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A B S T R A C T

This article proposes a method to assess the minimum detectable changes in system parameters
based on Bayesian inference. The approach considers the monitored parameters as random
variables, and uses linear Bayesian filters to update them based on system observations. To
determine the detectable changes in them, a special quality of Kalman filter is exploited, that
is, the fact that the posterior variance is independent of the observations of the changed state,
and that it can be calculated based on previous knowledge. To enable an automated change
diagnosis, a decision rule is introduced, based on the posterior’s probability of exceeding a user-
defined threshold. This way, the user can specify an allowable probability of exceedance, and
subsequently, this value can be converted into an equivalent detectable change. To cope with
large systems and multiple system observations, a functional Kalman Filter is applied, which
enables an analytical solution to the Bayesian inverse problem. For proof of concept, three
numerical case studies related to structural health monitoring are presented, including a 6-DOF
mass-and-spring system, an offshore tower subject to marine growth, and a reinforced concrete
bridge affected by seismic damage. The case studies highlight that no data from the changed
state is required to accurately evaluate the detectable change. Secondly, the detectability can
be evaluated for any measurement quantity (vibrations, inclinations) or extracted damage-
sensitive feature (natural frequencies, mode shapes), provided it is sensitive to changes in the
system parameters. Furthermore, the detectability can be assessed for various damage scenarios
and a wide range of monitored systems, provided that numerical models are available, e.g.
physics-based models or surrogate models.

. Introduction

Bayesian methods are suitable tools to solve inverse problems, that is, to analyze the observable system outputs through sensors,
nd to infer knowledge on latent system inputs that caused the changes in data. They consider previous knowledge on the system
arameters (through the prior) as well as the uncertainties in the measurements (through the likelihood) to infer an updated system
arameter (the posterior). Traditionally, the magnitude of changes is assessed a posteriori, that is, based on data in the changed state,
nd a change diagnosis is issued by comparing the posterior to a safety threshold. However, in some cases, it might be desirable to
ssess the change detectability before this data becomes available, for example, to assess the performance of the measuring system
nd to convince the system operators of the added value. On this background, the objective of this article is to develop a method
o ‘‘predictively’’ assess the detectable parameter changes.
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The problem statement is motivated by structural health monitoring (SHM) applications with large and expensive engineering
tructures, such as, bridges, highrises, dams, and power plants. Due to their uniqueness, no data is available from the damage states,
nd damages may evolve over long time periods. Yet, it is important to know what a monitoring system can achieve before it is
mplemented. The diagnosis procedure is typically divided into multiple steps: the acquisition of measurements, the extraction of
amage-sensitive features, and their statistical evaluation [1]. The diagnostic depth can be categorized into four hierarchical steps of
ncreasing complexity, e.g. damage detection, localization, quantification, and lifetime prediction [2]. For each step, it is important to
learly communicate the reliability of the automated monitoring system, and one way of doing this is by determining the diagnosable
amages, i.e., the detectable changes in the structure that the monitoring system can sense based on uncertain measurements. Various
pproaches exists in the literature for this purpose, but most of them are empirical, structure-specific, and cannot be transferred
o other structures. For example, Coppolino et al. [3] developed a structure-specific rule of thumb for offshore structures, and
stimates how many frame members have to fail for these structural changes to become observable in ambient vibration data. Other
pproaches resort to synthetically generated data to assess the detectability, e.g. for masonry bell towers [4,5], but simulated time
istories often fail to accurately capture the distribution properties of non-stationary excitation and measurement noise (Gaussian
s. uniform, white noise vs. colored noise). The accurate quantification of measurement errors is critical to assess the detectability
f damage, and therefore, a common approach is to compare the deviations to their 95% confidence bounds [6]. Alternatively,
ne can resort to well-established methods to evaluate the probability of detection (POD), i.e., the probability that a change in a
aterial, component, or system is detected, given that it is present. According to design standards in non-destructive testing [7–9],

he POD can be evaluated as the relative number of signals beyond a user-defined threshold, but this requires destructive tests on
0 to 90 specimens, which are not feasible for bridges, dams, or other SHM applications.

On this background, Mendler et al. [10] developed a ‘‘predictive’’ method to calculate the POD based on data from undamaged
tructures, and this method is universally applicable to any structure that can be modeled through analytical formulas. The prediction
equires knowledge on the physical relation between system inputs and observable outputs (captured in a sensitivity matrix) and it
s only accurate for small structural changes due to a first-order Taylor expansion. Mendler et al. [11] expanded the framework to
redict the minimum localizable damage, and concluded that defining the optimal localizability is a multi-objective optimization
roblem, as an increased localization resolution leads to a smaller detectability, and more frequent alarms in unchanged components,
ue to the numerical ill-conditioning of inverse problems. All presented approaches assume deterministic input parameters, but
his assumption may not be justified for system inputs with large uncertainties. Bayesian methods [12], on the other hand, treat
ystem parameters as random variables and provide advanced diagnostic capabilities, such as, damage quantification [13] and
he prediction of the remaining lifetime [14]. Commonly, the changed state is distinguished from the unchanged state through
ser-defined safety thresholds as well, and the region between the upper and lower control limits is sometimes called the region
f practical equivalence [15]. A common way to solve inverse problem based on Bayesian inference is Markov Chain Monte Carlo
MCMC) sampling, but this method can be time-consuming, and might fail to update SHM models due to the large number of
arameters and observations. To remedy this, more efficient approaches have been developed to solve Bayesian inverse problem
ased on functional approximation of random variables [16–19] with successful applications in non-destructive testing (NDT) and
HM [20–23]. A particularly interesting method is the Kalman filter based on polynomial chaos expansion (PCE) [24,25], as it
nalytically solves the inverse problem, and can handle a large number of observations and system parameters. The method was
pplied to parameter identification [26,27] as well as damage assessment [28,29], but the reliability of the diagnosis was never
xplicitly considered.

The objective of this paper is to develop a fully-probabilistic framework to assess the minimum detectable changes before
amage occurs. For this purpose, linear Bayesian filters are employed to ‘‘predict’’ the uncertainty affecting the parameter, and
o compare it against the user-defined thresholds for damage quantification. To deal with large engineering problems and slightly
on-linear systems, a PCE-based Kalman filter is incorporated that can handle a large number of observations and system parameters.
he method considers the uncertainties in the system parameters and in the observations, and three approaches are recapped to
uantify the measurement errors. The paper is organized as follows: Section 2 gives some background on Bayesian model updating
sing Kalman filters and general polynomial chaos expansion. Moreover, a simplified numerical study is introduced, which is used
hroughout this paper to highlight the new developments. Section 3 introduces the concept of damage detectability for Bayesian
pdating. In Section 4, the method is applied in two numerical proof of concept studies, and Section 5 draws some conclusions.

. Bayesian model updating

.1. Bayesian inverse problems

Let us consider a mechanical system whose dynamic behavior can be modeled through a set of partial differential equations. The
odel is characterized by a system input vector Q ∈ R𝑁𝑝 with 𝑁𝑝 parameters. In this paper, the inputs are modeled as Gaussian

independent variables

Q ∼  (𝝁𝑄,𝐂𝑄), (1)

so they can be uniquely described through one mean vector 𝝁𝑄 ∈ R𝑁𝑝 and a diagonal covariance matrix 𝐂𝑄 ∈ R𝑁𝑝×𝑁𝑝 . In this
paper, capital latin letters Q are used for random variables and small q letters for their realizations. A deterministic mechanical
system 𝐺 is assumed that transforms the system inputs Q into the outputs y = 𝐺(q) ∈ R𝑁𝑓 , where 𝑁𝑓 is the number of observations.
2

Since measurement errors are inevitable in practice due to noisy sensors or uncertainties in the feature estimation process, the
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observable output z is modeled as a linear superposition of the observations and the error, i.e., Z = 𝐺(Q) + E. The distribution of
he measurement error 𝐄 ∈ R𝑁𝑓 itself,

E = Z − 𝐺(Q) ∼  (𝟎,C𝐸 ), (2)

s assumed to have a zero mean vector and a diagonal covariance matrix C𝐸 ∈ R𝑁𝑓×𝑁𝑓 . The Bayesian approach seeks to estimate
he random vector Q given a single observation z. After updating, the posterior random variable Q′ can be written as

𝜋Q′ (q) =
𝐿(q)𝜋𝑄(q)

∫ 𝐿(q)𝜋𝑄(q)𝑑𝑞
, 𝐿(q) =

𝑁𝑓
∏

𝑖=1
𝜋𝐸𝑖

(𝑧𝑖 − 𝑦𝑖), (3)

where 𝜋 describes the probability density function (PDF) and 𝐿(q) is the likelihood function. In most cases, the likelihood and
the posterior distribution cannot be analytically derived in closed form. A common approach to circumvent this problem is MCMC
sampling, but it can be computationally demanding. More efficient approaches are outlined in the next sections.

2.2. Linear Bayesian filters

An efficient approach to Bayesian updating is the calibration of statistical moments instead of entire PDFs. Following the
derivation in Litvinenko and Matthies [30], one may rewrite the Bayes rule in terms of a quadratic minimization problem and,
by restricting the solution to the linear measurable functions, obtain the linear Bayesian formula

Q′ = Q + K(z − Y), (4)

where Q is the prior, z are the observations, and Y are system outputs from a analytical model. The metric K is the Kalman gain [31]

𝐊 = 𝐂𝐐𝐘
[

𝐂𝐘 + 𝐂𝐄
]−1 , (5)

where 𝐂Y is the system output covariance, 𝐂E is the error covariance, and 𝐂QY is the covariance between the system inputs and the
system outputs. If the prior Q is Gaussian as in Eq. (1), and the model G is linear, it can be shown that the posterior is Gaussian as
well 𝐐′ ∼  (𝝁Q′ ,𝐂𝐐′ ), with the mean and the covariance [32]

𝝁Q′ = 𝝁Q + K(z − G(𝝁Q)), 𝐂𝐐′ = 𝐂𝐐 −𝐊𝐂𝑇
𝐐𝐘. (6)

The updated covariance 𝐂𝐐′ is independent of the observation, and therefore, all quantities for its computation are available based
on data from the unchanged system. This fundamental relation will be leveraged in this paper to define the detectable change in
input parameters.

2.3. Polynomial chaos expansion

If the model is non-linear, the calculation of the cross-covariance 𝐂𝐐𝐘 is not straightforward. For this reason, the PCE-based
Kalman filter is developed, which is suited for slightly non-linear problems with a high number of observations and parameters [33].
The main idea is to represent all random variables in PCE form, and to update the PCE coefficients q̂ based on the linear Bayesian
formula. Let us assume that each random variable is represented in PCE form, with a suitable basis, and subsequently transformed
into a unified basis [32]

𝐐̂ =
∑


𝐪̂𝜶𝐇𝜶 , 𝐘̂ =

∑


𝐲̂𝜶𝐇𝜶 , 𝐙̂ =

∑


𝐳̂𝜶𝐇𝜶 , 𝐄̂ =

∑


𝐞̂𝜶𝐇𝜶 , (7)

where 𝐪̂𝜶 , 𝐲̂𝜶 , 𝐳̂𝜶 , 𝐞̂𝜶 are coefficients and 𝐇̂𝜶 represents the generalized multi-variate orthogonal polynomials. Since Gaussian random
variables are assumed, Hermite polynomials are used as basis functions [34]. The letter  represents the set of all finite, non-negative
integer sequences, i.e. multi-indices 𝜶 such that the following expression holds [19]

 ∶= 𝜶 = (𝛼1,… , 𝛼𝑗 ,…) |

|

|

𝛼𝑗 ∈ N(N)
0 , |𝜶| =

∞
∑

𝑗=1
𝛼𝑗 < ∞. (8)

For computational efficiency, only a finite subset of  is taken, and the expansion is truncated after the polynomial order 𝑝. In
Eq. (7), the variables 𝐘̂ ∈ R𝑁𝑝×𝑁𝑓 , 𝐙̂ ∈ R𝑁𝑝×𝑁𝑓 represent the system output and the observation, respectively. Various approaches
exist to estimate the coefficients, e.g., interpolation, regression, or projection [35], where the latter is used in this paper. In this
case, the linear Bayesian updating procedure can be reduced to an analytical method, and Eq. (4) can be rewritten in the following
form

𝐐̂′ = 𝐐̂ +𝐊(𝐳̂ − 𝐘̂), (9)

where 𝐊 is the Kalman filter evaluated with the following covariances

𝐂𝐘 =
∑

𝜶>0
𝜶!𝐲̂𝜶(𝐲̂𝜶)

𝑇 , 𝐂𝐄 =
∑

𝜶>0
𝜶!𝐞̂𝜶(𝐞̂𝜶)

𝑇 , 𝐂𝐐𝐘 =
∑

𝜶>0
𝜶!𝐪̂𝜶(𝐲̂𝜶)

𝑇 . (10)

his approach is particularly efficient in comparison to MCMC, because the model 𝐺 only has to be run a few times to build the PCE-
ased surrogate model. Moreover, the posterior variance can be estimated analytically based on observations from the unchanged
ystem.
3
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Fig. 1. 6-DOF mass and spring system with deterministic masses 𝑚 = 1000 t and stochastic springs with a mean of 𝜇𝐾 = 2000 MN/m (left) and the corresponding
natural frequencies and mode shapes (right).

Fig. 2. Damage detection, localization, and quantification result for the 6-DOF system with a stiffness decrease in parameter 𝑄1 (left), parameter 𝑄2 (center),
and parameter 𝑄3 (right).

2.4. 6-DOF example

In this section, a case study is introduced to demonstrate how the inverse problem can be solved based on PCE-based Kalman
filters and how damage can be quantified in SHM. Note that all case studies in this paper are based on numerical simulations. The
structure under consideration is a six-story building with rigid slabs and slender columns, which is simplified to a mass-and-spring
system with six horizontal degrees of freedom (DOF) 𝑢1 to 𝑢6 and the properties shown in Fig. 1.

The input parameters to be updated are the three stiffness values of the lower floors Q = [𝐾1, 𝐾2, 𝐾3] characterized by a Gaussian
distribution with a mean value of 2000 MN/m and a standard deviation of 400 MN/m each. The observed features are the first
six natural frequencies 𝐙 = [𝐹1 …𝐹6]. They are calculated based on numerical modal analysis and treated as the mean value of
the considered observations. The error covariance C𝐸 is assumed to be known and fixed by the user to the following values for
reproducibility

C𝐸 = diag
[

0.0172 0.0512 0.0812 0.1072 0.1262 0.1382
]

, (11)

meaning the standard deviation of the error related to the first natural frequency is 0.017. Damage was modeled by individually
shifting the mean value of one input parameter at a time, so three damage scenarios can be distinguished. Before solving the inverse
4
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Fig. 3. Distribution of a single parameter 𝑄𝑖.

problem, a surrogate model based on PCE has to be built. In the first step, the input random parameters are mapped onto a reference
set of standard Gaussian variables (the germ). Then, the coefficients are evaluated through projection, and by re-running the model
at several integration points, with the result being a surrogate model of the observed system outputs. Subsequently, an ‘‘artificial’’
measurement is generated with both the original finite element model and the surrogate model, and the order 𝑝 of the expansion is
increased until the differences between the two model outputs are negligible. In all case studies in this paper, a polynomial order of
𝑝 = 5 is deemed sufficient. For a detailed description of this procedure, please refer to Friedman et al. [32]. Based on the surrogate
model, the covariances and the Kalman filter can be computed, using Eqs. (9) and (10), and the mean value and the standard
deviation of the input parameters can be updated based on observations of the system outputs using Eq. (6). Note that no sampling
is required in this procedure, as the mean and the variance of the posterior can be computed analytically.

Fig. 2 shows the result from Bayesian updating for all three damage scenarios with damage on the ground floor (left), second
floor (center), and the third floor (right). The prior distribution is indicated through a dotted line and the posterior distribution
through a solid line. For the first damage scenario (on the left side of the figure), the posterior distribution shifts to the left with a
new mean of 𝜇𝑄′

1
= 2000 − 753 = 1247 MN/m, while the posterior distribution of other parameters 𝑄2 and 𝑄3 remain unchanged.

This way, damage can be detected, localized on the ground floor, and quantified accurately. Comparing the posterior and the prior,
it can be appreciated that the spread of the distribution decreases, meaning the uncertainty in the parameter has decreased because
additional information is available from measurements. The ‘‘true’’ value for the input parameter is not necessarily at the mean
value but anywhere below the density function. Since the posterior extends to infinity, one may ask how far the mean value has
to shift, so an automated monitoring system can make a reliable statement regarding the true state of the system parameter. This
question is addressed in the subsequent sections, which also give more information on how to determine the safety intervals in
Fig. 2.

3. Minimum detectable changes

Bayesian approaches allow for input parameters to be modeled as random variables, and in this paper, they are assumed to be
Gaussian, see Fig. 3. The mean and covariance are generally known based on previous knowledge, Q ∼  (𝝁𝐐,𝐂𝐐). If measurements
of system outputs are available, the covariance of the parameter estimates 𝐂𝐐′ can be updated using Bayesian linear filters, see
Eq. (6). It depends on the prior covariance, the measurement error, as well as the covariance between inputs and outputs. This
relation will now be leveraged to determine how far the distribution of the system parameter has to shift for a reliable damage
diagnosis, and to estimate the minimum detectable damage.

Before the detectability of damages in input parameters can be assessed, the anticipated changes have to be parameterized,
i.e., expressed through parameter changes. In all following considerations, system changes are modeled as changes in the mean
input vector

𝛥Q = 𝝁𝐐′ − 𝝁𝐐, (12)

where 𝝁𝐐 is the mean vector before changes occur and 𝝁𝐐′ afterward. Parameter changes can have a positive or negative sign. The
true parameters may not coincide with the mean values but lay anywhere within the density functions from Fig. 3. Therefore, a
decision rule has to be implemented to enable an automated monitoring system to determine if the parameters have changed. One
way to achieve this is to define a safety interval Q𝑡ℎ𝑟𝑒𝑠 ∈ R𝑁𝑝 ,2 by setting a lower and upper threshold 𝑄−

𝑡ℎ𝑟𝑒𝑠,𝑖 and 𝑄+
𝑡ℎ𝑟𝑒𝑠,𝑖 for each

parameter,
[ − + ]
5

Q𝑡ℎ𝑟𝑒𝑠 = Q𝑡ℎ𝑟𝑒𝑠 Q𝑡ℎ𝑟𝑒𝑠 , (13)
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Fig. 4. Probability of exceedance (POE) curve for parameter 𝑄2 of the 6-DOF system.

and to compare the posterior distributions against the safety thresholds. In many cases, the safety interval can be determined based
on engineering knowledge, either based on material-specific strength values that must not be exceeded or based on experience gained
from the analysis of similar structures. If this is not possible, the safety threshold could be determined based on national design
standards and the target reliability concept. A third option is to define the safety threshold based on the posterior distribution, but
more on this follows in Section 3.3.

3.1. Probability of exceedance

This section introduces the decision criterion to automatically determine if the parameters have changed. To ease its explanation,
the discussion is focused on a single parameter change 𝛥𝑄𝑖. Safe operation is guaranteed if the true parameter lays within the
safety thresholds from Eq. (13). However, the distribution of 𝑄𝑖 extends from zero to infinity, and some proportion of the density
function will always be beyond the thresholds, even if no changes have occurred, see Fig. 3. A critical condition arises when the
input parameter shifts beyond the safety thresholds, i.e., if it is significantly lower or higher. Even if the mean parameter estimate
𝜇𝑄′

𝑖
does not move beyond but close to the safety threshold, a significant proportion of the distribution may stretch beyond the

thresholds, indicating a possibly critical state. The tail of the distribution beyond the safety threshold describes the likelihood that
the parameter is in changed state, which is called the probability of exceedance (POE) in this paper. Depending on whether the
mean parameter shifts toward lower or higher values, the POE is quantified as the area under the density function below or beyond
the respective safety threshold

𝑃 (𝑄′
𝑖 < 𝑄−

𝑡ℎ𝑟𝑒𝑠,𝑖) = ∫

𝑄−
𝑡ℎ𝑟𝑒𝑠,𝑖

−∞
𝑓 (𝜇𝑄′

𝑖
,𝜎𝑄′

𝑖
)𝑑𝑞,

𝑃 (𝑄′
𝑖 > 𝑄+

𝑡ℎ𝑟𝑒𝑠,𝑖) = ∫

∞

𝑄+
𝑡ℎ𝑟𝑒𝑠,𝑖

𝑓 (𝜇𝑄′
𝑖
,𝜎𝑄′

𝑖
)𝑑𝑞,

(14)

where 𝜎𝑄′
𝑖
=
√

C𝑄′
𝑖
. The more significant the shift in the input parameter 𝛥𝑄𝑖, the larger the proportion of the posterior distribution

beyond the safety interval and the higher the probability of exceedance. Substituting the change definition from Eq. (12) in Eq. (14),
the posterior mean 𝜇𝑄′

𝑖
can be expressed through the parameter change 𝜇𝑄′

𝑖
= 𝜇𝑄𝑖

+𝛥𝑄𝑖. The posterior covariance C𝑄′
𝑖
, on the other

hand, can be calculated based on the Kalman filter from Eq. (6). Therefore, the only unknown on the right side of Eq. (14) is the
parameter change 𝛥𝑄𝑖, which can be converted into an equivalent POE (left side of the equation). The most intuitive way to present
the mathematical relation is by plotting the POE over the corresponding parameter changes 𝛥𝑄𝑖 in so-called POE curves.

Example: Fig. 4 plots the POE curve for the second input parameter 𝑄2 of the 6-DOF system, which corresponds to the spring
stiffness that represents the second floor, see Section 2.4. A parameter shift by −272 MN/m leads to POE of 4.4% (Point A), a
parameter change by −513 MN/m leads to a POE of 45.9% (Point B), and a parameter change of −753 MN/m leads to a POE of
93.9% (Point C).
6
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Table 1
Monitored system parameters Q = [𝐾1 𝐾2 𝐾3] of the 6-DOF system.

𝐾1 [Mt] 𝐾2 [Mt] 𝐾3 [Mt]

Prior PDF  (2000, 400)  (2000, 400)  (2000, 400)
Safety interval 𝑄±

𝑡ℎ𝑟𝑒𝑠,𝑖 [1487, 2513] [1487, 2513] [1487, 2513]
User-defined POE 5% 95% 95%
Detectable change 𝛥𝑖 −13.6% −37.7% −37.7%

3.2. Decision rules to define detectability

In this section, a decision rule is defined based on the POE from Eq. (14), and a framework is introduced to predict the minimum
etectable change in system parameters. The probability of exceedance (POE) describes the probability that a monitored input
arameter exceeds the safety threshold, and the previous section describes the mathematical relation between the POE and the
nput parameter changes as continuous POE curves, see Fig. 4 (top). That means that if the system operator is able to prescribe an
llowable probability of exceedance, the automated monitoring system can distinguish between the following three system states

𝜇𝑄′
𝑖
≈ 𝜇𝑄𝑖

if 𝑃 (𝑄′
𝑖 < 𝑄−

𝑡ℎ𝑟𝑒𝑠,𝑖) < POE−
𝑖 ∧ 𝑃 (𝑄′

𝑖 > 𝑄+
𝑡ℎ𝑟𝑒𝑠,𝑖) < POE+

𝑖 ,

𝜇𝑄′
𝑖
< 𝜇𝑄𝑖

if 𝑃 (𝑄′
𝑖 < 𝑄−

𝑡ℎ𝑟𝑒𝑠,𝑖) ≥ POE−
𝑖 ,

𝜇𝑄′
𝑖
> 𝜇𝑄𝑖

if 𝑃 (𝑄′
𝑖 > 𝑄+

𝑡ℎ𝑟𝑒𝑠,𝑖) ≥ POE+
𝑖 ,

(15)

here POE+
𝑖 is the user-defined POE for parameter increases, and POE−

𝑖 for parameter decreases. The limit state is reached if the
POE is identical to the user-defined requirements, and the corresponding parameter change is

𝛥𝑄−
𝑚𝑖𝑛,𝑖 = 𝛥𝑄𝑖 if 𝑃 (𝑄′

𝑖 < 𝑄−
𝑡ℎ𝑟𝑒𝑠,𝑖) = POE−

𝑖 ,

𝛥𝑄+
𝑚𝑖𝑛,𝑖 = 𝛥𝑄𝑖 if 𝑃 (𝑄′

𝑖 > 𝑄+
𝑡ℎ𝑟𝑒𝑠,𝑖) = POE+

𝑖 .
(16)

The parameter changes 𝛥𝑄+
𝑚𝑖𝑛,𝑖 and 𝛥𝑄−

𝑚𝑖𝑛,𝑖 are defined as the minimum detectable changes in this paper, sometimes given as relative
changes 𝛥𝑖 = 𝛥𝑄𝑚𝑖𝑛,𝑖∕𝜇𝑄𝑖

. It is only possible to assess the detectable change after the target values POE−
𝑖 and POE+

𝑖 have been
defined by the user. Although the function is continuous and the POE selection is arbitrary, three main schools of thought will be
distinguished in the following to highlight the versatility of the developed framework.

• Highly-critical parameters: A monitored parameter is classified as highly critical, if the consequences of parameter changes
are severe. This could be the case if the financial losses are excessive or the safety of human life is at risk, and the automated
monitoring system should issue an alarm at the slightest probability that the parameter has changed. In this case, it is in the
operator’s interest to choose a low value for the target POE, for example 5%. In this case, the posterior’s mean value lies within
the safety interval when an alarm is issued.

• Non-critical parameters: Not all parameter changes lead to severe consequences and yet, it may be desirable to monitor them.
The parameter change may, for example, affect the serviceability of the system or cause discomfort to users. In this case, no
alarm should be raised until there is clear evidence that the parameter has changed, and a decision can no longer be postponed.
Hence, it is legitimate for operators to choose a higher value for the target POE, i.e. 95%.

• Moderately-critical parameters: The POE can be arbitrarily chosen between zero and one POE ∈ ]0, 1[. In theory, the Gaussian
distribution functions of the prior and posterior stretch from −∞ to ∞, and that is why POEs of 0% or 100% are not possible.
In some special cases, the system operator might select a POE of 50%, for example, if the parameters are somewhere between
highly-critical and non-critical parameters. However, this case deserves special attention and will be discussed in more detail
in Section 3.3.

The presented approach is suitable to monitor several parameters at the same time, and since some parameter changes have more
severe consequences than others, it may be sensible to select different target POEs for different parameters within the same system.

Example: Table 1 summarizes the detectable damages for the three stiffness values of the 6-DOF system from Section 2.4. The
selected POE for stiffness changes on the ground floor is set to 5%, as stiffness decreases could lead to an immediate collapse,
so the probability of exceeding the thresholds should be low. The POE for stiffness changes on floor 2 and 3 are set to 95%, as
this stiffness value is considered less critical for the integrity of the structure. The results from Table 1 clarify that the minimum
detectable stiffness change in floor 2 and 3 are identical. So, detectability does not vary depending on the floor in this case, because
the prior and the thresholds are identical. The detectable stiffness change is lower for floor 1, because a lower value for the POE
was chosen. Therefore, the developed framework is versatile enough to reflect the importance of different system parameters for
the integrity of the structure.

3.3. Optimal detectability

After deriving a framework for the detectable change, a discussion of the limitations and the influencing factors seems in order.
Please note that the framework from Section 3.2 cannot be applied if the width of the posterior distribution is significantly wider
7
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(

Fig. 5. No decision can be made if the POE is exceeded on both sides of the safety interval (left) or if the POE is equal to the target values on both sides
right). Consequently, the safety interval must satisfy Eq. (18).

Fig. 6. Assessing the distance measure from Eq. (19) for wide and narrow posteriors, and for highly-critical parameters (left side) and non-critical parameters
(right side).

than the safety intervals and a small POE is chosen (highly-critical parameters). As shown in Fig. 5, the user-defined POE is exceeded
on either side of the safety interval in this case,

𝑃 (𝑄′
𝑖 < 𝑄−

𝑡ℎ𝑟𝑒𝑠,𝑖) > POE−
𝑖 ∧ 𝑃 (𝑄′

𝑖 > 𝑄+
𝑡ℎ𝑟𝑒𝑠,𝑖) > POE+

𝑖 , (17)

and the three states from Eq. (15) cannot be distinguished. This case occurs if the user selects an inappropriate safety threshold,
and the safety interval needs to satisfy the following threshold condition

𝑄−
𝑡ℎ𝑟𝑒𝑠,𝑖 < 𝜇𝑄𝑖

− 𝑘−𝜎𝑄′
𝑖
, 𝑄+

𝑡ℎ𝑟𝑒𝑠,𝑖 > 𝜇𝑄𝑖
+ 𝑘+𝜎𝑄′

𝑖
, (18)

which depends on the prior mean 𝜇𝑄𝑖
, the posterior standard deviation 𝜎𝑄′

𝑖
, and the user-defined POE at both interval boundaries

(𝑃𝑂𝐸−
𝑖 and 𝑃𝑂𝐸+

𝑖 ), which can be expressed through the number of standard deviations 𝑘, cf. the 68–95–99.7% rule. This indicates
that the minimum width of the safety interval depends on the width of the posterior distribution. Therefore, a new distance metric
𝐝 is introduced in this section to quantify the degree of ‘‘detectability’’ based on the width of the posterior distribution, or more
precisely, its standard deviation

𝐝 = diag(𝐂𝐐′ )1∕2. (19)

High detectability is achieved for a parameter 𝑄𝑖 if the posterior standard deviation is small, because then, the distribution is close
to the safety threshold with 𝑑𝑖 → 0 and the minimum detectable damage 𝛥𝑄−

𝑚𝑖𝑛,𝑖 or 𝛥𝑄+
𝑚𝑖𝑛,𝑖 is small, Fig. 6 (bottom plots). Low

detectability 𝑑𝑖 ≫ 0 is given for cases where posterior mean is close to the prior mean or far beyond the safety threshold, see Fig. 6
(top plots). Alternatively, the distance between the posterior mean and the safety threshold could have been chosen, but the distance
𝐝 from Eq. (19) is also meaningful if a target POE of 50% is chosen. After substituting the posterior covariance from Eq. (6) into
Eq. (19), this resulting equation allows one to identify the influencing factors for optimal change detectability

𝐝 = diag
(

𝐂𝐐 − K𝐂𝑇
𝐐𝐘

)1∕2
, where K =

(

𝐂𝐐𝐘
[

𝐂𝐘 + 𝐂𝐄
]−1

)

. (20)
8
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Table 2
Material properties of the tower model.

Type Material Cross section

𝐸 [ MN
m2 ] 𝐴 [m2] 𝐼 [m4] 𝐸𝐴 [MN] 𝐸𝐼 [MN m2]

Pillars Beam 210 000 1.0 0.146 210 000 30 700
Diagonals Truss 210 000 0.5 0.146 105 000 30 700

• Input variance. A crucial influencing variable is the variance of the input parameters, that is prior knowledge. It can
be quantified through the covariance 𝐂𝐐. More accurate knowledge leads to a lower variance and a narrower posterior
distribution, and thus, to a shorter distance 𝑑𝑖 for the considered parameter 𝑄𝑖.

• Measurement error. A second influencing factor for the detectability of damage is the measurement error, which is quantified
through the covariance 𝐂E. Low-noise sensors, cables, and data acquisition units, or very precise feature estimation methods
lead to a low measurement error, a narrower posterior distribution, and a shorter distance 𝑑𝑖.

• Sensitivity. Some measurable output quantities respond more rapidly to system changes than others. Mathematically, the
sensitivity is captured through the covariance between inputs and outputs 𝐂QY and the output covariance 𝐂Y. A high sensitivity
leads to a high covariance 𝐂QY and a small covariance 𝐂Y, and thus, a small distance 𝑑𝑖.

n summary, optimal detectability can be achieved for solid prior knowledge, a small measurement error, and highly sensitive
eatures. Among other applications, the distance 𝑑𝑖 is an appropriate measure to verify the signal-to-noise-ratio of measurement
quipment, to select the most sensitive features, and to optimize the sensor layout.

.4. Measurement error

One of the fundamental assumptions of the developed framework is that the measurement error is known, and this section
xplains how to quantify it based on measurement data. Measurement errors are inevitable and include uncertainties due to
easurement noise (noisy sensors, cables, or data acquisition systems), short measurement records, epistemic uncertainties in the

eature estimation process, and unknown excitation if stochastic systems are considered. For some monitoring applications, the
agnitude of the measurement errors might be known based on the sensor specifications or previous knowledge, but for most
onitoring applications, the error has to be estimated based on measurement data. In the following, well-established approaches

re categorized into empirical ones and others that are based on perturbation approaches.
Empirical approaches. Fully empirical approaches require a significant amount of data. First, one long measurement is taken and

plit into hundreds of segments. Secondly, the damage-sensitive features 𝐟 ∈ R𝑁𝑓 are extracted from each data segment and stored in
feature matrix 𝐅 = [𝐟1 𝐟2 … 𝐟𝑁 ] ∈ R𝑁𝑓×𝑁𝑠 where 𝑁𝑓 is the number of features and 𝑁𝑠 is the number of data segments. Ultimately,

the row means of 𝐅 are evaluated and subtracted to obtain the residual matrix 𝐑 = [𝐫1 𝐫2 … 𝐫𝑁 ] ∈ R𝑁𝑓×𝑁𝑠 , so the sample covariance
an be computed empirically as

C𝐸 = 1
𝑁 − 1

𝑁
∑

𝑖=1
𝐫𝑖𝐫𝑇𝑖 = 1

𝑁 − 1
𝐑𝐑𝑇 . (21)

Perturbation approaches. This group of methods is able to estimate the sample covariance based on a single measurement record,
hich reduces the amount of data for the covariance estimation to a single data segment, i.e. 𝑁𝑠 = 1. Based on perturbation
pproaches such as the delta-method [36], the uncertainties in the measurement data are quantified, propagated through the feature
stimation process, and projected onto the estimated features, with the result being an equivalent covariance matrix C𝐸 . The methods
re feature-specific in the sense that each feature requires a different estimation procedure. In the literature, the delta-method has
requently been applied to vibration-based features, such as, frequencies, damping ratios, and mode shapes from operational modal
nalysis [37,38] or experimental modal analysis [39]. Other authors applied the perturbation approach to residuals that are based
n covariance functions [40], or other residuals that are formed in the mathematical subspace of covariance functions [41].

. Numerical case studies

The developed framework has already been applied to a 6-DOF mass–spring system with a user-defined error covariance.
o highlight that the method is equally applicable to static and dynamic measurement quantities, and to demonstrate that the
easurement error can be calculated based on data, two more case studies of an offshore tower with inclination sensors and a

oncrete bridge with vibration sensors are shown in this section.

.1. Local inclination monitoring of a tower

Jacket-type towers are common support structures for offshore oil platforms or wind turbine towers. Next to storms, extreme
aves, and changing operating conditions, mass changes due to marine growth can lead to safety-critical system states. In this
umerical study, the mass changes of the support structure are monitored based on inclination sensors, and the goal is to estimate
he mass change that can be detected reliably. The tower exhibits a height of 42 m, a width of 30 m at its base, and a width of 12 m
9
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Fig. 7. Jacket-type tower modeled in 2-D (left) and updating result for uniform mass increase (right). The predicted posterior is based on data from the
undamaged structure, see Eq. (4), where the other posteriors are based on data from the damaged structure.

Table 3
Monitored system parameters 𝑄 = 𝑚 of the tower.

𝑚 [t]

Prior PDF  (1000, 50)
Safety interval 𝑄±

𝑡ℎ𝑟𝑒𝑠,𝑖 [981, 1019]
User-defined POE 95%
Detectable change 𝛥𝑖 3.09%

at its top, see Fig. 7 (left). The vertical pillars are modeled using 2-D frame elements and the diagonal braces using truss elements,
see Table 2. Damage is modeled as a uniform mass change in all submerged elements, with a reference mass of 𝑚 = 1000 t that
is applied as point loads to the nodes. For monitoring, two inclination sensors are placed at the joints of the structure, see Fig. 7
(left). In this study, the measurements are directly used as damage-sensitive features and the feature extraction step is skipped. To
simulate measurement noise, each reading is superimposed with uniformly distributed noise. In the reference configuration, the
mean inclination is 0.026 millidegree and the standard deviation of the measurement error is set to 0.00052 millidegree for each
of the two sensors.

(a) Detectable mass change

To assess the detectable mass change, a series of user-inputs have to be made, e.g., the prior distribution of the structural mass, the
distribution of the measurement error, the safety thresholds, and the allowable probability of exceedance. First, a normal distribution
with a mean of 1000 t and a standard deviation of 50 t is assumed as the prior Q ∼  (1000, 50), cf. Table 3. Obviously, the mass
experiences no variation but for the computation of displacements and inclinations, the mass is transformed into an equivalent
force, and this force may be counteracted by changing tides and varying water buoyancy forces. Secondly, the measurement error
is estimated based on data using the empirical approach from Section 3.4. For this purpose, 1000 inclination readings are recorded
and stored in a feature matrix, so the covariance matrix can be computed based on Eq. (21) to

C𝐸 =
[

0.263 0
0 0.266

]

10−6. (22)

With the prior distribution and the measurement error defined, the standard deviation of the posterior distribution can be
predicted based on the Kalman filter. Next, the user-defined probability of exceedance is set to PoE = 95%, and the detectable mass
change can be calculated to 𝛥𝑄 = 30.9 t, which corresponds to a relative mass change of 𝛥𝑖 = 3.09%, see Table 3. In other words,
if the mass changes by 3.09%, 95% of the posterior distribution should be beyond the safety interval according to the developed
framework, as this was the user-defined probability of exceedance.

(b) Validation study
Based on the developed framework, the minimums detectable mass change is calculated to 3.09%. Up until this point, the analysis

has been performed based on data from the unchanged state, that is, before the mass changes due to marine growth occurred. Now,
the mass is changed for the first time to validate the prediction. For this purpose, a relative change of 3.09% is applied, and if the
prediction is accurate, 95% of the posterior distribution should be beyond the safety thresholds, with the result being shown in
Fig. 7 (right). The empirical POE of 94.6% is close to the user-defined value of 95%, which shows that the prediction is accurate
and concludes the validation study.
10
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Fig. 8. Model geometry and instrumentation (top) and selected modes of vibration (bottom).

Table 4
Material properties of the bridge model.
Component Type Material Cross section

𝐸 [ MN
m2 ] 𝑚 [ kg

m3 ] 𝐴 [m2] 𝐼𝑦 [m4] 𝐼𝑧 [m4] 𝐺 [ MN
m2 ] 𝐽 [m4]

Girders Beam 30000 2500 0.5 0.0417 0.0417 0.0521 8.4 ⋅ 1010

Floor beams Beam 30000 2500 0.5 0.0417 0.0417 0.0521 8.4 ⋅ 1010

Pillars Beam 30000 2500 1.0 0.0830 0.0830 0.0521 8.4 ⋅ 1010

(c) Cross-validation
In this section, the validation is repeated but instead of linear Bayesian filters, the Markov Chain Monte Carlo (MCMC) method

s applied for updating. The intention is to demonstrate that the prediction is valid regardless of the employed updating method and
o cross-validate the results from the PCE-based Kalman filter. For improved efficiency, the PCE model from Section 2 is applied as
surrogate for the physical tower, and a parallelized version of the MCMC algorithm is used, ensuring a faster convergence [42].
he results are also shown in Fig. 7 (right) through white histograms to clarify that this procedure solves the updating problem
hrough sampling instead of analytical operations. The differences between PCE-based Kalman filter and the MCMC method are
nsignificant, and the MCMC-based POE of 94.2% is very close to the theoretical value of 95%.

.2. Global modal parameter monitoring of a bridge

Bridges are critical components in lifeline infrastructure that are exposes to various natural hazards, e.g., floods, storms,
arthquakes, or impacts of any sort. Global vibration-based approaches based on natural frequencies and mode shapes are often
riticized because of their low sensitivity to small and local damages [43]. Hence, it is particularly interesting to predictively assess
hich damages can or cannot be detected, and to calculate the detectable change. In the following, the detectable damage will be

alculated for a three-span bridge with clamped pillars, and abutments that allow the bridge to move in the longitudinal direction.
ongitudinal girders, floor beams, and pillars are modeled through concrete beam elements with the properties from Table 4. Fig. 8
isualizes the geometry and clarifies that all following studies focus on the material properties of one longitudinal girder, which is
ivided into four sections. The excitation is modeled as white noise and applied to all 450 degrees of freedom. Twenty uni-axial
ibration sensors measure the velocities in the vertical direction. To simulate a very noise environment, the structural vibration
ignal is superimposed with uniformly distributed noise with a maximum magnitude of 3.5-times the standard deviation of the
tructural signal. In contrast to the previous study, the system response is not monitored directly but natural frequencies and mode
hapes of the first four modes of vibration (in the vertical direction) are extracted and treated as system observations.

a) Detectable stiffness changes

In this study, the natural frequencies and mode shapes are estimated based on operational modal analysis, or more precisely,
ased on covariance-driven subspace system identification (SSI-Cov) [44]. In combination with the perturbation approach described
n Section 3.4, this method allows one to quantify the uncertainties in the natural frequencies and mode shapes based on a single
11
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Fig. 9. Natural frequencies in the stabilization diagram (left) and corresponding mode shapes at the sensor locations (right) including error bars for the
measurement error with a magnitude equal to three times the standard deviation.

Table 5
Monitored system parameters Q = [𝑄1 𝑄2 𝑄3 𝑄4] of the bridge.

𝑄1 𝑄2 𝑄3 𝑄4

Prior PDF  (1.0, 0.1)  (1.0, 0.1)  (1.0, 0.1)  (1.0, 0.1)
Safety interval 𝑄±

𝑡ℎ𝑟𝑒𝑠,𝑖 [0.77, 1.23] [0.77, 1.23] [0.77, 1.23] [0.77, 1.23]
User-defined POE 5% 5% 5% 5%
Posterior covariance 𝐶𝑄′

𝑖
0.130 ⋅ 10−3 0.112 ⋅ 10−3 0.164 ⋅ 10−3 0.058 ⋅ 10−3

Detectable change 𝛥𝑖 −20.8% −20.9% −20.5% −21.5%

measurement record [37,38] with the stabilization diagram being shown in Fig. 9 (left). A data fusion technique is employed to
merge the modal parameters from varying system orders into a single frequency and mode shape for each mode, while considering
the estimation errors [45]. To indicate the uncertainties, Fig. 9 (right) shows error bars with a magnitude equal to three times
the standard deviation. In total, 80 system observations are monitored and displayed, i.e., four frequencies and 76 mode shapes
coordinates. In operational modal analysis, mode shapes are non-unique in the sense that real or complex-valued entries may differ
after a repeated estimation. For normalization, the maximum mode shape coordinate is scaled to unit-displacement, making one
mode shape component insensitive to damage and reducing the number of damage-sensitive mode shape components from 4×20 = 80
to 76.

As described above, the monitored system inputs are the E-Moduli of the four girder sections, so [𝐸1 𝐸2 𝐸3 𝐸4]𝑇 . Instead of using a
stiffness parameter directly, each E-Modulus 𝐸𝑖 is pre-multiplied by a random variable and this variable vector Q = [𝑄1, 𝑄2, 𝑄3, 𝑄4]𝑇

is used as the monitored system input. As shown in Table 5, the prior PDF of each 𝑄𝑖 is defined by the mean value of one and the
standard deviation of 0.1, so 𝑄𝑖 ∼  (1.0, 0.1). The table also shows the user-defined safety interval for each variable and the
user-defined probability of exceedance of 5%.

With the priors and the measurement error being defined, the detectable change in each girder section can be calculated to
approximately −21%, see Table 5. On close inspection of the table, it can be appreciated that the posterior variances vary slightly
for each parameter; however, the differences are insignificant, especially in comparison to the width of the safety interval, leading
to an almost identical detectable change for each parameter.

(b) Validation for single-damage scenarios

For validation, the stiffness in Section 3 of the main girder is reduced by the detectable change of −20.5%, see Table 5. If the
prediction of the detectable damage is correct, 5% of the posterior distribution should be beyond the safety threshold, as this was
the user-defined POE. By looking at the validation plot in Fig. 10 (left), it can be appreciated that the distribution for the changed
parameter (dashed line) moves beyond the safety thresholds and approximates the predicted distribution (solid line), while all other
parameter distributions stay within the safety interval. For parameter 𝑄3, the POE is 4.4%, which is very close to the target POE
of 5%. For unchanged parameters, the distributions are similar to the prior (dotted line), and some insignificant deviations can be
noticed. A thorough analysis, based on Sobol indices [46], reveals that the inaccuracies are due sensitivity issues, as changes in
structural parameter cause less significant changes in modal parameters. More on this follows in the discussion in Section 4.3.

(c) Validation for multiple-damage scenarios

The division of the girder into four damage zones appears arbitrary, and it cannot be guaranteed that damage is restricted to
one girder section in practice, cf. Fig. 8. Therefore, an interesting research question is whether the predicted detectable damage
12



Mechanical Systems and Signal Processing 202 (2023) 110656F. Marsili et al.
Fig. 10. Validation results for a single-damage scenario with damage in parameter 𝑄3 (left side) and for a multiple-damage scenario with damage in parameters
𝑄3 and 𝑄4 (right side).

is also valid for scenarios, where changes occur in multiple input parameters at the same time. To analyze this, the third and
fourth parameters are changed by the detectable change from Table 5, and the validation procedure is rerun. The results in Fig. 10
(right) demonstrate that the prior mean value of both parameters shifts by the detectable change, and that the empirical POE of
4.1% and 2.0% are close to the theoretical value of 5%. Again, the inaccuracies are due to the low sensitivity of the employed
damage-sensitive features, which is discussed in the subsequent section. It appears that no modifications have to be made to the
theory, as the predictions are also valid for multiple-damage scenarios.

4.3. Discussion

The numerical case studies in this paper demonstrated that the detectable changes can be predicted based on linear Bayesian
filters. While the developed framework appears to deliver highly accurate results for the 6-DOF system and the offshore tower, the
bridge case study exhibits minor inaccuracies in the prediction. The following discussion highlights that inaccuracies are not only
due to the limitations of the developed approach but also the limitation of Bayesian updating in general.

The developed method is based upon linear Bayesian filters but this does not mean that the system observations have to be
linear functions of the system parameters. For example, the natural frequencies of the 6-DOF system are non-linear functions of the
stiffness parameters, especially for large parameter changes up to 37.7% (see Fig. 4), and yet, the developed framework delivered
highly accurate results based on linear filters. This finding is substantiated by similar studies in the literature on PCE-based Kalman
filters [33,47]. An important aspect is that only for linear Bayesian filters, the posterior covariance is independent of the observation,
cf. Eq (4), meaning the posterior can be analytically evaluated based on data from the unchanged state. Moreover, the posterior mean
and the covariance matrix can be computed without sampling, which significantly increased the computation speed in comparison
to traditional methods such as MCMC methods. However, one of the downsides of linear Bayesian filters is that large shifts in the
system parameter or significant non-linearities in the system may distort the Gaussian assumption and lead to slight inaccuracies in
the prediction of the detectable damage.

The assumption of Gaussianity should also be clarified, as the PCE-based Kalman filter is also capable of updating non-Gaussian
random variables. The Gaussian assumption for the prior and the posterior was essential for the change definition from Eq. (12)
as the shift in the mean values. If the observations are highly non-linear functions of the system parameters, the posterior random
variable is no longer Gaussian and asymmetries may occur in the posterior distribution, leading to inaccuracies in the prediction.

Ultimately, sensitivity issues can bias the accuracy in validation studies. Sensitivity issues arise if large changes in system
parameters lead to insignificant changes in the observed system outputs, as it is the case for the bridge case study. An appropriate
tool to evaluate the sensitivity is the calculation of partial variances through Sobol indices [46], which quantify the contribution
of an observation to the variance in the updating parameters. By applying them to the bridge in Section 4.2, it can be concluded
that mode shapes are highly sensitive to changes in Section 3, followed by Section 4, but they are not very sensitive to changes in
Sections 1 and 2. That means that changes in Section 4 are more challenging to identify due to the limited sensitivity, and this is
one of the basic limitation of system identification, regardless of the employed method.
13
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5. Conclusion

This paper develops an approach to determine the detectable change for linear Bayesian filters. The main contribution is the
tatistical framework that relates changes in observations to the changes in system parameters and the probability of exceeding

safety threshold through so-called probability of exceedance curves. This enables system operators to choose an arbitrary
robability of exceedance, which can subsequently be translated in a corresponding ‘‘minimum detectable change’’ in structural
r material parameters. The introduced concept based on the probability of exceedance are reminiscent of approaches related to
he probability of detection and the probability of localization. However, these terms are intentionally avoided in this paper, due to
he fundamental discrepancies between hypothesis testing based on frequentist and Bayesian methods. The resulting quantity, the
inimum detectable change, is a physically meaningful metric to assess monitoring systems. For example, it could be used for the

ollowing purposes:

• Investment justification. If the detectable changes are unreasonably high, it is not possible to detect damage based on
automated monitoring systems. In that case, the investment is not justified, and other inspections techniques should be
considered.

• Feature selection. With reference to the presented case studies, engineers could assess whether it makes the most sense to
measure inclinations, vibrations, or to extract natural frequencies, or mode shapes, as the most sensitive features will lead to
a high detectability (a small minimum detectable change).

• Sensor selection. Some sensors and hardware components exhibit a lower signal-to-noise-ratio than others, leading to higher
detectability (a lower minimum detectable change). Hence the minimum detectable change assesses the signal quality in a
physically meaningful way.

• Sensor placement optimization. Some sensor layouts lead to a higher detectability than others (quantified through a low value
for the minimum detectable change) and these layouts should be preferred.

• Optimized maintenance. If material-specific degradation functions are available, the developed approach can be employed to
estimate probable failure times, and all associate costs throughout the life cycle of a structure.

The approach has to be combined with a suitable method to estimate the measurement error, i.e., the uncertainty in the system
bservations. To demonstrate this, the paper introduces three case studies of varying complexity. The first study is a 6-DOF mass-
nd-spring system, where the detectable change in lumped masses and spring stiffness values is determined based on changes in
umerical modal frequencies, and the measurement error is predefined by the authors for reproducibility. The second study evaluates
he detectable mass change due to marine growth on a jacked-type offshore tower, typically used for wind farms or oil platforms. The
ower is monitored with inclination sensors, and the synthetically generated measurement error is quantified based on an approach
hat could be universally applied to any kind of measurement. The third study evaluates the detectable stiffness change on the
ain girder of a concrete bridge due to seismic damage. The study employs operational modal analysis to experimentally determine
atural frequencies and mode shapes based on vibration measurements, and to evaluate the measurement error based on a single
easurement record from the undamaged structure. Therefore, the developed method is also applicable if the amount of data from

he unchanged state is limited.
One of the distinguishing features of the developed method is that no data from the changed state is required to assess

he detectability of changes, as the posterior covariance can be calculated based on Kalman filters, and it is independent of
he observation in the changed state. Such ‘‘predictive’’ methods are rare and have only been reported for damage detection
nd localization. Bayesian methods not only allow for damage quantification as well, but they perform the damage detection,
ocalization, and quantification in one step. In this paper, a framework was introduced to assess the parameter changes based on
ayesian methods, which, following the train of thought from above, corresponds to an assessment of the quantifiability of damage.
owever, the problems related to damage localization remained unaddressed, and no comprehensive framework was introduced for
combined damage localization and quantification. This will be the subject of future research studies.
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