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This paper investigates, with a commognitive perspective, the role of dynamic 

interactive mediators (DIMs) in promoting students’ discourse on indeterminate 

quantities. We analyze a case study of two high school students with a history of low 

achievement in mathematics, focusing on whether their discourse, developed in 

activities with DIMs, integrate the (meta)-arithmetical discourse. We show how words, 

narratives and visual mediators produced interacting with DIMs expand and compress 

the arithmetical discourse, shaping, in this way, the meta-arithmetical discourse. 

CONCEPTUAL BACKGROUND 

For more than three decades, research has shown how the teaching and learning of 

school algebra is a challenging issue, often source of difficulties for many students 

(e.g., Sfard & Linchevski, 1994; Kieran, 1992). More recently, a stream of studies 

focused on proposing characterizations of algebraic thinking, on studying the process 

involved in its formation, and on looking for forms of algebraic thinking in activities 

apparently distant from school algebra or that even precede it (e.g., Radford, 2014; 

Caspi & Sfard, 2012; Kaput et al., 2008). Radford (2014) characterizes thinking as 

algebraic when it deals with indeterminate quantities as if they were known. Kieran 

(2022) frames three dimensions – analytic, structural, functional - of early algebraic 

thinking, and defines as analytic the thinking dimension related to the dealing with 

unknows as if they were knowns. In this view, thinking algebraically is not necessarily 

related to the use of algebraic symbolism: unknows and variables can be represented 

with symbols, everyday language, gestures and different signs. 

In this paper, we focus on the development of algebraic thinking, specifically regarding 

the use of indeterminate quantities, of low-achieving high school students. This study 

is part of a funded research project on the learning of high school students with a long 

history of failure, with support of digital environments.  

We adopt the commognitive framework (Sfard, 2008) where doing mathematics is seen 

as to engage in an established discourse, learning mathematics consists in becoming 

able to participate in this discourse and to study students’ mathematical learning means 

to analyze their mathematical discourse. The term discourse applies to a form of 

communication characterized by specific words (e.g. “equation”, “variable”, 

“function”), visual mediators (perceptually accessible objects pre-existing to the 

discourse or artefacts produced for communicative purposes), narratives (descriptions 

of objects, of relations between objects and of activities with them) and routines 

(repetitive patterns characteristic of the given discourse).  
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Multilevel structure of algebraic thinking 

In the framework of Commognition, mathematical objects are neither extra-discursive 

nor pre-existing entities. Rather, they constitute part of the discourse itself, they are 

discursive constructs (Sfard, 2008, p. 129). The process of object construction is called 

objectification. It may be achieved in three ways (saming, encapsulating, reification) 

that develop with the use of a noun which will be employed in depersonalized 

narratives. In these narratives, the human subject disappears, as if the referent of the 

noun exists independently of it. In this way, the discursive construct becomes an object 

of mathematical exploration and then new mathematical narratives can emerge. 

Therefore, mathematical discourse develops by addition of new discursive layers, any 

of which subsumes a previous discourse. In this perspective, elementary algebra can 

be described as “metaarithmetic, or more precisely, as the unification of arithmetic 

with its own metadiscourse” (Sfard, 2008, p. 120), that is the mathematical discourse 

on arithmetical relations and processes (Caspi & Sfard, 2012).  

The development of discourse can be described in terms of alternating expansions and 

compressions (Sfard, 2008, pp. 119-123). The increase in the amount and complexity 

of routines and of new discourses leads to a discursive expansion, while the 

compression reduces the complexity of the discourse through the rise to the metalevel. 

Dynamic interactive mediators 

Following the distinction between static and dynamic mediators (Ng, 2016), some 

studies (Baccaglini-Frank, 2021; Antonini et al., 2020) have formulated the notion of 

dynamic interactive mediators (DIMs), mediators that are dynamic and that respond to 

a person’s manipulations. Examples of DIMs are digital manipulable objects 

constructed within technological environments. In our study, we are interested in 

studying how the arithmetical and meta-arithmetical discourses are shaped by the 

discourses emerging from the interaction with DIMs consisting in digital 

representation of the balance model. The balance model is a common metaphor in 

teaching linear equations, for conceptualizing the equal sign and promoting strategies 

to deal with unknowns. Gains and pitfalls of this model are discussed in the literature 

(for a review, Otten et al., 2019). 

The DIMs we have designed and that we analyze in this paper consist in different 

versions of two-pan balances. A first DIM consists of a two-pan balance with weights 

that are known and are represented as colored shapes with a number inside, while some 

weights are indeterminate and are represented by white shapes (Fig. 2,3). The user can 

insert one value for the white weights in an input field. By the key “Let’s try!”, one can 

interact with the balance which will move depending on whether the total weight on 

the right pan is less than, greater than or equal to the total weight on the left pan (Fig. 

1b), where the white shapes are worth the value inserted in the input field. We call 

DIMTB this DIM, where TB stands for “test-balance”. It models linear dependency 

between quantities, as its position depends on the input.  
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To model an equation, we design a visual mediator of a two-pan balance with, on its 

pans, known weights, colored and with reference to their values, and unknown weights 

(the balance on the left in Fig. 1a, 4a). This is a fixed, not interactive, balance that we 

denote by VMFB, where VM stands for “visual mediator” and FB for “fixed balance”. 

Finally, we call DIM(FB,TB) the DIM embedding the DIMTB and VMFB (Fig. 1a), where 

the DIMTB is a version of the VMFB in which the unknown weights are white (Fig. 1a). 

In DIM(FB,TB), the fixed balance is unmovable since every weight has fixed value, even 

if unknown, while the test-balance can assume different positions according to the 

value given to the white weights. They correspond to two different ways of thinking 

about a relation between two algebraic expressions. For example, one can think about 

3+2x=11 as an equality between two quantities where x is one unknown number 

(VMFB), or as a relation that can be true or false depending on x (DIMTB). 

Research questions 

This study is part of a wider research project investigating the impact of DIM-based 

teaching interventions with second year high school students with a history of low 

achievement in mathematics. Under the hypothesis that the discourse about DIM can 

foster students’ participation in mathematical discourse (Baccaglini-Frank, 2021; 

Antonini et al., 2020), we are interested in investigating the role of the discourse 

emerging from the interaction with DIMs (hereon DIMs-discourse) in promoting 

students’ mathematical discourse. To guide the study, we ask the following questions: 

how do the DIM(FB,TB)- and DIMTB–discourses integrate the arithmetical and meta-

arithmetical discourses of students with a history of low achievement? How can these 

DIMs-discourses shape the production of a discourse on indeterminate quantities?  

METHOD 

Participants were 12 students of 10th grade from three Italian high schools, selected by 

their teacher for their history of severe and persistent difficulties in mathematics and 

on voluntary participation. The sequence consisted in 4 or 5 sessions of two hours each, 

which took place in an out-of-school center. Students worked in pairs under the 

guidance of an expert and were provided with touch-screen tablets for the activities. 

This paper focuses on a pair of students engaged in activities with DIMTB and 

DIM(FB,TB) during the first two sessions. Data consist of audio-video recordings, 

students’ written productions, and screen recordings of the tablets used for the 

activities. In tune with the Commognition, the analysis will focus on the use of words, 

narratives and visual mediators related to dealing with indeterminate quantities.  

A CASE STUDY 

We present three episodes from the case study of Andrea and Hugo, two students 

coming from a professional high school. During a preliminary individual interview, 

both students showed difficulties in dealing with indeterminate quantities. For 

example, in looking for a solution of 13 – a = 13 + 11, Andrea said “I don’t remember 

how to do it” and Hugo wrote “a = 13 + 11 = 24”. His discourse appears purely 

ritualistic, focused on performing (meaningless) procedures. 
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Episode 1 

Andrea and Hugo are asked to find out the weights of the triangle, knowing that the 

balance with the colored shapes (Fig. 1a) is balanced off. Hugo immediately answers:  

  

 Figure 1: (a) DIM(FB,TB), with VMFB  (left) and DIMTB (right); 

(b) DIMTB with number 7 in the input field.   

1 Hugo:  ... 4. Because here on one side is 3 […] here [he points to one of the white 
triangles] you put a weight is worth 4, this one is 4, 4+4, 8, +3, 11 [4+4=8 
and 8+3=11]. If you put 5, the balance tends to dangle that way, […] To 
make it dangle on the right you have to put a number […] smaller than 4 
[…] if you put 3, here is 9 while here is 11.  

2 Int:  If we wanted to describe all this thing, in general terms, this balance, how 
could I say it? […] Let’s make a summary.  

3   Hugo: To keep the balance… balanced off, the number, here a triangle is worth 4, 
to make it dangle to the left you have to find a number greater than 4, while 
to make it dangle to the right you have to find a number smaller than 4. 

The discourse on numbers (e.g., “4, 4+4, 8, +3, 11”, “here is 9”) is intertwined with the 

DIMTB-discourse, especially with the narrations on the interaction (of the subject) with 

DIMTB (“here you put a weight”, “if you put 5”, “you have to put a number”, “if you 

put 3”). Students use the verb “to put” as a signifier of the action of inserting the 

number inside the white triangle (Hugo points to one white triangle but their discourse 

shows that they consider that the same number is put in every white triangle). However, 

the action of putting numbers into the shapes cannot actually happen. DIMTB allows to 

put numbers only in the input field and, in fact, Hugo uses the verb “to put” as a 

metaphor. In [3] we can also observe a depersonalized narrative (“a triangle is worth 

4”) without a subject who “puts” numbers.  

Episode 2 

Observing the DIMTB (Fig. 2), Andrea says that on the right there is “more space 

[where to] put […] the weights”. He then justifies the choice of number 3 to balance 

off the balance summing the numbers in both pans (“I made 5 plus 5, 10, plus 3, 13, 

plus 3, 16 [5+5+3+3=16]) saying “I made also […] the spaces and it comes out 16, 3 

plus 3”. The calculation with specific numbers [“3 plus 3”] is an arithmetical discourse 
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while the sentence used to talk about this calculation (“I made also the spaces”) can be 

used for whatever number (“the weights” in the “spaces”) and therefore is a meta-

arithmetical narrative. In summary, the use of “space” allows the construction of 

discourses about indeterminate quantities that can be considered as known quantities 

(even if Andrea produces a discourse on determinate quantities). 

 

Figure 2:  DIMTB of the episode 2. 

Episode 3 

Andrea and Hugo are asked to identify the weights of the shapes that make the balance 

hang to the right, to the left or balanced off (Fig. 3). They find the couples of numbers 

(6,3) and (9,6) to balance off the balance. Then they summarize: 

 

Figure 3: DIMTB with two indeterminate weights and two input fields (episode 3).  

4  Andrea: … to every weight [of the square] you add 3 [to get triangle’s weight] […] 

5 Hugo:  It’s enough that you take off 9 from the weight of the square with respect 
to the weight of the triangle […] it’s enough that the weight of the square… 

The problem is resumed during the next session: 

6  Hugo: The triangle should be a square plus 3 […] because it is as if… you take off 
[…] three squares you can tell that a triangle is a square plus 3 […] If you 
take off both sides three squares [he makes a sketch, Fig. 4b] here you are 
left with a triangle and you know that the triangle is a square plus 3.  

The narrative in [4] is a meta-arithmetical summary of how the students have 

determined the numbers to balance off the DIMTB. The object of the discourse is the 

human action (“you add 3”) to add 3 to “every weight”. In [5], Hugo still talks of a 

human action (“take off”) but now the infinite actions, one for “every weight”, are 

expressed as a single action on one weight (“the weight of the square”). The numbers 

3 and 6 previously identified (as well as any other numbers) are here replaced by the 

single signifier “the weight”, and then, this objectification can be considered as a 
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process of saming. In [6], the human subject disappears, the “weight of the 

square/triangle” collapses into “the square” and “the triangle”, in the singular form, 

and the new narrative, completely depersonalized, is about their relation (“the triangle 

is a square plus 3”). In summary, the transition from the plural to singular form, the 

saming, and the depersonalization are the indicators of the process of objectification 

developing from infinite actions to one action, and from one action to the relations 

between objects. In table 1, from top to bottom, we can read this process. 

Table 1: The development of the students’ discourse on indeterminate quantities.  

Narrative Signifier 

(Math object) 

Human action 

“To every weight      you 

add 3” [4] 

Every weight 

(Every specific number) 

Infinite actions, one for 

every weight of the square. 

Every action is on a specific 

number 

“It’s enough that you 

take off 9 from the 

weight of the square…” 

[5] 

The weight of the square 

(An indeterminate quantity) 

 

An action on one 

indeterminate quantity 

“it’s enough that the 

weight of the square…” 

[5] 

The weight of the square  

(An indeterminate quantity) 

No human subjects 

 

“The triangle should be a 

square plus three” [6] 

The square, the triangle 

(Two indeterminate 

quantities) 

No human subjects 

 

 

The process described before is also visible in the drawing (Fig. 4b) that the students 

use to endorse their narrative “the triangle is a square plus 3”. This drawing is similar 

to the one made in a previous task (Fig. 4a) with the digital pen on VMFB where the 

weight of the squares and triangles are 2 and 3 respectively and the circle has a (one), 

now unknow, specific weight. In the drawing produced in episode 3 (Fig. 4b), the signs 

are the same, but this time on white weights, where it is possible to “put” any number. 

Therefore, the process of saming described before, which allowed the compression of 

infinite discourses about numbers through the words “triangle” and “square”, expanded 

the discourse too.  

  

Figure 4: Hugo’s drawings in solving tasks with (a) DIM(FB,TB); (b) DIMTB. 
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DISCUSSION AND CONCLUSIONS 

In response to the research questions, the conducted analysis sheds some light on how 

the DIMs-discourse (DIM(FB,TB) and DIMTB) promoted the students’ discourse on 

indeterminate quantities. The two students have generated words, narratives, and visual 

mediators linked to the DIMs and to their interaction with them. The continuous 

interaction with DIMs modifies the students’ discourse. It intertwines with, and then 

expand, the arithmetical discourse, fostering the production of words, narratives and 

visual mediators that compress arithmetical discourses, shaping, in this way, the meta-

arithmetical discourse. Several elements of the DIMs-discourse expanded. The use of 

the verb “to put” extends metaphorically to the assignment of numerical values to the 

“white shapes”. The names of the shapes, firstly used for given or unknown but specific 

weights, extend to a variable value, and finally are used at singular as signifiers of 

objects that can be manipulated and studied (Table 1). The use of an encapsulated 

couple, where the objects were numbers (known or unknown), expands into a discourse 

on indeterminate quantities (Fig. 4a-b). The narrative “the triangle is a square plus 3” 

arises from a discourse compression accompanied by an objectification. This narrative, 

in which different numbers could substitute for “triangle” and “square”, compresses 

(potentially infinite) narratives on numbers, reducing the complexity of the discourse. 

The words “triangle” and “square” allow to make a discourse on indeterminate 

quantities and to deal with them as they were known numbers. In this way the discourse 

moves on a meta-arithmetical (algebraic) level.  

The case analysis shows how Andrea and Hugo, two high school students with school 

experience with algebra and a history of low achievement in mathematics, were able 

to participate to an algebraic discourse. Andrea and Hugo’s discourse can be regarded 

still as informal. However, according to Kieran (2022), Radford (2014) and Caspi & 

Sfard (2012), thinking algebraically is not necessarily related to the use of algebraic 

symbolism and this can be considered a step towards the formal algebraic discourse. 

This is in line with Nachlieli & Tabach (2012, p. 24), who, in a study on functions, 

state that an informal mathematical discourse can be considered as a “solid foundation” 

for the students’ “future discourse”. 

Furthermore, the analysis presented in this paper confirms previous studies involving 

low-achieving students that show, in different mathematical fields, how DIM can foster 

students’ participation in mathematical discourse (e.g., Baccaglini-Frank, 2021). 

Finally, this study has reported an example of development of informal algebraic 

discourse after the introduction of school algebra for low-achievers. Similar results are 

presented by Caspi & Sfard (2012) in a study about the emergence of informal 

algebraic discourses before the teaching of school algebra. These similarities underline 

the importance of investigating the relationship between informal and formal algebraic 

discourses during the long process of learning algebra.  
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