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Abstract: Background/Objectives: Age-related macular degeneration (AMD) is a leading cause
of visual impairment in the elderly and is characterized by a multifactorial etiology. Emerging
evidence points to the potential involvement of the gut–retina axis in AMD pathogenesis, prompting
exploration into novel therapeutic strategies. This study aims to investigate the effects of some
micronutrients (such as lutein and zeaxanthin) and saffron (as a supplement)—known for their
anti-inflammatory properties—on ophthalmological and microbial parameters in neovascular AMD
(nAMD) patients. Methods: Thirty naive nAMD patients were randomized to receive daily mi-
cronutrient supplementation alongside anti-VEGF (vascular endothelial growth factor) therapy, or
anti-VEGF treatment alone, over a 6-month period, with comparisons made to a healthy control (HC)
group (N = 15). Ophthalmological assessments, biochemical measurements, and stool samples were
obtained before and after treatment. Gut microbiota (GM) characterization was performed using
16S rRNA sequencing, while short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs),
and long-chain fatty acids (LCFAs) were analyzed with a gas chromatography–mass spectrometry
protocol. Results: Compared to HC, nAMD patients exhibited reduced GM alpha diversity, altered
taxonomic composition, and decreased total SCFA levels, in addition to elevated levels of proinflam-
matory octanoic and nonanoic acids. Micronutrient supplementation was associated with improved
visual acuity relative to the group treated with anti-VEGF alone, along with a decrease in the total
amount of MCFAs, which are metabolites known to have adverse ocular effects. Conclusions: In
conclusion, despite certain limitations—such as the limited sample size and the low taxonomic
resolution of 16S rRNA sequencing—this study highlights compositional and functional imbalances
in the GM of nAMD patients and demonstrates that micronutrient supplementation may help restore
the gut–retina axis. These findings suggest the therapeutic potential of micronutrients in enhancing
ocular outcomes for nAMD patients, underscoring the complex interaction between GM and ocular
health.

Keywords: nAMD; gut microbiota; gut–retina axis; lutein; zeaxanthin; saffron; short-chain fatty acids

Nutrients 2024, 16, 3971. https://doi.org/10.3390/nu16223971 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16223971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-5151-2618
https://orcid.org/0000-0002-2177-2857
https://orcid.org/0000-0002-8630-8166
https://orcid.org/0000-0002-0057-6531
https://orcid.org/0000-0001-8835-9381
https://orcid.org/0000-0002-5631-8769
https://orcid.org/0000-0002-6862-9409
https://orcid.org/0000-0002-6797-9343
https://orcid.org/0000-0001-7113-7424
https://doi.org/10.3390/nu16223971
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16223971?type=check_update&version=1


Nutrients 2024, 16, 3971 2 of 15

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the
over-65-year-old population of industrialized countries, affecting approximately 170 million
people globally [1–3]. This complex, multifactorial disease involves genetic and environmental
factors [4,5]. AMD presents primarily in two forms, both of which can result in central vision
loss and blindness due to the degeneration of photoreceptor cells [6]. The first, referred to
as dry AMD, is characterized by the accumulation of extracellular deposits (such as lipids,
vitronectin, inflammatory, or amyloid proteins) between Bruch’s membrane and the retinal
pigment epithelium, leading to drusen formation. These drusen—small yellow or white
spots on the retina—may progress to retinal atrophy or, in around 20% of cases, to the
second AMD form: wet or neovascular AMD (nAMD) [7]. nAMD is characterized by the
abnormal growth of blood vessels breaching Bruch’s membrane. This condition is driven by
various mechanisms, including the impact of oxidized low-density lipoproteins (LDL), which
can contribute to deposit buildup within the retinal pigment epithelium (RPE). Oxidized
LDL impairs the RPE’s capacity to degrade photoreceptor outer segments (OS) by slowing
phagosome maturation, leading to inefficient OS breakdown. Consequently, undigested lipids
and proteins accumulate within the RPE, promoting the formation of toxic compounds, such
as A2E, that can damage RPE cells [7].

Current treatments for nAMD focus on inhibiting the abnormal blood vessel growth
associated with choroidal neovascularization (CNV). Early treatments like laser photoco-
agulation aimed to limit CNV progression but often caused some degree of permanent
vision loss due to unintended retinal damage. To date, anti-VEGF (vascular endothelial
growth factor) therapies, which work by binding to and neutralizing VEGF, have become
the standard treatment. These therapies offer significant visual improvement for many
patients and effectively halt disease progression in the majority. [8]

Moreover, recent research has identified immune system alterations, oxidative stress,
and obesity as crucial contributors to AMD pathogenesis [9,10]. To date, numerous studies
have highlighted the potential benefits of dietary supplementation with micronutrients
that possess antioxidant and anti-inflammatory properties for reducing the risk of AMD
development [11–13]. Notably, the AREDS2 study definitively demonstrated the efficacy of
dietary supplementation with lutein and zeaxanthin in reducing the risk of progression of
early-stage AMD [14]. The administration of lutein and zeaxanthin, which absorb blue light
and neutralize free radicals and reactive oxygen species in the macula, has been associated
with increased macular pigment optical density (MPOD), improved visual acuity, and a
reduced risk of retinal ageing [15]. Moreover, other micronutrients, such as vitamins E and
C, can help prevent the progression of maculopathy by offering protection against oxidative
stress and supporting GM homeostasis [16,17], while oral zinc supplementation can reduce
complement-mediated inflammation in the retinal pigment epithelium, a key factor in
AMD etiology [18]. Additionally, saffron (Crocus sativus), containing active components
such as crocin, safranal, crocetin, and picrocrocin, has demonstrated antioxidant and anti-
inflammatory effects, leading to significant improvements in the retinal function of AMD
patients [19–21]. Considering that the retina is an extension of the brain both anatomically
and developmentally, the hypothesis of a gut–retina axis has recently emerged, drawing
parallels with the extensively studied bidirectional communication between the gut and
the brain [22,23]. More in detail, in AMD, the “gut-retina axis” plays a critical role through
several mechanisms linking GM alterations to retinal health. Changes in the GM can
increase intestinal permeability, allowing metabolites and microbial products to enter the
bloodstream and affect retinal immune cells, promoting inflammation within the retina [24].
For example, inflammatory responses to lipopolysaccharides (LPS) have been shown
to accelerate retinal degeneration [25]. Additionally, specific bacterial species—such as
Anaerotruncus, Oscillibacter, and Ruminococcus torques—were elevated in AMD patients and
associated with glutamate degradation and increased arginine biosynthesis pathways. This
is significant, as both altered glutamate levels and increased arginine are linked to retinal
dysfunction and degeneration [26].
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Hence, in this study, the GM composition and function in nAMD patients were
evaluated in comparison to healthy subjects. Additionally, given the dual potential of
micronutrients to exert effects through direct antioxidant mechanisms and GM modulation,
the impact of a novel micronutrient supplementation containing lutein, zeaxanthin, and
saffron (as a supplement) on ophthalmological parameters and microbial features in naïve
nAMD patients was investigated.

2. Materials and Methods
2.1. Patients

A total of N = 30 naïve nAMD patients (19 F:11 M; mean age 77.8 years) and N = 15 healthy
controls (HC) (8 F:7 M; mean age 75.2 years) were enrolled in accordance with the following
exclusion criteria: use of antibiotics or continued use of pre- or probiotics in the 2 months
before enrollment; use of other treatments (medications or nutritional programs) that affect
body weight, food intake, and/or energy expenditure; and diagnosis of any ocular disease.

Additionally, at baseline, participants’ lifestyle factors were assessed through specific
questionnaires covering eating habits, physical activity, bowel health, pharmacological
treatments, and smoking or alcohol consumption.

In this three-arm randomized, controlled trial, with one arm comprising healthy sub-
jects, eligible participants were randomly divided into two groups. Fifteen nAMD patients
were allocated to the intervention group and received, over 6 months, intravitreal injections
of anti-VEGF (Aflibercept 2 mg, 0.05 mL) at a fixed regimen, along with a daily admin-
istration of a micronutrient mix containing lutein (10 mg), zeaxanthin (2 mg), vitamin
C (80 mg), vitamin E (12 mg), zinc (10 mg), and saffron (20 mg) as a supplement. The
other fifteen patients were assigned to the active comparator group, receiving only the
intravitreal anti-VEGF treatment at a fixed regimen for 6 months. For both groups, an
ophthalmological examination with the best correct visual acuity (BCVA), biomicroscopy,
and swept optical coherence tomography (OCT) were performed at enrollment and after
6 months. Additionally, blood samples for interleukin (IL)-6, IL-10, and tumor necrosis
factor-α (TNF-α) quantification, as well as stool samples for gut microbiota (GM) composi-
tional and functional analysis, were collected at baseline for both nAMD groups and after
six months for the intervention group. Stool samples were immediately stored at −80 ◦C
until analysis.

The study research adhered to the principles of the Declaration of Helsinki, and
informed consent was obtained from all enrolled patients. Study procedures were approved
by the Ethics Committee of the Tuscany Region, Careggi University Hospital (n.16281_bio
of 16 February 2021) and were registered at clinicaltrials.gov (identifier: NCT06391411).

2.2. Fecal Microbiota Characterization

Genomic DNA was extracted using the DNeasy PowerSoil Pro Kit (Qiagen, Hilden,
Germany) from frozen (−80 ◦C) stool samples, according to the manufacturer’s instructions.
The quality and quantity of the extracted DNA were assessed using both NanoDrop ND-
1000 (Thermo Fisher Scientific, Waltham, MA, USA) and Qubit Fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA), and then it was frozen at −20 ◦C. Next, total DNA samples
were sent to IGA Technology Services (Udine, Italy), where amplicons of the variable V3–V4
region of the bacterial 16S rRNA gene, obtained through primers 341F and 805R, were
sequenced in paired-end mode (2 × 300 cycles) on the Illumina MiSeq platform, according
to the Illumina 16S Metagenomic Sequencing Library Preparation protocol.

Demultiplexed sequence reads were processed using QIIME2 2022.8 [27].
Demultiplexed sequence reads were processed using QIIME2 (version 2022.8). The

Cutadapt tool was employed to remove sequencing primers and any reads without
primers, while DADA2 [28] was used for filtering, merging paired-end reads, and re-
moving chimeras, with low-quality nucleotides trimmed from both forward and reverse
reads. Additional checks for cross-amplified host DNA were conducted with Bowtie2
v.2.2.5. Hence, ASVs (amplicon sequence variants) were generated, and taxonomic as-

clinicaltrials.gov
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signments were performed through the Scikit-learn multinomial Naive Bayes classifier
re-trained on the SILVA database (release 138) V3–V4 hypervariable region.

Finally, every ASV associated with genera with an average relative abundance below
a 0.005% cutoff were excluded to reduce sequencing contaminants and improve statistical
reliability [29,30]. Further details about the data analysis are available at https://github.
com/LeandroD94/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis, accessed
on 1 March 2024.

2.3. Fecal Short-, Medium-, and Long-Chain Fatty Acids Evaluation by GC-MS Analysis

The qualitative and quantitative evaluation of fecal short (SCFAs)-, medium (MCFAs)-, and
long-chain fatty acids (LCFAs) was performed through our previously described method [31].

Briefly, just before the analysis, stool samples were thawed and mixed with a 0.25 mM
sodium bicarbonate solution (1:1 w/v) in a 1.5 mL centrifuge tube. Then, the resulting sus-
pensions were sonicated for 5 min and centrifuged at 5000× g for 10 min, and then the
supernatants were collected. The SCFAs, MCFAs, and LCFAs were finally extracted as follows:
an aliquot of 100 µL of sample solution (corresponding to 0.1 mg of stool sample) was added
to 50 µL of internal standards mixture, 1 mL of tert-butyl methyl ether, and 50 µL of HCl 6 M
+ 0.5 M NaCl solution in a 1.5 mL centrifuge tube. Subsequently, each tube was shaken in a
vortex apparatus for 2 min and centrifuged at 10,000× g for 5 min, and lastly, the solvent layer
was transferred to an autosampler vial and processed three times.

2.4. Statistical Analysis

Statistical analyses of bacterial communities were performed in R 4.2.2 using the
packages phyloseq 1.40.0, vegan 2.6-2, DESeq2 1.36.0, and other packages satisfying their
dependencies. The packages ggplot2 3.3.6, ggh4x 0.2.2, and ggpubr 0.40 were used to
plot data and results. ASV saturation analysis was conducted on each sample using
the function rarecurve (step 100 reads), with further processing to identify saturated
samples (arbitrarily defined as saturated samples with a final slope in the rarefaction
curve, with an increment in ASV number per reads <1 × 10−5. The observed richness and
Shannon indices were used to estimate the bacterial alpha diversity in each sample using
the function estimate_richness from phyloseq. Pielou’s evenness index was calculated
using the formula E = S/log(R), where S is the Shannon diversity index, and R is the
observed ASV richness in the sample. Differences in alpha diversity indices were analyzed
using the Mann–Whitney test. Principal coordinate analysis (PCoA) was performed using
the Hellinger distance on Hellinger-transformed genera abundances. PERMANOVA and
Betadisper analyses assessed the statistical significance of the beta diversity distances and
dispersions. At different taxonomic ranks, the differential analysis of abundances was
computed with DESeq2 on raw count data, and p-values (adjusted through the Benjamini–
Hochberg method) lower than 0.05 were considered statistically significant. Taxa with a
DESeq2 baseMean value <50 were excluded from the results to reduce noise. Furthermore,
GraphPad Prism (v.8) was used for the statistical analysis of fecal SCFA, MCFA, and LCFA
abundances between nAMD patients and either HC or patients without micronutrient
supplementation using the Mann–Whitney test (p-values < 0.05 considered significant).

Further details about the data analysis are available at https://github.com/LeandroD9
4/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis, accessed on 1 March 2024.

Statistical analyses of microbial metabolites and biochemical parameters were per-
formed in GraphPad Prism, with data reported as mean ± standard deviation (SD) or
percentage and interquartile range, as appropriate. The Mann–Whitney test compared
intervention and control groups, and a general linear model for repeated measures was
applied to evaluate the treatment effects. Statistical significance was defined as p < 0.05.

https://github.com/LeandroD94/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis
https://github.com/LeandroD94/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis
https://github.com/LeandroD94/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis
https://github.com/LeandroD94/Papers/tree/main/2024_ADM_microbiota_gut_retina_axis
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3. Results
3.1. Gut Microbiota Characterization

First, an assessment was conducted to determine whether patients with nAMD ex-
hibited a different intestinal microbiota structure compared to HC. The PCoA plot, com-
puted using the Hellinger distance metric, showed a significant separation (PERMANOVA,
p < 0.0001) among stool samples from HC and nAMD patients (Figure 1).
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Figure 1. Principal coordinate analysis (PCoA) computed using Hellinger distance on transformed
genera abundances of stool samples among HC and nAMD patients.

Notably, statistically significant beta diversities were observed at all taxonomic ranks
(Table S1). Additionally, as displayed in Figure 2, nAMD patients demonstrated a significantly
decreased intestinal microbial alpha diversity (observed ASV richness, p = 1.6 × 10−4 Shannon
index, p = 0.001), compared to HC.
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Figure 2. Box plots showing fecal alpha diversity indices (observed ASV richness, Shannon index,
and Pielou’s evenness) between HC and nAMD patients.

Subsequently, differential abundance analyses were performed at all taxonomic ranks,
identifying several taxa with differential abundances in stool samples from HC and nAMD
patients (Figure 3 and Table S2).
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Figure 3. Boxplot displaying the results of differential abundances analysis between HC and nAMD
patients. The Y-axis, reporting the percent abundance of each taxon, is scaled to improve the
readability of lower abundances. All results have an adjusted. p < 0.05.

In detail, compared to HC, nAMD patients reported reduced fecal abundances of
members belonging to the Bacteroidota phylum; Bacteroidales and Burkholderiales or-
ders; Prevotellaceae and Sutterellaceae families; and Eubacterium_coprostanoligenes_group,
Eubacterium_eligens_group, Eubacterium_siraeum_group, Bacteroides, Faecalibacterium, Lach-
nospira, Lachnospiraceae_NK4A136_group, Methanobrevibacter, an unidentified genus of the
Lachnospiraceae family, Parabacteroides, Phascolarctobacterium, Rikenellaceae_RC9_gut_group,
Sutterella, and UCG-002 genera. Conversely, nAMD patients exhibited increased levels of
bacteria belonging to the Lactobacillales and Peptostreptococcales-Tissierellales orders; Strep-
tococcaceae family; and [Eubacterium]_hallii_group, Escherichia-Shigella, Streptococcus, and
Turicibacter genera.

3.2. Fecal SCFAs, MCFAs, and LCFAs Profiles

Using a GC-MS approach, the abundances of microbial-derived SCFAs (acetic, pro-
pionic, butyric, isobutyric, isovaleric 2-methylbutyric, and valeric acids), MCFAs (hex-
anoic, isohexanoic, heptanoic, octanoic, nonanoic, decanoic, dodecanoic acids), and LCFAs
(tetradecanoic, hexadecanoic, and octadecanoic acids) were assessed in stool samples from
both HC and nAMD patients. To account for potential variations due to the total amount
of each metabolite, the comparisons were conducted on the percentage acids’ composi-
tions (Table S3). As depicted in Figure 4, in addition to a significant reduction in the total
SCFA levels (p = 1 × 10−4), nAMD patients had increased levels of isobutyric (p = 0.025),
2-methylbutyric (p = 0.027), octanoic (p = 0.034), and nonanoic (p = 0.043) acids but reduced
abundances of decanoic acid (p = 0.001), compared to HC.
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Analyses were assessed using the Mann–Whitney test, and p-values less than 0.05 were considered
statistically significant. The asterisks (*) represent p-values; * p < 0.05, *** p < 0.001.

3.3. Micronutrient Supplementation

Given the documented GM compositional and functional dysbiosis in nAMD patients,
potentially reflecting an altered gut–retina axis, the impact of a six-month administration
of a micronutrient mix containing lutein, zeaxanthin, and saffron (as a supplement) on
microbial features, as well as biochemical, inflammatory, and ophthalmological parameters,
was investigated. Baseline characteristics of the enrolled nAMD patients, randomized into
either the intervention or control group, are detailed in Table S4. No significant differences
were observed between the two study groups at baseline.

3.4. Impact of the Intervention on Biochemical Parameters

Although information for nAMD patients in the control group was not available,
micronutrient administration did not lead to significant changes in the biochemical param-
eters, including the evaluated cytokines (Table S5).

3.5. Intervention Effects on Ophthalmological Parameters

Concerning ophthalmological parameters, the effects on BCVA, expressed as the
median (IQR) of the log of the minimum angle of resolution (logMAR), were evaluated.
Notably, micronutrient supplementation led to a significant improvement in visual acuity
(BCVA pre: 0.52 (0.39–0.60), BCVA post: 0.30 (0.15–0.69); p = 0.012) (Figure 5A). In contrast,
no significant changes were observed in the control group (BCVA pre: 0.60 (0.15–0.69),
BCVA post: 0.69 (0.15–1.00); p = 0.882) (Figure 5B).
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Figure 6. OCT of nAMD patients assigned to intervention (A) and control (B) groups. Analyses
were assessed using the Mann–Whitney test, and p-values less than 0.05 were considered statistically
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3.6. Intervention Effects on Fecal Microbiota

As shown in Figure S1A, no significant differences were observed in the various alpha diver-
sity indices following micronutrient supplementation, and no distinct separation was observed
between pre- and post-intervention samples (PERMANOVA, p = 0.7505) (Figure S1B). However,
in terms of GM function, micronutrient supplementation led to a significant reduction in the total
amount of MCFAs (p = 0.008), as well as in levels of isohexanoic (p = 0.005), hexanoic (p = 0.037),
phenylacetic (p = 0.040), and phenylpropionic (p = 0.018) acids (Figure 7 and Table S6).
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4. Discussion

Vision loss represents a significant global disability, with AMD identified as the
leading cause of irreversible blindness in industrialized countries [32]. Environmental
factors, including diet and lifestyle, have been recognized as major contributors to the
pathobiology of AMD, exhibiting a strong association between the risk and progression of
AMD and factors such as high-fat diet, increased body mass index, and elevated waist/hip
ratio [9,33]. Moreover, various studies have documented the disruption of the blood–
retinal barrier during the development or progression of chronic retinal diseases, including
diabetic retinopathy, retinitis pigmentosa, and AMD [22]. Consequently, the impairment of
the intestinal barrier resulting from GM dysbiosis, along with an increased inflammatory
response associated with eye diseases, can lead to the excessive translocation of gut-derived
microbes and metabolites (particularly SCFAs) into the bloodstream, which may then reach
the intraocular environment [34,35].

In this scenario, the existence of bidirectional communication between the gut and the
retina has recently come under the spotlight.

Therefore, despite certain limitations—including the limited number of enrolled pa-
tients and the low taxonomic resolution of 16S rRNA sequencing— this study aimed to
enhance the understanding of the microbiota–gut–retina axis by characterizing the GM
composition and function in naïve nAMD patients and investigating the impact of new
micronutrient supplementation on the compositional and functional features of the GM.

Consistent with the findings of Zhang and colleagues, the β-diversity analysis demon-
strated distinct differences in gut bacterial compositions between the two groups, accompa-
nied by significantly reduced intestinal alpha diversity in patients with nAMD [36].

Moreover, several bacterial taxa exhibited differential abundance between the two
groups. Specifically, nAMD patients showed significantly reduced proportions of Bac-
teroidota, Bacteroidales, and Prevotellaceae members. Notably, while Bacteroidota is
recognized as one of the top five abundant phyla in the gut, Zhang et al. reported increased
levels in AMD patients, which contrasts with the current results [36]. Additionally, bacteria
belonging to the Bacteroidales class, known for their protective role against AMD, were
enriched in low-glycemic diet-fed mice [37].
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At the genus level, decreased abundances of Eubacterium_coprostanoligenes_group,
Eubacterium_eligens_group, Eubacterium_siraeum_group, Bacteroides, Faecalibacterium,
Methanobrevibacter, Rikenellaceae_RC9_gut_group, and Sutterella were documented in
nAMD patients, compared to HC.

In healthy people, Eubacterium coprostanoligenes has been linked to the regulation of
cholesterol metabolism, contributing to reduced serum cholesterol levels [38]. Meanwhile,
Eubacterium eligens and Eubacterium siraeum have been associated with lower insulin secre-
tion [39] and increased HDL-cholesterol production [40], respectively, further supporting
the hypothesized relationship between AMD and obesity.

In line with these findings, other studies have reported reduced abundances of Bac-
teroides spp., Faecalibacterium spp., and Rikenellaceae members in AMD patients, compared
to healthy subjects [24,41]. In addition, nAMD patients exhibited a reduced abundance of
SCFA-producing genera, such as Lachnospira, Lachnospiraceae NK4A136 group, Parabacteroides,
and Phascolarctobacterium, all recognized for their beneficial effects on the host [42–44].

Increased abundances of Lactobacillales, Peptostreptococcales-Tissierellales, Strep-
tococcaceae, Eubacterium_hallii_group spp., Escherichia-Shigella spp., Turicibacter spp., and
Streptococcus spp. were observed in nAMD patients, compared to HC. Supporting these
findings, previous studies have reported the enrichment of Lactobacillus and Escherichia-
Shigella genera in AMD patients [33,38], while increased abundances of Streptococcus spp.
and Eubacterium hallii have been associated with various eye diseases and obesity [45,46].

In addition to compositional dysbiosis, a functional intestinal alteration was doc-
umented in nAMD patients, compared to HC, characterized by a significant reduction
in SCFA production and an increase in pro-inflammatory octanoic and nonanoic acids.
SCFAs contribute to host health through several mechanisms, including the maintenance of
intestinal barrier integrity, mucus production, and histone deacetylase (HDAC) inhibition
and modulation of inflammation [47]. Recent findings have also demonstrated their role in
reducing both extra- and intra-ocular inflammation [35,48].

Considering these documented compositional and functional gut imbalances, a novel
micronutrient administration based on lutein, zeaxanthin, and saffron (as a supplement)
was administered to the enrolled nAMD patients to evaluate its potential impact on their
ophthalmological and microbial features.

Lutein and zeaxanthin are the only dietary carotenoids that accumulate in the retina,
specifically in the macula.

Their known protective effects are primarily associated with defending against oxida-
tive stress and scavenging free radicals, acting as potent biological antioxidants.

They also serve as efficient blue-light filters, quenching reactive oxygen species (ROS)
formed during photoexcitation [49]. Additionally, zeaxanthin may play a role in the
inflammatory response, contributing to the treatment or prevention of diseases like allergies.
Furthermore, it exhibits anticancer, anti-osteoporotic, and ophthalmologic effects. These
properties are mediated through various cellular and molecular mechanisms, including the
activation or inhibition of cell receptors, modulation of signaling pathways, and effects on
gene expression [50].

Of note, supportive therapies based on lutein and zeaxanthin supplementation have
demonstrated beneficial effects in delaying the progression of eye diseases, including
nAMD [51]. Furthermore, other studies have shown promising effects of saffron in slowing
AMD progression, attributed not only to its important antioxidant and anti-inflammatory
properties but also to its capacity to modulate metalloproteinase expression and reduce
extracellular matrix disorganization [52].

Consistently, the six-month micronutrient administration resulted in improved visual
acuity, compared to the control group. In line with these findings, a 2-year randomized,
double-blinded, placebo-controlled trial conducted by Huang and colleagues demon-
strated that long-term lutein supplementation increased MPOD and visual sensitivities
in early AMD patients [53]. Furthermore, recent meta-analyses have highlighted that
lutein/zeaxanthin supplementation for longer than 1 year led to significantly greater
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improvements in visual acuity, compared to the placebo, showing a dose-response rela-
tionship. [51,54]. Interestingly, the micronutrient supplementation in this study resulted
in beneficial optical improvements within a shorter intervention duration than currently
published studies, likely due to the additional effects of saffron.

Saffron is known for its potent antioxidant and anti-inflammatory properties, primarily
due to its rich content of carotenoids, such as crocin and crocetin, as well as safranal. These
compounds help neutralize free radicals, reducing oxidative stress and protecting cells
from damage that can contribute to aging, cancer, and other diseases. Additionally, crocin
and safranal are thought to inhibit key inflammatory pathways, including the activity of
enzymes like cyclooxygenase (COX), which play a central role in inflammation [55].

Accordingly, a 3-month randomized, double-blind, placebo-controlled trial by Riazi
and colleagues documented that, although no changes in macular thickness were found,
significant increases in visual acuity and contrast sensitivity were observed in the saffron-
treated group, compared to the control group [56].

Regarding the GM, despite no significant taxonomic differences, it was noted that
micronutrient supplementation did not result in changes in SCFA abundances. To date, no
studies have explored the impact of carotenoid-based micronutrient supplementations on
GM composition in AMD patients. Only a recent study conducted by Dai and colleagues
tested the effects of β-carotene, lutein, lycopene, and astaxanthin on intestinal microflora
using an in vitro fermentation model, documenting a significant enhancement in total
SCFA production alongside increases in Roseburia spp. and Parasutterella spp., as well as a
decrease in Collinsella spp. [57].

Interestingly, this study found that micronutrient supplementation led to a signifi-
cant beneficial reduction in the total amount of MCFAs, including isohexanoic, hexanoic,
phenylacetic, and phenylpropionic acids. Although various anaerobic bacteria possess
essential enzymes for their de novo synthesis, MCFAs are generally derived from the
diet, particularly from milk and dairy products, and act as important regulators of energy
metabolism, membrane trafficking, and gene expression [58,59]. MCFAs are also potential
ligands for free fatty acid receptor 1 (FFAR1), also known as G-protein-coupled receptor
40 (GPR40), a receptor associated with proinflammatory functions, documented in both
in vitro and in vivo studies [60].

Of note, FFAR1 is expressed in the retina, and Heckel and colleagues demonstrated
that high levels of MCFAs detected by FFAR1 in photoreceptors could suppress the activity
of transcription factor EB activity, a master regulator of autophagy and lipid metabolism,
leading to the increased production of VEGFA, which drives compensatory yet pathological
angiogenesis [61].

5. Conclusions

In conclusion, this study demonstrates the beneficial effects of micronutrient sup-
plementation in nAMD patients, such as enhanced visual acuity and reductions in the
abundance of pro-inflammatory medium-chain fatty acids (MCFAs). Although further
studies are warranted to more thoroughly define the relationship between the gut mi-
crobiota and retinal health, these findings emphasize the complex interplay between the
gut microbiome and ocular health, providing valuable insights into potential innovative
interventions for AMD management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16223971/s1. Figure S1. Box plots reporting alpha diversity
indices (observed ASV richness, Shannon index, and Pielou’s evenness) pre- and post-prebiotic
administration (A). Principal coordinates analysis (PCoA) conducted with the Hellinger distance
on pre- and post-prebiotic samples (B). Lines link paired samples, and statistical differences were
assessed using the Wilcoxon signed-rank test. Table S1. PERMANOVA tests at all taxonomic ranks
between stool samples of HC and nAMD patients. Table S2. Significant differentially abundant taxa
in stool samples of nAMD patients, compared to HC. The table reports the Log2FoldChange and
adjusted p-values less than 0.05. Table S3. Fecal SCFA, MCFA, and LCFA abundances of HC and
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nAMD patients. Comparisons were assessed with the Mann–Whitney test, and p-values less than
0.05 were considered statistically significant. Table S4. Baseline characteristics of the enrolled nAMD
patients according to the randomization. Table S5. Effects of the micronutrient supplementation on
biochemical parameters. Table S6. Fecal SCFA, MCFA, and LCFA abundances of nAMD patients pre-
and post-prebiotic administration. Comparisons were assessed with the paired Wilcoxon test, and
p-values less than 0.05 were considered statistically significant.
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