

→ h(Ω) . (2.13)

The sequence of the characteristic functions χEj
is then bounded in BV (Ω), so that, up to a subsequence, we 

can assume that χEj
is weakly-star converging in BV (Ω) to some function ϕ. However, since Ω is bounded 

the convergence is strong in L1, thus ϕ is the characteristic function of some set E∞ with |E∞| > 0, as 
otherwise (2.13) would be easily contradicted by using the isoperimetric inequality. Indeed, were |E∞| = 0, 
we would have that |Ej | → 0. Hence, calling Bj any ball with the same measure of Ej , and rj its radius, 
we would have

P (Ej)
|Ej |

≥ P (Bj)
|Bj |

= NωN

rj
→ +∞,

because rj goes to zero as |Bj | → 0, against (2.13). Then, the lower semicontinuity of the perimeter implies 
that E∞ is a Cheeger set for Ω with measure less than v/2, which is impossible by definition of v. Hence, 
we conclude that ε > 0.

Let us now fix a Cheeger set C∗ of ΩL. Notice that for almost every t ∈ [0, L], (C∗)+t and (C∗)−t coincide 
by Lemma 2.2, and by Vol’pert Theorem they also coincide with C∗

t . We define the two following quantities

τ := ess inf { t ∈ [0, L], |C∗
t | ≥ v/2 } , V :=

∣∣C∗ ∩
(
Ω × [0, τ ]

)∣∣ ,
which depend also on the choice of the Cheeger set C∗. Nevertheless, we will be able to check the validity 
of (1.4), independently from such a choice, exhibiting a constant c depending only on the minimal volume 
v, the gap ε, the measure |Ω|, and the Cheeger constant h(Ω) and thus, definitively only on the set Ω.
Step III. The proof of the inequality.
We shall now refine (2.11), arguing in different ways depending on the measure of the upper section of C∗

at height zero, which for the sake of convenience we denote by C∗
0 in place of (C∗)+0 .

(i) The case |C∗
0 | > v/4. We first assume that the bottom section of C∗ is not too small, namely, that 

|C∗
0 | > v/4. Then, by refining (2.10) adding, as already discussed, the extra term |C∗

0 |, and recalling that 
P (C∗

t ) ≥ h(Ω)|C∗
t | for all t ∈ [0, L], we readily have
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h(ΩL) = P (C∗)
|C∗| ≥

L∫
0

P (C∗
t ) dt + |C∗

0 |

L∫
0

|C∗
t |dt

≥

L∫
0

h(Ω)|C∗
t |dt + |C∗

0 |

L∫
0

|C∗
t |dt

≥ h(Ω) + v

4|Ω|L , (2.14)

so the required estimate is obtained in this case.
(ii) The case |C∗

0 | ≤ v/4: when V > v(8h(Ω))−1. Notice that, by construction and by Step II, P (C∗
t ) ≥

(h(Ω) + ε)|C∗
t | for almost every 0 ≤ t ≤ τ , while P (C∗

t ) ≥ h(Ω)|C∗
t | for almost every τ ≤ t ≤ L. Therefore, 

again by integration we get

h(ΩL) = P (C∗)
|C∗| ≥

τ∫
0

P (C∗
t ) dt +

L∫
τ

P (C∗
t ) dt

|C∗|

≥

L∫
0

h(Ω)|C∗
t |dt +

τ∫
0

ε|C∗
t |dt

|C∗| = h(Ω) + εV

|C∗| > h(Ω) + εv

8h(Ω)|Ω|L ,

(2.15)

and then the required estimate is obtained also in this case.
(iii) The case |C∗

0 | ≤ v/4: when V ≤ v(8h(Ω))−1 and τ < L. We now assume that τ < L, so that by 
definition of τ there is a sequence of tn ↘ τ such that C∗

tn is well-defined and |C∗
tn | ≥ v/2. Arguing by 

projection as in the proof of Lemma 2.2 for any n, we have

P
(
C∗;

(
Ω × (0, tn)

))
≥

∣∣|C∗
tn | − |C∗

0 |
∣∣ ≥ v

2 − |C∗
0 | ≥

v

4 .

Therefore, arguing as in the previous steps, we get

h(ΩL) = P (C∗)
|C∗| ≥

P
(
C∗;

(
Ω × (0, tn)

))
+

L∫
tn

P (C∗
t ) dt

|C∗|

≥

v

4 +
L∫

tn

h(Ω)|C∗
t |dt

|C∗| =

v

4 + h(Ω)

⎛⎝|C∗| − V −
tn∫
τ

|C∗
t |dt

⎞⎠
|C∗| .

Letting now n → +∞, we have

h(ΩL) ≥ h(Ω) + v − 4h(Ω)V
4|C∗| ≥ h(Ω) + v

8|C∗| ≥ h(Ω) + v

8|Ω|L , (2.16)

so the required estimate is obtained also in this case.
(iv) The case |C∗

0 | ≤ v/4: when V ≤ v(8h(Ω))−1 and τ = L. Being τ = L, one has |C∗
t | < v/2 for almost 

every t ∈ [0, L]. In this case, the estimate P (C∗
t ) ≥

(
h(Ω) + ε

)
|C∗

t | is true for almost every 0 ≤ t ≤ L, and 
then arguing as usual this time we get, using also that L ≥ 1,

h(ΩL) ≥ h(Ω) + ε ≥ h(Ω) + ε
. (2.17)
L
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We are now ready to conclude. By putting together (2.14), (2.15), (2.16) and (2.17), the claim follows by 
choosing c(Ω) as

c(Ω) = min
{
v(Ω)
8|Ω| ; ε(Ω)v(Ω)

8h(Ω)|Ω| ; ε(Ω)
}

> 0 ,

which only depends on Ω and not on the choice of the Cheeger set C∗. �
Remark 2.3 (The assumption L ≥ 1). Notice that the assumption L ≥ 1 is used only in Step III (iv) in 
order to obtain the second inequality in (2.17). In particular, fixed any L̄ > 0, one gets

h(ΩL) ≥ h(Ω) + εL̄

L
, for any L ≥ L̄,

so that, up to possibly changing the constant c(Ω), Theorem 2.1 holds for all L ≥ L̄ for some given positive 
L̄.

Remark 2.4 (The assumption L ≥ 1, in the convex case). Assuming the cross-section Ω to be convex, one 
can relax the assumption all the way down to L > 0. In order to prove it, it is enough to show that the 
function f : (0, +∞) → R defined as f : L �→ L(h(ΩL) − h(Ω)) is well-detached from zero in a sufficiently 
small right neighborhood of the origin (0, L̄), owing also to Remark 2.3. Thanks to the reverse Cheeger 
inequality [22] (refer also to [3, Remark 1.1]), to the equality λ2(ΩL) = λ2(Ω) + π2

L2 (see [4, Lemma 2.4]), 
and exploiting the upper bound in (2.9), we have

π2

4 >
λ2(ΩL)
h(ΩL)2 ≥

λ2(Ω) + π2

L2

(h(Ω) + 2
L )2

−−−−→
L→0+

π2

4 . (2.18)

Therefore, h(ΩL) behaves as 2/L as L approaches 0. Thus, limL→0+ f(L) = 2, hence f is well-detached from 
zero when sufficiently close to the origin. The convexity of the cross-section is required because we make 
use of the reverse Cheeger inequality which corresponds to the leftmost inequality in (2.18).

Remark 2.5 (Boundedness assumption). The hypothesis that Ω is bounded in Theorem 2.1 can be slightly 
relaxed. A close inspection to the proof highlights how this is used only to ensure the existence of isoperimet-
ric sets within Ω (and, in particular, of Cheeger sets). Thus, one could drop it and require that Ω supports 
the compact embedding BV (Ω) ↪→ L1(Ω) (i.e., it has finite measure and supports a relative isoperimetric 
inequality, see [18, Section 9.1.7]).

Remark 2.6. In dimension 2, there is only one kind of (connected) cylinder: rectangles. In this case, the 
constant is well-known and there is a formula to compute it depending only on the length of the sides of the 
rectangle, see the discussion after [12, Theorem 3] together with the correction done in [10, Open problem 1]. 
Our estimates are obviously consistent with such a formula. In the planar setting, similar estimates have been 
proved for “strips” (2d waveguides), that one can think of as bended rectangles, refer to [14, Theorem 3.2]
and also to [17, Theorem 3.2]. Notice that the case of 2-dimensional non-connected cylinders reduces to the 
case of connected ones. Indeed, if Ω is a union of segments, ΩL is the union of rectangles with sides parallel 
to the axes, that have the same height and as bases the segments defining Ω. Trivially, h(ΩL) equals the 
Cheeger constant of the rectangle with the largest base, that is, the cylinder built on the largest segment 
defining Ω, which surely exists, since Ω has finite measure.

Remark 2.7. In [13] the authors consider unbounded waveguides, that is, roughly speaking cylinders whose 
spine is the image of a generic unbounded curve γ rather than a straight line. In [13, Remark 1] they 
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essentially prove the upper bound (1.4) for the bounded waveguides γ([0, L]) ⊕ Br (topped with two half-
balls), while they give a weaker lower bound independent of the length L, see [13, Theorem 1].

3. Application

In this last section, we exploit the cylindrical estimates of Theorem 2.1 to prove some properties on the 
shape functional Fp[ · ] defined as

Fp[E] := λ
1/p
p (E)
h(E) ,

for p ∈ (1, +∞] with the convention that for p = +∞ we let λ1/p
p (E) = ρ(E)−1, where this latter denotes 

the inradius of the set E. Throughout the section we shall denote by KN the class of convex subsets of RN . 
For the sake of notation, we also let

m̃N := inf
E⊂RN

Fp[E] and mN := inf
E∈KN

Fp[E] ,

without stressing the dependence on p as this plays no role in the following.

Theorem 3.1. For any fixed p ∈ (1, +∞], if there exist bounded minimizers of Fp[ · ] among sets

(i) in the Euclidean space RN , then m̃N+1 < m̃N ;
(ii) in the class of convex sets KN , then mN+1 < mN .

Proof. We only prove point (i), as the proof of point (ii) is completely analogous. Let us denote by Ω a 
bounded minimizer of the functional in RN and let us consider the cylinders ΩL with cross-section Ω and 
height L ≥ 1.

Let us start with the case 1 < p < +∞. First, we recall the upper bounds to λ
1/p
p (ΩL) proved in [4, 

Lemma 2.4]

λ
1/p
p (ΩL) ≤

(
λ

2/p
p (Ω) + c

L2

) 1
2
, if p ≥ 2,

λ
1/p
p (ΩL) ≤

(
λp(Ω) + c

Lp

) 1
p

, if p ∈ (1, 2),

where c = c(p) is explicit but not needed for our purposes. These imply that for L � 1, i.e., for large enough 
values of L, one has

λ
1/p
p (ΩL) ≤ λ

1/p
p (Ω) + O

(
1

Lmin{p,2}

)
.

Combining this inequality with the lower bound to h(ΩL) in (1.4) for L � 1 have that

m̃N+1 ≤ λ
1/p
p (ΩL)
h(ΩL) ≤ λ

1/p
p (Ω)
h(Ω) · 1 + O (1/Lmin{p,2})

1 + c(Ω)
Lh(Ω)

<
λ

1/p
p (Ω)
hp(Ω) = m̃N .

If otherwise p = +∞, one has that for L large enough ρ(Ω) = ρ(ΩL), and thus one can conclude in the 
same manner still owing to the lower bound in (1.4). �
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The above theorem becomes particularly useful when combined with the existence criterion [4, Theo-
rem 3.6], which was first devised in [8, Theorem 1.2] in the case p = 2. We stress that the criterion only 
works when dealing with convex sets. For the sake of convenience, we recall it below along with a sketch of 
the proof, also highlighting how convexity plays a major role.

Theorem 3.2 (Theorem 3.6 of [4]). For any fixed p ∈ (1, +∞], if mN+1 < mN holds, then there exists a 
bounded minimizer of Fp[ · ] over KN+1.

Sketch of the proof of Theorem 3.2. First notice that, using the same argument of the proof of Theorem 3.1
with the weaker lower bound (2.9) to h(ΩL), one has that mN+1 ≤ mN .

Second, the key observation behind the criterion is that, refer to [4, Proposition 3.5], if a sequence {Ej}j
of equimeasurable (N+1)-dimensional sets is such that the sequence of diameters {diamEj}j is unbounded, 
then mN ≤ lim infj Fp[Ej ]. Taking this for granted, if the strict inequality mN+1 < mN holds, one can rule 
out that minimizing sequences {Ej}j have unbounded diameters. Therefore, and here convexity matters, 
one can invoke the Blaschke Selection Principle and extract a subsequence converging in the Hausdorff 
metric to a bounded, convex set, which is easily shown to be a minimizer.

For the sake of completeness, we briefly sketch also the proof of the key observation, which also relies on 
the convexity of the sets {Ej}j .

Fixed any j, up to a translation and a rotation, one can assume that both the origin and the point 
(0, . . . , 0, diamEj) belong to ∂Ej . We consider the section ωj := Ej ∩ { xN+1 = tj }, chosen as the section 
attaining

inf
t∈[0,diamEj ]

λp(Ej ∩ {xN+1 = t }) ,

which exists in virtue of the Hausdorff continuity of the sections Ej ∩{ xN+1 = t } in RN (being Ej convex), 
and the continuity of λp with respect to the Hausdorff metric. We mention that, up to a reflection, one can 
also assume that

tj ≥
diamEj

2 . (3.1)

Owing to the fact that the sections Ej ∩ { xN+1 = 0 } and Ej ∩ { xN+1 = diamEj } are empty, and owing 
to Fubini Theorem it can be seen that

λp(Ej) ≥ λp(ωj) , (3.2)

refer to [4, Lemma 3.3]. Fixed a parameter α ∈ (0, 1), one now considers the cylinders Cα
j ⊂ Ej of base 

αωj and height tj(1 − α) contained in the cone given by the convex envelope of the origin with ωj, see also 
Fig. 1. By the monotonicity of the Cheeger constant, we then have

h(Cα
j ) ≥ h(Ej). (3.3)

Using now (3.2) and (3.3), multiplying and dividing by h(ωj), using the scaling properties of the Cheeger 
constant, and owing to the upper estimate in (1.4) one has

Fp[Ej ] = λ
1/p
p (Ej)
h(Ej)

≥ αmN
h(ωj)

h(ωj) + 2α
(1−α)tj

.

Taking the inferior limit as j → +∞, using (3.1), and then letting α → 1, the claim follows. �
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Cα
j

ωj

Fig. 1. The cylinder Cα
j that is used to prove Theorem 3.2.

It is clear that by combining the above theorem with Theorem 3.1(ii), it follows that existence of mini-
mizers over KM implies existence over KN for any N ≥ M . Hence, to conclude existence in all dimensions it 
would suffice to prove it for N = 1. We show how the induction works and that it can start in the following 
theorem.

Theorem 3.3. For any fixed p ∈ (1, +∞], the sequence {mN} is strictly decreasing, and there exist bounded 
minimizers of Fp[ · ] in KN for any N ∈ N.

Proof. Assume that a minimizer exists in KN . Then Theorem 3.1(ii) implies that the infimum over KN+1

is strictly less than that in KN . In turn, Theorem 3.2 implies that a minimizer exists over KN+1. Therefore, 
the existence of minimizers in dimension N = 1 would immediately imply both the strictly monotone 
decreasing behavior of the sequence and the existence of minimizers over KN for all N ∈ N. It is well-known 
that any interval minimizes the functional over K1, refer for instance to [4, Proposition 2.1], thus the claim 
follows. �
Remark 3.4. So far Theorem 3.3 had only been proved in the 2-dimensional case (for p ≥ 2), and minimizers 
conjectured to exist in any dimension, and we here give a positive answer. We refer to [22, Proposition 5.2]
for p = 2, where it is also conjectured that the minimum is attained for the square, and to [4, Theorem 3.8]
for p ≥ 2.

It has already been observed in [4,8] that Cheeger’s inequality is attained asymptotically as N → +∞. 
Indeed, it is easy to see that, fixed any p, a sequence of N -dimensional unit balls {BN

1 } achieves the equality 
in the limit when N → +∞. In particular, for p = 2, this follows from the explicit knowledge of the first 
eigenvalue of the N -dimensional ball and its asymptotic behavior, refer to [23] and the computations carried 
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out in [8, Theorem 1.2]. For general p it follows from the estimates of [4, Lemma 2.3] and the computations 
carried out in [4, Theorem 2.6], which give

1
p
≤ mN ≤ Fp[BN

1 ] ∼
N→+∞

1
p
.

The results in [4,8] left open to the possibility that starting from some dimension N̄ , one had mN = 1
p

for all N ≥ N̄ . The strict monotonicity proved in Theorem 3.3 implies that this is not the case and thus 
Cheeger’s inequality is attained only asymptotically.

Corollary 3.5. Cheeger’s inequality Fp[E] ≥ 1
p , among convex sets E ∈ KN , is saturated only asymptotically 

as N → +∞.
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