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A heuristic for the P-time reconstruction of unique 3-uniform
hypergraphs from their degree sequences
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Abstract. One of the main problems in the wide area of graph theory is the so called
reconstruction problem, that is the reconstruction of a (hyper)graph from its degree sequence.
The problem remained open for many years, until in 2018 Deza et al. proved its NP hardness
even for the simplest case of 3-uniform hypergraphs. As a consequence, the definition of classes
of instances that allow a polynomial time reconstruction acquired relevance in order to restrict
the NP-complete core of the problem. In this paper, we consider the class of instances Dext

defined by Ascolese et al. in 2021, and we provide some structural properties of the related
3-uniform hypergraphs. Then, we move the spotlight on its subclass Dext− including only
those elements that are unique, i.e., two non-isomorphic 3-uniform hypergraphs sharing a
degree sequence do not exist in Dext−. This property suggests the possibility of a polynomial
time strategy for the reconstruction of its elements. We define an algorithm that allows a fast
reconstruction of some instances in Dext−, and we further provide a heuristic to solve the
same problem on the entire class. The heuristic relies on the uniqueness of the elements in
Dext− and on geometric and algebraic features of the related 3-hypergraphs. Finally, statistics
on the performance of the heuristic are provided.

Keywords: Uniform hypergraph · Degree sequences · Reconstruction problem
AMS classification: 05C60 · 05C65 · 05C85 · 05C99

1 Introduction

The characterization of graphs and hypergraphs from their degree sequences has been one of the
most challenging problems in these last decades. In the simplest case of graphs, deciding if an integer
sequence is the degree sequence of a graph was solved in 1960 by Erdős and Gallai [11]. Subsequently,
a number of algorithms have been developed to provide constructive proofs of this result ( [15,18,24]).
Moving to hypergraphs, the same decision problem has been widely studied (see [7,10,12,20,21]).
Recently, starting from a general and non constructive characterization theorem in [8], some relevant
subclasses of degree sequences have been considered (see [3]), whose elements allow a polynomial
time algorithm to compute, say reconstruct, the related hypergraphs (see [1,5,13,14]). In 2018 Deza
et al. proved that deciding if an integer sequence is the degree sequence of a 3-uniform hypergraph
is NP-complete [9]. As a consequence, the definition of classes of degree sequences that can be
reconstructed in polynomial time acquires relevance in order to limit the NP-complete core of the
problem.
⋆ corresponding author: michela.ascolese@unifi.it



In their proof Deza et al. defined as a gadget a class of degree sequences that show remarkable
geometrical and algebraic properties. Relying on this, in [2] the authors provided a class D of degree
sequences of unique 3-hypergraphs that preserve these properties and whose incidence matrices
have strong symmetrical and structural specific characteristics. In this paper (Section 3), we define
a suitable poset T on integer triplets and we provide a quite surprising connection between 3-
hypergraphs having degree sequence in D and a family of ideals of T . This connection allows us
to further extend the class D to Dext, defined as the degree sequences of the 3-hypergraphs which
correspond to ideals of T . We show that the properties of the elements in D move to those in
Dext. Unfortunately, the elements of Dext lose the uniqueness property. We get it back defining the
subclass Dext− such that D ⊂ Dext− ⊂ Dext. In Section 4, we provide a polynomial time algorithm
to reconstruct two subclasses of Dext−, which we call maximal and minimal instances. We then
provide a heuristic to solve the reconstruction problem for the entire class, that turns out to work
perfectly for small-size degree sequences, and whose performance decreases on increasing the size
of the sequence. Despite the algorithm does not always provide the reconstruction of the whole
incidence matrix, it is important to point out that the obtained partially reconstructed hypergraph
is free from wrong edge insertions. This property can lead to a new research line, concerning the
study of error affected degree sequences reconstruction, together with the possibility of providing
bounds to the number of (non-isomorphic) 3-hypergraphs sharing the same degree sequence.

2 Basic notions and definitions

We recall the basic definitions concerning hypergraphs and we fix the notation we are going to use.
A hypergraph H is defined as a pair of sets H = (V,E) such that V = {v1, . . . , vn} is the set of
vertices and E ⊂ P(V ) \ {∅} is the multiset of hyperedges (briefly, edges), with P(V ) the power
set of V . A hypergraph is simple if it does not contain either singleton or repeated edges, and it is
called k-uniform (briefly, k-hypergraph) if every hyperedge has exactly k vertices.
Given a k-hypergraph H and one of its vertices v, the link hypergraph of v in H, denoted LH(v),
is defined as the hypergraph obtained from H after deleting all edges not containing v, and then
removing v from all remaining edges. The residual of v, indicated H−

v , is defined as the k-hypergraph
obtained from H after deleting all edges containing v and the vertex v itself. It is worthwhile noticing
that the link hypergraph LH(v) is (k− 1)-uniform, while the residual hypergraph H− is k-uniform.
The degree of a vertex v is the number of hyperedges that contain v, and the degree sequence of H
is the list of its vertex degrees, usually arranged in non-increasing order. A common representation
of a hypergraph is using its incidence matrix, that is a m × n binary matrix where m = |E| and
ai,j = 1 if and only if the vertex vj belongs to the edge ei. It is clear that the column sums of
the incidence matrix of a hypergraph H gives its degree sequence, while the row sums gives the
sequence of the edge cardinalities. If H is k-uniform, then the row sums is the k constant vector. We
observe that the property of being simple implies that all rows of the incidence matrix are different.

3 The class Dext

We recall that the problem of reconstructing k-hypergraphs from their degree sequences is, in
general, NP-hard. In [9], the authors provided a proof that relies on a reduction involving the NP-
complete problem 3-partition. In an intermediary step, they defined a class of 3-hypergraphs used as
gadget in the reduction. A generalization of this class, denoted D, shows interesting combinatorial



properties illustrated in [2], such as the uniqueness of its elements. These remarks supported the
idea that the elements of D can be reconstructed in polynomial time from their degree sequences.
The class D is defined starting from a weakly decreasing integer sequence s = (s1, . . . , sn), with
n ≥ 3 and whose elements belong to Z. We define a 3-hypergraph H(s) with n vertices v1, . . . , vn
and whose hyperedges are the triplets (vi, vj , vk) such that si + sj + sk > 0 (see Fig. 1 for an
example). The class Dn is the set of all degree sequences of hypergraphs generated from a sequence
s of length n, and the class D is the union of the classes Dn for each n ≥ 3. It is known that for each
sequence π ∈ D there exists exactly one 3-hypergraph (up to isomorphism) that realizes it (see [2]),
so we will equivalently refer to the elements of D either as 3-hypergraphs or as degree sequences.
The following property directly follows from the construction of H.

Property 1 Given π the degree sequence obtained from s = (s1, . . . , sn) and H the related hyper-
graph, if (vi, vj , vk) is an edge of H and j < k′ < k, then (vi, vj , vk′) is also an edge of H.

The way of generating the elements of D suggests their representation as ideals of a partially
ordered set (poset). The reader is addressed to the book of D. West [25] for the definitions, main
properties and notation related to the algebraic structures introduced in the sequel. So, let us
define the following poset: for each positive integer n, Ωn is the set of triplets (a1, a2, a3) where
ai ∈ {1, . . . , n} and 1 ≤ a1 < a2 < a3 ≤ n. The triplets in Ωn can be regarded as the hyperedges of
the complete 3-uniform hypergraph defined on n vertices, v1, . . . , vn. Then, we define the following
linear extension of the ≤ order on the elements in Ωn:

(a1, a2, a3) ⪯ (b1, b2, b3) if and only if ai ≤ bi with i ∈ {1, 2, 3}.
Let Tn = (Ωn,⪯) be the partially ordered set thus obtained. Given x ∈ Tn, the principal ideal
↓ {x} = {y ∈ Tn s.t. y ⪯ x} is the intersection of all ideals that contain the element x. Since Tn is a
finite poset, the union of ideals is finite and it is still an ideal and, furthermore, an ideal I ⊆ Tn can
always be obtained as the finite union of principal ideals, I =↓ {x1, . . . , xm} =↓ {x1}∪ · · · ∪ ↓ {xm}
for some x1, . . . , xm ∈ Tn.
An element m ∈ I is maximal if there is no b ∈ I such that m ≺ b. The maximal elements of an ideal
I form an antichain, that is a subset A ⊆ Tn in which no two distinct elements are comparable. It
is known that the antichain of its maximal elements generates an ideal, i.e., I =↓ {A}, and every
ideal of the poset is generated by the antichain of its maximal elements [25]. So, there is a bijective
correspondence between ideals and antichains of Tn.

Proposition 1 Let H be a hypergraph in Dn and E its edge set. Then, E is an ideal in Tn.

Proof. Let H ∈ Dn be generated by the non-increasing integer sequence s, and (i, j, k) is one of its
edges; then si+ sj + sk > 0 by definition. We have that si′ + sj′ + sk′ > 0 for all (i′, j′, k′) ⪯ (i, j, k)
and, consequently, (i′, j′, k′) is an edge of H. Then, the edges of H are union of ideals in Tn. ⊓⊔
Example 1 The degree sequence π = (8, 7, 7, 6, 6, 2) is in D6, generated by the integer sequence
s = (2, 1, 1, 0, 0,−2). The incidence matrix of the 3-hypergraph that realizes it is reported in Fig. 1.
We note that its edges, considered as elements in T6, form the ideal Iπ =↓ {(1, 3, 6), (3, 4, 5)}.
However, not all ideals of Tn, regarded as hypergraphs, are in Dn. A counterexample can be found
in [2]. Starting from this observation, we define the class Dext

n as the class of the n-length degree
sequences of 3-hypergraphs whose hyperedges form an ideal in Tn. Obviously, Dext

n is a proper
superset of Dn, as well as Dext =

⋃
n Dext

n is a proper superset of D. In general, when we pass to
the class Dext we can lose the property of uniqueness, as shown in the next example.



×D

×
×

D D
D D

λ2

×
×
×

D D D
DDD

D D D
L
L

R R

λ1

(4,5,6)

(3,5,6)

(2,5,6) (3,4,6)

(1,5,6) (2,4,6) (3,4,5)

(1,4,6) (2,3,6) (2,4,5)

(1,3,6) (2,3,5) (1,4,5)

(1,2,6) (1,3,5) (2,3,4)

(1,2,5) (1,3,4)

(1,2,4)

(1,2,3)

Hπ :

1 1 1 0 0 0

1 1 0 1 0 0

1 1 0 0 1 0

1 1 0 0 0 1

1 0 1 1 0 0

1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

0 1 1 1 0 0

0 1 1 0 1 0

0 1 0 1 1 0

0 0 1 1 1 0 λ3
Iπ

Fig. 1. On the right, the (incidence matrix of the) 3-hypergraph Hπ, whose degree sequence π =
(8, 7, 7, 6, 6, 2) ∈ D6 is generated by s = (2, 1, 1, 0, 0,−2). The decomposition in its three block graphs
and the related Ferrers diagrams with the L, R and D labels are also provided; these notions will be intro-
duced in the next two subsections. On the left, the complete poset T6, where we highlight in boldface the
ideal Iπ whose elements are the edges of Hπ.

Example 2 Let us consider the degree sequence π∗ = (25, 19, 17, 16, 12, 11, 9, 8, 6). It is in Dext,
since it is realized by a hypergraph that is in correspondence with an ideal in the poset T9, that is
H1 =↓ {(1, 6, 9), (2, 3, 9), (2, 5, 7), (3, 4, 8)}. Moreover, there exists a second ideal in T9 realizing it,
H2 =↓ {(1, 5, 9), (1, 7, 8), (2, 4, 9), (3, 4, 7), (3, 5, 6)}. It is easy to check that the two hypergraphs are
not isomorphic, so that the uniqueness property is lost for π∗ ∈ Dext \ D.

It is interesting noticing that the class Dext includes the non-unique degree sequences that model
the 3-partition instances used in the NP-completeness proof by Deza et al. in [9]. So, the related
polynomial time reconstruction algorithms and heuristics we are going to define have obviously to
avoid these elements and focus on the subclass Dext−, that consists of the unique sequences of Dext

only. This class properly includes the class D, as shown in [2], Example 2. A deeper inspection of the
incidence matrix of the hypergraphs in Dext will reveal further remarkable combinatorial properties
of these objects.

The representation of hypergraphs as plane partitions
The incidence matrix of a hypergraph H ∈ Dext

n can be recursively split into block graphs, each
of them corresponding to a vertex of H: the first one is the link hypergraph related to the vertex
v1, denoted by LH(v1); its degree sequence will be indicated as λ1. Recursively, we define the i-th
block graph of H to be the link hypergraph of the (i − 1)-th residual hypergraph related to the
vertex vi. By abuse of notation, we indicate both the block graph and its degree sequence as λi.
We underline that the name block graph is due to the fact that since H is 3-uniform, then each of
its link hypergraphs is a graph. Moreover, by Property 1, we can see that the incidence matrix H



is such that each residual graph has a block structure, in the sense that if the edge (j, k) is in λi,
then (j, k′) is in λi too, for each k′ s.t. j < k′ < k. We also note that the maximal number of block
graphs is n− 2, when H is the complete 3-hypergraph on n vertices.
For each block graph we consider the Ferrers diagram of its degree sequence regarded as an integer
partition (see Fig. 1, the three Ferrers diagrams on the right). We represent these diagrams both
with a sequence of bars or with the associated binary matrix. So, in each diagram λi the height of
the j-th bar is the degree of the vertex vj+i in the block graph λi.
Piling up the Ferrers diagrams of the block graphs λi, matching the columns that refer to the same
vertex and starting, on each layer, from the i-th row on, we obtain a plane partition. We recall that
a plane partition of the integer z of dimension m × n is a two-dimensional integer m × n matrix
P such that z =

∑
k,j Pk,j , with 1 ≤ k ≤ m and 1 ≤ j ≤ n. An overview of these combinatorial

structures together with their properties can be found in [23]. Obviously, each (unique) sequence
π ∈ Dext− can be uniquely associated with a plane partition, so that the plane partition is actually
an alternative representation of the hypergraph that realizes π.
A plane partition can be naturally visualized as a stack arrangement of unitary cubes of height Pk,j

lying on the point (k, j) of the plane, thus obtaining a three-dimensional object (see Fig. 2). Each
Ferrers diagram λi is the plane P i of the plane partition, that is the set of unit cubes on varying
of k and j for a fixed value of height, i, whose lower left point is in position (i, i) (we enumerate
rows and columns from bottom to top and from left to right, respectively). The height of the plane
partition on the point (k, j) is given by the value Pk,j .
Figure 2 depicts the plane partition related to the hypergraph in Example 1. We stress that P i

corresponds to the Ferrers diagram of λi. It is important to underline that Pπ can be constructed

Pπ =

1 1 0 0 0
1 2 3 3 0
1 2 2 2 1
1 1 1 1 1

Fig. 2. The plane partition associated with the degree sequence π = (8, 7, 7, 6, 6, 2) ∈ Dext−
6 , represented as

a matrix (on the left) and a stacking of unit cubes (on the right).

up to the knowledge of the hypergraph Hπ, and that the construction of Pπ starting from the
degree sequence π is equivalent to the reconstruction of the incidence matrix of the hypergraph Hπ.
It turns out that the representation of H as a plane partition allows us to uniquely detect the edges
of the hypergraph H: the edge (vi, vj , vk) ∈ H is identified by the elements of the Ferrers diagram
λi in positions (k − i− 1, j − i) and (j − i, k − i). As an example, in Fig. 1 the edge (1, 2, 6) of Hπ

is identified by the R box in (4, 1) and the bottom L box in (1, 5) of λ1, while both boxes in λ3

identify the edge (3, 4, 5). The placement of the lower leftmost box of each λi at coordinates (i, i)
is essential to maintain the correspondence between the vertices of H and the coordinates of the
plane partition.

Properties of block graphs and plane partitions in Dext

Inspecting the Ferrers diagram of an integer partition one can immediately detect if it is the degree
sequence of a graph. Indeed, a Ferrers diagram Fλ associated with an integer partition λ can always
be decomposed into three (possibly empty) partitions Fλ = D(λ)+R(λ)+L(λ), where D(λ) is the
largest square entirely contained in Fλ, called Durfee square, R(λ) is the set of cells over D(λ) and



L(λ) is the set of cells placed on the right of D(λ) after removing the first cell of every row [22],
see Fig. 3. It is known that λ is graphical if and only if R(λ) ≤d L(λ)

′
holds (see [17,22]), where

L(λ)
′
is the conjugate partition of L(λ), i.e., the partition obtained from L(λ) by exchanging rows

and columns, and ≤d is the dominance order [6]. We recall that provided two integer partitions
λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn), λ ≤d µ holds if and only if

∑k
i=1 λi ≤ ∑k

i=1 µi for any
1 ≤ k ≤ n. If R(λ) = L(λ)

′
holds, the partition λ is a maximal graphical partition (see Fig. 3).
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Fig. 3. The Ferrers diagrams of three different partitions of n = 10, together with their decomposition. From
left to right, a graphical partition, a maximal graphical partition and a partition that is not graphical.

Proposition 2 Given H ∈ Dext
n and its block graphs, for all 1 ≤ i ≤ n− 2 the integer sequence λi

is a maximal graphical partition.

Proof. Let us proceed by contradiction assuming that there exists an index i such that λi is not
maximal. Since λi is graphical, R(λi) <d L(λi)′ holds. By definition of dominance order, the smallest
point (j, k) where they differ is such that (j, k) ∈ L(λi) and (k − 1, j) ̸∈ R(λi) (keeping the
rows and the columns indexing bottom-up and left-right, respectively). This means that the edge
(i, j + i, k + i) ̸∈ H. Furthermore, (i, j′, k + i) ∈ H for each i < j′ < j + i, by the minimality of
(j, k), so there exists an index j′′ > j + i such that (i, j′′, k + i) ∈ H. This leads to a contradiction
since, by definition of Dext, the edges of H form an ideal of T . ⊓⊔
Again, Figure 1 clarifies the above proof and provides a representation of the sequences λi obtained
from π = (8, 7, 7, 6, 6, 2) ∈ Dext

6 as Ferrers diagrams. A visual inspection shows that they are all
maximal graphical partitions (R(λi) = L(λi)

′
for each i = 1, 2, 3).

The complete 3-hypergraph on n vertices Hn has its generic block graph λi = (n−i−1, . . . , n−i−1)
of length n− i, for all i = 1, . . . , n− 2, and its Ferrers diagram is a (n− i)× (n− i− 1) rectangle.
We stack each λi diagram placing its lower leftmost box in position (i, i), and we get the plane
partition

Pn =

1 2 3 . . . n− 3 n− 2 n− 2
1 2 3 . . . n− 3 n− 3 n− 3
...
...

...
1 2 3 . . . . . . . . . 3
1 2 2 . . . . . . . . . 2
1 1 1 . . . . . . . . . 1

Proposition 3 Let Pπ be a plane partition related to a sequence π ∈ Dext
n . There exists a submatrix

Pπ∗ of Pπ which is the plane partition of the complete 3-hypergraph on c vertices, for some 3 ≤ c ≤ n.

Proof. Let t be the number of planes of Pπ, i.e. the maximum entry of the matrix. By construction,
the submatrix composed by the last t rows and first t+ 1 columns is the plane partition related to
the complete 3-hypergraph on c = t+ 2 vertices. ⊓⊔



It directly follows that the incidence matrix of Hπ always contains a submatrix H∗ (called the core
of Hπ) which is the matrix of a complete 3-hypergraph on its first c ≤ n vertices. We underline that
the plane partition representing Hπ is composed of c− 2 planes, and that the i-th plane represents
all those hyperedges whose first element is the vertex vi.
For each sequence π ∈ Dext, we get the following standard decomposition of the related plane
partition

Pπ = Pπ∗ +Rπ + Lπ,

with Pπ∗ the core, Rπ given by the set of rows placed over the submatrix Pπ∗ and Lπ given by the
set of columns on the right side of the submatrix of the core adding the row immediately over. By
abuse of notation, we define L′

π =
⋃c−2

i=1 Lπ(λ
i)′.

Property 2 For each sequence π ∈ Dext, Rπ = L′
π holds.

This property directly follows from the maximality of block graphs in Hπ and the symmetry prop-
erties of their Ferrers diagrams.

4 The reconstruction problem in the class Dext−

In this section we introduce the sets of maximal and minimal degree sequences in Dext−, and we
provide a polynomial time algorithm for their reconstruction. Then, we move the spotlight to the
whole class and we provide a heuristic to determine the 3-hypergraphs related to its elements.

4.1 The reconstruction of maximal and minimal instances

We first define the algorithm GColRec (Greedy Column Reconstruction), that reconstructs a subset
of degree sequences of Dext− called maximal instances. The inputs of GColRec are an element
π = (π1, . . . , πn) of Dext− and its supposed core dimension c, while its output is either a 3-uniform
hypergraph H consistent with π or failure.

Algorithm 1. GColRec(π,c)
1 initialize H to the complete 3-hypergraph on the first c vertices and let πc be its degree sequence;
2 update π = π − πc;
3 for i = 1 : c− 2 do
4 for j = i+ 1 : n− 1 do
5 for k = j + 1 : n do
6 if πi > 0 and πj > 0 and πk > 0 then
7 insert (i, j, k) in H and update the three elements πi = πi − 1, πj = πj − 1, πk = πk − 1;
8 else
9 break;

10 if π ̸= 0 then
11 return failure;

Output: H

Since the dimension of the core is not known in advance, we consider n− 2 parallel computations,
one for each possible value of c. The subset of the maximal instances of Dext− is indicated by Max.

Proposition 4 Let π ∈ Dext−
n and let R(λi) be an integer partition of the number zi, for i =

1, . . . , c− 2. If π ∈ Max, then the partition R(λi) is the maximum, w.r.t. dominance order, among
all integer partitions of zi in which each part is less or equal than n− c.



Proof. Immediate from the definition of the reconstruction strategy GColRec, that maximizes the
height of the bars of each block graph, from left to right. According to the length of the sequence
and the dimension of its core, it is clear that each value in R(λi) can not exceed n− c. ⊓⊔
We underline that the class Max properly includes the class of maximal instances defined in [2],
where the core computation is not present.

Example 3 The degree sequence π = (15, 15, 15, 13, 10, 10, 6, 3) is a maximal instance. Its block
graphs, considered as integer partitions, are the maximum according to π with c = 6,

λ1 = (6, 6, 5, 4, 4, 3, 2) λ2 = (5, 4, 3, 3, 2, 1) λ3 = (3, 2, 2, 1) λ4 = (1, 1).

A second greedy strategy called GRowRec can be defined from GColRec, performing the construction
of each R(λi) row-by-row, from λ1 to λc−2. We define the class of minimal instances, Min, as the set
of the sequences in Dext− that are correctly reconstructed by GRowRec. The notion of minimality
follows from the greedy choices of the strategy, similarly to Proposition 4.

Theorem 1 GColRec (respectively, GRowRec) performs in O(n4) time.

The proof is immediate. A simple check shows that the union of the subclasses Max and Min is
strictly included in Dext−. As a matter of fact, the sequence π = (21, 20, 18, 15, 12, 11, 10, 7, 3) is in
Dext− \ (Max ∪Min).
We stress that the failures of the algorithms GColRec and GRowRec are due to the insertion of
extra edges that do not belong to the (unique) final solution. Furthermore, wrong insertions may
determine a reconstruction failure some steps ahead in the computation, so that, in general, they
cannot be immediately detected, requiring an unbounded backtrack process to fix the errors. In
the next section we describe a heuristic that avoids wrong edge insertions, but sometimes produces
only a partial reconstruction of a 3-hypergraph in Dext−.

4.2 A heuristic for the class Dext−

Let us consider the reconstruction of the class Dext−
n . We introduce the notion of complementarity :

given a 3-hypergraph H on n vertices, we denote dM =
(
n−1
2

)
the maximum admitted degree of

each vertex, that corresponds to the common degree in the complete 3-hypergraph on n vertices Hn.
For a given π ∈ Dext

n , we define its complementary sequence π = (dM , . . . , dM )− π. It is clear that
π is the degree sequence of the complementary 3-hypergraph Hπ with n vertices and containing
all edges not in Hπ. We underline that Hπ keeps all properties of the hypergraphs of the class
Dext

n , in particular the strong block-structure of the incidence matrix (and the uniqueness if we
restrict to Dext−). Similarly, we define the degree sequences of the complementary block graphs in
Hπ as λ

i
= (n − i − 1) − λi for i = 1, . . . , n − 2, and the related complementary plane partition

as Pπ = Pn − Pπ, with Pn the plane partition associated to Hn. From now on, we will omit the
subscript that identifies the degree sequence π when no ambiguities may arise.
The heuristic we propose starts from a sequence π ∈ Dext−

n and requires a parallel reconstruction of
both H and its complementary H at the same time, avoiding the insertion of extra edges during the
process. All edges of Hn are considered and assigned either to H or to H, if no ambiguities occur,
otherwise are kept unassigned. The hypergraphs H and H are modelled by two three-dimensional
matrices that represent their plane partitions P and P , respectively. Both matrices are initialized
to the null matrix, and their elements are updated to the value 1 according to the detected edges
in H and H. The heuristic, indicated as HeuRec, is composed by the following three steps:



Step 1 The pseudo-code of the first step of the reconstruction is provided in Algorithm 2, Pre-
processing, that computes from the input sequence π of length n an admitted dimension of the
core c and the complementary sequence π. Then, it assigns to H all hyperedges of the core, i.e.,
all hyperedges of Hc on the vertices v1, . . . , vc. After their insertion, the sequence π is updated by
subtracting the common degree value dc = (c−2)(c−1)

2 of Hc from the first c elements of the input
sequence, obtaining the sequence π0. Since the dimension of the core is not known in advance, we
perform n− 2 parallel computations, one for each possible value of c.

Property 3 Let c be the dimension of the core of the degree sequence π. An edge (vi, vj , vk) in Hπ

whose minimum vertex index i is greater than c− 2 does not exist.

It directly follows from the definition of core of a plane partition. As a consequence, all edges whose
minimum vertex is vi, with i > c− 2, are assigned to H, and they form the complete 3-hypergraph
defined on the last n−(c−2) vertices. After their insertion in H, Preprocessing creates the sequence
π0 by subtracting the value dc =

(n−c)(n−c+1)
2 from the last n− (c− 2) elements of π.

Theorem 2 Preprocessing performs in O(n3) time.

Proof. The plane partition related to the hypergraph H can be represented as a three-dimensional
matrix whose dimensions are (n − 2) × (n − 1) × (c − 2) for a hypergraph on n vertices and with
core dimension c. The same for H. The insertion of the edges of the core requires to iterate through
the whole matrix, procedure that runs in O(n3). ⊓⊔
The reconstruction of each plane of P and P proceeds in Step 2, starting from the updated sequences
π0 = (π0

1 , . . . , π
0
n) and π0 = (π0

1, . . . , π
0
n).

Algorithm 2. Preprocessing(π)
Input: π

1 compute π;
2 assumed c the dimension of the core, compute dc =

(c−2)(c−1)
2

and dc =
(n−c)(n−c+1)

2
;

3 insert all edges of the complete hypergraph on the first c vertices in H and compute π0 by updating π;
4 insert all edges of the complete hypergraph on the last n− (c− 2) vertices in H and compute π0 by updating π;

Output: H, H, π0, π0

Step 2 Now the heuristic inserts in H and H the edges that definitely belong to one of them. The
insertions are performed either by checking the cardinalities of the possible positions or the values
of the (supposed) degree sequences starting from π0 and π0. The reconstruction process proceeds
plane by plane from P 1 up to P c−2, resp. from P

1
up to P

c−2
. The edges’ insertion in a generic

plane P i is sketched in Algorithm 3, Insert-H, and hereafter detailed. An analogous algorithm,
Insert-H, is also defined. A further definition is required: we call R-area the set of positions in P i

that are delimited by the upper row of the core, the i-th column and the (discrete) diagonal line
of P i (these two last included). In other words, the R-area is the part of P i where the elements of
R(λi) may lie. Symmetrically, we can define the L-area of P i that includes the elements of L(λi),
see Fig. 4.

Insert-H: starting from the sequence πi−1, the algorithm computes the maximal and the minimal
partition of the i-th element πi−1

i of πi−1 included in the R-area of P i. Let these partitions be
pmax and pmin, respectively. The algorithm inserts in the R-area of P i the elements common



to pmax and pmin, i.e. the partition pmax ∩ pmin. Accordingly, it inserts in the L-area their
symmetric elements. It is worthwhile noticing that each element added to the R-area with its
symmetric in the L-area form an edge whose first vertex is vi, and which is common to all
3-hypergraphs sharing the same degree sequence π, if any. Example 4 clarifies this construction.

Insert-H: acts analogously to compute P
i

from the sequence πi−1.

Algorithm 3. Insert-H(H,πi−1)
Input: H,πi−1

1 compute pmax and pmin;
2 insert in the R-area of P i the elements in pmax ∩ pmin;
3 fill the L-area of P i symmetrically with respect to the R-area;

Output: H

Example 4 Let us consider the sequence π = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) ∈ D11, given
by s = (15, 8, 8, 8, 5,−2,−2,−4,−8,−11,−13). We can argue from s the size of the core, c =
7. In the first step of HeuRec the algorithm Preprocessing gives as output the sequences π0 =
(23, 17, 17, 17, 13, 6, 6, 19, 13, 12, 7) and π0 = (7, 13, 13, 13, 17, 14, 14, 16, 22, 23, 28), together with the
matrices H and H where the insertion of the edges belonging to the (respective) core has been
performed. We now show the steps of the algorithm Insert-H for i = 1, whose output is depicted in
Fig. 4, right. The performance of Insert-H is analogous. Since the length of the sequence is n = 11
and the core has size c = 7, the plane P 1 is a 9 × 10 rectangle in which Preprocessing already
inserted the edges on the left-bottom 5 × 6 rectangle, i.e. the core (see Fig 4). In the following
step, the partitions pmin and pmax of π0

1 = 23 are computed. Since they must be contained in the
R-area, the partitions will be pmin = (4, 4, 3, 3, 3, 3, 2, 1) and pmax = (4, 4, 4, 4, 4, 3), highlighted with
different colors in Fig. 4, left. Insert-H performs the insertion of the elements belonging to both of
them, pmin ∩ pmax, pointed out in Fig. 4, left, with dashed lines. Finally, their symmetric in the
L-area are also inserted, reaching the final (partial) reconstruction of P 1, shown in Fig 4, right.
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Fig. 4. The figure shows the main passages of Insert-H on the first plane P 1 of the plane partition related
to π = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) ∈ D11, whose core has size c = 7. On the left, the computation
of the elements in the R-area that definitively belong to the plane partition; on the right, their insertion
together with the symmetric elements in the L-area.

Theorem 3 Insert-H (resp., Insert-H) performs in O(n2) time.



Proof. In Insert-H the computation of both pmax and pmin can be performed by simple arithmetic
operations, resulting in a constant time complexity. The update of both R(λi) and L(λi) requires
O(n2) time, since P i is modelled by a matrix of dimension O(n2). ⊓⊔
Finally, the update of πi−1 into πi is performed. We compute the sequence q = (0, . . . , 0, qi, . . . , qn)
where each qj , with i+ 1 ≤ j ≤ n, counts the number of the edges involving the vertices vi and vj
that are inside the R or L-area of H and that are not yet added in H, while qi counts the number
of edges inserted in P i. In other words, the vector q counts the edges of P i that either belong to H
or still maintain their placement ambiguity.
Then, we define πi = πi−1−q. In general, qi can be different from πi−1

i . Such a discrepancy is useful
to keep possible all ways of inserting the edges in the P i+1 plane. A symmetric computation leads
to the update of πi−1 to πi. The following property is immediate.

Property 4 Let π be the degree sequence of a 3-hypergraph with core dimension c. If Insert-H adds
the edge (i, j, k) to the plane P i of H, with i < j < k, then it also belongs to all 3-hypergraphs whose
degree sequence is π.

Step 3 As a final step, the heuristic considers the set A of ambiguous edges, i.e. the edges that have
not yet been inserted in H or in H, and the updated sequences π = πc−2 and π = πc−2 obtained
after the performance of Step 2. In this final step the heuristic benefits of the membership of π in
Dext

n , in particular of the ideal (and filter) characterization w.r.t. the poset Tn.
If (i, j, k) ⪯ (i′, j′, k′) in Tn then, for the related edges e1 and e2, respectively, it holds that if e2 ∈ H
then e1 ∈ H (symmetrically, if e1 ∈ H then e2 ∈ H, as stated in Property 1).
The procedure described in Algorithm 4, Poset, is iteratively repeated on each edge m ∈ A until no
further edge insertions in H and H are possible. The heuristic produces a successful reconstruction
if all edges of A are inserted in H or H. The matrix H is the final output.

Algorithm 4. Poset(H,H,π,π,A,m)

Input: H, H, π, π, A, m
1 if m is a maximal element in Tn then
2 compute I =↓ {m} ∩A;
3 compute ρ the degree sequence of the 3-hypergraph I and π∗ = π − ρ;
4 if there exists i such that π∗

i < 0 then
5 insert m in H and update π;
6 remove m from the set A;
7 if m is a minimal element in Tn then
8 compute F =↑ {m} ∩A;
9 compute ρ the degree sequence of the 3-hypergraph F and π∗ = π − ρ;

10 if π∗
i < 0 for some i then

11 insert m in H and update π;
12 remove m from the set A;

Output: H, H, π, π, A

Theorem 4 Poset performs in O(n3) time.

Proof. Both the check of the maximality and minimality of an element m in A, and the related
computation of I and F , require a scan of the whole set, performed in O(n3) time. The update of
the sequences π∗ and π∗, together with the possible insertion of m, run in O(n) time. Summing up,
the whole Poset procedure requires O(n3) steps. ⊓⊔
Remark 1 The algorithm Poset does not perform wrong edge-insertions, since it relies on the
properties of ideal and filter of H and H only, without any further assumption.



We stress again that Poset terminates in a finite number of iterations, at most |A|, leading to the
(unique) solution or to a partial reconstruction where no wrong insertions are performed.

Theorem 5 HeuRec performs in polynomial time with a total cost of O(n10).

Proof. It directly follows from the previous analysis. In particular, Step 1 is performed in O(n3),
see Theorem 2. In Step 2, Insert-H and Insert-H run on each of the c− 2 planes of the partition,
for a total cost of O(n3), see Theorem 3. Finally, Step 3 requires a running time of O(n9), since
Poset can be performed |A| times at most, with |A| = O(n3), see Theorem 4. Then, we have that
the total cost of the three steps is O(n9). Since the three steps are required to be performed for n
times at most (one for each value of c), the total running time is O(n10). ⊓⊔

Example 5 The sequences π1 = (95, 95, 52, 50, 47, 44, 30, 30, 24, 17, 16, 16, 13, 13, 9, 9, 9, 9, 9, 7) and
π2 = (38, 32, 32, 32, 28, 21, 21, 19, 13, 12, 7) are two sequences of different length in Dext− that are
neither maximal nor minimal instances. HeuRec correctly reconstructs the corresponding hyper-
graphs. On the other hand, let us consider the sequence π = (51, 48, 39, 36, 32, 31, 29, 27, 24, 20, 15, 11) ∈
Dext

12 . HeuRec does not fully reconstruct the related 3-hypergraph, as the computation stops with a
non-empty set A of ambiguous edges. Moreover, π is a maximal instance that can be reconstructed
by GColRec. As a matter of fact, HeuRec does not extend GColRec.

Statistical results
We checked the performance of HeuRec on randomly generated sequences π ∈ D, varying their
length. We underline that the computation of sequences in D instead of Dext− allows to guarantee
the uniqueness property without limiting or affecting the heuristic performance. Table 1 shows the
success rate according to the different lengths of π up to n = 30. The statistics was obtained as the
mean of several runs of 100K block trials for each length.

n ≤ 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19
100% 99.998% 99.95% 99.78% 99.34% 98.43% 96.75% 93.95% 90.25% 84.87% 78.54%

n = 20 n = 21 n = 22 n = 23 n = 24 n = 25 n = 26 n = 27 n = 28 n = 29 n = 30
71.28% 62.95% 54.79% 46.85% 39.14% 32.42% 26.07% 20.79% 16.37% 12.70% 9.70%

Table 1. Success rate of HeuRec on sequences of the class Dn, up to n = 30. We generated all sequences
of the classes until n = 6. From n = 7 to n = 30, we performed the algorithm on several blocks of 100K
randomly generated sequences. What here reported is the mean of the performance of the blocks.

It is known that the cardinality of the class Dext
n has an exponential growth rate (w.r.t. to the length

n of its elements), see [2]. From the obtained data, we observe a high success rate for small degree
sequences, while the performance drastically deteriorate when n increases (second line of Table 1),
as expected. From Example 5, the possibility of running on the same input sequence π the three
algorithms, HeuRec, GColRec and GRowRec, can be considered to improve the set of instances that
are fast reconstructable. Unfortunately, not all sequences in Dext− can be reconstructed by the three
algorithms: as an example, consider π = (70, 55, 49, 36, 33, 32, 28, 20, 20, 17, 17, 16, 10, 8, 6) in D. In
view of achieving a polynomial time reconstruction strategy for the class Dext−, the possibility of
defining new techniques that reduce the set A of the ambiguous edges we get at the end of the run
deserves deeper investigation.
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