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A B S T R A C T

Modeling inundation patterns resulting from compound flooding induced by tropical cyclones presents signifi-
cant challenges due to the complex interplay of drivers and features affecting inundation mechanisms. This study
introduces a machine learning framework designed to optimize the prediction of inundation depth by balancing
model performance, computational costs and efforts for input data retrieval. Starting from a comprehensive,
physics-informed identification of the potential explanatory variables, including features that capture local flood
dynamics, as well as topological and geographical characteristics, the proposed methodology leverages a feature
selection process based on permutation importance, which emphasizes the reduction in the number of inputs to
streamline the modeling process without compromising accuracy. The framework has been tested using Hurri-
cane Harvey as a case study. The analysis revealed performance in inundation depth prediction comparable to
that of traditional hydrodynamic models available in the literature. Results demonstrated that focusing on the
most informative features improves both model performance and efficiency, thus highlighting the need for
careful feature selection for region-specific implementation of data-driven approaches for inundation depth
prediction.

1. Introduction

Compound flooding induced by tropical cyclones is increasing
worldwide against the backdrop of a changing climate, making low-
lying coastal areas particularly vulnerable to these extreme events
(Wahl et al., 2015; Zscheischler et al., 2018; Moftakhari et al., 2019).
Projections of future sea level rise and changes in tropical cyclone
climatology further exacerbate these risks (Zscheischler et al., 2018;
Bevacqua et al., 2019; Marsooli et al., 2019; Camargo and Wing, 2021;
IPCC, 2023), highlighting the urgent need for enhanced knowledge and
advanced modeling tools for effective prediction and management.

Compound flooding arises when heavy rainfall, high river flow and
extreme storm surge combine or occur in rapid succession (Ghanbari
et al., 2021; Gori and Lin, 2022; Xu et al., 2023). Due to their nature,
these hydrological and meteorological drivers may result in a synergistic
effect, which exacerbate flooding risk and result in more severe conse-
quences compared to those caused by isolated occurrences of the indi-
vidual components (Bilskie and Hagen, 2018; Zscheischler et al., 2018;
Huang et al., 2021; Gao et al., 2023; Lee et al., 2023; Tanim et al., 2024).

Traditionally, numerical models have been instrumental in fore-
casting flood events and assessing associated risks. Nonetheless, the
compound effects of storm surge and riverine flows have mostly been
analyzed by simulating these processes independently, failing to fully
capture the complex dynamics of compound flooding events (Resio and
Westerink, 2008; Santiago-Collazo et al., 2019; Wing et al. 2019; Gori
et al., 2020; Moftakhari et al., 2019; Abbaszadeh et al., 2022; Zhong
et al., 2024). For instance, even though detailed storm surge, hydrologic,
and hydraulic models have been extensively developed and utilized, an
oversimplified integration of model components describing the physical
processes in coastal and inland areas may result in under- or over-
estimation of both the extent and magnitude of inundation (Resio and
Westerink, 2008; Wahl et al., 2015; Bilskie and Hagen, 2018; Santiago-
Collazo et al., 2019; Abbaszadeh et al., 2022).

Hence, recognizing the interdependence of the processes involved, it
is key to construct comprehensive compound flood models that seam-
lessly integrate coastal and inland inundation mechanisms (Huang et al.,
2021; Abbaszadeh et al., 2022). In recent years, research efforts have
increasingly centered around the integration of coastal and
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hydrological-hydrodynamic models to address the complexity of com-
pound floods (Saksena et al., 2020; Tanim and Goharian, 2021; Xu et al.,
2023). Current approaches for integrating two or more numerical
models can be categorized based on the technique used to transfer or
exchange information between each component simulating the indi-
vidual physical process involved: (i) one-way coupling, where the
output from one model serves as the input for another; (ii) loose
coupling, which consists in models running independently and concur-
rently, while information is reciprocally exchanged in an iterative
manner; (iii) tightly coupling, which involves an exchange of informa-
tion between different models within the same computational frame-
work and (iv) full coupling, where the governing equations of all the
relevant physical processes are solved simultaneously within an inte-
grated modeling framework. Despite the practical advantages of loose
coupling, an accurate prediction of compound flooding would require
the adoption of more comprehensive fully coupled modeling schemes
that integrate coastal and fluvial drivers (Santiago-Collazo et al., 2019;
Loveland et al., 2021; Xu et al., 2023). However, as the complexity of
models increases, there is a notable rise in the computational resources
required, especially when considering larger spatial and temporal scales,
as well as finer resolutions. Consequently, it becomes essential to find a
balance between accuracy, computational burden, and efficiency for
flood inundation modeling, especially when used at large-spatial scales
or for early-warning purposes.

In this context, the utilization of machine learning (ML) offers a
promising approach for advancing understanding on the complex
interplay of factors contributing to compound flooding, thereby
providing insights into the key drivers and interactions governing these
phenomena. Additionally, unlike conventional modeling approaches,
which rely on mathematical approximations of the studied phenomena,
ML algorithms autonomously discern patterns and relationships within
data. They can identify nonlinearities and emergent behaviors inherent
in compound flooding processes, potentially offering an alternative
modeling approach for such inundation events. However, it is important
to recognize that ML approaches demand significant amounts of high-
quality data for effective model development. This requirement ex-
tends beyond mere data volume to include the comprehensiveness of the
considered predictive features. For instance, besides information on the
desired response variable (e.g., observed inundation depth in historical
or synthetic events), careful data selection and retrieval on the possible
features influencing the inundation mechanisms are necessary for an

accurate representation of compound flooding phenomena (e.g., hazard
information, such as storm surge and river stages, morphological and
land-use features of the built and natural environment in the examined
area).

While ML approaches have recently garnered increasing attention for
modeling riverine inundation (Dikshit et al., 2021; Bentivoglio et al.,
2022; Karim et al., 2023), their application to the more complex sce-
narios of compound flooding, especially from tropical cyclones, remains
limited (Zahura and Goodall, 2022; Moradian et al., 2024).

In this context, the present paper proposes a comprehensive ML
framework designed to analyze compound flooding and assess the
dominant drivers controlling inundation depth in such events, by
leveraging a feature selection process based on permutation importance.
By pinpointing the key features for an efficient and effective data-driven
modeling, this framework aims to enhance understanding of complex
compound flooding events. The study utilizes Hurricane Harvey as a
well-documented and representative case study of compound flooding in
coastal regions (Blake and Zelinsky, 2018), capitalizing on the abun-
dance of observed data available for this particular event. However, the
framework is flexible and can be tailored for application in various
geographical contexts susceptible to tropical cyclones, allowing for
adaptability and replications across different regions.

The paper is structured according to the logical framework outlined
above and illustrated in Fig. 1, which serves as a summarizing tool of the
implemented procedure. Section 2 introduces the theoretical foundation
for a data-driven approach aimed at inundation depth estimation for
compound flooding induced by tropical cyclones. It begins with a
physics-informed identification of point-based and areal features that
serve as descriptors of the drivers influencing compound flooding
mechanisms (Section 2.1). The section then demonstrates how these
data can be used in a ML approach to develop predictive models and to
gain insights into the contribution of the different drivers to the physics
of the problem. The methodology is first presented in general terms
(Section 2.2) and then applied to the specific case of Hurricane Harvey
as an illustrative example (Section 3). Section 4 presents and discusses
the results of the approach for the considered case, with a focus on the
contribution of different features to the model’s response. This leads to
the derivation of conclusions in Section 5, emphasizing lessons learned
from the study from a modeling perspective.

Fig. 1. Overview of the methodological framework.
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2. Data and methods

2.1. Framework for a data-driven approach for inundation depth
assessment in compound flooding events

To develop a data-driven approach for assessing inundation depth
induced by tropical cyclones, the initial step involves the identification
of the relevant drivers for the problem at hand. A physics-informed
approach can be adopted for this purpose, entailing in the identifica-
tion of all possible drivers contributing to the inundation pattern in a
coastal area affected by a tropical cyclone. The primary information,
given the nature of compound events (Resio and Westerink, 2008;
Moftakhari et al., 2019; Mitu et al., 2023), is represented by surge height
measured along the coast and by water level at inland watercourses,
which effectively serve as boundary conditions for the problem and
inherently capture information on cyclone and hydrological variables,
thus eliminating the need for additional data collection on hazard in-
tensity. In the process of developing a predictive model, such informa-
tion can derive from real-time storm surge and river stage forecasts in
relevant stations, which can be respectively obtained using storm surge
and rainfall-runoff models that are largely available in the literature (e.
g., Dietrich et al., 2011; Beven, 2012; Lin et al., 2012; Kohno et al., 2018;
Peel and McMahon, 2020). In addition to water levels along the coast
and in watercourses, several other factors potentially contribute to flood
propagation and, subsequently, to inundation severity in inland areas. A
critical feature is the proximity to the boundary conditions (Brody et al.,
2018; Darabi et al., 2019), such as the distance of a specific location of
interest from the coast and from the hydrographic network (including
rivers, streams or channels), with areas closer to them being more prone
to flooding from rising water. As the straight-line distance between the
point of interest (POI, hereinafter) for the prediction and the coastline or
rivers increases, there is a higher likelihood of shallower water depths.
Similarly, as well established in the literature, the distance from the
cyclone track can also affect inundation severity (Resio and Westerink,
2008; Jia and Taflanidis, 2013; Contento et al., 2020; Jung et al., 2023;

Jung et al., 2024).
In terms of local geographical features, another significant set of

factors is associated with adjacent land-use/land-cover features to the
POI (Brody et al., 2018; Darabi et al., 2019; Machineni et al., 2019;
Mobley et al., 2019; Lin et al., 2023). The overall built environment
pattern surrounding a location can be critical in determining its expo-
sure to flooding, as it influences the response of the hydrological system.
Large impervious areas (e.g., covered by pavement, roads, rooftops, etc.)
reduce surface roughness and infiltration of rainfall into the soil, leading
to increased runoff rates and volumes into nearby water bodies.
Conversely, pervious surfaces (e.g., riparian areas, green spaces, forest
lands, grasslands, etc.) can effectively infiltrate, attenuate, and slowly
release water. Green infrastructure (e.g., swales, open spaces, retention
ponds and natural wetlands) can also play a determinant role in flood
attenuation by storing and holding storm water, thereby mitigating
inundation propagation. Moreover, at a smaller spatial scale, the
configuration of the urban layout and various local man-made structures
can significantly affect inundation propagation mechanisms within a
specific area (Testa et al., 2007; Di Baldassarre et al., 2009; Gschnitzer
et al., 2017; Bruwier et al., 2020; Mignot and Dewals, 2022; , Bernardini
et al., 2021; Di Bacco et al., 2023; Zhu et al., 2023). For instance, levees
and embankments, such as those associated with railways or roads, can
have a dual effect on flood propagation. While they can act as barriers,
preventing inundation from spreading into neighboring areas, they may
also redirect floodwaters, thereby potentially increasing the risk of
flooding downstream. Their presence can disrupt natural drainage pat-
terns, exacerbating flooding in certain areas. Similarly, bridges may
alter flooding mechanisms, restricting downstream water flow and
causing water backflow, which may worsen inundation conditions in
upstream regions. Additionally, debris accumulation at bridge structures
can further impede flow and increase the risk of localized flooding.

Based on this phenomenological analysis, consideration of several
features representing potential flooding drivers, including hazard
boundary conditions, as well as topological and local geographical
characteristics, is necessary for accurately predicting inundation depth

Fig. 2. Schematization of buffer geometries (in the coastal (C), river (R) and track (T) directions) for calculating proxy features for distributed local geograph-
ical features.
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within a data-driven approach. While topological and hazard-related
features can be straightforwardly assigned to each POI, a more sophis-
ticated approach is required to quantify the influence of spatially
distributed geographical features. To this aim, the methodology intro-
duced in Di Bacco et al. (2023) and Scorzini et al. (2024) for tsunamis
offers a promising approach, enabling the conversion of distributed
areal information into global metrics that incorporate various features
influencing inundation at a specific location. The approach employs
buffer-related proxies, calculating quantitative indicators to assess the
impact of individual features between the POI and the source of hazard,
here including the coast (C), the main river network (R), and the cyclone
track (T), within predefined buffer areas. The variable related to the i-th
proxy with respect to the source of hazard j, with j= {C, R, T}, is defined
as:

Prij =
Ii
Abj

(1)

where Ii represents either the extent of specific linear or areal features,
such as the length of roads or levees, or the area occupied by particular
land-uses or building footprints. For point elements, such as bridges, Ii
denotes the total number of elements. The denominator, Ab, refers to the
buffer area that extends from the POI to the point of minimum distance
to the hazard sources. Consequently, Prij can be interpreted as the den-
sity of the specific feature within each buffer area, allowing for a tar-
geted, physics-informed transfer of two-dimensional information to the
POI.

Di Bacco et al. (2023) proposed a buffer geometry represented by
irregular hexagons, constructed along the line linking the POI and the
nearest point on the coastline. Similarly, for compound flooding, the
proposed framework employs analogous buffer polygons connecting the
POI with the coastline, the closest element of the main river network,
and the cyclone track to account for the influence of the three potential
drivers. Fig. 2 illustrates the geometries that can be automatically
generated for each individual point in the domain of interest using the
source code provided as supplementary material to this manuscript. The

width of the buffer geometry is defined as a piecewise linear function of
the rectilinear abscissa d which ranges from 0 (at the POI) to D, where D
is the distance between the POI and the hazard source. At d = 0, the
width is the minimum between 100m and 0.25⋅D; it increases to 0.5⋅D at
d = 0.25⋅D and attains a maximum value of 0.6⋅D at the hazard source.

2.2. Machine learning modeling approach for the assessment of the
feature importance

The proposed framework employs a supervised ML model which
requires, beyond the aforementioned input features, the knowledge of
the response values for a significant number of POIs for effective model
training and validation.

Depending on the desired response at POIs, which may be repre-
sented by an inundation depth value or a hazard severity class (where
inundation depth is ranked into categories according to its damage po-
tential (Scorzini and Leopardi, 2017; Luke et al., 2018; FEMA, 2023),
either regression or classification algorithms (Bentivoglio et al., 2022;
Karim et al., 2023) can be employed for the assessment of compound
flood hazard.

It is worth noting that inundation depth values can be highly sensi-
tive to local irregularities in terrain elevation, such as local depressions,
excavations and fills, while absolute water elevation tends to exhibit a
smoother spatial distribution (Sebastian et al., 2021). Consequently, this
study selects water elevation as the response variable for ML regression
models. The inundation depth value is subsequently obtained by sub-
tracting the ground elevation at the POIs, which is not included in the
model training process. The resulting hazard severity class is derived
from the computed inundation depth, rather than as the response of a
ML classification model.

The relevance of the different features for predicting inundation
depth is assessed through a backward stepwise model selection process,
where the least informative features are progressively discarded. The
process starts with a model trained with the entire set of features, which
are then ranked using a Permutation Feature Importance (PFI)

Fig. 3. Overview of the impacted region in Texas and Louisiana (USA) for Hurricane Harvey, with visualization of FEMA inundation depth data considered in
the analysis.
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approach. Within the PFI, the rank of each feature is determined by the
reduction in prediction accuracy that occurs when the values of the
considered feature are shuffled (averaged over multiple repetitions of
the shuffling), using a selected error metric as a measure for accuracy
(such as the coefficient of determination or the hit rate (HR), respec-
tively, for regression or classification problems).

At each step, the feature with the lowest PFI is removed and the
resulting model retrained for the next iteration. Features that provide
overlapping information tend to share their importance for the model,
which can lead to different PFI rankings as the number of features de-
creases. Generally, the selection process ends when a significant
reduction in accuracy is observed or when a prescribed number of fea-
tures is reached.

3. Case study: Hurricane Harvey

3.1. Overview of the event

In August 2017, the Houston metropolitan area was struck by Hur-
ricane Harvey. This region experienced an unprecedented amount of
rainfall, with accumulations ranging from 900 to 1200 mm over a 5-day
period (Van Oldenborgh et al., 2017; Blake and Zelinsky, 2018; Wang
et al., 2018). This extreme rainfall, combined with a storm surge ranging
from 0.8 to 1.3 m, resulted in catastrophic flooding across numerous
areas in Harris and Galveston counties, as well as the broader Houston
metropolitan area. Hurricane Harvey stands as a well-documented case
study in the literature, owing to the wealth of available meteorological,
hydrological, and observed impact data from various sources (including
the USGS and FEMA), which makes it suitable to be leveraged in a ML

Fig. 4. Pairwise relationships between main hazard, topological and local geographical features across the developed dataset for Hurricane Harvey.
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approach, complementing the numerous studies in the literature that
have primarily examined the event with physically-based hydrologic
and hydrodynamic models (Bilskie and Hagen, 2018; Wing et al., 2019;
Berens et al., 2021; Valle-Levinson et al., 2020; Chen et al., 2021; Dullo
et al., 2021; Huang et al., 2021; Loveland et al., 2021; Sebastian et al.,
2021; Li et al., 2022; Maymandi et al., 2022; Schubert et al., 2022;
Gutenson et al., 2023; Lee et al., 2023).

3.2. Description of the used dataset

This study leverages inundation depth data sourced from the FEMA
Damage Assessment dataset (FEMA, 2023) and designates inundation
depth (InundationDepth) as response variable. This dataset encompasses

information for more than 150,000 locations across the impacted region,
covering the metropolitan areas of Houston, Galveston, and Corpus
Christi Bay, as well as Sabine and Calcasieu Lakes (Fig. 3). The inun-
dation depth is also categorized by FEMA into four levels, based on their
potential damage severity, as follows: (1) ‘Affected’ (0 m < Inunda-
tionDepth ≤ 0.60 m), (2) ‘Minor’ (0.60 m < InundationDepth ≤ 1.51 m),
(3) ‘Major’ (1.51 m < InundationDepth ≤ 2.43 m) and (4) ‘Destroyed’
(InundationDepth > 2.43 m). To optimize both computational efforts
(mainly in calculating buffer-related features) and the accuracy and
informativeness of results, 5000 data points are randomly sampled from
the original FEMA Damage Assessment dataset to form the basis for the
present study (Fig. 3). From these watermarks, two subsets are derived
based on their distance from the coastline, with the median distance

Table 1
List of considered input features for model development on the Hurricane Harvey case study.

Feature Feature type Synthetic description Data source

Hydrometry Hazard Inverse squared distance weighted (ISDW) average of maximum
stream gage water levels within a 50 km radius from the point of
interest (POI) during the week of hurricane’s landfall [m]

Water levels from active stream gages available from the U.S.G.S.
National Water Information System (https://waterdata.usgs.
gov/nwis). Filtered data for Harvey are also available on
HydroShare (USGS & Arctur, 2018)HydrometryCount Number of stream gage stations within a 50 km radius from the

POI [-]
HydrometryMinDist Distance to the nearest stream gage station from the POI [m]
SurgeHeight ISDW average of maximum surge heights at NOAA stations

during the week of hurricane’s landfall, where weights are
determined by the squared distances between NOAA stations
and the points of minimum distance between the coastline and
the POI [m]

Water levels obtained from the Center for Operational
Oceanographic Products and Services (CO-OPS)
https://tidesandcurrents.noaa.gov/products.html

Distancej Topological Minimum distance between the POI and the j sources of hazards
[m]

Coastline derived from the U.S. Cartographic Boundary Files of the
U.S. Census Bureau

Track line derived from the International Best Track Archive for
Climate Stewardship (IBTrACS) dataset, made available by the
World Data Center (WDC)
https://www.ncei.noaa.gov/products/international-best-trac
k-archive

Nearest element of the main river network derived from the U.S.
Geological Survey National Hydrography Dataset (NHDFlowline)
https://www.usgs.gov/national-hydrography/national-hy
drography-dataset
(NHDFlowline has an attribute field name VisibilityFilter which
allows for filtering vector data features at eight approximate scales.
To identify the main river network for calculating DistanceR, only
the elements with Visibility > 500,000 were filtered)

Bath100Dist Minimum distance between the 100 m bathymetric contour and
the POI [m]

100 m bathymetric contour derived from the National Centers for
Environmental Information (NCEI), Coastal Relief Model (CRM)
https://www.ncei.noaa.gov/products/coastal-relief-model

Buildingsj Local geographical
(buffer-based)

Building density in buffer j (i.e., fraction of the buffer area in the
j-direction occupied by buildings [m2/m2])

Building footprints in Foks et al. (2020)

Roadsj Road density in buffer j (i.e., ratio of the total road length to the
buffer area in the j-direction [m/m2])

U.S. Census Bureau, Geography Division, TIGER/Line®Shapefiles
“Roads” (available in https://catalog.data.gov/dataset)

Railwaysj Railway density in buffer j (i.e., ratio of the total railway length
to the buffer area in the j-direction [m/m2])

U.S. Census Bureau TIGER/Line®Shapefiles “Rails” (available in
https://catalog.data.gov/dataset)

Leveesj Levee density in buffer j (i.e., ratio of the total levee length to
the buffer area in the j-direction [m/m2])

U.S. National Levee Database
https://levees.sec.usace.army.mil/

Bridgesj Bridges density in buffer j (i.e., ratio of the number of bridges to
the buffer area in the j-direction [bridges/m2])

U.S. Department of Transportation, U.S. National Bridge Inventory
https://geodata.bts.gov/datasets/national-bridge-inventory/

LU. “type”j Fraction of the buffer area in the j-direction occupied by a
specific land-use type [m2/m2]
(here, “type”=Forest, Desert, Pol&HMon, RockVeg, AgrVeg,
SNVeg, OpenWater, OthHumUse)

U.S. Geological Survey Gap Analysis Program, GAP/LANDFIRE
National Terrestrial Ecosystems 2011. https://doi.org/10.5066
/F7ZS2TM0

Hydrographyj Stream network density in buffer j (i.e., ratio of the total length
of stream network to the buffer area in the j-direction [m/m2])

U.S. Geological Survey National Hydrography Dataset
(NHDFlowline)
https://www.usgs.gov/national-hydrography/national-hy
drography-dataset

HydrographyVISj Visibility-scaled stream network density in buffer j, where the
total length of river segments within each visibility category is
summed and multiplied by the visibility factor before being
divided by the buffer area [m/m2])

NaturalWatersj Waterbodies density in buffer j (i.e., fraction of the buffer area
in the j-direction occupied by waterbodies [m2/m2])

U.S. Geological Survey National Hydrography Dataset
(NHDWaterbodies, such as lakes, ponds, etc.)
https://www.usgs.gov/national-hydrography/national-hy
drography-dataset
To avoid double-counting, original vector layer has been
depurated of river-network-type elements

* j = (C,R,T) indicates the three possible directions (coastal, track and river).
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value acting as a threshold for distinguishing between the coastal from
the inland subset (Fig. 4).

To study the relation between the response variable and its potential
drivers, explanatory hazard, topological, and local geographical

features’ values are assigned to each of the 5000 POI (Table 1). For the
input hazard boundary conditions, stream gage water level records from
active USGS stations in the impact zone are obtained from the USGS
National Water Information System (https://waterdata.usgs.gov/nwis).

Fig. 5. Evolution of models’ (XT and RF) performance across entire, coastal and inland subsets for Hurricane Harvey, with varying number of input features
considered in model training.

Fig. 6. Distributions of inundation depth difference across entire, coastal and inland subsets for Hurricane Harvey, for models (XT and RF) trained with the 10 most
influential features.
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The same data, filtered over the Hurricane Harvey event period, is also
available in USGS and Arctur (2018) (Fig. 3). From these raw data, the
Hydrometry feature is calculated by associating to each POI the inverse
squared distance weighted (ISDW) average of maximum stream gage
water levels within a 50 km radius from the POI during the week of
hurricane’s landfall. The use of the squared distance as a weighting
method for averaging water level data ensures that only meaningful
information from the river network is retained, thus minimizing po-
tential bias from unrelated catchments to the POI.

To ensure comprehensiveness, the number of stream gages (Hydro-
metryCount) used to calculate Hydrometry at each POI, as well as the
distance of the nearest stream gage (HydrometryMinDist), are also
recorded.

Similarly, SurgeHeight, serving as the coastal counterpart to Hydro-
metry, is determined for each POI by calculating the ISDW average of
maximum surge heights observed at NOAA stations (Fig. 3) during the
week of hurricane’s landfall. The weights are represented by the squared
distances between NOAA stations and the points of minimum distance
between the coastline and the POI. Surge heights values at these stations
are derived from the Center for Operational Oceanographic Products
and Services (CO-OPS). Specifically, water level data and astronomical
tide predictions are acquired for the selected stations. The difference
between recorded water levels and the astronomical tide predictions
provides estimates of surge heights at the NOAA stations.

To determine topological features, basic geospatial operations are
used to compute the minimum distances from the POI to hazard origins
(i.e., the coastline (DistanceC), primary river network (DistanceR), and
cyclone’s track (DistanceT)), as well as from the 100 m bathymetric
contour (Bath100Dist) (Table 1).

To derive features that incorporate local geographical characteris-
tics, for each POI, buffer geometries are generated to represent coastal,
river, and track influence areas using the code provided in the Supple-
mentary material. The resulting polygons are used to calculate proxies
Prij (Eq. (1)). Leveraging available data sources in the region (Table 1),
proxies for areal density within each of the three kinds of buffer are
derived for structures, infrastructures, and water bodies. The proxies
derived for structures and infrastructures include buildings, roads,
railways, levees, and bridges (i.e., Buildingsj, Roadsj, Railwaysj, Leveesj,
and Bridgesj). Similarly, for water bodies, areal objects such as lakes,

ponds, and reservoirs are accounted for through the NaturalWatersj
proxy, while Hydrographyj represents the density of the stream network.
The HydrographyVISj proxy is introduced to include information on the
stream size, as provided in the National Hydrography Dataset with the
Visibility filter (Buttenfield et al., 2011).

The same method is used to account for various land-use types
characterizing the area of interest, introducing the proxies labeled as
LU.“type”j to represent the proportion of each buffer area occupied by a
specific land-use type. To achieve this, homogeneous land-use classes
from the available land-use layer (Table 1) in the impacted region are
aggregated into specific categories defined by “type”. The “type” dis-
tinctions include: Forest (Forest & Woodland), Desert (Desert & Semi-
Desert), Pol&HMon (Polar & High Montane Scrub, Grassland & Bar-
rens), RockVeg (Open Rock Vegetation), AgrVeg (Agricultural & Devel-
oped Vegetation), SNVeg (Sparse vascular & Nonvascular Rock
Vegetation), OpenWater (Open Water), and OthHumUse (Developed &
Other Human Use).

Fig. 4 provides an overview of the final dataset, illustrating kernel
densities for some key features and their pairwise relationships; to
ensure clarity, amid the 56 considered input features, Fig. 4 focuses on
main hazard variables (Hydrometry, SurgeHeight), topological factors
(Distancej), and a subset of representative land-use proxy features (LU.
AgrVegT, LU.ForestT).

3.3. Model development and performance assessment

Instead of conducting an extensive inter-model comparison aimed at
identifying the best performing model, which might divert attention
from the primary focus of this study, only two ML models have been
selected to exemplify the application and effectiveness of the proposed
framework using Hurricane Harvey as a case study. Specifically,
Extremely Randomized Trees (XT) and Random Forest (RF) (Breiman,
2001; Geurts et al., 2006), are employed within the scikit-learn Python
library (Pedregosa et al, 2011).

Bothmodels rely on a bagging procedure to a set of decision trees and
are known for their reduced sensibility to overfitting compared to
stacking or boosting approaches. For both algorithms, a regression
model is developed, with the water elevation as the target response
value. Additionally, the obtained values of inundation depth are used to

Fig. 7. Row-normalized confusion matrices for XT and RF classifiers trained with the 10 most influential features across entire, coastal and inland subsets for
Hurricane Harvey.
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classify the points into the four potential damage severity levels defined
by FEMA (as reported in Section 3.2), thereby facilitating an indirect
study of a classification problem.

As an initial step in developing XT and RF models, a 5-fold cross-
validation with random search is performed to calibrate the hyper-
parameters, including the number and maximum depth of the trees, the
maximum size of the bootstrap sample used to train each tree, the
minimum decrease in impurity, and the minimum samples per leaf. The
cross-validation has been chosen to keep all the dataset available for the
subsequent phases.

For the second step, which involves model selection as one of the key
aspects of this study, the previously mentioned backward selection
process is utilized, starting with the initial set of 56 features (Table 1),
which are progressively reduced by evaluating their induced mean
decrease in the HR as MDA metric. This involves shuffling the values of
each feature and averaging the MDA results over 10 repetitions to
minimize the impact of random shuffling.

After training the selected regression models, water elevation esti-
mates are obtained from the out-of-bag predictions, i.e. the predictions
obtained using each single tree only for the elements not included in the

Fig. 8. Analysis of the 10 most important features identified with XT and RF classifiers trained on entire, coastal and inland subsets for Hurricane Harvey. Features
are ranked according to their induced mean decrease in accuracy (MDA).
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bootstrap sample used for its training. The predicted inundation depth is
then calculated by subtracting the terrain elevation from the predicted
water elevation and compared with the observed values. Terrain
elevation data are sourced from the pre-event National Elevation
Dataset published by USGS (U.S. Geological Survey, 2012), with a res-
olution of 3 m or 10 m, depending on the spatial coverage over the study
area.

For the regression problem, the performance of the models is
assessed by computing the Mean Absolute Error (MAE), the Mean
Squared Error (MSE), and the Prediction Bias (PB) as per Eqs. 2–4
(Botchkarev, 2019):

MAE =

∑n

i=1
| ÎDi − IDi|

n
(2)

MSE =

∑n

i=1
( ÎDi − IDi)

2

n
(3)

PB =

∑n

i=1
( ÎDi − IDi)

n
(4)

In the equations, ÎDi and IDi denote the predicted and observed values of
inundation depth and n is the number of considered watermarks.

For the classification problem, the performance is assessed using the
Hit Rate (HR), which is defined as in Eq. (5):

HR =

∑4

i=1
TPi

∑4

i=1
(TPi + FNi)

(5)

where TPi (True Positives) and FNi (False Negatives) represent the
number of instances correctly classified as class i and the number of
instances incorrectly classified as not class i, respectively. Additionally,
the row-normalized confusion matrix is examined, with the rows asso-
ciated to the observed classes and the columns listing the predicted
classes; to deal with the class imbalance (50 % of elements in Class 1, 32
% in Class 2, 11 % in Class 3, 7 % in Class 4), the frequencies associated
to each matrix element are divided to the number of samples with the
corresponding observed class. As a consequence, the main diagonal of
the matrix contains the recall of the model over the corresponding
inundation depth class.

Models are developed for both the entire dataset of 5000 watermarks
and separately for the coastal and inland subsets to analyze potential
spatial patterns in the prediction errors and feature importance.

4. Results and discussion

4.1. Feature selection and models’ performance

The performance of the XT and RF models for predicting inundation
depth is evaluated by systematically reducing the number of features
and assessing the models using four error metrics: MAE, MSE, PB for the
regression and HR for the classification problem. The results, presented
in Fig. 5, clarify the relationship between feature selection and predic-
tion accuracy for the two tested algorithms trained on the entire, coastal,
and inland subsets.

When the entire dataset is considered, both models show a decrease
in MAE as the number of features approaches 10–20, stabilizing at
approximately 0.39m for the XT and 0.41 m for the RF. The division into
the two subsets yields similar results, with MAE reaching about 0.37 m
for the coastal subset and 0.40 m for the inland subset. In terms of MSE,
the models attain minimum values of about 0.5 m for the XT and 0.6 m
for the RF when considering the entire dataset. For the XT model, the

coastal subset yields a smaller MSE of about 0.47 m, while the inland
predictions exhibit larger minimum MSE values, with the highest being
around 0.66 m for the RF. These higher values indicate the greater dif-
ficulty the models encounter when predicting inundation depth in
inland regions, due to the more complex interplay of factors influencing
flood dynamics in such areas, resulting in greater variability in inun-
dation depth. This is evident in the zoomed plot in Fig. 4, where the
observed interquartile ranges for inland and coastal regions are
respectively equal to 1.08 m and 0.79 m.

Although prediction accuracy is not the main goal of the study but a
means to analyze the feature importance, it should be noted that the
observed accuracy (Fig. 5) indicates comparable or even superior per-
formance to physics-based models available in existing literature for
Hurricane Harvey. For instance, Wing et al. (2019) reported a MAE of
about 1 m for estimated water surface elevation at over 1000 water
marks in the Hurricane Harvey-impacted region. They used a large-scale
flood forecasting product based on the coupling of the Fathom-US hy-
draulic model with NOAA forecasts of streamflow, rainfall, and surge
height. Zheng et al. (2022) validated water levels and inundation extent
generated from the National Water Model and the Height Above Nearest
Drainage (NWM-HAND) method against observations across the entire
Texas impacted domain using 10-m terrain data. They achieved a mean
error of − 0.39 m over more than 1000 water marks, with further
reduction in areas where high-resolution lidar topography was avail-
able. Sebastian et al. (2021) utilized the SuperFast INundation of CoastS
(SFINCS) hydrodynamic model to analyze flood inundation and dam-
ages in Houston. They found a general tendency to overestimation, with
a computed MAE of 0.83 m for inundation elevation and 0.36 m for
inundation depth based on observed water marks at 115 locations. Li
et al. (2022) assessed the performance of CREST-iMAP, a coupled
hydrologic-hydraulic model, and reported a mean difference between
simulated and observed water depths ranging from 0.51 to 0.60 m,
depending on the inclusion of re-infiltration processes into the
modeling. Huang et al. (2021) used the Semi-implicit Cross-scale
Hydroscience Integrated SystemModel (SCHISM) to develop a 3D creek-
to-ocean model, simulating interactions of major driving factors during
Harvey around Galveston Bay, and achieved an overall MAE of 0.65 m
calculated over approximately 510 water marks. Similarly, Lee et al.
(2023) used the Delft3D Flexible Mesh model to simulate inundation
patterns in the Houston-Galveston area, reporting a MAE of 0.62 m in
high-resolution coastal areas, which increased to 1.34 m for the entire
analyzed region, encompassing 363 water marks. Such comparisons
with more complex and computationally demanding models thus
demonstrate the potential of data-driven models for efficient prediction
of inundation depth during compound flooding events.

With a more in-depth analysis of the results in Fig. 5, the comparison
of MSE and MAE values indicates that the predictions include occasional
large errors, which are more heavily penalized in the calculation of the
MSE. This is further illustrated in Fig. 6, which shows the distributions of
inundation depth differences ( ÎD– ID) for the three tested subsets using
the XT and RF model configurations with the 10 most influential input
features. While the majority of the errors clusters in the range ±0.5 m,
Fig. 6 also highlights the presence of some larger errors (ranging from

±2 to±4 m), particularly evident in the inland subset, as reflected in the
corresponding error metrics. These error patterns are also evident in the
PB (Fig. 5), with minimum values for the entire dataset reaching 0.045
m (with the XT models), as well as in the HR for the classification
problem which stabilizes around 0.68 (for both the XT and RF models).

Similar insights can be drawn from a detailed analysis of the results
obtained by implementing the XT and RF models to predict inundation
depth categories as defined by FEMA (2023). For illustrative purposes,
Fig. 7 presents the row-normalized confusion matrices from the appli-
cation of the XT and RF models trained with the 10 most influential
features. These matrices report the classification performance across the
entire, coastal and inland subsets, by displaying the observed versus
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predicted inundation depth classes. Each cell indicates the portion of
instances where a particular observed class is correctly predicted (on the
diagonal) or misclassified (all other cells). Fig. 7 reveals that both
models perform well in predicting extreme water depth classes (Class 1
and Class 4), but face more difficulties in accurately classifying the in-
termediate classes (Class 2 and Class 3), consistently across the different
subsets. Misclassifications occur more frequently between adjacent
classes, as expected due to the gradual transitions in water depth. For the
entire dataset, both the XT and RF models show similar performance,
with Class 1 and Class 4 being predicted most accurately, resulting in
values of HR around 0.74 and 0.72, respectively. The total relative fre-
quency of the elements in the upper diagonal for XT and RF is about 0.15
and 0.16 respectively, with around 0.12 in the lower diagonal for both,
globally suggesting a slight overestimation. However, Fig. 7 shows that
the samples in Classes 2, 3 and 4 are underestimated on average, with
the global result mainly driven by Class 1, accounting for about 50 % of
the sample.

Furthermore, Fig. 5 illustrates that the models’ performance tends to
decline when the number of input features exceeds 40, likely due to
overfitting, which occurs when the model captures noise and specific
details in the training data that do not generalize well to new, unseen
data. Additionally, increasing the number of input features can expo-
nentially expand the feature space, making it more difficult for the
model to identify meaningful patterns and thus adding complexity
without necessarily enhancing predictive power.

These findings highlight the critical role of feature selection for
model development. For the analyzed case, Fig. 5 demonstrates that
focusing on the top 10–20 most important features achieves a balance
between model complexity and predictive accuracy. More broadly,
within a ML framework, similar analyses can guide modelers in tailoring
feature selection to the specific characteristics of different regions,
thereby optimizing inundation prediction models.

4.2. Analysis of the feature importance

The plot in Fig. 8 illustrates the results of the feature importance
analysis performed by using the XT and RF models trained with the top
10 input features, for the entire dataset, as well as the coastal and inland
subsets. This part of the analysis is the most clarifying to gain insights
into the most relevant features for compound flooding predictions. For
this purpose, each subplot of Fig. 8 ranks the features according to their
importance in predicting inundation depth class. This ranking is
measured by the mean decrease in accuracy (MDA), which reflects the
sensitivity of the models’ classification accuracy to the input features. A
higher value of MDA indicates greater importance attributed to the
feature.

Fig. 8 demonstrates that the models exhibit similar trends in feature
importance, with some minor differences in the ranking allocations. In
particular, for the considered case of Hurricane Harvey, the significance
of Hydrometry and distance-related features (DistanceC and DistanceT) is
consistently observed in the top positions, underscoring their critical
role for inundation depth prediction. The pairwise relationships among
these features, shown in Fig. 4, offer additional insights on their roles.
These pair plots reveal non-negligible correlation among the features,
but no linear relation with the response variable, InundationDepth. This
suggests that while they collectively enhance the models’ predictive
power by capturing similar underlying information and sharing impor-
tance, none of them alone can effectively predict inundation depth due
to their poor correlation with it.

Region-specific patterns, indicative of the distinct mechanisms gov-
erning compound flooding in these areas, are also evident in the list of
ancillary features shown in Fig. 8. As expected, coastal flooding is pre-
dominantly driven by storm surge and wave action (Lee et al., 2023),
which explains the detected importance of SurgeHeight in the coastal
subset, especially for the RF model. In contrast, inland flooding is more
influenced by flood propagation dynamics within the inundated area,

where local factors, like density of buildings and water bodies (Buil-
dingsC, LU.OpenWaterC,T), and specific land-use types, play crucial roles.
Concerning land-use, types associated with agricultural or vegetated
areas (LU.AgrVeg, LU.Forest) are consistently among the most important
features. This aligns with the findings of Yang et al. (2019), who
analyzed the relationship between different land-use categories and the
occurrence of flooding in the Houston metropolitan area during Hurri-
cane Harvey. Additionally, although the role of coastal forests in miti-
gating hurricane-induced flooding remains debated in the literature
(Resio and Westerink, 2008; Brody et al., 2018; Highfield et al., 2018),
the results in Fig. 8 suggest that forested areas played a significant role in
inland inundation mechanisms for the specific case analyzed. This is
indicated by the proxy LU.ForestT ranking in the top three features for
the inland subset for both XT and RF, and also appearing as important
for the entire dataset, albeit in a lower position due to its lesser effect in
the coastal region.

The significant importance of Hydrometry and distance-related fea-
tures observed in this study suggests that topographical control played a
dominant role in the flooding mechanism during Hurricane Harvey.
However, as seen from the results of the model selection process, these
features alone do not fully capture the complexities of the inundation
process. Other local factors, such as specific land-use types, the presence
of water bodies, and man-made structures, influenced flow propagation
and retention, affecting fine-scale variations in inundation depth.
Differently, river buffer-related features do not appear among the top 10
most important features in any tested subsets (Fig. 8). This can be
attributed to the fact that the contributions from fluvial flooding are
primarily captured by Hydrometry, which provides crucial information
on water level rise in the river network, while topological and
geographical features in the river direction offer only minor refinements
related to inundation propagation characteristics within the floodplain.

It is worth noting that, for the analyzed event, the weights of the
ancillary features varied between coastal and inland regions, reflecting
the different hydrodynamic conditions and local geographical patterns
influencing compound inundation, as also emerged in previous studies
(Bilskie and Hagen, 2018; Gori et al., 2020; Mitu et al., 2023). On one
hand, this underscores the necessity of considering local-scale territorial
specificities for reliable data-driven inundation modeling and, on the
other hand, indicates that the relative importance of the driving factors
is not generalizable as it is intrinsically tied to the characteristics of the
specific examined event.

5. Conclusions

This study presented a machine learning (ML) framework designed
to understand the most relevant features needed to predict compound
inundation induced by tropical cyclones. The substantial effort required
for a ML-based compound flood hazard mapping, in terms of extensive
input data retrieval and pre-processing, necessitates an efficient meth-
odology. An a-priori assessment of the relevant features for compound
inundation could accelerate the initial steps of model development as
well as enhance performance and computational efficiency of the
resulting models. However, compound flooding is a complex phenom-
enon influenced by diverse drivers that vary in importance across and
within regions; for this reason, a definitive and unique identification of
the most relevant features is neither straightforward nor practical.

The proposed framework, whose applicability has been demon-
strated using Hurricane Harvey as a case study, offers a replicable
feature selection process for other events and geographical contexts. In
particular, the generalizable components of the methodology include
the physics-informed identification of explanatory features for com-
pound flooding, the use of a buffer approach for transferring two-
dimensional information to the point of interest, and the permutation
feature importance method for selecting the most significant features.
These elements collectively enhance the model’s ability to efficiently
predict inundation depths by balancing accuracy and data retrieval
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efforts. Nevertheless, the assessment of the specific variables repre-
senting the individual drivers of compound flooding must be tailored to
the characteristics of each region of implementation, also in consider-
ation of the local availability of data. This tailoring process is probably
the more time-consuming aspect of the approach, but it is essential for
ensuring the accuracy and reliability of the developed model in diverse
geographical contexts.

In this study, the features related to hazard intensity are represented
by storm surge and hydrometric levels at coastal and river stations,
which inherently incorporate the effects of meteorological and hydro-
logic drivers to inundation mechanisms. Beyond these hazard features,
for Hurricane Harvey, distance metrics resulted of critical importance
for accurate predictions, followed by features related to specific land-use
types, such as open water and vegetated areas, which help to account for
local variability in flooding mechanisms. In this framework, buffer-
related proxies, which efficiently condense spatial data into meaning-
ful metrics, proved effective in representing local geographical features.
As also observed in the analyzed case, the influence of the various fea-
tures can vary geographically within the impact area (e.g., coastal and
inland areas), thus highlighting the need, for generalizability purposes,
to tailor model development and feature selection to specific regional
contexts.

It is worth noting that the models presented in this study for Hurri-
cane Harvey do not have any predicting capability for future events
because they were calibrated with data from a single storm scenario;
however, the proposed framework can be extended to the development
of predictive models for future events. Indeed, while unavoidably biased
by the consideration of a single storm occurrence, this study demon-
strated that the feature importance analysis can effectively reduce the
number of variables needed in predictive models for future compound
flood events. For this goal, the first step would be to replicate the feature
selection process across multiple cyclone scenarios with varying in-
tensities in different regions. A set of control locations (CL) should be
identified, ensuring they are as distributed as possible to capture the
possible diversity of conditions. Inundation depths from simulations in
different scenarios should be sampled at these CLs, and hazard input
features related to storm surge levels and river gage data should be
provided for the CLs based on the hydraulic conditions at the coastline
and along the river network. By being independent of the hazard in-
tensity, the relevant topological and local geographical features identi-
fied in this step could be pre-assessed for all points of interest, thus
further reducing the computational costs and time of future predictions.

The second phase would involve developing aMLmodel based on the
extended feature importance analysis performed in the first step. The
dataset generated initially would be augmented with additional storm
scenarios to train the ML model(s), enabling the identification of the
relationships between inundation depth and the various features
detected previously. To enhance the model’s predictive ability, the se-
lection of cyclone events for the training dataset should be as compre-
hensive as possible, encompassing both historical and extreme synthetic
cyclone scenarios that account for future cyclone characteristics pro-
jected under a changing climate. Such an approach would ensure more
robust and generalizable results, avoiding unreliable extrapolation of
predictions beyond the range of the training data.

In this regard, synthetic storms are particularly valuable for regions
with limited historical data and are crucial for modeling future sce-
narios, especially when considering the projected impacts of climate
change. However, their selection should be carefully handled, as unre-
alistic scenarios, with overly regular paths or homogeneous intensity
parameters, may not fully capture the complexity of real-world events,
potentially introducing an unwanted bias into the inundation model. To
avoid overreliance on synthetic scenarios at the expense of historical
data, it is essential to strike a balance and integrate both sources to build
a robust inundation prediction model. While generating synthetic
inundation depth data for model training can be resource- and time-
intensive, the availability of large-scale, pre-existing synthetic data

from tropical cyclones, such as the US National Storm Surge Risk Maps
by NOAA (derived from the simulation of up to 100,000 hypothetical
storms across the US using the SLOSH model, (Zachry et al., 2015))
demonstrates that a scalable and generalizable predictive model based
on the proposed approach is achievable.

By following the two described steps, the developed ML models can
predict spatial inundation patterns within a few seconds, even on a
standard commercial laptop, for any future cyclone event with available
forecasted storm surge levels (e.g., from NOAA stations) and river gage
data (e.g., from USGS stations) at any point within the domain of
interest.
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