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Abstract. We prove the existence of an optimal transport map for the Monge problem in a convex
bounded subset of Rd under the assumptions that the first marginal is absolutely continuous with
respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a
new approach which does not use disintegration of measures.
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1. Introduction

The Monge problem has its origin in the Mémoire sur la théorie des déblais et remblais
by G. Monge [21], and may be stated as follows:

inf
��

�
|x − T (x)| dµ(x) : T ∈ T (µ, ν)

�
, (1.1)

where � is the closure of a convex open subset of Rd , | · | denotes the usual Euclidean
norm of Rd , µ, ν are Borel probabilities on � and T (µ, ν) denotes the set of transport
maps from µ to ν, i.e. Borel maps T such that T�µ = ν (where T�µ(B) := µ(T −1(B))

for each Borel set B).
The main aim of this paper is to prove the following existence result for a generaliza-

tion of this problem:

Theorem 1.1. Let � · � be a strictly convex norm on Rd and assume that µ is absolutely
continuous with respect to the Lebesgue measure Ld . Then the problem

min
��

�
�x − T (x)� dµ(x) : T ∈ T (µ, ν)

�
(1.2)

has at least one solution.
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Before describing the previous results on this problem and our contribution, we make a
brief introduction on the Kantorovich relaxation for (1.2). For general probability mea-
sures the set of transport maps T (µ, ν) may be empty, for example if µ = δ0 and
ν = 1

2 (δ1 + δ−1). But even when T (µ, ν) is non-empty it may happen that problem
(1.1) does not admit a minimizer in T (µ, ν): for example take µ := H1

�{0}×[0,1] and
ν := 1

2 (H1
�{−1}×[0,1] +H1

�{1}×[0,1]). Moreover, the objective functional of problem (1.2)
is non-linear in T and the set T (µ, ν) does not possess the right compactness properties
to deal with the direct methods of the Calculus of Variations. A suitable relaxation was
introduced by Kantorovich [19, 20] and it proved to be a strong, decisive tool to deal with
this problem. This relaxation is defined as follows. The set of transport plans from µ to ν

is defined as
�(µ, ν) := {γ ∈ P(� × �) : π1

� γ = µ, π2
� γ = ν},

where π i denotes the standard projection in the Cartesian product. The set �(µ, ν) is
always non-empty as it contains at least µ ⊗ ν. Then Kantorovich proposed to study the
problem

min
��

�×�
�x − y� dγ (x, y) : γ ∈ �(µ, ν)

�
. (1.3)

Problem (1.3) is convex and linear in γ , so the existence of a minimizer may be obtained
by the direct method of the Calculus of Variations. At this point, to obtain the existence
of a minimizer for (1.2) it is sufficient to prove that some solution γ ∈ �(µ, ν) of (1.3)
is in fact induced by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id × T )�µ.

In [27], Sudakov devised an efficient strategy to solve (1.2) for a general norm � · �
on Rd . However this strategy involved a crucial step on the disintegration of an optimal
measure γ for (1.3) which was not completed correctly at that time. In more recent years
the problem (1.1) was solved first by Evans et al. [17] with additional regularity assump-
tions on µ and ν, and then by Ambrosio [1] and Trudinger et al. [28] for µ and ν with
integrable density. At the same time, for C2 uniformly convex norms the problem (1.2)
was solved by Caffarelli et al. [11], and then by Ambrosio et al. [3], and finally for crys-
talline norms in Rd and general norms in R2 by Ambrosio et al. [2]. The original proof of
Sudakov was based on the reduction of the transport problems to affine regions of smaller
dimension, and all the proofs we listed above are based on the reduction of the problem
to a 1-dimensional problem via a change of variable or area-formula. Let us also men-
tion that the original approach of Sudakov has been partially reconstructed by Caravenna
in [12].

In this paper, we prove the existence of a solution to (1.2) for a general strictly convex
norm � · � on Rd , without any regularity assumption on the norm � · �. The originality of
our method for the proof of Theorem 1.1 above is that it does not require disintegration
of measures and relies on a simple but powerful regularity result (see Lemma 4.3 below)
which has been used in some transport problem with cost functional in non-integral form
[13]. In §2 we recall some well known results on duality and optimality conditions for
problem (1.3). In §3, we introduce a secondary transport problem in order to select so-
lutions of (1.3) that have a particular regularity property. §4 is devoted to the notion of
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regular points of a transport map γ ; in particular, Lemma 4.3 states that a transport map
γ ∈ �(µ, ν) is concentrated on a set of regular points. In §5, we take advantage of this
fact to prove a regularity result on the transport set associated to a solution of (1.3). The
proof of our main result, Theorem 1.1, is finally derived in §6, while a possible extension
to the case of a general norm � · � is discussed in §7.

2. Preliminaries on optimal transportation: duality and necessary conditions

The content of this section is classical (for example see [1, 29]). Problem (1.3) is convex
and linear, so classical convex duality brings useful information on its minimizers. In
particular, the following duality theorem holds (for example we refer to Theorems 3.1
and 3.3 in [3]).

Theorem 2.1. The minimum in problem (1.3) is equal to

max
��

�
v(x) dµ(x) −

�

�
v(y) dν(y) : v ∈ Lip1(�, � · �)

�
(2.1)

where Lip1(�, � · �) is the set of functions v : � → R which are 1-Lipschitz with respect
to the norm � · �, i.e.

∀x, y ∈ �, |v(x) − v(y)| ≤ �x − y�.

Moreover if u ∈ Lip1(�, � · �) is a maximizer for problem (2.1) then γ ∈ �(µ, ν) is a
minimizer of problem (1.3) if and only if

∀(x, y) ∈ supp γ , u(x) − u(y) = �x − y�.

In the following, maximizers of (2.1) are referred to as Kantorovich transport potentials
for (2.1). If we follow the interpretation of γ as a plan of transport we may deduce from
this last theorem that in order to realize an optimal transport the mass should follow the
direction of maximal slope of a Kantorovich transport potential u. We give a more precise
statement of this classical fact in Lemma 2.2 below, and give a short proof to underline
the role of the strict convexity of the norm.

Lemma 2.2. Assume that � · � is a strictly convex norm. Let γ be an optimal transport
plan for (1.3), let u ∈ Lip1(�, � · �) be a Kantorovitch potential for (2.1) and let (x, y)

belong to supp γ with x �= y. If u is differentiable at x and z ∈ � is such that u(x) =
u(z) + �z − x� and z �= x then

z − x

�z − x� = y − x

�y − x� .

Remark 2.3. In particular x, y and z are on the same line and z ∈ [x, y] or y ∈ [x, z].
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Proof. Without loss of generality we may assume that x = 0. Since u ∈ Lip1(�, � · �),
we infer that

∀t ∈ [0, 1], u(0) = u(tz) + t�z�.
Since u is differentiable at 0, we then get ∇u(0) · z = −�z�. On the other hand, for any
z� �= 0 one also has ∇u(0) ·z� ≥ −�z��. As a consequence, −∇u(0) belongs to the normal
cone of the closed convex set K := {z� : �z�� ≤ 1} at z/�z�.

Since (x, y) ∈ supp γ and u is a Kantorovich potential, −∇u(0) also belongs to the
normal cone of K at y/�y�. Since K is strictly convex and has nonempty interior, the
intersection of the normal cones to two of its boundary points is {0} unless they coincide:
as ∇u(0) �= 0 we get z/�z� = y/�y�. ��
Another crucial property of optimal transport plans is the cyclical monotonicity relative
to the cost under consideration; we shall state this in a more general setting to handle the
secondary transport problem of the next section.

Definition 2.4. Let c : �2 → [0, +∞]. A transport plan γ ∈ �(µ, ν) is cyclically
monotone for the cost c (or c-cyclically monotone) if it is concentrated on a set C such
that

n�

i=1
c(xi, yi) ≤

n�

i=1
c(xi, yσ (i))

for all n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ C and any permutation σ of {1, . . . , n}.

The following proposition gives a necessary condition for optimality in terms of cycli-
cal monotonicity; for a proof, we refer to Theorem 3.2 in [3].

Theorem 2.5. Let c : �2 → [0, +∞] be a lower semicontinuous cost function, and
assume that the infimum of the corresponding transport problem is finite:

inf
��

�×�
c(x, y) dλ : λ ∈ �(µ, ν)

�
< +∞.

If γ is an optimal transport plan for this problem, then there exists a c-cyclically monotone
Borel set C on which c is finite and γ is concentrated.

Remark 2.6. Duality and sufficiency of cyclical monotonicity may be pursued in very
general settings [23, 24, 25, 3, 26, 22, 8]; however for the purpose of this paper duality
may be obtained more easily [1, 29].

3. Secondary transport problem to select monotone transport plans

Following the line of [2], we introduce a secondary transport problem to select optimal
transport plans for (1.3) which have some more regularity; in the next sections, we shall
prove that these particular optimal transport plans are induced by transport maps. The
idea that a secondary variational problem may help to choose “more regular” or particular
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minimizers is the root of the idea of asymptotic development by �-convergence (see [4]
and [5]) .

We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and fix a Kan-
torovich transport potential u, i.e. a maximizer of (2.1). Let us define the new cost func-
tion

β(x, y) :=
�

|x − y|2 if u(x) = u(y) + �x − y�,
+∞ otherwise. (3.1)

We then consider the following transport problem:

min
��

�×�
β(x, y) dλ(x, y) : λ ∈ �(µ, ν)

�
. (3.2)

Because of the characterization of the minimizers for (1.3) given in Theorem 2.1, the
above problem may be rewritten as

min
��

�×�
β(x, y) dλ(x, y) : λ ∈ O1(µ, ν)

�
.

In other words, problem (3.2) consists in minimizing the new cost functional λ �→
�

β dλ

among the minimizers of problem (1.3), and in this sense it may be considered as a sec-
ondary variational problem.

Definition 3.1. We shall denote by O2(µ, ν) the set of minimizers for (3.2).

By Theorem 2.5, the set O2(µ, ν) is non-empty and any of its elements enjoys the
additional property of being concentrated on a set which is also β-cyclically monotone.
This implies the following monotonicity, whose proof is derived from that of Lemma 4.1
in [2].

Proposition 3.2. Let γ be a minimizer of problem (3.2). Then γ is concentrated on a
σ -finite set � with the following property:

∀(x, y), (x�, y�) ∈ �, x ∈ [x�, y�] ⇒ (x − x�) · (y − y�) ≥ 0 (3.3)

where · denotes the usual scalar product on Rd .

Proof. Theorem 2.5 shows that γ is concentrated on a β-cyclically monotone Borel set �

on which β is finite. Up to removing a γ -negligible set from �, we may assume that � is
σ -finite.

Let (x, y), (x�, y�) ∈ � be such that x ∈ [x�, y�]. Since γ is optimal for (1.3) and u is
a Kantorovich potential for (2.1) we deduce that

u(x) = u(y) + �x − y� and u(x�) = u(y�) + �x� − y��.

Since x ∈ [x�, y�] we also have �x� − y�� = �x − x�� + �x − y��, and then using the fact
that u ∈ Lip1(�, � · �) we have

u(x�) = u(y�) + �x − x�� + �x − y�� ≥ u(x) + �x − x��.
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Since u ∈ Lip1(�, � · �) we again infer that the above inequality is an equality, so that

u(x) = u(y�) + �x − y�� and u(x�) = u(x) + �x − x��.
But then we also have u(x�) = u(y)+�x−y�+�x−x�� so that u(x�) = u(y)+�y−x��.
It then follows that β(x�, y) = |x − y|2 and β(x, y�) = |x − y�|2. Since � is β-cyclically
monotone, we conclude that

|x − y|2 + |x� − y�|2 ≤ |x − y�|2 + |x� − y|2,
which is equivalent to (x − x�) · (y − y�) ≥ 0. ��
Remark 3.3. In the above proof, we find that �x−y�+�x−x�� = �y−x��. If we assume
that the norm � · � is strictly convex, then it follows that x ∈ [x�, y], so that the vectors
x�, x, y�, y are collinear and “ordered” in that way as a consequence of this proposition.

Remark 3.4. The reason we deal with σ -compact sets �, in the above proposition as
well as in the following, is that the projection π1(�) is also σ -compact, and in particular
is a Borel set.

4. A property of transport plans

We begin by considering some general properties of transport plans. This section is inde-
pendent of the transport problem (1.3), and the definitions and techniques detailed below
are refinements of similar ones which were first applied in [13] in the framework of non-
classical transportation problems involving cost functionals not in integral form.

Definition 4.1. Let γ ∈ �(µ, ν) be a transport plan and � a σ -compact set on which it
is concentrated. For y ∈ � and r > 0 we define

�−1(B(y, r)) := π1(� ∩ (� × B(y, r))).

In other words, given a σ -compact set � on which γ is concentrated, the set
�−1(B(y, r)) is the set of those points whose mass (with respect to µ) is partially or
completely transported to B(y, r) by the restriction of γ to �. We may justify this slight
abuse of notation by the fact that γ should be thought of as a device that transports mass.
Notice also that �−1(B(y, r)) is a σ -compact set.

Since this notion is important in what follows, we recall that when A is Ld -measur-
able, one has

lim
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall call such a point x a Lebesgue point of A, this terminol-
ogy deriving from the fact that such a point may also be considered as a Lebesgue point
of χA. We shall denote by Leb(A) the set of all Lebesgue points of A.

Remark 4.2. In the definition of Lebesgue points, one may replace the open ball B(x, r)

by the set x + rC, where C is a convex neighborhood of 0.
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The following lemma, although quite simple, is an important step in the proof of
Proposition 5.2 and Theorem 6.1 below. Its proof is a straightforward adaptation of that
of Lemma 5.2 from [13] and we detail it for the convenience of the reader.

Lemma 4.3. Let γ ∈ �(µ, ν) and � a σ -compact set on which γ is concentrated. As-
sume that µ � Ld . Then γ is concentrated on a σ -compact set R(�) such that for all
(x, y) ∈ R(�) the point x is a Lebesgue point of �−1(B(y, r)) for all r > 0.

Proof. Let

A := {(x, y) ∈ � : x /∈ Leb(�−1(B(y, r))) for some r > 0};

we first intend to show that γ (A) = 0. To this end, for each positive integer n we consider
a finite covering � ⊂ �

i∈I (n) B(yn
i , rn) by balls of radius rn := 1/(2n). We notice that

if (x, y) ∈ � and x is not a Lebesgue point of �−1(B(y, r)) for some r > 0, then for any
n ≥ 1/r and yn

i such that |yn
i − y| < rn the point x belongs to �−1(B(yn

i , rn)) but is not
a Lebesgue point of this set. Then

π1(A) ⊂
�

n≥1

�

i∈I (n)

�
�−1(B(yn

i , rn)) \ Leb(�−1(B(yn
i , rn)))

�
.

Notice that the set on the right hand side has Lebesgue measure 0, and thus µ-measure 0.
It follows that γ (A) ≤ γ (π1(A) × �) = µ(π1(A)) = 0.

Finally, since Ld(π1(A)) = 0, there exists a sequence (Uk)k≥0 of open sets such that

∀k ≥ 0, π1(A) ⊂ Uk and lim
k→∞

Ld(Uk) = 0.

Then the set R(�) := � ∩ (
�

k≥0(� \ Uk) × �) has the desired properties. ��
The above lemma suggests introducing the following notion:

Definition 4.4. The couple (x, y) ∈ � is a �-regular point if x is a Lebesgue point of
�−1(B(y, r)) for any positive r .

Notice that any element of the set R(�) of Lemma 4.3 is a �-regular point. Lemma 4.3
above therefore states that any transport plan � is concentrated on a Borel set consisting
of regular points; this regularity property turns out to be a powerful tool in the study of
the support of optimal transport plans for problem (1.3), as the proof of Proposition 5.2
below illustrates.

5. A property of optimal transport plans

In this section, we obtain a regularity result on the transport plans that are optimal for
problem (1.3). Following the formalism of [3], we first introduce the notion of transport
set related to a subset � of Rd × Rd .
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Definition 5.1. Let � be a subset of Rd × Rd . The transport set T (�) of � is

{(1 − t)x + ty : (x, y) ∈ �, t ∈ ]0, 1[}.

Notice that if � is σ -compact then T (�) is also σ -compact.
The following Proposition 5.2 gives a regularity property for optimal transport plans

for (1.3) in the case where � · � is a strictly convex norm. This property is obtained using
two principal ingredients. The first is the fact that an optimal transport plan is concentrated
on a set of regular points (see Lemma 4.3). The second ingredient relies on the property
of the Kantorovich potentials stated in Lemma 2.2, which allows one to derive a density
estimate on the transport rays. This estimate is close to that stated in Lemma 5.4 of [7]
(see also [9]) for the transport potential of the variational problem studied therein.

Let us introduce some notation. Let x, y ∈ Rd with x �= y. We denote by Pxy the
orthogonal projection on the line xy passing through x and y with respect to the Euclidean
norm. For �, t1, t2 ∈ R with � > 0 and t1 < t2 we then define the following portion of
cylinder with axis xy:

Q(x, y, t1, t2, �) :=
�
z ∈ Rd : (Pxy(z) − x) · y − x

|y − x| ∈ [t1, t2] and |z − Pxy(z)| ≤ �

�
.

We can now state the following regularity result.

Proposition 5.2. Assume that � · � is a strictly convex norm and µ � Ld . Let also
γ ∈ �(µ, ν) be an optimal transport plan for problem (1.3) and � a σ -compact set on
which γ is concentrated. Then γ is concentrated on a σ -compact subset RT (�) of R(�)

such that for any (x, y) ∈ RT (�) with x �= y and for r > 0 small enough,

lim inf
δ→0+

Ld
�
T (� ∩ Q−δ,r (x, y) × B(y, r)) ∩ Q+δ,r (x, y)

�

Ld(Q+δ,r (x, y))
> 0 (5.1)

where for any δ > 0 we set

Q−δ,r (x, y) := Q(x, y,−δ, −δ/2, rδ) and Q+δ,r (x, y) := Q(x, y, 0, δ, rδ�)

with � := 1 + 2/|y − x|.
Proof. Step 1: definition of RT (�). Let u ∈ Lip1(�, � ·�) be a Kantorovich potential for
problem (1.3), and denote by Diff(u) the set of points of differentiability of u. By consid-
ering � ∩ supp γ and applying Theorem 2.1, we may assume without loss of generality
that

∀(x, y) ∈ �, u(x) − u(y) = �x − y�. (5.2)

Since u is Lipschitz continuous in �, Diff(u) has full Lebesgue measure in �, so that
there exists a sequence (Uk)k≥0 of open subsets of � such that

∀k ≥ 0, � \ Uk ⊂ Diff(u) and lim
k→∞

Ld(Uk) = 0.
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We set
A := R(�) ∩

�

k≥0
(� \ Uk) × �.

and notice that A is a σ -compact set which has full measure for γ . In particular, π1(A) is
also σ -compact and it has full measure for µ. Since Ld(π1(A) \ Leb(π1(A))) = 0, there
exists a sequence (Vk)k≥0 of open subsets of � such that

∀k ≥ 0, π1(A) \ Leb(π1(A)) ⊂ Vk and lim
k→∞

Ld(Vk) = 0.

We may now define
RT (�) := A ∩

�

k≥0
(� \ Vk) × �.

Then RT (�) is a σ -compact set which is included in R(�) and has full measure for γ .
Moreover, notice that if (x, y) ∈ RT (�) then x ∈ Diff(u) and x is a Lebesgue point of
π1(RT (�)).

We shall prove that the set RT (�) has the desired property.

Step 2: reduction of the proof. In the following, (x̃, ỹ) is an element of RT (�) with
x̃ �= ỹ, and we aim to show that for r > 0 small enough

lim inf
δ→0+

Ld
�
T (� ∩ Q−δ,r (x̃, ỹ) × B(ỹ, r)) ∩ Q+δ,r (x̃, ỹ)

�

Ld(Q+δ,r (x̃, ỹ))
> 0. (5.3)

Without loss of generality we may assume that x̃ = 0 and (ỹ−x̃)/|ỹ−x̃| = ỹ/|ỹ| = e1
is the first vector of the canonical Euclidean basis of Rd . If for s > 0 we denote by
Bd−1(0, s) the closed ball in Rd−1 of center 0 and radius s, we can rewrite

Q−δ,r (x̃, ỹ) = [−δ, −δ/2] × Bd−1(0, rδ) and Q+δ,r (x̃, ỹ) = [0, δ] × Bd−1(0, rδ�)

where we also notice that � = 1 + 2/|ỹ|.

2rδ� 2rδ

δ
2

δ

Q−δ,r (x̃, ỹ)

Q+δ,r (x̃, ỹ)

r

ỹ
x̃

Fig. 5.1.
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Fix r ∈ ]0, 1
3 |ỹ|[. Then for any δ ∈ ]0, r[,

inf
�
|y − x| : x ∈ [−δ, δ] × Bd−1(0, rδ�), y ∈ B(ỹ, r)

�
= |ỹ| − r − δ > 0. (5.4)

Since (0, ỹ) ∈ R(�), 0 is a Lebesgue point of �−1(B(ỹ, r)). Since 0 is also a
Lebesgue point of π1(RT (�)), we infer that it is a Lebesgue point of the σ -compact set
R := �−1(B(ỹ, r))∩π1(RT (�)). It then follows from the Fubini theorem, the definition
of Lebesgue points and Remark 4.2 that for δ ∈ ]0, r[ small enough one has

L1��t ∈ [−δ, δ] : Hd−1(R ∩ {t} × Bd−1(0, rδ)) ≥ 1
2 (rδ)d−1ωd−1

��
≥ 8

5δ

where ωd−1 = Ld−1(Bd−1(0, 1)). We fix such a small enough δ ∈ ]0, r[, and choose
tδ ∈ [−δ, −δ/2] such that

Hd−1(R ∩ {tδ} × Bd−1(0, rδ)) ≥ 1
2 (rδ)d−1ωd−1.

We finally take a compact subset Rδ of R ∩ {tδ} × Bd−1(0, rδ) such that Hd−1(Rδ) ≥
1
4 (rδ)d−1ωd−1 and we shall now obtain a lower bound for

Ld
�
T (� ∩Rδ × B(ỹ, r)) ∩ Q+δ,r (0, ỹ)

�
.

Step 3: an approximation for T (� ∩ Rδ × B(ỹ, r)) on Q+δ,r (0, ỹ). Let {yk}k≥0 be a
dense sequence in B(ỹ, r). Then for x ∈ � and N ≥ 0 we set

MN(x) :=
�
k ∈ {0, . . . , N} : u(yk) + �x − yk� = min

0≤j≤N
{u(yj ) + �x − yj�}

�
.

We now consider

Cδ,N :=
N�

k=0
{(x, yk) : x ∈ Rδ and k ∈ MN(x)}.

Notice that Cδ,N is a compact set and π1(Cδ,N ) = Rδ . We finally set

L := Q+δ,r (0, ỹ) ∩
�

K≥0

�

N≥K

T (Cδ,N )

and we claim that L ⊂ T (� ∩Rδ × B(ỹ, r)) ∩ Q+δ,r (0, ỹ). Indeed, let x ∈ L; then there
exist x� ∈ Rδ and z� ∈ B(ỹ, r) such that x ∈ [x�, z�] and

u(z�) + �x� − z�� = inf
k≥0

{u(yk) + �x� − yk�} = min
y∈B(ỹ,r)

{u(y) + �x� − y�}.

Since x� ∈ Rδ ⊂ �−1(B(ỹ, r)), we infer that there exists y� ∈ B(ỹ, r) such that
(x�, y�) ∈ �. As a consequence of (5.2), one has

u(x�) = u(y�) + �x� − y�� = min
y∈B(ỹ,r)

{u(y) + �x� − y�}.
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We thus find that u(x�) = u(z�) + �x� − z�� and we conclude from Rδ ⊂ Diff(u) and
Lemma 2.2 that either z� ∈ [x�, y�] or y� ∈ [x�, z�]. Therefore z� belongs to the line passing
through x� and y�; hence by (5.4), x belongs to [x�, y�] and thus to T (� ∩Rδ ×B(ỹ, r))∩
Q+δ,r (0, ỹ).

Step 4: a lower bound on Ld(T (Cδ,N ) ∩ Q+δ,r (0, ỹ)). Fix N ≥ 0, and define for any
k ∈ {0, . . . , N} the Borel set

Dk := {x ∈ Rδ : k = min{j : j ∈ MN(x)}}.

For any k ∈ {0, . . . , N} the cone T (Dk × {yk}) with basis Dk and vertex yk is included
in T (Cδ,N ). We claim that these cones do not overlap:

k �= l ⇒ T (Dk × {yk}) ∩ T (Dl × {yl}) = ∅.

Striving for a contradiction, assume that for some k < l, xk ∈ Dk and xl ∈ Dl there exists
z ∈ [xk, yk] ∩ [xl, yl]. Then it follows from the definitions of Dk that

u(yk) + �xk − yk� ≤ u(yl) + �xk − yl�

and from k < l and the definition of Dl that

u(yl) + �xl − yl� < u(yk) + �xl − yk�.

We now compute

u(yk) + �z − yk� = u(yk) + �xk − yk� − �xk − z� ≤ u(yl) + �xk − yl� − �xk − z�
≤ u(yl) + �z − yl� = u(yl) + �xl − yl� − �xl − z�
< u(yk) + �xl − yk� − �xl − z� ≤ u(yk) + �z − yk�,

which is a contradiction and proves the claim.
We infer from the choice of � (see Figure 1) that

T (Dk × {yk}) ∩ [0, δ] × Rd−1 ⊂ Q+δ,r (0, ỹ)

and we deduce from (5.4) the following estimate for any k ∈ {0, . . . , N}:

Ld(T (Dk × {yk}) ∩ Q+δ,r (0, ỹ))) ≥ δ
|ỹ| − r − δ

|ỹ| − r + δ
Hd−1(Dk) ≥ δ

2
Hd−1(Dk).

Since the cones T (Dk × {yk}) do not overlap, we obtain

Ld(T (Cδ,N ) ∩ Q+δ,r (0, ỹ)) ≥ δ

2

N�

k=0
Hd−1(Dk) = δ

2
Hd−1(Rδ)

and thus
Ld(T (Cδ,N ) ∩ Q+δ,r (0, ỹ)) ≥ 1

8 rd−1δdωd−1. (5.5)
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Step 5. We now conclude the proof by noticing that

L =
�

K≥0

�

N≥K

T (Cδ,N ) ∩ Q+δ,r (0, ỹ)

so that
Ld(L) ≥ 1

8
1

�d−1L
d(Q+δ,r (0, ỹ)).

We then infer from L ⊂ T (� ∩Rδ × B(ỹ, r)) ∩ Q+δ,r (0, ỹ) that (5.3) holds. ��

Remark 5.3. In the above proof, we only use the strict convexity of the norm � · � to
apply Lemma 2.2.

6. Proof of the main theorem

Now we are in a position to prove Theorem 1.1, which is, in fact, a corollary of the
following more precise result.

Theorem 6.1. Assume that the norm � · � is strictly convex and µ � Ld . Then for every
γ ∈ �(µ, ν) ∩ O2(µ, ν) there exists a map Tγ ∈ T (µ, ν) such that γ = (id × Tγ )�µ.
Moreover, the solution γ ∈ �(µ, ν) ∩O2(µ, ν) is unique.

Proof. By Proposition 2.1 in [1], it is sufficient to prove that γ is concentrated on a Borel
graph.

It follows from Proposition 3.2 that γ is concentrated on a σ -compact set � satisfying
(3.3). We then apply Proposition 5.2 to infer that γ is concentrated on a σ -compact subset
RT (�) of R(�) satisfying (5.1).

We claim that RT (�) is contained in a graph. To prove this, we show that if (x0, y0)
and (x0, y1) both belong to RT (�) then y0 = y1. Indeed, assume that y1 �= y0. Then
either (y1 − y0) · (y0 − x0) < 0 or (y0 − y1) · (y1 − x0) < 0. Without loss of generality,
we assume that

(y1 − y0) · (y0 − x0) < 0.

We fix r > 0 small enough so that

∀x ∈ Q+r,r (x0, y0), ∀y� ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y�) · (y� − x) < 0. (6.1)

Since (x0, y1) ∈ RT (�), we infer that x0 is a Lebesgue point for �−1(B(y1, r)). More-
over, we also see from (x0, y0) ∈ RT (�) and (5.1) that

lim inf
δ→0+

Ld
�
T (� ∩ Q−δ,r (x0, y0) × B(y0, r)) ∩ Q+δ,r (x0, y0)

�

Ld(Q+δ,r (x0, y0))
> 0.

As a consequence, for δ ∈ ]0, r[ small enough there exist (x�, y�) and (x, y) in � such
that

x� ∈ Q−δ,r (x0, y0), y� ∈ B(y0, r), x ∈ [x�, y�] ∩ Q+δ,r (x0, y0) and y ∈ B(y1, r).



Optimal transport map 1367

It follows from (3.3) applied to (x�, y�) and (x, y) that

(y − y�) · (x − x�) ≥ 0

but since x ∈ [x�, y�] one also has x − x� = |x−x�|
|y�−x| (y

� − x) and we get a contradiction
with (6.1).

The uniqueness of γ ∈ �(µ, ν) ∩ O2(µ, ν) is obtained as in Step 5 of the proof of
Theorem B in [2]: if γ1 and γ2 are two such transport plans, then (γ1 +γ2)/2 also belongs
to �(µ, ν) ∩ O2(µ, ν). It follows from the preceding that these plans are all induced by
transport maps, which then coincide µ almost everywhere.

��

7. Norms which are not strictly convex and further remarks

It is remarkable in the preceding proofs that the strict convexity assumption on the norm
� ·� is only used through Lemma 2.2; as explained in the introduction of [2], the direction
of transportation is totally determined at any point of differentiability of a Kantorovich
potential u when the norm � · � is strictly convex, and this information is sufficient to
conclude the proof of 5.2. Without this assumption, the optimality of the transport plan
γ is not enough to obtain the density property of Proposition 5.2. This is shown by the
following example constructed in [2]:

Theorem 7.1 (Theorem A of [2]). There exist a Borel set M ⊂ [−1, 1]3 with |M| = 8
and two Borel maps fi : M → [−2, 2] × [−2, 2] for i = 1, 2 such that the following
holds. For x ∈ M denote by lx the segment connecting (f1(x), −2) to (f2(x), 2). Then

(1) {x} = lx ∩ M for all x ∈ M ,
(2) lx ∩ ly = ∅ for all x, y ∈ M different.

To give a counterexample to Proposition 5.2 without the assumption of strict convexity of
� · �, consider the map

T (x) := (f2(x), 2)

and observe that, for the norm �(x, y, z)� := max{|x|, |y|, 3|z|}, the map T is an optimal
transport map for (1.2) between µ = Ld�M and ν = T�µ. However, the open transport
set T (supp((id × T )�µ)) has density 0 at every point of M .

A significant quantity related to the transport set is the so called transport density,
i.e. a positive measure σ which solves together with any transport potential the system of
PDEs �− div(σDu) = µ − ν,

�Du�∗ = 1 σ -a.e. (7.1)

The relationship between the transport density and the Monge–Kantorovich problem is
given by the following formula first discovered in [10]. Let γ be an optimal transport
plan, and for each Borel set B ⊂ � consider

σγ (B) :=
�

�×�
H1(B ∩ [x, y])) dγ (x, y).
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Then σγ is a solution of (7.1) above. Clearly σγ is supported on the transport set
T (supp γ ). In practical terms the measure σγ (D) of a set D represents the work done
in the set D while transporting µ to ν following the plan γ . A detailed discussion of the
properties of such measures is beyond the scope of this paper. The transport density plays
a crucial role in the proof of existence given in [17], and good estimates from above are
available for σγ [1, 15, 14, 16]. Proving some estimate from below for σγ could be in-
teresting for the approach of this paper. In fact, assume for example that σγ has an L∞

density aγ (see for example [15, 17]) and that at a point x one has 0 < aγ (x). Then the
lower density of the transport set T (γ ) at x satisfies θ∗(T (supp γ ), x) > 0 because

aγ (x) = lim
r→0

1
ωdrd

�

B(x,r)
aγ (y) dy ≤ lim inf

r→0
�aγ �∞

|T (supp γ ) ∩ B(x, r)|
ωdrd

.

Because of the above example, we however cannot expect an estimate from below on σγ

for any solution γ of (1.3), but this may hold for example for an element of O2(µ, ν).
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[21] Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie des
Sciences de Paris, 666–704 (1781)

[22] Pratelli, A.: On the sufficiency of c-cyclical monotonicity for optimality of transport plans.
Math. Z. 258, 677–690 (2008) Zbl pre05236319 MR 2369050
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