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SCIENCE FOR SOCIETY Forest mortality due to natural disturbances such as fires, storms, and pests has
increased in Europe in recent decades and is expected to increase further due to climate change. Although
important forest services may soon be seriously affected, assessments of the negative effects of natural dis-
turbances and possible solutions to minimize them are still scarce. Ecosystem heterogeneity—the diversity
of tree species and sizes—has been suggested as an option to increase forest resistance, but its effective-
ness remains elusive. Here, we estimate the biomass loss due to natural disturbances on European forests
from 1979 to 2018 and evaluate the benefits of increasing forest heterogeneity. We used the Intergovern-
mental Panel on Climate Change method for climate risk assessment by integrating disturbance records
and satellite data. Results show that enhancing the ecosystem heterogeneity could reduce biomass loss
by about 18%, and such action should therefore be fostered to minimize climate-related risks to European
forests.
SUMMARY
The rise in forest disturbances due to climate change poses a serious threat to key forest ecosystem services,
yet impact and adaptation assessments are scarce at European scale. Here, we estimate the forest biomass
loss in Europe due to fires, windthrows, and insect outbreaks over 1979–2018 and evaluate potential adap-
tation benefits by integrating machine learning with disturbance data and satellite products. Results show an
average overall annual biomass loss of 41.6 ± 5.3 Mt at European level subject to a significant rise of 2.3 ±
0.3Mt year�1, largely influenced by climate change (72%–98%). The contribution of insect outbreaks appears
prominent (79%) compared to windthrows (20%) and fires (1%) and linked to their upsurge after the year
2000. However, impacts vary greatly across Europe depending on local environmental conditions. We esti-
mate that enhancing ecosystem heterogeneity could reduce biomass loss by about 18%, and such action
should therefore be fostered in forest adaptation policies.
INTRODUCTION

European forests cover about 2 million km2, corresponding to

35% of the land surface.1 They provide a large set of ecosystem

services that contribute to human well-being and are considered

a key element for mitigating climate change.2 However, forests

are vulnerable systems, as the long lifespan of trees limits a rapid

adaptation to fast environmental changes.3,4 Stand-replacing
One Earth 7, 1–16, Decem
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natural disturbances—large pulses of tree mortality that origi-

nate from abiotic and biotic agents such as fires, strong winds,

or insect outbreaks—are an integral part of forest dynamics.

Disturbances modify the structure, composition, and function

of the ecosystem, altering the resource availability and the phys-

ical environment. In doing so, they affect biodiversity5 and initiate

ecosystem renewal or reorganization.6 However, a sudden

increase in disturbance occurrence and severity has been
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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documented over the last decades at European level, causing

widespread tree mortality,7–9 and it is expected to further rise

as a result of climate and global change.10,11 Consequently,

key forest ecosystem services, such as land-based climate miti-

gation, could be seriously reduced in the near future.10,12,13

Quantifying the impact of forest disturbances and elucidating

the underlying ecological drivers and processes is therefore of

paramount importance in identifying effective adaptation mea-

sures and preserving the long-term provision of ecosystem ser-

vices and stability of European forests.

Recent studies have proposed the evaluation of climate-

driven risks to forests based on the integration of the widely

used concepts of hazard, vulnerability, and exposure as defined

by the Intergovernmental Panel on Climate Change (IPCC).14,15

Although such a method has long been adopted in socio-eco-

nomic and climate-change-related studies,15 it has been rarely

applied to forests16–18 and has yet to be implemented compre-

hensively at large scales on multiple types of disturbances. In

this context, the hazard represents the occurrence of a natural

disturbance affecting forests (e.g., fires, windthrows, or insect

outbreaks), vulnerability expresses the degree to which a forest

is affected when exposed to a hazard, and exposure refers to the

amount of forest resources (e.g., biomass) potentially affected

by the hazard. Each of the aforementioned risk components

can be modulated by changes in environmental drivers, such

as background climate conditions (e.g., water stress and wind

speed) and vegetation properties (e.g., structural and physiolog-

ical characteristics).19

Forest management can influence the hazard, vulnerability,

and exposure of forests to natural disturbances, ultimately

affecting the overall risk levels.16 To implement adaptive forest

management measures, it is therefore crucial to provide robust

spatially explicit risk estimates and understand how the changes

in vegetation properties mediated by management interact

with climate parameters in determining hazard, vulnerability,

and exposure. Attempts to cope with climate-driven distur-

bances without a comprehensive assessment of the underlying

drivers may lead to unintended negative consequences of adap-

tation plans (maladaptation) as documented in a number of

studies.20–22 However, disentangling the effect of risk compo-

nents and environmental drivers is extremely challenging, due

to the multivariate non-linear dynamics of forest disturbances

typically characterized by strong interacting features.4,23

Two major approaches have been used to examine forest dis-

turbances and their key determinants at large scales. First, pro-

cess-based vegetation models, such as land surface models or

dynamic global vegetation models, include an increasingly so-

phisticated representation of forest disturbances driven by the

interplay between climate drivers and forest properties.24–26

While such tools hold promise to quantify forest risk, they still

only partially represent the complex interactions between haz-

ard, vulnerability and exposure, due to an incomplete under-

standing and representation of the underlying processes, the

lack of information to parameterize these processes over large

areas, and the mismatch between model resolution and distur-

bance extent.24,26,27 Second, empirical assessments of climate

controls on forest disturbances, typically based on satellite

data of forest loss8,28 or meta-analyses of field studies,9,29 are

also exploited. These studies have provided important insights
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into specific aspects yet mostly lack a quantitative evaluation

of the impacts (e.g., loss in ecosystem services) associated

with such climate-driven disturbances. Rather, they have mainly

focused on the vulnerability component,4,30 have considered a

limited set of hazards and drivers,7,18,31,32 or have neglected

the spatial variability of the phenomena because of the use of

country-scale disturbance records.7,10,33 In addition, these ap-

proaches mostly adopt a priori knowledge to identify the func-

tional relationships that link the risk component under consider-

ation and its potential drivers. Therefore, possible amplification

or dampening effects that may emerge at local scale from inter-

actions amongmultiple drivers and risk components34 cannot be

fully detected.

The European Union (EU) has adopted the first ever European

Climate Law35 with the ambitious target of achieving climate

neutrality by 2050. To reach this goal, existing policies assume

forests to act as a sustained net carbon sink for decades. This

assumption is challenged by the sudden increase in climate-

driven natural disturbances that may expose forests to wide-

spread rises ofmortality rates. A continued increase in forest dis-

turbances will put policy targets out of reach.36 In light of these

limitations, the monitoring of climate-related risks and the devel-

opment of adaptation strategies for the forest sector in Europe

remain critical, especially because of the urgency imposed by

the rapid changes in climate and the observed decline in forest

resilience.4,37 Ecosystem heterogeneity, resulting from compo-

sitional and/or structural diversity of vegetation, has long been

suggested as a valuable strategy to increase forest resistance

to natural disturbances.38,39 However, its effectiveness with

respect to multiple disturbances still needs more solid evi-

dence40 and has yet to be verified in the context of climate

change. Empirical evidence on the benefits of enhancing

ecosystem heterogeneity is scarce at large scales,41,42 and it is

unclear to what extent results based on silvicultural practices

developed at stand or landscape scale43–46 can be extrapolated

to larger areas. Investigating this issue at pan-European scale

would be particularly useful to support the EU in the design

and development of forest adaptation strategies and to prioritize

regional investments aimed at fostering the implementation of

such actions at regional and national levels.

Here, we provide an observation-based and spatially explicit

comprehensive assessment of the impact of fires, windthrows,

and insect outbreaks in European forests that occurred over

the period 1979–2018, elucidate their key risk components and

environmental drivers, and estimate the benefits achievable

from enhanced ecosystem heterogeneity. To this aim, we imple-

mented a novel methodology, consistent with the IPCC risk-

assessment framework, and express the biomass loss—our

risk metric—as the product of hazard, vulnerability, and expo-

sure. We use random forest (RF) as amachine learning method47

to characterize the space-time dynamics of each risk compo-

nent in response to a suite of climate and vegetation drivers.

The inherent ability of RF models to detect interacting features

from data avoids the prescription of specific relations between

variables. We retrieve a pool of environmental drivers by inte-

grating geocoded datasets of forest disturbance events, distin-

guished per agent type (fires, windthrows, and insect outbreaks),

with multiple satellite-based and reanalysis products (Texts S1

and S2). The RF models—implemented for different plant
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Figure 1. Temporal variations in biomass and overall risk in European forests

(A and B) (A) Annual changes in forest biomass aggregated at European scale (green line) and corresponding 95% confidence interval (shaded area). Inter-annual

net changes in forest biomass are shown in the inset. (B) Annual changes in overall risk expressed in terms of biomass loss caused by fires, windthrows, and

insect outbreaks aggregated at European scale (brown line) and corresponding 95% confidence interval (shaded area). Long-term average and trend in biomass

and climate risk over the period 1979–2018 are displayed as red lines and reported (top left) together with their standard error; ‘‘**’’ indicates a significance level

with p value of <0.05 (two-sided modified Mann-Kendall test). Trends in biomass losses are computed for 1979–1998 and 1999–2018 separately and reported in

smaller font in (B).
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functional types (PFTs), disturbance agents, and risk compo-

nents—are applied at 0.25� spatial resolution over the whole of

Europe annually over the 40-year observational period (see

experimental procedures). Our analysis provides data-driven ev-

idence that changes in climate during the past four decades have

largely contributed to the intensification of disturbances related

to fires, windthrows, and insect outbreaks in European forests,

resulting in a progressive rise in biomass loss. Such a trend ap-

pears to be largely due to the widespread upsurge of insect out-

breaks after the year 2000. Results also show that promoting the

heterogeneity of European forests could reduce total biomass

loss by about 18%. Our findings emphasize the importance of

implementing adaptation strategies to increase the level of forest

heterogeneity and thus reduce the increasing climate-driven

risks and their negative impacts on climate mitigation plans.

RESULTS AND DISCUSSION

Temporal variations in biomass and overall risk at
European scale
At the European level, we estimate the average woody biomass

stock at 18.747 ± 0.085 Gt with an average increment of 0.046 ±

0.001 Gt year�1 (p value <0.05) between 1979 and 2018 (Fig-

ure 1A). Central and Northern European countries contribute

most in terms of both overall biomass stock and temporal

changes (Figure S1 and Table S1). Estimates appear to repre-

sent reasonably well reference data48,49 used for the exposure

model development (experimental procedures and Figure S2)

and are further corroborated by independent assessments re-

ported in the literature.50 The increase in biomass stock has

been attributed to a change inmanagement practices, CO2 fertil-

ization, N deposition, and growing season extension.51,52 How-

ever, our analysis shows a slowing down of biomass accumula-

tion since 2000, reflected in a reduction of biomass net annual

change (Figure 1A, insect box), as confirmed by the report on

the State of Europe’s Forests.1 Recent observational studies

suggest that the world’s forests are transitioning from a period

dominated by the positive effects of CO2 fertilization to a period

characterized by the progressive reduction of these effects and
the rise of negative climate change impacts.53,54 Such a transi-

tioning phase is particularly pronounced in Europe with a mean

warming about twice the rate of the global mean average.55

This is happening in forest ecosystems that have been heavily

influenced by humans in the recent past. Indeed, after World

War II forest management in central Europe was mainly oriented

at increasing forest yields (e.g., even-aged monoculture planta-

tions) to the detriment of their climatic suitability and vulnera-

bility.56 The increase in climate-driven natural disturbances has

been hypothesized as a plausible cause of carbon sink satura-

tion in Europe.57 In this study, by integrating hazard, vulnera-

bility, and exposure metrics in a consistent data-driven risk-

assessment framework, we provide further evidence in support

of such a hypothesis. Our climate risk assessment indicates—

at the European level—an average and trend in overall biomass

loss due to climate-driven disturbances of 41.578 ± 5.296Mt and

2.268 ± 0.294 Mt year�1 (p < 0.05), respectively, between 1979

and 2018, with a strong upsurge after the year 2000 (Figure 1B).

The area affected by such disturbances is rapidly increasing and

may affect the dynamics of the growing stock, the land carbon

budget, and potentially the supply chain of forest biomass.

Biomass loss caused by forest disturbances and
underlying ecological mechanisms
To better elucidate the underlying ecological mechanisms that

caused disturbances, we analyzed the spatial and temporal var-

iations of biomass loss due to fires, windthrows, and insect out-

breaks separately. These analyses have been complemented by

a series of factorial simulations to disentangle themarginal effect

of each risk component (hazard, vulnerability, exposure) and

quantify the effects of vegetation properties and climate drivers

on biomass loss (experimental procedures).

Weestimated that the average overall impact of natural distur-

bances on forest biomass (Figure 1B) has been largely caused

by insect outbreaks, which have damaged annually 31.855 ±

3.811 Mt of biomass (77% of the total damaged biomass) fol-

lowed by the impact of windthrows and fires, which have led

to 7.864 ± 2.735 Mt and 1.859 ± 0.086 Mt of biomass loss,

respectively (19% and 4% of the total). Similarly, in terms of
One Earth 7, 1–16, December 20, 2024 3
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Figure 2. Spatial and temporal variations of biomass loss caused by fires, windthrows, and insect outbreaks

(A–F) (A) Spatial map of annual average of biomass loss caused by fires over the period 1979–2018 and corresponding value aggregated at European scale

reported as average ± SE (bottom right). Forests with cover fraction lower than 0.1 are masked in white. (B) Annual changes in biomass loss caused by fires

aggregated at European scale (brown line) and corresponding 95% confidence interval (shaded area). Long-term trend in biomass loss is displayed as red line

and reported together with its SE; ‘‘**’’ indicates a significance level with p value of <0.05 (two-sided modified Mann-Kendall test). (C–F) As (A) and (B) but for

windthrows (C and D) and insect outbreaks (E and F). Confidence intervals in (F) are multiplied by a factor of 5, and values in (A), (C), and (E) are averaged over a

1.25� 3 1.25� moving window for visual purposes.
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temporal variability, damage due to insect outbreaks has

contributed most to the long-term variations in the overall

biomass loss, explaining 79% of its trend, whereas windthrows

and fires explain the remaining 20% and 1%, respectively.

However, substantial differences emerged across geographic

regions for the three climate-driven disturbances, reflecting

their strong dependence on local environmental conditions

(Figure 2).

As expected, forest fires show a prominent spatial gradient of

biomass loss toward southern Europe (Figure 2A and Table S2).

Severe aridity (Figures S3A–S3D) led to high average levels of

hazard and vulnerability58 (Figures S4A and S4B), making fires

the most important natural disturbance in most Mediterranean

forests (Figure S5). Over the observational period, Europe—

and particularly southern countries—has experienced a signifi-
4 One Earth 7, 1–16, December 20, 2024
cant increase in fire-induced biomass loss (0.026 ± 0.006 Mt

year�1, p < 0.05) (Figure 2B and Table S3). Such an emerging

positive trendwas largely driven by change in the hazard compo-

nent (97%, p < 0.05, Figure 3A). Climate change, and particularly

the increase in aridity (Figures S6A–S6D), that affects both trig-

gering and susceptibility mechanisms,58 was the primary under-

lying driver for the rise in biomass loss from forest fires (72%,

p < 0.05, Figure 3B). Changes in the structural properties of for-

ests (e.g., amount of woody biomass and leaf area index) played

an important role as well (27%, Figure 3B) by affecting a series of

processes, such as the amount of fuel loads and the probability

of fire ignition.59,60 However, these effects are significant (p < 0.1)

only when aggregated at European scale (Figure S7B). Note-

worthy, temporal changes in single risk components and under-

lying environmental drivers did not lead to a systematic increase
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Figure 3. Key determinants of natural disturbances

(A–F) (A) Long-term trend in biomass loss (average ± SE) due to fires, aggregated at European scale, owing to changes in each risk component (hazard/

vulnerability/exposure) and corresponding marginal contribution to the overall trend (left and right panel, respectively). ‘‘**’’ and ‘‘*’’ indicate trend statistically

significant with p values of <0.05 and <0.1, respectively (two-sided modified Mann-Kendall test). (B) As (A), but for trend in biomass loss due to fires, owing to

changes in certain key drivers (vegetation/climate). (C–F) As (A) and (B), but for windthrows (C and D) and insect outbreaks (E and F).
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in disturbance regimes. For instance, the variations in vulnera-

bility and exposure over the period 1979–2018 in southern

Europe have led to a reduction in biomass loss due to fires (Fig-

ure S7A). These patterns, whose statistical significance remains

largely elusive, can be associated with a decline in available fuel

loads (Figure S1B). However, the large increase in the hazard

component, as mentioned above, offsets the mild negative

trends in biomass loss, ultimately leading to an increase in risk

levels also in these regions.

Windthrows, being an extreme event strongly dependent on

exceptional weather conditions modulated by local orography,61

showed a discontinuous spatial pattern with larger biomass loss

in northern and western Europe (Figure 2C and Table S2).

Biomass loss due to such hazards experienced a significant in-

crease (0.441 ± 0.232Mt year�1, p < 0.05) over the observational

period, although the temporal dynamics were dominated by

strong inter-annual variability (Figure 2D), with impacts being

locally much larger than any other disturbance type (Figure S5).

For example, we estimated that �97 Mt of biomass was

damaged in 2005 by the windstorm Gudrun in Sweden, equiva-

lent to about 2 years of harvesting at national scale. In 2007, the

windstorm Kyrill caused the loss of �19 Mt of biomass in Ger-

many and the Czech Republic. In 2009, the windstorm Klaus

hit forests in France and caused biomass losses of about 16

Mt. Temporal variations in biomass loss due to windthrows

were dominated by change in the hazard component (94%,

p < 0.05, Figure 3C), whereas variations in vulnerability and

exposure showed minor contributions but were still statistically

significant. Climate factors were the dominant underlying drivers

(90%, p < 0.05, Figure 3D). The damaging effect of wind gusts, a

key determining factor of windthrows, is also amplified by soil

water content, as captured by precipitation, and snow load
on the crown. Storm impacts are amplified in regions with

increasing amounts of rainfall and snowfall (Figures S6E–S6G),

which tend to favor tree overturning and stem breakage.61,62

Biomass accumulation, by increasing bending moment and

exposure,63 also contributed to an increase in risk levels (10%,

Figure 3D), although such effects are not statistically significant

(p > 0.1) across the European regions (Figure S7D).

Insect outbreaks caused a high average loss of forest biomass

across most of Europe (Figures 2E and S5), predominately re-

sulting from a widespread distribution of the hazard component

(Figure S4E). Biomass loss due to insect outbreaks significantly

increased from south to north (Figure 2E and Table S2), closely

following the distribution of certain tree species such as

Norway spruce,64 typically more vulnerable to insect outbreaks.

In addition, this pattern likely reflects a strong dependence of

disturbance processes on average temperature19 (Figures

S3H–S3J), because bark beetles are poikilothermic organisms

that respond favorably to global warming by improving winter

survival, multiplying the number of generations per year and ex-

panding their natural range northward in Europe.65,66 In addition,

high-biomass monospecific coniferous forests of central and

northern Europe are notoriously at higher risk of bark beetle out-

breaks.67,68 Biomass loss due to insect outbreaks significantly

increased over the observational period (1.801 ± 0.172 Mt

year�1, p < 0.05, Figure 2F), with a strong rise since the year

2000 in northern and central Europe (Table S3). This is consistent

with the abrupt increase in vulnerability of forests to insect out-

breaks observed for warming levels larger than +0.5�C (referring

to 1970–1990) that occurred around the year 2000 at European

scale and documented in previous studies.4,9 Further increases

in temperature above such a threshold (Figures S6H–S6J) have

likely reduced plant defense mechanisms by ultimately favoring
One Earth 7, 1–16, December 20, 2024 5
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triggering processes and making forests more vulnerable to in-

sect attacks. This is confirmed by the significant and dominant

role of the changes in climate factors, including temperature

and aridity (98%, p < 0.05, Figure 3F), and in the hazard and

vulnerability components (86% and 10%, p < 0.05, Figure 3E)

in determining the biomass loss dynamics. Furthermore, the

concurrent increase in windthrow and insect outbreaks seems

to suggest a possible amplification generated from the interac-

tion effect between these two disturbances (Figures 2D–2F). Up-

rooted trees from strongwinds are virtually defenseless breeding

material, supporting the buildup of bark beetle populations and

the consequent increase in insect outbreaks.23 However, it is

difficult to disentangle such interactions in our assessment due

to the lack of reference observational data of compound events,

and therefore they can be represented only to the extent that

they are reflected in the environmental predictors of the RF

models (experimental procedures). Such a climate-driven abrupt

increase in insect disturbances after year 2000 could be an

important cause of the slowdown in biomass growth observed

at European level (Figure 1A), in parallel to direct climate effects

on tree growth.69 Changes in exposure with higher standing

volume of susceptible forests, and in vegetation structural prop-

erties, have also contributed to intensified risk levels, although

their effects remain limited compared to climatic determinants

(Figures 3E and 3F).

The estimates of biomass losses reported above have been

confronted with independent disturbance databases, including

emissions from burned biomass,70 salvage logging data,71 and

compilations of reports on past tree mortality events based on

extensive literature search9,29 (Text S3). While recognizing

that the cross-comparison analysis is not fully consistent in

terms of damage reported, we believe that the reasonable

agreement in terms of correlations and long-term trends be-

tween the investigated datasets—especially for fires and insect

outbreaks—support the overall framework proposed here

(experimental procedures, Text S4, and Figure S8). Furthermore,

a careful validation of each single risk component (hazard,

vulnerability, and exposure) has been conducted (experimental

procedures; Figures S2 and S9–S12), and possible extrapolation

errors of RF models beyond the training range have been evalu-

ated (experimental procedures; Tables S4 and S5). Although our

modeling framework is not exempt from limitations in methodo-

logical and data aspects (Text S5), the obtained model perfor-

mances corroborate the robustness of our modeling framework

and the validity of our findings.

Overall, our results show univocally that changes in climate

that occurred over the last four decades have acted as primary

drivers of the observed increase in biomass loss due to forest

disturbances in Europe, influencing prominently the hazard

component. The detrimental effect of climate drivers on risk

levels obtained here appears substantially larger compared to

previous estimates that have reported climate and forest condi-

tions to contribute almost equally.33 Differences in datasets and

methods may explain such discrepancies. In our study, we

develop a spatially explicit framework to quantify risk levels

due to forest disturbances over the period 1979–2018. In the

aforementioned work (Seidl et al.33), the assessment focuses

on the vulnerability component only (thus neglecting hazard

and exposure components) based on country-scale disturbance
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records over the period 1951–2001. Therefore, the marginal ef-

fect of key drivers cannot be directly compared between these

two studies. Furthermore, the crossing of a warming level in

the last two decades, documented in this work as the prominent

process underlying the abrupt shift in biomass loss (Figures 1B,

2E, and 2F), has likely made European forests much more sensi-

tive to changes in climate drivers compared to the period before

2000. This is of great concern because projected warming sce-

narios and the resulting alteration in climate variability will likely

further exacerbate these climate-driven risks10,11 and, thus, the

impact on the carbon budget of forests. The combination of

increased stand-replacing forest disturbances and the climate-

driven reduction of forest growth may undermine the effective-

ness of nature-based climate solutions that rely on a long-term

forest carbon sink.12,36

Potential adaptation benefits of enhanced forest
heterogeneity against natural disturbances
In such a context of increasing climate risks, it is critical to

develop forest management strategies to reduce the negative

impact of abiotic and biotic disturbances. Local-scale studies

have shown that species-rich forests are likely to have a greater

functional diversity, increasing the probability that one tree spe-

cies can compensate for the negative responses of other spe-

cies to disturbance.72,73 Spatial diversity of ecosystem structure

and composition across the landscape can strongly influence

the extent and effect of forest disturbance processes as

well, depending on agent type and characteristic of spread.74

To elucidate the underlying mechanisms associated with

ecosystem heterogeneity, we explored the relative biomass los-

ses observed over approximately 150,000 records of disturbed

forest patches across Europe, along a gradient of biomass and

spatial homogeneity. Homogeneity has been derived from satel-

lite data at 1-km spatial resolution (Tuanmu and Jetz75) and

quantifies the spectral similarity of ecosystem spatial patterns;

therefore, it is a metric negatively correlated with heterogeneity.

The strong negative relationships that emerge between this

metric and independent datasets on forest compositional

and structural diversity (experimental procedures, Spearman

rank <�0.98, p < 0.05, Figure S13), show that spectral homoge-

neity in forested landscapes is largely driven by the spatial het-

erogeneity in forest types and biomass. This is further corrobo-

rated by the high correlation between homogeneity metrics

computed by including all land-cover types and those derived

by accounting for forest land covers only (experimental proced-

ures, Spearman rank >0.75, p < 0.05, Figure S14).

Results show that areas characterized by lower spatial homo-

geneity (i.e., higher heterogeneity) systematically experience

lower relative biomass losses across all the disturbance types

considered in this study (Figures 4A–4C). High-heterogeneity

patterns, reflecting high structural or compositional diversity of

ecosystems, show an enhanced forest resistance to climate-

driven disturbances. This is likely thanks to the complementarity

in ecological traits and climate responses among ecosystems,

reduction of availability and accessibility to host species and

food resources for insect herbivores,76 and disruption of propa-

gation processes limiting fire spread77 and domino fall caused

by windstorms.61,62 The relationships between ecosystem het-

erogeneity and resistance to climate-driven disturbances is
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Figure 4. Effects of enhanced heterogeneity on forest resistance against natural disturbances

(A–H) Relative biomass loss due to fires (A), windthrows (B), and insect outbreaks (C) expressed as a function of homogeneity (inverse of heterogeneity) and

biomass. Average relative biomass loss due to fires (D), windthrows (E), and insect outbreaks (F) (left panels) and its sensitivity to homogeneity (right panels) for

deciduous and evergreen functional types (average ± SE). (G) Spatial map of the changes in overall biomass loss following a potential increase in ecosystem

heterogeneity. Benefits (in terms of avoided biomass losses) and detrimental effects (in terms of exacerbated damages) are shown as positive and negative

values, respectively. Values are averaged over a 1.25� 3 1.25� moving window for visual purposes, and forests with cover fraction lower than 0.1 are masked in

white. (H) Latitudinal gradient of the changes in biomass loss, separately for each natural disturbance considered, following a potential increase in ecosystem

heterogeneity. Annual avoided biomass loss aggregated at European scale is shown as average ± SE (left) together with the relative variation of the actual risk

estimate.
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discussed in more detail in Text S6. For fire and windthrow

events, these processes were more evident in high-biomass

areas (Figures 4A and 4B), suggesting larger benefits of

enhanced heterogeneity in forests typically more vulnerable to

these disturbances.59–61 For insect outbreaks, the benefits of

increased heterogeneity appeared more evident in low-biomass

patterns, such as northern conifer forests (Figure 4C). These for-
ests in Europe show high vulnerability to insect attacks,4

possibly because of a limited adaptation to increasing water

stress and a reduced defense capacity related to tree aging.

Regardless of biomass loss, the vulnerability of evergreen forest

types appears more influenced by homogeneity compared

to deciduous forests for all disturbance types considered

(Figures 4D–4F). This signal may be driven by specific traits of
One Earth 7, 1–16, December 20, 2024 7
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these forests, such as root morphology, wood density, and the

extended phenology, which affect the vulnerability to multiple

disturbances (windthrows, droughts, bark beetles), particularly

in even-aged, homogeneous stands. Therefore, an increase in

structural and/or compositional diversity in evergreen forests

would be particularly beneficial for these functional types of

trees, enhancing their resistance against climate-driven natural

disturbances. It is worth noting that deciduous forests exposed

to insect outbreaks represents the only case in this study that

shows a negative sensitivity to homogeneity (Figure 4F). This

would suggest that heterogeneity leads to higher vulnerability

of this plant functional type to insects. Deciduous forests in Eu-

rope are typically not affected by bark beetles, whereas they are

vulnerable to defoliators, which are mostly primary pests feeding

on healthy trees. Results seem, therefore, to suggest that diver-

sity in deciduous forests by promoting productivity78,79 and for-

est cover (canopy packing; Jucker et al.80) could ultimately favor

the development of primary pests exploiting foliage.

We then quantify the potential benefits achievable from forest

management aimed at increasing ecosystem heterogeneity. To

this aim, we developed an idealized scenario, which simulates

the impact of higher ecosystem heterogeneity while preserving

the consistency with the local environmental conditions (Fig-

ure S15). Such a new value of increased heterogeneity has

been used as predictor in the hazard and vulnerability models

in place of the actual value. The high variable importance scores

of ecosystem heterogeneity metrics in the hazard and vulnera-

bility models (Figures S9–S11 and Forzieri et al.4) confirm their

key role in influencing both triggering and susceptibility mecha-

nisms of disturbances. Differences in risk levels generated under

the actual and idealized scenarios have been ultimately used to

quantify the potential reduction in biomass loss achievable with

this adaptation measure (experimental procedures).

Overall, we found that about 18% of the actual overall climate-

driven risk to European forests, corresponding to an annual

biomass loss of 7.472 ± 6.913 Mt, could be avoided by

increasing the ecosystem heterogeneity under current climate

conditions (Figure 4G). This represents an important gain, which

could potentially limit the carbon sink saturation effect.57 The

avoided biomass losses potentially resulting under the idealized

scenario of enhanced ecosystem heterogeneity appear largely

associated with the widespread reduction in the hazard compo-

nent (Figures S16A, S16D, and S16G). The vulnerability compo-

nent is affected as well by changes in heterogeneity. However,

its response differs across geographic regions and disturbance

types and may show contrasting patterns with possible amplifi-

cation or dampening of risk levels (Figures S16B, S16E, and

S16H). Averaged at European scale, we found that biomass

loss due to fires could be reduced by 9% (annual avoided

biomass loss of 0.166 ± 0.123 Mt) with larger values in Mediter-

ranean countries (Figure 4H). Damage due to windthrows could

be dampened by 27% (2.116 ± 3.805 Mt) with particularly high

benefits in regions affected by destructive events (e.g., Gudrun,

Kirill). Biomass loss due to insect outbreaks could be reduced by

16% (5.191 ± 4.856 Mt) with higher percentages in central and

northern regions. This level of reduction is very close to that esti-

mated at the stand level, with an average reduction of damage

in mixed forests of 23% compared to pure forests.39 Thus,

consistent with previous analyses (Figures 4A–4C), larger bene-
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fits could be reached in those forests at higher risk. Considering

the climate sensitivity of the risk and the forecasted climate tra-

jectory for the 21st century, it is likely that the relative importance

of this adaptation measure will increase under future climate

conditions of European forests.

Despite the net gain in terms of overall annual avoided

biomass loss, it is important to point out that an enhanced

heterogeneity would not lead to a reduction of risk levels every-

where, depending on the background environmental condi-

tions and current level of heterogeneity. For instance, an in-

crease in ecosystem heterogeneity in most Nordic regions

seems to increase the biotic risks (Figure 4H). This effect could

be triggered by shallow soils that may limit positive comple-

mentarity processes, such as root stratification, while on the

contrary exacerbating competition for water among spe-

cies81,82 and ultimately leading to an increase in vulnerability

to insect outbreaks (Figure S16H). The considerable spatial

variability emerging from the analysis highlights the complexity

of the problem and the importance of assessing the effective-

ness of adaptation strategies within a multi-dimensional frame-

work designed for local environmental conditions and to

account for amplification and dampening effects that may

emerge from the non-linear interactions of multiple factors.34

The effects associated with enhanced heterogeneity may go

beyond the reduction in biomass loss due to natural distur-

bances. For instance, changes in forest heterogeneity influence

the provision of various ecosystem services important for hu-

man societies, such as wood production, climate regulation,

biodiversity conservation, and cultural values.83,84 Further

research is urgently needed to identify optimal local adaptation

strategies offering the best compromise in terms of resilience to

climate change and delivery of ecosystem services.

Conclusions
Our analysis provides data-driven evidence that changes in

climate during the past four decades have had an important

role in intensifying disturbance events related to fires, wind-

throws, and insect outbreaks in European forests, ultimately

leading to increasing biomass loss. Such a rising trend in forest

disturbances is plausibly contributing to the recent slowdown of

the European carbon sink57 and corroborates previous studies,

which have highlighted the progressive saturation of the positive

effects of CO2 fertilization on carbon sequestration and the rise

of negative impacts of climate change on the accumulation of

forest biomass.53,54 We found that enhanced ecosystem hetero-

geneity would be particularly effective in reducing climate-driven

risks at European scale, yet local environmental conditions play

an important role in modulating these potential benefits. Given

the spatial aggregation at 0.25� used in our modeling framework,

our results may support relevant stakeholders and managers

acting at municipality, regional, and national levels. In addition,

our findings could also be of interest for those working on

land-based climate policy and on the implementation of

climate-smart forest management strategies. Considering that

current climate policies heavily rely on stable carbon capture

by forests,85 our results can contribute to the development of

more integrated and effective land-basedmitigation and adapta-

tion strategies based on ecosystem diversification, particularly

urgent in view of the expected intensification of disturbance
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regimes due to global warming.10,11,18 The results may also

serve as a benchmark for forest/vegetation models to improve

their capacity to represent natural disturbances and ultimately

enhance the reliability of future land-climate predictions. This is

particularly important, as the ability of forests to keep absorbing

CO2 is one of the greatest sources of uncertainty in climate pro-

jections.2 Finally, our findings—by disentangling the effects of

the various components and drivers of risk and unraveling the

underlying ecological processes—contribute to a better under-

standing of the dynamics by developing concepts at the inter-

face between remote sensing, landscape ecology, forestry,

and climate science.
EXPERIMENTAL PROCEDURES

Observed forest disturbances

We focused on the risks to European forests caused by three major natural dis-

turbances: forest fires, windthrows, and insect herbivore outbreaks (e.g., bark

beetles, defoliators, and sucking insects).More than150,000 spatially explicit re-

cords of disturbed forest areas collected over the period 2000–2017 were used

to develop hazard and vulnerability models (see following sections). Fires were

retrieved from the European Forest Fire Information System (EFFIS, https://

effis.jrc.ec.europa.eu/), windthrows from the European Forest Windthrow data-

set86 (FORWIND, https://doi.org/10.6084/m9.figshare.9555008), and insect out-

breaks from the National Insect and Disease Survey (IDS, http://foresthealth.fs.

usda.gov) database of the United States Department of Agriculture (USDA). The

use of IDS-USDA data to the European context follows the rationale and

approach described in Forzieri et al.4 and is further detailed in Text S5.

Each disturbance record (EFFIS, FORWIND, IDS-USDA) is characterized by

the georeferenced spatial extent of the corresponding affected forest and the

timing of the disturbance occurrence, the latter defined with an annual time

resolution. The use of such spatially explicit databases of forest distur-

bances—in combination with satellite data—allowed retrieval for each record

of the corresponding observed biomass loss. For each observed forest distur-

bance occurring at the time t, the corresponding relative biomass loss (BLrel)

was quantified based on the difference between pre- and post-disturbance

biomass (B), as follows:

BLrel =

�
maxðBt� n;.;BtÞ � minðBt ;.;Bt+mÞ

maxðBt� n;.;BtÞ
�

(Equation 1)

where n and m represent the backward and forward time lags (in years),

respectively, and express the time window over which a biomass loss can

be reasonably attributed to a given disturbance. For fires and windthrows,

n and m were both set to 1, as these disturbances typically cause an abrupt

loss in vegetation. For insect outbreaks, n and m were set to 2 and 5, respec-

tively, in order to characterize the progressive and slow change in biomass

following an insect infestation.87 Annual B time series are reconstructed at

the disturbance record level by integrating a static 100-m above-ground

biomass map acquired for the year 2010 from multiple Earth Observation sys-

tems48with forest cover changes derived from theGlobal Forest Changemaps

recorded at 30-m spatial resolution from Landsat imagery.28 The methodolog-

ical details of this approach have been described in Forzieri et al.4

Furthermore, as complementary disturbance databases, we exploited: the

Database on Forest Disturbances in Europe9,29 (DFDE, https://efi.int/articles/

database-forest-disturbances-europe); the database of forest disturbances

provided by the Food and Agriculture Organization (FAO) of the United Nations

(https://fra-data.fao.org/EU/fra2020/disturbances/); the collection of salvage

logging data provided by the Joint Research Center (JRC) of the European

Commission71 (https://data.jrc.ec.europa.eu/dataset/2100b612-a4b0-4897-

829b-72b7b1e5782c); and estimates of dry matter emissions of boreal

and temperate forest fires acquired from the Global Fire Emission

Database70 (GFED, https://www.geo.vu.nl/�gwerf/GFED/GFED4/). These

additional disturbance databases have been used in a cross-comparison anal-

ysis to evaluate our estimates against independent retrievals. Additional de-

tails are reported in Text S3.
Detection of undisturbed forest areas

For each disturbance type, in addition to the disturbance records we used two

sets of records of undisturbed conditions to train the machine learning algo-

rithm implemented for the hazard component (the model development is

described in the following sections). The first set of undisturbed records refers

to the spatially explicit disturbed areas, described above (EFFIS, FORWIND,

IDS), before the occurrence of the disturbance event. A given forest patch

can be undisturbed for long time until certain critical conditions in climate

and forest manifest. Under such critical conditions the disturbance can occur.

To capture such evolving hazard conditions in the same area, for each

observed forest disturbance occurring at the time t, we retrieved the corre-

sponding records of undisturbed conditions over the four preceding years

(from t � 5 to t � 1). For such records, the timing is therefore different from

the one referring to the disturbance events. We avoid sampling years

after t because environmental conditions could be still affected by the past

disturbance (e.g., partial recovery of vegetation) and not properly represent

the undisturbed conditions of the forest. The second set of undisturbed re-

cords was derived at different locations from the disturbed records by gener-

ating randomly over the 2000–2017 period 200,000 circular areas of extents

equal to the average area of the disturbed forest patches and excluding those

that overlapped with disturbance records. This second set of records, there-

fore, presents random geographical location and timing. The average area

size was derived separately for agent type. To identify areas with stable vege-

tation conditions, only records with relative changes in biomass over the

observational period lower than 5%, estimated following Forzieri et al.,4

were retained and, together with the first set of records, used as reference

sample of undisturbed forests. The use of two datasets of undisturbed records

was required to inform the RF algorithms about environmental conditions both

in areas that have not been interested by disturbances during the observation

periods and in areas that have been affected by disturbances at a different

time. In this way both the spatial and the temporal variability of the phenome-

non is properly captured in the training datasets. The relevance of this issue is

further explored in Text S7.

Environmental drivers

A comprehensive set of climate and vegetation variables collected from satel-

lite and reanalysis products were used as predictors of the hazard, vulnera-

bility, and exposure models (see following sections). Climate features include

annual values of key climatic variables (e.g., temperature, precipitation, snow),

their long-term averages, and extreme event indicators. Vegetation features

include structural variables (e.g., leaf area index, spatial heterogeneity, vege-

tation optical depth) and phenological metrics. The full list of climate and vege-

tation variables exploited in this study is reported in Table S6. The products

used for describing the selected environmental variables have spatial resolu-

tions ranging between 100 m and 0.5� and can be static or dynamic with

annual time step. Missing years in the environmental predictors were recon-

structed by linear interpolation over time at the grid-cell level to cover the

whole observational period 1979–2018. Such temporal extrapolation was con-

ducted for the dynamic variables included in the models (e.g., LAI, population

density, phenological metrics), whereas static variables (e.g., tree density, tree

age, tree height, homogeneity, coefficient of spatial variation, elevation, slope)

were kept constant for the whole period. Additional details on the datasets

used are reported in Texts S1 and S2.

Specifically for the hazard and vulnerability models, environmental variables

were spatially averaged over the forest area of each disturbance record and

undisturbed record and refer to the climate conditions occurring at the timing

of the record. Vegetation variables were similarly spatially averaged; however,

as their satellite-derived estimates could be affected by disturbance occur-

rences, the sampling of vegetation characteristics refers to the conditions

occurring 1 year before the timing of the record. Such an approach enabled

us to extract for each record climate and vegetation characteristics that can

be effectively used as predictors of triggering and susceptibility mechanisms

of natural disturbances. When models are used in prediction mode over the

period 1979–2018, environmental predictors have been spatially averaged to

a common spatial resolution (0.25�) by masking out non-forest areas.

Furthermore, the cover fractions of different PFTs, including broadleaved

deciduous (BrDc), broadleaved evergreen (BrEv), needle leaf deciduous

(NeDc), and needle leaf evergreen (NeEv), were retrieved from the land-cover
One Earth 7, 1–16, December 20, 2024 9

https://effis.jrc.ec.europa.eu/
https://effis.jrc.ec.europa.eu/
https://doi.org/10.6084/m9.figshare.9555008
http://foresthealth.fs.usda.gov
http://foresthealth.fs.usda.gov
https://efi.int/articles/database-forest-disturbances-europe
https://efi.int/articles/database-forest-disturbances-europe
https://fra-data.fao.org/EU/fra2020/disturbances/
https://data.jrc.ec.europa.eu/dataset/2100b612-a4b0-4897-829b-72b7b1e5782c
https://data.jrc.ec.europa.eu/dataset/2100b612-a4b0-4897-829b-72b7b1e5782c
https://www.geo.vu.nl/%7Egwerf/GFED/GFED4/
https://www.geo.vu.nl/%7Egwerf/GFED/GFED4/


ll
OPEN ACCESS Article

Please cite this article in press as: Forzieri et al., Ecosystem heterogeneity is key to limiting the increasing climate-driven risks to European forests, One
Earth (2024), https://doi.org/10.1016/j.oneear.2024.10.005
maps of the European Space Agency Climate Change Initiative (ESA-CCI,

https://www.esa-landcover-cci.org/).

Methodological framework for climate risk assessment

To express the impact of climate-driven disturbances to forests, we adopted

the IPCC risk assessment framework widely used in climate impact studies.15

In the context of climate change impacts, risks result from dynamic interac-

tions between climate-related hazards (H) with vulnerability (V ) of the affected

human or ecological system to the hazards and its exposure (E).15 Risk in this

study is expressed in terms of biomass loss (R) due to natural disturbances and

is derived as the product of hazard, vulnerability, and exposure as follows:

R = H$V$E (Equation 2)

The three risk components reflect different processes. H represents the

fraction of forest area affected by a given disturbance. It is derived as a func-

tion of its probability of occurrence and expressed by a continuous number

ranging between 0 and 1: 0 means a forest is not exposed to disturbance,

and 1 means the whole forest cover is exposed to disturbance. We focused

on disturbances originating from three hazards: fires, windthrows, and insect

outbreaks. For insect outbreaks, we merge bark beetles, sucking insects,

and defoliators in a unique insect hazard class consistently with Forzieri

et al.4 V defines the degree to which a forest ecosystem is affected when

exposed to a given disturbance (H), and it is expressed by the potential relative

biomass loss when a forest is exposed to a natural disturbance. V is a contin-

uous number ranging between 0 and 1: 0 means a forest is not vulnerable to

the given disturbance, and 1 means a forest is completely damaged when

exposed to the given disturbance. E refers to the amount of biomass exposed

to (and potentially damaged by) a hazard, and it is quantified in terms of tons

per hectare of available above-ground biomass. The combination of the three

risk components (H;V , and E) provides the amount of biomass loss, expressed

in tons per hectare caused by a certain disturbance type. When risk estimates

are integrated in space, they are expressed in cumulated tons of biomass loss.

Each risk component depends on multiple spatially and temporally varying

environmental drivers (e.g., climate features and vegetation properties), and

changes in one driver can also influence multiple risk components. For

instance, water stress enhances the likelihood of fire ignition and—at the

same time—makes forest more susceptible to large and rapid fire spread

once triggered.58 The combined increase in hazard and vulnerability in this

case amplifies the risk. However, prolonged water stress conditions may

also lead—in the long term—to reduced fuel loads and a consequent reduction

in forest vulnerability. In this case, hazard and vulnerability show opposite

sensitivity to water stress with a possible dampening effect on biomass

loss.60 The dynamic interplay between H; V, and E present complex and

non-linear patterns that need to be evaluated in a multi-dimensional frame-

work that is able to account for the interactions among risk components and

underlying environmental drivers.

To address this issue, we developed a series of RF models47 and express

each of the risk components (H;V , and E) as a function of climate and vegeta-

tion drivers. Machine learning in general, and RF in particular, accounts for

non-linear feature interactions and does not require unrealistic assumptions

about the functional form relating the key drivers and the response functions.

Specifically, for the hazard and vulnerability components, RF models were

developed for major PFTs, namely BrDc, BrEv, NeDc, and NeEv. Exploring

the ecosystem response to natural disturbances for different PFTs enabled

us to characterize ecosystem-specific behaviors.

We adopted a common modeling setup across the risk components. RF

models were implemented with 500 classification (H) and regression (V ; E)

trees, whose depth and number of predictors to sample at each node were

identified using Bayesian optimization. The algorithm allows for the optimal

selection of machine learning hyperparameters that strongly control model

performance. For each year over the observational period 2000–2017, we

randomly extracted 60% of the records to use as training set and the remain-

ing 40% as validation set. Once calibrated/validated, the RF models were

used to reconstruct each risk component (and corresponding uncertainties)

annually for the period 1979–2018 for the domain covering EU27 countries

plus the United Kingdom, Iceland, Norway, Switzerland, Turkey, and the Bal-

kan area at 0.25� spatial resolution. To this aim, RF models were used in pre-

dictive mode using as input spatial maps of environmental predictors. Annual
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estimates of a given risk component were obtained as the average from all

trees in the RF ensemble and the corresponding grid-cell uncertainty esti-

mated in terms of standard deviation of the computed responses over the

ensemble of the grown trees of the model. Hazard, vulnerability, exposure,

and risk estimates were provided at grid-cell level and at macro-region scale

(Figure S17). We consider the 0.25� spatial resolution appropriate for this

work, as it allows to explore patterns and drivers of forest disturbances at

the regional/national scale and, therefore, to support both the development

of the science and the definition of regional/national forest strategies that

aim at reducing climate risks and improving forest resilience. Furthermore,

such spatial aggregation is also optimal (1) to support the data-driven esti-

mates of the predictive models by minimizing the effects of stochasticity in

the signal of forest disturbances, (2) to reduce potential spatial dependence

in the pool of predictors, and (3) to facilitate the comparison of our data-driven

risk levels with analogous estimates generated by process-based vegetation/

forest models ultimately supporting their parameterization. Additional details

are reported in Text S8.

Hazard

Hazard (H) levels are quantified here in terms of expected fraction of forest area

annually affected by a given disturbance (EFAA). It is a metric widely used in

multi-risk assessment and allows for a quantitative comparison of hazards

described by different process characteristics.88 EFAA is expressed as a func-

tion of the probability of occurrence of a given disturbance (P) following the

procedure described below.

For each disturbance type and for each PFT, we developed an RF classifica-

tion model47 to predict P (response variable) based on climate and vegetation

conditions (predictors). To this aim, records of disturbed (EFFIS, FORWIND,

IDS-USDA) and undisturbed forest patches previously described were used

as training/testing dataset. A set of climate and vegetation variableswas chosen

as predictors (Table S6) based on a feature selection procedure described in

Forzieri et al.4 We used the same input variables for the hazard and vulnerability

components (the latter one described in the next section) to preserve consis-

tency with the modeling tools already developed4 to enable the integration of

multiple risk components in a coherent framework and better isolate the under-

lying drivers across multiple risk components. We have added only population

density as additional driver in the hazard model of fires (Table S6) to capture

possible human-related mechanisms, such as human ignition and fire suppres-

sion.89 Potential effects of the spatial dependence and spatial resolution of the

observational datasets wereminimized by resampling the environmental drivers

first to the common 0.25� spatial resolution and then along the gradients of the

three principal components derived from the set of predictors. Such methodol-

ogy has been originally implemented for the vulnerability component4 and is

further detailed in Text S9, complemented with new dedicated experiments de-

signed for the hazard modeling presented in Text S7 and Table S7.

For eachRFmodel, the optimal operatingpoint of the receiver operating char-

acteristic (ROC) curve was retrieved to identify the probability threshold (PROC)

that maximizes classification accuracy. The RF models predict disturbance oc-

currences with overall accuracies of 88.3%, 69.4%, and 89.2% for fires, wind-

throws, and insect outbreaks, respectively. Variable importance scores, ROC

curves, and classification performances are shown in Figures S9–S11.

The RF models were used to evaluate P (and corresponding uncertainty, sP)

annually between 1979 and 2018 for each grid cell of the spatial domain. Re-

sults of PFT-specific RFmodels were averaged at grid-cell level with weighting

based on the cover fractions of PFTs.

To express the hazard component in magnitude terms and account for the

stochasticity of the disturbance processes, annual P values were translated

into EFAA. To this aim, for each grid cell over the period 2000–2017, we ex-

tracted the annual P value and the corresponding observed fraction of forest

area affected. The observed fraction of forest area affected was derived

from the forest disturbance datasets available for Europe (EFFIS, FORWIND,

and DFDE) gridded to the common 0.25� spatial resolution. We then clustered

all grid cells in ten probability classes with a 0.1 probability bin, and for each

probability class we retrieved its empirical cumulative distribution function of

fraction of area affected (Figure S12). For insect outbreaks, records of Euro-

pean data are provided at country scale (DFDE, Text S3); therefore, the afore-

mentioned approach was developed by linking the average probability

computed at country scale and the corresponding reported fraction of forest

https://www.esa-landcover-cci.org/
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affected. We recognize that DFDE likely misses important disturbance events,

being uniquely based on a literature search, and may underestimate the effec-

tive impact occurred at country level.9 Therefore, hazard levels for insect out-

breaks derived in this study plausibly reflect a conservative estimate and

should be viewed while considering this potential bias. We reconstructed

the EFAA for each grid cell of our spatial domain over the whole 1979–2018

period by randomly generating its value based on its probability class-specific

empirical cumulative distribution function. EFAA corresponding to P< PROC

was set to 0 for fires and insect outbreaks to reduce the occurrence of false

positives. The windthrow hazard modeling required some additional process-

ing. To incorporate in a more explicit manner the dependence of windthrow

hazard on meteorological features, only EFAA grid cells with maximum annual

wind speed greater than one standard deviation above the multi-annual mean

were retained. Furthermore, to reduce the potential underestimation of the

overall hazard component originating from the incompleteness of the

FORWIND dataset,86 EFAA maps were rescaled to preserve consistency

with the cumulated area affected at the European scale for the period 2000–

2017 reported by the FAO database.

The resulting maps, expressed in terms of EFAA, represent the hazard (H)

component of our risk-assessment framework. The standard deviation of

each class-specific distribution was quantified to assess the uncertainty of

EFAA (sEFAA) attributable to the aforementioned random generator process

and added in quadrature to sP to derive the full uncertainty of theH component

at the grid-cell level (sH).

Vulnerability

Vulnerability (V ) expresses the degree to which a forest ecosystem is affected

when exposed to a given disturbance and in this study is quantified in terms of

fractionofbiomass lossesbasedon thedifferencebetweenpre-andpost-distur-

bance biomass (Equation 1), further detailed in a previous study.4 For each

disturbance type and PFT, an RF regression model47 was implemented to pre-

dict the observed relative biomass loss (BLrel, response variable) based on

climate and vegetation conditions (predictors, Table S6). Models explain on

average 34%–49% of the variance in relative biomass loss (R2) across the

considered disturbances. More details on model development and validation

canbe found inForzieri et al.4 ThePFT-specificRFmodelswereused toevaluate

the V of forests annually between 1979 and 2018 for each grid cell of the spatial

domain and thenweightedbasedon thecover fractionsofPFTs.Grid-cell uncer-

tainty of predictedV valueswere quantified in terms of standard deviation (sV ) of

the computed responses over the ensemble of the grown trees of the model.

Exposure

Exposure (E) refers to the spatial and temporal availability of forest biomass

potentially prone to hazards.We used an RF regressionmodel47 to reconstruct

the forest biomass (response variable) as a function of a set of vegetation con-

ditions (predictors, Text S2). To this aim, we first derived a time series of annual

forest biomass maps as reference dataset by rescaling estimates of the

changes in carbon stock occurring over the period 2000–2018 (Xu et al.,49

https://zenodo.org/record/4161694#.YZ1VwvnMKUk) to the forest biomass

values available for the year 2010 (Santoro et al.,48 GlobBiomass, https://
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doi.org/10.1594/PANGAEA.894711). The scaling factor was derived by

dividing at the grid-cell level the biomass value in 2010 by the carbon stock

value in 2010. The multi-temporal biomass dataset was then generated by

multiplying the scaling factor by the carbon stock changes over the period

2000–2018 and used as response variable for the development of the RF

model. To this aim, we randomly extracted 60% of the pixels to use as training

set and the remaining 40% as validation set. We found that the RF model ex-

plains 89% of the variance (R2) of the reference biomass, with a root mean
squared error of 15.13 t ha�1 and an average overestimation of 0.128 (percent

bias,90 PBIAS) (Figures S2A and S2B).

The RF model was then used to evaluate the evolution of forest biomass

annually (E) between 1979 and 2018 for each grid cell of the spatial domain.

Estimates of biomass, representing the E component in our risk-assessment

framework, are obtained as the average from all trees in the RF ensemble

and the corresponding grid-cell uncertainty estimated in terms of standard de-

viation (sE ) of the computed responses over the ensemble of the grown trees of

the model. Temporal changes in E due to natural or human-induced factors,

such as CO2 fertilization effects and forest management, are implicitly incorpo-

rated in our assessment to the extents they are reflected in the satellite-based

variables used as predictors in the RF model (Text S2).

We further assess the capability of the RF model to capture the observed

temporal variability of biomass. To this aim, we estimated the linear trend at

grid-cell level for both the reference and modeled biomass over the common

temporal period 2000–2018 and found anR2 of 0.63 (p < 0.05) between the two

trend maps (Figure S2C). Furthermore, we compared the net change of

modeled biomass aggregated over the whole of Europe with estimates of

net changes in carbon stock derived from FAO (https://fra-data.fao.org/EU/

fra2020/home/) for the temporal windows 1990–2000, 2000–2010, and

2010–2020. To increase consistency in terms of temporal coverage between

the two estimates, we retrieved the FAO estimate of carbon stock in 2018,

which is the last year of the modeled biomass, by assuming a linear growth

rate of carbon stock between 2010 and 2020. Furthermore, we apply a

10-year centered moving window over the time series of modeled annual

biomass. Net changes in our biomass values appear comparable to FAO esti-

mates, but always lower, with a bias of about 0.4% (Figure S2D).

Risk integration and error propagation

The three risk components described above, hazard (H), vulnerability (V ), and

exposure (E), were integrated to quantify the risk due to each of the natural dis-

turbances considered, basedonEquation 2. At the grid-cell scale, risk levels are

expressed in termsof tons of biomass loss per hectare of forest area. Theoverall

modeling framework has been specifically designed for forest ecosystems. All

environmental drivers used aspredictors in theRFmodels have been computed

for the forest area of each record by masking out non-forest lands. Such meth-

odology ensures consistency between target variables and predictors and pro-

vides estimates of biomass loss that are representative of the forest ecosystems

and independent of the distribution of forest within each grid cell (e.g., forest

fragmentation). The error propagation in risk estimate (R) is computed in terms

of standard deviation by incorporating the uncertainties in single risk compo-

nents and possible correlated systematic errors91 as follows:

where i is a givenpixel, vRi

vX denotes thepartial derivative ofRwith respect to theX

variable (in our case,H;V , and E), and sX is the standard deviation operator that

reflects theuncertainty in eachsinglecomponent,whereassXY is thecovariance

between variables X and Y . When risk levels are aggregated at macro-region

scale, biomass lossesare cumulated over thewhole referencedomain account-

ing for the forest area of each grid cell and finally expressed in tons. The corre-

sponding error is derived by adding in quadrature the single-grid-cell uncer-

tainties as follows:
sR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
sRi

�2s
(Equation 4)

where grid cell i spans the considered macro-region. Inter-annual average and

long-term trend in biomass loss are then analyzed both at macro-region scale

and for the whole domain. Long-term trends in biomass loss are quantified
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over the period 1979–2018 using linear regressionmodels and their significance

evaluated by the two-sided modified Mann-Kendall92 test to account for

possible serial correlation in the time series. Results of these analyses are shown

in Figures 1 and 2. To derive average and trend values of biomass loss that are

minimally affected by potential extrapolation errors beyond the training range of

theRFmodels,wequantified spatial statistics of risk levels based solely on areas

with climatological conditions analogous to those of the observational datasets.

Results showed a general consistency with the estimates derived from the entire

spatial domain and corroborate the robustness of our findings (Tables S2–S5).

The adopted resampling procedure (section ‘‘environmental drivers’’) may

affect the spatial variability in environmental predictors with consequent

possible local-scale effects of forest disturbances. However, such biases

are minimized by constraining the hazard component on the observed frac-

tions of the forest area affected (section ‘‘hazard’’).

To quantify the overall climate risk due to multiple disturbances, we cumu-

lated biomass losses originating from single disturbances. Possible amplifica-

tion/dampening effects could manifest due to dependencies among multiple

disturbances (e.g., Schelhaas et al.,23 Seidl and Rammer,93 Meigs et al.94).

Despite the relevance of these interactions, the lack of reference observational

data of compound events hampered the explicit integration of their effects in

our modeling framework. Therefore, such interplays are represented in our

assessment only to the extents they are reflected in the spatially and tempo-

rally varying environmental predictors of the RF models.

To enhance the confidence of our approach, in addition to the validation of

the single risk components, (hazard, vulnerability, and exposure; see previous

sections), we evaluated the resulting risk estimates against independent sour-

ces of biomass losses expressed in terms of damaged volumes (DFDE),

salvage loggings (JRC), and drymatter emissions (GFED) (Text S3). The agree-

ment was assessed in terms of Spearman rank correlation (r) computed be-

tween pairs of samples of annual country-scale risk estimates. Furthermore,

we compared inter-annual averages and trends of risk computed over the

considered domain (Text S4 and Figure S8). While the reasonable agreement

between our risk estimates and those reported in independent disturbance da-

tabases corroborates the overall hazard-vulnerability-exposure integration

framework proposed here, a series of potential limitations have been critically

evaluated and discussed in Text S5.
Disentangling the key determinants of risk

To disentangle the key components and drivers of risk, we explored two sets of

factorial simulations. The first experiment aims to isolate the marginal contri-

bution of each risk component (hazard, vulnerability, and exposure) on the re-

sulting temporal changes in risk levels. To this scope, we explored three

different scenarios, each one generated from an ensemble of runs. In each

scenario, a risk component j (hazard, vulnerability, or exposure) is kept dy-

namic while the remaining two elements are fixed to a reference year. Under

such configuration, we perform 40 different runs by changing the reference

year over the period 1979–2018. The risk averaged over the generated

40-member ensemble is independent of the reference year used to simulate

static conditions, and therefore the resulting temporal changes can be fully

attributed to the component dynamic. Risk estimates are aggregated at

macro-region level, and a linear regression model is used to retrieve the

long-term trend in biomass loss due to the j component (Tj ). Its marginal contri-

bution (Mj ) to the risk dynamics is quantified as follows:

Mj = 100$

		Tj

		P
q

		Tq

		 (Equation 5)

where q spans the three risk components (hazard, vulnerability, and exposure).

The second experiment aims to isolate themarginal contribution of climate and

vegetation drivers on the resulting temporal changes in risk levels. Climate

and vegetation features are used as predictors in each of the risk components,

and therefore their effect needs to be separately analyzed in the hazard,

vulnerability, and exposure components. To disentangle their effects, we

adopted the same methodology described above and kept dynamic alterna-

tively vegetation drivers or climate drivers. When vegetation changes are ac-

counted for, these are expressed in terms of variations in leaf area index,

biomass, phenological metrics, and vegetation optical depth, while the other
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vegetation drivers (e.g., tree height, tree age) are kept static because of the

lack of multi-temporal information. Therefore, the marginal effect of vegetation

changes due to natural effects, such as climate-mediated growth rate, and hu-

man-induced variations in forest patterns, such as even-aged management

and growing of monocultures, are captured to the extent they are reflected

in the changes of the mentioned time-varying parameters. Results of these an-

alyses are shown in Figure 3.

Relationship between ecosystem heterogeneity and forest

compositional/structural diversity

Remotely sensed indicators of spectral variability have long been explored as

proxies of spatial heterogeneity95 at different scales and for various environ-

mental applications.96,97 Following such approaches, ecosystem heterogene-

ity was retrieved in this study based on 1-km texture metrics generated from

250-m Enhanced Vegetation Index (EVI) imagery acquired by the Moderate

Resolution Imaging Spectroradiometer (MODIS) for the period 2001–200575

(http://www.earthenv.org/texture). We used homogeneity and coefficient of

variation to quantify the similarity and dissimilarity, respectively, of vegetation

patterns ofmultiple ecosystems (forest and non-forest land-cover types). Such

diversity metrics work at the scales of beta and gamma diversity.98 Beta diver-

sity describes the diversity between two communities or ecosystems, while

gamma diversity refers to the diversity between many ecosystems sampled

at the landscape scale, such as the entire slope of a mountain or the entire

littoral zone of a seashore. Homogeneity and coefficient of variation are

inversely correlated and were selected from a pool of spectral diversity indica-

tors based on a feature selection algorithm specifically designed to identify the

environmental predictors of forest susceptibility to climate-driven distur-

bances.4 While such diversity metrics cannot capture the within-stand

tree species variations and fine-scale structural features such as tree sizes

and forest gaps for which higher-spatial-resolution products would be

required,96,97,99 we stress that major patterns of forest spatial diversity at the

landscape scale are plausibly well described.75

To evaluate the relationship between the selected texture metrics and the

spatial diversity of forest features, we compared them against compositional

and structural diversity indices retrieved from independent datasets and

methods. Forest land-cover compositional diversity was quantified by the

use of the Shannon Index100 applied on forest cover types (forest land covered

by trees, regional classification scheme) available at 300-m spatial resolution

for the period 2001–2005 from the ESA-CCI product. For each pixel, the

most frequent forest type recorded over the reference period was considered.

Structural diversity was determined by computing the standard deviation of

forest biomass values available at 100-m spatial resolution for the year 2010

(Santoro et al.48). Both compositional and structural diversity indices were

quantified over 1-km spatial window to match the spatial resolution of texture

metrics. Only pixels fully covered by forest cover types were retained for the

following analyses; therefore, variability in spectral indices induced by non-for-

est land covers does not affect the analyses. Homogeneity and coefficient of

variation values were then binned as a function of compositional and structural

diversity across 50 equally spaced intervals, and the corresponding average

and standard error were determined. The strength of the relationship between

texture metrics and compositional/structural diversity was estimated sepa-

rately in terms of Spearman rank over the binned values to capture possible

non-linear relations between the two variables.

To further elucidate the relationship between texture-based ecosystem

heterogeneity and forest characteristics, we retrieved the homogeneity and

coefficient of variation using the same MODIS EVI data and algorithms

described in Tuanmu and Jetz75—and used in previous analyses—but mask-

ing a priori non-forest land-cover pixels. Therefore, the resulting new spectral

heterogeneity values are exclusively conditioned by the spatial variability in

forest patterns. We then quantified the Spearman correlation between the

original texture metrics (influenced by multiple land-cover types) and the

new ones (dependent on forest land-cover types only) across a forest cover

gradient.

The highly significant correlation observed in both experiments described

above (|Spearman rank| > 0.98, p < 0.05, Figure S13; Spearman rank >0.75,

p< 0.05, Figure S14) proves that in forested landscapes the ecosystem hetero-

geneity, quantified in terms of texturemetrics, is highly driven by forest compo-

sitional and structural diversity.

http://www.earthenv.org/texture
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Adaptation strategies based on ecosystem heterogeneity

To assess the effect of ecosystem heterogeneity, a property that can be affected

by landand forestmanagement43,44 and impact on the resistance against natural

disturbances, we explored the relative biomass losses (BLrel ) recorded over the

observed disturbed forest patches as a function of the local pre-disturbance

biomass and homogeneity, separately for each disturbance type. The resulting

binned data were then used to generate a fitting surface based on a modified

ridge estimator to extrapolate the observed relations over the whole range of

environmental gradients (Figures 4A–4C). Fitting performances were evaluated

in terms of Spearman rank correlation against binned data (0.75, 0.69, and

0.45 for fires, windthrows, and insect outbreaks, respectively). Natural distur-

bances, in their turn, can affect ecosystem heterogeneity.74 However, the spec-

tral-derived indicators used as ecosystem heterogeneity metrics derived for the

period 2001–2005 mostly refer to pre-disturbance conditions in the disturbance

datasets (2000–2017), and therefore the proposed experiment effectively en-

ables us to evaluate its effect on climate-driven risks.

To characterize the role of heterogeneity in influencing forest resistance

across different PFTs, we derived the average value of the fitting surface

and its slope across the homogeneity gradient for deciduous and evergreen

forests. The first metric describes the average vulnerability expressed in terms

of relative biomass loss (BLrel). The second metric quantifies the sensitivity of

biomass loss to homogeneity. To distinguish the different response of decid-

uous and evergreen, the fitting surface described above was generated by ac-

counting only for records with at least 50% of forest cover of the given plant

functional type, as retrieved from the ESA-CCI product. Results of this assess-

ment are shown in Figures 4D–4F.

Indicators of ecosystem heterogeneity are included as vegetation drivers in

the hazard and vulnerabilitymodels in terms of homogeneity for fires andwind-

throws and coefficient of variance for insect outbreaks (Table S6 and Text S1).

When such models are run in prediction mode, the heterogeneity metrics are

spatially averaged over forest areas at 0.25� spatial resolution to match the

common grid exploited in RF simulations, as detailed in previous sections.

To quantify how changes in heterogeneity control hazard and vulnerability

components and may ultimately influence the resulting biomass losses, we

generated an idealized scenario of enhanced heterogeneity. The rationale con-

sists in deriving for each grid cell a lower homogeneity value (higher heteroge-

neity) compared to its actual (reference) value by preserving the consistency

with the local background climate and biomass conditions. To this aim, for

each pixel we retrieved the homogeneity values recorded in neighboring cells

over a centered 1.25� 3 1.25� spatial window. Records with differences in

elevation larger than 500 m and average biomass (1979–2020) lower than

20% compared to the one in the centered pixel were excluded. We then

computed the enhanced heterogeneity at the grid-cell level as the minimum

of the sampled distribution of homogeneity values and tracked the source

grid cell of the selected lowest homogeneity value. The enhanced homogene-

ity map (Figure S15) is directly used as input in the hazard and vulnerability

models of fires and windthrows. For the hazard and vulnerability models of in-

sect outbreaks, which instead use the coefficient of variance as heterogeneity

metric, we retrieved the corresponding idealized scenario by associating to

each pixel the coefficient of variance corresponding to the source grid cell of

the selected lowest homogeneity value. Such an approach enables us to build

scenarios of homogeneity and consistent coefficient of variance because it is

based on the same source grid cells. Based on such idealized scenarios of

enhanced heterogeneity, we re-run each risk component and quantify the cor-

responding biomass losses. Differences in biomass losses generated under

the reference scenario and the idealized one are used to quantify the potential

benefits of enhanced heterogeneity and are expressed in terms of avoided

biomass loss (Figure 4G, 4H, and S16).

The co-occurrence of multi-dimensional environmental factors resulting

from the combination of interacting physical processes (compound events)

may amplify or dampen the ecosystem response.34 Tree-based models,

such as the RF approach used here, consider all variables together

(Table S6) and account for non-linear feature interactions in the final model

formulation.47,101 This allows us to disentangle possible confounding factors

and quantify the effective role of ecosystem heterogeneity in regulating

natural disturbances. Given the aggregation level utilized in our modeling

framework, such analyses should be considered informative for management

decisions acting at the regional/national scale. In large parts of Europe, forest
management strategies are typically quite uniform over areas of tens of kilome-

ters.1 This is the case, for instance, for monocultures, even-aged stands of co-

nifers in Central Europe and Scandinavia. In this respect, the chosen 0.25�

spatial resolution is appropriate to capture the emergent forest dynamics

and inform stakeholders at municipality, regional, and national levels.
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as referenced within the article.
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15. Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.,

Mintenbeck, K., Alegrı́a, A., Craig, M., Langsdorf, S., Löschke, S.,
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Text S1. Environmental predictors used for the hazard and vulnerability models 

Vegetation features 

• Biomass. Time series of forest biomass were derived by rescaling estimates of the 
changes in carbon stock occurring over the period 2000-2018 (ref. (1), 
https://zenodo.org/record/4161694#.YZ1VwvnMKUk) to the forest biomass values 
available for the year 2010 (ref. (2)), (GlobBiomass, 
https://doi.org/10.1594/PANGAEA.894711). The methodology is described in the method 
section (Exposure).  

• Tree height. Tree height values were retrieved from 1-km spaceborne light detection and 
ranging (lidar) data acquired in 2005 by the Geoscience Laser Altimeter System (GLAS) 
aboard ICESat (Ice, Cloud, and land Elevation Satellite)3. Data source: 
https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023. 

• Tree age. Tree age was retrieved from the global forest age dataset (GFAD) describing 
the age distributions of plant functional types (PFT) on a 0.5-degree grid and represents 
the 2000-2010 period4. The mode of the distribution for each PFT was retrieved and then 
used for PFT-specific hazard and vulnerability models. Data source: 
https://doi.pangaea.de/10.1594/PANGAEA.889943. 

• Leaf Area Index (LAI). Growing season averages of LAI were retrieved from MODIS 
Terra+Aqua data provided at 500-meter spatial resolution over the 2002-2017 period 
(MCD15A3H.006, data source: https://doi.org/10.5067/MODIS/MCD15A3H.006). The 
growing season spans from June to September. Missing LAI values for years 2000-2001 
were reconstructed from NDVI values by interpolation of a quadratic polynomial fitting 
function calibrated over the overlapping period 2002-2017. NDVI values were retrieved 
from MODIS Terra data at 250-meter spatial resolution over the 2000-2017 period 
(MOD13Q1.006, data source: https://doi.org/10.5067/MODIS/MOD13Q1.006). When 
Random Forest models are used in prediction mode, we used LAI retrieved from the 
Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index 
(GIMMS3g v.1) covering the period 1982-2018 and provided at 15-day temporal frequency 
and 1/12° spatial resolution5. Data source:,http://sites.bu.edu/cliveg/datacodes/. 

• Tree density. Tree densities were retrieved from a database of predictive regression 
models that link tree density observed over a multitude of plots at global scale with spatially 
explicit information on climate, topography, vegetation characteristics, and anthropogenic 
land use6. Tree density data were provided as a static map at 1-km spatial resolution and 
refer to the last two decades. Data source:  https://doi.org/10.6084/m9.figshare.3179986. 

• Coefficient of spatial variation (CV) and Homogeneity Index (Homogeneity). CV and 
Homogeneity are metrics quantifying the ecosystem heterogeneity of vegetated patterns 
based on the textural features of Enhanced Vegetation Index (EVI) imagery acquired by 
the Moderate Resolution Imaging Spectroradiometer (MODIS)7. Such spatial diversity 
metrics were provided at 1-km spatial resolution, are static and refer to the 2001-2005 
period. Data source: http://www.earthenv.org/texture.  

https://zenodo.org/record/4161694#.YZ1VwvnMKUk
https://doi.org/10.1594/PANGAEA.894711
https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
https://doi.pangaea.de/10.1594/PANGAEA.889943
https://doi.org/10.5067/MODIS/MCD15A3H.006
https://doi.org/10.5067/MODIS/MOD13Q1.006
http://sites.bu.edu/cliveg/datacodes/
https://doi.org/10.6084/m9.figshare.3179986
http://www.earthenv.org/texture
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Climate features 

• Annual cumulated precipitation (Pcum) and annual maximum temperature (Tmax). Pcum 
and Tmax were retrieved from the TerraClimate dataset, which combines high-spatial 
resolution climatological normals from the WorldClim dataset with time-varying coarser 
data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55)8. Pavg and Tmax 
were provided at 4-km spatial resolution over the period 1979-2018. Data source: 
http://www.climatologylab.org/terraclimate.html.  

• Short-term average anomaly in cumulated precipitation (avg aPcum) and average 
temperature (avg aTavg). avg aPcum (avg aTavg) were quantified as the average of the 
annual anomalies in cumulated precipitation (average temperature) over a six-year time 
window [t-5,t]. Annual anomalies in cumulated precipitation (average temperature) were 
computed as the difference between the annual cumulated precipitation (average 
temperature) and its climatological value over the period 1970-1990. Temperature and 
precipitation were retrieved from the TerraClimate database8 at 4-km spatial resolution 
over the period 1979-2018. Data source: http://www.climatologylab.org/terraclimate.html. 

• Long-term average temperature (Long-term Tavg). Long-term Tavg was quantified as the 
average of annual temperature over the period 1979-2018. Temperature values are 
retrieved from the TerraClimate8 database at 4-km spatial resolution over the period 1979-
2018. Data source: http://www.climatologylab.org/terraclimate.html. 

• Annual moisture index (MI). MI was quantified as the minimum of the seasonal MIs in a 
year, which were derived as (seasonal cumulated precipitation)/(seasonal maximum 
temperature + 30). The approach is based on a modified version of the De Martonne 
index9, where the constant 30 at the denominator is introduced to avoid negative values 
in cold climates. Temperature and precipitation were retrieved from the TerraClimate8 
database at 4-km spatial resolution over the period 1979-2018. Data source: 
http://www.climatologylab.org/terraclimate.html. 

• Short-term average standardized precipitation evapotranspiration index (avg SPEI). avg 
SPEI was quantified as the average of the annual 12-month SPEI computed over a six-
year time window [t-5,t]. Monthly SPEI-12 follows the computation approach described in 
ref. (10) and is based on the difference between precipitation and potential 
evapotranspiration. To characterize prolonged period of water stress conditions before the 
occurrence of a given disturbance, we first isolated the SPEI-12 ≤ -0.5 values and summed 
them (in absolute values) over the 12 monthly values. No positive SPEI-12 or just-negative 
(between -0.5 and 0) values have been included in the annual summed values. Input 
climate variables were derived from reanalysis data at 0.25° spatial resolution over the 
period 1979-2018. Data source: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5. 

• Fire Weather Index (FWI). The FWI is composed of three moisture codes and three fire 
behaviour indices. The moisture codes describe the moisture content of three generalized 
fuel classes, while the behaviour indices represent the spread rate, fuel consumption and 
intensity of a fire if it were to start11. FWI calculations require measurements of 
temperature at 2m, relative humidity at 2m, and wind speed at 10m, daily snow-depth, and 
precipitation cumulated over the previous 24 hours. FWI was provided from the Global 
Fire WEather Database (GFWED) at 0.5° spatial resolution over the 1980-2018 period. 
Fire danger is typically mapped in classes (very low, low, medium, high, very high and 
extreme) according to FWI values. In our study, we used as predictor the number of days 
within a year with FWI above the “high danger” level. Data source: 
https://data.giss.nasa.gov/impacts/gfwed/.  

http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://data.giss.nasa.gov/impacts/gfwed/
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• Cumulated annual snow (Snow). Snow values were retrieved from the NCEP-DOE 
Reanalysis 2 project at 0.5° spatial resolution over the 1979-2018 period12. Data sources: 
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.  

• Annual maximum wind speed (Wind speed). Wind speed values were retrieved from the 
ERA5 Reanalysis project at 0.25° spatial resolution over the 1979-2018 period. Data 
sources: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview.  

 

Landscape features 

• Population density. Human population density depicts the distribution of population, 
expressed as the number of people per unit surface and has been produced within a 
framework tested with a large set of sensors including radar and optical public and 
commercial missions13. The original spatial resolution of 250 meter was resampled to 
0.25° to better capture features of probability ignition and fire suppression14,15. Data 
source: http://ghsl.jrc.ec.europa.eu/ghs_pop.php. 

• Elevation and Slope. Elevation and slope describe key geomorphic features and were 
derived from the Global Multi-resolution Terrain Elevation Data (GMTED2010) provided 
at 250-meter spatial resolution. Data source: https://www.usgs.gov/land-
resources/eros/coastal-changes-and-impacts/gmted2010. 

 

Text S2. Environmental predictors used for the exposure model 

• Leaf area index (LAI). LAI values were retrieved from the Global Inventory Modeling and 
Mapping Studies Normalized Difference Vegetation Index (GIMMS3g v.1) covering the 
period 1982-2018 and provided at 15-day temporal frequency and 1/12° spatial 
resolution5. Data were initially aggregated at monthly scale and then average (avg), 
integral (int) and range (ran) values were derived for each year. Data source: 
http://sites.bu.edu/cliveg/datacodes/. 

• Land surface phenology. A set of annual land surface phenological metrics, including start 
of season (SOS), end of season (EOS), length of season (LOS), day of peak season 
(DPS), rate of greening season (RGS), rate of senescence season (RSS), maximum of 
vegetation index season (MVI), cumulative vegetation index (CMI), average vegetation 
index (AVI) and background vegetation index (BVI), were derived from the AVHRR 
satellite platform for the period 1981-2016 and provided at 0.05° spatial resolution. Data 
source: https://vip.arizona.edu/viplab_data_explorer.php#.    

• Tree cover (TC). TC values were derived from vegetation continuous fields acquired from 
the AVHRR satellite platform for the period 1982-2016 and provided at 0.05° spatial 
resolution. Data source: https://e4ftl01.cr.usgs.gov/MEASURES/VCF5KYR.001/.  

• Plant cover fraction. Annual cover fractions of deciduous forests (DF) and evergreen 
forests (EF) were retrieved from the land cover maps of the European Space Agency 
Climate Change Initiative16 provided for the period 1992-2018 at 0.05° spatial resolution. 
Data source: https://www.esa-landcover-cci.org/. 

• Vegetation optical depth (VOD). Global daily estimates of VOD (Ku-band) were derived 
from multiple microwave satellite data for the period 1987-2017 at 0.25° spatial 
resolution17. Data were initially aggregated at monthly scale and then average (avg), 
integral (int) and range (ran) values were derived for each year. The vegetation optical 
depth (VOD) parameterizes the extinction (attenuation & scattering) effects due to the 
vegetation affecting the microwave radiations propagating through the vegetation canopy. 
It is a function of vegetation water content and its structure.  

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
http://ghsl.jrc.ec.europa.eu/ghs_pop.php
https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010
https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010
http://sites.bu.edu/cliveg/datacodes/
https://vip.arizona.edu/viplab_data_explorer.php
https://e4ftl01.cr.usgs.gov/MEASURES/VCF5KYR.001/
https://www.esa-landcover-cci.org/
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Data source: https://zenodo.org/record/2575599#.Ycm5kCDMKUk.  

• Year (year). The temporal change is explicitly accounted for by using as additional 
predictor the time variable.  

Vegetation variables reported above were averaged over a preceding 5-year moving temporal 
period prior their use in the exposure model to filter short-time variations. 

 

Text S3. Complementary observational datasets of forest disturbances 

• Database on Forest Disturbances in Europe (DFDE). The DFDE reports forest damages 
in terms of area affected and corresponding volume of biomass loss, derived from agent-
specific conversion factors, aggregated at country level associated to single disturbance 
events occurring over the period 1981-2018 (ref. (18,19)). Data are retrieved from a literature 
search. Data source: https://efi.int/articles/database-forest-disturbances-europe. 

• Database of forest disturbances provided by the Food and Agriculture Organization (FAO) 
of the United Nations. The FAO database reports annual estimates of affected area 
aggregated at country level for the period 2000-2017 was used as well as complementary 
source. Data source: https://fra-data.fao.org/EU/fra2020/disturbances/. 

• Database of salvage loggings provided by the Joint Research Centre (JRC) of the 
European Commission. The JRC database reports data of total salvage logging and the 
corresponding marginal contributions associated to windthrows and insect outbreaks 
expressed in volume of biomass, aggregated at country level for the period 2004-2018 for 
17 Member States, including Austria, Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, 
France, Finland, Germany, Hungary, Latvia, Lithuania, Romania, Poland, Slovakia, 
Slovenia and Sweden20. Data source: https://data.jrc.ec.europa.eu/dataset/2100b612-
a4b0-4897-829b-72b7b1e5782c. 

• Global Fire Emission Database (GFED). GFED reports monthly estimates of dry matter 
emissions of boreal and temperate forest fires acquired from the Global Fire Emission 
Database21 at 0.25° spatial resolution for the 1997-2016 period. Data source: 
https://www.geo.vu.nl/~gwerf/GFED/GFED4/.   

 

Text S4. Cross-comparison analysis of risk estimates 

The lack of a systematic monitoring system of climate-driven risks to European forests did not 
allow a standard validation of our analysis. The approach to assess the validity of our risk 
estimates therefore consisted in evaluating the plausibility of the spatial and temporal distribution 
of biomass losses across Europe against independent datasets. To this aim, we compared our 
results with estimates of biomass volume losses collected in the DFDE database (for fires, 
windthrows, insect outbreaks and overall climate risk), salvage logging volumes collected in the 
JRC repository (for windthrows, insect outbreaks and overall climate risk) and GFED dry matter 
emissions of burning forest biomass (for fires). To increase the comparability, volume estimates 
(DFDE, JRC), originally expressed in cubic meters, have been approximately converted to tons 
by multiplying by a factor of 0.5, and all data were aggregated at country and annual scale. We 
compared risk estimates generated by our modelling framework separately with each of the 
above-mentioned databases limitedly to the common spatial and temporal domain. The 
agreement was assessed in terms of Spearman rank correlation (𝜌) computed between pairs of 
samples of annual-country scale risk estimates. Furthermore, we compared inter-annual 
averages and trends of risk computed over the considered domain (Figure S8).  

Significant positive correlation were found between our estimates and those provided from DFDE, 
GFED and JRC data for fires and overall climate risk with 𝜌 values ranging between 0.35 and 

https://zenodo.org/record/2575599#.Ycm5kCDMKUk
https://efi.int/articles/database-forest-disturbances-europe
https://fra-data.fao.org/EU/fra2020/disturbances/
https://data.jrc.ec.europa.eu/dataset/2100b612-a4b0-4897-829b-72b7b1e5782c
https://data.jrc.ec.europa.eu/dataset/2100b612-a4b0-4897-829b-72b7b1e5782c
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
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0.41 (p-values < 0.05) (Figure S8a,b,j,k). We found an underestimation of interannual averages 
of biomass losses in DFDE compared to our estimates, particularly for fires and insect outbreaks 
(Figure S8a,d,g,j), and an overall agreement in the sign of interannual trends (Figure S8c,f,i,l), yet 
their significance and magnitude may differ largely. When compared to GFED and JRC data, our 
estimates appear comparable in terms of interannual averages (Figure S8b,e,h,k). Trends based 
on JRC data also show a good agreement in sign with our estimates but tend to underestimate 
the magnitude of the temporal variations (Figure S8f,i,l), while trends based on GFED indicate an 
opposite tendency compared to our results (Figure S8c). Interestingly, we found that the trends 
in risk due to insect outbreaks emerge positive and significant (p-value<0.05) across all the 
considered datasets. This corroborates the transfer of models for insect outbreaks developed on 
US data to the European context. We point out that DFDE likely misses important disturbance 
events, being uniquely based on a literature search and thus related statistics may plausibly 
underestimate the effective spatial distribution and magnitude of biomass losses19.  In contrast, 
the GFED and JRC dataset are collected based on more systematic acquisition tools and 
therefore - although they too are not free from uncertainties - may represent more solid 
benchmarks compared to DFDE in terms of interannual averages.  

 

Text S5. Main limitations in methodological and data aspects 

While the reasonable agreement between our risk estimates and those reported in independent 
disturbance databases (Text S4 and Figure S8) corroborates the overall hazard-vulnerability-
exposure integration framework proposed here, a series of potential limitations should be carefully 
considered. 

Differences in spatial accuracy across records. The spatial accuracy of the observed forest 
disturbances (EFFIS, FORWIND, IDS-USDA) varies across datasets and records. The patches 
of forest areas affected by disturbances, represented as polygons, have been collected using 
different techniques (e.g., visual interpretation of remote sensing imagery or aerial photographs, 
ground observations), by multiple actors and under different monitoring protocols. Despite a 
certain level of data harmonization in each product and independent validations (e.g., ref. (22)), 
some differences in spatial accuracy may persist across disturbance records. To minimize these 
effects, we complement each record with a series of quantitative attributes derived from satellite 
and reanalysis products ensuring a consistent multi-dimensional characterization of each 
disturbance record in terms of relative biomass loss and environmental drivers used as input in 
our modelling framework.  

Incompleteness of the disturbance datasets. The disturbance datasets are not comprehensive of 
all disturbance events that have occurred in the region during the observation period. Therefore, 
the development of the RF models may be partially affected by an under-sampling of the forest 
disturbances in Europe. This is particularly the case for the windthrows events collected in the 
FORWIND dataset22. Major events are mostly included, but minor events, such as those 
originating from smaller scale convective storms, which have caused relevant impacts for some 
regions of Europe23,24, are only partially reported in the current version of the database. 
Consequently, the spatial and temporal dynamics of the damages caused by microbursts are 
likely underestimated in our assessment. To reduce the potential underestimation of the overall 
hazard component originating from the incompleteness of the FORWIND dataset22, the expected 
fraction of forest area annually affected by windthrows (𝐸𝐹𝐴𝐴) were rescaled to preserve 
consistency with the cumulated area affected at the European scale for the period 2000-2017 
reported by the FAO database.  

Application of the RF models calibrated on the IDS-USDA database to the European context. No 
systematic spatially explicit monitoring system of insect disturbances, such as the IDS-USDA, are 
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currently available for Europe. Therefore, we opted to develop hazard and vulnerability models to 
insect outbreaks based on IDS-USDA records. To increase the transferability of the models to the 
European context, we developed them for functional groups instead of working on species-
specific models, following the approach presented in ref. (25). For this purpose, we classified 
records based on functional groups of the pest (bark beetles, defoliators, and sucking insects) 
and on the plant functional type (PFT) of the host tree species. Records were considered if the 
host plant belonged to the following PFTs: broadleaved deciduous (BrDc), broadleaved evergreen 
(BrEv), needle leaf deciduous (NeDc) and needle leaf evergreen (NeEv).  

Correlative approach. The developed RF models are based on a correlative approach and do not 
explicitly account for causal relationships between target and predictor variables26. To enhance 
the confidence of our inferences we carefully analyzed for each disturbance agent the functional 
relationship between biomass loss and the environmental predictors and quantified the relations 
via partial dependence plots (PDP). The latter were analyzed in combination with a detailed study 
of the literature that allowed us to understand and interpret the response functions to natural 
disturbances. Such analyses have been documented in a previous study (ref. (25)). 

Extrapolation of RF models beyond the training range. We note that some climate regions are 
poorly represented in the observational databases of forest disturbances. For instance, cold–wet 
and warm–dry zones are largely missing in the windthrows dataset (FORWIND), and we have 
few fire records from cold–dry zones (EFFIS). Forest disturbances utilized in our modelling 
framework are collected for the period 2000-2017, hence represent disturbances only for this 
period. Although we cannot fully evaluate model performance outside the range of the training 
sets, we stress that dedicated checks were performed on the PDPs at the boundaries of the 
observational ranges to reduce potential extrapolation errors as described in a previous study 
(ref. (25)). Furthermore, to quantify such potential errors, we derived spatial statistics of biomass 
loss based solely on areas with climatological precipitation and temperature analogous to those 
of the observational datasets and confronted these with statistics derived for the whole spatial 
domain (Table S2-S5).   

The development of continuous and systematic monitoring systems of forest disturbances in 
Europe would allow to further refine our risk models. Ongoing improvements of existing 
disturbance databases22, the release of new harmonized spatially-explicit collections of biotic 
disturbances at the pan-European scale27 and the advances on satellite-based detection and 
attribution techniques of forest disturbances hold promising opportunities for large-scale 
applications28–30. Furthermore, more sophisticated approaches, based for instance on causal 
modelling frameworks31, would allow to more explicitly account for the causal relationships 
existing between target variable (biomass loss, in our case) and environmental predictors.  

 

Text S6. Relationships between ecosystem heterogeneity and resistance to climate-driven 
disturbances  

Increasing the diversity of ecosystems can lead to a reduction in the forest vulnerability to biotic 
and abiotic hazards via two main mechanisms: reduction in the amount of substrate and disruption 
of propagation processes32. The resource concentration hypothesis predicts that herbivory should 
increase with host plant density, as this optimizes foraging by insect herbivores. They have a 
greater probability of locating the resource and can stay longer to exploit it and build up their 
population. Recent large-scale epidemics of bark beetles in Europe and North America can be 
largely explained by the availability of forests of uniform age and composition33–37. Scolytid 
strategy of mass attack to exhaust the defences of host trees is also favoured by the presence of 
numerous congeners in the vicinity. In addition, the dispersal of herbivorous insects increases 
with increasing connectivity between patches of suitable habitat, which favours their successful 
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colonization38. The movement of insect populations and their colonization of forest patches can 
also be slowed by landscape diversity38–40. The presence of forest patches with high 
concentrations of non-hosts can in fact hinder or reduce the successful colonization of suitable 
stands on a landscape scale41. Similarly, forest fires are more likely to occur in homogeneous 
forest landscapes where fuel is not only more abundant, but also where there are no natural 
breaks limiting their spread, such as open habitats or patches of forest composed of low-
flammability species42,43. The amount of standing forest biomass exposed to gales largely 
explains the extent of storm damage44. However, heterogeneity of the forest landscape can also 
play an important role, limiting domino fall caused by windstorms45,46 or – on the contrary – 
increasing the risk of windthrow at exposed edges in the proximity of open areas such as clear-
cuts47.  

At the landscape scale, additional factors, such as standing forest adjacent to logging coupes 
(edge effect), can affect the heterogeneity and consequently forest resistance against natural 
disturbances. For windstorms, consistent results have shown an increase in windthrow damage 
at the interface between forest stands and open areas (e.g. cultivated fields or clear-cuts), mainly 
due to the acceleration of wind speed in the absence of tall vegetation. As far as fires are 
concerned, the opposite trend is expected, since open areas represent an interruption in the 
continuity of fuel resources (e.g. firebreaks). With regard to insect pests, several studies have 
shown an increase in bark beetle damage at the edge of coniferous forests, mainly due to more 
favorable temperature conditions for insects and more stressful drought conditions for trees48. On 
the other hand, the greater fragmentation of the landscape associated with a higher edge density 
should be unfavorable to forest insects with a low dispersal capacity, such as defoliator 
Lepidoptera, resulting in a lower occurrence of pests at forest edges. Nevertheless, the effect of 
tree diversity has been shown to be just as effective in controlling insect damage at forest edges 
as within forests49. However, we point out that our analysis did not assess the edge effect 
specifically. The overall modelling framework has been specifically designed for forest 
ecosystems. Resulting estimates of biomass loss are representative of the forest ecosystems and 
independent on the distribution of forest within each grid-cell (e.g., forest fragmentation). 

 

Text S7. Space and time components in the hazard modelling 

The use of the two sets of undisturbed records for the hazard modelling is crucial to better capture 
the dependence of the hazard component on the changes in climate drivers and increase the 
generality of the hazard models. To further explore this issue, we performed two experiments 
which combined in different ways the records used for training and testing the random forest 
classifier. 

We used three different training/testing sets of records for the hazard modelling briefly described 
below and further detailed in the Experimental procedures section.  

• Set A refers to disturbance records collected in the databases EFFIS, FORWIND and IDS-

USDA. 

• Set B refers to undisturbed records retrieved in disturbed areas before the occurrence of 

the disturbance event. 

• Set C refers to undisturbed records retrieved at different locations than the disturbed 

records. 

For each year and set (A, B, and C) we randomly extracted the records to use as training/testing 
and binned in the PC space as detailed in Text S9.  

The two experiments have been conducted using different training sets.  
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• Experiment 1, hereafter referred to as EXP-SPACE-TIME represents the modelling 

experiment used as a reference in our study and detailed in the Experimental procedures 

section. In this experiment, the random forest classifier has been trained using records 

from sets A, B and C. In EXP-SPACE-TIME we quantify the probability of occurrence of a 

disturbance explicitly accounting for changes in environmental drivers (c.a., climate, LAI) 

that may occur in both space and time. Changes in environmental drivers in the space 

domain are captured in the combination of sets A and C, whereas changes in 

environmental drivers in the time domain are captured in the combination of sets A and B.   

• Experiment 2, hereafter referred to as EXP-SPACE, represents a new modelling 

experiment to complement the reference run mentioned above. In this experiment, the 

random forest classifier has been trained using records only from sets A and C. In EXP-

SPACE we quantify the probability of occurrence of a disturbance accounting only for 

changes in environmental drivers that may occur in space. Such variations are 

represented in the combination of sets A and C.  

In both experiments, EXP-SPACE-TIME and EXP-SPACE, the sets A, B and C are used as 
testing sets. From the comparison of these two runs, we aim to evaluate to what extent the 
inclusion of undisturbed records retrieved in disturbed areas before the occurrence of the 
disturbance event (set B) contributes to capturing the dependence of the probability of occurrence 
of a disturbance on the variations in environmental drivers.  

The results of these simulations are expressed in terms of overall accuracy and are reported in 
Table S7 for each disturbance and plant functional type (PFT). We found a systematic higher 
overall accuracy in EXP-SPACE-TIME than in EXP-SPACE for both windthrows and insect 
outbreaks across all PFTs. These results indicate that for the two major disturbances in European 
forests, the explicit integration of records conveying multi-temporal information of environmental 
drivers contributes to improving classification performance. Indeed, the dependency of wind and 
insect disturbances on changing climate factors is better captured when both space and time 
information were represented, compared to the case when only space variations were included. 
The characterization of time-varying climate conditions is particularly relevant for the model 
representation of these disturbances. In fact, these features are key to predicting the local 
sensitivity and critical climate thresholds associated to environmental triggers, such as extreme 
wind speeds determining tree overturning and stem breakage45 or warm temperature anomalies 
leading to insect outbreaks25,50.    

In the case of fire disturbances, the overall accuracy in EXP-SPACE-TIME is lower than that one 
obtained in EXP-SPACE across all PFTs. In this case, the integration of records conveying multi-
temporal information about environmental drivers reduces the classification performance. While 
fire disturbance also shows a high sensitivity to climate factors, as documented in factorial 
simulations shown in Figure 3, the probability of occurrence of fire disturbance is better 
represented when ingesting environmental factors derived from the space domain and ignoring 
the multi-temporal information. This may suggest that factors discriminated in the space domain 
most likely play a critical role on the triggering mechanisms of the disturbance. For instance, 
human factors can substantially influence suppression ignition processes and are likely more 
spatial than temporal dependent51. In the modelling frame, we account for these components by 
including the population density as a predictor. While this variable is dynamic, its temporal 
variations are relatively limited in the time span of the analysis compared to its spatial gradients 
and to the inter-annual variations in climate factors. We hypothesize that the discriminant 
information of human components on the probability of fire occurrence can be better disentangled 
from the pool of predictors when ingesting only space variations in environmental factors. 
However, we point out that the use of a modelling based on EXP-SPACE could likely 
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underestimate the effect of time-varying aridity and temperature on fire disturbance under 
projected climate change conditions.         

To better capture time-varying climate effects of disturbance processes, increase the overall 
performance, ensure consistency across the different disturbance types, and develop prediction 
models suited in the context of climate change, we identify the EXP-SPACE-TIME set up as 
benchmark simulation in our study and used such modelling framework to ultimately estimate the 
probability of fires, windthrows and insect outbreaks.  

 

Text S8. Modelling patterns and drivers of forest disturbances at the regional/national 
scale  

We consider the 0.25° spatial resolution appropriate for this work as it allows to explore patterns 
and drivers of forest disturbances at the regional/national scale and, therefore, to support both 
the development of the science and the definition of regional/national forest strategies that aim at 
reducing climate risks and improving forest resilience. The choice of this resolution is also optimal 
to support the data-driven estimates of the predictive models based on observed records of 
disturbances. At higher resolution, the role of stochasticity in the occurrence of disturbances is 
considerably larger, to the point that it may mask the role of the underlying environmental drivers.  
By averaging at such relatively coarse spatial resolution we could reduce the effects of 
stochasticity in the signal of forest disturbances and develop more robust predictive models. This 
allows to capture the emergent spatial and temporal patterns in biomass loss and the benefits of 
an enhanced ecosystem heterogeneity. Furthermore, the selected 0.25° spatial resolution is 
adequate to integrate the various data streams designed in our modelling framework. When we 
run the RF models in prediction mode, we spatially averaged all input data to the common spatial 
resolution of 0.25°. Such spatial resolution represents an intermediate value between the native 
spatial resolutions of the environmental variables which range between 100 meter and 0.5 degree. 
As most of the input data have finer spatial resolution, their upscaling process in the resampling 
procedure, together with the binning along the principal components described in Supplementary 
Text S9, contributes at reducing the potential effects of spatial dependence in the pool of 
predictors. Finally, the 0.25° spatial resolution is also useful to facilitate the comparison of our 
data-driven risk levels with analogous estimates generated by process-based vegetation/forest 
models, such as Land Surface Models (LSMs) or Dynamic Global Vegetation Models (DGVMs). 
While such tools hold promises to quantify forest risk, they still only partially represent the complex 
interactions between risk components and key drivers. These models typically run at a spatial 
resolution comparable to our RF-based simulations. Therefore, our results may serve as a 
benchmark for such large-scale vegetation/forest models to improve their capacity to represent 
natural disturbances and ultimately enhance the reliability of future land–climate predictions. 

 

Text S9. Potential effects of spatial dependence structure in the observational datasets 

Potential effects of spatial dependence in the observational datasets were reduced by resampling 
the environmental drivers along the gradients of the three principal components (PC) derived from 
the set of predictors, as proposed in ref. (25). To this aim, we used 100 bins of equal intervals for 
each PC dimension spanning the full range of values. The resampling procedure was stratified 
by splitting the records in training and testing sets and for disturbed and undisturbed sets. For 
each year between 2000 and 2017, we randomly extracted 60% of the records. The extracted 
subset was then binned in the PC space using the average as aggregation metric. The remaining 
40% of records were similarly processed and used as a separate validation set. The cover fraction 
of each PFT was resampled using the same approach and renormalized within each bin. The bin 
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values were ultimately used as input in the random forest classifier to quantify the probability of 
occurrence of disturbance.  

The proposed methodology also mitigates the effects that may originate from the differences in 
the spatial resolution of environmental drivers. In fact, bin values used as training/testing sets for 
the random forest models do not reflect a specific geographic location nor a predefined spatial 
scale. Each bin is the average of multiple records with similar environmental conditions (similar 
PCs) that may originate from different geographical areas. Therefore, the averaging conducted at 
bin level implicitly contributes to harmonizing the spatial scales of training/testing sets in the PCs 
space. 
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Macro-region 

Average biomass Long-term trend 

avg [Gt] SE [Gt] slope [Gt year-1] SE [Gt year-1] p-value 

Central Europe (CEU) 4.540 0.038 0.0206 0.0007 <0.05 

Northern Europe (NEU) 6.175 0.025 0.0137 0.0004 <0.05 

Southern Europe (SEU) 3.426 0.010 0.0042 0.0006 <0.05 

Western Europe (WEU) 1.928 0.011 0.0057 0.0003 <0.05 

Balkans (BKS) 2.678 0.005 0.0023 0.0002 <0.05 

Europe (EU+) 18.747 0.085 0.0465 0.0008 <0.05 

 
Table S1. Statistics of average and trend of forest biomass. Values aggregated per macro-
regions and for the full spatial domain (EU+). Metrics include annual average (avg) and its 
standard error (SE), interannual trend (slope) and its standard error together with the significance 
level computed by two-sided modified Mann–Kendall test (p-value). Macro-regions are shown in 
Figure S17.
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Macro-region 
Fires Windthrows Insect outbreaks Overall risk 

avg [Mt] SE [Mt] avg [Mt] SE [Mt] avg [Mt] SE [Mt] avg [Mt] SE [Mt] 

Central Europe (CEU) 0.013 0.005 0.618 0.397 8.794 1.215 9.424 1.311 

Northern Europe (NEU) 0.035 0.008 5.632 2.621 10.771 1.150 16.438 3.135 

Southern Europe (SEU) 1.596 0.078 0.008 0.005 4.474 0.636 6.079 0.676 

Western Europe (WEU) 0.133 0.017 1.599 0.927 3.654 0.428 5.386 1.101 

Balkans (BKS) 0.082 0.015 0.007 0.005 4.162 0.647 4.251 0.651 

Europe (EU+) 1.859 0.086 7.864 2.735 31.855 3.811 41.578 5.296 

  
Table S2. Annual average statistics of climate-driven risks. Values aggregated per macro-regions and for the full spatial domain 
(EU+). Metrics include annual average (avg) and its standard error (SE). Macro-regions are shown in Figure S17.  
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Macro-region 

Fires Windthrows Insect outbreaks Overall risk 

slope 
[Mt year-1] 

SE 
[Mt year-1] 

p-value 
slope 

[Mt year-1] 
SE 

[Mt year-1] 
p-value 

slope 
[Mt year-1] 

SE 
[Mt year-1] 

p-value 
slope 

[Mt year-1] 
SE 

[Mt year-1] 
p-value 

Central 
Europe (CEU) 

0.0007 0.0004 0.0624 0.0366 0.0348 0.2896 0.5426 0.0626 0.0000 0.5800 0.0688 0.0000 

Northern 
Europe (NEU) 

0.0004 0.0007 0.2840 0.3291 0.2267 0.1618 0.4445 0.0724 0.0076 0.7741 0.2487 0.0001 

Southern 
Europe (SEU) 

0.0194 0.0062 0.0138 -0.0005 0.0004 0.1328 0.3021 0.0281 0.0004 0.3210 0.0300 0.0003 

Western 
Europe (WEU) 

0.0031 0.0015 0.0262 0.0755 0.0815 0.0725 0.2109 0.0167 0.0000 0.2895 0.0859 0.0000 

Balkans  
(BKS) 

0.0025 0.0012 0.0000 0.0002 0.0004 0.3164 0.3007 0.0305 0.0004 0.3034 0.0305 0.0003 

Europe  
(EU+) 

0.0262 0.0064 0.0000 0.4410 0.2323 0.0047 1.8008 0.1715 0.0002 2.2680 0.2936 0.0000 

 
Table S3. Long-term trends of climate-driven risks. Values aggregated per macro-regions and for the full spatial domain (EU+). 
Metrics include interannual trend (slope) and its standard error (SE) together with the significance level computed by two-sided modified 
Mann–Kendall test (p-value). Macro-regions are shown in Figure S17.  
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Macro-region 
Fires Windthrows Insect outbreaks Overall risk 

avg [Mt] SE [Mt] avg [Mt] SE [Mt] avg [Mt] SE [Mt] avg [Mt] SE [Mt] 

Central Europe (CEU) 0.011 0.004 0.596 0.397 5.751 0.758 6.358 0.883 

Northern Europe (NEU) 0.030 0.007 5.625 2.620 9.981 1.075 15.649 3.088 

Southern Europe (SEU) 1.561 0.077 0.005 0.004 2.552 0.338 4.118 0.376 

Western Europe (WEU) 0.133 0.017 1.597 0.927 2.546 0.297 4.276 1.040 

Balkans (BKS) 0.082 0.015 0.005 0.005 3.259 0.503 3.346 0.507 

Europe (EU+) 1.817 0.086 7.827 2.729 24.089 2.756 33.747 4.410 

  
Table S4. Annual average statistics of climate-driven risks over climate domains sampled by the forest disturbance 
databases. As Table S2 but with spatial statistics computed on areas with climatological precipitation and temperature analogous to 
those of the observational datasets of forest disturbances.   
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Macro-region 

Fires Windthrows Insect outbreaks Overall risk 

slope 
[Mt year-1] 

SE 
[Mt year-1] 

p-value 
slope 

[Mt year-1] 
SE 

[Mt year-1] 
p-value 

slope 
[Mt year-1] 

SE 
[Mt year-1] 

p-value 
slope 

[Mt year-1] 
SE 

[Mt year-1] 
p-value 

Central 
Europe (CEU) 

0.0006 0.0004 0.0797 0.0362 0.0348 0.2732 0.3255 0.0419 0.0001 0.3624 0.0519 0.0002 

Northern 
Europe (NEU) 

0.0004 0.0007 0.2533 0.3293 0.2267 0.1153 0.4199 0.0670 0.0065 0.7494 0.2460 0.0001 

Southern 
Europe (SEU) 

0.0188 0.0061 0.0131 -0.0005 0.0004 0.1126 0.1548 0.0166 0.0008 0.1732 0.0182 0.0005 

Western 
Europe (WEU) 

0.0031 0.0014 0.0262 0.0756 0.0814 0.0946 0.1450 0.0120 0.0000 0.2238 0.0850 0.0000 

Balkans  
(BKS) 

0.0025 0.0012 0.0000 0.0003 0.0004 0.2792 0.2336 0.0237 0.0007 0.2365 0.0236 0.0006 

Europe  
(EU+) 

0.0255 0.0064 0.0002 0.4410 0.2318 0.0038 1.2788 0.1302 0.0000 1.7452 0.2710 0.0000 

 
Table S5. Long-term trends of climate-driven risks over climate domains sampled by the forest disturbance databases. As 
Table S3 but with spatial statistics computed on areas with climatological precipitation and temperature analogous to those of the 
observational datasets of forest disturbances.   
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Category Full name Acronym Fires Windthrows Insect outbreaks 

Forest Biomass Biomass X X X 
 Tree height Tree height X X X 
 Tree age Tree age X X X 
 Leaf Area Index LAI X X X 
 Tree density Tree density X X X 

Climate Annual cumulated precipitation Pcum X X  
 Short-term average anomaly in 

cumulated precipitation avg aPcum   X 

 Annual cumulated snow Snow  X  
 Short-term average anomaly in average 

temperature avg aTavg   X 

 Annual maximum temperature Tmax X   
 Annual aridity index MI X   
 Short-term average standardized 

precipitation evapotranspiration index 
avg SPEI   X 

 Fire Weather Index FWI X   
 Annual maximum wind speed Wind speed  X  
 Long-term average cumulated 

precipitation 
Long-term Pavg  X  

 Long-term average temperature Long-term Tavg   X 

Landscape Population density* Population X   
Coefficient of spatial variation CV   X 
Homogeneity Homogeneity X X  
Slope Slope X X  
Elevation Elevation X  X 

 
Table S6. Environmental predictors used in hazard and vulnerability models. Variables used 
to predict the hazard and vulnerability components based on the feature selection scheme 
described in ref. (25). Population density (*) was used only for the hazard component.  
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Disturbance PFT EXP-SPACE-TIME EXP-SPACE 

Fires BrDe 87.8 89.3 

 BrEv 86.7 88.6 

 NeDe 83.8 89.5 

 NeEv 88.2 89.8 

Windthrows BrDe 70.6 68.5 

 BrEv 66.2 65.2 

 NeDe 67.2 65.5 

 NeEv 69.5 67.4 

Insect outbreaks BrDe 88.7 87.7 

 BrEv 84.1 82.6 

 NeDe 83.1 83.6 

 NeEv 89.4 87.3 

Table S7. Overall classification accuracy obtained from simulations EXP-SPACE-TIME and 
EXP-SPACE. Statistics are reported for different forest disturbances (fires, windthrows, insect 
outbreaks) and plant functional types (broadleaved deciduous (BrDe), broadleaved evergreen 
(BrEv), needle leaf deciduous (NeDe) and needle leaf evergreen (NeEv)).  
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Figure S1. Spatial and temporal variations in forest biomass. (a) Annual average forest 
biomass computed over the 1979-2018 period. (b) Long-term trend in forest biomass computed 
over the 1979-2018 period, black dots show pixels where trends are significant (two-sided 
modified Mann–Kendall test; p value <0.05). Forests with cover fraction lower than 0.1 are 
masked in white.  
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Figure S2. Validation of the biomass (exposure) modelling. (a) Selected predictors of biomass 
and corresponding variable importance based on the random forest (RF) regression model, 
acronyms reported in Text S2. (b) Reference versus modeled annual biomass. Number of binned 
records (N), coefficient of determination (R2), root mean squared error (RMSE) and percent bias 
(PBIAS) are shown in labels, while the frequency distribution in color. (c) as (b) but for the trend 
in biomass. (d) Net change in biomass aggregated at European scale for different time periods 
and derived from the RF model and FAO estimates of carbon stock (Experimental procedures). 
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Figure S3. Spatial variations in climate drivers of natural disturbances. Annual averages of 
climate drivers (1979-2018). Maps are grouped per natural disturbance. Predictor acronyms are 
listed in Table S6.  
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Figure S4. Spatial variations of hazard and vulnerability of European forests to climate-
driven risks. Hazard (a) and vulnerability (b) of European forests to fires (averaged over the 
1979-2018 period). (c-d) and (e-f) as (a-b) but for windthrows and insect outbreaks, respectively. 
Forests with cover fraction lower than 0.1 are masked in white. 
  



22 

 

 
Figure S5. Dominant climate-driven risks. Spatial map of dominant climate-driven risk 
computed as the disturbance leading to the largest annual average biomass loss. Forests with 
cover fraction lower than 0.1 are masked in white.  
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Figure S6. Temporal variations in climate drivers of natural disturbances. Temporal trends 
in climate drivers (1979-2018). Black dots show pixels where trends are significant (two-sided 
modified Mann–Kendall test; p value <0.05). Maps are grouped per natural disturbance. Predictor 
acronyms are listed in Table S6.  
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Figure S7. Key determinants of natural disturbances for European macro-regions. (a) Log-
term trend in biomass loss due to fires, aggregated per macro-regions and for the full spatial 
domain (EU+), owning to changes in each risk component (hazard/vulnerability/exposure) and 
corresponding marginal contribution to the overall trend (left and right panel, respectively). 
Symbols “**” and “*” indicate trend statistically significant with p-value <0.05 and <0.1, respectively 
(two-sided modified Mann–Kendall test). (b) as (a) but for trend in biomass loss due to fires 
owning to changes in the underlying drivers (vegetation/climate). (c,d) and (e,f) as (a,b) but for 
windthrows and insect outbreaks, respectively. Macro-regions are shown in Figure S17.  
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Figure S8. Cross-comparison of modeled climate-driven risks and independent 
disturbance databases. (a) DFDE versus modeled biomass losses due to fires. Each circle 
represents an annual-country risk estimate, number of binned records (N) and Spearman rank 
correlation (𝜌) are shown in labels. The histograms above and on the right of the main panel 
describe the frequency distribution of DFDE and modeled data, respectively, with their average 
value reported in label. (b) as (a) but with GFED biomass losses as independent comparative 
dataset. (c) Trend in biomass losses due to fires derived from model estimates, DFDE and GFED 
datasets over the overlapping temporal windows. Confidence intervals reflect the standard error 
of slope, symbols “**” and “*” indicate trend statistically significant with p-value <0.05 and <0.1, 
respectively (two-sided modified Mann–Kendall test). (d-f) as (a-c) but for biomass losses due to 
windthrows and with DFDE and JRC as independent comparative datasets. (g-i) as (a-c) but for 
biomass losses due to insect outbreaks and with DFDE and JRC as independent comparative 
datasets. (j-l) as (a-c) but for overall biomass losses due to multiple natural disturbances and with 
DFDE and JRC as independent comparative datasets.  
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Figure S9. Performance of random forest classification model of fire occurrence. (a-c) 
Model performance for broadleaved deciduous (BrDc). (a) Selected predictors of disturbance 
occurrence and corresponding variable importance based on the random forest (RF) classification 
model, acronyms reported in Table S6. (b) Receiver Operating Characteristic (ROC) curve 
generated from the random forest classification shown in black line and corresponding Area 
Under the Curve (AUC) metric reported in label. The optimal operating point is shown in red circle 
and the corresponding probability threshold (PROC) reported in label. (c) Confusion matrix. (d-f), 
(g-i) and (m-o) as (a-c) but for broadleaved evergreen (BrEv), needle leaf deciduous (NeDc) and 
needle leaf evergreen (NeEv), respectively.  
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Figure S10. Performance of random forest classification model of windthrow occurrence. 
As Figure S9 but for windthrows.   
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Figure S11. Performance of random forest classification model of insect outbreak 
occurrence. As Figure S9 but for insect outbreaks.   
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Figure S12. Relationships between modeled probability of disturbance occurrence and 
observed fraction of affected forest area. (a) Average fraction of affected forest area binned 
as a function of modeled probability of fire occurrence. Circle and confidence intervals represent 
the bin-specific average and standard error, respectively. (b) Violin plots representing the 
frequency distribution of observed fraction of affected areas within each probability class (bin). 
The probability threshold reflecting the optimal operating point (PROC) is shown in black line. (c,d) 
and (e,f) as (a,b) but for windthrows and insect outbreaks, respectively.   
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Figure S13. Relationships between texture-based metrics of ecosystem heterogeneity and 
forest compositional/structural diversity. (a) Compositional diversity values are binned as a 
function of texture-based homogeneity (average±5·SE). The strength of the relationship is 
quantified in terms of Spearman rank (𝜌) and the symbol “**” indicates a correlation statistically 
significant with p-value < 0.05. (b) as (a) but for structural diversity. (c) as (a) and (d) and (b) but 
for the texture-based coefficient of variation.  
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Figure S14. Correlation between texture heterogeneity metrics derived by masking and 
without masking non-forest pixels. Correlation values are expressed in terms of Spearman 
rank and are analyzed separately for homogeneity (a) and coefficient of variation (b) along a 
gradient of forest cover. All correlation values reported in figure have p-value < 0.05. Consistently 
with the approach described in ref. (ref. 7), texture metrics were derived for 4x4 pixels boxes with 
at least nine finite value pixels. Therefore, the correlation analysis has been quantified for forest 
cover greater than 0.56.   
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Figure S15. Change in homogeneity owning to an idealized scenario of enhanced 
ecosystem heterogeneity.    
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Figure S16. Effects of enhanced ecosystem heterogeneity on hazard, vulnerability, and 
risk to natural disturbances. Changes in fire hazard (a), vulnerability to fires (b) and biomass 
losses due to fires (c) owning to an increase in ecosystem heterogeneity consistent with local 
environmental conditions. Avoided biomass loss and relative change compared to the actual 
scenario are reported in labels. (d-f) and (g-i) as (a-c) but for windthrows and insect outbreaks, 
respectively.    
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Figure S17. European regions. Grouping of countries in macro-areas shown in different colors. 
Central Europe (CEU) includes Austria, Czech Republic, Luxembourg, Germany, Liechtenstein, 
Poland, Slovakia and Switzerland. Northern Europe (NEU) includes Denmark, Estonia, Finland, 
Hungary, Latvia, Lithuania, Norway and Sweden. Southern Europe (SEU) includes Cyprus, 
Greece, Italy, Malta, Portugal, Spain, and Turkey. Western Europe (WEU) includes Belgium, 
France, Iceland, Ireland, Netherlands and United Kingdom Balkans (BKS) includes Albania, 
Bosnia and Herzegovina, Bulgaria, Croatia, Kosovo, Montenegro, Republic of Macedonia, 
Romania, Serbia and Slovenia.  
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