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Quaternion Regular Functions
and Domains of Regularity.

DonaTto PERTICI

Sunto. - In questo lavoro si sviluppa la teoria delle funzioni regolari (nel
senso di Fueter) di pit variabilt quaternioniche. Fra Paltro, si dimostra-
no teoremi di tipo Cartan-Thullen e di tipo Hans Lewy.

Introduction.

In this paper we develop the theory of regular functions of sev-
eral quaternion variables. The definition of regular functions of
quaternion variable was given, in 1935, by R. Fueter and the theory
was developed by him and his school. Recently, the theory has been
rediscovered and considerably extended: for references see, for in-
stance [S], [N], [P1], [P2], [P3], [P4] and [G-M-T]. However, we re-
fer to[P1] for a complete bibliography.

In the present work we study essentially the properties of do-
mains of regularity of H". Among other results, we prove a theorem
of Cartan-Thullen type, which asserts that every domain of regular-
ity of H" is regularly convex, and we give a differential geometric
condition on the boundary of a domain of regularity (cf. Theorem 4).
In the last section we study the problem of the local regular ex-
tendibility of funetions defined on hypersurfaces of H" and we prove
a theorem of Hans Lewy type.

The conditions that we give, in order to have the local regular ex-
tension, are essentially the same as those which we introduced
in [P4].

1. - Preliminaries.

1. — We denote by 1, i, j, k a basis of the algebra H of quater-
nions. We recall that we have i2=j2=k*=-1, 4= —ji=k
jk=—kj=1, ki=—1k=].

If ¢g=(q1,...,4,) is an element of H", we shall write g, =iV +
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P + jus + ks, for h=1,...,n, where x{", 2P, x{¥, x{", are the
real components of ¢,. If we set g, = — ix{® — jui® — ka{?, the -
norm |g| of ge H" is defined by the following equation:

n n
lq| = \/Zh%@ﬁ \/Zﬁh%'

In this paper C%" will be identified with H" by the map
(z(l) Z(l) -,zl(n) 2 n)) — (z(l) +]Z(1) . ’zln) +]z(n))

(cf.[P1], p. 68).

2. — We consider now a function of class C* F: A — H, where A is
an open set of H". We say that F is left-regular (or simply regular)
in A if
izaF 2.<9F’_|_].8F kaF

9,  dw{® - Fx T qwM AW

We denote by R(A) the set of the left-regular functions on A. We
know that R(A) is a right H-vector space, but it is not an algebra on

=0 in A, for h=1,...,n.

H ([P1D).
If we define
9o _.8 _. 9 _ 3 3
9¢n  daM B P ax(h) dxih
we have
8 0 _0 8

a_ﬁh 3qx  9qn 9y
where 4, is the partial Laplacian realized with respect to real coordi-

nates of ¢,. Since the usual Laplacian 4 of H" is equal to ZhAh, we
deduce that every regular function is harmonie.

3. - We can give, for the regular functions, a representation for-
mula of Bochner-Martinelli type ([P2]), that is there exists a kernel
Q,,(g) such that, if U is a bounded open set with boundary of class C !
such that Uc A, and fe R(A), then, for every g, e U, we have

) flan = J Qo (@ 1.
auv

If n =1 the kernel Q,(¢) reduces to (1/27%) G(q — o) Dg, where G
is the regular function on H — {0} defined by G(¢q) =7/ |g¢|* and Dgq
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is the following H-valued 3-form:
Dq = day A dacy A divs — 5 dacg A\ dacg N\ dvg +
jdag A dacy A\ dacg — ke dagg /\ dacy A\ dws .

In this case the formula (1) reduces to the classical Cauchy-Fueter
formula (ef. [S]):

@) flgo) = —1—2 f G(q — q0) Daf().
277.' U

This formula can be extended to dimension % in other way too. Con-
sider a regular function f: A ¢ H" — H and go= (q?,...,q0) e A. Let
€1,...,E, D€ positive numbers such that

{¢=(q1,..,q) e H": |g —qi | Sen, k=1,...,m} CA.

Then it is easy to show, from (2), that, if ¢ = (g1, ..»qy) € A and
lgn—qP| <ey for h=1,...,n, we have

(3) f(qu'--yqn)‘_‘ﬁ f f G(El”ql)D51

|51_q{)|=51 Ifn‘q'r(“:en

4. — In general the composition of regular functions is not regu-
lar. Actually the only functions preserving regularity are the affine
right linear maps, that is the functions g: H” — H" defined by
g(g) = Aq + B, where B e H" and A is matrix of type n X m, which
entries are in H. In fact the following Proposition holds true:

ProposITioN 1 ([P1], p. 70). — Let g: A — H" be a function of
class C* on any open set A of H". The following conditions are
equivalent:

a) g is an affine right linear map;

b) fog is regular in A, for every function f; which is regular in
a neighbourhood of g(A).

2. — Domains of regularity of H".

_ L-LetD, D be two domains of H" such that D ¢ D. We say that
D is a regular completion of D with respect to a subset S of R(D), if,
for every fe S, there exists a (unique) function f e ®(D) such that

f o=/
An open subset A of H" is said to be a domain of regularity if, for
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every domain D ¢ 4, every regular completion of D with respect to
KA p={flp: fe R(A)} is contained in A.

As in the complex case, we can easily show the following
propositions:

PROPOSITION 2. - An open subset A of H" is a domain of regulari-
ty if and only if every commnected component of A is a domain of
regularity.

PROPOSITION 8. — Let A be an open subset of H". Suppose that, for
every sequence {q,},.n n A, which have no limit points in A, there
extsts fe R(A) such that sup | @) =+oo. Then A is a domain of
regulority. heN

PROPOSITION 4. — Let A be an open subset of H". Suppose that, for

every qo € A, there exists fe R(A) such that qlgré | Q)| =+ . Then
A is a domain of regularity. ged

From Proposition 4 we deduce that every open subset 4 of H is a
domain of regularity. Indeed it is sufficient to consider, for every
o€ OA, the regular function G(g~¢0) = (G- G/ |q — o [4.

2, ~ If m > 1, there exist open subsets of H", which are not do-
main of regularity. Indeed we have shown in [P2] a theorem of Har-
togs type. This theorem asserts that, if A is a connected open subset
of H* (m > 1), and if K is a compact subset of A such that A — K is
connected, then A is a regular completion of A — K with respect to
R(A ~ K). Then A — K is not a domain of regularity.

Another theorem of Hartogs type is the following:

THEOREM 1. - Let A, B be non-empty connected open subsets of
H"~1 (n > 1), such that A CB. Then let a, b be real numbers such
that 0 < a < b. If we set

w1={(q1,...,q,) e H": |q,| <b, (g2,...,q,) €A},
w2={(q1,...,qn) e H*: a < IQ1| <b, (g2,...,q,) EB}, w=w;U w,,

o={(q1,...,q,) e H": |q;| <, (g2, .--,9,) € B},

then o is a regular completion of w with respect to R(w).
PROOF. - Suppose that fe R(w) and ce€(a,b). We set
B.={(g1,-,qu) e H": |g1] <g, (g, ...,q,) € B},
A ={(q1; -, 90 e H: |1 | <, (g2,...,q,) € A}
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If (g1,...,9,) € A,, we have, from (2),

Ay, .., = L G(q— 90 Dqf(q,q2,..-,q,) .

2
27 %012,

Setting

F(qu""qn)=% f G(g - 91 Dqf(q,92,..-,qn),
277 0=

we define a function F: B, - H, which extends f] a to B,. We

have

A1 F(gy,y ey qy) = 51—2- f 4,6(q ~ 4 Dgf(q, gz, -, ) =0,

T gl =¢

because G is regular.
Since 4, is a real operator, we also have, for h=2,...,n,

M F(gr, g = == | Glg—q)Dady, f(g,02,...,8) =0,

2
275 1=,

because f is regular. Hence F' is harmonic in B, and regular in A,.
Then F is necessarily regular in B,. Since N B, is a connected open
set, which contains A, from the Principle of Identity (cf.[P1], p.
67), we obtain F =fin « N B,. Finally, if we set

{F in B,

f=
f in -B,

we obtain that f is a regular extension of fin w. q.e.d.

3. — A first geometrical property of the domains of regularity is a
consequence of the following

THEOREM 2. — Let K be a compact connected subset of H" ™1
(n > 1) containing the origin O' of H" !, and set D,={q e
H: |q| <7}. Then let f: H* — H" be an invertible affine right lin-
ear map. If A is a domain of regularity of H" and if f(D, x {0’} U
(8D, X K) is contained in A, then f(D,X K) is also contained
mn A
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Proor. - We set, for me N,
— n—1, 1
Ve=19eH" "t |q| < o1,

Bu={gem a0 < L,

where d denotes the euclidean distance in H”‘l.
Obviously V,,c B,,, Vm e N.
We define now, for m e N,

5m={(q1,q)eHxH”‘1: gl <r+ %, qum} U

"~ 1 1
{((Iu(I)EHXH I:T—W<IQI’<T+E’ qum}'

ﬁm is an open neighbourhood of (D, x {0'}) U (3D, x K); moreover if
W is any neighbourhood of (D, X {0’})U (3D, X K), there exists
m e N, such that D,,cW. B

Then we can fix m e N such that f(D,,) cA.

From Theorem 1,

ﬁm={(q1,q)eH><H"‘1: lg] <7+ —713 qum}

is a regular completion of Bm with respect to Q{(Bm). Then from
Proposition 1, f(D,,) is a regular completion of f(D,,) with respect to
& (f(D,,)). Since A is a domain of regularity, it follows f(D,,) c A and
hence f(D,xK)cA. q.ed.

4. - In the first section we have identified C#* and H". With this
identification, it is easy to prove the following

ProposITION 5 ([P1], p. 69). — A function f: H*=C?>" > C =
{g=2+jze H: 2, =0} is regular if and only if it is holomor-
phic.

From this proposition it follows easily

ProposiTiON 6 ([P1], p. 128). — Let A be an open subset of
H"=C*. If A is a domain of holomorphy of C2*, then it is also a
domain of regularity of H". In particular, every convex open subset
of H" is a domain of regularity.
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3. - Domains of regularity and regular convexity.

1. - In this section we will prove a theorem of Cartan-Thullen
type.

We begin with some definitions. Let us consider an open set A of
H” and a compact subset K of A. We define the R(A)-hull Kiof K
by

E4={geA: |flg] <max|f|, Vfe (A}

1t is clear that K c K, and (Ka)a= K 4. Moreover K 4 is bounded
and closed in A ([P1], p. 124). The open set A is said to be regularly
convez, if, for every compact subset K of A, the R(A)-hull K4 is also
compact.

If n =1, K, is the union of K and all connected components of
A — K, which are relatively compact in A (cf.[P1], p. 54). Hence
every open subset A of H is regularly convex.

2. - Before giving some inequalities on the derivatives of a regu-
lar function, we fix the notations. If a=(af’,a{",as",ai",

a,...,af”) e N** is a multi-index we set
al = H aP! and o] = 2 alP.
2=0,..,3 A=0,...3
h=1,.., n h=1,..., n

Moreover if g=(g;...,q,) € H", with g, =a{® + ix® + jas® + kai?,
for h=1,...,n, and a=(«§",...,af) e N** is a multi-index, we de-
fine a real number ¢* by

a (zh)
=TI @@y,

2=0,..,3

h=1,..., n
Then, if f is a function and « € N**, we set

alel
Dafz 1) ({ (n) °
SV oV .. Bag”

Thusa if a4, Qo EEH, £E#24, qo, and |q_q0| < |E_q0l’ since
G(£—q) =G((¢ — qo) — (g — qp)), we obtain, from Taylor’s formula,
D*G(£— qo)
@ GE-g= 2 (-DH =1 g - g0,
ae N4 .
3. — Consider now a regular function f: AcH"” — H and let

q=1(q,....q0) € A.
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Let ¢,,...,¢, be positive real numbers such that

{(I=(Q1»~--,qn) e H": lqh_q}(b)l ssh’ h=19""n} gA

If ¢g=(q1,...,9,) €A and |q, — g | <ey, for k=1,...,n, from (3) and
(4), we obtain

(=1l
6 faqyomg=—2o D " G-

2" =g, yan) O

f N f DalG(El_qlo)DEI...DanG(En_q,,?)DEnf(El,...,En) .

IEI‘q{)I:sl Ifn‘qr(“:sn

From this formula we deduce that

—1)lel
(6) D“f(qP,...,q£)=( ) f f DG~ q)) DE; ...

n . 2n
2'n lei-qfl=c1  |ea—gll=cn
D“nG(En - qg)Dfnf(fn --'7571.)7 Va: (aly '--7an) € N4n!
and hence (cf.[P1], p. 19)

@ DA, ....q0| < =2 f f | D G(E — ).

2n7r2n
le1-afl=e1  |6u—gll =,

|D*»G(£, — gD || f(E1y 8|, Va=(ay,...,a,) € N*".
Now we must extimate the derivatives of G.
PROPOSITION 7. — If « € N* we have

(20¢)!*! o
|D“G(Q)|S-lez—45—|;|—|:|—+3—, for all ge H — {0}.

ProoF. — Suppose a= (ag,a;,a9,a3), Where ;e N. Since G is
harmonic we have (cf. [Pu], p. 197)

-1
4*0g%0 aol

- max D(O,al,az,zz3)G <
(Iq]/5) If—qls(!ql)/sl €3]

|D*G(g)| <

4a0+alea0+al—2a0!a1!

max ID(O,O,az,ag) G(E)l <
(lg|/B)=*= le-ql <@lq)/5
4ao+a1+ageao+a1+az—3a0!al ' 0‘2!

max D(0,0,0,ag) G(E) <
(|g|/5)rotoa+a ff—q1s<3|q|>/s| |
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(4e)*le *a! (4e)!*le*al
—_ max |(; E)I = -——————-——————1?; =
(lq| /B 1z-al<@la/s (gl /5!
20¢)!*! a!
125 BT g,
et |q|=*?
Now we suppose that ¢, =...=¢,=¢ and we set

(o, o) = {&=(&1,...,5) e H": |&,— R | =¢, for h=1,...,n}
From (7) and Proposition 7 we obtain easily

PROPOSITION 8. — If f is regular in A and goe A, ¢ >0 are as
above, then

l)“ n 2() |“|
| D*f(go)| S(125) (E_i)) Ig;rla)()lfl, Vae N,
g0, €

al et &

4. — Now we can prove a theorem of Cartan-Thullen type (cf.
also [N]).

THEOREM 3. - Every domain of regularity of H" is regularly
convex.

ProoF. - Let K be a compact subset of a domain of regularity A
of H* and let K denote its R(A)-hull.

If p=(pi,sPud 4= (@1 g) €H", with py=yi” +i" +
s + ky$P, q, =2 + i + juof? + kg, for h=1,...,n, we define

8(p,q) = max |pi—qil,  Alp,@)= max |y - &P,
S 0<i<3
g, K) = ,}Ezf( o(g,p), ¢é= qlEna{1 ¥q,K),

A(q,K)=;£1£ Alq,p), A=q1£a§A(q,K).

Since K is compact we have ¢ > 0; then we can fix r € (0, 8). We set
K, = {qe H": 8(q,K) <r}. Obviously K, is a compact subset of A.
Let us fix gy K. We have {ge H": &(q,q0) <7} cK,CA.

Now consider fe R(A). If &(q,qy) <r we have

th
= 3 2R

xe N#* x.

(9 —qvr"

and, from Proposition 8§,

. . Jal
10" ftao) S(125) (@2) max|f|, Vae N
r T

al et



982 DONATO PERTICI

Hence

a n |°‘|
(8) max |D°f] S(%) (@) mKax|f|, Vo e N**
e r .

We fix now q; € K. If A(q,q,) <7/20e, we define
D°f(q)
o= 2 = - ar.

ae Ni»

Since D*f is regular in A and ¢q; € K we have, from (8),
Da a n 20 ]
| ff‘h)l < max 1271 s(125) (( e)) max £
r ‘g

a! K ol et

Thus if A(q,q,) <7/20e we obtain, Va e N**,

’ D*f(qy)

I g | < (1
X

1 "
S(?‘) bl 'mK§X|f|,

where b=A4(q,q,)(20e /7) <1.
Hence g is a real analytic function on

p= {qu": Ag,q) < E&}

Because g coincides with the regular function fin a neighbourhood of
q1, it follows that g is regular in P. If we denote by C the connected
component of A N P which contains ¢,, we have g|c =f|c. Hence P is
a regular completion of C with respect to R(A)|¢, and then P is con-
tained in A. Thus 4 = r/20e > 0.

Hence K is closed in H”; since it is also bounded, we deduce that
K is compact. q.e.d.

REMARK. — We think that, as in the complex case, the converse of
Theorem 3 is also true, but we have not been able to prove it.

4. — Another geometrical property of domains of regularity.

1. — In this section we prove that the boundary of a domain
of regularity must satisfy a differential geometric condition. Suppose
that A is an open subset of H", with boundary of class CZ% Let
v be the inner normal versor of JA: it determines an orientation
on 9A. We denote by s the second fundamental form of 8A with
respect to this orientation, and we say that & is the second fun-
damental form of 0A relatively to A. It can be noted that, if @
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is a real function of class C? such that A = {¢ <0}, A= {?=0},
with grad @ # 0 on 34, we have v= —grad®/ |grad ®|.
Moreover, if 0 € 34 and Ty (34) = {x5™ =0}, we get

9 ho((ud?, ..., us™,0), (v§V, ..., v5™,0)) =

1 82@ (R) 5,(8)
| grad 9(0)| 2 PTEWT 0)u” v5” .

2. — Now we can prove the following

THEOREM 4. — Let A be any domain of regularity of H" (n > 1)
and let g€ dA. Suppose that the boundary A is of class C% ina
neighbourhood of qq. Then there exist no one-dimensional right lin-
ear subspaces of H", contained in T, (3A), on which the second fun-
damental form of AA relatively to A is negative definite.

Proor. — We use reductio ad absurdum. Let = be any one-dimen-
sional right linear subspace of H", contained in T, (8A4), on which kg,
is negative definite.

By Proposition 1, we can suppose

0=0, T,(3A)={x{"=0}, =={(q,0,...,0)eH": q;eH}.

Let @ be a C%*function defined on a neighbourhood U of 0 such
that ANU={0=0}, ANU={P<0}, with grad® =0 on JA.
Then

wy 1 ) gy 2
Ugs, 10 = a o @+ 52— Wa 5 @as +ollal),

where ¢=(qy,...,qn), G =2 + i +jui? + kg, for h=1,...,n
Thus, from (9) we get

@(ql,O,...,0)=

| (39 / 35™)(0) |

2 h’O((qI’O,'-"O),(q1101~--70))+0(|q1|2)-
Since hy is negative definite on =, we have

h’O((ql’Ov'--’O)’(QIyov"',O)) <
lg:]®

-C<0, for q;#0.
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Then

(0)

(q,,0, ...,0
(@ ) _ g’ 30 e,

@2 2| omf”

where lim y(q;) =0.
-0

Then there exist &, ¢ > 0 such that, if we set
D;={qeH: |q| ¢}, K={(go,....,q) e H" !: |gi] ¢,
. for i=2,...,n},

we have @ < 0 on 3D; X K, and hence 0D, X K cA. Moreover there
exists te[— ¢, ¢] such that, if we set P=(0,...,0,tk) e H* "1, we
have D, x {P} c A, with P € K. By Theorem 2, then we obtain D; X
KcA. In particular 0 € A. Contradiction. q.e.d.

5. — An extension theorem of Hans Lewy type.

1. - Let us consider any real hypersurface S of H" is class C*%; let
® be a real function of class C*, defined on a neighbourhood of S,
such that S = {® = 0}, and grad® # 0 on S. A function f:S — H of
class C*is said to be admissible, if it can be extended, on a neigh-
bourhood of S, to a function F of class C*, such that 8F /8g, = 9%y,
where the functions ¢, are of class C3, for h=1,...,n.

The definition is independent of the function @, which defines S.

Obviously all traces of regular functions are admissible. More-
over, it is easy to check that admissible functions verify all trace
conditions, expressed by differential equations of both first and
second order, that we have introduced in[P4]. Conversely in[P4]
(pp. 475-477) it is shown that if S is of class C¥ every function of
class C® which verifies these differential conditions is admissible.
(In[P3] and [P4], by mistake, we wrote C” instead of C®) Thus, for
functions of class C°®, admissibility is equivalent to the differential
conditions of [P4].

2. - It is easy to show the following

PROPOSITION 9. — Let f: S — H be admissible. If g: H" — H" is
an invertible affine right linear map, then fog: g ~(S) — H is also
admissible.

In[P4] (pp. 475-476) it is also proved the following
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PRrOPOSITION 10. — Let f: S — H be admissible. Then f can be ex-
tended, on a meighbourhood of S, to a function F of class C® such
that OF [ 3q, = B3, where the functions ¢, are of class C2, for h=
1,...,n, and @ is a function which defines S.

Theorems 4, 5 and 6 of [P4] can be summarized in the following
form:

THEOREM 5. — Let U be o bounded open set of H" (n > 1), with
boundary of class C*, such that H"—U is connected, and let
f:0U—H be an admissible C*function. Then there exists F e

C*U), regular in U, which extends f

3. - By the same methods, we prove now an extension theorem of
Hans Lewy type.

THEOREM 6. — Let S be a real hypersurface of H* (n > 1) of class
C*, and let gye S. Let ® be a C*function, defined on a neighbour-
hood U of qqy, such that UN S = {® =0}, and grad®=0o0on UN S.
Suppose that there exists a one-dimensional right linear subspace =
of H"*, contained in Ty (S), on which the second fundamental form of
S, relatively to {® <0}, is positive definite. Then there exists a
neighbourhood o of q, such that, every admissible C*“function
froNS—H, can be extended to a function F:w — H of class C?,
which is regular in o~ =N {P<0}.

Proor. - By Proposition 1 and 9, we can suppose g, =0, T((S) =
{2 =0}, == {(q,,0,...,0) e H*: ¢, e H}.
As in the proof of Theorem 4, we have

¢(q1,0,...,0) =

| (39 / 3z{™)(0) |

2 ho((quoa---,o),(QI,O,---,O))+0(|QI|2),
and

hO((qI’O’---’O)’ (quoy"'ro))
lg:|?

=2C>0, for ¢;#0.

Then

oP
™

- ¥(qq,0,...,0)
|‘I1|2

C
?E’ (0)

+x(q), where lim0 x(q) =0.
91—
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Then there exist ¢, ¢ > 0 such that, setting » = {(qy,...,¢,) € H":
lgil <8, |gz]s---5 |qu| <e}, we have &*® /(3xs" 3x{) >0 on w (cf.
9), and ¥(q,,...,q,) >01if |q;| =& and |q.|,...,]q.| <e. Then, if we
fix q,...,q0 such that |¢?|,..., || <e,

(10)  the set {(g1,45...,q0) € &: D(q,q5 ...,q0) >0} is connected.

Indeed, since %@ /(dz{ dx§V) >0, & cannot have local maxima.
Moreover there exists t € (— ¢, ¢) such that ¢(¢,,0,...,0,tk) >0,
for all ¢; which satisfies |g;| <&. Then there exist o€ (0,¢) and a
neighbourhood V of tk in H, contained in {ge H: |g| <e}, such
that ‘ ,

(11) &>0 on W=
{(q1s g0 € H™: @] <4, 1ga]s00s [qu-1] <0, eV}

We set now

o={(q,...,q0) e H": 1| <&, [@2|, . |gn-1] <o, || <e}.
From (10) we obtain that
12) o' ={qew: ®(q)>0} is connected,
and from (11)
(13) Wcow™.

Before completing the proof, we must show the following (cf. Theo-
rem 1 of [P4])

PROPOSITION 11. — Let f=(f,...,f,) € Cw,H") (n > 1, k = 2) be
a function such that f|.,+=0. There exists ueC*w) such that
ou/3g,=f, for h=1,...,n, and u|,+~ =0, if and only if

R
a(_Ih aq.s ’

(14) 4, fu= for s,h=1,...,n.

PROOF. -~ Obviously (14) is a necessary condition (cf. [P4]). Con-
versely suppose that (14) holds true, and consider the function u e
C*w) defined by

u(%,--«,qn):"‘El—E J. G(E—q1)f1(51q2”qn)

Tolel <
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We have du /8g, =f; (cf.[P2], p. 51). Moreover, from (12),

4 u(qu ’qn)__z—_ f G(E (I1)A fl(f,(Iz, ’qn)—

Tl <e
fn fn
e f G(E ¢I1) a (5,(12, vqn)_ (111, ’qn)-
7'L' ’E|<° n
The last equality follows from Theorem 1 of [P2].
Thus, we have obtained,
3
aqn( 3 f")
If we fix q°,...,q0-1, such that |g?| <¢, |gf],...,1gn-1]| <o, the

function g defined by

g(q)=( gill fn)(q1yq2’ ,‘Ir?—l,Q), fOI‘ |q|<€,
is anti-regular, and from (13), it vanishes on V. It follows that this
function vanishes identically; hence

ou
15) =f, oh w.
9 =f
Then, if #=2,...,n — 1, we have, from (14) and (15),
u 3 3
A, 2= = A u= = — =4, [,
von - T 5 0
and hence

By the same arguments, we deduce again that ou /3q,=f, on w.

In particular » is regular on »*. Since u|w =0, from (12) and
from the Principle of Identity, we obtain u|,+=0.

This concludes the proof of Proposition 11.

Now we can return to the proof of Theorem 6.

If f is an admissible C “function on » N S, by Proposxtlon 10, it
can be extended to a C%function F, such that 3F,/3g, = 9*y;, for
h=1,...,m, where the functions , are of class C2. As in[P4] we de-
fine now

o — @3y, on w”,
=
0 on w”

The functions v, verify (14); then, from Proposition 11, there exists
u e C¥w) such that du/38g,=m, for h=1,...,n, and u|,+ =0.
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Then F=F,—u is an extension of f, which is regular. in
o~ . q.ed

4, — As in the complex case, we can prove the following

PROPOSITION 12. — Let S be a real hypersurface of class C*, which
is contained in an open subset A of H", and let f: A — H be a continu-
ous function, which is regular in A — S. Then f is regular in A.

Then, from this Proposition and from Theorem 6, we obtain

THEOREM 7. — Let S be a real hypersurface of H" (n > 2) of class
C*, and let qyeS. Suppose that there exist two one-dimensional
right linear subspaces =, no of H", which are contained in T4 (S),
such that the second fundamental form of S is negative definite on
71, and positive definite on ny. Then there exists a neighbourhood w
of qo such that, every admissible C *-function f: » N 8 — H can be ex-
tended to a regular function F:w— H.
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